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Hamming Nearest Neighbor Problem

Definition (Hamming Nearest Neighbor Problem)

Given a set D of n database points in {0,1}9, we wish to
preprocess D so that for queries g € {0,1}9, we answer a point
u € D that differs from g in a minimum number of coordinates.
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Given a set D of n database points in {0,1}9, we wish to
preprocess D so that for queries g € {0,1}9, we answer a point
u € D that differs from g in a minimum number of coordinates.

Curse of Dimensionality (Barkol, Rabani '00)
All solutions require either
» 29) size data structure (store all answers), or

» Q(n/ polylog(n)) query time (try all points).



Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

» Approximate solutions: find a point with distance within
(1 + €) of the optimal
» Lots of beautiful results and impact: hashing, dimensionality
reduction, ...
» “Curse of approximation”: still requires n
[Andoni, Indyk, Patrascu ‘06]
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Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

» Approximate solutions: find a point with distance within
(1 + €) of the optimal
» Lots of beautiful results and impact: hashing, dimensionality
reduction, ...
» “Curse of approximation”: still requires nf1/€) space.
[Andoni, Indyk, Patrascu ‘06]
> ‘Planted’ case: All vectors are random except one pair with
distance much smaller than expected; find the planted pair
among the n vectors

» O(n'%2) time algorithm, independent of dimension.
[G. Valiant '12]
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Definition (Batch Hamming Nearest Neighbor Problem)

Given a set D of n database points in {0,1}9, and a set Q of n
query points in {0,1}9, find the HNN in D for each point in Q.

Lower bounds no longer apply, but still best previously known
solutions take either:
» n-2%9 time (build a table of all answers), or

> n? - d?M) time (try all pairs).
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Theorem (AW '15)

Let D C {0,1}9 be a database of n vectors of dimension
d = clog n, where c can be a function of n. Any batch of n

Hamming nearest neighbor queries on D can be answered in
. _ 2 .
randomized n?>=1/0(clog™ <) time whp.
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Theorem (AW '15)

Let D C {0,1}9 be a database of n vectors of dimension
d = clog n, where c can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n2—1/0(clog” ) time, whp.
» If d = O(logn), then the algorithm runs in truly subquadratic
time: n?~¢, for some € > 0.

> Improves on the trivial algorithm when
d = o(log?(n)/ log log?(n)).

» Algorithm technique: Compute Hamming distances using
Efficiently Computable Low-Degree Probabilistic Polynomials
(Very different techniques from past work)



Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)

Let D C {0,1}9 be a database of n vectors of dimension
d = clog n, where ¢ can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n?—1/0O(clog?c) time, whp.
» If d = O(log n), then the algorithm runs in truly subquadratic
time: n>~¢, for some € > 0.

Theorem (AW '15)

Suppose there is € > 0 such that for all constant ¢, Batch HNN
can be solved in 2°(9) . n=¢ time on a set of n points in
{0, 1}C'°g”. Then the Strong Exponential Time Hypothesis is false.



Polynomials that Compute Boolean Functions

Let R be a ring (can be Zp,,Z,Q,R,...). A polynomial pin n
variables over R computes the boolean function
f:{0,1}" — {0, 1} if for each x € {0,1}" we have p(x) = f(x).
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Polynomials that Compute Boolean Functions

Let R be a ring (can be Zp,,Z,Q,R,...). A polynomial pin n
variables over R computes the boolean function
f:{0,1}" — {0, 1} if for each x € {0,1}" we have p(x) = f(x).

Example (OR function)
0 fxy=x=---=x,=0

OR(x1, 32+ Xn) = {1 otherwise

Then,

OR(x)=p(x) =1—(1—x1)(1 —x2)--- (1 — xp)
The polynomial p has degree n, and 2" terms when expanded out.
Note: We never need to take powers of a variable greater than 1,

since x; = x? when x; € {0,1}. (We only need to look at
multilinear polynomials)



Probabilistic Polynomial

Let f: {0,1}" — {0,1} be any Boolean function on n variables.

Definition (Probabilistic Polynomial)

A probabilistic polynomial over R for f with error € and degree d is
a distribution D of degree-d polynomials over R with the property
that for each x € {0,1}",

Prlp() = (0] =1 -

Note: The probability is only over the polynomial p, not over the
input x.



Probabilistic Polynomial Example: OR over R = 7Z

[Aspnes, Beigel, Furst, Rudich_‘93]
Set So ={1,2,...,n} and
construct subsets

502512 52 2 Siog,(n)+1

such that each element of §; is
included in Sjy; with probability
1/2.

Let pi(x) = > jcs, X)-

Our probabilistic polynomial for
OR'is

p(x) =1~ [[ (1 - pi(x))
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Probabilistic Polynomial Example: OR over R = 7Z

[Aspnes, Beigel, Furst, Rudich_‘93]
Set So ={1,2,...,n} and

construct subsets
502512 52 2 Siog,(n)+1

such that each element of §; is
included in Sjy; with probability
1/2.

Let pi(x) = Zjes,- Xj-

Our probabilistic polynomial for
OR is

p(x) =1~ [[ (1 - pi(x))

i

» O(log(n)) degree
polynomial for OR with
e=2/3.

» Can augment to degree
O(log(n)log(1/¢)) for any
€ > 0 (use the fact that the
error is one-sided).
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Probabilistic Polynomials for MAJORITY

Notation: For x € {0,1}", write x| = Y"1 ; ;.

MAJORITY (x) = 1 iff |x| > n/2.

Theorem (Razborov, Smolensky ‘87)

A probabilistic polynomial with € error for MAJORITY requires
degree 2(1/nlog(1/e)).

Theorem (AW ‘15)

There is a probabilistic polynomial for MAJORITY on n variables

with error € and degree O(+/nlog(1/¢)).

We will actually look at the threshold function:
THy(x) = 1 iff |x|/n > 6. In particular, MAJORITY = THy ;.
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THRESHOLD: Recursive Intuition

Two cases depending on how close |x|/n is to 6 (whether or not it
is within 6 = ©(y/log(1/€)/n)):

> If |x|/n ¢ [0 — 0,0 + 4], then if we construct a new smaller
vector X by sampling 1/10 of the entries of x, it is likely that
|X|/(n/10) lies on the same side of 6 as |x|/n (by
Chernoff-Hoeffding).

» If |x|/n € [0 — 5,0+ 0], we can use an exact polynomial of
degree O(nd) = O(y/nlog(1/e)) (by polynomial
interpolation) that is guaranteed to give the correct answer.

» To decide which of the two cases we are in, we can use
TH@+5()?) and TH9_5()?).



From Probabilistic Polynomial to Hamming Distance
Algorithm

Given an efficient (small number of monomials) polynomial, we
can evaluate it on many points quickly:

Lemma (R. Williams ‘14)
Given a polynomial P(x1,...,Xd,y1,---,Yd) with at most n%17
monomials, and two sets of n inputs A= {a,...,a,} C {0,1}9,

B={bi,..., b} QN{O7 1}9, we can evaluate P on all pairs
(ai, bj) € Ax B in O(n?) time.



From Probabilistic Polynomial to Hamming Distance
Algorithm

Given an efficient (small number of monomials) polynomial, we
can evaluate it on many points quickly:

Lemma (R. Williams ‘14)

Given a polynomial P(x1,...,Xd,¥1,.-.,Yd) with at most n
monomials, and two sets of n inputs A= {a,...,a,} C {0,1}9,
B = {b1,...,b,} €{0,1}9, we can evaluate P on all pairs
(ai, bj) € A x B in O(n?) time.

0.17

> Beats the trivial runtime of Q(n?17) time.

» Since we want a subquadratic algorithm, we can’t just let
A, B be our sets of vectors.

» Instead, group our vectors into n/s groups of size s. Each
element of A or B will correspond to a group.



Hamming distance subproblem

We will use this to solve the following sub-problem of Batch HNN:

Definition (Hamming distance problem)

Given an integer k and two collections of s vectors of dimension d
as input, output 1 iff there is a pair of vectors (one from each
collection) with Hamming distance at most k.
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Polynomial for Hamming distance problem over [F,

> Let x1,...,xs and yi,...,ys be the two collections of vectors.
We will write x; ; for the jth variable of vector x;.

» Let Dy be the probabilistic polynomial of degree

O(+/dlog(1/e)) for the threshold function TH;1),4 on d
inputs. Sample p ~ Dy with error e = 1/s3.

» Choose a uniform random subset R C {1,2,...,s}?

Our polynomial is:

qlx1, Y1, Xs, ¥s) 1= Z (L+p(xi1 + Y1, Xid + Yjd))-
(ij)er



Polynomial for Hamming distance problem over FFy:
Correctness

q(Xla}/la e 7X5a}/s) = Z (1 + p(Xi,l +yj,17 <oy Xid + yj,d))‘
(iJ)eR

» Since we are working over [F», the number of 1s in the vector
(xix+Yj1,---,Xid + Yjd) is the Homming distance between
x; and y;.
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Polynomial for Hamming distance problem over FFy:
Correctness

q(Xla}/b e aXSaYS) = Z (1 + p(Xi,l +yj,l7 <oy Xid + yj,d))'
(iJ)eR

» Since we are working over [F», the number of 1s in the vector
(xix+Yj1,---,Xid + Yjd) is the Homming distance between
x; and y;.

» 1+ p(xi1+Yj1,---.Xid +yjdq)is 1Liff x; and y; have
Hamming distance at most k (assuming p is correct)

» If all the x; and y; have Hamming distance > k, then the sum
is 0. Otherwise, it is 0 or 1 with 1/2 chance each (based on
our choice of R)

» Since the error is one-sided, we can amplify to get as high a
success probability as we want.



Solving Batch Hamming Nearest Neighbor

Two more steps:
» Hamming distance problem (is there a pair with distance < k)
polynomial = algorithm.
» Hamming distance problem algorithm = Batch Hamming
nearest neighbor (for each vector, find its nearest neighbor)

algorithm.
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Hamming distance problem polynomial = algorithm

Lemma
Given a threshold k, and subsets R, B C {0,1}9 with
|R| =|B| =nand d=clogn, wecanfindaveR andueB
whose Hamming distance is < k in time n>=1/0O(clog) (or
determine that none exist).

» Partition each of R and B into n/s groups of size

s = nl/O(cIog2 ).
» Our probabilistic polynomial on each group has degree

O(V/dlogs). Hence the number of monomials is (\/%gs),
which is < n%17 for a suitable choice of constants.

» Using the fast evaluation lemma, we can evaluate on all pairs
: 2,0 .-
of groups in n2=1/0(clog” ) time.
» Brute force within a pair of groups which has a close pair to
find the vectors.



Hamming distance problem algorithm = Batch Hamming
nearest neighbor

Lemma

If the Hamming distance problem can be solved in T(n, d) time,
then the Batch Hamming nearest neighbor problem can be solved
in O(ndT (\/n,d)) time.



Hamming distance problem algorithm = Batch Hamming
nearest neighbor

Lemma

If the Hamming distance problem can be solved in T(n,d) time,
then the Batch Hamming nearest neighbor problem can be solved
in O(ndT (\/n,d)) time.

» Partition each of D and Q into n/s groups of size s = /n.

» For k from 0,1,2,....d — 1:

» Call the Hamming distance problem algorithm on each pair of
a group from D and a group from Q. If a pair (u,v) € Q x D
is found, then v is a nearest neighbor for u. Remove u from Q
and continue.

» There are at most n calls that do not return a vector pair for
each k, so dn total such calls.

» There are at most n calls that return a vector pair since we
remove each vector from @ once we find a pair for it.



Putting it all together

Combining our lemmas yields:

Theorem (AW '15)

Let D C {0,1}9 be a database of n vectors of dimension

d = clog n, where ¢ can be a function of n. Any batch of n
Hamming nearest neighbor queries on D can be answered in
randomized n?>=1/0(c18*¢) time, whp.
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Future Work?

» Better dependence on c in the exponent
» A similar ‘Polynomial Method'" algorithm for Orthogonal
Vectors has runtime n2~1/0(log<),
» Use the 'Polynomial Method' for other problems
» Has already been used for APSP, OV, SAT, CSPs, string
matching...
» Derandomize the MAJORITY probabilistic polynomial
» Timothy Chan and Ryan Williams derandomized most
‘Polynomial Method’ algorithms at SODA'16.
» Would also give circuit lower bounds (e.g. for THR o THR
circuits)
» Other ways to quickly evaluate polynomials
» Feels strange to use matrix multiplication instead of FFT
» That said, fast MM used here is not necessarily impractical!



