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Abstract

Accurate measurement of human movement is an essential requirement in many scien-
tific disciplines. It is necessary for investigating motor control and other fundamental
mechanisms in neuroscience and biomechanics. It also plays a crucial role in clinical
research as physical activity is a key indicator for wellbeing and many diseases are
associated with distinct motor patterns. In addition, emerging technologies such as
augmented and virtual reality also require precise tracking of human movements.

While the quantitative study of human motion dates back hundreds of years, technology
that permits accurate tracking outside of controlled environments has become available
only recently. All of the applications described above can benefit from the ability to track
movements in the real world: it enables sampling of natural and unbiased behavior
in scientific and clinical studies and allows development of commercial products for
everyday use.

This thesis presents several novel approaches to real-world tracking of human motion.
First, I propose a combined head and eye tracking system based on existing commercial
tracking devices. The system is mobile and lightweight, the software developed in this
context is open source and the additional hardware necessary to combine the devices
can be 3D printed. Secondly, the accuracy of the head tracker used in this system is
evaluated. To this end, the device’s measurements are compared against gold standard
tracking methods across several real-world environments and locomotion tasks. Lastly,
a study is conducted that assesses the validity of previously described parameters of
head stabilization during everyday behavior. These head stability measures have been
shown to have diagnostic value for diseases such as multiple sclerosis and Parkinson’s
disease. However, so far they have only been obtained in laboratory settings which
makes it important to investigate how well previous findings generalize to the real world.

My results show that precise real-world motion tracking is achievable with today’s
technology. The combined head-eye tracking system’s ability to accurately capture
movements is demonstrated with different motion tasks. The performance of the head
tracker by itself is promising, although some measurements such as the exact position
of the head in space can still be subject to large inaccuracies. Finally, parameters of
head stability seem to be reproducible in a real-life setting which suggests that they
could be suitable for a potential clinical application.
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1. Introduction

1.1. Motivation

The ability to move and be physically active is one of the most important factors in
human quality of life (QoL) [44]. At the time of writing, the COVID-19 pandemic is still
severely limiting mobility of individuals across the globe due to lockdown and quarantine
measures aimed at limiting the spread of the virus. Studies show that individuals who
engage in physical activity during quarantine report higher levels of QoL than those
who don’t [39].

This capacity for movement and physical activity can be severely impaired in diseases
such as multiple sclerosis (MS) [91] and Parkinson’s disease (PD) [26]. Patients
diagnosed with MS rate the ability to walk as the most important bodily function in
terms of contribution to overall wellbeing [49]. Oftentimes, illnesses are associated with
distinctive movement patterns, for example in the case of autism spectrum disorder
(ASD) [9]. These examples show that the ability to quantitatively measure human
motion can be a key instrument for diagnosing and monitoring diseases as well as
designing therapies that maximize QoL for patients.

On the other hand, the quantitative study of human movement can also be used to
answer fundamental neuroscientific questions of sensory processing and motor control.
Studying movement patterns of healthy individuals can reveal insights into the postural
control system [89, 97] and the strategies of the nervous system when dealing with
challenging tasks such as walking through rough terrain [83]. An important area of
research is also how the mammalian vestibular system encodes information about self
motion in neuronal representations [7].

Finally, emerging technologies such as augmented and virtual reality (AR and VR) also
require faithful tracking of human motion. In VR, an artificial three-dimensional (3D)
visual scene is shown on a head-mounted display and needs to be rendered correctly
as the user’s head moves through the virtual environment [8]. AR overlays visual and
other sensory information onto the real world and often requires tracking the user’s
gaze or extremities to interact with virtual objects [27].

The examples of these technologies highlight the fact that the measurement of head
and eye movements is of particular importance. In the human nervous system, head
motion is measured by the vestibular organs and drives several important reflexes. The

1



1. Introduction

vestibulo-ocular reflex (VOR) for example directly links eye and head movements by
compensating for head rotation and translation while fixating environmental features [7].
This process is important to provide a stable image of the environment to the visual
system. Due to this reflex, vestibular disorders can manifest themselves in involuntary
eye movements, called nystagmus [107].

The next section will introduce the theoretical background for motion tracking and
present several key technologies as well as their history. In many cases, the presented
methods are constrained to controlled environments such as specially equipped labo-
ratories and only recent technological advances make it possible to employ some of
them in the real world.

The ability to track human movement in such real-world contexts is however important
for various reasons. From a clinical point of view, recent studies have questioned
how well measurements obtained in controlled environments generalize to real world
conditions [20, 120]. Conducting studies in natural environments is also crucial for
neuroscientific research because it provides a straightforward way of presenting the
nervous system with natural stimuli. Research shows that the brain represents sensory
information in a way that is adapted to naturally occurring stimulus distributions [40, 115,
118]. Finally, AR is an example of a commercial application that requires real-world
motion tracking as users will want to utilize the technology in any kind of environment.
This broad need for real-world tracking methods necessitates research efforts regarding
their development, evaluation and application, which will be the focus of this thesis.

1.2. History and technical background

1.2.1. Motion of rigid bodies

Motion of an object is always relative to an observer. Formally, we can unambiguously
describe this by the position of a reference frame (i.e., a uniquely located and oriented
coordinate system) attached the object with respect to (w.r.t.) the reference frame of the
observer over time. The position consist of a 3-degree of freedom (DOF) linear position
p, often referred to as just position and a 3-DOF angular position o, often referred to as
orientation. A solid object in which deformation is negligibly small is also called a rigid

body. The combined position and orientation of a body is also referred to as its pose.

Position can be represented as a 3D vector from the origin O of the observer’s reference
frame 𝑂 to the origin B of the body-fixed frame 𝐵:

p = OB =
©­«
𝑝𝑥
𝑝𝑦
𝑝𝑧

ª®¬
(1.1)
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O

x

y

z

p

o

B

x′

y′
z′

Figure 1.1.: Relationship between observer and body frame. The position p describes the location of
the origin B of the body frame w.r.t. the origin O of the observer frame. The orientation o describes
the relationship between the body-fixed coordinate vectors (x′, y′, z′) and the observer-fixed coordinate
vectors (x, y, z).

Orientation can be represented with different conventions and is generally formalized
as the rotation required to position the observer frame in the same direction as the body
frame. Common representations of orientation include Euler angles (three consecutive
rotations about the body-fixed coordinate axes), rotation vectors (describing a single
rotation about an arbitrary axis) and rotation matrices (representing the rotation as a
single matrix-vector product). A less intuitive, but compact and unambiguous way of
describing orientation is with quaternions:

o =

©­­­«

𝑜𝑤
𝑜𝑥
𝑜𝑦
𝑜𝑧

ª®®®¬
(1.2)

A quaternion representing orientation is also called a versor and can be divided into
two parts:

• An imaginary part Im(o) = (𝑜𝑥 , 𝑜𝑦 , 𝑜𝑧)⊤ that can be interpreted as a 3D vector
whose direction defines an axis of rotation and whose length corresponds to the
angle of rotation around that axis.

• A real part Re(o) = 𝑜𝑤 =

√︃
1 − 𝑜2𝑥 − 𝑜2𝑦 − 𝑜2𝑧 that ensures that o is a unit

quaternion, i.e., ‖o‖ = 1.

A unit quaternion o that describes the orientation of 𝐵 w.r.t. 𝑂 defines the relationship
between the coordinate vectors of both frames.

3



1. Introduction

Specifically, it satisfies:

x′ = rot (o, x) (1.3a)

y′ = rot (o, y) (1.3b)

z′ = rot (o, z) (1.3c)

where rot(o, v) denotes the rotation of a vector v by a quaternion o. The exact calcula-
tion as well as an overview of the quaternion algebra necessary for describing rotations
can be found in appendix A.1.

Linear velocity is the rate of change of position over time:

v(𝑡) = 𝜕p(𝑡)
𝜕𝑡

(1.4)

Angular velocity is the rate of change of orientation over time and can be computed
from the quaternion representation as follows:

𝝎(𝑡) = Im

(
2o∗

𝜕o(𝑡)
𝜕𝑡

)
(1.5)

Here, o∗ = (𝑜𝑤 ,−𝑜𝑥 ,−𝑜𝑦 ,−𝑜𝑧)𝑇 denotes the complex conjugate of o.

Linear acceleration is the rate of change of linear velocity over time:

a(𝑡) = 𝜕v(𝑡)
𝜕𝑡

(1.6)

Angular acceleration is the rate of change of angular velocity over time:

𝜶(𝑡) = 𝜕𝝎(𝑡)
𝜕𝑡

(1.7)

In many cases it is necessary to describe the simultaneous motion of multiple rigid
bodies, e.g., when the observer itself is moving w.r.t. some world-fixed reference frame
𝑊 . Often, this requires certain measurements of motion to be transformed between
different reference frames. The necessary equations for transforming positions, orien-
tations, velocities and accelerations across reference frames are detailed in appendix
A.2.

1.2.2. Motion tracking

Motion tracking is the process of estimating certain aspects of the motion of either a
single body or a set of bodies over time. For a single body, we can generally distinguish
two different approaches:

4



1.2. History and technical background

• A stationary observer estimating the motion of the body from its point of view,
referred to as outside-in tracking.

• An observer attached to the tracked body itself, estimating the motion of the the
body w.r.t. its surroundings, referred to as inside-out tracking.

The first approach is usually limited to a so-called tracking volume, i.e., a subset of
3D space close to the observer within which it can estimate the motion with sufficient
accuracy. This limitation does not apply to the second approach, although the tracking
performance can greatly depend on the surroundings of the body (see chapter 3).
Because of this, it should be clear that for most use cases where motion is tracked
in real-world environments, inside-out methods are the only viable solution. This is
especially true when the aim is to record human motion in an ecologically valid context,
i.e., during natural everyday behavior.

Outside-in tracking generally scales well to multiple rigid bodies, although visual meth-
ods may need to deal with the problem of occlusions. On the other hand, for the
inside-out approach, it is usually necessary to track each body individually which can
lead to issues with scalability.

Another criteria to distinguish tracking methods is by the kind of motion than can be
directly or indirectly tracked with sufficient accuracy. Some of the methods described in
the following can estimate linear acceleration or angular velocity while others can track
position and orientation.

Manual methods

Human motion has been scientifically studied for over 2000 years. As early as 500
BC, the Greek philosophers described their observations of human movement [6].
The physical principles of motion discovered by Galileo Galilei, Isaac Newton, and
others between the 16th and 18th century made it possible to formalize the physical
phenomena associated with human motion [87]. The quantitative study of human
locomotion, i.e., movement from one place to another such as walking or running, dates
back to the early 19th century. In 1836, the Weber brothers conducted one of the first
studies that determined gait speed from measurements of time and distance [128].

Since then, automated techniques using electronic devices such as cameras an inertial
sensors have become the norm for quantitative motion tracking. Nevertheless, manual
tracking methods are still relevant today. For example, the six-minute walking test
(6MWT) is a standardized clinical tests that can serve as an diagnostic measure for
various health conditions such as MS and PD [125]. The test measures the distance
a person can walk in six minutes and requires only a stop watch, a course of known
length demarcated with cones and pen and paper to record the number of completed
laps.

5



1. Introduction

Inertial measurement units

Inertial measurement units (IMUs) are sensor devices that measure inertial motion,
usually linear acceleration with an accelerometer and angular velocity with a gyroscope.
Historically, IMUs have been employed for navigation of manned and unmanned ve-
hicles such as aircraft or missiles since the 1960s [122]. In recent years, low-cost
and compact microelectromechanical system (MEMS)-based IMUs have become com-
mercially available, leading to widespread use of wearable sensors for human motion
tracking [55].

Accelerometers estimate linear acceleration by measuring the compression or extension
of a spring attached to an object of known mass (also called a proof mass) [61]. Newton’s
second law of motion states that the force F applied to a body of mass 𝑚 is proportional
to its acceleration a:

F = 𝑚 · a (1.8)

In the mass-spring system, this force is equal and opposite to the force F𝑠 needed to
extend or compress the spring with a constant stiffness 𝑘 by the distance Δx (see fig.
1.2a):

F𝑠 = −𝑘 · Δx (1.9)

In commercially available MEMS accelerometers Δx is usually transduced into an
electrical signal through piezoelectric, piezoresistive, capacitive or similar effects [61].

Gyroscopes measure angular velocity based on a mass-spring system as well. However,
the force measured by these systems is the Coriolis force F𝑐 , a fictitious force that acts
upon objects moving at a velocity v w.r.t. a reference frame rotating with an angular
velocity 𝝎 [5]:

F𝑐 = −2𝑚 · v × 𝝎 (1.10)

The most common MEMS gyroscopes are so called vibrating structure gyroscopes.
Here, the velocity v is imposed on the proof mass in the form of an oscillation of fixed
frequency [10]. The resulting Coriolis force is then transformed into an electrical signal
in a similar manner as in the case of the accelerometer (see fig. 1.2b).

It should be noted that the sensor systems described above can generally only measure
motion in a single spatial direction. To determine all three DOF of a body’s motion,
commercial accelerometers and gyroscopes usually consist of three sensors oriented
in a perpendicular manner.

Some IMUs also include a tri-axial magnetometer. This type of sensor measures the
direction and strength of a magnetic field. While this is not a direct measurement of
inertial motion it can be used to determine the direction of the earth’s local magnetic
field which in turn permits to estimate the orientation of the device w.r.t a local earth-
fixed reference frame [5]. IMUs that combine a 3-DOF accelerometer, gyroscope, and
magnetometer are commercially available in small form factors at low cost (fig. 1.3).

6
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a

𝑚

a F

F𝑠

b

𝑚
v

𝝎

F𝑐

F𝑠

Figure 1.2.: Mass-spring system models of accelerometer (a) and gyroscope (b). The resulting force
of the spring F𝑠 is equal and opposite to the force applied to the body. In (a) the force F is due to the
acceleration a according to Newton’s second law. In (b) the angular velocity 𝝎 and the imposed linear
velocity v result in the fictitious Coriolis force F𝑐 .

Figure 1.3.: The SparkFun OpenLog Artemis1(image licensed under CC BY 2.02) features a 3-DOF
accelerometer, gyroscope, and magnetometer as well as a programmable microprocessor and a microSD
card allowing direct recording of motion data at a sampling rate of 250 Hz.

Apart from their use in navigation, IMUs have been extensively employed in clinical
research, most notably in gait analysis [61, 68, 117], investigation of movement patterns
related to conditions such as MS [100] and PD [21] as well as fall risk assessment
[5, 67]. Accelerometers and gyroscopes are also standard components of today’s
smartphones where they can be used for activity and fitness tracking [65, 95, 127].

1https://www.sparkfun.com/products/16832
2https://creativecommons.org/licenses/by/2.0
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1. Introduction

Attitude estimation from inertial measurements

Since accelerometers measure linear acceleration, the second derivative of position,
and gyroscopes angular velocity, the first derivative of orientation, a naive approach for
estimating 6-DOF pose from inertial data would be integrating linear acceleration twice
and angular velocity once. Unfortunately, sensor data is inevitably noisy, which leads
to integration drifts that accumulate to position errors of several meters and orientation
errors of several degrees within seconds [63].

Additionally, position is the double integral of inertial linear acceleration. Due to Ein-
stein’s equivalence principle, accelerometers cannot distiguish between gravitational
force and force due to acceleration. Because of this, they can only measure overall
gravito-inertial acceleration, the sum of inertial acceleration i and acceleration due to
gravity g in the sensor’s reference frame 𝑆:

𝑆a =
𝑆g + 𝑆i (1.11)

𝑆g can be calculated by rotating the acceleration due to gravity in the world frame
𝑊g (which is constant and pointing in the upward vertical direction) by the quaternion
representation of the sensor orientation o:

𝑆g = rot
(
o,𝑊g

)
(1.12)

To determine the inertial acceleration it is therefore necessary to estimate the orientation
of the sensor, a process referred to as attitude estimation. Since both accelerometer
and gyroscope measurements provide information about the orientation, data from both
sensors can be combined for this estimate with a technique called sensor fusion.

The following will outline a sensor fusion-based attitude estimation approach in the
context of Kalman filtering, an algorithm that uses multiple noisy measurements over
time in combination with a dynamical system model to infer the unobservable state
of the system [102]. This is by no means intended to be comprehensive nor rigorous;
rather, it will provide an exemplary framework that will be further developed in the
following section.

The filter assumes that the state x𝑘 can be predicted from the previous state x𝑘−1 by
the state transition model:

x𝑘 = 𝑓 (x𝑘−1, u𝑘) + w𝑘 (1.13)

where 𝑓 is some differentiable function called the state transition function, u𝑘 denotes
the control input3 and w𝑘 the process noise. The second component of the filter is the
observation model that associates the measurements z𝑘 with the current state:

z𝑘 = ℎ (x𝑘) + v𝑘 (1.14)

3The name “control input” refers to the original problem formulation in the context of trajectory estimation
in spaceflight. In fact, u𝑘 can be any kind of known input signal, including a measurement from a
sensor that is not part of the measurement model.
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1.2. History and technical background

Here, ℎ is the differentiable observation function and v𝑘 denotes the observation noise.
This formulation is called the extended Kalman filter (EKF) that generalizes the basic
Kalman filter for non-linear functions 𝑓 and ℎ.

In addition to an estimate of the unobservable state x, the EKF algorithm also keeps
track of the uncertainty of the state estimate. This is reflected in the covariance matrix
P that represents the joint variability of all state variables.

The EKF algorithm consists of two steps (see fig. 1.4):

1. In the prediction step, the a priori state estimate x𝑘 |𝑘−1 is updated according to
the state transition model:

x𝑘 |𝑘−1 = 𝑓
(
x𝑘−1 |𝑘−1, u𝑘

)
(1.15)

The a priori covariance matrix P𝑘 |𝑘−1 is updated as well.

2. In the update step, the a posteriori state estimate x𝑘 |𝑘 is updated using the
observation model and the Kalman gain K𝑘 :

x𝑘 |𝑘 = x𝑘 |𝑘−1 +K𝑘

(
z𝑘 − ℎ

(
x𝑘 |𝑘−1

) )
(1.16)

The a posteriori covariance matrix P𝑘 |𝑘 is updated as well.

The Kalman gain K𝑘 plays a central role in this algorithm as it determines the weight of
the measurements vs. the prediction in the final state estimate. The calculations for
K𝑘 , P𝑘 |𝑘−1 and P𝑘 |𝑘 are detailed in appendix A.3.

Initial state
x𝑘−1 |𝑘−1, P𝑘−1 |𝑘−1

Prediction
based on model
x𝑘 |𝑘−1, P𝑘 |𝑘−1

Update based on
measurements
x𝑘 |𝑘 , P𝑘 |𝑘

Control input Measurements

u𝑘 z𝑘

𝑘 ← 𝑘 + 1

Figure 1.4.: The discrete-time EKF algorithm. In the prediction step, the state x and the covariance matrix
P are estimated according to the state transition model. In the update step, the estimates are corrected
according to the observer model.

Applying this algorithm to the problem of attitude estimation from linear acceleration
and angular velocity, a quaternion-based state transition model can be written as [63]:

o𝑘︸︷︷︸
x𝑘

= o𝑘−1︸  ︷︷  ︸
x𝑘−1

· 𝑞(𝝎𝑘︸︷︷︸
u𝑘

Δ𝑡) (1.17)
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1. Introduction

where 𝝎𝑘 Δ𝑡 is the estimated change of orientation from the angular velocity mea-
surement 𝝎𝑘 – represented as a rotation vector – and 𝑞(·) denotes the equivalent
quaternion representation of this vector (see appendix A.1). Note that the measured
angular velocity is interpreted as a control input in this model.

The corresponding observation model can be written as [63]:

a𝑘︸︷︷︸
z𝑘

= rot( o𝑘︸︷︷︸
x𝑘

,𝑊g) + i𝑘︸︷︷︸
v𝑘

(1.18)

where 𝑊g is the acceleration due to gravity in world coordinates. Note that the unob-
servable inertial acceleration is interpreted as a measurement error in this model.

As previously stated, the above state transition and observer models are developed
merely for illustrative purposes. The problem of attitude estimation from IMU data is still
an active research topic and the EKF algorithm is just one of the possible approaches
to solving it. A survey of different estimation methods can be found in Crassidis et al.
[33] and an EKF-based approach specifically designed for measuring orientation of
human body segments in Luinge and Veltink [75].

Most recently, novel approaches make it possible to estimate earth-horizontal orienta-
tion and even 3D position and from purely inertial measurements by integrating machine
learning models trained on large data sets of real-world human locomotion into the EKF
architecture [72]. Another example where machine learning has been successfully ap-
plied to inertial data is for estimation of real-world walking speed based on acceleration
measurements from a waist-worn device [110].

Visual-inertial simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) refers to a class of algorithms originally
developed in the 1980s for autonomous robots to solve the problem of an agent’s
navigation in an unknown environment [36]. The process has two goals:

• Constructing a map of the agent’s surroundings (mapping).

• Estimating the position and orientation of the agent within that map (localization).

The general SLAM framework can incorporate various types of sensors, including inertial
measurements, light detection and ranging (LIDAR) or global positioning system (GPS)
data. One approach that has been extensively researched in recent years combines
one or more video cameras with one or more IMUs and is referred to as visual-inertial
simultaneous localization and mapping (VI-SLAM).

Many SLAM systems are built around an EKF and can be seen as an extension of the
IMU-based approach described in the previous section. In addition to the orientation,
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1.2. History and technical background

the state of the filter also incorporates the system’s position and the location of so-called
landmarks that the system tracks as it moves through the environment. A landmark can
be thought of very much in its colloquial sense: a stationary feature of the environment
that stands out from its surroundings and that can be easily detected from multiple
locations.

The state of the EKF-SLAM algorithm consists of the agent’s position and orientation
w.r.t. the world frame:

x𝑘 =

(
p𝑘
o𝑘

)
(1.19)

as well as the estimated positions of all currently tracked landmarks, also in the world
frame:

m𝑘 =

©­­«
m
(1)
𝑘
...

m
(𝑛)
𝑘

ª®®¬
(1.20)

In the classic EKF-based VI-SLAM approach the inputs to the state transition model are
the inertial measurements while the inputs to the observation model are the locations of
visible landmarks in the camera image. The state transition model might look like this:

x𝑘 =

(
p𝑘−1 + t𝑘
o𝑘−1Δo𝑘

)
(1.21)

where
Δo𝑘 = 𝑞 (𝝎𝑘 Δ𝑡) (1.22)

is the estimated change of orientation (see eq. 1.17) and

t𝑘 =
𝑊i𝑘Δ𝑡

2
=

(
rot

(
(o𝑘−1Δo𝑘)−1 , a𝑘

)
− 𝑊g

)
Δ𝑡2 (1.23)

is the change of position estimated by double-integrating the inertial acceleration in
world coordinates 𝑊i𝑘 .

In a monocular (i.e., single-camera) system the observer model describes the mea-
surement of landmark locations by the camera. The position of a single landmark m(𝑖)

w.r.t. the sensor frame 𝑆 can be expressed as:

𝑆m
(𝑖)
𝑘

=

©­­«
𝑥
(𝑖)
𝑘

𝑦
(𝑖)
𝑘

𝑧
(𝑖)
𝑘

ª®®¬
= rot

(
o−1𝑘 ,m

(𝑖) − p𝑘
)

(1.24)

From this, the observation of a landmark is calculated as its projection onto the camera
image plane [92]:

z
(𝑖)
𝑘

=
1

𝑧
(𝑖)
𝑘

(
𝑥
(𝑖)
𝑘

𝑦
(𝑖)
𝑘

)
(1.25)
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Note that this simplified model assumes that measurements from camera and IMU are
represented in the same reference frame 𝑆. For a rigorous discussion that takes into
account the differences in reference frames as well as noise terms see Mourikis and
Roumeliotis [92].

In order to track the landmark observations z
(𝑖)
𝑘

across multiple camera images it

is necessary to extract robust image features f
( 𝑗)
𝑘

that are invariant to position and
orientation of the landmark w.r.t. the observer. This ensures that multiple observations
of the same landmark can be properly associated. For this, the algorithm stores the
corresponding features of all previously observed landmarks in a database.

A high-level schematic of this VI-SLAM algorithm is shown in fig. 1.5. It should be
noted that the IMU usually provides measurements at a much higher sampling rate
than the camera. This means that multiple prediction steps are carried out between
update steps.

Camera image Inertial measurements

Feature
extraction

Landmark
association

EKF prediction
x𝑘 |𝑘−1, P𝑘 |𝑘−1

EKF update
x𝑘 |𝑘 , m𝑘 , P𝑘 |𝑘

Landmark
database

f
( 𝑗)
𝑘

z
(𝑖)
𝑘

u𝑘

Figure 1.5.: High-level data flow of an EKF-based VI-SLAM system. The IMU measurements are inter-
preted as a control input u and used in the prediction step. Landmarks are extracted from the camera
images and matched to previous observations. The perspective projections of the visible landmarks are
the measurements z(𝑖) used in the update step.

One advantage of VI-SLAM is its suitability for tracking any kind of rigid body in both
indoor and outdoor environments. Additionally, cameras and IMUs are cheap compared
to other types of sensors (e.g., laser scanners). A drawback of using purely visual
data for landmark tracking is that landmark depth can be difficult to estimate, even with
stereo cameras.

The general SLAM framework also supports combining landmark observations from
multiple agents or multiple runs across the environment by the same agent. Repeated
observations of the same landmark reduce its uncertainty and drifts in the agent’s
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1.2. History and technical background

pose can be corrected when the agent returns to a previously visited location through a
mechanism called loop closure [111].

In recent years, SLAM has seen interest especially as a key component of autonomous
driving car systems [116]. Some VR systems such as the Oculus Quest also rely on
SLAM for accurate head tracking because it eliminates the necessity for a stationary
optical tracking system [50]. Nevertheless, applications for human motion tracking are
still in their infancy, in part because commercial, self-contained SLAM systems have not
been widely available. Novel devices such as the Intel® RealSense™ T265 tracking
camera (fig. 1.6) could be used in the future for tracking human movement in the
context of clinical or neuroscientific research (for a thorough discussion see chapters 2
and 3).

Figure 1.6.: The Intel® RealSense™ T265 tracking camera. The device features two fish eye cameras,
an accelerometer, and a gyroscope and runs a VI-SLAM algorithm in real time on a dedicated chipset to
produce a pose estimate at 200 Hz.

Optical tracking systems

An optical tracking system (OTS) is a system that estimates motion based purely on
sequences of images of the moving body or bodies. This type of technique was used as
early as 1887 by Eadward Muybridge to characterize equine gait based on photographic
images [94]. Since then, video cameras with high frame rates have drastically improved
the temporal resolution of image-based tracking, although estimating the pose e.g., of
human limbs required the manual annotation of joint locations in the images [31].

The current state of the art in optical tracking are automatic marker-based systems.
This technique uses multiple cameras that emit invisible infrared light which is reflected
by specialized markers attached to the tracked body. Each rigid body must be outfitted
with at least three markers to permit reconstructing its pose [31]. This reconstruction is
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automatically performed by most commercial systems based on the observation of the
markers by different cameras set up in a known geometry. For human motion tracking,
placing markers on head, torso and limbs enables fitting of a skeleton model from which
3D joint positions and angles can be inferred (fig. 1.7a).

The capacity of these marker-based systems to track real-world human motion is
however limited by the fact that pose estimation is only possible within a tracking
volume observable by at least two cameras. Additionally, the markers can restrict
movement and incorrect placement can lead to tracking errors [31]. Because of these
limitations, markerless motion tracking is an active field of research in recent years.
While certain methods still require multi-camera setups [93], novel machine-learning
based approaches such as OpenPose [22] permit reconstructing 3D skeleton and face
models from single camera images (fig. 1.7b).

a b

Figure 1.7.: Marker-based and markerless optical tracking systems. (a) Locations of optical tracking
markers (white), keypoints (red) and skeleton model (cyan) detected by a marker-based multi-camera
tracking system (from Colyer et al. [31], licensed under CC BY 4.04). (b) Keypoints, skeleton and face
model detected by the OpenPose markerless single camera tracking framework (from Cao et al. [22],
copyright © 2021 IEEE).

One of the primary applications of OTSs is in the entertainment industry, notably for
generating animations for movies, television shows and video games [88]. Many
commercial VR systems also rely on optical tracking of the head-mounted display
device and handheld controllers [8]. Finally, optical motion tracking is frequently used
to investigate fundamental aspects of human locomotion [51, 97], sports bio-mechanics
[31] and in clinical research [98, 119].

4https://creativecommons.org/licenses/by/4.0/

14



1.2. History and technical background

Eye tracking

Like with other kinds of human motion, the study of eye movements dates back more
than two millennia; the Greek philosopher Aristotle already described the tight coupling
between the motion of the left and right eye [126]. Precise quantitative automated
eye tracking was first achieved in the 1960s with so called search coil systems. In
this method, miniature metallic coils are placed in a contact lens which in turn is worn
by subjects in their eyes. By applying an exterior magnetic field of constant direction
and strength and measuring the resulting voltage induced in the coil, it is possible to
determine the orientation of the coil relative to the field [103].

Nowadays, most commercially available eye trackers are video-based, i.e., they use
one or more video cameras directed at the eyes. Most commonly, an infrared light
source is used to illuminate the eyes whose reflections are picked up by the cameras.
Processing the video image with specialized algorithms yields the location of the pupil
(or pupils) and other distinct visual features of the eye within the image [52].

Video-based eye trackers can be broadly categorized into two categories: stationary
and head-mounted. The former are placed in a fixed location in front of the subject
to be tracked. In contrast, the latter are worn by the subject on their head and often
feature a scene camera that captures a portion of the subject’s visual field [52]. One
example of a commercial head-mounted system is the Pupil eye tracking system [58]
(fig. 1.8a).

Eye tracking is a central technique in researching the human visual system. Oftentimes,
experiments involve presenting a stimulus on a screen viewed by a test subject while
simultaneously tracking their eyes with a stationary system. Here, the goal of the
tracking is to reconstruct the location of the participants’ gaze in screen coordinates, a
process called gaze mapping. This mapping – from eye locations in the eye camera
image to gaze locations on the screen – has to be calculated for each session based on
a calibration procedure. In a head-mounted setup, the same approach can be employed
to locate the user’s gaze within the scene camera image (fig 1.8b).

While this gaze mapping method allows to reconstruct two-dimensional (2D) gaze
position in screen coordinates, it does not yield any information about the 3D pose
of the eyes. Recently, model-based approaches of reconstructing eye pose w.r.t. the
camera reference frame have been developed [121]5. For a stationary system this
directly corresponds to eye-in-world pose; a head-mounted system can be combined
with a head tracker to obtain this (for a thorough discussion see chapter 2).

Eye tracking systems are used in neuroscientific investigation as eye movements are
strongly related to processing of visual and vestibular stimuli by the brain. Measuring

5More precisely, eye orientation is usually restricted to 2 DOF because the eyes’ capacity for torsional
motion is limited and most tracking methods do not take it into account.
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a b

Figure 1.8.: The Pupil mobile eye tracking system (from Kassner et al. [59], licensed under CC BY-NC-SA
3.06). (a) Render of the Pupil Pro headset showing frame, scene and eye camera. (b) Screen capture of
the Pupil Capture software showing the scene camera image with the estimated gaze position of the user
as a red circle.

eye motion is also important in clinical research as several diseases can manifest
themselves in distinct motor patterns [107]. Commercial applications include marketing
research and gaze-guided computer interfaces [52]. Novel VR systems based on
multi-focal displays that decompose the rendered scene into multiple focus planes also
require eye tracking [90].

1.3. Scope of this thesis

The goal of this thesis is to develop, validate and apply novel approaches of tracking
human motion in real-world environments. To this end, I will address the following
research questions:

RQ 1 How can human motion be accurately tracked outside controlled environments?

This question is addressed across the entire thesis. Chapter 2 introduces a novel
concept for simultaneous real-world head and eye tracking. The system consists
of a head-mounted eye tracker, the Pupil Core (see fig. 1.8) and a VI-SLAM-based
head tracker, the Intel RealSense T265 (see fig. 1.6). The former allows tracking
and recording position and orientation of both eyes w.r.t. its scene camera through
a software application (Pupil Capture) that runs on a laptop connected to the
tracker. The latter provides its pose w.r.t. a world-fixed reference frame which can
be recorded with a plugin for the Pupil Capture software. The tracking devices are
worn on the user’s head and the laptop placed in a backpack which makes the
system completely portable and suitable for use in any environment.

6https://creativecommons.org/licenses/by-nc-sa/3.0/
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Beside the question how human motion can be tracked is it also important to
assess how accurate this tracking is. Both the Pupil Core and the T265 are off-
the-shelf products whose manufacturers provide claims of accuracy about their
measurements without rigorous scientific support for these claims. Chapter 3
evaluates the tracking performance of the T265 for real-world human head tracking.
This is especially relevant as the device was designed for general purpose motion
tracking and not specifically for the use case of human movement.

Finally, chapter 4 discusses the use of IMUs for simultaneous measurement of head
and trunk motion in daily life. In the study presented in this chapter, participants
wear two sensors over a period of about 12 hours. From the measured data, periods
of locomotion are extracted and derivative measures related to head stabilization
are computed.

A drawback of the inside-out tracking approaches employed here is that they
measure the motion of the tracking device which may differ from the movement
of the body part it is attached to. As an example, sensors can be attached to
the head at different locations and these locations can vary between subjects or
trials. This problem can be solved by estimating the position and/or orientation
of the device w.r.t. some anatomical reference based on a series of calibration
movements (discussed in chapters 3 and 4).

RQ 2 How can motion of different body parts (e.g., head, eye, trunk) be integrated?

Tracking multiple body parts simultaneously with inside-out methods usually re-
quires a dedicated tracker to be attached to each. These devices can be completely
independent (e.g., when using multiple self-contained IMUs) which can result in
offsets and drifts of the timestamps corresponding to each measurement. The
same problem arises when the same body part is being tracked by different system,
e.g., when evaluating the accuracy of a tracking method against a gold standard.
Solving this issue requires time synchronization procedures that are discussed in
chapters 3 and 4.

Another issue that arises when tracking multiple parts of the body (or the same
parts with different methods) is the calculation of transformations between refer-
ence frames (see appendix A.2). This can be addressed in a similar manner to
the problem of anatomical alignment described in RQ 1. A method to estimate
reference frame transforms based on calibration movements is discussed in chap-
ter 3. Chapter 2 describes an approach to determine the transformation between
head and eye tracker by means of an image registration method. This allows to
construct a full reference frame tree from the world frame to an eye-fixed frame
and thus to calculate eye-in-world pose for both eyes.
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RQ 3 Does human motion, when tracked this way, differ from a controlled environment

and if so, how?

This question is addressed in two parts. First, it is important to investigate whether
the reliability of the tracking system itself is influenced by real-world conditions.
Chapter 3 examines the influence of the visual environment on the tracking quality
of the T265’s VI-SLAM algorithm. As discussed in section 1.2.2, the accuracy of a
vision-based SLAM system considerably depends on its ability to estimate the 3D
position of visual landmarks. This is especially important as the measurement of
6 DOF pose has historically been limited to stationary tracking systems such as
OTSs. Portable IMU-based systems are subject to limitations in this regard (see
section 1.2.2, p. 8) that could be overcome by VI-SLAM.

The second question is whether measurements of human movement obtained
in a controlled environment are representative of real-world motion, i.e., whether
movements are somehow biased due to the environment. Chapter 4 focuses on
this issue by investigating whether measures of head stabilization reported by
previous studies in a laboratory setting can be reproduced in the real world.

RQ 4 What implications does this have for clinical and other applications?

Last but not least, the research questions considered in this thesis should also
inform clinical, commercial and other applications of human motion tracking. Chap-
ter 3 explores the real-world tracking capabilities of the T265’s VI-SLAM algorithm
which could potentially be used as part of an AR system.

For clinical applications, sampling day-to-day behavior is important as any kind
of clinical intervention will inevitably affect the patient’s everyday life. Chapter 4
examines whether head stability parameters described in the literature could serve
as diagnostic tools or outcome measures for clinical trials.

1.4. Related work

To the best of my knowledge, the portable head-eye tracking system proposed in
chapter 2 is the first of its kind developed specifically for scientific research. The closest
commercial solutions are the Tobii Pro Glasses 27 eye tracker and the Magic Leap
18 AR device, although none of these devices are particularly designed to measure
6-DOF head and eye pose.

Portable solutions for real-world eye tracking however have been described quite
extensively in the literature; one of the first systems was presented by Babcock and Pelz

7https://www.tobiipro.com/de/produkte/tobii-pro-glasses-2/
8https://www.magicleap.com/en-us/magic-leap-1
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[11]. Kassner et al. [58] introduced the first iteration of the Pupil eye tracking platform
whose second generation is used in the system described in chapter 2. Several studies
have also combined head and eye tracking. Kasneci et al. [57] investigated the visual
exploration ability of patients with homonymous visual field defects during driving using
a head-mounted eye tracker and a stationary (car-mounted) head tracker. Larsson
et al. [66] described an eye tracking approach that uses an IMU to compensate head
movements.

The suitability of SLAM for head tracking has also been discussed previously. Mayol
et al. [85] reviewed the general requirements that a wearable SLAM system should
fulfill. Cinaz and Kenn [29] proposed a SLAM-based head tracker consisting of an
IMU and a laser scanner and Williamson et al. [130] evaluated an omni-directional
approach combining multiple optical and depth cameras to address tracking issues
caused by agile head movements. A novel VI-SLAM method specifically tailored to
AR/VR applications is proposed by Fang et al. [38]. Multiple studies have also evaluated
the tracking accuracy of the T265 [1, 3, 96]; for a detailed discussion of these papers
refer to chapter 3.

There have also been numerous studies that investigated human motion in real-world
settings. MacDougall [76] examined head, hip, wrist and ankle motion with accelerome-
ters during every-day activities. 20 healthy subjects wore the sensors for a period of 10
hours during a typical day and annotated their activities. A frequency analysis revealed
that the dominant frequency of vertical head acceleration was narrowly distributed
around 2 Hz and did not depend on age, height or weight of the subject.

Carriot et al. [23] recorded head and foot motion with IMUs during predetermined
activities. 8 subjects performed different active activities (e.g., running) as well as
passive ones (e.g., riding a bus). The authors performed a frequency analysis and
found that the spectral power of head motion stimuli does not follow a power law (i.e.,
it does not decay with 1/𝑓 𝛼 as is observed in other sensory modalities). Carriot et al.
hypothesize that this is due to bio-mechanical filtering of passive motion stimuli by the
body as well as motor control. In a follow-up study [24] the same authors also examined
the power spectra of envelope signals of head movements and found that these were
not well fit by a power law either. By modeling neuronal responses to the recorded head
motion stimuli, they conclude that the unique envelope statistics of vestibular stimuli
may drive the coding strategies of vestibular neurons.

MacNeilage and Glasauer [78] also measured head motion with IMUs during a fixed
set of locomotor activities. They performed an analysis of variability across the stride
cycle in order to quantify predictability of head movements. The authors found that
predictability was lowest during mid-stance and higher during heel strike and toe off.
For a maximum-likelihood model of cue integration by the brain, they propose a method
to quantify the weight of vestibular sensory signals versus motor signals based on this
predictability.
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Stellmann et al. [120] investigated the ecological validity of standardized tests for clinical
gait assessment in MS, i.e., how strongly the performance in these tests is associated
with real-life mobility. For this, they recorded linear acceleration at the waist of 30
patients with MS performing 2 and 6 minute walking tests (2MWT and 6MWT), ten-
meter walking tests (10mWTs), and during a 7 day period afterwards. They found
that the ecological validity of the 10mWT was limited and longer uninterrupted walking
occurred rarely during daily life in their population of subjects.

This example highlights the fact that measuring human motion in the real world is
especially important for clinical applications. The approach that parameters relevant for
diagnosis or monitoring of diseases should be sampled during everyday life is known as
ecological momentary assessment (EMA) [112]. The application of EMA to measures
of head stabilization is discussed in chapter 4. Previous studies that examined head
stability in a laboratory setting [21, 51, 67, 86, 97, 98, 100] are reviewed there.

The next chapters tie into this related work as follows: chapter 2 proposes the first
mobile open-source head/eye-tracking system, chapter 3 presents the first evaluation
study of the Intel RealSense T265 specifically addressing natural human head motion
and chapter 4 presents a study that discusses the validity of various head stability
parameters in the real world for the first time.
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Abstract

Simultaneous head and eye tracking has traditionally been confined to a laboratory
setting and real-world motion tracking limited to measuring linear acceleration and
angular velocity. Recently available mobile devices such as the Pupil Core eye tracker
and the Intel RealSense T265 motion tracker promise to deliver accurate measurements
outside the lab. Here, the researchers propose a hard- and software framework that
combines both devices into a robust, usable, low-cost head and eye tracking system.
The developed software is open source and the required hardware modifications can
be 3D printed. The researchers demonstrate the system’s ability to measure head and
eye movements in two tasks: an eyes-fixed head rotation task eliciting the vestibulo-
ocular reflex inside the laboratory, and a natural locomotion task where a subject walks
around a building outside of the laboratory. The resultant head and eye movements
are discussed, as well as future implementations of this system.
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Summary and author contributions

This chapter addresses RQ 1 and RQ 2 by describing a lightweight, portable system for
simultaneous tracking of real-world human head and eye motion. The system consists
of the Pupil Core mobile eye tracker onto which a RealSense T265 is mounted by
means of a custom-designed 3D-printed bracket. Data from the eye tracker can be
acquired through the open-source Pupil Capture software. We developed a plugin for
this software that allows simultaneous acquisition of head tracking data from the T265.
A second plugin can be used to estimate the transformation between the Pupil Core’s
scene camera and the T265’s stereo cameras (the so-called extrinsics) by means of
an image registration method. Additionally, another plugin is presented that permits
exporting recorded data to an analysis format through Pupil Player, an open-source
application for offline visualization and analysis of Pupil Core recordings.

The ability of the system to simultaneously track head and eye movements is demon-
strated with two experiments:

1. An eyes-fixed head rotation task eliciting the vestibulo-ocular reflex inside the
laboratory.

2. A natural locomotion task where a subject walks around a building outside of the
laboratory.

The experimental design was conceived by all authors and all recordings were piloted
and carried out by Christian Sinnott who also designed the 3D-printed bracket for
mounting the RealSense T265 onto the Pupil Core eye tracker and prepared figure 1. I
implemented the plugins for recording, extrinsics estimation and data export, performed
all analyses and generated the plots.

The manuscript was written by all authors; my primary contribution is the methods
and results section while Christian Sinnott and Paul MacNeilage primarily wrote the
introduction and discussion.

22



2.1. Introduction

2.1. Introduction

Mobile observers tend to fixate environmental features that are stationary in a world-
fixed reference frame. However, this behavior is usually impossible to characterize
because mobile eye trackers measure eye movements in a head-fixed reference frame
(eye-in-head) [62, 64]. Information about head movement relative to the environment
(head-in-world) would allow characterizing eye movements in a world-fixed reference
frame (eye-in-world), but positional head tracking has historically been difficult to achieve
outside the lab. To comprehensively characterize natural interaction with the visual
environment (eye-in-world), a convenient mobile solution is needed that allows for
simultaneous positional tracking of head-in-world and eye-in-head movements outside
the lab.

Measurement of head movement outside the laboratory setting has traditionally relied
on microelectromechanical system (MEMS)-based inertial measurement units (IMUs).
IMUs are advantageous due to their portability and affordability, but they do not measure
6 degree of freedom (DOF) head-in-world position. They are limited to measurement
of angular velocity and sum total gravitoinertial acceleration. Angular position may be
estimated by integrating angular velocity, but these estimates are subject to drift [62,
70]. Estimation of linear position is even more problematic due to the ambiguity of grav-
itoinertial acceleration. Distinct estimates of gravitational and inertial acceleration may
be obtained, e.g. via Kalman filtering [71], but double-integration of the resulting inertial
acceleration to obtain linear position yields highly unreliable estimates. Nevertheless,
several recent studies have investigated the use of IMU data to compensate for head
movements during eye tracking [64, 66].

More reliable positional estimates of head movement outside the lab may be obtained
by fusing IMU data with other data streams. One recent study used a motion capture
suit composed of multiple IMUs to track full-body kinematics along with eye-in-head
movement [83]. However, use of multiple IMUs does not fully solve the problem of
drift. Perhaps the most promising solution involves joint analysis of IMU data along with
video recorded from a rigidly mounted camera, known as visual-inertial simultaneous
localization and mapping (VI-SLAM). This is a computer vision-based method that relies
on frame-by-frame video analysis to create a 3D representation of the environment and
simultaneously localize the agent’s position relative to that environment [28].

Here, we combine two devices to create a highly mobile system for simultaneous
tracking of head and eye position. To track 6 DOF head position we use a ready-made
VI-SLAM system, the Intel RealSense T265 tracking camera, which fuses inertial data
from an IMU with two global shutter fisheye cameras to generate a 6 DOF pose estimate
at 200Hz. The system is relatively compact and affordable, and the on-board VI-SLAM
solution has the benefit of greatly reducing computational load. To track eye movements,
we used the Pupil Core head-mounted eye tracker which is also relatively inexpensive
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and lightweight. In addition, the software suite supporting the Pupil Core is entirely
open source facilitating integration with other devices.

In this paper, we present software that allows the Pupil Core and Intel RealSense T265
to be used together for simultaneous positional head-eye tracking outside the lab. We
demonstrate the functionality of the system by presenting two example datasets. Tasks
were chosen to demonstrate capture of basic physiological head-eye behaviors in both
a laboratory and a real-world setting.

2.2. Methods

2.2.1. Hardware

Pupil Core

The Pupil Core system is a mobile eye tracking device from Pupil Labs [59]. Our
configuration of the Pupil Core eye-tracker features three cameras. Two of these film
the eyes at 200 frames per second (FPS) with a resolution of 192x192 pixels. The last
camera is an outward-facing world camera and records at 30 FPS with a 1280x720
pixel resolution and a diagonal field of view (FOV) of 100◦. After consulting with other
researchers we modified the Pupil Core to add a nose cushion (for ergonomics) and a
IR-reflective film around the user’s eyes (to reduce errant IR reflections during outdoor
recording [18]).

RealSense T265

Head pose was measured using the Intel RealSense T265 tracking camera. The device
consists of two global shutter fisheye world cameras (173◦ diagonal FOV; 30 Hz frame
rate; 848x800 pixel resolution), a 3 DOF accelerometer (±4g range; 62.5 Hz sampling
rate), and a 3 DOF gyroscope (±2000 ◦

𝑠
range; 200 Hz sampling rate). The T265 uses

VI-SLAM to fuse data from these streams to estimate 6 DOF position and velocity of
the camera relative to the environment at 200 Hz.

Camera mount

Our solution requires recording simultaneously from both the T265 and the native Pupil
world camera, and the two must be rigidly attached to each other. To this end, we
designed and 3D-printed a mounting bracket that holds the T265 and can be clipped
and glued to the world camera. The CAD model for this bracket is freely available for
download1.

1https://github.com/vedb/pupil-t265
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Figure 2.1.: Pupil and RealSense combined head and eye movement tracker. The RealSense T265 (A)

is mounted rigidly above the Pupil Core world camera (B) via a custom 3D-printed bracket (C). The eye

cameras (D) are also visible.

2.2.2. Software

Overview

Data acquisition and export was implemented as a set of Pupil Core software plugins.
These plugins are written in Python and can be used by copying the plugin source
file to a folder specified by the Pupil Core software. The software suite developed by
Pupil Labs for use with Pupil Core consists of three programs: Pupil Capture, a data
acquisition program with GUI; Pupil Player, a data visualizer and exporter; and Pupil
Service, a debugging and acquisition (from terminal) program. We use Pupil Capture
and Player for purposes of this report.

All data recorded by the plugins is stored in the same format as the data streams
recorded by Pupil Capture (such as gaze positions) in order to to streamline the in-
tegration with the software. The plugins along with example data and analysis code
are open source and freely available for download1. In the code, head tracking data is
referred to as odometry as it includes positions as well as velocities.

Recording

Eye tracking data is recorded via Pupil Capture. In its original configuration, Pupil
Capture allows the user to record from a world-facing camera and up to two eye cameras
simultaneously. The user is able to modulate sampling rate, resolution, exposure time,
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and other image parameters before recording. The software also allows for the user to
map gaze in real time (online) or later, after a recording has been made (offline).

Recording of head tracking data is achieved through a plugin for Pupil Capture. The
user can start the T265 device by clicking a button, and if the device is successfully
started, they will see a live readout of the current tracker sampling rate, confidence,
linear and angular position, and linear and angular velocity. When a recording is initiated
through Pupil Capture, head tracking data is continuously written to disk along with eye
tracking data. It is also possible to show the video stream recorded by the two T265
fisheye cameras in a separate window.

Camera extrinsics estimation

Both the T265 and the Pupil Core tracker define reference frames with respect to
their world cameras. However, for analyses directly relating head and eye movements,
the exact transformation between the two devices needs to be calculated in order
to transform head and eye tracking data into a common reference frame. For this
purpose, a second plugin was developed that estimates the position and orientation
of the RealSense T265 with respect to the Pupil world camera. This is achieved by
capturing a calibration pattern presented on the screen by all cameras from multiple
angles and performing a stereo camera calibration for pairs of cameras using the
stereoCalibrate function from the OpenCV computer vision library [19] (version
3.2, included in the Pupil software suite). The plugin also takes into account the different
coordinate system of the T265 pose (x-axis leftwards, y-axis upwards, z-axis backwards)
compared to the standard camera coordinates used by Pupil Core (x-axis leftwards,
y-axis downwards, z-axis forwards).

As with the recording plugin, the user can inspect the fisheye video stream from the
T265 which can be useful to verify that the calibration target is captured by all three
cameras. The target, consisting of an asymmetric grid with 44 circle markers, can
be shown in a window or in fullscreen mode. Calibration images (10 in total) can be
acquired with a key or button press in the world camera window. The plugin will also
draw the extent of the previously recorded targets over the current world camera image
so that the user can make sure to cover the entire FOV of the camera.

Data export

Export is implemented as a plugin for Pupil Player. When the plugin is activated, head
tracking data and camera extrinsics are saved as .csv files each time an export is
triggered through Pupil Player. The export format is consistent with other exports that
can be made with Pupil Player such as gaze data and includes timestamps and the
indices of corresponding world camera frames.
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2.2.3. Data acquisition

To illustrate the solution, we recorded data from two subjects and analyzed this data
to demonstrate the workflow. Each subject put on the modified Pupil Core tracker
which was attached to a laptop carried in a backpack. A 9-point calibration routine was
performed in which the experimenter presented a specialized marker at nine locations
configured in a 3x3 grid across the FOV of the world camera. The subject fixated
the center of the marker for several seconds at each location, viewing the calibration
target grid from a distance of about 1.2 m. This array corresponds to a 72◦ by 42◦

displacement of visual angle. Data from this calibration procedure was later used to
perform post-hoc gaze mapping in the Pupil Player software.

After the calibration, the first subject was presented with the same kind of marker at
the center of the visual field and was instructed to fixate on the marker while nodding
and shaking their head several times to elicit a rotational vestibulo-ocular reflex (rVOR)
response. Then, while still fixating on the target, they performed several vertical full-
body squatting movements to elicit a translational VOR (tVOR) response. This was
done at two viewing distances of approximately 1.2 and 2.1 m. The second subject
performed the same calibration routine and then walked around the outside of a building
for roughly five minutes before returning to the lab.

2.2.4. Analysis

Reference frame transformations

The T265 measures position and velocity of the device with respect to a world-fixed
reference frame whose origin is at the point where the device was started. The Pupil
Core measures the 3D position of the gaze point with respect to a reference frame
fixed to the world camera. The transformation between the T265 and Pupil Core
coordinate systems is computed with the calibration procedure outlined in section 2.2.2.
The orientation of the eye with respect to the Pupil Core world camera frame can be
estimated by computing the shortest arc rotation between a unit vector perpendicular
to the image plane and the gaze point.

Finally, we define a coordinate system for analysis where the x-axis points forward,
the y-axis to the left and the z-axis upwards. All measurements in our analysis are
transformed from their original reference frame to this coordinate system. While this
coordinate system is easier to interpret from an anatomical perspective, it is still relative
to the Pupil Core world camera rather than an anatomical reference such as Reid’s
plane (see discussion). Directions and orientations are also expressed in a spherical
coordinate system where the azimuth angle is measured from the positive x-axis.
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Data pre-processing

The 3D gaze position was transformed to the spherical coordinate system defined in
the previous section and smoothed with a boxcar filter with a window length of 500 ms.
Afterwards, gaze velocity was computed by differentiating the gaze position with respect
to time. Pupil Core provides a confidence score of the gaze estimate between 0 and 1.
All gaze data with a confidence below 0.8 was excluded from the analysis. Similarly,
the T265 reports a tracking confidence from 0 to 3, with a score of 3 corresponding to
“high” tracking confidence. All tracking data below the highest score was also excluded.
Additionally, gaze data whose velocity had a magnitude above 1000 ◦

𝑠
was excluded

from analysis [52].

Vestibulo-ocular reflex

The angular and linear movements of the subject while fixating the calibration target
were used to demonstrate the reflexive eye movements induced by the rVOR and
tVOR. Both rVOR and tVOR are combined head and eye movements performed
constantly in normally functioning vertebrates for image stabilization [37], and represent
an ambiguous case for gaze classifiers when head movement data is unavailable. For
the rVOR, we compared eye yaw and pitch velocity with negative head yaw and pitch
velocity, respectively. For the tVOR, we compared eye pitch velocity with the angular
velocity of the head relative to the marker with 𝜔 = arctan (𝑣𝑧/𝑑) where 𝑣𝑧 is the
vertical head velocity and 𝑑 is the distance of the marker from the head. VOR velocity
gain was calculated by computing the median ratio of eye velocity to head velocity along
the corresponding axis for each segment.

Eye-in-world velocity

Motion at the retina is driven predominantly by how the eye is moving relative to the
world-fixed visual environment. Therefore, characterization of eye-in-world velocity can
provide insight into typical visual motion stimuli during natural behavior [79, 82]. As
described above, reconstruction of eye-in-world position and velocity is only possible
by combining measures of head-in-world and eye-in-head movement.

To illustrate one application of positional head-eye tracking, we analyze the direction
of linear velocity (heading) in eye coordinates (eye-in-world) during outdoor walking.
Linear head velocity measured in the world frame by the T265 was transformed into
spherical head coordinates and then further transformed into spherical eye coordinates
using eye-in-head position (see section 2.2.4). We plot 2D histograms of heading as
well as the eye-in-head position between ±45◦ azimuth and elevation.
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2.3. Results

2.3.1. Vestibulo-ocular reflex

During the rVOR task, eye velocity and negative head velocity were closely aligned
and exhibited a gain of 1.01 and 0.83 for yaw and pitch, respectively (figures 2.2A and
B). Similar alignment was observed for eye velocity and angular velocity of the head
relative to the fixation target during the tVOR task, although eye movement seemed to
over-compensate for head movement (VOR velocity gains 1.32 and 1.52 for near and
far fixation, respectively, figures 2.2C and D). This can be explained by the fact that the
subject simultaneously performed small involuntary head pitch rotations that also need
to be compensated.

Figure 2.2.: Comparison of eye and head movements during fixation task. Eye yaw velocity and negative

head yaw velocity (A). Eye pitch velocity and negative head pitch velocity (B). Eye pitch velocity and

angular velocity of the head relative to the fixation target (1.219 m distance, C). Eye pitch velocity and

angular velocity of the head relative to the fixation target (2.143 m distance, D).

2.3.2. Eye-in-world velocity

Direction of linear head-in-world velocity during walking for this subject and environment
showed an elongated distribution along the elevation axis (figure 2.3A). The distribution
for eye-in-head position was more circular (figure 2.3B). The offsets of these distributions
relative to the origin are likely observed because the respective coordinate systems
are not aligned with an anatomical reference frame such as Reid’s plane. In contrast,
eye-in-world velocity exhibited a Gaussian-like distribution, centered in both azimuth
and elevation direction (figure 2.3C) reflecting a tendency to look in the direction of
linear motion. This result shows that although head velocity and gaze position are not
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aligned with an anatomical reference, the resulting eye-in-world velocity is aligned with
an anatomical eye-fixed reference frame.

Figure 2.3.: Distributions of head/eye velocities and gaze direction during walking task. Direction of linear

head-in-world velocity (A). Eye-in-head gaze direction (B). Direction of linear eye-in-world velocity (C).

2.4. Discussion

We demonstrate a mobile head- and eye-tracking platform capable of robust positional
measurement and present analysis of two paradigms to validate the system, a fixation
and a walking task. Simultaneous head and eye measurements during the fixation task
revealed the expected compensatory eye movements (figure 2.2). Joint analysis of
head and eye measurements during walking yielded a novel characterization of linear
eye-in-world velocity that is a strong determinant of retinal image motion (figure 2.3).

While our head-eye tracker is relatively light on the user’s head, it still requires use of a
dedicated computer. We used a high-performance laptop carried in a backpack for data
collection that was relatively heavy. Additionally, online data monitoring was impossible
with this hardware configuration. This configuration is similar to another off-the-shelf
product, Magic Leap. Our solution has the advantage of higher gaze sampling rates
and open access to software and hardware collecting these data.

Additionally, weight of future hardware configurations is likely to decrease as personal
computing improves. However, online data monitoring must be implemented by modify-
ing how the laptop is carried to make the screen visible. One promising solution uses a
lightweight hydration backpack with a window cutout to display the screen of the tablet
being used for data collection [106].

Another concern is minimizing headset slippage. We attempted to control slippage
using a sport strap fixed to the end-pieces of the Pupil Core eye tracker glasses. With
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this solution, headset slippage did not prove to be an issue in the collection of this pilot
data, but collection over longer periods must be tested.

To address slippage as well as conversion of measurements into an anatomically
defined reference frame such as Reid’s plane, it would be useful to measure the 3D
position and orientation of the device relative to the head. This would be possible, for
example, by scanning the participant’s head with headset just before data collection.
One possible method, originally developed to create custom head stabilization devices
[43] employs a stereo camera attached to a cell phone. To quantify the amount of
headset slippage experienced by any single participant one could compare scans
acquired before and after a recording session.

Using VI-SLAM to measure head position is promising, but VI-SLAM-based solutions
can deteriorate when visual features of the environment move, for example in a snow-
storm, when walking in a crowd or when surrounded by foliage that is blowing in the wind.
This is because VI-SLAM works under the assumption that environmental features are
world-fixed. Roboticists have tried solving this problem by orienting cameras towards
the ceiling in indoor environments [56], but this is not feasible with our system outdoors.

The Intel RealSense T265 was developed primarily to facilitate navigation in autonomous
robots such as drones or self-driving vehicles [28]. Future human-centric development
of a VI-SLAM pipeline leveraging regularities of human movement should lead to better
estimation of head position. Higher quality head movement data can then be used to
improve gaze classification performance [62, 64].

Several recent studies have characterized natural head and eye movements during
everyday activities in natural environments [18, 79, 82, 83]. Novel, versatile, and
accessible methods, like the ones presented here, will help advance these research
endeavors by enabling longer recording sessions with data collection across a wider
range of activities, environments, and subjects. Ultimately, this knowledge will lead to
better understanding of human visual exploration and head-eye coordination, and this
knowledge can be applied in the development of interactive technologies that rely on
tracking and prediction of head and eye movements, such as augmented and virtual
reality.
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Abstract

Accurate and robust tracking of natural human head motion in natural environments is
important for a number of applications including virtual and augmented reality, clinical
diagnostics, as well as basic scientific research. Inertial measurement units (IMUs)
provide a versatile solution for recording inertial data including linear acceleration and
angular velocity, but reconstructing head position is difficult or impossible. This problem
can be solved by incorporating visual data using a technique known as visual-inertial
simultaneous localization and mapping (VI-SLAM). A recently released commercial
solution, the Intel RealSense T265, uses a proprietary VI-SLAM algorithm to estimate
linear and angular position and velocity, but the performance of this device for tracking of
natural human head motion in natural environments has not yet been comprehensively
evaluated against gold-standard methods. In this study, we used a wide range of
metrics to evaluate the performance of the T265 with different walking speeds in
different environments, both indoor and outdoor, against two gold-standard methods, an
optical tracking system and a so-called perambulator. Overall, we find that performance
of the T265 relative to these gold-standard methods is most accurate for slow to normal
walking speeds in small- to medium-sized environments. The suitability of this device
for future scientific studies depends on the application; data presented here can be
useful in making that determination.
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Summary and author contributions

This chapter is a significant contribution to RQ 1 as it evaluates a novel approach
for measuring human movement in a real-world setting. The aim of this chapter is
to evaluate the performance of an off-the-shelf VI-SLAM device, the Intel RealSense
T265, specifically in the context of real-world head motion tracking. For this purpose,
two studies are conducted comparing the data from the T265 against different gold
standard tracking systems:

1. In an indoor environment with an optical tracking system (OTS).

2. In three different in- and outdoor environments with a perambulator, a device
capable of measuring walking speed and distance.

The accuracy of the T265 with respect to the gold standard methods is assessed using
a variety of metrics that quantify the errors in position and orientation as well as linear
and angular velocity.

The primary result of this chapter is that the tracking performance of the T265 de-
pends considerably on the environment and the movement speed. Overall, the lowest
errors in both studies were measured during normal walking in small indoor environ-
ments. Additionally, the accuracy of the tracker seems to be acceptable for measures
of direction such as the orientation of the device with respect to gravity and the di-
rection of linear velocity. On the other hand, measures of magnitudes such as linear
speed and displacement can be severely under-estimated, especially in large outdoor
environments.

The OTS study was designed by myself, Christian Sinnott and Paul MacNeilage and
all recordings were piloted and carried out by Christian Sinnott. The perambulator
study was designed by myself, Martin Daumer and four students of the lecture “Clinical
Applications of Computational Medicine” at TUM, Tobias Allgeier, Jana Daubmeier,
Stefan Haupt and Mario Wenning. These students also performed extensive piloting for
this study. The final recordings for this paper were however exclusively carried out by
myself. I also developed the method for the reference frame transformations, carried
out all data processing and analysis and generated all figures.

The paper itself was written by all authors; my primary contribution is the methods
and results section as well as the supplementary material (appendix B) while Christian
Sinnott and Paul MacNeilage primarily wrote the introduction and discussion and Martin
Daumer revised the manuscript prior to submission.
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3.1. Introduction

Tracking of human head motion is important across several domains. It is important
for investigating basic scientific questions about reflexive control of posture, as well
as reflexive stabilization of both head and eye movement [99]. It is also important in
applied areas. For example, virtual and augmented reality (VR and AR) rely on tracking
of human head motion to render the appropriate visual scene motion in head-mounted
displays. And in a clinical setting, one can compare measures of head movement
between normal and patient populations to assist in diagnosis and treatment of sensory,
motor, and neurological disorders [48].

Historically, observation of how the head moves in space has been constrained to
laboratory settings [77]. In early research, accurate, precise head tracking demanded
that the participant wear bulky equipment to track the head mechanically or via magnetic
search coil [14, 15, 32]. Advances in technology allowed robust head tracking to be
conducted with optical tracking systems on humans and other mammals [80, 99].
This has been referred to as outside-in head tracking because stationary cameras
“outside” the participant are used to track the moving head [101]. This method was more
versatile, but robust performance was still confined to the laboratory. More recently,
microelectromechanical system (MEMS)-based inertial measurement units (IMUs) have
become accessible and affordable enough for widespread use, which in turn has allowed
measurement of head movements outside the laboratory [24, 48, 76, 84].

MEMS IMUs typically consist of a tri-axial accelerometer and gyroscope, and sometimes
a magnetometer, all built into a single small device. These allow estimating linear
acceleration, angular velocity, and direction and strength of the local magnetic field,
respectively. These estimates may be further processed to estimate orientation relative
to gravity, linear velocity and position. Through each of these steps, error is introduced,
particularly when integrating and double integrating to estimate linear velocity and
position. Estimating orientation is less error-prone because accelerometer, gyroscopes
and magnetometers all incorporate information about their orientation with respect to a
local reference frame and model-based approaches such as the extended Kalman filter
can fuse measurements from all three sensors [105].

One possibility to address these problems is to incorporate visual data. Visual-inertial
simultaneous localization and mapping (VI-SLAM) is a method developed primarily
for use in autonomous robots [42]. The method generally assumes that the IMU and
camera(s) are rigidly attached to one another and relies on tracking of visual features
of the stationary environment to augment the estimate of linear and angular position
derived from IMU data. In the context of virtual and augmented reality, this type of
tracking is referred to as inside-out (rather than outside-in) because the sensors mounted
on the moving observer are used to track the stationary environment. Optimal algorithms
for VI-SLAM are an area of active research. However, a commercially available VI-SLAM
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device, the Intel RealSense T265, was recently released and represents a promising tool
for versatile tracking of natural human head motion outside the lab. If the T265 device
is going to be adopted as a standard tool, its performance must be evaluated. This is
especially necessary because only a rough description of the T265’s tracking method is
provided [46]; no details about the proprietary closed-source VI-SLAM implementation
are available.

Previous studies have compared estimates of position and orientation from the T265
against an optical tracking system (OTS). Alapetite et al. [3] mounted the device on a
wheeled robot and investigated the influence of movement speed as well as the quantity
of visual features and moving objects in the environment on the tracking quality. Their
results show that tracking performance decreases with higher motion speeds and lower
feature density. Ouerghi et al. [96] evaluated the tracking performance of a hand-held
T265 in an industrial environment and measured positional errors below 2 % of the
overall length of motion trajectories. Agarwal et al. [1] evaluated the device for indoor
navigation of an unmanned aerial system (UAS) and report heading errors of around
3 degrees. Bayer and Faigl [16] proposed an approach combining the T265 with the
RealSense D435 depth camera as a navigation system for a hexapod walking robot
and report positional errors of around 10 cm in a laboraty environment. One major
gap in the current literature is the evaluation of the T265 for tracking head motion. The
device is lightweight (33 g) and affordable (∼$ 200), and it is advertised as solution for
head tracking for AR and VR. However, to our knowledge, and to date, there are no
publicly available studies evaluating its performance in this context.

3.2. Methods

3.2.1. Evaluation in optical tracking space

A convenience sample of nine subjects (five female, four male; aged 20-46 years, mean
age of 27.8 years) with no known history of vestibular or gait disorders were recruited.
All procedures were approved by the Institutional Review Board of the University of
Nevada Reno and carried out in accordance with relevant guidelines and regulations.
In this study, the pose estimated by the T265 was compared with a gold-standard pose
estimate generated by an OTS. A marker was attached to the T265 so that it could
be tracked by the OTS. The device and marker were worn by participants on their
heads using an elastic headband designed for mounting cameras on the head or helmet
during sports activities (Fig. 3.1a, informed consent to publish the image in an online
open-access publication was obtained from the participant).

Participants first performed a synchronization motion by nodding and shaking their
head slowly five times each. This data was used to temporally align the T265 and the
OTS recordings. Subjects then completed ten laps around the tracking space (Fig.
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3.1d) at three self-chosen speeds: “at a leisurely walking pace”, “at a brisk walking
pace”, and “at a jogging pace”. The first five laps for each pace were in a clockwise
direction and the last five laps in a counterclockwise direction.

3.2.2. Evaluation with perambulator

Eight different subjects (three female, five male; aged 26-31 years, mean age of 28
years) with no history of vestibular or gait disorders were recruited for the second
part of the study that investigated the speed estimated by the T265 in real-world
environments at the main campus of Technical University of Munich (TUM). Here,
a so-called perambulator was used as the gold standard measurement device. The
perambulator is a surveyor’s wheel (see Fig. 3.1c) - a device generally used for
measuring distances , e.g., in civil engineering - that was modified such that it was
also capable of measuring speed [2]. Such a perambulator device has been used in
previous studies [109] in order to measure real-world walking speed of participants.
The device is lightweight and can be pushed in an ergonomic manner and thus did not
considerably inhibit the normal walking and jogging movements of the participants.

Subjects performed the same set of tasks as in the first study (walk, slow walk, jog)
in three different environments while wearing the T265 on the head and pushing the
perambulator. The first environment was a hallway (47 × 4 × 5 m, about 80 m circuit
length, Fig. 3.1e), the second a large lobby (37×12−30×6 m, about 80 m circuit length,
Fig. 3.1f) and the third a large courtyard (60 × 60 m, surrounded by 5-6 story buildings,
about 160 m circuit length, Fig. 3.1g). Participants were instructed to move along
a pre-defined path in each environment. An experimenter took note of the distance
measured by the perambulator in each task and environment. All subjects signed an
informed consent form compliant with the European General Data Protection Regulation.
The study protocol was approved by the institutional review board of the Sylvia Lawry
Center for Multiple Sclerosis Research and procedures were carried out in accordance
with relevant guidelines and regulations.

3.2.3. Hardware

The Intel Realsense T265 tracking camera has a diverse suite of sensors which all
feed into a VI-SLAM pipeline, which fuses them into a 6 degree of freedom (DOF)
estimation of position and velocity of the camera relative to the environment at 200 Hz.
The sensors consist of two global shutter fisheye world cameras (173 ° diagonal field
of view (FOV); 848 × 800 pixel resolution; 30 Hz sampling rate), a 3 DOF gyroscope
(±2000 ◦

𝑠
range; 200 Hz sampling rate), and a 3 DOF accelerometer (±4 g range; 62.5

Hz sampling rate). The 6 DOF estimation of camera position and velocity is computed
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a b c

d e

f g

Figure 3.1.: Equipment used for the two studies and snapshots of the four environments where data was
recorded. (a) Subject wearing head mount with T265 and tracking marker. (b) One of the Vicon Vantage
cameras used in the optical tracking space. (c) Perambulator with distance counter and IMU mount. (d)
Optical tracking space. (e) Hallway environment. (f) Lobby environment. (g) Courtyard environment.
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in real-time onboard the T265 on a dedicated chipset. In both studies, data from the
device was recorded via USB with a laptop carried by the participant in a slim backpack.

In the first study, twelve Vicon Vantage 8 cameras were used to perform optical tracking
of a rigid body attached to the T265 worn on the head by participants. The Vantage
8 (Fig. 3.1b) is a purpose-built optical tracking camera produced by Vicon Motion
Systems Ltd, UK, capable of recording at 260 Hz with an 8 megapixel resolution. By
decreasing the resolution of the camera, the sampling rate can increase to a maximum
of 2000 Hz. Each camera has an FOV of 61.7 ° horizontal by 47 ° vertical. These
cameras created an optical tracking volume measuring 15×8.5×5 meters, and yielded
a 6 DOF pose estimate at 50 Hz.

The perambulator (Fig. 3.1c) is a modified surveyor’s wheel (Nestle 12006001, Gottlieb
Nestle GmbH, Germany) featuring a centimeter-precision distance counter. A housing
for an IMU (actibelt RCT3, Trium Analysis Online GmbH, Germany) containing a tri-axial
accelerometer (±8 g range; 100 Hz sampling rate) and gyroscope (±2000 ◦

𝑠
range;

100 Hz sampling rate) was attached to the axle of the wheel. The gyroscope recorded
the instantaneous angular velocity of the wheel which directly corresponds to the speed
of the device when being pushed across a surface.

The T265 was worn on the head via a custom-designed 3D-printed mount that holds
the T265 securely through two M2.5 screws that thread into the back of the T265.
The mount then fastens to an AmazonBasics camera head-strap system available on
Amazon (ASIN B00R4YCKIK). In turn, this strap was worn on the head of the participant
either directly or over a baseball cap (see Fig. 3.1a).

3.2.4. Software

Data from the T265 was recorded with custom software written in Python making
use of the pyrealsense2 library developed by Intel (https://github.com
/IntelRealSense/librealsense, version 2.36.0). The software recorded
the accelerometer and gyroscope streams as well the VI-SLAM position and velocity
estimates to disk in a binary format. Information sampled by the OTS cameras was
first sent to Vicon Blade software, where a rigid body was fit to the infrared optical
marker data. The positional data of this rigid body was then published through the robot
operating system (ROS) middleware via a custom wrapper. Data recorded on the IMU
inside the perambulator was read out and processed by a custom software suite written
in Julia developed by Trium Analysis Online GmbH.
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3.2.5. Velocity and speed estimation

Linear and angular velocity (v and 𝝎) were estimated from position (p) and orientation
(q, in quaternions) provided by the OTS as v = ¤p and 𝝎 = Im(2q∗ ¤q). Linear velocity
recorded by the T265 as well as the estimate from the OTS (both measured in their
respective world frames) were converted to speed by calculating the norm of the earth-

horizontal components as 𝑣 = ‖v𝑥𝑦 ‖ =
√︃
𝑣2𝑥 + 𝑣2𝑦 .

The angular velocity 𝜔𝑃 measured by the perambulator was filtered with a fourth-order
Butterworth low-pass filter with a cutoff frequency of 10 Hz. Then it was transformed to
linear speed by multiplying the angular velocity component in the direction of the axle
with the circumference of the wheel (𝐶 = 1m) as 𝑣 = 𝐶 · 𝜔𝑃. Finally, samples with
𝑣 < 0.01 m/s and segments shorter than 3 seconds were removed from the estimate.

3.2.6. Time synchronization

The timestamps of the data collected from the OTS were corrected by computing the
cross-correlation function of the angular velocity 𝝎 with that measured by the T265 (𝝎̂)
during the calibration segment (see Evaluation in optical tracking space). The temporal
lag Δ𝑡 of the maximum of this function was determined with 𝐾 = argmax𝑘

∑𝑛
𝑖 ‖𝝎̂𝑖 ‖ ·

‖𝝎𝑖+𝑘 ‖ and Δ𝑡 = 𝑡̂𝐾 − 𝑡𝐾 and the timestamps of the T265’s measurements were shifted
by this amount.

In the second study, the perambulator’s IMU was tapped against the T265 at the begin-
ning of each recording. This created visually distinguishable peaks in the accelerometer
measurements of both devices. The timestamps of these peaks were used to manually
correct the time offset.

For both studies, data recorded from the T265 was interpolated to match the timestamps
of the respective gold standard (perambulator or OTS) after temporal alignment. A
simple linear interpolation was used for position as well as linear and angular velocity.
Orientation, expressed in quaternions, was interpolated using the spherical quadrangle
method [113].

3.2.7. Reference frame transformations

The OTS provides position and orientation of the tracked rigid body with respect to
its world frame 𝑊 (denoted 𝑊p and 𝑊q). The T265 provides its own position and
orientation as well as linear and angular velocity with respect to a different world frame
𝑊̂ (denoted 𝑊̂p̂, 𝑊̂q̂, 𝑊̂v̂ and 𝑊̂

𝝎̂).

The transformation between the world frames𝑊 and 𝑊̂ was estimated using a basic
point set registration (PSR) method [96] which was used to transform position and
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orientation of the T265 from its own to the OTS world frame. A rotation-only PSR
method was used to estimate the transformation from the body frames 𝐵 and 𝐵 to
calibrated frames 𝐶 and 𝐶 that are independent of the orientation of the head mount on
the subject’s head. For the T265, we achieved this calibration by calculating the rotation
that simultaneously centers heading direction (i.e. the direction of instantaneous linear
velocity) along the longitudinal axis (𝑥) and gravity direction along the vertical axis
(𝑧). The OTS was calibrated by aligning linear velocity and gravity direction to those
measured by the T265 in its calibrated frame with the same rotation-only PSR method.
Details on these estimations and transformations can be found in the supplementary
material.

The above estimations (T265 world frame and calibrated frames) were performed for
each subject and each task during the first 30 seconds of each task. The transformations
obtained from these estimations were then applied to all measurements recorded during
the task. This ensured that enough data was available for a robust estimation while at
the same time reducing the possibility of drifts in position and orientation influencing the
result. The complete reference frame tree with all transformations between frames is
shown in fig. 3.2. Unless specified otherwise, positions and orientations reported below
are represented in the world frame𝑊 (e.g. p̂ as a shorthand for 𝑊p̂) while velocities
and accelerations are represented in the respective calibrated body frames (e.g. v̂ as

a shorthand for 𝐶v̂).

𝑊𝑊v,𝑊𝝎,𝑊g 𝐵

𝐵v, 𝐵g

𝐶 𝐶v, 𝐶𝝎, 𝐶g

𝑊̂𝑊̂v̂, 𝑊̂𝝎̂, 𝑊̂ĝ 𝐵

𝐵v̂, 𝐵ĝ

𝐶 𝐶v̂, 𝐶𝝎̂, 𝐶ĝ

𝑊p,𝑊q q𝐶

t𝑊̂ , q𝑊̂
𝑊p̂,𝑊q̂

𝑊̂p̂, 𝑊̂q̂ q
𝐶

Figure 3.2.: Reference frame tree with corresponding measurements and transformations. The top row
shows the relationship between world (𝑊), body (𝐵) and calibrated (𝐶) frame of the OTS as well as the
measurements used in the following analysis highlighted in green. The second row shows the relationship
between world (𝑊̂), body (𝐵) and calibrated (𝐶) frame of the T265 as well as the measurements used in
the following analysis highlighted in blue. The dashed arrow denotes the estimate of the T265’s position
and orientation with respect to the OTS world frame.

3.2.8. Performance metrics

The primary aim of this study was to compare the position and velocity estimates pro-
vided by the T265 with those provided by the OTS and perambulator. This comparison
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was conducted using a number of metrics to quantify specific aspects of performance.
An overview of these performance metrics is shown in table 3.1.

Metric Unit Description Formula

Trajectory length
error (TLE) ∗

% Relative difference between
trajectory length estimated by
T265 and gold standard length

𝐿−𝐿
𝐿

Absolute
translation
error (ATE)

m Root mean square (RMS) of
distances between position
estimated by T265 and OTS
across the full trajectory [72]

√︃
1

𝑛

∑𝑛
𝑖 ‖p̂𝑖 − p𝑖 ‖2

Relative
translation
error (RTE)

m RMS of relative distance
between position estimated by
T265 and OTS over a window of
𝑘 samples [72]

√√√√√√√ 1

𝑛

∑𝑛
𝑖 ‖p̂𝑖+𝑘 − p̂𝑖

− rot(q̂𝛾,𝑖 · q−1𝛾,𝑖 ,
p𝑖+𝑘 − p𝑖)‖2

Translation
drift (TDr)

% Distance between final position
estimates of a trajectory relative
to trajectory length [72]

‖p̂𝑛−p𝑛 ‖
𝐿

Gravity direction
error (GDE)

° Mean angle between
representation of gravity vectors
in the respective body frames

1

𝑛

∑𝑛
𝑖 arccos

〈ĝ𝑖 ,g𝑖 〉
‖ĝ𝑖 ‖ · ‖g𝑖 ‖

GDE-𝛼, GDE-𝛽 Roll and pitch angle difference 𝛼̂ − 𝛼, 𝛽 − 𝛽

Absolute yaw
error (AYE)

° RMS of yaw angle difference
across full trajectory [72]

√︃
1

𝑛

∑𝑛
𝑖 Δ𝛾

2

𝑖

Relative yaw
error (RYE)

° RMS of yaw angle difference
over a window of 𝑘 samples [72]

√︃
1

𝑛

∑𝑛
𝑖 (Δ𝛾𝑖+𝑘 − Δ𝛾𝑖)2

Yaw drift (YDr) °/h Final yaw angle difference
relative to trajectory duration 𝑇
[72]

Δ𝛾𝑛
𝑇

Speed error (SpE)
∗,†

% Mean relative difference between
earth-horizontal speed measured
by the T265 and gold standard
speed

1

𝑛

∑𝑛
𝑖
𝑣𝑖−𝑣𝑖
𝑣𝑖

Heading direction
error (HDE) †

° Mean angle between linear
velocity vectors estimated by
T265 and OTS

1

𝑛

∑𝑛
𝑖 arccos

〈v̂𝑖 ,v𝑖 〉
‖v̂𝑖 ‖ · ‖v𝑖 ‖

HDE-𝜃, HDE-𝜙 † Azimuth and elevation angle diff. 𝜃𝑣 − 𝜃𝑣 , 𝜙𝑣 − 𝜙𝑣
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Metric Unit Description Formula

Linear velocity
magnitude
error (LVME) †

m/s Mean difference between
magnitudes of linear velocity
estimated by T265 and OTS

1

𝑛

∑𝑛
𝑖 ‖v̂𝑖 ‖ − ‖v𝑖 ‖

Angular velocity
direction
error (AVDE) †

° Mean angle between angular
velocity vectors estimated by
T265 and OTS

1

𝑛

∑𝑛
𝑖 arccos

〈𝝎̂𝑖 ,𝝎𝑖 〉
‖𝝎̂𝑖 ‖ · ‖𝝎𝑖 ‖

AVDE-𝜃,
AVDE-𝜙 †

Azimuth and elevation angle diff. 𝜃𝜔 − 𝜃𝜔 , 𝜙𝜔 − 𝜙𝜔

Angular velocity
magnitude
error (AVME) †

°/s Mean difference between
magnitudes of angular velocity
estimated by T265 and OTS

1

𝑛

∑𝑛
𝑖 ‖𝝎̂𝑖 ‖ − ‖𝝎𝑖 ‖

Table 3.1.: Description of performance metrics. Metrics denoted with a star (∗) were computed for both
studies, all other metrics only for the optical tracking space study. For metrics denoted with a dagger (†)
we excluded samples where the gold-standard motion speed was below 0.1 m/s.

The trajectory length 𝐿 was computed from position data provided by T265 and OTS
as the sum of earth-horizontal displacements, i.e. the norm of the difference in 𝑥 and
𝑦 direction between two consecutive samples: 𝐿 =

∑𝑛
𝑖



p𝑥𝑦,𝑖 − p𝑥𝑦,𝑖−1

. Since the
position estimate by the T265 is occasionally subject to re-localization jumps that would
result in an over-estimation of the trajectory length, samples where the instantaneous
speed was above 5 m/s were considered artifacts and excluded from this computation.
Trajectory length measured by the perambulator was directly provided by the distance
counter of the device.

For the calculation of the relative translation error (RTE), yaw drift at the beginning of
the window was removed by rotating the position estimate of the OTS with rot(q̂𝛾,𝑖 ·
q−1𝛾,𝑖 , p𝑖+𝑘 − p𝑖). Here, rot(q, v) = qvq−1 denotes the rotation of a vector v by the

quaternion q and q𝛾 = [
√︁
1 − 𝑞2𝑧 , 0, 0, 𝑞𝑧]⊤ denotes the quaternion representing the

yaw component of q. Since the OTS data was recorded at a sampling rate of 50 Hz,
we used a window length of 𝑘 = 50 to obtain windows of approximately 1 second. The
same window length was used for the calculation of the relative yaw error (RYE).

The roll (𝛼) and pitch (𝛽) angle with respect to gravity were computed as𝛼 = arctan 𝑔𝑦/𝑔𝑧
and 𝛽 = − arcsin 𝑔𝑥/‖g ‖. Difference in yaw angle was computed as the geodesic
distance between the yaw components of the orientations from T265 and OTS as
Δ𝛾 = arccos (2 < q̂𝛾 , q𝛾 >

2 −1) [54]. We excluded outliers in the first and 99th
percentile of Δ𝛾 from further analysis.

Heading is the instantaneous direction of linear velocity in head coordinates. Heading
elevation (𝜙𝑣 ) and azimuth (𝜃𝑣 ) angle were computed as 𝜙𝑣 = arcsin 𝑣𝑧/‖v ‖ and 𝜃𝑣 =
− arctan 𝑣𝑦/𝑣𝑥. We also computed angular velocity elevation (𝜙𝜔 = arcsin 𝜔𝑧/‖𝝎 ‖)
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and azimuth angle (𝜃𝜔 = − arctan 𝜔𝑦/𝜔𝑥). This corresponds to the direction of the
instantaneous axis of rotation.

3.2.9. Statistical analysis

Distributions of motion speeds 𝑣 where estimated using a kernel density estimate (KDE)
with 𝑓ℎ (𝑣) = 1/𝑛ℎ∑𝑛

𝑖 𝐾 (𝑣 − 𝑣𝑖/ℎ)[114]. We used a Gaussian kernel 𝐾 (𝑥) = 1/√2𝜋 𝑒 − 𝑥2/2

and a bandwidth of ℎ = 0.2.

We used a one-way repeated measures analysis of variance (ANOVA) to determine
whether the means of error metrics were significantly different across tasks. We reported
the 𝐹-statistic as well as 𝑝-values and considered effects significant if 𝑝 < 0.05, in which
case we performed a two-sided paired t-test between all pairs of tasks as a post-hoc test.
For this test, we reported 𝑝-values corrected with the Bonferroni method and divided
by 2 (to obtain a one-sided result dependent on the 𝑡-statistic, see below), considering
differences significant when 𝑝 < 0.05. Additionally, we deemed metrics to be larger
in the first task of the pair if the 𝑡-statistic was positive and smaller if the 𝑡-statistic
was negative. In the perambulator study, we performed a two-way repeated measures
ANOVA in the same manner to determine the influence of task and environment on the
error metrics, combined with a post-hoc paired 𝑡-test across tasks and environments in
the case of significant effects. We did not compare metrics between the two studies
since the difference in gold standard as well as environment and test subjects were
confounding factors we could not control for.

All statistical analyses were performed in Python 3.6. We used the statsmodels
library (version 0.12.1) for the ANOVA and the scipy library (version 1.5.3) for the
KDE and 𝑡-tests. Error metrics were plotted for different tasks and environments using
boxplots. Boxes were plotted from the first to the third quartile with the band indicating
the median. Whiskers indicated the range from the lowest sample within 1.5 times the
interquartile range (IQR) of the lower quartile to the highest sample within 1.5 times the
IQR of the upper quartile.

3.3. Results

A comparison of trajectories recorded from T265 and OTS in the optical tracking space
is shown in Fig. 3.3a-d. The figure demonstrates a case of successful tracking during
walking (panels a and c) and a failure case during running (panels c and d). While
there is an overestimation of displacement in the first case, the second case exhibits
significant drift both in yaw angle (b) and vertical direction (d). Jumps in the T265
trajectory in Fig. 3.3b are due to re-localization of the device by means of loop closure,
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i.e., a correction of the current pose estimate based on re-observation of previously
observed landmarks.

Fig. 3.3e-j compares the earth-horizontal components of trajectories reported by the
T265 in the perambulator study. The left column shows successful tracking cases
in the hallway (panel e), lobby (panel g) and courtyard (panel h) environment while
the right column (panels f, h and i) shows failure cases. The unsuccessful cases
are characterized by yaw drift and, in the courtyard example (j), a task-dependent
under-estimation of displacement.

Trajectory length errors (TLEs) are shown in Fig. 3.4a. Median TLEs in the OTS
study are positive, indicating a task-dependent over-estimation of trajectory length
(𝐹 (2, 16) = 10.84, 𝑝 = 0.001) that is higher during slow walking (𝑝 = 0.013) and run-
ning (𝑝 = 0.005) compared to walking. TLEs in the perambulator study are dependent
on environment (𝐹 (2, 14) = 10.08, 𝑝 = 0.002) and task (𝐹 (2, 14) = 7.75, 𝑝 = 0.005).
Median values are negative and under-estimation is significantly smaller in the hallway
environment when compared with the lobby (𝑝 = 0.013) and courtyard environments
(𝑝 = 0.015). Additionally, we observe more under-estimation during running (𝑝 = 0.012)
and walking (𝑝 = 0.007) compared to slow walking.

Positional data was also used to quantify absolute and relative translation error (ATEs,
RTEs) and yaw error (AYEs, RYEs) as well as drift in translation (TDrs) and yaw (YDrs,
Fig. 3.5). Median ATEs are around 0.4 m and values do not depend on task (𝐹 (2, 16) =
1.77, 𝑝 = 0.202, Fig. 3.5a). RTEs are dependent on task (𝐹 (2, 16) = 26.57, 𝑝 <

0.001) and significantly higher in the running task than in the walking (𝑝 = 0.002) and
slow walking task (𝑝 < 0.001, Fig. 3.5b). Median TDrs are between 0.2 and 0.4 m/h and
values are not task-dependent (𝐹 (2, 16) = 2.35, 𝑝 = 0.128, Fig. 3.5c). Median AYEs
are between 3 and 5° and are not dependent on task (𝐹 (2, 16) = 3.09, 𝑝 = 0.073, Fig.
3.5d). Median RYEs increased from 0.9 to 1.4°from slow walking to running, although
the overall effect is not statistically significant (𝐹 (2, 16) = 0.46, 𝑝 = 0.637, Fig. 3.5e).
YDrs depend on task (𝐹 (2, 16) = 6.98, 𝑝 = 0.007) and are higher during running than
slow walking (𝑝 = 0.034, medians between 1 and 3.5 °/h, Fig. 3.5f).

Orientation relative to gravity as tracked by both T265 and OTS shows an elongated
distribution around the pitch axis (Fig. 3.6a and b). The gravity direction errors (GDEs)
are relatively small and similar for both pitch and roll axes (Fig. 3.6c). Median values
are between 1.6 and 3° and depend on task (𝐹 (2, 16) = 8.49, 𝑝 = 0.003). Specifically,
they are smaller in the walking task in comparison with the slow walking (𝑝 = 0.026)
and running task (𝑝 = 0.014, Fig. 3.6d).

Linear and angular velocity measures were also compared. Example traces from both
studies are shown in Fig. 3.7. 3-DOF linear and angular velocities of a participant
measured by the T265 while walking in the optical tracking space are displayed in Fig.
3.7a and b. Panels c and d compare earth-horizontal movement speed calculated
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Figure 3.4.: Boxplots of trajectory length and speed errors between T265 and gold standard across
different environments and tasks. (a) Trajectory length errors. (b) Speed errors.

from the T265 data with the gold standard perambulator measurements. Fig. 3.7c
demonstrates a case of successful tracking in the hallway environment during walking,
corresponding to the trajectory shown in Fig. 3.3e. In contrast, Fig. 3.7d illustrates a
failure case characterized by a severe under-estimation of motion speed during running
in the courtyard environment that corresponds to the trajectory in Fig. 3.3j.

Movement speeds are strongly dependent on task, both in the optical tracking space
(𝐹 (2, 16) = 219.98, 𝑝 < 0.001) and in the real-world environments (𝐹 (2, 14) =

129.62, 𝑝 < 0.001, all post-hoc tests yielded 𝑝 < 0.001, Fig. 3.8). Median speed
during slow walking ranges from 0.7 m/s in the optical tracking space (Fig. 3.8a) to 1.2
m/s in the courtyard environment (Fig. 3.8d). Similarly, median values of walking and
running speed range from 1.0 to 1.5 m/s and from 1.7 to 2.6 m/s, respectively. Running
speed, especially in the hallway and lobby environments, shows a bi-modal distribution
(Fig. 3.8b and c). However, there is no significant effect of environment on movement
speed in the perambulator study (𝐹 (2, 14) = 3.72, 𝑝 = 0.051).

Median speed errors (SpEs) are close to 0% in the optical tracking space and do not
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Figure 3.5.: Boxplots of translation and yaw errors between T265 and OTS across different tasks. (a)
Absolute translation error. (b) Relative translation error. (c) Translation drift. (d) Absolute yaw error. (e)
Relative yaw error. (f) Yaw drift.

depend on task (𝐹 (2, 16) = 2.10, 𝑝 = 0.155, Fig. 3.4b). In the perambulator study,
SpEs are negative and decrease with increasing size of the environment (𝐹 (2, 14) =
27.22, 𝑝 < 0.001), with significantly lower values in the courtyard environment when
compared to the hallway (𝑝 = 0.001) and lobby environments (𝑝 = 0.009). Additionally,
we observe significantly lower values in the lobby in comparison with the hallway
(𝑝 = 0.024). This indicates a tendency of the T265 to under-estimate speed in larger,
more complex environments and is consistent with the results for TLEs. The error is
also significantly dependent on task (𝐹 (2, 14) = 4.52, 𝑝 = 0.031), where we observe
more under-estimation during running compared to slow walking (𝑝 = 0.028).

Heading directions are centered around 0° elevation and azimuth angles (Fig. 3.9a and
b). Error in heading direction (HDEs) shows a centered distribution, with similar extents
in elevation and azimuth (Fig. 3.9c) and is dependent on task (𝐹 (2, 16) = 8.32, 𝑝 =

0.003, Fig. 3.9e). Errors are lowest in the walking task with a median value of about
4°and significantly smaller compared to the slow walking (𝑝 = 0.005) and running task
(𝑝 = 0.012). Errors in the magnitude of the linear velocity vector (LVMEs) are centered
close to 0 °/s and do not depend on task (𝐹 (2, 16) = 2.39, 𝑝 = 0.123, Fig. 3.9d).

Angular velocity directions (i.e., the axes of rotation) are distributed towards ±90°
elevation and azimuth angles (Fig. 3.9f and g). This indicates that the instantaneous
axis of head rotation is more frequently aligned with the pitch and yaw axis than with the
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Figure 3.6.: Gravity direction measured by T265 and OTS and corresponding errors. Positive pitch angles
correspond to forward pitch, positive roll angles to rightward roll. (a) Bi-variate histogram of pitch and roll
angles measured by the OTS. (b) Bi-variate histogram of pitch and roll angles measured by the T265. (c)
Bi-variate histogram of pitch and roll errors between T265 and OTS. (d) Boxplot of gravity direction errors
between T265 and OTS across different tasks.

roll axis (which corresponds to zero azimuth and elevation). Error in angular velocity
direction (AVDEs) shows a centered distribution that is elongated in the azimuth direction
(Fig. 3.9h). Overall, errors are dependent on task (𝐹 (2, 16) = 5.55, 𝑝 = 0.015), but the
post-hoc analysis revealed no significant differences (Fig. 3.9j). Errors in the magnitude
of angular velocity (AVMEs) are centered around -3 °/s and are not task-dependent
(𝐹 (2, 16) = 1.41, 𝑝 = 0.273, Fig. 3.9i).

3.4. Discussion

Measurement of natural human head motion in natural environments is important for
a range of applications including VR/AR technology, clinical diagnostics, as well as
basic scientific investigation of sensorimotor function. If VI-SLAM devices such as the
T265 are going to be used for these applications, their accuracy must be evaluated.
That is the primary aim of this study. Which measures of human head position and
motion are most important varies greatly across applications. Therefore, we have
evaluated accuracy using a wide range of metrics. Performance was evaluated relative
to two gold-standard methods, the OTS because it can estimate all 6-DOF of head
position and the perambulator because it can be used in any environment, including
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Figure 3.7.: Example time series of velocities measured by T265. (a) Linear velocity in anterior/posterior
(AP), medial/lateral (ML) and dorsoventral (DV) directions in optical tracking space during walking. (b)
Angular velocity around roll, pitch and yaw axes in optical tracking space during walking. (c) Comparison
between speed measured by T265 and perambulator during walking in hallway environment showing
successful tracking, see Fig. 3.3e. (d) Comparison between speed measured by T265 and perambulator
during running in courtyard environment showing unsuccessful tracking with considerable under-estimation
of speed, see Fig. 3.3j.

outdoors. We measured performance for a range of locomotor speeds because speed
impacts both IMU data and visual data and may also impact how the VI-SLAM algorithm
estimates linear and angular position. We also measured performance for a range of
environments because environmental features are known to impact the reliability of
visual data used for VI-SLAM.

Regarding the effect of environment, both trajectory length and movement speed are
underestimated by the T265 relative to the perambulator and this error increases with
the size of the environment (Fig. 3.4). This effect is likely to reflect underestimation of
the physical scale or size of the visual scene and thus underestimation of the distance
and speed of human movement. Large environment size can pose difficulties for
many VI-SLAM algorithms [42, 108]. As the environment increases in size, landmarks
used by the T265’s VI-SLAM algorithm may increasingly get further from the cameras.
In turn, the resultant landmark movement used to estimate camera motion may be
underestimated due to the decreased stereo disparity of these landmarks sensed by
the T265’s cameras. Future studies using the T265 to measure ground speed and
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Figure 3.8.: Kernel density estimates of gold standard speed across different environments and tasks
(blue: running, orange: slow walking, green: walking). (a) Optical tracking space. (b) Hallway environment.
(c) Lobby environment. (d) Courtyard environment.

distance of linear head motion in diverse environments should be aware of this potential
source of inaccuracy; other devices, such as the perambulator may be preferable in
this context.

Some metrics are also affected by locomotor speed. Several of these show a monotonic
increase in error with increasing locomotor speed. With the perambulator as gold-
standard, underestimation of trajectory length is greater during running and walking
than during slow-walking (Fig. 3.4). With the OTS as gold-standard, relative translation
error is greater during running compared to walking and slow-walking; Yaw drift error
is also higher during running than slow-walking (Fig. 3.5). These monotonic effects
of speed are likely due to noise on VI-SLAM signals that increases with locomotor
speed. For example, increased speed may lead to motion blur in the visual data which
may hinder landmark localization. Regarding IMU data, noise may also increase with
increased power at higher frequencies. Another factor is the relatively low camera frame
rate of 30 Hz. With higher movement speed, tracked landmarks can move considerably
within the camera image between consecutive frames, which in turn might degrade
the tracking performance. Finally, the VI-SLAM algorithm itself may be optimized to
operate best during slower, smoother motions.
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Figure 3.9.: Linear and angular velocity measured by T265 and OTS and corresponding errors. (a) Bi-
variate histogram of heading azimuth and elevation angles measured by the OTS. Positive elevation angles
correspond to upward heading, positive azimuth angles to rightward heading. (b) Bi-variate histogram of
heading azimuth and elevation angles measured by the T265. (c) Bi-variate histogram of heading azimuth
and elevation errors. (d) Boxplot of linear velocity magnitude errors across different tasks. (e) Boxplot of
heading direction errors across different tasks. (f) Bi-variate histogram of angular velocity azimuth and
elevation angles measured by the OTS. Positive elevation corresponds to a leftward rotation around the
yaw axis, positive azimuth to an upward rotation around the pitch axis. (g) Bi-variate histogram of azimuth
and elevation angles measured by the T265. (h) Bi-variate histogram of azimuth and elevation errors. (i)
Boxplot of angular velocity magnitude errors across different tasks. (j) Boxplot of angular velocity direction
errors across different tasks.
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In contrast, other metrics show a non-monotonic effect of locomotor speed. Specifically,
gravity direction error (Fig. 3.6) and heading direction error (Fig. 3.9) are both smallest
during normal walking and greater for slow walking and running. The similar pattern of
results for these two metrics may be because they both depend on how sum total linear
acceleration, sensed by the accelerometer, is partitioned into gravitational and inertial
components. The fact that performance is best for normal walking may be because the
T265 algorithm has been specifically tuned to perform best during normal walking to
facilitate its use in VR/AR applications. Unfortunately, it is not possible to verify these
speculations because the T265 VI-SLAM algorithm is proprietary. Nevertheless, this
pattern of results suggests that the T265 is a suitable choice for applications that require
estimation of heading and gravity direction during normal walking.

These results are in line with those reported by Alapetite et al. [3] that suggest that
motion speed and density of visual features in the environment have the greatest effect
on the T265’s performance while the presence of moving objects has less impact.
We did not explicitly investigate the effect of feature richness as our focus was on
real-world environments of varying size, although it could be argued that visual features
are sparser in larger environments. In a future study, it would be interesting to evaluate
the tracking performance in a feature-poor real-world setting such as a meadow. Our
results regarding accuracies in position and heading angle also seem to confirm previous
reports by Agarwal et al. [1], Bayer and Faigl [16], and Ouerghi et al. [96]. In the
former, the authors note that the tracking performance of the T265 increases throughout
multiple runs across the same environment which suggests that the device stores the
features of a number of recently observed visual landmarks.

One limitation of the current study is the inability to calculate most performance metrics
in more realistic, outdoor environments. To accomplish this, it would be necessary
to use a gold-standard method that can measure linear and angular position in a
large, naturalistic outdoor space. Unfortunately we did not have access to a large-scale,
outdoor OTS or other method that would be suitable for this purpose. As a consequence,
we were not able to evaluate how many of our metrics are affected by tracking in larger,
outdoor environments. For example, we might expect yaw drift to be greater in larger
environments due to the inability of the VI-SLAM algorithm to achieve loop closure (see,
e.g., Fig. 3.3b and d). This was most likely not a problem in the small optical tracking
space. Yaw drift and possibly other metrics measured in this space may not reflect
performance in larger spaces.

Another limitation is the inability to evaluate what amount of measured error should be
attributed to inaccuracy of the gold-standard. In particular, the T265 uses a gyroscope
to measure angular velocity and this inertial measure of angular velocity may be more
reliable than the angular velocity estimate provided by the OTS. Also, the measures
derived from the perambulator are known to be less accurate when the walking trajectory
is curved. We tried to mitigate this by instructing subjects to make curves as large
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as possible and, in the hallway environment, lifting up the perambulator and turning
around in place at the end of the hallway. It is also possible that the additional cognitive
load of pushing the perambulator while walking or jogging caused participants to bias
or change their own locomotion in some unforeseen way. Despite these possible
limitations, the gold-standard methods used here are generally much more accurate
than the T265 meaning that our metrics generally reflect performance of the T265 more
than performance of the gold-standard method.

Moving forward, it would be important to further investigate in more detail which envi-
ronmental features are most likely to cause tracking failures by the T265 or by VI-SLAM
systems generally. Relevant environmental features include variation in light level of
the environment, presence of independently moving objects, and environmental size or
scale. These can all impact the ability of the VI-SLAM algorithm to identify, track, and
use visual landmark features. Conventional SLAM systems often mitigate these issues
through incorporation of additional sensors such as global positioning system (GPS),
light detection and ranging (LIDAR), and wheel odometry [108]. While many early
SLAM algorithms are highly redundant, using many landmarks, modern VI-SLAM meth-
ods limit the amount of landmarks used in order to increase computational efficiency
[13], requiring greater emphasis on landmark selection and removal of erroneous or
unusable landmarks. Recent efforts to combine machine learning techniques with
VI-SLAM largely serve these needs, and decrease error driven by dynamic features
[12]. The T265 does not include any sensors other than those previously described,
and at time of writing it is unknown how the T265 performs feature selection.

An alternative to VI-SLAM that avoids environmental dependence is positional tracking
based on purely non-visual data. The simplest form of non-visual tracking is based on
inertial data only. Such tracking usually yields more noisy positional estimates, although
certain biomechanical constraints such as the assumption of zero foot velocity during
the stance phase can be used to correct drifts and integration errors [41]. Ongoing
research is aimed at improving inertial tracking for the specific application of tracking
human head position [72]. It would be possible to compare the tracking performance
of the T265’s VI-SLAM algorithm to an estimate computed only from its raw IMU data.
However, this is subject to algorithm selection and parameter tuning which is why we
deemed this comparison to be out of scope for the current study.

In principle, it would also be possible to improve the estimation yielded by the T265
by performing VI-SLAM post-hoc. While one of the larger selling points of the T265 is
real-time VI-SLAM, it is not necessary for scientific investigation of human head motion.
Measurements taken from the sensors of the T265 could be saved and subsequently
passed through customized VI-SLAM algorithms that are optimized for the specific
application of tracking natural human head motion in natural environments.

In summary, the T265 appears to be best suited for tracking human head position during
normal walking in small- to medium-sized environments with limited dynamic features.
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Increases (and sometimes decreases) in locomotor speed tend to increase observed
error, as does use of the system in larger and more dynamic outdoor environments.
The acceptability of the default, factory-set performance of the T265 depends on the
application. In future, customized VI-SLAM algorithms may be applied to data collected
by the T265 or other devices post-hoc such that estimation is optimized for tracking
natural human head movement in natural environments. Additional evaluation studies
in larger, dynamic, and outdoor environments would be very helpful for tuning of such
custom VI-SLAM algorithms.
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Abstract

Head stabilization is fundamental for balance during locomotion but can be impaired in
elderly or diseased populations. Previous studies have identified several parameters
of head stability with possible diagnostic value in a laboratory setting. Recently, the
ecological validity of measures obtained in such controlled contexts has been called into
question. The aim of this study was to investigate the ecological validity of previously
described parameters of head stabilization in a real-world setting. Ten healthy subjects
participated in the study. Head and trunk movements of each subject were recorded
with inertial measurement units (IMUs) for a period of at least ten hours. Periods of
locomotion were extracted from the measurements and predominant frequencies, root
mean squares (RMSs) and bout lengths were estimated. As parameters of head stabi-
lization, attenuation coefficients (ACs), harmonic ratios (HRs), coherences and phase
differences were computed. Predominant frequencies were distributed tightly around 2
Hz and ACs, HRs and coherences exhibited the highest values in this frequency range.
All head stability parameters exhibited characteristics consistent with previous reports,
although higher variances were observed. These results suggest that head stabilization
is tuned to the 2 Hz fundamental frequency of locomotion and that previously described
measures of head stability could generalize to a real-world setting. This is the first
study to address the ecological validity of these measures, highlighting the potential
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use of head stability parameters as diagnostic tools or outcome measures for clinical
trials. The low cost and ease of use of the IMU technology used in this study could
additionally be of benefit for a clinical application.

Summary and author contributions

This chapter investigates the validity of previously described parameters of head stability
in a real-world setting, addressing RQ 3 and RQ 4. To this end, a study is conducted
where head and trunk movement data of healthy human subjects is collected with
IMUs for at least ten consecutive hours. From this data, head stabilization measures
are computed and compared with previous reports where the same measures were
obtained in a laboratory setting. The examined measures include:

1. attenuation coefficients, that quantify the attenuation of accelerations from trunk
to head,

2. harmonic ratios, measuring the regularity of movement,

3. coherences, describing the similarity between head and trunk motion, and

4. phase differences, that can be used to quantify the temporal alignment of head
and trunk movements.

These parameters are calculated for periods that are identified as locomotion. Addition-
ally, the predominant frequency of trunk motion is computed as a proxy measure for
walking speed.

The results of the study show that previous reports of head stability parameters can
generally be replicated in a real-world context. This is important because several studies
have shown that measures of head stabilization could be suitable tools for diagnosing
diseases or serve as outcome measures for clinical trials.

The study design was developed between all four authors and my primary contribution
is the identification of previously published parameters of head stability that could be
evaluated with the study. Additionally, I carried out all motion recordings as well as
data pre-processing and analysis. I also performed the validation experiments for the
estimation of the direction of gravity from IMU data and the step detection described in
appendix C. All figures were generated by me.

The manuscript was chiefly written by myself. Paul MacNeilage, Martin Daumer and
Stefan Glasauer provided guidance and revised the manuscript at various points during
the process.
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4.1. Introduction

During locomotion, reflexive head movements operate to minimize horizontal head
translation [35, 86] and simultaneously compensate for vertical translation by pitching
the head [51, 97]. These stabilization behaviors are thought to be crucial for effective
control of both balance and locomotion because they reduce undesired variability of
vestibular and visual sensory inputs [97]. In elderly individuals, head stabilization is
compromised during both steady-state walking [34] and gait initiation [69, 81]. Impaired
head stabilization has also been associated with disorders such as Parkinson’s disease
(PD) [21, 67], multiple sclerosis (MS) [100] and bilateral vestibular defects [98].

Motion capture and accelerometry are widely used in the analysis of head stabilization
during human locomotion [51, 61, 97]. However, studies using motion capture systems
are usually constrained to a laboratory setting by design. Similarly, previous studies
using wearable sensors have been limited by the need to instruct and supervise subjects
and faithfully annotate periods of locomotion. Several recent studies have questioned
the ecological validity of measurements obtained in such controlled contexts, i.e. how
well these measurements generalize to real world conditions [20, 120]. An alternative
approach, known as ecological momentary assessment (EMA) [112], advocates the
sampling of clinically relevant parameters in a subject’s natural environment rather than
a clinical setting.

In support of EMA, researchers have observed that clinical measures such as 10-meter
walk test times do not significantly correlate with more objective outcomes such as
fall risk, raising doubts concerning the clinical relevance of these measures [20]. The
frequently used 6-minute walking test has been challenged by the fact that in many
diseased or elderly populations, 6 minutes of uninterrupted walking rarely occur during
daily life [120]. While there are some clinical tests whose results correlate with objective
outcomes (such as clinical assessment of gait speed, [4]), these examples highlight
the need to validate standardized measures in a real-world context.

Wearable accelerometry devices have been suggested for sampling human motion
during daily life [91] and can be used as a way to assess head stabilization performance
in the spirit of EMA. Compared with clinical tests, they provide a cost-effective and
straightforward method of recording ecologically valid measures. Previous studies of
vestibular stimulation have used these kinds of sensors to address head and whole body
motion in more realistic contexts, but were either constrained to pre-defined activities
[23, 24] or lacked measurements of angular velocity [76].

In order to assess whether they are indicative of real-life locomotor function, previously
established measures of head stability [17, 51, 86] need to be evaluated with respect
to their ecological validity. Results obtained from a sample of healthy individuals could
then be used as a normative baseline for future studies involving populations with
balance, gait or neurological disorders.
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Therefore, the aims of this study were: (i) to record a dataset of real-world human
motion of trunk and head with wearable sensors, (ii) to compute previously described
parameters of head stabilization from this data, and (iii) to compare the computed
parameters with previous results obtained in controlled environments.

4.2. Methods

4.2.1. Subjects

A convenience sample of ten healthy human subjects (five male, five female, age 21-28,
most of them students participating in lecture “Clinical Applications of Computational
Medicine” at the Technical University of Munich) with no history of balance or gait
disorders participated in the experiment. All subjects signed an informed consent form
compliant with the European General Data Protection Regulation and gave explicit
consent to the publication of the recorded data. The study protocol was approved by the
institutional review board of the Sylvia Lawry Center for Multiple Sclerosis Research.

4.2.2. Sensor devices

We used a small, self-contained inertial measurement unit (IMU) to record both linear
acceleration and angular velocity of the human head and trunk. The device (Actigraph
GT9X Link) was chosen for its ability to continuously record accelerometer and gyro-
scope data at a sampling rate of 100 Hz for 24 hours. To record head motion, the sensor
unit was firmly attached to the inside of a baseball cap that was worn by the subjects. To
record trunk motion, an IMU of the same model was attached to a specialized neoprene
belt (actibelt flex-belt, Trium GmbH, Munich, Germany) worn at the waist under the
clothing. The actibelt system itself is frequently used in clinical accelerometry studies,
but was not used in this study because in its current version it is not equipped with a
gyroscope.

4.2.3. Data acquisition

Subjects were outfitted with the recording equipment in the morning of a typical
work/university day and instructed to wear the equipment for at least ten hours. They
were instructed to take note of periods during which they took off either sensor unit and
these periods were subsequently excluded from analysis. The recording equipment
was returned the next morning.

The IMUs were synchronized by knocking both devices against each other at the
beginning and the end of each recording. This created clearly visible peaks in the
accelerometer measurement that were used to correct timing offsets and drifts between
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the devices. All subjects performed a calibration routine for both sensor units in order
to align the sensor coordinates with head- and trunk-fixed reference frames. For the
head device, they first held their heads in a slightly forward-pitched position that aligned
Reid’s plane [78] with an earth-horizontal plane. Afterwards, they nodded their heads
five times around the pitch axis. This yields a unique transformation that rotates the
acceleration due to gravity to be purely vertical and rotates the angular velocity to be
purely around the medial/lateral axis for this calibration routine (resulting in a head-fixed
reference frame as shown in fig. 4.1A). A similar routine was performed for the trunk
device which was calibrated such that the acceleration due to gravity was purely vertical
when the subjects stood up straight.

4.2.4. Coordinate frame transformations

The IMUs used for this study record linear acceleration and angular velocity, but provide
no direct information about the orientation of the device in world coordinates. The
calibration approach outlined in the previous section yields a head/trunk-fixed coordinate
system (fig. 4.1A). However, for comparability with previously reported results obtained
in laboratory settings [51, 86, 89] it is necessary to transform the measurements into
a frame of reference whose vertical axis remains parallel to the direction of gravity.
Reference frames in these studies are defined as right-handed coordinate systems with
the vertical axis pointing upwards in the direction of gravity, the anterior/posterior axis
pointing in the direction of the subjects’ motion and the medial/lateral axis pointing to
the left of the motion direction.

Figure 4.1.: (A) Axes of the head sensor coordinate system. The vertical axis is adjusted to be perpendic-
ular to Reid’s plane. This coordinate system remains head-fixed during all translations and rotations. (B)

Axes of the aligned coordinate system. The vertical axis points in the direction of gravity (g). The system
remains world-fixed during roll and pitch rotations (left and right figure) but remains head-fixed during yaw
rotations (middle figure) and translations.
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4.2.5. Estimation of the direction of gravity from IMU data

Gravitational acceleration g is linked to linear acceleration a and angular velocity through
the following equations [45]:

𝑔 = 𝑎 − 𝑖 (4.1)

𝜕𝑔

𝜕𝑡
= 𝜔 × 𝑔 (4.2)

where 𝑖 denotes the inertial acceleration of the device. Various filters are described in
the literature that combine the linear acceleration and angular velocity measurements
to produce an estimate of orientation. We propose a basic sensor fusion approach
(table 4.1) that we show to be sufficiently accurate for typical trajectories occurring
during human locomotion.

Inputs Linear acceleration in sensor coordinates 𝑎(𝑡)
Angular velocity in sensor coordinates 𝜔(𝑡)
Correction factor 𝛼

Acceleration due to gravity in world coordinates 𝑔𝑊

Outputs Estimate of acceleration due to gravity in sensor coordinates 𝑔(𝑡)
Quaternion representing sensor orientation in aligned coordinates 𝑞(𝑡)

Description Start with initial estimate 𝑔(0) = 𝑔𝑊 , for all 𝑡 ∈ 1..𝑇 :

1. Compute estimate of angular displacement: 𝜙(𝑡) = 𝜔(𝑡)Δ𝑡
2. Compute estimate of gravity: 𝑔(𝑡) = 𝜙(𝑡) × 𝑔(𝑡 − 1)
3. Update estimate with linear acceleration: 𝑔(𝑡) = 𝑔(𝑡) + (1 − 𝛼)𝑎(𝑡)
4. Normalize estimate 𝑔(𝑡) = 𝑔(𝑡)/|𝑔(𝑡) |
5. Compute 𝑞(𝑡) as the quaternion transforming 𝑔(𝑡) into 𝑔𝑊 :

a) Normalized axis of rotation: 𝑛 = 𝑔𝑊 × 𝑔(𝑡), 𝑛 = 𝑛/|𝑛|
b) Angle of rotation: = cos−1 (< 𝑔𝑊 , 𝑔(𝑡) >)
c) Quaternion from axis-angle representation: 𝑞(𝑡) = 𝑅(𝑛, 𝜃)

Table 4.1.: Description of the gravity filter algorithm for estimating gravity direction from IMU data. The
correction factor 𝛼 ∈ [0, 1] determines the weight of 𝜔 in the final estimate; an 𝛼 of 0 means that 𝜔 is
not used at all, while an 𝛼 of 1 means that the linear acceleration is ignored. 𝑇 is the number of samples
and Δ𝑡 is the time difference between two samples, corresponding to 10 ms at a sampling rate of 100
Hz. < 𝑔𝑊 , 𝑔(𝑡) > denotes the inner product between 𝑔𝑊 and 𝑔(𝑡) and 𝑅(𝑛, 𝜃) computes the quaternion
from the axis-angle representation of the rotation:
𝑅(𝑛, 𝜃) =

(
cos(𝜃/2), 𝑛𝑥 sin(𝜃/2), 𝑛𝑦 sin(𝜃/2), 𝑛𝑧 sin(𝜃/2)

)
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The angular velocity was high-passed at 0.1 Hz with a 5th-order Butterworth filter to
remove errors due to gyroscope drift. The linear acceleration was low-passed with the
same type of filter to reduce the influence of transient accelerations on the estimate.
The estimates of orientation and acceleration due to gravity from the filter could then
be used to transform the raw acceleration measured by the sensor into net inertial
acceleration in aligned coordinates:

𝑖𝐴 = 𝑟𝑜𝑡 (𝑞−1, 𝑎 − 𝑔) (4.3)

where 𝑟𝑜𝑡 (𝑞, 𝑣) denotes the rotation of the vector 𝑣 by the quaternion 𝑞. It should
be noted that step 5 of table 4.1 ensures that the transformation has no yaw rotation
component since 𝑞(𝑡) is computed from a rotation around the axis 𝑛 which is always
perpendicular to 𝑔𝑊 . For consistency with previously reported results [51] where
translations were described in a world-fixed, but rotations were described in a head/trunk-
fixed frame, we did not transform the angular velocity into the aligned coordinate system.

We recorded a short dataset of one subject wearing one IMU attached to a baseball
cap on the head. The sensor was mounted facing upwards on a plastic plate equipped
with four optical markers for a motion capture system (8 Qualisys Oqus 100 cameras
and Qualisys Track Manager software, version 2.9, Qualisys AB, Göteborg, Sweden).
The subject performed different locomotor activities (walking, running) as well as spon-
taneous head movements while sitting for about 8 minutes. Afterwards, the sensor
apparatus was removed from the baseball cap and rapidly swung around, creating
high accelerations and rapid orientation changes of the device for about 1 minute. The
motion capture data was used as a gold standard for evaluating the accuracy of the
orientation estimate as well as finding the optimal parametrization of the algorithm.

We investigated the influence of the low-pass cut-off frequency of the linear acceleration
( 𝑓𝐿𝑃) as well as the correction factor 𝛼 on the estimate quality and compared our
approach with a previously described complementary filter method [129]. The accuracy
was measured with the geodesic distance from the estimated quaternion 𝑞 to the gold
standard quaternion 𝑞𝐺𝑆 (corresponding to the angle of the shortest arc between the
two orientations, [54]):

𝑑 = cos−1
(
2 < 𝑞, 𝑞𝐺𝑆 >

2 −1
)

(4.4)

Both filter algorithms were implemented in Python 3.6 using the just-in-time compilation
tools of the numba library (version 0.42) to greatly enhance execution speed. Run times
were compared on an Intel Core i7-7700K CPU in single-threaded execution at a clock
rate of 4.2 GHz. Based on the results of this analysis (see supplementary material),
accelerometer and gyroscope data were transformed to the respective reference frames
before further processing.
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4.2.6. Step detection

In order to isolate periods of locomotion for analysis, we used a step detection method
based on the inertial acceleration of the trunk sensor in aligned coordinates. We
recorded a dataset of one subject wearing the trunk sensor, performing different loco-
motor activities at different speeds, including walking, running, stair walking and cycling.
This data was used to parametrize a peak detector for extracting possible steps as
well as to determine discriminative features that distinguish cycling from other types of
motion.

Peaks were detected in the vertical axis component with a minimum height of 0.2 g,
prominence of 0.4 g and distance of 20 ms (corresponding to a maximum detectable
step frequency of 5 Hz, [110]). For each peak, we computed the short-time power
spectrum 𝑆( 𝑓 ) of the linear acceleration in all three spatial axes with a segment length
of 1024 samples centered around the peak, weighted with a Blackman window function.
The power spectrum was used to determine predominant frequency in each axis, i.e. the
frequency with the highest spectral power. We investigated the distribution of root mean
square (RMS) vertical accelerations as well as the difference between predominant
frequencies in the vertical (V) and medial/lateral (ML) direction and used the results as
criteria for the exclusion of cycling periods (see supplementary material).

The step detection method was applied to the trunk sensor data for each of the 10
subjects. Since we limited our analysis to frequencies above 1 Hz (see results), detected
steps were grouped together as bouts if the time difference between two consecutive
steps was smaller than one second. Bouts of single steps, i.e. where no other steps
where detected within one second before and afterwards, were subsequently excluded
from further analysis.

4.2.7. Predominant frequency as a proxy for walking speed

We determined the predominant frequencies of head and trunk accelerations for each
step in all three spatial axes using the same short-time power spectrum approach as
described above, albeit with a segment length of 512 samples. We used a shorter
segment length than in the step detection procedure as it increased the temporal
resolution at the expense of frequency resolution, yielding more accurate results for
short bouts. We also calculated the magnitude of accelerations using the RMS for each
step segment in all three directions. Furthermore, means and standard deviations of
trunk predominant frequency in the V direction were calculated for each bout.

In [51], the authors showed a strong link between walking velocity and predominant
frequency of vertical head translation. While we did not validate the exact correspon-
dence for our data, predominant frequency of vertical head acceleration was used as
a proxy measure for gait speed, allowing qualitative comparisons between previously
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published results and ours. In the following, we use the term “predominant frequency”
as a shorthand for predominant frequency of vertical head acceleration.

4.2.8. Assessment of head stabilization during locomotion

Attenuation coefficient

The reduction of linear accelerations through the upper body was quantified for each
step segment using the attenuation coefficient (AC) between trunk and head. Segments
consisted of 512 samples centered around the peak and were weighted using a Black-
man window function in order to decrease the influence of non-locomotor accelerations
for short bouts. ACs were calculated in the anterior/posterior (AP), ML and V directions
using the RMS values of head (𝐴𝐻 ) and trunk acceleration (𝐴𝑇 ) [86] as:

𝐴𝐶 = 1 − 𝐴𝐻
𝐴𝑇

(4.5)

Positive values indicate an attenuation of head accelerations with respect to trunk
accelerations whereas negative values correspond to increased accelerations at the
head when compared to the trunk.

Harmonic ratio

Regularity and smoothness of motion was quantified using the harmonic ratio (HR) for
both head and trunk accelerations. In the AP and V directions, the HR was calculated
as the total spectral power of the even harmonics divided by the total spectral power of
the odd harmonics of the predominant frequency:

𝐻𝑅 =

∑𝑁
𝑘 𝑆 (2𝑘 𝑓𝑑𝑜𝑚)∑𝑁

𝑘 𝑆 (2(𝑘 + 1) 𝑓𝑑𝑜𝑚)
(4.6)

where 𝑓𝑑𝑜𝑚 denotes the predominant frequency of the segment in the respective
direction and 𝑁 = 10 is the number of harmonics we considered. Because of the
biphasic nature of accelerations within strides (two steps), high values indicate that
acceleration patterns remain in phase across stride cycles and are associated with
stable gait [89]. In the ML direction, the HR was calculated inversely due to the fact
that lateral motion is monophasic within one stride (left and right step, [73]):

𝐻𝑅 =

∑𝑁
𝑘 𝑆 (2(𝑘 + 1) 𝑓𝑑𝑜𝑚)∑𝑁

𝑘 𝑆 (2𝑘 𝑓𝑑𝑜𝑚)
(4.7)
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Coherence

We quantified head-trunk coordination and compensatory head motion during locomo-
tion using the coherence [51]:

𝐾2

𝑥𝑦 ( 𝑓 ) =
𝑆𝑥𝑦 ( 𝑓 )2

𝑆𝑥𝑥 ( 𝑓 )𝑆𝑦𝑦 ( 𝑓 )
(4.8)

where 𝑆𝑥𝑦 ( 𝑓 ) denotes the cross-power spectrum of signals 𝑥 and 𝑦, 𝑆𝑥𝑥 ( 𝑓 ) is the
power spectrum of signal 𝑥, and 𝑆𝑦𝑦 ( 𝑓 ) is the power spectrum of signal 𝑦. Coherence
values were computed between head pitch velocity and vertical head acceleration and
between head pitch velocity and trunk pitch velocity.

As the coherence for the power spectrum of a single segment is ill-defined, we used an
extended segment length of 1024 samples centered around every step. Each segment
was divided into 5 sub-segments of 512 samples with an overlap of 128 samples. This
approach guaranteed a well-defined coherence measure for each segment with the
same frequency resolution as in the rest of the experiments.

Phase difference

As another measure of head stabilization we used the phase difference between two
signals 𝑥 and 𝑦 [51]. This was calculated by determining the peak of the cross-correlation
between 𝑥 and 𝑦, in segments of 512 samples centered around each detected step.
The time-lag of this peak was then transformed into a phase difference by dividing by
the period length of signal 𝑥, estimated via auto-correlation. Phases differences were
calculated between vertical head acceleration and head pitch velocity and between
vertical head acceleration and trunk pitch velocity.

Since we computed phases differences between acceleration and pitch velocity, we
corrected the resulting differences to be comparable with previously reported results
that compared vertical displacement and pitch angle [51]. Pitch angle is obtained from
pitch velocity by integrating once (taking into account some initial value) and translation
is obtained from acceleration by integrating twice. Since the integration of a sinusoidal
signal introduces a phase shift of − 𝜋

2
, the overall phase correction for the difference is

2
(
− 𝜋

2

)
−

(
− 𝜋

2

)
= − 𝜋

2
.

4.2.9. Statistical analysis

The influence of the predominant frequency on the calculated measures was estimated
with a Kruskal-Wallis test by calculating an effect size as follows [123]:

𝜂2 =
𝐻 − 𝑘 + 1
𝑛 − 𝑘 (4.9)
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where𝐻 is the Kruskal-Wallis statistic, 𝑘 is the number of predominant frequency groups
and 𝑛 is the number of samples. Effect sizes were considered small for 𝜂2 < 0.04,
intermediate for 0.04 < 𝜂2 < 0.11 and large for 𝜂2 > 0.11 [30]. For pairwise compar-
isons between independent samples (e.g. between previously reported results and
ours), Welch’s two-sample t-test was used. Pairwise comparisons between dependent
samples (e.g. between different spatial directions) were performed with a paired t-test.
For each test, we reported p-values and considered results to be significant if 𝑝 < 0.01.
However, since this was an exploratory study, statistical power of these tests might be
limited.

Statistical analysis was performed with thestatsmodule of thescipy library (version
1.2.0) in Python 3.6. Results of our analyses were plotted as a function of predominant
frequency using boxplots. Boxes indicated the range from the first to the third quartile
and the band indicated the median. Whiskers were plotted from the lowest sample
within 1.5 times the interquartile range (IQR) of the lower quartile to the highest sample
within 1.5 times the IQR of the upper quartile. Due to the large amount of samples,
outliers were not plotted. The number of samples was 𝑛 = 34455, the number of steps
that fell within the analyzed predominant frequency range (93.74% of all detected steps,
see results and supplementary material).

4.3. Results

Predominant frequency of vertical trunk acceleration was strongly correlated with pre-
dominant frequency of vertical head acceleration between 1 and 2.6 Hz (𝜂2 = 0.887,
𝑝 < 0.001, fig. 4.2A). Figure 4.2B shows a re-plot of figure 8B from [51], showing
the relationship between walking velocity and predominant frequency of vertical head
acceleration. In order to make our results comparable to previously published results,
we limited our analysis to segments with head predominant frequencies between 1
and 2.6 Hz, corresponding to the range of frequencies associated with walking speeds
between 0.6 and 2.2 m/s determined in [51].

Predominant frequency of vertical head acceleration was approximately normally dis-
tributed around 1.86 Hz with a standard deviation of 0.23 Hz (fig. 4.3A). RMS vertical
accelerations exhibited a distribution skewed towards higher RMS values with a peak
at 0.3 g for both head and trunk (fig. 4.3C & E). RMS accelerations increased with
predominant frequency for both head (𝜂2 = 0.375, 𝑝 < 0.001, fig. 4.3B) and trunk
(𝜂2 = 0.377, 𝑝 < 0.001, fig. 5D) and exhibited broader distributions with higher fre-
quencies. This indicated a strong preference of subjects to move with a fundamental
frequency close to 2 Hz and maintaining moderate accelerations of both head and
trunk.

Distribution of bout lengths decreased logarithmically with the logarithm of bout length

67



4. Ecological Momentary Assessment of Head Motion

Figure 4.2.: Relationship between predominant frequency of vertical head acceleration and (A) predomi-
nant frequency of vertical trunk acceleration; (B) walking velocity (fig. 8B from [51]). Boxes above 1.2 Hz
in (A) are not visible because all of the samples between the first and third quartile had the same value.

(fig. 4.4A). The effect of bout length on per-bout mean predominant frequencies was
small (𝜂2 = 0.022, 𝑝 < 0.001), although the median seemed to increase with larger bout
lengths and they exhibited broader distributions for shorter bouts (fig. 4.4B). Standard
deviations of predominant frequencies showed an intermediate dependence on bout
length (𝜂2 = 0.101, 𝑝 < 0.001) and exhibited smaller variances above 100 steps (fig.
4.4C). This showed a clear preference of subjects towards walking short bouts while
longer bouts seemed to be connected to an increase of predominant frequency and a
simultaneous decrease of variability.

The effect of predominant frequency on ACs in V direction was small (𝜂2 = 0.039,
𝑝 < 0.001, fig. 4.5A). However, ACs increased with predominant frequency up to 2
Hz and afterwards decreased with higher frequencies in both AP (𝜂2 = 0.165, 𝑝 <
0.001) and ML (𝜂2 = 0.144, 𝑝 < 0.001) directions (fig. 4.5A). Pairwise comparisons
between directions revealed significant differences between each pair of directions
(𝑝 < 0.001), with ACs in V direction being lower than those in AP and ML directions.
These differences were especially evident around 2 Hz, corresponding to the frequency
range containing the highest number of samples (see also fig. 4.3A). ACs in V and
AP direction differed significantly (𝑝 < 0.001) from those reported by [86], but not in
the ML (𝑝 = 0.043) direction (fig. 4.5B). We found the most substantial difference in
the V direction where we observed higher values, indicating that real-world vertical
accelerations of the head are more strongly attenuated than previously reported.

The influence of predominant frequency on HRs was small across all directions for
both head and trunk (𝜂2 < 0.04, 𝑝 < 0.001), although we observed higher standard
deviations between 2 and 2.4 Hz, especially in the AP and V directions (fig. 4.6A &
C). Distributions differed significantly between each pair of directions (𝑝 < 0.001).
Statistical testing revealed no significant differences between our results and those
reported by [89] except for the head in the ML direction (𝑝 < 0.001), but we saw higher
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Figure 4.3.: (A) Distribution of predominant frequency of vertical head acceleration; (B) Boxplot of RMS
vertical head accelerations as a function of predominant frequency. (C) Distribution of RMS vertical
head accelerations (logarithmic scale). (D) Boxplot of RMS vertical trunk accelerations as a function of
predominant frequency. (E) Distribution of RMS vertical trunk accelerations (logarithmic scale).

standard deviations for all axes and both sensor locations (fig. 4.6B & D). The high
values of HRs measured around 2 Hz are an indication of highly regular and stable gait
in this frequency range.

There was an intermediate effect of predominant frequency on coherence both between
vertical head acceleration and head pitch velocity (𝜂2 = 0.109, 𝑝 < 0.001, fig. 4.7A)
and between head and trunk pitch velocity (𝜂2 = 0.084, 𝑝 < 0.001, fig 4.7C). We
observed an increase of mean coherence value around 2.15 Hz as well as a decrease
of standard deviation. Coherence values differed significantly between head and trunk
in the predominant frequency range from 1.37 to 2.34 Hz. These results are consistent
with those reported in [51] (fig. 4.7B & D), although it should be noted that they obtained
values for vertical displacement and pitch angle instead of vertical acceleration and
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Figure 4.4.: (A) Distribution of bout lengths (loga-
rithmic scale). (B) Boxplot of mean predominant
frequency for each bout as a function of bout
length. Broader distributions indicated a higher
variance of predominant frequencies between
bouts. (C) Boxplot of standard deviation of pre-
dominant frequency for each bout as a function of
bout length. Higher values indicated a higher vari-
ance of predominant frequencies within bouts.

pitch velocity. However, since the coherence measures the similarity between signals
at the predominant frequency, a mere phase shift as introduced by the integration of
a sinusoidal signal component should not alter the value of the coherence function.
These results demonstrate a tight coupling between both head pitch and vertical head
translation as well as head and trunk pitch around the preferred predominant frequency
of 2 Hz.

Predominant frequency had a small effect on phase differences for both head (𝜂2 =

0.006, 𝑝 < 0.001, fig. 4.8A) and trunk (𝜂2 = 0.022, 𝑝 < 0.001, fig. 4.8C). There
was a significant difference between head and trunk for the whole analyzed range of
predominant frequencies except for 1.17, 1.37 and 2.15 Hz. While the overall mean
phase differences were comparable to those reported in [51], we did not observe
a dependence on predominant frequency (fig. 4.8B & D). This indicates a phase
lock between vertical head displacement and head/trunk pitch angle, independent of
predominant frequency.
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Figure 4.5.: Attenuation coefficients of accelerations between trunk and head in anterior/posterior (AP),
medial/lateral (ML) and vertical (V) directions. (A) Attenuation coefficients as a function of predominant
frequency. (B) Comparison between mean +/- std attenuation coefficients from [86] and our data. Means
for [86] were computed as the average of the means of the two groups (male, female). Standard deviations
were estimated by multiplying the reported standard error of the mean by the square root of the sample
size and then computing the square root of the sum of squares of the groups. See also first row of fig. 2
from [86] for comparison.

4.4. Discussion

Due to the limited ecological validity of measurements obtained in a controlled laboratory
setting [20, 91], there is a need for methods to measure and analyze head stabilization
and head-trunk coordination in real-world scenarios. For clinical applications, it is first
necessary to obtain normative data from healthy individuals as a baseline for possible
diagnostic use. In this study, we measured head and trunk motion in an ecologically valid
context and calculated several derivative measures of head stabilization performance.
These measures were chosen based on those reported in the literature, and they
evaluate horizontal head stabilization as well as head motion that compensates for
vertical translation. Overall, our measures based on real-world accelerometry data
agree quite well with similar measures derived from laboratory-based data, suggesting
that these methods for quantifying head stabilization performance could generalize.
However, we noticed some important differences and in general we observed larger
variances in the distribution of these measures.

Predominant frequencies of motion were tightly coupled between trunk and head (fig.
4.2) and exhibited a narrow distribution around 2 Hz (fig. 4.3). Incidence of bout
lengths decreased strongly towards longer bouts, but means and standard deviations
of predominant frequencies did not strongly depend on bout length, showing only a
small increase of means and simultaneous decrease of standard deviations towards
longer bouts (fig. 4.4). These findings seem to confirm previous reports [76] which
identified 2 Hz as the fundamental frequency of human locomotion across a wide
range of activities. The observed changes in predominant frequency distribution as
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Figure 4.6.: Harmonic ratios of accelerations in anterior/posterior (AP), medial/lateral (ML) and vertical (V)
directions. (A) Boxplot of harmonic ratios of head accelerations as a function of predominant frequency.
(B) Comparison between mean +/- std harmonic ratios (head) from [89] and our data. (C) Boxplot of
harmonic ratios of trunk accelerations as a function of predominant frequency. (D) Comparison between
mean +/- std harmonic ratios (trunk) from [89] and our data. See also fig. 6 from [89] for comparison.

a function of bout length indicate a tendency of subjects towards more goal-directed
and stable walking for longer distances. However, the observed differences for short
bouts could also have other causes: On the one hand, these bouts could consist of
false positive steps detected during cycling. With a larger annotated dataset it should
be possible to develop a more refined step detection approach, possibly involving
machine learning techniques or GPS data. Special care needs to be taken in order
to faithfully detect slow or asymmetric gaits if the goal is to develop a diagnostic tool.
On the other hand, it is possible that this in an artifact of the spectral analysis used for
determining predominant frequency, which analyses segments of 5 seconds length in
order to achieve the desirable frequency resolution. This choice arguably influenced
the analysis of very short bouts as non-locomotion data was included in the transform
window. Yet, for the analysis of elderly people and pathological gaits, short bouts are
of paramount importance, as they make up most of the daily walking activity [110].
Special frequency analysis techniques for non-stationary data such as the empirical
mode decomposition [53] could help circumvent this issue.
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Figure 4.7.: Coherence at predominant frequency. (A) Boxplot of coherence between vertical head
acceleration and head pitch velocity as a function of predominant frequency. (B) Coherence between
vertical head displacement and head pitch angle as a function of walking velocity (fig. 9A from [51]). (C)

Boxplot of coherence between head pitch velocity and trunk pitch velocity as a function of predominant
frequency. (D) Coherence between head pitch angle and trunk pitch angle as a function of walking velocity
(fig. 9B from [51]).

Attenuation of accelerations from trunk to head was stronger in AP and ML directions
than in the V direction (fig. 7), consistent with previous reports [60, 86]. The reason
for this is that the kinematic chain of the upper body aims at minimizing horizontal
accelerations in order to stabilize the head in space. Compared with the results of [86]
we observed stronger attenuation in the V direction; this could be due to characteristics
of our uncontrolled environment such as inclusion of stair walking. Buckley et al.
[21] observed that attenuation of accelerations in the ML direction was significantly
lower in patients with Parkinson’s disease when compared with healthy controls. This
deterioration in patients seems to indicate that attenuation of lateral accelerations is
due to active stabilization and not simply biomechanical constraints of the head-trunk
chain. Attenuation strengths in AP and ML directions also showed a dependence on
predominant frequency, exhibiting the highest values around 2 Hz. To the best of our
knowledge, this is the first time that ACs were characterized as a function of predominant
frequency. These results suggest that the attenuation of horizontal head accelerations
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Figure 4.8.: (A) Boxplot of corrected phase difference between vertical head acceleration and head pitch
velocity as a function of predominant frequency. (B) Phase difference between vertical head displacement
and head pitch angle as a function of walking velocity (fig. 5C from [51]). (C) Boxplot of corrected
phase difference between vertical head acceleration and trunk pitch velocity as a function of predominant
frequency. (D) Phase difference between vertical head displacement and trunk pitch angle as a function
of walking velocity (fig. 5B from [51]).

is tuned to the fundamental frequency of locomotion and that the quantification of this
attenuation could be used as an ecologically valid objective measure of head stability.

Regularity of motion as measured by the HR was consistent with previous reports [89],
although we found higher variances in all directions of motion (fig. 8). This could be
explained by the fact that a significant effect of environmental factors such as walking
on uneven surfaces [89] or unilateral limb loading [17] on the measured HRs has
been observed. Previous studies found significantly lower HRs at both trunk and head
between patients with MS [100] or PD [67, 74] and healthy controls, although there
have been differing reports in the case of PD [21]. We observed an increase in HRs
with predominant frequencies above 2 Hz, most prominently in the AP and V directions,
in accordance with earlier reports [89]. Based on these findings, we conclude that the
HR might be a suitable measure of head stabilization in a real-world context.

The similarity between vertical head acceleration and head pitch and between head
pitch and trunk pitch as measured by the coherence was maximal at predominant
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frequencies around 2.2 Hz (fig. 9). This is in line with previous reports [51] which
observed the highest coherence values at walking speeds above the most common
gait velocity of 1.4 m/s. Compared to their results, we measured lower means and
higher standard deviations of coherence values across the entire range of analyzed
predominant frequencies. These differences can be explained by the fact that Hirasaki
et al. [51] analyzed steady-state walking on a treadmill with a target for gaze fixation.
High coherences are associated with compensatory head motion aimed at maintaining
gaze stability [51]. In a real-world setting, often characterized by intermittent walking and
frequent gaze shifts, it is not surprising that overall lower coherence values are observed.
Lower coherences have also been linked to vestibular deficits [98], suggesting a possible
applicability of this measure in a clinical context.

Phase differences between vertical head acceleration and head/trunk pitch were dis-
tributed around −50◦ across the entire analyzed range of predominant frequencies
(fig. 10). This is partly consistent with previous studies [51], however these studies
reported an effect of walking velocity on the phase difference which we did not observe.
Similar to the coherence, we hypothesize that the observed differences are due to our
measurement scenario lacking a target for gaze fixation. We are not aware of any
studies investigating phase differences of subjects with gait, balance or neurological
disorders.

With the exception of phase differences, all analyzed metrics indicated strongest head
stabilization around 2 Hz, corresponding to the preferred walking speed of the partici-
pants. We also observed the lowest variances of these measures in this range, in line
with previous reports by Wuehr et al. [131] who showed that coefficients of variation of
gait parameters such as stride time and stride length are lowest at self-selected walking
speeds. Additionally, they measured higher variances in patients with cerebellar ataxia,
especially outside of the range of preferred speeds, raising the question whether similar
effects could occur for parameters of head stability.

Another disorder characterized by movement deficits is autism spectrum disorder (ASD)
[124]. Children diagnosed with ASD exhibit atypical motor patterns that can be identified
using machine learning techniques with great accuracy [9]. Computer-vision based
tracking of head motion revealed that magnitude and velocity of head turning as well as
velocity of head inclination are greater in children with ASD than in healthy controls [25].
This difference was especially evident when subjects watched video of social stimuli.
Therefore, assessment of head motion during real-world social interactions could be a
valuable tool for ASD diagnosis and research.

It should be noted that the size and makeup of our sample of participants is a possible
source for bias. The sample included exclusively young subjects which facilitated
comparison with previously reported results. In contrast, a normative dataset for
comparison with diseased populations will likely have to include older subjects. A
longer measurement period (at least one week) could also be helpful in increasing
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the significance of findings. Furthermore, neither the gravity estimation nor the step
detection algorithm have been independently validated and we did not control for
movement of the sensors relative to head or trunk. However, all analyses performed in
the aligned coordinate system are largely robust to small shifts in sensor position. The
other concerns can be addressed in the study design of future studies.

In conclusion, we have shown that several previously described head stability parame-
ters, when measured in an ecologically valid context, exhibited characteristics similar
to those obtained in a laboratory setting. We have also characterized these parame-
ters in function of predominant frequency as a proxy for walking speed (figs. 4.5-4.8).
Nevertheless, we found some critical differences that could be attributed to features
unique to the real-world context. Real-world measurements of attenuation coefficients
were comparable to those previously obtained in a laboratory setting [86], as were
measurements of harmonic ratios [89]. We could also replicate previously reported
characteristics of coherences and phase differences [51]. Most of these measures have
been shown to have value for diagnostic purposes or as endpoints for clinical trials.
Our results indicate that the evaluated parameters are largely robust to characteristics
that are usually absent in a laboratory context, such as frequent and large shifts of
gaze and attention, dual tasking or walking with a companion. The data recorded in
this study could serve as a model for collecting normative reference data of healthy
individuals. Future studies will have to address the direct comparison of ecologically
valid head stabilization parameters between healthy controls and patients with gait,
balance, or neurological disorders. This way, mobile accelerometry could serve as a
cheap and easy method to gain clinically relevant insights.
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In this thesis, I have presented several novel approaches for real-world human motion
tracking. The aim was to present various key stages of the scientific inquiry of motion
tracking, from development and evaluation of tracking systems to their application in
studies with human subjects. An emphasis was put on tracking methods specifically
tailored to measuring head movements.

Chapter 2 introduced a mobile system for simultaneous measurement of head and
eye movements based on two off-the-shelf components, the Pupil Core and the Intel
RealSense T265. Two experiments were performed that demonstrated the system’s
ability to track head and eye movements at the same time. The primary advantages
of this system are that the components are relatively inexpensive, all software is free
and open-source and the necessary modifications to the existing hardware can be
3D-printed. To my knowlegde, this is the first open-source system for joint head-eye
tracking. A future iteration of this system could be made even more lightweight and
inobtrusive by using smaller devices and integrating them into a single rigid frame.

The suitability of the T265 for the specific use case of tracking human head motion
was evaluated in chapter 3. Although previous studies had assessed the accuracy of
the tracker as part of autonomous robotic systems [1, 3, 16] and hand-held devices
[96], this chapter describes the first evaluation study explicitly addressing head tracking
performance. Additionally, a primary aim of the study was to investigate the tracking
accuracy in real-world environments. The results showed that certain measurements
such as the orientation of the device with respect to gravity are quite accurate while
others such as overall movement speed can be considerably under-estimated in large,
open environments. These shortcomings could be addressed in the future by using the
raw sensor data from the device and running a tracking algorithm designed specifically
for human motion and open environments post-hoc.

Finally, chapter 4 discussed a study where head and trunk motion was recorded
simultaneously with the objective of replicating previous studies on head stability in a
real-world setting. The head stabilization parameters examined in these studies [51,
86, 89] had been collected in a laboratory setting which raised the question whether
the same results could be obtained from real-life measurements. Our study mostly
confirmed the previous reports, although some differences such as higher variances of
the head stability measures were found. These results suggest that the investigated
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stability parameters – when measured in a real-world context – could be useful as
diagnostic tools or outcome measures for clinical trials.

In summary, this work has shown that recent technological developments have made it
possible to accurately track human motion outside the lab. This kind of motion tracking
has a wide range of applications, from the investigation of fundamental neuroscientific
questions to clinical research and commercial applications such as augmented reality.
One of the central open challenges identified in this thesis is the accuracy of fully posi-
tional tracking methods independent of environment. This motivates the development
of novel devices and algorithms that address the specific use case of human motion
tracking in the real world. Furthermore, miniaturization of tracking devices will be a key
requirement for user acceptance, especially for studies that aim to measure unbiased
real-world motion as well as for commercial products. Finally, the issue of privacy lies
at the heart of any technology capable of quantifying human behavior. Camera-based
tracking systems are a concern not only for the users themselves, but also for everyone
around them. One possibility to avoid this problem is to perform all calculations on the
device without recording any camera images. However, this makes it impossible to
perform post-hoc motion estimation and thus imposes even higher requirements on the
robustness of the tracking algorithm. Nevertheless, if all of these challenges can be
addressed in the future, human motion tracking during everyday life could become a
truly pervasive technology.
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A.1. Quaternion algebra

The quaternion number system was first described by William Rowan Hamilton in 1843
as an extension of the complex numbers [47]. Quaternions can be used to unambigu-
ously describe rotations in three-dimensional (3D) space and are used throughout this
thesis as the primary representation for orientations and rotations.

A quaternion q can be written as:

q = 𝑞𝑤 + 𝑞𝑥i + 𝑞𝑦j + 𝑞𝑧k (A.1)

with the real numbers 𝑞𝑤 , 𝑞𝑥 , 𝑞𝑦 and 𝑞𝑧 , and the basic quaternions i, j, k. More
compactly, quaternions can also be written as four-dimensional vectors:

q =

©­­­­­­­«

𝑞𝑤

𝑞𝑥

𝑞𝑦

𝑞𝑧

ª®®®®®®®¬
(A.2)

Scalar and vector part

The scalar or real part of a quaternion is:

Re(q) = 𝑞𝑤 (A.3)

and its vector or imaginary part is:

Im(q) =
©­­­­«

𝑞𝑥

𝑞𝑦

𝑞𝑧

ª®®®®¬
(A.4)
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Conjugate

The conjugate of a quaternion is defined as:

q∗ =
©­«
Re(q)

− Im(q)
ª®¬
=

©­­­­­­­«

𝑞𝑤

−𝑞𝑥
−𝑞𝑦
−𝑞𝑧

ª®®®®®®®¬
(A.5)

Norm

The norm of a quaternion is computed as:

‖q‖ =
√︃
𝑞2𝑤 + 𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧 (A.6)

Quaternions with norm 1 are called unit quaternions or versors and can be used to
represent rotations in 3D space.

Inverse

The inverse of a quaternion can be calculated as:

q−1 =
q∗

‖q‖2 (A.7)

For unit quaternions, this is the same as the conjugate and corresponds to the inverse
rotation.

Hamilton product

The Hamilton product is the non-commutative product of two quaternions q and o. For
unit quaternions, this corresponds to chaining two rotations.

q · o =

©­­­­­­­«

𝑞𝑤𝑟𝑤 − 𝑞𝑥𝑟𝑥 − 𝑞𝑦𝑟𝑦 − 𝑞𝑧𝑟𝑧
𝑞𝑤𝑟𝑥 + 𝑞𝑥𝑟𝑤 + 𝑞𝑦𝑟𝑧 − 𝑞𝑧𝑟𝑦
𝑞𝑤𝑟𝑦 − 𝑞𝑥𝑟𝑧 + 𝑞𝑦𝑟𝑤 + 𝑞𝑧𝑟𝑥
𝑞𝑤𝑟𝑧 + 𝑞𝑥𝑟𝑦 − 𝑞𝑦𝑟𝑥 + 𝑞𝑧𝑟𝑤

ª®®®®®®®¬
(A.8)
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Quaternion rotation

A vector v can be rotated by a unit quaternion q with:

rot (q, v) = Im
(
q ṽ q−1

)
(A.9)

where ṽ = (0, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧)⊤ is a “pure” quaternion with real part 0, constructed from v.

Construction from axis-angle representation

A unit quaternion can be constructed from a vector v whose length 𝛼 = ‖v‖ represents
the angle of a rotation and whose direction v′ = v/𝛼 represents the axis of the rotation:

𝑞(v) =

©­­­­­­­«

cos (𝛼/2)

sin (𝛼/2) 𝑣′𝑥
sin (𝛼/2) 𝑣′𝑦
sin (𝛼/2) 𝑣′𝑧

ª®®®®®®®¬
(A.10)

A.2. Reference frame transformations

This section will show how motion can be transformed between different reference
frames. To demonstrate this, assume that a body 𝐵 is moving with respect to (w.r.t.) an
observer 𝑂 who in turn is moving w.r.t. a world-fixed frame𝑊 (see fig. A.1).

W

p𝑂/𝑊

o𝑂/𝑊

O

p𝐵/𝑂

o𝐵/𝑂

B

Figure A.1.: A reference frame tree with three different frames: world, observer and body frame.

Position

Assume the observer measures the position p𝐵/𝑂 of the body w.r.t. itself as well as its
own position p𝐵/𝑂 and orientation o𝑂/𝑊 w.r.t. the world frame. The position p𝐵/𝑊 of
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the body w.r.t. the world frame can then be calculated as:

p𝐵/𝑊 = rot
(
o𝑂/𝑊 , p𝐵/𝑂

)
+ p𝑂/𝑊 (A.11)

Orientation

The orientation o𝐵/𝑊 of 𝐵 w.r.t. is simply the Hamilton product of o𝑂/𝑊 and o𝐵/𝑂:

o𝐵/𝑊 = o𝑂/𝑊 · o𝐵/𝑂 (A.12)

Linear velocity

The linear velocity v𝐵/𝑊 can be computed from v𝐵/𝑂 with the “three term” velocity
formula [104, p.887]:

v𝐵/𝑊 = v𝐵/𝑂 + v𝑂/𝑊 + 𝝎𝑂/𝑊 × p𝐵/𝑂 (A.13)

Angular velocity

The angular velocity 𝝎𝐵/𝑊 is simply the sum of 𝝎𝐵/𝑂 and 𝝎𝑂/𝑊 [104, p.902]:

𝝎𝐵/𝑊 = 𝝎𝐵/𝑂 + 𝝎𝑂/𝑊 (A.14)

Linear acceleration

The linear acceleration a𝐵/𝑊 can be computed from a𝐵/𝑂 with the “five term” accelera-
tion formula [104, p.890]:

a𝐵/𝑊 = a𝐵/𝑂 + a𝑂/𝑊 + 2𝝎𝑂/𝑊 × v𝐵/𝑂︸             ︷︷             ︸
Coriolis accel.

+𝝎𝑂/𝑊 ×
(
𝝎𝑂/𝑊 × p𝐵/𝑂

)
︸                            ︷︷                            ︸

centrifugal accel.

+𝜶𝑂/𝑊 × p𝐵/𝑂︸           ︷︷           ︸
Euler accel.

(A.15)

Angular acceleration

Again, the calculation of the angular acceleration 𝜶𝐵/𝑊 is a lot simpler [104, p.903]:

𝜶𝐵/𝑊 = 𝜶𝐵/𝑂 + 𝜶𝑂/𝑊 (A.16)
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Vectors and representation frames

Assume the observer measures the linear velocity v𝐵/𝑂 of the body w.r.t. itself. This
is a directed vector quantity and its coordinates are subject to a coordinate system.
This coordinate system is called the representation frame and denoted by a leading
superscript, i.e., 𝑂v𝐵/𝑂 denotes v𝐵/𝑂 represented in the observer coordinate system
𝑂. This vector can be transformed into the representation frame of the body with:

𝐵v𝐵/𝑂 = rot
(
o𝐵/𝑂,

𝑂v𝐵/𝑂
)

(A.17)

It should be noted that, in the above transformation equations, all directed vectors (i.e.,
velocities and accelerations, but not positions and orientations) have to be expressed
in the same representation frame.

A.3. Extended Kalman filter

The extended Kalman filter (EKF) is an algorithm used to estimate the unobservable
state x of a non-linear dynamical system that is modeled with the state transition model:

x𝑘 = 𝑓 (x𝑘−1, u𝑘) + w𝑘 (A.18)

and the measurement model:
z𝑘 = ℎ (x𝑘) + v𝑘 (A.19)

Here, 𝑓 and ℎ are the differentiable state transition and measurement functions, u𝑘
the control input, z𝑘 the measurements and w𝑘 and v𝑘 the process and measurement
noise [102].

State transition and observation matrices

For the EKF algorithm, the state transition function 𝑓 and the measurement function
ℎ need to be linearized about the working point. This is achieved by computing the
Jacobians:

F𝑘 =
𝜕 𝑓

𝜕x

����
x𝑘−1|𝑘−1,u𝑘

(A.20)

and

H𝑘 =
𝜕ℎ

𝜕x

����
x𝑘 |𝑘−1

(A.21)
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Prediction step

In this step, the predicted state estimate x𝑘 |𝑘−1 is calculated according to the state
transition function:

x𝑘 |𝑘−1 = 𝑓 (x𝑘−1 |𝑘−1, u𝑘) (A.22)

as well as the predicted covariance estimate:

P𝑘 |𝑘−1 = F𝑘P𝑘−1 |𝑘−1F
⊤
𝑘 +Q𝑘 (A.23)

Here, Q𝑘 denotes the covariance of the process noise w𝑘 .

Update step

In this step, the measurement residual (or innovation) y𝑘 is calculated based on the
measurement z𝑘 and the measurement function:

y𝑘 = z𝑘 − ℎ(x𝑘 |𝑘−1) (A.24)

as well as the residual (or innovation) covariance:

S𝑘 = H𝑘P𝑘 |𝑘−1H
⊤
𝑘 +R𝑘 (A.25)

Here, R𝑘 denotes the covariance of the measurement noise v𝑘 . From this, the Kalman
gain K𝑘 is calculated as:

K𝑘 = P𝑘 |𝑘−1H
⊤
𝑘 S
−1
𝑘 (A.26)

and finally the updated state estimate:

x𝑘 |𝑘 = x𝑘 |𝑘−1 +K𝑘y𝑘 (A.27)

as well as the updated covariance estimate:

P𝑘 |𝑘 = (I −K𝑘H𝑘)P𝑘 |𝑘−1 (A.28)
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B.1. Details of reference frame transformations

The transformation between the world frame 𝑊 of the optical tracking system (OTS)
and that of the T265 (𝑊̂) was estimated using a basic point set registration (PSR)
method. The method estimates a rotation matrix R and a translation vector t for two
sets X = {x𝑖 | 𝑖 ∈ 1..𝑛} and Y = {y𝑖 | 𝑖 ∈ 1..𝑛} of corresponding points that
minimizes

∑𝑛
𝑖 ‖y𝑖 − (Rx𝑖 + t)‖2.

H =

𝑛∑︁
𝑖

(x𝑖 − x) (y𝑖 − y)⊤ (B.1a)

U, S,V = SVD(H) (B.1b)

R = VU⊤ (B.1c)

t = −Ry + x (B.1d)

where x =
1

𝑛

∑𝑛
𝑖 x𝑖 and y =

1

𝑛

∑𝑛
𝑖 y𝑖 denote the centroids of X and Y, respectively. A

modified version this algorithm with H =
∑𝑛
𝑖 x𝑖 y𝑖 can be used to estimate a transform

that consists only of a rotation and minimizes
∑𝑛
𝑖 ‖y𝑖 −Rx𝑖 ‖2.

With X = {𝑊̂p̂𝑖 | 𝑖 ∈ 1..𝑛} and Y = {𝑊p𝑖 | 𝑖 ∈ 1..𝑛} this yields R𝑊̂ and t𝑊̂ which
can be used to transform position and orientation of the T265 from its own to the OTS
world frame:

𝑊p̂ = rot
(
q𝑊̂ ,

𝑊̂p̂
)
+ t𝑊̂ (B.2a)

𝑊q̂ = rot
(
q𝑊̂ ,

𝑊̂q̂
)

(B.2b)

Here, rot(q, v) = qvq−1 denotes the rotation of a vector v by the quaternion q and q𝑊̂
the equivalent quaternion representation of R𝑊̂ .

The modified PSR method was used to estimate the transformation from the body
frames 𝐵 and 𝐵 to calibrated frames 𝐶 and 𝐶 that are independent of the orientation
of the head mount on the subject’s head. In the case of the T265, this calibration was
achieved by calculating the rotation that centers heading direction along the longitudinal
𝑥-axis and gravity direction along the vertical 𝑧-axis. For this, we first computed the
representation of the gravity vector 𝑊̂g - a unit length vector pointing upwards in the
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vertical direction in world coordinates - as well as the linear velocity vector in the body
frame 𝐵:

𝐵g = rot
(
𝑊̂q̂, 𝑊̂g

)
(B.3a)

𝐵v̂ = rot
(
𝑊̂q̂, 𝑊̂v̂

)
(B.3b)

The modified PSR algorithm on the sets

X =

{
𝐵v̂𝑖

��� 𝑖 ∈ 1..𝑛} ∪ {
𝐵g𝑖

��� 𝑖 ∈ 1..𝑛} (B.4a)

Y =
{
[‖v̂𝑖 ‖, 0, 0]⊤

�� 𝑖 ∈ 1..𝑛} ∪ {
[0, 0, ‖g𝑖 ‖]⊤

�� 𝑖 ∈ 1..𝑛} (B.4b)

yields the rotation matrix R
𝐶

and its equivalent quaternion representation q
𝐶

which was
used to transform the linear and angular velocity as well as the gravity vector measured
by the T265 into 𝐶:

𝐶v̂ = rot
(
𝑊̂q̂ · q

𝐶
, 𝑊̂v̂

)
(B.5a)

𝐶
𝝎̂ = rot

(
𝑊̂q̂ · q

𝐶
, 𝑊̂𝝎̂

)
(B.5b)

𝐶ĝ = rot
(
𝑊̂q̂ · q

𝐶
, 𝑊̂g

)
(B.5c)

The OTS was calibrated by aligning linear velocity and gravity direction to those mea-
sured by the T265 in its calibrated frame by running the modified PSR on the sets

X =

{
𝐵v̂𝑖

��� 𝑖 ∈ 1..𝑛} ∪ {
𝐵g𝑖

��� 𝑖 ∈ 1..𝑛} (B.6a)

Y =
{
𝐵v𝑖

�� 𝑖 ∈ 1..𝑛} ∪ {
𝐵g𝑖

�� 𝑖 ∈ 1..𝑛} (B.6b)

to obtain the rotation matrix R𝐶 and its equivalent quaternion representation q𝐶 . With
this, we transformed the linear and angular velocity of the marker tracked by the OTS
as well as the gravity vector into 𝐶:

𝐶v = rot
(
𝑊q · q𝐶 ,𝑊v

)
(B.7a)

𝐶
𝝎 = rot

(
𝑊q · q𝐶 ,𝑊𝝎

)
(B.7b)

𝐶g = rot
(
𝑊q · q𝐶 ,𝑊g

)
(B.7c)

All estimations and transformations were performed in Python 3.6 using the
rigid-body-motion library (version 0.3.0, https://github.com/pha

usamann/rigid-body-motion).
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C.1. Estimation of the direction of gravity from IMU data

For the locomotion data, the proposed filter approach - termed gravity filter (GF) -
showed a similar performance to the complementary filter (CF), with a minimum root
mean square (RMS) orientation error of 7.2◦ at a low-pass cut-off frequency of 𝑓𝐿𝑃 =

0.75 Hz and a correction factor of 𝛼 = 0.1. The influence of 𝛼 on the gravity filter’s
performance was small, although higher factors resulted in higher errors. The choice of
𝑓𝐿𝑃 had a strong effect; errors increased with higher cut-off frequencies up to 9◦ at 5 Hz
(fig. C.1A and B). For the high acceleration data, errors were significantly higher, in the
case of the GF with a minimum of 51.5◦ at 𝑓𝐿𝑃 = 1 Hz and 𝛼 = 0.8. Errors decreased
with higher values of and exhibited a flat minimum for values of 𝑓𝐿𝑃 between 1 and 2
Hz for both GF and CF (fig. C.1C and D). A notable exception is the case of 𝛼 = 0.9
that resulted in higher overall errors for the GF but lower errors for the CF, even with
increasing 𝑓𝐿𝑃 . Regarding execution speed, the GF implementation outperformed the
CF implementation by a factor of 4, requiring about 3 s per hour of recording compared
with 12 s in the case of the CF.

As a result, we used the GF with 𝑓𝐿𝑃 = 1 Hz and 𝛼 = 0.8 to transform the raw ac-
celerometer and gyroscope data before further analysis. This parametrization provided
a trade-off between the two motion scenarios in our test data. It should be noted that
high acceleration scenario contains data that is very unlikely to occur during natural
human locomotion and the corresponding high orientation errors are not a cause for
concern.

C.2. Step detection

The relationship between RMS vertical trunk acceleration 𝐴𝑇 ,𝑉 and the difference
between predominant frequencies in in vertical (V) and medial/lateral (ML) direction
Δ 𝑓𝑑𝑜𝑚 for the different activities in the dataset is shown in figure C.2. Peaks detected
during cycling were clustered around Δ 𝑓𝑑𝑜𝑚 = -2.5 Hz and 𝐴𝑇 ,𝑉 = 0.2 g. Most
locomotion segments exhibited a non-negative Δ 𝑓𝑑𝑜𝑚 except for some stair walking
data which in turn showed values of 𝐴𝑇 ,𝑉 greater than 0.4 g. On the basis of these
results we classified all segments with both Δ 𝑓𝑑𝑜𝑚 < 0 Hz and 𝐴𝑇 ,𝑉 < 0.4 g as cycling
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C. Supplementary material for chapter 4

Figure C.1.: Effect of low-pass cut-off frequency 𝑓𝐿𝑃 and correction factor 𝛼 (colored lines) on RMS
orientation error of (A) gravity filter estimate for locomotion data; (B) complementary filter estimate for
locomotion data; (C) gravity filter estimate for high acceleration data; (D) complementary filter estimate for
high acceleration data

and excluded them from further analysis. This rule eliminated over 80 % of incorrectly
identified steps in the test dataset while rejecting less than 2.5 % of actual walking and
running steps. Since the number of peaks detected during cycling was low to begin
with, this approach detected only 52 steps in a 5 minute period of cycling, less than 2
% of the number of steps occurring during a walking bout of the same length. In the
analyzed dataset, we detected a total of 36755 steps.
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C.2. Step detection

Figure C.2.: Relationship between difference of dominant frequency Δ 𝑓𝑑𝑜𝑚 and RMS vertical trunk
acceleration 𝐴𝑇 ,𝑉 for the four types of annotated activities (cycling, walking, running, stair walking). A
small random offset was added to each value of Δ 𝑓𝑑𝑜𝑚 in order to make clusters in the data easier to
distinguish.
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Acronyms

2MWT two-minute walking test

2D two-dimensional

3D three-dimensional

6MWT six-minute walking test

10mWT ten-meter walking test

AC attenuation coefficient

ANOVA analysis of variance

AP anterior/posterior

AR augmented reality

ASD autism spectrum disorder

ATE absolute translation error

AVDE angular velocity direction error

AVME angular velocity magnitude error

AYE absolute yaw error

CF complementary filter

DOF degree of freedom

DV dorsoventral

EKF extended Kalman filter

EMA ecological momentary assessment

FOV field of view

FPS frames per second

GDE gravity direction error

I



Acronyms

GF gravity filter

GPS global positioning system

HDE heading direction error

HR harmonic ratio

IMU inertial measurement unit

IQR interquartile range

KDE kernel density estimate

LIDAR light detection and ranging

LVME linear velocity magnitude error

MEMS microelectromechanical system

ML medial/lateral

MS multiple sclerosis

OTS optical tracking system

PD Parkinson’s disease

PSR point set registration

QoL quality of life

RMS root mean square

ROS robot operating system

RTE relative translation error

RYE relative yaw error

SLAM simultaneous localization and mapping

SpE speed error

TDr translation drift

TLE trajectory length error

TUM Technical University of Munich

II



UAS unmanned aerial system

V vertical

VI-SLAM visual-inertial simultaneous localization and mapping

VOR vestibulo-ocular reflex

rVOR rotational vestibulo-ocular reflex

tVOR translational VOR

VR virtual reality

w.r.t. with respect to

YDr yaw drift

III
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