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Hamming Nearest Neighbor Problem

Definition (Hamming Nearest Neighbor Problem)

Given a set D of n database points in {0, 1}d , we wish to
preprocess D so that for queries q ∈ {0, 1}d , we answer a point
u ∈ D that differs from q in a minimum number of coordinates.

Curse of Dimensionality (Barkol, Rabani ‘00)

All solutions require either

I 2Ω(d) size data structure (store all answers), or

I Ω(n/ polylog(n)) query time (try all points).
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Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

I Approximate solutions: find a point with distance within
(1 + ε) of the optimal

I Lots of beautiful results and impact: hashing, dimensionality
reduction, ...

I “Curse of approximation”: still requires nΩ(1/ε2) space.
[Andoni, Indyk, Patrascu ‘06]

I ‘Planted’ case: All vectors are random except one pair with
distance much smaller than expected; find the planted pair
among the n vectors

I O(n1.62) time algorithm, independent of dimension.
[G. Valiant ‘12]
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Batch Hamming Nearest Neighbor Problem

Definition (Batch Hamming Nearest Neighbor Problem)

Given a set D of n database points in {0, 1}d , and a set Q of n
query points in {0, 1}d , find the HNN in D for each point in Q.

Lower bounds no longer apply, but still best previously known
solutions take either:

I n · 2Ω(d) time (build a table of all answers), or

I n2 · dΩ(1) time (try all pairs).
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Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW ‘15)

Let D ⊆ {0, 1}d be a database of n vectors of dimension
d = c log n, where c can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n2−1/O(c log2 c) time, whp.

I If d = O(log n), then the algorithm runs in truly subquadratic
time: n2−ε, for some ε > 0.

I Improves on the trivial algorithm when
d = o(log2(n)/ log log2(n)).

I Algorithm technique: Compute Hamming distances using
Efficiently Computable Low-Degree Probabilistic Polynomials
(Very different techniques from past work)
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Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW ‘15)

Let D ⊆ {0, 1}d be a database of n vectors of dimension
d = c log n, where c can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n2−1/O(c log2 c) time, whp.
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Theorem (AW ‘15)
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{0, 1}c log n. Then the Strong Exponential Time Hypothesis is false.



Polynomials that Compute Boolean Functions

Let R be a ring (can be Zm,Z,Q,R, . . .). A polynomial p in n
variables over R computes the boolean function
f : {0, 1}n → {0, 1} if for each x ∈ {0, 1}n we have p(x) = f (x).

Example (OR function)

OR(x1, x2, . . . , xn) =

{
0 if x1 = x2 = · · · = xn = 0

1 otherwise.

Then,

OR(x) = p(x) := 1− (1− x1)(1− x2) · · · (1− xn)

The polynomial p has degree n, and 2n terms when expanded out.

Note: We never need to take powers of a variable greater than 1,
since xi = x2

i when xi ∈ {0, 1}. (We only need to look at
multilinear polynomials)
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Probabilistic Polynomial

Let f : {0, 1}n → {0, 1} be any Boolean function on n variables.

Definition (Probabilistic Polynomial)

A probabilistic polynomial over R for f with error ε and degree d is
a distribution D of degree-d polynomials over R with the property
that for each x ∈ {0, 1}n,

Pr
p∼D

[p(x) = f (x)] ≥ 1− ε.

Note: The probability is only over the polynomial p, not over the
input x .



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]

Set S0 = {1, 2, . . . , n} and
construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1

such that each element of Si is
included in Si+1 with probability
1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
∏
i

(1− pi (x))
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(1− pi (x))

I If x = (0, . . . , 0), then
pj(x) ≡ 0 and p(x) = 0.

I If x 6= (0, . . . , 0) then we
want there to be a j such
that pj(x) = 1 with some
(constant) probability.



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]

Set S0 = {1, 2, . . . , n} and
construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1

such that each element of Si is
included in Si+1 with probability
1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
∏
i

(1− pi (x))

I If x = (0, . . . , 0), then
pj(x) ≡ 0 and p(x) = 0.

I If x 6= (0, . . . , 0) then we
want there to be a j such
that pj(x) = 1 with some
(constant) probability.



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]

Set S0 = {1, 2, . . . , n} and
construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1

such that each element of Si is
included in Si+1 with probability
1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
∏
i

(1− pi (x))

I If x = (0, . . . , 0), then
pj(x) ≡ 0 and p(x) = 0.

I If x 6= (0, . . . , 0) then we
want there to be a j such
that pj(x) = 1 with some
(constant) probability.



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]

Set S0 = {1, 2, . . . , n} and
construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1

such that each element of Si is
included in Si+1 with probability
1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
∏
i

(1− pi (x))

I If x = (0, . . . , 0), then
pj(x) ≡ 0 and p(x) = 0.

I If x 6= (0, . . . , 0) then we
want there to be a j such
that pj(x) = 1 with some
(constant) probability.



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]

Set S0 = {1, 2, . . . , n} and
construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1

such that each element of Si is
included in Si+1 with probability
1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
∏
i

(1− pi (x))

I If x = (0, . . . , 0), then
pj(x) ≡ 0 and p(x) = 0.

I If x 6= (0, . . . , 0) then we
want there to be a j such
that pj(x) = 1 with some
(constant) probability.



Probabilistic Polynomial Example: OR over R = Z
[Aspnes, Beigel, Furst, Rudich ‘93]
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construct subsets

S0 ⊇ S1 ⊇ S2 · · · ⊇ Slog2(n)+1
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1/2.

Let pi (x) =
∑

j∈Si xj .

Our probabilistic polynomial for
OR is

p(x) = 1−
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i
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I O(log(n)) degree
polynomial for OR with
ε = 2/3.

I Can augment to degree
O(log(n) log(1/ε)) for any
ε > 0 (use the fact that the
error is one-sided).



Probabilistic Polynomials for MAJORITY

Notation: For x ∈ {0, 1}n, write |x | =
∑n

i=1 xi .

MAJORITY (x) = 1 iff |x | ≥ n/2.

Theorem (Razborov, Smolensky ‘87)

A probabilistic polynomial with ε error for MAJORITY requires
degree Ω(

√
n log(1/ε)).

Theorem (AW ‘15)

There is a probabilistic polynomial for MAJORITY on n variables
with error ε and degree O(

√
n log(1/ε)).

We will actually look at the threshold function:
THθ(x) = 1 iff |x |/n ≥ θ. In particular, MAJORITY = TH1/2.
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THRESHOLD: Recursive Intuition

Two cases depending on how close |x |/n is to θ (whether or not it
is within δ = Θ(

√
log(1/ε)/n)):

I If |x |/n /∈ [θ − δ, θ + δ], then if we construct a new smaller
vector x̃ by sampling 1/10 of the entries of x , it is likely that
|x̃ |/(n/10) lies on the same side of θ as |x |/n (by
Chernoff-Hoeffding).

I If |x |/n ∈ [θ − δ, θ + δ], we can use an exact polynomial of
degree O(nδ) = O(

√
n log(1/ε)) (by polynomial

interpolation) that is guaranteed to give the correct answer.

I To decide which of the two cases we are in, we can use
THθ+δ(x̃) and THθ−δ(x̃).
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From Probabilistic Polynomial to Hamming Distance
Algorithm

Given an efficient (small number of monomials) polynomial, we
can evaluate it on many points quickly:

Lemma (R. Williams ‘14)

Given a polynomial P(x1, . . . , xd , y1, . . . , yd) with at most n0.17

monomials, and two sets of n inputs A = {a1, . . . , an} ⊆ {0, 1}d ,
B = {b1, . . . , bn} ⊆ {0, 1}d , we can evaluate P on all pairs
(ai , bj) ∈ A× B in Õ(n2) time.

I Beats the trivial runtime of Ω(n2.17) time.

I Since we want a subquadratic algorithm, we can’t just let
A,B be our sets of vectors.

I Instead, group our vectors into n/s groups of size s. Each
element of A or B will correspond to a group.
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Hamming distance subproblem

We will use this to solve the following sub-problem of Batch HNN:

Definition (Hamming distance problem)

Given an integer k and two collections of s vectors of dimension d
as input, output 1 iff there is a pair of vectors (one from each
collection) with Hamming distance at most k.



Polynomial for Hamming distance problem over F2

I Let x1, . . . , xs and y1, . . . , ys be the two collections of vectors.
We will write xi ,j for the jth variable of vector xi .

I Let Dd be the probabilistic polynomial of degree
O(
√
d log(1/ε)) for the threshold function TH(k+1)/d on d

inputs. Sample p ∼ Dd with error ε = 1/s3.

I Choose a uniform random subset R ⊆ {1, 2, . . . , s}2

Our polynomial is:

q(x1, y1, . . . , xs , ys) :=
∑

(i ,j)∈R

(1 + p(xi ,1 + yj ,1, . . . , xi ,d + yj ,d)).
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Polynomial for Hamming distance problem over F2:
Correctness

q(x1, y1, . . . , xs , ys) :=
∑

(i ,j)∈R

(1 + p(xi ,1 + yj ,1, . . . , xi ,d + yj ,d)).

I Since we are working over F2, the number of 1s in the vector
(xi ,1 + yj ,1, . . . , xi ,d + yj ,d) is the Hamming distance between
xi and yj .

I 1 + p(xi ,1 + yj ,1, . . . , xi ,d + yj ,d) is 1 iff xi and yj have
Hamming distance at most k (assuming p is correct)

I If all the xi and yj have Hamming distance > k, then the sum
is 0. Otherwise, it is 0 or 1 with 1/2 chance each (based on
our choice of R)

I Since the error is one-sided, we can amplify to get as high a
success probability as we want.
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Hamming distance at most k (assuming p is correct)

I If all the xi and yj have Hamming distance > k, then the sum
is 0. Otherwise, it is 0 or 1 with 1/2 chance each (based on
our choice of R)

I Since the error is one-sided, we can amplify to get as high a
success probability as we want.
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Solving Batch Hamming Nearest Neighbor

Two more steps:

I Hamming distance problem (is there a pair with distance ≤ k)
polynomial ⇒ algorithm.

I Hamming distance problem algorithm ⇒ Batch Hamming
nearest neighbor (for each vector, find its nearest neighbor)
algorithm.



Hamming distance problem polynomial ⇒ algorithm

Lemma
Given a threshold k, and subsets R,B ⊆ {0, 1}d with
|R| = |B| = n and d = c log n, we can find a v ∈ R and u ∈ B

whose Hamming distance is ≤ k in time n2−1/O(c log2 c) (or
determine that none exist).

I Partition each of R and B into n/s groups of size

s = n1/O(c log2 c).

I Our probabilistic polynomial on each group has degree
O(
√
d log s). Hence the number of monomials is

( 2d√
d log s

)
,

which is ≤ n0.17 for a suitable choice of constants.

I Using the fast evaluation lemma, we can evaluate on all pairs
of groups in n2−1/O(c log2 c) time.

I Brute force within a pair of groups which has a close pair to
find the vectors.
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Hamming distance problem algorithm ⇒ Batch Hamming
nearest neighbor

Lemma
If the Hamming distance problem can be solved in T (n, d) time,
then the Batch Hamming nearest neighbor problem can be solved
in O(ndT (

√
n, d)) time.

I Partition each of D and Q into n/s groups of size s =
√
n.

I For k from 0, 1, 2, . . . , d − 1:

I Call the Hamming distance problem algorithm on each pair of
a group from D and a group from Q. If a pair (u, v) ∈ Q ×D
is found, then v is a nearest neighbor for u. Remove u from Q
and continue.

I There are at most n calls that do not return a vector pair for
each k , so dn total such calls.

I There are at most n calls that return a vector pair since we
remove each vector from Q once we find a pair for it.
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Putting it all together

Combining our lemmas yields:

Theorem (AW ‘15)

Let D ⊆ {0, 1}d be a database of n vectors of dimension
d = c log n, where c can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n2−1/O(c log2 c) time, whp.



Future Work?

I Better dependence on c in the exponent
I A similar ‘Polynomial Method’ algorithm for Orthogonal

Vectors has runtime n2−1/O(log c).

I Use the ‘Polynomial Method’ for other problems
I Has already been used for APSP, OV, SAT, CSPs, string

matching...

I Derandomize the MAJORITY probabilistic polynomial
I Timothy Chan and Ryan Williams derandomized most

‘Polynomial Method’ algorithms at SODA‘16.
I Would also give circuit lower bounds (e.g. for THR ◦ THR

circuits)

I Other ways to quickly evaluate polynomials
I Feels strange to use matrix multiplication instead of FFT
I That said, fast MM used here is not necessarily impractical!
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