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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Prof. Dr. Uwe Baumgarten
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Abstract

The development of software systems for autonomous, mobile service robots is becoming in-
creasingly complex. One reason for this is the massive increase in the number of available al-
gorithms and basic functionalities that are continuously introduced and extended by the robotic
community. However, the growing number of algorithms presents more challenges when inte-
grating them into consistent systems in such a way that these algorithms can be coordinately
executed in combination, without being conflicting within their individual execution contexts and
action spaces.

Moreover, there has been a recent surge in interest in robotic technologies in domains such as
the factory of the future, agriculture, and healthcare. However, these domains call for a much
higher maturity level in robotic technologies than what is currently provided by the numerous
lab prototypes. In particular, non-functional, application-specific system aspects, such as end-
to-end guarantees for sensor-to-actuator control loops, are important system properties that must
be managed from the very beginning and throughout the entire lifecycle of a robotic software
system.

Current approaches in robotics mainly focus on coping with software complexity. These ap-
proaches typically introduce a type of robotic component model. Some prominent examples
are the BRICS Component Model (BCM) [Bru+13], the Robot Modeling Language (RobotML)
[Dho+12], and the Robot-Technology Component (RTC) [And+05]. While these approaches help
to deal with parts of the overall software complexity, they neglect the necessity of managing
non-functional system aspects.

Other approaches, derived from fields other than robotics, such as AADL [AAD04] from avion-
ics, or MARTE [MAR11] from embedded-systems, already deal with non-functional aspects.
However, these approaches are not yet accessible to the domain of robotics due to a general lack
of support for component-based development, which is important in robotics. This dissertation
therefore develops a flexible methodology that combines approaches and tools from other do-
mains with established component-based modeling tools used within the robotic domain. The
overall goal is to reuse available solutions in the best way possible and to tailor the approaches to
the specific demands of robotics (such as the natural need for mixed criticality) wherever needed.

On the whole, this dissertation develops an integrated modeling approach that simultaneously
addresses two common robotic software engineering needs. The first need is related to com-
plexity management that is addressed by a Component-Based Software Development (CBSD)
methodology. The second need is related to the management of non-functional properties as an
integral part of the CBSD methodology. This overall methodology is implemented in an Eclipse-
based modeling toolchain. Additionally, a real-world example (introduced and discussed in this
dissertation) is used for the evaluation of the modeling toolchain. Consequently, this dissertation
shows that external analysis tools (i.e., those from other domains) can be made accessible and
usable to the domain of robotics, and that the combination of modeling and analysis tools enables
the management of non-functional aspects in robotic applications and scenarios.
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Abstract

Zusammenfassung

Die Entwicklung von Software-Systemen für autonome, mobile Service-Roboter wird zuneh-
mend komplexer. Ein Grund hierfür ist die steigende Anzahl von verfügbaren Algorithmen und
Funktionalitäten, die fortwährend von der Robotik-Community ausgebaut werden. Jedoch wird es
– mit der immer weiter ansteigenden Anzahl von Algorithmen – zunehmend schwieriger, diese in
konsistente Gesamtsysteme zu integrieren, sodass diese Algorithmen zusammen und koordiniert
ausgeführt werden, ohne dabei ihre jeweiligen Entscheidungsräume zu verletzen.

Des Weiteren steigt das Gesamtinteresse für Robotiktechnologien in Domänen, wie z. B. In-
dustrie 4.0, Landwirtschaft und Medizin. Das Problem ist, dass diese Domänen einen viel höheren
Reifegrad für Robotiktechnologien benötigen als das, was heutzutage in den vielen Laborproto-
typen gezeigt wird. Insbesondere nicht-funktionale, applikationsspezifische Systemeigenschaf-
ten, wie z. B. Ende-zu-Ende-Garantien für Sensor-Aktuator-Koppelungen, sind bedeutsam und
müssen durchgängig im gesamten Entwicklungsprozess berücksichtigt und verwaltet werden.

Aktuelle Ansätze in der Robotikdomäne konzentrieren sich hauptsächlich auf Komplexitäts-
beherrschung. Diese Ansätze nutzen typischerweise eine Art Komponentenmodell für Robotik.
Prominente Beispiele sind das BRICS Component Model (BCM) [Bru+13], die Robot Modeling
Language (RobotML) [Dho+12] und die Robot-Technology Component (RTC) [And+05]. Ob-
wohl diese Ansätze bereits die Komplexitätsbeherrschung verbessern, so ignorieren sie weiterhin
das Problem der nicht-funktionalen Systemeigenschaften.

Andere Ansätze außerhalb der Robotikdomäne, wie z. B. AADL [AAD04] aus der Luftfahrt
oder MARTE [MAR11] für eingebettete Systeme, erlauben bereits das Modellieren und Verwalten
nicht-funktionaler Eigenschaften. Jedoch sind diese Ansätze noch nicht für die Robotikdomäne
zugänglich, da diese die Komponentenbauweise, so wie sie in der Robotik benötigt wird, nicht
unterstützen. Deswegen wird in dieser Dissertation eine flexible Methodik entwickelt, die es er-
laubt, die Ansätze und Werkzeuge aus den anderen Domänen in der Robotikdomäne zugänglich
zu machen. Ein Gesamtziel ist es, vorhandene Ansätze und Werkzeuge so weit wie möglich wie-
derzuverwenden und diese – wo immer nötig – an die Besonderheiten der Robotik (wie z. B. die
natürliche Notwendigkeit für unterschiedlich kritische Laufzeitanforderungen) anzupassen.

Insgesamt wird in dieser Dissertation ein integrierter Modellierungsansatz entwickelt, der zwei
gängige Softwareentwicklungsprobleme der Robotik in Kombination adressiert. Das erste Pro-
blem betrifft die Komplexitätsbeherrschung, was durch einen komponentenbasierten Ansatz gelöst
wird. Das zweite Problem bezieht sich auf das Explizieren und Verwalten nicht-funktionaler
Eigenschaften als einen integralen Bestandteil von dem obigen komponentenbasierten Ansatz.
Die entwickelte Methodik wird in einer Eclipse-basierten Modellierungstoolchain implemen-
tiert. Zusätzlich wird ein Realwelt-Beispiel vorgestellt, das unter anderem für die Evaluierung
der vorgestellten Modellierungswerkzeuge genutzt wird. Das Ergebnis dieser Dissertation zeigt,
dass externe Analysewerkzeuge aus anderen Domänen für Robotik zugänglich und nutzbar ge-
macht werden können und dass die Kombination aus Modellierungswerkzeugen und angebunde-
nen Analysewerkzeugen das Verwalten und Analysieren von nicht-funktionalen Eigenschaften in
den Robotik Anwendungen und Szenarien ermöglichen.

vi



It is my conviction that robotic technologies – if applied carefully and with great
responsibility – have the potential to alleviate many nowadays problems of human
society on both the local and the global scale, let it be robots autonomously exploring
the space or robots serving and helping people by doing laborious or dangerous
works. Moreover, robotics science started a new technological revolution that opens
up tremendous opportunities for industries and for private sectors but also comes
with huge societal challenges that need to be addressed not only in science but in
particular also in the broad public in order to reduce the risk of harming humanity
and to shape a better future.

This work is dedicated to my family and to my best friends around the world.
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SmartSoft is an umbrella term for a component-based robotic framework (see [SW99]) and a
robotic component-model based on the SMARTSOFT communication patterns. 16, 18, 25–
28, 52, 54, 57, 60, 64, 72, 75, 76, 90, 127, 128, 140, 177, see Communication Pattern &
framework

AADL Architecture Analysis & Design Language: http://www.aadl.info. 19, 25, 75,
107, 108, 110, 134, 167, 171–173, 175, 179, 181

ACE (Adaptive Communication Environment) is a message-oriented middleware solution. ACE
implements a rich set of design patters for concurrent communication software and is
freely available as open-source under: http://www.cs.wustl.edu/˜schmidt/
ACE.html. 28, 54, 72, 90, 127, 128, 140, see middleware

API Application Programming Interface. 59, 67, 72, 111, 117, 122, 124, 125, 169

ASCII American Standard Code for Information Interchange. 111

AST Abstract Syntax Tree (AST) is the in-memory representation of a model based on a prede-
fined Ecore meta-model. 54, 140, see Ecore

BCM The BRICS Component Model (BCM) [Bru+13] mainly driven by KU Leuven. 16, 18,
25, 43, 52, 75, 107

BCRT Best-Case Response-Time. 158, 162

CBSE Component-Based Software Engineering. 18, 24, 25, 42, 43, 177, 179

CCM OMG’s CORBA Component Model. 74, 75

CDL Curvature Distance Lookup (CDL) [Sch98] is a fast local obstacle avoidance algorithm for
mobile robots that considers kinematic and dynamic constraints. 41

Communication Object defines data structure for communication between components (see
[Lut+14]) in a service. 67, 73, 179, see service

Communication Pattern refers to a fix set of software patterns defining recurring communi-
cation solutions (see [SW99]) for robotic software components. 26–28, 60, 179

CORBA OMG’s Common Object Request Broker Architecture. 28, 76, 90

CPA Compositional Performance Analysis. 10, 94, 98, 109, 135, 139, 153–155, 158, 159, 166,
167, 178, 179
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CPU Central Processing Unit. 46, 106, 111, 119, 121, 122

DDS OMG’s Data Distribution Service. 28, 67, 76

DRE Distributed, Real-time and Embedded. 5, 75, 110

DSL Domain-Specific Language. 9, 17, 19, 23, 25, 27, 52, 53

DSPL Dynamic Software Product Line. 17, 18

Ecore is the main meta-model definition language of the EMF [Ste+11, Ch. 2]. 65, 66, 70, see
EMF

EMF Eclipse Modeling Framework provides the core meta-model facilities in Eclipse such as
Ecore [Ste+11]. 53, see Ecore

EMOF Essential Meta-Object Facility. 53

EMT A collection of Eclipse modeling tools around EMF. 53, see EMF

FIFO First-In First-Out. 71, 128

Framework abstracts away platform-specific details such as independence of a particular oper-
ating system and communication middleware by providing a unified and platform indepen-
dent API. 15, 16, 64, 72, 75, 76, 126–128, 140, 178, see also middleware & API

GPL General-Purpose Language. 53

GPML General-Purpose (Modeling) Language. 53, 107, 171

GUI Graphical User Interface. 131, 134

HRI Human-Robot Interaction. 34

IDE Integrated Development Environment. 9, 180

IDL Interface Definition Language. 67

KPN Kahn Process Network. 21, 98

LET Logical Execution Time. 21

MAR Multi-Annual Roadmap. 3, 34
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MARTE Modeling And Analysis Of Real-Time Embedded Systems. 19, 21, 75, 107, 108

MDA Model-Driven Architecture: http://www.omg.org/mda/. 19

MDSE Model-Driven Software Engineering. 8, 24–26, 34, 43, 52, 53, 72, 177, 178, 180

Middleware abstracts away communication-specific platform details and implements particular
(often standardized) communication technologies (such as e.g. OMG’s CORBA, or OMG’s
DDS, etc.). 15, 59, 60, 67, 75, 76, see OMG, CORBA & DDS

MoC Model of Computation (MoC) defines a scheme how data is propagated in a component
based system. 21, see also SDF

MOF Meta-Object Facility. 19, 53

OCL Object Constraint Language. 53, 85, 87

OMG Object Management Group: http://www.omg.org/. 16, 19, 21, 76, 107, 108

OS Operating System. 106, 122, 124

QoS (Quality of Service) defines the ability of a system to meet application-specific customer
needs and expectations while remaining economically competitive. 22, 27, 39, 181

RBS Reservation-Based Scheduling. 22, 134

RobotML The Robot Modeling Language (RobotML) [Dho+12] originating from the French
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1
Introduction

The overall objective of this dissertation is to identify required structures and abstractions that
help to systematically design and develop complex robotic software systems. Specifically, this
dissertation considers autonomous, mobile service robots that operate in open-ended, everyday-
like environments. Service robotics is an interdisciplinary research field that combines and inte-
grates achievements from various other domains such as embedded and real-time systems, elec-
tronics, mechanics, and software engineering. Recent movies featuring intelligent robots have
excited high expectations in the public mind for future robotic technologies in application do-
mains like elderly care, logistics, agriculture, search and rescue, and entertainment, as well as
for robots as industrial general-purpose co-workers and household helpers. Moreover, robotic
research fosters these expectations by showcasing impressive lab prototypes with isolated capa-
bilities. Yet, only a few rather simple examples have been realized, such as the home-cleaning
devices from iRobot.1 The aspiration for multipurpose robots is rising, and ongoing technologi-
cal progress enables increasingly complex robots to be built. However, it becomes challenging to
combine and integrate the increasing number of isolated algorithms into coherent robotic systems
operating in open-ended, dynamic, and unstructured environments with uncertain, unreliable, and
incomplete information, while at the same time coping with limited (onboard) resources. As long
as software development implies risks and efforts that are difficult to manage (see the EFFIROB-
study [HBK11]), the software challenge will very likely remain an impediment to reaching the
next level of robotic applications.

Therefore, systematically addressing the software integration challenge is no longer only a
question of good software quality but also a make-or-break factor for future robotic developments,
as recognized by the European SPARC Robotics [SPA] initiative and its Multi-Annual Roadmap
(MAR) [Mar].

1www.irobot.com
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1.1. Motivation

A service robot is a physical entity that has to keep pace with the dynamics of the real world. Real-
world environments are inherently complex, unstructured, open-ended, and mostly unpredictable.
Besides, service robots need to cope with limited capabilities, bounded resources, and uncertain
information. As illustrated in Figure 1.1, a robot has sensors to perceive the environment and
actuators to act within that environment. Software is the main element in between and realizes
the robot’s basic functions. During execution, the software continuously and reactively interacts
with the environment.
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Figure 1.1.: The cycle of interaction between the software and the environment

The interactions with real-world environments impose (more or less hard) constraints on the
overall response time of the robot’s software in certain situations. This means that the robot
system all together needs to react to stimuli within an adequate period of time. A reaction time
that is too slow could lead to outdated world knowledge, late execution of actions, and ultimately
to the robot failing to accomplish the designated mission. A faster than necessary reaction leads
to a waste of scarce resources (such as the available energy in the batteries). Therefore, the
overall response time of a system is an important design factor that must be managed throughout
the entire life cycle of a robot software system (from design through implementation to runtime).
Unfortunately, this aspect of a system, as well as other related non-functional quality aspects,
has not yet received the necessary attention within the scientific robotic community. Addressing
these aspects is a promising step toward robots becoming more dependable, reliable, predictable,
and thus more trustworthy.
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Figure 1.2.: A robot’s basic functions and indicated flows of information (the arrows) in the sys-
tem from sensors to actuators

Over the last decade, the robotic community has presented a wide range of impressive, yet
isolated algorithms and basic functions (sometimes called robot’s (basic) skills [Bon+97]) re-
lated to navigation, path planning, object recognition, mobile manipulation, and many others (see
Figure 1.2). Individual skills depend on the professional knowledge of specialized experts who
realize them as sets of software components. At runtime, individual components continuously
interact with each other to collectively achieve the current goal and the overall mission. More-
over, some components are executed in parallel, while others are sequenced. Some components
share information from the same sensors, while others aggregate or transform information. The
information (or data in general) thus flows through the system starting from one or several sensor
components, passing through several intermediate components, and finally resulting in actions
executed in the actuator components. A typical robotic system consists of several concurrent
data-flows forking and joining in related software components (see arrows in Figure 1.2). The
need for adequate responsiveness discussed above requires methods for systematic design, de-
velopment, and management of different communication properties such as latencies and jitters
for individual data-flows in the entire life cycle of a robotic software system. Above all, these
methods must support the development of individual software components and the integration of
these components into new systems, as well as the adaptation of the software system to changing
situations.

The design, simulation, and management of different runtime aspects (beyond purely func-
tional needs) are not new in computer science. For instance, automotive and other Distributed,
Real-time and Embedded (DRE) domains offer many approaches (such as AADL [AAD04] or
MARTE [MAR11]) for modeling, simulating, and analyzing the overall end-to-end latencies and
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response times in a system. However, these approaches generally lack any sufficient means of
composition, which is important in robotics. Systematic means of composition rely on a clear
definition of flexibly reusable software components and a clear separation of responsibilities
and concerns of the stakeholders involved [SSL12b]. Additionally, software tools are needed
to support the design and development of individual software building blocks so that they later
seamlessly fit together in different robotic software systems. Such tools provide dedicated views
based on software models (see also [Sta+16]) that allow for a focus on local aspects at the right
abstraction level. These tools accomplish this without presuming system-level properties that are
not relevant in the current development phase. By linking these views, the tools enable consistent
contributions to a system.

Hence, the general approach followed in this dissertation involves designing and developing
tools and methods that provide a clear definition of communication semantics between individual
software components and formalized processing schemes within individual software components.
The resulting models are used for code-generation and as input for a systematic performance
analysis using established analysis tools.

1.2. Research Question and Problem Statements

The overall problem addressed in this dissertation is twofold. On the one hand, current robotic
software systems have reached a level of complexity that makes structured system-integration
methods an imperative rather than an option. On the other hand, performance-related system
aspects such as the overall responsiveness of a system are important design factors for achieving
dependable, robust, and qualitative service robots. Responsiveness in turn depends on a system-
atic design of data-flows that form distributed, concurrent, and interacting data-flow chains in
the system. It is imperative for the designer of these data-flow chains to have a view of the sys-
tem with an adequate abstraction level that enables him/her to make appropriate design decisions
without having to understand every individual detail of the overall system. All this leads to the
following research question:

How can data-flow chains be systematically managed throughout the entire life cycle
of a robotic software system without breaking established means of composition in a
structured software-development workflow?

There are several keywords in this research question that require further explanation. To be-
gin with, systematic means of composition and a structured software development workflow are
necessary for coping with the overall software complexity in robotics. Composition in this sense
is the ability to combine several software components into a larger whole, namely the overall
robotic software system. Thus, two follow-up questions are:

Research Question 1.1: What exactly are the established means of composition that need to be
implemented in a robotic software-development workflow? What are the important steps in such
a development workflow?

6
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Having such a development workflow as a basis, the next follow-up question is:

Research Question 1.2: How can collaborative and stepwise design of data-flow chains be en-
abled without conflicting with (or breaking) required structures and abstractions of that develop-
ment workflow?

In order to model data-flow chains, it is necessary to determine the exact system attributes to
be modeled. This leads to the following question:

Research Question 1.3: What are common patterns of typical data-flow chains and how can
these patterns be formalized?

Finally, one of the core motivations of this dissertation is not only to provide nice paper work
but also to implement the ideas using model-driven tools to support consistent system design in
all relevant development phases. This leads to the question:

Research Question 1.4: How can such a workflow be effectively supported with integrated tool-
ing, thereby supporting and guiding different developer roles in the development of realistic,
real-world scenarios with real robots?

1.3. Dissertation Objectives

This dissertation is guided by the following overall objectives:

Objective 1.1: to free component developers from the need to anticipate any target application-
related details with respect to system-level communication: This considerably improves the reuse
of components in different applications

Objective 1.2: to enable system integrators to adequately design and manage non-functional
system properties according to the current application using components as gray boxes (i.e., com-
ponents with explicated configuration options): This clearly separates roles and concerns

Objective 1.3: to provide model-driven tools that support and guide all the developers involved
in the overall development workflow in designing consistent and robust systems by finding possi-
ble design errors and misconceptions in early steps of the workflow: This improves the efficiency
of the overall development workflow, because changes can be traced and global system properties
can be preserved even if some local parts are exchanged

Objective 1.4: to use and integrate performance analysis tools from other software-intensive
domains beyond robotics into an overall robotic development workflow: This allows reusing
the vast engineering knowledge and time-tested analysis tools from external domains that bear
similarities to robotics, such as automotive, embedded systems, and avionics

7
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Objective 1.5: to generally facilitate the challenging transition from handcrafted lab prototypes
to systematic design and development of high-quality robotic systems

These objectives constrain and guide the methods and solutions used in this dissertation. While
other approaches exist for addressing isolated aspects related to the above objectives, approaches
that address the specific demands of robotics and these objectives in a harmonized way are rare.
This dissertation aims to make decisive progress in this line of research by illustrating some
coherent solutions that are detailed enough (yet not unnecessarily complex) to be useful for the
development of real-world robotic systems.

1.4. Core Contributions

The core contributions of this dissertation lie in addressing two fundamental engineering needs.
On the one hand, software complexity is effectively managed by a formalized, component-based,
model-driven robotic development workflow that provides dedicated, domain-specific views for
the involved developer roles. On the other hand, the robot’s overall execution performance is
systematically designed, managed, and analyzed at the model level before the robot’s actual hard-
ware is fully constructed. For each of these two engineering needs in isolation, there are many
related approaches, both within robotics and in closely related domains such as automotive. The
novel contribution of this dissertation is a systematic and consistent combination of these two en-
gineering needs, specifically tailored to the service robotic domain. This combination requires a
careful separation of concerns related to the developer roles involved so that individual developers
can focus on those system aspects they are responsible for, while leaving open all other aspects
that require further knowledge available earliest in the successive development phases. For each
of these development phases and developer roles, dedicated, model-based views are defined and
formalized using Model-Driven Software Engineering (MDSE) methods. Moreover, these views
are interlinked at a meta-model level to define a consistent model-driven handover of knowledge
between the various developer roles and development phases.

Figure 1.3 illustrates the core contributions of this dissertation. Previously, causal dependen-
cies and other communication-related characteristics of interconnected components have been
the result of hidden (i.e., implicit) design decisions from component development and were nei-
ther accessible for, nor adjustable during, system integration. Yet, such properties are important,
application-specific system aspects that should remain open until the required domain knowledge
becomes available. For instance, the “right” response time cannot be universally defined for a
single component in isolation. Rather, it is a system-level property that may vary considerably
across different systems. This issue is addressed by the following contributions:

Contribution 1.1: Component developers should be able to focus on the component implemen-
tation only and not bother with system-level configuration issues. Therefore, this dissertation
provides a component model that effectively decouples the component’s internal functional imple-
mentation from the component’s external communication semantics. The functional part within a

8
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Figure 1.3.: Schematic illustration of the contributions of this dissertation

component implements against an abstract communication interface (depicted on the left in Fig-
ure 1.3 as the component’s inner container), which allows access to a component’s input data and
provides output data without prematurely binding a certain communication scheme for interac-
tion between components (at the system level). This interface helps to postpone the configuration
of certain inter-component communication properties to a later step in the overall development
workflow, namely until system integration, where the required domain knowledge becomes avail-
able (see next Contribution 1.2). This contribution is addressed in the core Chapter 4.

Contribution 1.2: System integrators should be able to design system-level data-flow charac-
teristics without the need to investigate (or even modify) components’ internal implementation
(i.e., components as gray boxes). Therefore, this dissertation provides a novel Domain-Specific
Language (DSL) (pictured in the center of Figure 1.3) that allows defining and configuring
system-level cause–effect chains within predefined functional boundaries. This enables system
integrators to deliberately design causal dependencies and other communication-related configu-
rations to better satisfy current application-specific needs. This considerably increases the reuse
of components in different applications and eases the transition from multi-level plumbing toward
designing dependable systems. This contribution is addressed in the core Chapter 5.

Contribution 1.3: The introduced DSL should not be stand-alone but form part of the over-
all robotic software development workflow. Therefore, this dissertation integrates the DSL into
a model-driven Integrated Development Environment (IDE) for robotic software. This allows
linking the DSL with the robotic component model to automatically generate the correspond-
ing system-level configurations (based on models from this DSL) and to implement consistency
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checks, thereby supporting and guiding different developer roles involved in the overall develop-
ment workflow. This contribution is mainly addressed in the core Chapter 3.

Contribution 1.4: It is important not only to support the design and development workflow
but also to specifically add to the runtime robustness, dependability, and reliability of a robot
performing in a real-world setting. These aspects, sometimes called non-functional or extra-
functional system properties [Sen12], require management of the system’s runtime execution
performance. This is achieved through two contributions (mainly addressed in the core Chap-
ter 6):

• A Compositional Performance Analysis (CPA) based on SymTA/S [Hen+05] is integrated
into the overall robotic development process. This allows designing and analyzing the
anticipated system performance.

• A dedicated logging and monitoring solution is presented that allows observing whether,
when, and how often the configured performance aspects are violated at runtime (illus-
trated at right in Figure 1.3). This again helps to design robust error-handling strategies
and to purposefully refine the overall system design.

Contribution 1.5: In order to evaluate the usefulness of the proposed solutions, this dissertation
discusses a real-world scenario from the robotic domain. This scenario is modeled using the
modeling tools developed here, and the performance of the scenario is analyzed with an inte-
grated SymTA/S & Trace Analyser tool. The results of the performance analysis are compared
with measured ground-truth values from the robot operating in a real-world setting. This compar-
ison shows that the SymTA/S-based performance analysis sufficiently represents realistic robotic
systems. This contribution is mainly addressed in Chapter 7.

1.5. Dissertation Outline

Figure 1.4 provides an overview of the chapters in this dissertation, which are clustered into three
parts: Part I: Introduction and Fundamentals, Part II: The Method, and Part III: Results and Con-
clusions. Chapter 2 collects related works and provides some fundamentals as a baseline. Next,
Chapter 3 provides an in-depth analysis of the overall research problem addressed in this disser-
tation, and selectively discusses related approaches and solutions, focusing on identifying open
scientific gaps to be filled. Subsequently, the three core Chapters 4 to 6 individually describe the
three different system views related to component development, system integration, and runtime
(the relevant contributions 1.1 to 1.5 are interlinked with the core chapters in Figure 1.4). The
main focus within these three core chapters is to formalize important structures and semantics by
designing and defining required meta-models. After that, Chapter 7 presents the realized com-
ponent models and the system model of a real-world scenario. In addition, the results from a
Compositional Performance Analysis (CPA) are compared with in-system measurements from a
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Core Publications

robot operating in a real-world setting. Finally, Chapter 8 discusses potential future works that are
promising follow-ups to this dissertation, and Chapter 9 concludes the dissertation. Appendix A
lists the designed Xtext grammars.

Core Publications

[Lot+15] Alex Lotz, Arne Hamann, Ingo Lütkebohle, Dennis Stampfer, Matthias Lutz, and
Christian Schlegel. “Modeling Non-Functional Application Domain Constraints for
Component-Based Robotics Software Systems”. In: Sixth International Workshop on
Domain-Specific Languages and Models for Robotic Systems (DSLRob’15). Ham-
burg (Germany), 2015.
URL: https://arxiv.org/abs/1601.02379.

[Lot+16] Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vin-
cent Kesel, Dennis Stampfer, Matthias Lutz, and Christian Schlegel. “Combining
Robotics Component-Based Model-Driven Development with a Model-Based Per-
formance Analysis”. In: 2016 IEEE International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
2016, pp. 170–176.
DOI: 10.1109/SIMPAR.2016.7862392.

[Sta+16] Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The Smart-
MDSD Toolchain: An Integrated MDSD Workflow and Integrated Development En-
vironment (IDE) for Robotics Software”. In: Special Issue on Domain-Specific Lan-
guages and Models in Robotics. Vol. 7. Journal of Software Engineering for Robotics
(JOSER) 1. 2016, pp. 3–19.
URL: http://joser.unibg.it/index.php?journal=joser&page=
article&op=view&path%5B%5D=91.

The main ideas of this dissertation have been published in three core publications [Lot+15;
Lot+16; Sta+16]. The journal paper [Sta+16] provides the underlying foundations for this dis-
sertation with respect to modeling tools and views of our SmartMDSD Toolchain, which is in
productive use in several research projects, and for the Festo Didactic Robotino32 platform. The
core extensions and refinements of this toolchain—as a core contribution of this dissertation—
have been described and presented in two successive publications, [Lot+15] and [Lot+16].

Additionally, paper [Sta+16] provides a user survey conducted with our partners from previous
research projects. The results of the survey reveal the great benefit provided by model-driven tools
during the design and development of complex robotic systems. The two successive publications
[Lot+15] and [Lot+16] incrementally describe some of the core ideas of this dissertation, partic-
ularly related to modeling cause–effect chains and integrating the SymTA/S-based performance

2http://wiki.openrobotino.org/index.php?title=Smartsoft
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Core Publications

analysis into the overall robotic development process. The dissertation additionally provides a
complete background for the published ideas with a much broader scope with respect to related
approaches and potential solutions. Furthermore, it provides the latest, updated meta-models and
implementations of the presented modeling tools along with a coherent robotic example. This
example is extensively analyzed and discussed with an emphasis on architectural decisions made
in different phases of the overall robotic development workflow. The results of the performance
analysis are presented and discussed in greater detail than was possible in the published papers
due to space limitations.
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2
Related Works and SmartSoft Fundamentals

The overall goal of this chapter is to present clusters of related approaches and to set the founda-
tions needed to provide the context for the core ideas and approaches in Part II of this dissertation.

2.1. Related Works

This section gives a broad overview of related topics and publications, only shortly relating them
to the contents of this dissertation. A more in-depth analysis of selected approaches is given in
Section 3.2, with the emphasis on identifying scientific white spots that are addressed in Part II
of this dissertation. Moreover, the main method Chapters 4 to 6 individually relate some of the
selected works at a more detailed level.

2.1.1. Robot programming and robotic frameworks

Various robot programming techniques have long been a major focus for robotic software devel-
opment. This has led to various efforts to develop several robotic frameworks (sometimes also
reduced to robotic middlewares). A comprehensive literature survey can be found in [ES12]. One
early representative of such frameworks is Player/Stage [GVH03] (with its simulation backend
Gazebo), which was influential at the beginning of this millennium. It provided at that time a
rich set of device drivers for different robot platforms and a simple client/server communication
mechanism.

While the Gazebo simulator is still maintained, the Player/Stage framework has been super-
seded by another more recent framework called Robot Operating System (ROS) [Qui+09]. ROS
gained unprecedented acceptance within the robotic community. In its core, ROS provides an
n-to-m publish/subscribe communication mechanism and some extensions such as the transfor-
mation frames (TF)1 and action-lib2. Due to its wide acceptance within the scientific robotic

1ROS TF: http://wiki.ros.org/tf
2ROS Actionlib: http://wiki.ros.org/actionlib
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community, there is a considerable number of contributed algorithms and device drivers. In re-
cent years, an industry-driven initiative called ROS Industrial (ROS-I)3 has emerged with the
overall goal to make the rich body of algorithms from ROS usable for product development. In-
terestingly, this initiative struggles with the very liberal initial motivation behind ROS, namely to
avoid any structures that might limit the programming freedom of ROS users (see [Lut+14] for
more details). While this initial philosophy has been one of the main reasons for ROS becom-
ing so popular in the first place, it also is its Achilles’ heel, because the industry heavily relies
on structures (according to E.A. Lee’s freedom-from-choice [Lee10]) and standards for creating
value chains and ecosystems (as will be argued in more detail later). Not only are such structures
entirely missing in ROS, but they are also difficult to impose afterward, because now many over-
lapping and incompatible implementations coexist that require heavy redesign, reimplementation,
and harmonization of individual ROS nodes. A (too late) initiative to resolve at least some of the
initial ROS problems is the recently introduced upgrade called ROS24. While there are some
promising ideas, it remains to be seen whether this upgrade will be widely accepted because it
proposes radical but badly needed changes, e.g. with respect to a generic middleware abstraction
layer. Moreover, even ROS2 will not miraculously cure all problems of the initial ROS. Instead,
ROS would need to undergo an even more drastic change toward a stable component model.

As opposed to ROS, such stable structures and a component model with a reusable set of com-
munication patterns have been a major focus from the very beginning of the overall SMARTSOFT

idea [SW99; Sch04; SSL12a; Lot+14], which evolved to a fully-fledged model-driven develop-
ment methodology with the reference implementation called SmartMDSD Toolchain [Sta+16;
SSL12b] (both will be introduced with more details in the next Section 2.2).

An interesting framework for this dissertation is the Robot Construction Kit (Rock) [JA11],
which uses Orocos [Bru01] with its Real-Time Toolkit (RTT) as a basis. Rock allows specifying
time- and data-triggered activation of components, which is comparable to some specifications in
this dissertation (as shown in Section 5.4). However, Rock lacks any means to easily use e.g. per-
formance analysis tools which, by contrast, is one of the core contributions of this dissertation.

An initiative driven by Japan’s National Institute of Advanced Industrial Science and Tech-
nology (AIST) is the Robot Technology (RT) Middleware [And+05] with its open source ref-
erence implementation OpenRTM5. The interesting aspect about RT-Middleware is that it not
only resulted in an Object Management Group (OMG) standard called Robot Technology Com-
ponent (RTC)6 but also provides an Eclipse-based development toolchain. Around 2005 when
RT-Middleware was introduced, it soon became a leading initiative that advocated modelling
of robotic systems and paved the way for some later approaches such as the BRICS Component
Model (BCM) [Bru+13] and the Proteus’ Robot Modeling Language (RobotML) [Dho+12] (both
will be addressed with more details further below).

3ROS Industrial: http://rosindustrial.org/
4ROS2: http://design.ros2.org/
5OpenRTM: http://www.openrtm.org/
6OMG RTC: http://www.omg.org/spec/RTC/
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Another notable and freely available programming environment is Microsoft Robotics Devel-
oper Studio (MRDS)7 for building robotic applications based on .NET. It includes a lightweight,
REST-style service-oriented architecture and a set of programming tools. However, due to the
vendor lock-in, it never gained widespread acceptance within the robotic research community.
Yet Another Robot Platform (YARP) [MFN06] is a thin robotic middleware mostly used for hu-
manoid robots with the iCUB platform [Met+10]. A more extensive overview can be found in
the survey [ES12] and a deeper history of past robot programming techniques can be found in
Chapter 8 of the Handbook of Robotics [KS08a].

2.1.2. Model-driven engineering (MDE) and domain-specific languages
(DSLs) in robotics

A recent survey [Nor+16] on Domain-Specific Languages (DSLs) in robotics identified 137 rel-
evant publications. Interestingly, over 50% of the identified publications address aspects of ar-
chitectures and programming of robotic software systems. The authors of the survey conclude
that this problem domain must be well understood. However, there might be another (and more
likely) interpretation. First, the field of architecture and programming is very wide and diverse
encompassing various sub-problems. Therefore, it is only natural that many solutions have been
developed. Second—and this is diametrically opposite to the survey’s conclusion—this problem
domain might not yet be sufficiently and satisfactorily solved, which still provokes new contribu-
tions. A high number of component models (see further below) supports this assumption. In other
words, as the software complexity in robotics is rapidly increasing so is the pain, which empha-
sizes the need for efficient solutions to alleviate this problem. Moreover, using abstractions and
thus model-driven approaches might be especially well suited for this kind of problems, which
also explains the high number of contributions. In any case, it is safe to assume that model-driven
approaches for architectures and programming are still needed, which motivates the contributions
in this dissertation.

DSL engineering is also a growing trend in computer science in general. Various references in
the literature such as [Voe13; BCW12; Fow11; Ste+11; Gro09] address this topic from a general
perspective. In this respect, DSL engineering is a science that calls for a thorough understanding
of the involved problem domain (including the required abstractions and structures) and requires a
lot of experience in designing and implementing consistent, functional, and helpful model-driven
tools. Robotics is no exception in this regard. This dissertation extensively uses model-driven
techniques (see Section 3.3) and builds on over seven years of experience in building model-
driven solutions for robotic software development problems.

A widespread problem within the robotic domain is the high diversity of available robotic
algorithms. One related approach to handle diversity, specifically focusing on product diversity,
is the Software Product Line (SPL) [Bos00; CN01] approach with a (rather recent) trend toward
Dynamic Software Product Lines (DSPLs) [BHA12; Cap+14]. One of the notable approaches

7MRDS: http://msdn.microsoft.com/en-us/robotics/default.aspx
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that have applied the SPL idea in robotics is the Hyperflex toolchain [GB11; GB14], which uses
feature models to describe dependencies between sets of related components. SPLs are generally
suited for well-understood domains where the reasonable combinatorial diversity of systems is
known and can be globally expressed in advance. However, due to the natural heterogeneity
of robotic systems, SPLs scale badly when systems need to be flexibly composed in a priori
unknown and unpredictable ways, let alone dynamically adapt to changing conditions at runtime.
While this issue is currently under discussion in the context of the DSPLs [BHA12], it remains
to be seen whether this approach is applicable to real-world robotic applications of realistic size
and complexity.

A frequently addressed problem in robotics is the increasing software complexity. There are
hardly any approaches in robotics that do not tackle complexity management in one way or an-
other, which is why a comprehensive overview of the related approaches would not be feasible.
However, some selected approaches, most notably related to Component-Based Software Engi-
neering (CBSE) [HC01] and Service-Oriented Architecture (SOA) [Erl07], specifically focus on
this problem domain. CBSE has already gained widespread acceptance in the robotic domain
as well, which is evident from the various component models (see below). SOA also gains ever
more momentum in robotics and is a compatible way of addressing not only complexity by mod-
ularity (as with CBSE) but also diversity (as with SPLs) and workflow flexibility (in contrast to
the traditional workflow models such as the V-model that are too inflexible8). A combination of
CBSE and SOA thus makes sense. A notable approach addressing this combination is SMART-
SOFT [Sta+16] with its open-source reference implementation called “SmartMDSD Toolchain”
(Section 2.2 provides a more detailed introduction).

Over the last decade, several component models for robotic systems emerged such as the
BRICS Component Model (BCM) [Bru+13], the RobotML [Dho+12], the Robot Technology
Component (RTC) [And+05], and especially SMARTSOFT [SW99; SSL12a; Sta+16]. Two con-
secutive journal articles [BS09; BS10] provide a broader overview of component-based ap-
proaches in robotics. While each of these component models makes sense in one way or another,
one of the distinguishing factors (from the scope of this dissertation) is their support for system
composition and runtime adaptation. To the best of my knowledge, only the SMARTSOFT ap-
proach provides techniques that cover both areas (see [Sta+16] and [Lot+14; SS14; SLS11b] for
more details), which makes SMARTSOFT and SmartMDSD attractive for this dissertation as an
underlying foundation. However, the basic structures and abstractions in this dissertation are in-
dependent of any particular component model as long as the used component model provides rich
enough semantics and allows extensions toward management of non-functional system aspects
as advocated in Part II.

8https://harmonicss.co.uk/project/the-death-of-the-v-model/
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2.1.3. MDSE in other domains close to robotics and MDSE community
involvements

Talking about software modeling without mentioning the Unified Modeling Language (UML)
[UML15] would leave an incomplete picture. On the one hand, UML has been one of the most
influential developments that changed the way how software is engineered today and facilitated
model-based approaches in general. On the other hand, there has been a lot of criticism about
UML lately such as in [Bel04]. The core of the criticism is that UML has been (too often) treated
as a “silver bullet” that miraculously solves any software-related problem. However, as with any
approach, it is only as good as the engineers who apply it. Regardless of the opinion, even in the
worst case, one still can learn from the mistakes made with UML for better designs in tailored
DSLs. In the context of UML, some notable approaches are OMG’s Model-Driven Architecture
(MDA) and the System Modeling Language (SysML) [Sys12] specification. The former provides
fundamental ideas with respect to platform-independent modeling and the definition of several
meta-model layers, with Meta-Object Facility (MOF) [Mof] playing a significant role in specify-
ing a meta-model for UML. The latter SysML—a subset and an extension of UML—is a more
focused modeling language than UML with extensions toward requirement specifications and
parametric diagrams (which are basically used to express physical constraints that later can be
used for various model analyzes). Compared with UML, SysML puts the focus more on the over-
all system modeling, which makes SysML appealing for robotics. However, from the perspective
of robotics, SysML might be too generic (i.e., too general purpose), thus missing the required
structures related to non-functional properties such as those advocated in this dissertation.

Another well-known OMG standard is Modeling And Analysis Of Real-Time Embedded Sys-
tems (MARTE) [MAR11]. It provides a General Component Model (GCM) that includes a flow-
port and a client-server port specification. Moreover, MARTE allows a detailed specification of
hardware-related details and some timing-related annotations. However, as argued in [Lot+16],
central concepts are often hidden in a freedom-of-choice philosophy offering all kinds of alterna-
tive, coequal, and overlapping concepts. These concepts are too fine-grained (e.g. read and write
operations on buffers). This directs the focus of the MARTE user to minor aspects and leaves
him/her alone with many system-level design choices, thus preventing him/her from “seeing the
wood for the trees”. This either leads to a refusal of the use of MARTE in the first place, or results
in non-interoperable, hard-to-reuse components.

A recent OMG initiative is the Unified Component Model (UCM) [UCM]. Its recent “beta”
specification looks promising and deserves further investigation in future works.

An interesting standard originating from the avionics domain is the Architecture Analysis &
Design Language (AADL) [AAD04]. The interesting part about AADL is its flow-latency analy-
sis specification [Han07], which allows a timing analysis of end-to-end data-flows for interacting
threads. An ad hoc example of how to manually apply this analysis to a robotic wheelchair sys-
tem is presented in [BFA14]. This makes the specification appealing for this dissertation as a
promising candidate for realizing an integrated performance analysis, which is further explained
in Chapter 6 and Chapter 8.
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Another closely related domain is automotive with its industry-driven initiative called AU-
TOSAR [Aut]. Its goal is to support the design and development of automotive electrical and
electronic (sub-)systems with independent software modules that are highly modular, scalable,
transferable, and reusable. In this respect, the automotive domain faces the same challenges as
those by the domain of robotics and draws the same conclusions with similar solutions. Even-
tually, the domains of robotics and automotive might converge into one unified field of research
with shared solutions. However, now it is not yet clear in what ways this unification might happen
as there are many concurrent developments and discussions going on around AUTOSAR.

A recent trend—mainly driven by German industries—concerns the umbrella term Industry 4.0
(sometimes also called factory of the future or in German “Industrie 4.0”) with its OPC Unified
Architecture (UA)9. The focus of OPC UA is on providing a platform-independent and extensible
communication infrastructure. Extensibility is realized by the so-called companion standards. A
companion standard is a communication profile that extends the basic communication structures
with additional communication semantics. Similar to UCM and AUTOSAR, OPC UA is a rela-
tively recent initiative, which is worth keeping an eye on and which might become relevant for
robotics in the near future as well.

Besides the industry-driven initiatives, there are several community-driven activities (both from
research and from the industry). For instance, the euRobotics AISBL Topic Group on Software
Engineering, System Integration, System Engineering10 shapes the European roadmapping in
software systems engineering for robotics. Another relevant community forum is the Techni-
cal Committee on Software Engineering for Robotics and Automation (IEEE RAS TC-Soft)11.
Some notable research community activities are the Domain-Specific Languages and Models for
Robotic Systems (DSLRob) workshop series12, the International Conference on Simulation, Mod-
eling, and Programming for Autonomous Robots (SIMPAR)13, as well as the Journal of Software
Engineering for Robotics (JOSER)14. The three core publications of this dissertation [Lot+15;
Lot+16; Sta+16] are a direct contribution to these community activities.

A recent European initiative, starting January 1, 2017, is the RobMoSys project [Rob]. This
initiative envisions a component-based robotic software ecosystem with composable models and
systems for robotic systems of systems. The RobMoSys consortium comprises key research
players from the robotic model-driven community, thus building on their accumulated knowledge
for pushing the robotic software engineering methods to the next level. Moreover, RobMoSys
encourages community involvement through open calls. This initiative is expected to have a
severe impact on the overall robotic engineering landscape in the near future. The underlying
ideas of this dissertation have been most influential in the RobMoSys project proposal phase and
directly contribute to the underlying body of knowledge for RobMoSys.

9OPC UA: https://opcfoundation.org/about/opc-technologies/opc-ua/
10EU SSE TG: http://www6.in.tum.de/Main/TG-Software-Systems-Engineering
11RAS TC-Soft: http://robotics.unibg.it/tcsoft/
12DSLRob 2015: http://www.doesnotunderstand.org/public/DSLRob2015
13SIMPAR 2016: http://simpar2016.org/
14JOSER: http://www.joser.org/
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2.1.4. Models of computation (MoC), non-functional system properties, and
quality of service

Models of Computation (MoC) (sometimes also data-flow models of computation) is an umbrella
term often used by E.A. Lee as in [Lee01]. In [BFG17], Bouakaz et.al. distinguish between static
and dynamic MoC. One of the most widely known static MoC is Lee’s Synchronous Data Flow
(SDF) [LM87]. SDF defines synchronous interaction between components, meaning that each
received input data directly triggers an update cycle of a currently receiving thread (in a current
component). This policy is easy to understand and easy to analyze but not always reasonable. In
some cases, it is necessary for the components to interact asynchronously using a different MoC
such as the Kahn Process Network (KPN) [Kah74], which represents dynamic MoC. KPNs are
more flexible and allow parallelism. However, for realistic robotic systems, it is not possible to
only use one of these two MoC in isolation. Instead, robotic systems often need to use both MoC
in any combination depending on the currently relevant needs. These two MoC play a central
role in this dissertation for the design and for the analysis of end-to-end timings of the so-called
cause–effect chains (see Section 4.1.2 and Section 5.3).

The general reason to address different MoC in the first place is closely related to the general
need to manage non-functional system properties in robotics. As argued in Chapter 3, manage-
ment of non-functional system properties is a fundamental prerequisite for a successful devel-
opment of robotic products. Similarly, the management of non-functional properties has been a
major focus in other domains beyond robotics. For instance, within the embedded domain, the
OMG MARTE [MAR11] standard facilitates the management of non-functional aspects. How-
ever, as argued above, MARTE lacks the required abstraction level for robotics (i.e., it is too finely
grained) that would allow the management of such properties in dedicated views and throughout
several consecutive development steps.

Another notable work from the embedded domain is the dissertation by Sentilles [Sen12],
which coined the term extra-functional properties. From its basic motivation, extra-functional
properties are compatible with the ideas in this dissertation. However, while Sentilles addresses
component-based systems, he is vague about how such systems can be systematically composed
by system-integrators from different application domains (who are not necessarily technology
experts). By contrast, the separation of component developers, system-integrators, and other
developer roles is a major focus maintained in this dissertation.

A technical reference is Pletzer’s Timing Definition Language (TDL) [Ple12], which is gener-
ally based on Logical Execution Time (LET) [Gho+04]. The general idea of LET is quite appeal-
ing for robotics as it increases platform independence by decoupling the logical execution time
from the physical execution. Moreover, the globally required synchronization of clocks is not a
hurdle anymore due to the availability of sophisticated time-synchronization mechanisms. How-
ever, the problem of LET, and thus also of TDL, is the global clock beat that requires pressing
individual and concurrent executions into globally defined time frames. That simply scales badly
for real-world robotic systems of realistic size and complexity. Moreover, while TDL directly
supports synchronous interaction between components, asynchronous interaction is not handled
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by a real-time scheduler but is executed in the remaining spare time, which is a severe limitation
on using different configuration alternatives.

Speaking of real-time scheduling, this topic has a long history in computer science with ap-
proaches such as [LL73], which uses Rate-Monotonic Scheduling (RMS), and [Der74], which
uses Earliest Deadline First (EDF) scheduling. A frequent challenge is to derive a realistic Worst-
Case Execution Time (WCET). An overview of respective approaches is given in [Wil+08]. As
argued in [BS05], safety-critical systems are traditionally developed using one specific schedul-
ing technology for the entire system. However, as further argued in [BS05], new applications
in the embedded domain—and this also holds for robotic systems—demand for more flexible
and heterogeneous approaches where several scheduling mechanisms are composed and used in
combination to collectively provide overall system functions with different levels of guarantees.
One of such flexible and promising approaches is Reservation-Based Scheduling (RBS) [AB01].
Within the scope of this dissertation, the following conclusions can be drawn. First, robotic
systems demand flexible, composable, and adjustable scheduling mechanisms as argued above.
Second, roboticists should use already available and matured schedulability analysis tools such
as SymTA/S [Hen+05] or MAST [MAS]. Last but not least, these tools and methods should be
easily accessible to and usable by roboticists without the need to understand every detail of the
underlying mechanisms which is one of the main objectives of this dissertation (as also stated in
Objective 1.4 in Chapter 1).

Despite all the available approaches, it still is impossible in practice to systematically design
even the most basic non-functional aspects such as end-to-end guarantees under consideration of
the different responsibilities and concerns of the involved developer roles. Thus, the influence of
local changes on the global system properties has to become explicitly known and traceable. Ad-
dressing this challenge promises a general improvement of changeability (i.e., simple exchange
of individual parts) and composability (i.e., structured composition of systems out of reusable
building blocks), and it is thus within the scope of this dissertation.

The above references address non-functional aspects in the sense of timings. Another (more
general) way of addressing non-functional properties lies in the sense of the overall Quality-of-
Service (QoS) of a system. QoS is a huge field of research and a cross-cutting concern that
addresses many different aspect of a system at different levels of abstraction. One such QoS as-
pect is robot safety [TVS14], which (i) involves the robot hardware components that need to limit
the physical forces and ensure electrical safety; (ii) requires functional correctness, determinism,
and dependability of software; and finally (iii) requires a predictable robot behavior in opera-
tion. Robot safety is an emerging and increasingly important field of research with notable works
such as [ISK15; AKS16]. While this overall topic does not directly fall within the main focus
of this dissertation, improving the overall reliability and dependability of a system is considered
important and can be seen as a prerequisite for robot safety.

Another QoS aspect is related to fault tolerance (i.e., robust system behavior even in the pres-
ence of failures). An overview of various fault-prevention mechanisms is given in [Bro+14]. A
prerequisite for handling faults is the ability to detect them. [AC04] provides an overview of such
fault-detection mechanisms. A common approach to handling faults involves equipping a system
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with redundant components that allow switching to a backup strategy, which again allows resum-
ing operation even if sometimes with gracefully degraded performance. While fault handling is
not a major focus of this dissertation, the monitoring solution discussed in Section 6.3 can also
be used to detect faults.

A loosely related topic to non-functional properties concerns the terms runtime adaptation and
self-adaptive systems [Wey+13; WIS13; IW15] (or more specifically, architecture-based self-
adaptation [Ore+99]). The overall idea is that a system is divided into at least two layers, with
the lower layer(s) implementing the managed system, which directly interacts with the environ-
ment and with the higher layer(s) implementing the managing system, which adapts the under-
lying managed system if needed. The managing system thus typically comprises the MAPE-
K [IBM06; Wey+13] components (Monitor, Analyze, Plan, Execute, and Knowledge), which al-
together implement the adaptation control loop for the underlying managed system. Adaptation
in this sense means reacting to a changing availability of resources, system faults, or user inputs.
While self-adaptive approaches already proved their usefulness in several software-intensive sys-
tems [WIS13], their application in robotic systems is rare (besides some notable exceptions such
as [Edw+09]). Robotic systems typically require further structures as e.g. shown in [Lot+13;
Lot+14; IR+12]. Given the scope of this dissertation, the definition of configuration options for
the so-called cause–effect chains can be considered as a variation point that can facilitate an in-
formed runtime adaptation (and more generally behavior coordination as in [SLS11b; Lut+14]).

2.1.5. List of own publications

The following list clusters my own publications15 that contributed—some directly and some
indirectly—to the ideas in this dissertation.

Monitoring: [LSS11] provides a generic solution for runtime monitoring and introspection of
robotic software components. This topic is further addressed in Section 6.3.

Anytime: [LSS12] presents a mechanism to balance calculation costs and expected solution
quality using a robotic example for object recognition. The proposed object recognition
approach uses the bag-of-words algorithm, which is modified in such a way that it be-
comes an anytime algorithm. This work can also be used to improve the deterministic
execution of individual components—or more precisely of tasks in a component—which
is also mentioned in Section 5.3.

Robot behavior: Two works [SLS11b; Lut+14] address the problem of a flexible robot behav-
ior coordination using a tailored internal DSL called Smart Task-Coordination Language
(SmartTCL). In this dissertation, this behavior coordination level is considered in the sense
that the exposed configuration options of the so-called cause–effect chains provide an ad-
ditional source of information and a variation point for an improved and informed behavior
coordination.

15First-author publications are underlined; all other references are co-author publications.
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Variability management: The three publications [Lot+13; Lot+14] and [IR+12] together ad-
dress a topic that is closely related to the behavior coordination above with respect to the
quality-aware operation of a robot. In other words, these works address a systematic man-
agement of functional and non-functional runtime variability in a system for improving the
overall execution performance. On the one hand, these works improve the behavior coor-
dination level in general. On the other hand, they provide a good example regarding how
model-driven approaches can be adopted to robotic needs.

MDSE: Two book chapters [SSL12a; SSL12b] and three papers [Sch+09; Sch+13; Sch+15]
broadly address the topic of applying model-driven engineering methods to robotics to deal
with the ever-increasing software complexity. These works provide the underlying body of
knowledge for this dissertation with respect to model-driven engineering in robotics.

Core-papers: The three core papers [Lot+15; Lot+16] and [Sta+16] directly address some of the
main ideas of this dissertation. These papers are introduced with more details in Chapter 1
and are referenced several times throughout this dissertation.

2.1.6. Summary

In summary, the recurring overall challenges faced when building robotic software systems can
be clustered into two main (sometimes opposed) engineering needs: the need to cope with the
overall software complexity and the need to manage non-functional (sometimes also called extra-
functional [Sen12]) system properties (see Figure 2.1).

Complexity Management
- CBSE
- Identification of involved
  developer roles and 
  separation of their 
  concerns
- SOA and MDSE

Management of 
non-functional
system properties
 - Dependability
 - Execution Performance
 - Robustness
 - Other QoS

Figure 2.1.: Balancing two common engineering needs in robotic software development

Realistic robotic software systems need to combine and integrate many functional blocks pro-
vided by different robotic experts. Ultimately, this integration challenge will lead to the use of a
CBSE method in one way or another. As already demonstrated several times, e.g. in [SSL12b]
and in [Sta+16], successful CBSE requires a structured overall development workflow that sup-
ports the involved developer roles in their individual work considering their individual needs and
concerns. Moreover, SOA and MDSE methods become increasingly popular—also within the

24



2.2. The SmartSoft Fundamentals

service robotic domain—to formalize methods for coping with the overall software complexity.
Notable examples include RobotML [Dho+12], RTC [And+05], BCM [Bru+13], and SMART-
SOFT [Sta+16]. Yet, as soon as the robotic demonstrators and showcases must be transferred
into products (or at least to be robustly executed in a dynamic environment more than once),
an additional engineering requirement comes up, which is related to managing the overall system
quality aspects such as the overall execution performance, dependability, deterministic execution,
safety, and other non-functional system aspects. These non-functional system properties become
the main selling points of a product and must be designed and developed as an integral part of
the overall robotic development process. However, as can be seen in related approaches such as
AUTOSAR [Aut] (from automotive) and AADL [AAD04] (from avionics), the management of
non-functional system properties often requires an extensive level of details of a system which
contradicts the general CBSE principles related to encapsulation, information hiding, and loosely
coupled, reusable building blocks. Consequently, finding an approach that effectively balances
these two core engineering needs in a systematic and consistent way is an important Objective 1.2
of this dissertation (as further explained in Chapter 3).

2.2. The SmartSoft Fundamentals

This dissertation is influenced by the general ideas behind the term SMARTSOFT, which has been
coined by the research group around Prof. Dr. Christian Schlegel. Consequently, this chapter
provides some fundamentals of SMARTSOFT and relates them to the ideas in this dissertation.

The overall SMARTSOFT approach [SW99; Sch04] covers a rich set of techniques and methods
developed and refined over the last decade in various research and industrial projects. Over
the last decade, SMARTSOFT has been refined and extended by a novel Model-Driven Software
Engineering (MDSE) approach [Sta+16], which is implemented using Eclipse-based modeling
tools. The SMARTSOFT approach includes both a sophisticated robotic component model with
explicated service definitions and a flexible development methodology particularly optimized for
component-based software design. This facilitates the development of robotic systems supporting
different roles and clearly separating concerns at all levels [Sta+16]. Moreover, the SMARTSOFT

approach supports a stepwise variability refinement in the entire life cycle of a robot starting from
individual component development, going through a consistent system integration, and finally
leading to coordinated execution on the robot [Lot+14].

This dissertation seamlessly contributes to this field by providing a more abstract commu-
nication interface within components, which allow postponing the exact configuration of the
component’s communication characteristics until the system integration phase where the rele-
vant application-specific requirements become known. Moreover, a novel DSL enables system
integrators to effectively estimate and consistently design performance-related system aspects so
that application-specific end-to-end guarantees can be met.

25



Chapter 2. Related Works and SmartSoft Fundamentals

2.2.1. The SmartSoft communication patterns

The SMARTSOFT Communication Patterns are first presented in [SW99] and are extensively
described in detail in the dissertation of Schlegel in [Sch04].

There are various general definitions in the literature for a software pattern. Most notably,
Buschmann et al. [Bus+96] present the following descriptive pattern properties:

1. “A pattern addresses a recurring design problem that arises in specific design situations,
and presents a solution to it.”

2. “Patterns provide a common vocabulary and understanding for design principles.”

3. “Patterns support the construction of software with defined properties.”

4. “Patterns help you build complex and heterogeneous software architectures. (. . . ) Patterns
help you to manage software complexity.”

Buschmann et al. [Bus+96] further define that a pattern typically consists of three parts: a
context, a problem, and the solution. In this respect, a Communication Pattern [SW99] is an anal-
ogous way to provide encoded experience from skilled software engineers for recurring problems
in the service robotic domain. That is, the context is the communication between software com-
ponents, where a general-purpose middleware provides an infinite number of design alternatives.
In this context, there are recurring communication problems (conforming to Statement 1), such
as publishing data on a regular basis for several subscribers and querying data on demand. These
problems lead to recurring solutions, such as publish–subscribe and request–response commu-
nication characteristics. These solutions further need to define the communication properties
(according to Statement 3) such as involved buffers and the synchronicity of communication.
In the terminology of SOAs, a Communication Pattern defines a contract between a service re-
questor and a service provider. Giving each Communication Pattern a distinctive name provides
a common vocabulary (corresponding to Statement 2) to easily understand the involved design
principles. Overall, Communication Patterns allow building complex, component-based soft-
ware systems, thereby facilitating better coping with the overall software complexity (analogous
to Statement 4).

In this form, Communication Patterns provide the basic vocabulary and the underlying seman-
tics as a foundation for a successful component model specification using MDSE methods such
as that demonstrated in [SSL12b]. This dissertation extends the previous set of Communication
Patterns by an additional, generic Push Communication Pattern that provides enough details for
component developers to fully implement the respective component’s core functionality while
leaving open those communication configuration options that need to remain open until system
integration where they are fixed considering the then available domain knowledge. Hence, system
integrators are enabled to adjust components so that they better go with their currently developed
system and to purposefully design performance-related aspects (see Chapter 5 for further details).
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2.2.2. Toward QoS and variability management in a robotic development
process

A previous work [Lot+14] has presented an approach to manage design-time variability and to
design runtime adaptability using a dedicated DSL. Runtime adaptability is an important ingre-
dient in robotics to deal with unpredictable, open-ended, and unstructured environments while
improving the robot’s overall execution performance and QoS.

This dissertation contributes to this line of research by addressing an additionally important
system property related to the robot’s overall QoS, namely the design of end-to-end delays in a
system. Since service robots have to act in real-world environments, adequate response times are
important factors for the robot’s QoS. Response time in this form is the end-to-end delay from
sensing information of the robot’s surrounding to executing relevant (re-)actions. The necessity to
react and respond in time can impose different QoS guarantees depending on the current situation
and the mission to accomplish. For instance, in the case where a robot has to avoid a sudden
obstacle, the response time is safety-critical and needs to remain within sharp boundaries. In
another case, where the robot reacts with an answer in a dialog with a human, response time is
not that critical with a soft threshold leading to dissatisfaction with the robot’s performance in
the worst case. The key point addressed in this dissertation is that such system aspects should
be easy to design in an overall robotic development process and should not result from hidden
(i.e., code-defined) choices.

2.2.3. Platform-independent component model with different middleware
mappings: from shared memory to DDS

One of the main requirements for a definition of a SMARTSOFT component, including its pro-
vided and required services, is the independence of a platform (i.e., middleware, operating sys-
tem, and programming language). This platform-independence allows using any currently pop-
ular, widely applied, and time-tested middleware solution without affecting the communication
semantics of the service definitions or being forced to adjust the component’s internal implemen-
tation. The component’s internal implementation can well be platform-specific16. However, the
component hull and its service definitions must remain platform-independent. In SMARTSOFT,
this is achieved by a generic middleware abstraction layer that allows mapping the SMARTSOFT

Communication Patterns on any arbitrary middleware solution (as shown in Figure 2.2).
At the time of writing, SMARTSOFT has been mapped to several middleware solutions rang-

ing from a very lightweight 8-bit micro-controller implementation using an embedded real-time
operating system to an OMG DDS-based implementation. An overview is given below:

• Embedded/SmartSoft (closed source): a very lightweight version based on shared mem-
ory using global variables (demonstrated on an Atmel 8-bit micro-controller with a real-
time OS) (see [Sch+09] for more details),

16This allows optimally exploiting the platform’s specifics (wherever needed).
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Figure 2.2.: Different middleware mapping alternatives and the platform-independent component
container [SLS11b]

• 0MQ/SmartSoft (closed source): A prototypical implementation based on 0MQ imple-
mented on QNX OS,

• ACE/SmartSoft17 (open source): a variant based on plain message passing using the
Adaptive Communication Environment (ACE) [HJS03a], implemented and tested on both
Windows and Linux OS (at the time of writing, ACE/SMARTSOFT is the reference im-
plementation and is widely applied as baseline in several national and European projects
involving external partners from both academia and the industry),

• CORBA/SmartSoft18 (open source): OMG’s Common Object Request Broker Architec-
ture (CORBA)-based implementation using the ACE / TAO environment19 (a time-tested
and widely applied middleware mapping),

• DDS/SmartSoft (closed source): Prototypical implementation based on OMG’s Data Dis-
tribution Service (DDS) using the commercial RTI Connext DDS20 framework.

This dissertation extends the overall SMARTSOFT approach by an additional Communication
Pattern that allows late configuration of a component at the model level. As a reference im-
plementation, ACE/SMARTSOFT has been refined, extended, and published as open source on
SourceForge21.
17ACE/SmartSoft: http://sourceforge.net/projects/smartsoft-ace/
18CORBA/SmartSoft (including the Eclipse-based SmartMDSD Toolchain): http://sourceforge.net/

projects/smart-robotics/
19ACE/TAO: http://www.cs.wustl.edu/˜schmidt/TAO.html
20RTI Connext DDS: https://www.rti.com/products/dds/
21ACE/SmartSoft Version 3: https://sourceforge.net/p/smart-robotics/smartmdsd-v3
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2.2.4. The SmartMDSD Toolchain

Apart from framework-level refinements, this dissertation particularly extends our (at the time
of writing productive) SmartMDSD Toolchain [Sta+16]. The SmartMDSD Toolchain supports
the overall robotic development workflow by providing dedicated modeling views for the dif-
ferent workflow steps (such as component development and system integration), thus directly
supporting the involved developer roles. This dissertation extends both the component- and the
system meta-models to enable the respective developers to design additional aspects related to
system performance. The relevant extensions have been combined in a new implementation of
our SmartMDSD Toolchain and are published as an open-source technology preview (i.e., a ref-
erence implementation) on SourceForge22.

22SmartMDSD Toolchain V3: https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/
master/tree/toolchain
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“Stop thinking of constraints as a universal negative—
freedom from choice!”

—Edward A. Lee

3
Toward Structures Supporting

Domain-Specific Software Development
in Robotics

Nowadays, two main trends in robotics can be observed. On the one hand, the robotic research
community showcases impressive lab prototypes with isolated robotic capabilities. On the other
hand, there are only a few rather simple robotic products in the market. At the same time, there is
an ongoing trend toward more automation in factories, and several potential application domains
such as agriculture, automotive, logistics, and healthcare could benefit from robotic technologies.
The lack of advanced robotic products suggests some impediments that must be removed and
some challenges that must be overcome, which otherwise prevent companies from integrating
and combining isolated capabilities into high-quality products. Although addressing this prob-
lem might involve lots of other (non)scientific efforts beyond this dissertation, the structures and
abstractions mentioned in this dissertation decisively contribute toward this goal. The neces-
sity to address the challenging transition from lab prototypes toward high-quality products (see
Figure 3.1) is specified as a general Objective 1.5 in Chapter 1.

lab prototypes

high-quality products

focus on functional and
technological challenges

focus on overall service quality,
application-specific (customer) needs
and economic development

Figure 3.1.: The step-change from lab prototypes toward high-quality products

First, to better understand the gap between lab prototypes and products, it is necessary to have
a closer look into their individual focus (as illustrated in Figure 3.1). On the one hand, academic
research tends to focus on fostering new robotic technologies and on improving isolated capabil-
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ities of a service robot in technology domains such as mobile manipulation, object recognition,
and Human-Robot Interaction (HRI). On the other hand, developing products (robots or not) re-
quire a thorough understanding and purposeful satisfaction of customer needs while saving costs
and efforts to remain economically competitive. Consequently, the step from lab prototypes to
products involves a paradigm shift that affects all levels of a software system. For instance, com-
mon metrics to assess the maturity of a system are the Technology Readiness Levels (TRLs) from
the European Robotics Multi-Annual Roadmap (MAR) [Mar]. Most lab prototypes get stuck at
TRL 4 (or at the latest on the way toward TRL 5). Moving to a TRL 5 or even TRL 6 might
require a complete redesign and reimplementation of the entire system, because required quality
aspects were not considered from the beginning. This leads to great disappointments when indus-
try seeks to use academic technologies because lab prototypes fail to meet even the most basic
industrial quality expectations, resulting in high efforts to raise the TRL.

Common approaches in the industry to cope with complexity and to reduce costs and efforts
involve the creation of value chains where individual companies become experts in sub-fields and
supply high-quality components used by other companies. This allows sharing risks and efforts
while reducing the overall time to the market. One of the fundamental prerequisites for realiz-
ing such value chains is a clear separation of responsibilities and concerns between individual
companies. While the relevant collaboration terms can be defined on the bilateral contract level,
examples such as AUTOSAR [Aut] demonstrate that standards and software structures imple-
mented in tools allow the application of such terms more directly and efficiently.

Therefore, finding such structures and abstractions for robotic software development is one of
the essential motivations for this dissertation. Interestingly, academia sometimes tends to consider
structures as constraints that limit their freedom of choice. However, according to Edward A. Lee,
constraints should not be seen as a universal negative but rather as an opportunity (freedom-from-
choice [Lee10]). Structures allow focusing on the real problems at hand without being forced to
make arbitrary decisions about system aspects that are not relevant at the moment and that can
likely lead to incompatible system parts afterward. Therefore, structuring those system aspects,
where the handover of knowledge and artefacts between domain experts takes place, can be of
value for both the robotic market and academia.

This chapter is hereinafter structured as follows. First, Section 3.1 discusses some common
challenges of robotic software development. After that, Section 3.2 provides a selected overview
of associated approaches and relates them to the contents of this dissertation. Section 3.3 dis-
cusses the role of MDSE in formalizing the core concepts of this dissertation, which are described
in the three successive core chapters.

3.1. Common Challenges in Robotic Software Development

In general, software development in robotics is associated with various challenges such as rising
software complexity, expertise partitioned between different specialists, and the need to design
robust robotic software systems considering constrained resources (see left in Figure 3.2). On
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the one hand, solving these challenges opens up new application domains. On the other hand,
the application domains themselves impose specific needs on the overall software development
such as the aspiration for multipurpose robots and natural responsiveness, as well as the required
degree of robustness, reliability, dependability, and autonomy.

- high software complexity
- partitioned expertise
- resource-constraints

- multipurpose robot
- degree of autonomy
- robustness/dependability
- overall responsiveness

challenges involved in
robot software development

application related needs

Figure 3.2.: Challenges of overall software development meet application-related needs

The domain of service robotics is a highly interdisciplinary research field involving many com-
mon computer science disciplines. As illustrated in Figure 3.3, the domain of service robotics can
be further divided into three sub-domains, namely the robotic technology domains, the robotic
application domains, and the robotic environments (which can be considered a domain in itself).
While robotic technology domains have experts for individual robot capabilities such as naviga-
tion, mobile manipulation, object recognition, and human–robot interaction, the robotic appli-
cation domains have experts in non-robotic domains such as agriculture, logistics, health-care,
smart factories, and more.

Robotic
Technology
Domains

Robotic
Application
Domains

provide reusable
building-blocks

pull for new
technology
solutions

presume
conditions

provide
needs and
constraints

Robotic
Runtime

Environments

- navigation
- object recognition
- mobile manipulation
- human-robot-interaction
- ...

- agriculture
- healthcare
- logistics
- smart factory
- ...

- humans/operators
- dynamic objects
- world physics
- uncertainties
- ...

Figure 3.3.: Three common domain-clusters in robotic software development

There are push and pull relationships between the robotic technology domains and the robotic
application domains. While individual robotic technologies and algorithms for robots still have a
lot of potential to be further improved, the core robotic challenge is more related to the integration
and combination of these algorithms into coherent and consistent robotic software systems. This
integration challenge comes along with the necessity to carefully understand application-related
needs of actual customers and the target environments where the robots are supposed to operate.
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This section summarizes some common challenges involved in the design and development of
robotic software systems. One of these challenges is related to mastering the overall software
complexity. Therefore, the next two subsections analyze some common sources of software
complexity and derive some general guiding principles to be followed. Thereafter, the two follow-
up subsections discuss problems related to bounded rationality, partitioned expertise, and non-
functional, application-specific needs.

3.1.1. Problem complexity in robotic application domains

One common reason for applying systematic software engineering methods in robotics is the
need to master the challenge of an ever-increasing software complexity. However, before this
challenge can be mastered, it is important to understand where software complexity comes from.
One distinct cause is the diversity of robotic application domains with their inherent requirements
for the robot’s functionality and the anticipated environments where the robot is supposed to
operate. Natural human-centric environments dictate certain constraints for the robot’s shape,
size, and mass, e.g. due to typical sizes of doors and general safety considerations. An application
also defines the missions the robot should accomplish and thus the potential actions to execute.
Executing actions means expending energy, which is limited due to the limited battery capacity
of a robot and the amount of time the robot should last between charges. Additionally, diverse
actions differently drain the robot’s batteries. Altogether, the robotic application domain defines
the overall (inherent) problem complexity.

e
n
v
ir
o
n
m
e
n
t

co
m
p
le
x
it
y

au
ton

om
y

inc
rea

se

resource-
limitation

Figure 3.4.: Software complexity sources

Figure 3.4 shows three common sources of problem complexity that can individually (as well
as in combination) impact the overall software complexity. First, environmental complexity has a
direct impact on the way software needs to be built, because the more dynamic and unpredictable
the environment, the more flexible the software needs to be in terms of reacting to changing
situations. Second, the degree of autonomy also affects software complexity since high auton-
omy again requires adaptable and robust overall system behavior. Although resource limitations
might not be as obvious at first glance, they have a major impact on the robot design, because
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systems with constrained resources need to become aware of and to dynamically manage their
own resources. Combining these three sources makes it even worse. For instance, both en-
vironment complexity and a high degree of autonomy might impose high resource demands,
which, if limited, make it more difficult to properly design the overall system. Moreover, com-
plex environments lead to high efforts for making the robot autonomous, again provoking high
resource demands. Finally, high autonomy means coping with many different exceptional sit-
uations, whose number increases in complex environments and which make it more difficult to
find the right trade-off for acquiring the right resources. It is worth noting that, while the general
relationship between these sources can be verbally described, to the author’s best knowledge and
despite some metrics such as lines-of-code, there is no direct way to combine the numbers from
these three sources to calculate an objective value of software complexity.

Besides these three sources, there is another factor that severely impacts software complexity,
namely multipurpose robots. On the one hand, single-purpose robots are easy to build, as their
software only needs to serve one purpose only, leading to rather linear and repetitive executions.
On the other hand, multipurpose robots typically need to be able to accomplish different missions
in any combination and sometimes even in parallel. Obviously, this considerably adds to the
above-discussed complexity.

In summary, while it is good to be aware of the inherent problem complexity, ultimately, real-
istic environments and real autonomy simply involve a certain unchangeable problem complexity
(in contrast to design complexity, which is described next). Consequently, the overall develop-
ment process must support a direct and easy way of incorporating application-specific require-
ments, rather than artificially trying to reduce this kind of complexity.

3.1.2. Design complexity in robotic software development

The design and development of robotic systems can be in itself a source of software complexity.
Robot software involves many algorithms that need to exchange data and to be executed in a coor-
dinated way. Complexity in this sense comes from interweaving these algorithms [Hic11]. Highly
tangled algorithms cannot be considered and analyzed independently, making it cumbersome to
integrate them into coherent and consistent robotic systems. Moreover, hidden assumptions be-
tween interacting algorithms easily lead to software bugs that are difficult to trace.

Another common problem results from the mingling of responsibilities and concerns. Software
parts that are built for multiple purposes soon result in ambiguous semantics and implementations
that need to handle many overlapping concerns. Again, this is highly error-prone and leads to
arguably avoidable complexity. The opposite of complexity is simplicity, which, in this sense,
means having a single purpose,1 being considered independently (i.e., not interwoven with other
parts), and having clear functionality and clear semantics. Consequently, a universal guiding
rule is that software parts serving the same purpose and addressing a certain concern should be
grouped and kept together, while unrelated parts should be separated and their coupling loosened

1Single-purpose software is not in conflict with multipurpose robots. Multipurpose robots can be composed of
single-purpose software parts.
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and simplified, but only up to a degree so that the relevant abstraction remains useful (i.e., still
detailed enough) for the involved developer role.

While the problem complexity cannot be changed (as argued above), the design complexity can
and should be reduced wherever possible. Therefore, a general objective of this dissertation is to
focus on the overall reduction of design complexity using model-driven engineering methods and
component-based software development techniques (see Objective 1.3).

3.1.3. Bounded rationality and partitioned expertise

Neither a robot nor any developer can predict the future. Nor is it possible to fully grasp the
current global situation. Robots can try to improve the accuracy of the sensed world’s properties
by spending more processing resources. However, while the robot reasons about possibilities, the
world continues to change and actions executed too late might lead to different, and possibly un-
expected, outcomes. Therefore, the amount of deliberation time a robot should spend calculating
a result should be traded off for the risks of actions that are too late [Zil93] and for the availability
of resources. For cases that can be anticipated in advance, this trade-off is part of the overall robot
design. However, there are also cases which cannot be efficiently predicted in advance, e.g. due
to combinatorial explosion of alternatives. For these cases, the robot itself needs to be able to
robustly and flexibly react to changing situations and contingencies. As a result, design-time
variability and runtime adaptability must be mutually supported by a potential robotic software
development process.

Furthermore, it is no longer possible—nor is it economical—to design and develop robotic
software systems from scratch over and over again by a few omniscient robotic experts. Instead,
realistic robotic software systems combine knowledge and integrate results from various experts
in highly specialized fields. It is significant that these experts can focus on their individual field
of expertise and can work on isolated sub-problems, solve them individually, and then systemati-
cally integrate and combine their results into a full robotic software system. The overall software
complexity might remain the same or even be increased due to additional interfaces and abstrac-
tion layers. However, as long as the specialized developers are able to efficiently solve their
individual software parts (i.e., individual complexity is low) and it is clear how these software
parts are combined together as well as nobody ever needs to understand all the details of all soft-
ware parts at once, the overall complexity does not count and the overall development process
becomes manageable.

3.1.4. Non-functional, application-specific needs in robotic software
development

As argued at the start of this chapter, one of the core differences between lab prototypes and
products is the shifting focus from “purely” functional needs to non-functional, quality aspects of
a system. For instance, non-functional system aspects related to reliability and dependability are
critical factors for product development. Interestingly, the general difference between functional
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and non-functional aspects is not very clear. In the literature, the difference is often explained
by the question about “what” a system is able (or should be able) to do (i.e., functional aspects)
versus “how (well)” a system does it (i.e., non-functional, quality aspects). But then again, every-
thing a system does is part of its overall function. Designing an improved (i.e., “better”) function
means changing the function itself. Moreover, it is often difficult to pin-point the exact software
parts that are responsible for certain quality aspects.

The difference between functional and non-functional system aspects can be analyzed from a
slightly different angle. Individual software components tend to focus mainly on functionality,
whereas system integration tries to satisfy application-specific (non-functional) needs after the
right components, which provide the required functional features, have been selected. In other
words, functional aspects often relate to reusable, generic software blocks (i.e., software compo-
nents), while non-functional aspects are often intrinsically tied to the actual application-specific
needs and requests of the involved customers. To make these non-functional aspects explicit—
and more importantly manageable—it is essential to provide a clear grounding into the actual
system parameters such as the end-to-end latencies and jitter of the data-flow chains in a system.
While this certainly is a small part of the overall quality discussion only, it is particularly im-
portant for the design and development of dependable and reliable robotic software systems (as
explained in more detail in the next section).

3.2. Use Case-driven State-of-the-Art Analysis

Structuring and formalizing the overall robotic development process has been a struggle for many
years now, and many partial solutions have been proposed and presented within the scientific
robotic community. Some approaches have become popular and are widely used (such as the
Robot Operating System (ROS) [Qui+09]), while others have been forgotten (such as the Player/
Stage Project [GVH03]). And still, it is hard to develop robust and reliable robotic products.

This section pursues a pragmatic approach based on a common use case for analyzing the in-
volved problems, discussing common solutions (wherever available), and identifying scientific
gaps to be solved. Therefore, Section 3.2.1 presents a navigation scenario with the focus on em-
phasizing the involved architectural design assumptions and decisions. Section 3.2.2 selectively
presents some common best practices in building and engineering robotic software systems. Af-
ter that, Section 3.2.3 presents common partitioning schemes that help in structuring the overall
development workflow. Section 3.2.4 discusses some concrete structural needs at the component
as well as the system level. Finally, Section 3.2.5 highlights the different QoS aspects from an
overall application perspective.

3.2.1. The navigation use case

Powerful service robots rely on a range of basic functionalities to carry out anticipated tasks.
While some functionalities such as the ability to interact with humans via speech can be con-
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sidered as auxiliary amplification of the robot’s basic functions, some other functionalities such
as the ability to navigate in changing environments are fundamentally essential for any mobile
service robot. This section thus chooses a navigation use case (earlier introduced in the core pub-
lication [Lot+15]) as one of the ever-recurring use cases in robotic software development with
the emphasis on discussing the involved architectural design decisions.
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Figure 3.5.: Schematic representation of the navigation scenario

Figure 3.5 schematically illustrates the navigation stack that has been used in many research
projects and whose features and limitations are well understood. The navigation stack comprises
five main components that exchange information. Without focusing on the exact definition of a
software component for the moment, we may consider a component just as a functional block
(i.e., a cluster of related functions). The two components Laser and BaseServer directly commu-
nicate with the involved hardware devices, which in our case are the SICK LMS 200 laser-range
finder and the Pioneer P3DX base platform. The Laser component acts as a pure sensor that
continuously scans the environment and periodically provides laser scans. The BaseServer acts
as both a scanner (that periodically provides odometric updates) and an actuator (that receives
navigation commands). A first architectural particularity of this navigation stack is that the Laser
component requires odometry from the BaseServer as pose-stamps for specifying the robot’s po-
sition where the current laser scan has been recorded. While this might appear unnecessary at
first glance, because the robot’s exact position could also be determined by transforming the laser
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scans into the robot frame, stamping the laser scans with the position directly is just another (and
potentially more efficient) solution for the same problem.

The remaining three components implement different functional aspects of the overall navi-
gation stack. The CDL component implements an extension of the classical dynamic window
approach called Curvature Distance Lookup (CDL) [Sch98], which considers kinematic and dy-
namic constraints and additionally the robot’s shape. The Mapper component accumulates occu-
pancy grid maps based on incoming laser scan updates, and the Planner component implements
a simple breadth-first-search algorithm for calculating the shortest path to the next goal.

Overall, the five navigation components implement two basic capabilities of the robot: (i)
reactive obstacle-avoidance and (ii) grid map–based path planning. Each of the two capabilities
involves a chain of interconnected components representing a sensor-to-actuator control loop,
also referred to as a cause–effect chain [Lot+15] (illustrated as the two red arrows with a dashed
line in Figure 3.5). The role of the inner loop is to ensure collision-free navigation, while the role
of the outer loop is to plan intermediate goals (within the Planner component) toward the overall
destination and to command the next intermediate goal to the CDL component. While the inner
loop needs to be fast in reacting to sudden obstacles, the outer loop can be considerably slower
in re-planning the path in times of rather rare and substantial environment changes (e.g. closed
doors or blocked hallways).

The design of the fast-reactive navigation loop might involve the following question: What
is the maximum admissible overall response time in reacting to obstacles that suddenly appear
in front of the robot? This question can be answered from two opposing viewpoints. On the
one hand, the admissible reaction time depends on further application-specific needs such as the
desired maximum navigation velocity (i.e., the faster the robot moves, the lower the reaction time
needs to be) and the anticipated suddenness of the dynamic obstacles (e.g. humans appearing in
front of the robot from around a corner at a certain speed). By knowing these aspects and the
robot’s physical kinematic constraints, a certain maximum reaction time can be determined along
with a certain safety distance the robot needs to maintain while avoiding obstacles. On the other
hand, the cause–effect chain in itself imposes a certain end-to-end latency with a jitter as a result
from scheduling of intermediate links in such a chain, sampling effects, and network arbitration.
Deciding for an admissible reaction time therefore requires the knowledge of application domain
experts and the ability to influence the overall system configuration by adjusting components’
internal computation characteristics (e.g. the periods at which individual components have to run)
and adjusting communication characteristics between the involved components (e.g. whether data
is communicated synchronously or asynchronously).

Moreover, analyzing the obstacle-avoidance loop and deciding on the right configurations for
the involved components are not enough. Instead, it is common that several control loops (at least
partially) involve the very same components. For instance, both the obstacle-avoidance and the
path-planning loops use the Laser, CDL, and BaseServer components (see Figure 3.5). Similar to
the obstacle-avoidance loop, the path-planning loop also depends on further application-specific
needs such as the anticipated frequency of major map changes. Updating the current grid map and
re-planning the path to the destination might be more expensive than the pure reactive obstacle
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avoidance. Therefore, deciding on an admissible update cycle of the path-planning loop means
going for a trade-off between estimating a common frequency of substantial environment changes
and minimizing calculation costs. Hence, the robot might use a suboptimal path for a short period
of time before the map is updated and a potentially shorter path is selected. Configuring the three
components of the obstacle-avoidance loop in such a way that their overall reaction time becomes
lower might allow for more configuration flexibility for the Mapper and the Planner components,
or respectively restrict the configuration options otherwise.

In summary, the following conclusions can be drawn. First, end-to-end latencies of chains
of components need to be known (i.e., easy to determine) to enable application domain experts
to reason about the overall application-specific system behavior. Second, computation charac-
teristics within components and communication characteristics between components need to be
easily modifiable by application domain experts at the system level. This allows directly applying
application-specific requirements in a system composed of reusable and flexible building blocks.

3.2.2. Best practices in robotic software and system engineering

Over the last few decades, the robotic research community has been mostly focusing on im-
proving isolated capabilities and algorithms for robotic systems. However, as mentioned in Sec-
tion 3.1, software complexity is growing (presumably more exponentially than linearly) along
with a rising number of isolated capabilities and the increasing performance of ever more minia-
turized embedded hardware. This has recently shifted the scientific focus toward advanced soft-
ware engineering methods for systematically designing and building robotic software systems.

The domain of service robotics provides a fairly long history of different software architec-
tures, starting with a classical sense-plan-act [Nil80] paradigm, over the subsumption architec-
ture [Bro86], up to several multi-layered architectures more or less related to the well-known
three-tier (3T) architecture [Bon+97]. Kortenkamp states that “the goal of an architecture is to
make programming a robot easier, safer and more flexible” [KS08b]. While this is true, there
is ultimately no such thing as a single, generic reference architecture that equally goes with all
robotic scenarios. Instead, an architecture is highly influenced by various objectives such as
the desired level of modularity and reusability, the independence of hardware and software plat-
forms (i.e., the operating system, the programming language, the communication middleware, the
robotic framework, etc.), and, last but not least, the desired level of autonomy (i.e., the runtime
adaptability). Although this dissertation nonetheless has an underlying architecture similar to 3T
(or more specific similar to ATLANTIS [Gat92]), the focus is more on other engineering methods
as described in the following.

As illustrated in the preceding Section 3.2.1, robotic software systems consist of a range of
basic capabilities and thus lead to a natural modularity. Modularity under the term CBSE [HC01]
has been one of the most widely researched and adopted software engineering principles in the
robotic domain over the last decade for effectively coping with the overall software complexity.
However, due to the huge diversity of robotic applications, it is unlikely to find one single ap-
proach that serves all the different engineering needs equally well. Nevertheless, there has been a
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big struggle to find that one generic CBSE solution for robotic software development. One recent
example is the harmonization initiative driven by the BRICS project2. This initiative inevitably
resulted in an oversimplified BRICS Component Model (BCM) [Bru+13], which is so generic
that it lacks even the most fundamental structures that are required to successfully support the
overall development process (see next subsection for more details).

Sometimes structures are perceived as restrictions that limit the developer’s freedom and cre-
ativity. However, structuring those system aspects that are pivotal for ensuring the compatibility
of individually developed system parts so that later they can seamlessly fit together is a prereq-
uisite for successful system integration. Besides, structuring the “right” system parts frees the
individual developer from the burden of caring about those system aspects he/she is not respon-
sible for (in agreement with Lee’s freedom-from-choice [Lee10] idea). Of course, developers
should still have enough design freedom for their own system parts in order to be able to en-
sure their efficient implementations. Finding an adequate trade-off is a focus maintained in this
dissertation.

Divide and conquer is often considered the core principle behind CBSE. However, the main
challenge lies not so much in dividing the system into isolated parts as in the subsequent in-
tegration (i.e., composition) of those parts back into several consistent and functional systems.
Successful integration depends on a clear definition of communication and interaction mecha-
nisms between individual software parts in a system. In line with the general ideas of Service-
Oriented Architectures (SOAs), dependencies between individual software parts need to be re-
duced (i.e., loosely coupled components), thus increasing their flexibility and reusability with
respect to other systems. The IEEE Standard Glossary [Boa90] offers the following definitions
of common terminology:

“A Component is one of the parts that make up a system, while a System is a col-
lection of components organized to accomplish a specific function or set of functions.
Integration is the process of combining software components, hardware components,
or both into an overall system. Flexibility is the ease with which a system or com-
ponent can be modified for use in applications or environments other than those for
which it was specifically designed.” IEEE Standard Glossary [Boa90]

While these definitions still are valid, recent advancements in the area of Model-Driven Soft-
ware Engineering (MDSE) considerably ease the definition of required structures and abstrac-
tions, including the implementation of respective model-driven tools that ensure compliance with
these structures.

3.2.3. Vertical (layered) and horizontal (workflow) decomposition

The preceding subsection discussed the need for structuring pivotal parts of a system as a general
means for coping with the overall software complexity. The question now is as follows: Which

2BRICS project: http://www.best-of-robotics.org
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system parts are particularly vulnerable and thus need to be structured? Answering this question
requires the identification of relevant architectural principles that provide partitioning schemes
for organizing different views of a robotic system [Lut+14]. One of such architectural principles
is the separation and support of different roles involved in the development of an overall robotic
software system. Each of these developer roles has certain responsibilities and duties with respect
to contributing to the overall system. Different developer roles must not necessarily work at the
same time and at the same place. In an optimal case, they even do not need to know about each
other and can rely on the knowledge, structures, and models provided by others. One distinc-
tive factor that differentiates a role from others is a unique perspective and certain architectural
view [Cle+10] of the overall system at an adequate abstraction level, thus restricting the focus
to relevant system aspects only. The identification of unique responsibilities for such roles is
often referred to as separation of concerns. Back in 1974, Dijkstra had argued in [Dij82] that the
efficiency of a scientific thought could be increased by focusing solely on one specific concern
at a time. This separation of concerns has since been refined and reapplied for different aspects
within the discipline of computer science. The domain of service robotics is no exception in this
regard. For instance, Bruyninckx et al. [Bru+13] propose the separation of the following five
concerns: Computation, Communication, Configuration, Coordination, and Composition. Each
of these concerns can mean different things depending on the actual system aspect they refer to.
In order to put these concerns into the right perspective and context, it is necessary to have a
closer look at some common development phases and views of a system.
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Figure 3.6.: Required tools to support interfacing and handover of knowledge and artefacts be-
tween distinct development-workflow steps

Figure 3.6 illustrates the three most common development phases along with the involved
developer roles. First of all, the sketched development workflow is neither intended to be all-
encompassing nor statically ordered. For instance, it is possible to start defining a system out
of already existing components and then to go back to component development for designing
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and implementing new (i.e., not yet available) components. Depending on the different roles,
the distinctive factor for separating between different workflow phases is a different architec-
tural view [Cle+10] of specific system aspects. For instance, a component developer (on the
left in Figure 3.6) typically focuses exclusively on one particular component at a time without
bothering about other components or target systems where this component might be used later.
Similarly, a system integrator (in the middle of Figure 3.6) should focus on selecting the right
components based on the application needs for the currently designed system using out-of-the-
shelf components without having to understand the individual components’ internal realizations
nor being forced to modify their internal implementations. This is only possible if component
developers are supported and guided to define all relevant aspects of a component such as the
definition of the component’s services that will become important composition factors in the later
system integration phase. System integrators, on the other hand, need to be able to understand
the functional features of the available components with their respective quality attributes and
to adjust the components’ parameters at a model level as part of the integration process. Model-
driven tools can support these two developer roles in: (i) adjusting relevant aspects at the right
abstraction level without risking system inconsistencies with respect to preceding and subsequent
development phases, and (ii) passing the knowledge from one developer role and workflow phase
to the next.

The separation of the two developer roles into respective development workflow phases might
also be reasonable in many other software-intensive domains beyond robotics. By contrast, the
third development workflow phase, shown on the right in Figure 3.6, is more distinct to the do-
main of service robotics. In general, the robotic software systems do not become static and fixed
after the software has been deployed to the robot platform. Instead, the systems need to remain
flexible and adaptable with respect to changing conditions and situations a robot might face dur-
ing operation. While operating, a robot repeatedly interacts with its surrounding by continuously
sensing the environment to determine relevant aspects of the current world-state, accordingly
adapting its own strategy to accomplish a current mission and finally selecting and executing
promising actions. For this to happen, the robot system requires further knowledge about avail-
able configuration options from the integration phase. Again, this handover of knowledge can be
supported by relevant model-driven tooling.

The separation of roles and development phases is often referred to as horizontal decomposi-
tion. By contrast, vertical decomposition is often referred to as the layered decomposition with
several abstraction layers, each clustering coherent concerns. A good example of such layered
decomposition is the OSI communication stack3. Each layer addresses a distinct purpose at a
certain abstraction level and builds on top of the respective lower layer. In robotics, such layers
do exist, albeit not always explicit. Due to the separation of roles and concerns, the individual
layers must not be solved entirely at one particular step in the overall development workflow but
are refined in several successive steps. In other words, each developer role adds details at certain
layers that are further refined by downstream developers.

3OSI model: https://en.wikipedia.org/wiki/OSI_model
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Figure 3.7.: Vertical decomposition by defining appropriate abstraction layers

Figure 3.7 illustrates different layers (vertical axis), the development phases (horizontal axis),
and the different concerns (terminology borrowed from [Bru+13]) that can be found in different
combinations in each of the layers and phases. For instance, computation on the hardware layer
can refer to the processor load or the scheduling strategy on the execution container layer. The
functional layer might require some computational resources and the behavior layer might re-
quire a certain response time with respect to computation. Moreover, component development
might be mainly related to composition on the functional layer, or additionally also involve the
behavior modeling of component-related behavior parts (if needed). It is clear that thinking about
the different combinations of layers and phases eventually creates the required context for the
individual concerns. Simply put, this is the thinking underlying the overall meta-model design
process in the method chapters later in this dissertation. However, a general discussion of all the
combinations (along with the implications) here would go beyond the scope of this dissertation
(yet it will be very helpful in discussing the concrete problems in the subsequent core chapters).

The general focus of this dissertation is on the middle two layers, namely function and execu-
tion container. While the top layer behavior is not directly in focus, there is still an interesting
link that needs to be explained. Several papers such as [Fir89; SS10; SS14; KB12; BC10] (just
to name a few) specifically address this top layer. The link to this dissertation is that this top
layer in any case needs to rely on the deterministic and reliable execution of all the lower lay-
ers. An interesting observation regarding this top layer is that it might require switching between
different consistent system configuration options at runtime for the lower layer(s). While the
general behavior coordination is beyond the scope of this dissertation, the design and develop-
ment of consistent system configuration sets for selected aspects of a system are in focus here (as
discussed in more detail in the successive sections). Finally, the hardware layer on the bottom
provides an important foundation for the higher layers. In this dissertation, the hardware layer is
considered given (i.e., solved) by the typical robotic platforms, which use common mobile Cen-
tral Processing Units (CPUs) (such as the Intel’s DualCore CPU), standard architectures (such as
x86) and the widely applied communication stacks (such as TCP/IP).
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To sum up, several partitioning schemes need to be considered in combination in order to prop-
erly identify system aspects that motivate specific structures and where tool support is required
to increase the overall development efficiency, to automate knowledge handover between related
developer roles and workflow phases, and to ensure the overall system consistency throughout
the entire development life cycle of a robotic software system.

3.2.4. Relationship between components’ internal processing and
inter-component communication

Section 3.2.1 introduced an example use case with two main control loops (i.e., cause–effect
chains) that depend on specific overall end-to-end latency and jitter specifications of messages
starting from sensors, traversing intermediate component links, and reaching the actuators. In
order to better understand the causes that affect the overall latency and jitter along a cause–
effect chain, it is necessary to investigate further details of common structures within individual
components, as well as common communication characteristics between several components.
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CDLTask
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Figure 3.8.: CDL component schematic example

Figure 3.8 schematically illustrates some of the core structural elements of the CDL component
(from Section 3.2.1). The obstacle-avoidance functionality of the CDL component comprises
three steps. First, the CDL component receives the latest laser scan (through the respective in-
port), which includes the odometry value of the robot. Based on this laser scan and the intrinsic
kinematic constraints of the robot, all admissible navigation curvatures are determined that the
robot could drive next (see [Sch98] for more details). Second, all those curvatures are filtered
out of this list, which would lead to a collision with any obstacle visible in the current laser
scan. Third, from all the remaining collision-free curvatures, the one that is selected leads the
robot closest-possible to the next intermediate goal position (which is received through the other
in-port named next-goal in Figure 3.8).

The obstacle-avoidance functionality is executed within the CDLTask. While the basic func-
tionality is quite clear, the actual runtime execution behavior leaves a couple of open questions.
To begin with: What triggers a new update cycle of the CDLTask? Is it maybe an internal periodic
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timer, or does the task wait on the arrival of new messages on one of the two (or both) input ports?
From the functional point of view, it only makes sense to calculate new navigation commands if
new laser scans are available. Calculating a navigation command based on an old (i.e., already
processed) laser scan would yield the same result without considering that the robot has moved
forward in the meantime and thus would be a waste of resources. Therefore, it might make sense
to suspend the CDLTask until a new laser scan becomes available. However, this statically binds
the update frequency of the CDLTask with the update frequency of the incoming laser scans. This
leads to the following two problems. First, a uniform update frequency for the CDLTask alone
cannot be generally specified without considering what is actually required in a target system
(which might deviate from one system to another). Second, binding the update frequency with
the input frequency of one of the input ports would degrade the flexibility of the CDL component
to be used in combination with other components that provide the required input data.

For instance, some components might provide messages (e.g. laser scans) with an update fre-
quency that is too high for the CDLTask to follow, because each cycle of the CDLTask takes a
certain period of time to complete. Furthermore, each real robot has a certain mass leading to a
certain inertia, thus resulting in absolute physical constraints. Calculating avoidance commands
more frequently than the robot could physically execute does not make much sense and thus
would be again a waste of calculation resources. Therefore, it might be useful to skip intermedi-
ate laser scans if they arrive at an extremely high input frequency and to use the available latest
laser scan update.

Besides, what about the frequency of the incoming next-goal messages? It is safe to assume
that the next-goal messages arrive at a much slower update frequency than the laser scans (regard-
less of which components exactly will be later used in the system). Moreover, if the next-goal
updates would arrive at a higher update frequency than the laser scans, it would not make much
sense to calculate new navigation commands blindly (i.e., without a new laser scan). However,
calculating a new navigation command using a new laser scan but an old next-goal value still
makes sense, because the robot might have to face a dynamic obstacle while approaching the
next intermediate goal position. Therefore, it is reasonable to store the latest next-goal message
in a buffer of size one that is overwritten each time a new next-goal update comes in, thus using
the currently available next-goal value in each cycle of the CDLTask.

This rather simple example already involves a lot of reasoning and requires making several
assumptions about the target system to properly define the synchronicity between input ports
and the task, as well as the actual update frequency of the task. Selecting a certain update fre-
quency for a task directly impacts the assigned out-port. For example, the update frequency of the
CDLTask directly impacts the update frequency of nav-command (see Figure 3.8). Nevertheless,
even after identifying all functional constraints, a definite update rate for the CDLTask cannot be
universally selected for all (not yet known) target systems.

This altogether motivates a different approach. The activation source for the task’s update
cycles must remain a configurable variation point for the later system integration, where the
then available knowledge about the system and application-related constraints help to determine
the right configurations. However, it should still be possible to define some functional boundary
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conditions for tasks and thus to reflect implementation-specific constraints (see the next Chapter 4
for more details).

periodicity? periodicity?

latencies / jitters

Laser CDL BaseBase
periodicity?

Figure 3.9.: Base-Laser-CDL-Base component chain

So far, the CDL component has been analyzed in isolation. The next interesting questions are
as follows: How should this component behave in a cause–effect chain together with other com-
ponents, and how can the overall latency and jitter of this cause–effect chain be determined? As
discussed in the preceding Section 3.2.3, all relevant configuration options of individual compo-
nents should be lifted to the model level in order to free the system integrator from the burden of
investigating the components’ internal implementation details. Figure 3.9 illustrates the obstacle
avoidance component loop (from the navigation example in Section 3.2.1). Ideally, all the inter-
nal details of the components would be hidden at the system level, thus allowing the composition
of a system out of black-box components. However, as argued above, some configuration options
such as the selection of an adequate update frequency for a task in a component need to remain an
open variation point until the system integration phase. Moreover, the individual links between
the components’ tasks and input ports need to be further refined so that application-specific la-
tency and jitter values of the cause–effect chains are achieved. On the one hand, selecting syn-
chronous links for the entire cause–effect chain will minimize the overall latency, but it might
increase the jitter (because all the execution-time fluctuations of the intermediate tasks directly
accumulate to the overall jitter). On the other hand, selecting asynchronous links for the com-
ponents of the cause–effect chain will potentially stabilize the overall jitter at the expense of the
potentially greater overall latency (because of the intermediate sampling effects).

In real-world robotic systems, cause–effect chains seldom appear in complete isolation (i.e., in-
dependent of each other). Instead, realistic robotic systems typically consist of several sensor-to-
actuator couplings with many interconnected components in between, forming complex graphs
with branches, forks, and loops. Selecting loop-free information-flows called cause–effect chains
therefore makes sense. However, consequently, individual cause–effect chains are not necessarily
independent because they might share the same components (i.e., branching or forking compo-
nents). This makes hybrid cause–effect chains very common, consisting of a combination of
synchronous and asynchronous links in between. For example, CDL is one of such branching
components. It not only continuously receives new laser scan updates but also considers new
navigation goals. Selecting the right update frequency for the CDLTask thus requires considera-
tion of both cause–effect chains, namely local obstacle avoidance and map-based path planning,
in combination.
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3.2.5. Trading-off QoS requirements

The preceding two Sections 3.2.1 and 3.2.4 have introduced the notion of cause–effect chains.
Thus far, the focus has been on rather technical aspects such as the overall latency and jitter
of cause–effect chains. This section will focus more on the application-specific aspects such as
predictability, deterministic execution, and execution quality (i.e., quality of service) in general.

continuous (periodic) event-driven (sporadic/on demand)
hard real-time balancing robot emergency stop
soft real-time person following humans detector
relaxed map updating speech interaction

Table 3.1.: Characterization of different timing requirements for typical capabilities of a robot

Multipurpose service robots need to combine lots of different capabilities implemented as soft-
ware components. These components are part of different cause–effect chains with specific de-
mands with respect to their individual responsiveness. For example, a robot that needs to balance
on two wheels (at all times) requires a close coupling between the position sensor (e.g. an inertial
measurement unit (IMU)) and the actuator (e.g. the wheel motors). Violating the response-time
between the sensor and the actuator will likely result in the robot falling over and needs to be
avoided at all costs. Deterministic execution behavior is a top priority here. Components of such
a cause–effect chain are best implemented either directly in hardware using dedicated micro-
controllers with predictable execution characteristics, or in software using real-time tasks and
real-time communication.

In addition to such safety-critical system parts, other system parts might involve less strict
timing demands (i.e., soft real-time). For instance, a speech-interaction capability does not need
to respond particularly quickly in a dialog with a human. Longer response times (in rare cases)
could lead to tolerable inconvenience with a fairly soft threshold. Therefore, applying hard real-
time guarantees for the entire software system is neither practical nor necessary. Instead, realistic
robotic systems are heterogeneous in nature with isolated safety-critical parts and other parts
executed in parallel, only loosely coupled together in order not to interfere with (or violate) the
hard real-time guarantees. Table 3.1 provides some examples with required timing demands
(vertical dimension) and regularity in execution (horizontal dimension). These examples lead to
the following conclusions:

• For the hard real-time cases (irrespective of whether continuous or event-driven), a classi-
cal worst-case real-time scheduling analysis with partitioned network bandwidth is appro-
priate for guaranteeing that in all cases the robot is able to react within a certain amount of
time.

• For the soft real-time, event-driven cases, it is sufficient to approximate a rough latency and
the jitter between a sensor and the actuator considering all the intermediate components
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with their individual delays. It is also possible to derive appropriate timeouts, allowing
the implementation of backup strategies for cases where timings are violated to improve
overall robustness.

• For the soft real-time, continuous cases, it is additionally necessary to design the update
rates of the individual components and of the whole chain of interconnected components
(i.e., overall responsiveness) between a sensor and the actuator.

• For all the relaxed cases, it is often sufficient to empirically determine the typical case
response times and to accordingly provide timeout strategies that allow preventing infinite
deliberation times of a robot.

To sum up, appropriate service quality means that the robot needs to interact sufficiently
quickly with humans and the environment. Hence, the appropriateness depends on the current
situation and mission. The environments can be either more static or more dynamic in nature.
Situations change over time (e.g. empty areas become crowded with people during lunchtime)
and different missions require different timing guarantees. Consequently, responsiveness results
from specific system aspects, such as end-to-end latencies and jitter in chains of interconnected
components, and requires application-specific knowledge in order to be specified appropriately.
The important point addressed in this dissertation is that such system aspects become manageable
in the design and development of a robot and that they later can be traced and controlled during
robot operation.

3.3. The Overall MDSE-Based Approach and Method Overview

So far, this overall Chapter 3 has focused on the analysis of the general problem domain, the
derivation of common guiding rules to be followed, and a selective discussion of related ap-
proaches. Hereinafter, the focus will shift toward the conceptualization, formalization, and real-
ization of structures and abstractions that adhere to the general needs discussed so far and that
address the identified scientific gaps. The overall concepts and methods of this dissertation are
divided into three parts, which are discussed in detail in the successive three core Chapters 4 to 6.
The follow-up Chapter 7 presents and analyzes a concrete robotic example to assess the usability
of the developed modeling tools.

Before delving into the overall concept and realization, the follow-up Section 3.3.1 presents
a formalization method for the definition and specification of the concepts and relevant meta-
models in the successive core Chapters 4 to 6. Section 3.3.2 provides an overview of the MDSE
tools used in this dissertation and Section 3.3.3 presents an overview of the designed meta-
models.
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3.3.1. The central role of MDSE in this dissertation

In recent years, Model-Driven Software Engineering (MDSE) has gained a lot of attention within
the general software engineering community for coping with the ever-increasing software com-
plexity by means of structuring and formalizing the overall software development processes
[BCW12]. The domain of service robotics undergoes the same trend as can be observed by
recent approaches such as the BCM [Bru+13], RobotML [Dho+12], and SMARTSOFT [Sch+15].
A recent user study published in [Sta+16] confirms the usefulness of model-driven approaches
for robotic software development in realistic projects. However, there is still a lot of scope for im-
provement with respect to non-functional, application-specific needs. This dissertation directly
adds to this plethora of modeling solutions by a novel Domain-Specific Language (DSL) that
provides an additional, consistent view of the system with respect to modeling end-to-end guar-
antees. The design and development of useful DSLs (as one central aspect of MDSE in general)
is a challenging task that requires careful consideration of several basic MDSE principles related
to coherency, consistency, simplicity, and comprehensibility of languages. From now on, this
section will discuss some of these principles with respect to their relevance for this dissertation.

Software-
Model(s)

Execution-
Engine(s)

Target-
Platform

Meta-
Model(s)

Transfor-
mation(s)

Application-
Domainlanguage

development

software-
system

development

conforms to conforms to conforms to

from/to towards

Figure 3.10.: Common aspects of MDSE (terminology is borrowed from [Voe13])

Figure 3.10 illustrates the general relationship between the development of languages and that
of software systems using these languages. The main idea behind MDSE is that software models
must drive the overall design, development, and evolution of software. This means that software
models have to be (or to become) first-class citizens that directly influence pivotal aspects of
an overall software system. This is also referred to as prescriptive models [Voe13; BCW12]
(in contrast to descriptive models). Moreover, an execution-engine either directly interprets the
software models in the context of the target platform or generates code for the target platform in
a model-to-text transformation step.

Language development, on the contrary, is related to specifying meta-models and model trans-
formations. A language implies a specific view [Cle+10] of a system under development with a
certain abstraction level and aligned vocabulary (both specified in a meta-model) in the context
of an application-domain. Moreover, useful languages are not separated but are interlinked either
by using model references (specified at the meta-model level) or by specifying model transfor-
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mations. Abstraction (e.g. of a meta-model) is a widely used principle in computer science (and
in many other disciplines) that involves “a cognitive process to create a mental representation of
the reality” [BCW12]. In this sense, creating and using languages and models is a natural process
to cope with the vast complexity of software.

In the context of MDSE, two types of languages are distinguished: General-Purpose Languages
(GPLs)4 and DSLs. Both types allow modeling different aspects of a system. However, the for-
mer focuses more on flexibility with respect to the addressed problem domain, whereas the latter
makes simplicity and clarity a top priority with respect to the modeling domain. Consequently,
GPLs tend to become all-encompassing lingua franca (i.e., mixed languages with overlapping
concerns), while DSLs often are combined into a family of several narrowed and interlinked
languages, also called a Modeling Language Suite [Cle+10]. This dissertation prefers DSLs to
GPLs due to the rather clear and specified problem domain, as well as due to the discussed need
to separate concerns of the involved developer roles.

3.3.2. The main MDSE tools used in this dissertation

Recent advancements in MDSE tooling, most notably the Eclipse Modeling Framework (EMF)
(with Ecore in its core), allow a simple and efficient specification and formalization of domain-
specific concepts. Moreover, Eclipse provides a wide range of integrated tools (based on EMF)
related to the design of graphical and textual notations, the definition of model transformations,
and the management of several interlinked models. EMF is thus very attractive to be used as the
main tool and the main notation for specifying the concepts and structures in this dissertation.
More precisely, Ecore enables the specification of the abstract syntax of a language indepen-
dently of any concrete textual or graphical syntax. Moreover, concepts specified with Ecore are
independent of any particular execution platform (similar to e.g. the UML). In fact, Ecore is gen-
erally comparable to Essential Meta-Object Facility (EMOF)—a subset of MOF [Mof], which
is basically the meta-model of UML. Unlike UML (and EMOF), the mapping from Ecore into
a Java-based realization is absolutely clear and even fully automated in EMF. It is worth noting
that while Ecore is the de facto standard for specifying meta-models, there are other valuable
approaches, most notably JetBrains MPS5, which can be used instead of EMF. Moreover, Ecore
is particularly strong when it comes to specifying static structures (i.e., vocabularies and rela-
tions). Yet, structures alone are not sufficient to define all aspects of a language. Additionally,
further semantic rules need to be specified, which define more dynamic behaviors of models.
Therefore, model-checks, which directly extend the semantics of the Ecore-based meta-models,
can be implemented. Again, there are several languages for this purpose, most notably the Ob-
ject Constraint Language (OCL). This dissertation uses Xtend2 instead of OCL due to its better
integration into the Eclipse ecosystem (and for other reasons explained in the next Chapter 4).

Figure 3.11 provides an overview of the main Eclipse Modeling Tools (EMT) used in this dis-
sertation. At the top are the Ecore-based meta-models that specify the required structures and ab-

4Sometimes also called General-Purpose (Modeling) Language (GPML)
5https://www.jetbrains.com/mps/
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Figure 3.11.: The main Eclipse modeling tools used in this dissertation

stractions of different aspects of a system in different phases of a robotic development workflow.
In conformity with these meta-models, textual grammars (based on Eclipse Xtext) and graphical
notations (based on Eclipse Sirius) are derived. The default serializers from the Xtext grammars
are used to make the models persistent. In addition, graphical model editors, based on Eclipse
Sirius, allow a graphical specification of models using an intuitive graphical notation for each
meta-model element with appropriate tool palettes to ease the creation of models. Both model
representations (graphical and textual) are automatically synchronized in Eclipse based on their
shared, Ecore-based, in-memory representation called Abstract Syntax Tree (AST). Moreover,
the Xtext-based textual models are used to trigger code-generators in a model-to-text transforma-
tion step. Several code-generators are flexibly integrated by means of Eclipse Extension Points.
Code-generators are realized using the Eclipse Xtend26 language. For this dissertation, a C++
code-generator for ACE/SMARTSOFT, a Python code-generator to interface with SymTA/S, and
a text generator for ini-files have been implemented and integrated in a consistent model-driven

6http://www.eclipse.org/xtend/
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tool suite called SmartMDSD Toolchain V3 (Technology Preview)7.

3.3.3. Summary and overview of the meta-model packages

Figure 3.12 provides an overview of all the identified development views that are realized as
respective Ecore meta-model packages. Chapter 4 addresses the component-development phase
with the component and the performExtension packages (on the left in Figure 3.12). Chapter 5
addresses the system-integration phase with three views (again, realized as Ecore packages): sys-
tem, deployment, and performance (in the middle of Figure 3.12). After that, Chapter 6 has
the focus on the integration of a SymTA/S-based performance analysis into an overall robotic
development process that is technically realized by the two Ecore packages symtaBase and sym-
taConfig (on the right in Figure 3.12). Chapter 6 also discusses some runtime aspects with respect
to logging and monitoring.

Figure 3.12.: Ecore packages overview

Each of the following three core chapters addresses aspects of one specific development phase
at different levels of abstraction starting with conceptual, theoretical background discussions,
over designing the suitable meta-models, and finally discussing relevant implementation-related
design aspects. Thus, each core chapter groups and clusters coherent concerns. Therefore, each of
the core chapters has its own brief section at the end that discusses related works of the respective
development phase. Chapter 7 provides a consistent robotic example that uses the proposed
development tools in all three phases of development.

7https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
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“Everything should be made as simple as possible, but no simpler.”

—Albert Einstein

4
Extended SmartSoft Component Model

As stated in Chapter 2, the origins of this dissertation lie in the ideas of the overall SMARTSOFT

approach, which provides, among other things, a sophisticated component model with clearly
defined communication semantics. It is only natural to build on this expertise by extending and
refining the underlying ideas. Therefore, this chapter uses the SMARTSOFT component model,
which is refined in such a way that performance-related aspects can be modeled later in the
performance view (see Section 5.3). The resulting simplified component model is extended so
that functional boundaries for the end-to-end delays can be specified, thus restricting permitted
choices for the subsequent system-integration phase.

Component

Task

min/
max

Task
min/
max

mandatory

mandatory

opt
ion

al

In1

In2

Out1

Figure 4.1.: Component model conceptual overview

Figure 4.1 illustrates the concept of the component model as it will be constituted in this
chapter. Basically, a component model must specify the component itself, its communication
and interaction interface characterized by input- and output-ports, as well as its internal tasks.
Moreover, the model should indicate which tasks depend (strictly or optionally) on data received
through respective input ports and/or generate data that is published on relevant output ports.
The definition of tasks in a component should reflect implementation-specific execution charac-
teristics, most notably the execution-time boundaries. Some task implementations might require
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a fixed (i.e., unmodifiable) specification, while others might allow a more flexible configura-
tion with predefined boundaries. This latter flexibility is important for the subsequent system-
integration phase where the component’s tasks are configured so that application-specific needs
are satisfied.

This chapter is structured into three sections. First, Section 4.1 discusses some theoretical
foundations of the component development phase including the component interaction semantics,
component internal (functional) view, as well as a small excursion into the configuration and
coordination of a component (from a higher orchestration level). Next, Section 4.2 discusses and
defines the component Ecore meta-model, thereby trading off different design choices along the
way. At the end of that section, a design for a flexible task-trigger implementation is presented as a
core technique to effectively separate the task implementation from its configuration. Section 4.3
concludes this chapter with a brief discussion of existing works related to component models.

4.1. The Component Developer View

Component development is the typical development phase for robotic technology experts, who
provide configurable building blocks for later integration into various systems. The focus is on
the internal structures and implementations of one single software component at a time without
presuming or prematurely defining application-specific aspects that are not releveant in this phase.

In theory, it would be ideal to develop a software component in pure isolation. However,
the functionality within a component typically either depends on information from other yet-
unknown components and/or itself provides information to be used by other potential compo-
nents. It is the very nature of any component to eventually form part of a bigger system and then
to interact (i.e., communicate) with other parts (i.e., components) of that system. Section 4.1.1
provides some insights into what needs to be considered with respect to communication from the
component’s internal view.

Besides communication, a component also needs to manage its own computational resource
demands. Such demands can result from the component’s internal tasks (e.g. threads) or any
other active parts implemented either in software or hardware. Resource management in this
respect can be manifested in one of the following two alternatives. For proprietary implemen-
tations, resource consumption might be hardcoded (e.g. a proprietary hardware-driver internally
implements threads or thread pools). In these cases, it is at least desirable to make the consequent
resource consumption explicit for downstream developers. In other cases where the implementa-
tion is under control, it is better to postpone the exact task configuration until system-integration,
which provides the required application-specific knowledge. Section 4.1.2 describes some com-
mon models of computation within a component that can be consistently configured in a later
system-integration phase.

Finally, multipurpose robots can impose additional requirements on component flexibility and
variability. Since multipurpose robots often need to execute many different tasks in any combi-
nation and in different situations, it often is necessary to reconfigure the software components
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dynamically at runtime. This situation-dependent reconfiguration is also called system orchestra-
tion [Lut+14]. Section 4.1.3 provides some further details about how system orchestration can
impact communication and computation.

4.1.1. Toward middleware-independent service definitions

There is a huge community behind distributed computing with a long history of designing all
kinds of general-purpose middleware solutions for virtually any imaginable purpose. A sum-
mary of the current state of the art of middleware design would be unrewarding and go far be-
yond the scope of this dissertation (although a few selected representatives are mentioned in
Section 4.3). The important point—which is often inappropriately neglected in robotics—is to
respect the knowledge of this community and to build on top of existing robust middleware solu-
tions. Although the domain of robotics certainly has some domain-specific needs with respect to
communication, these needs should be addressed by narrowing the general middleware semantics
to fixed and reusable sets of domain-specific communication semantics and otherwise build on
top of the deep knowledge, wide experience, and matured implementations provided by the vari-
ous middleware communities. As a result, the communication semantics and implementations of
robotic software components should be made independent of the underlying communication tech-
nology, thus allowing linking the components with any currently popular middleware technology
that provides the required quality and performance attributes.
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Coordination/Configuration
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Figure 4.2.: Component’s internal communication interface and external communication seman-
tics [Sch+15]

Middleware independence is achieved by gaining control over the component hull [SSL12b].
This means that the communication semantics between components and the communication in-
terface within components should be specified independently of the implementation details of the
used middleware. With that in mind, a communication service can be specified from three dis-
tinct views, namely: (1) the communication semantics between components, (2) the component’s
internal communication Application Programming Interface (API), and (3) the mapping toward
the underlying communication middleware. Figure 4.2 illustrates these three views of a service.
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This dissertation uses the SMARTSOFT definition of a service for the following reasons. First,
SMARTSOFT defines a fixed set of Communication Patterns with unambiguous communication
semantics. Second, the SMARTSOFT Communication Patterns are independent of any middle-
ware technology (in fact, several implementations are available, see Chapter 2 for more details).
Finally, the abstraction level of the SMARTSOFT Communication Patterns is detailed enough
to manage all required aspects with respect to intermediate buffers and involved synchronicity.
However, the ideas presented in this dissertation are neither limited nor specific to the SMART-
SOFT approach. Instead, this dissertation only requires an adequate abstraction level that exposes
enough details with regard to the above mentioned communication aspects.

4.1.2. Component’s internal models of computation

Seen internally, a component receives data from input services (in short: inputs) and provides
calculated results through output services (in short: outputs). The intermediate part between in-
puts and outputs is the task definition. All three entities (inputs, tasks, and outputs) may or may
not have different cyclic execution characteristics. Figure 4.3 illustrates the reasonable interac-
tion combinations of one task receiving data from one input service and pushing the result to one
output service. More precisely, the three input squares (on the left) represent the same input ser-
vice but with different execution characteristics (periodic/sporadic and blocking/non-blocking).
Similarly, the different rectangles for a task (in the middle of Figure 4.3) represent different task
configuration alternatives of the same task, while the two output squares (on the right) represent
the periodic and sporadic cycle types of the same output service.

First, for an input service, two basic execution characteristics can be distinguished—strictly
periodic (i.e., with a stable update rate) and sporadic (i.e., with a varying update rate, typically
bounded by at least the maximal update rate and sometimes also by a minimal update rate). This
periodicity is the result from a preceding component providing the respective service. The other
characteristic, blocking/non-blocking, results from the interaction of a task with that input service
(see next).

The update rate of a task can be affected by various trigger sources. For instance, a task
might internally use e.g. a sensor driver that blocks the task execution until new sensor values
become available. This case is also referred to as self-triggered. In this case, the task follows the
update rate of the sensor driver (as long as no other triggers are used). It would be technically
possible to use several different triggers in one task; however, this would lead to very complex
(i.e., hardly predictable) task execution characteristics, where slower triggers would dominate
and faster triggers would lead to fluctuating jitters. Additionally, from the author’s practical
experience in building up several systems, there is no real reason for allowing multiple triggers at
the same time. Allowing multiple triggers would cause more problems than providing benefits.
Therefore, the task will hereinafter use only one trigger at a time (with the only exception of
composite inputs, see below).

Another trigger source for a task is an input service. There are two possibilities how tasks
can access data from inputs, namely synchronously (i.e., blocking) or asynchronously (i.e., non-
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Figure 4.3.: Overview of all combination with respect to different models of computation within
a component

blocking). The synchronous case means that each arriving data value immediately triggers a
subsequent task cycle (assuming that the task’s deadline is short enough, including the task’s
core execution time and the schedule, so that the task can follow the update rate of the incoming
messages). As a result, the task cannot be executed independently of the input updates and thus
inherits any update-rate characteristics from the input service (i.e., periodic/sporadic). This case
is also referred to as blocking read and is directly related to the well-known Synchronous Data
Flow (SDF) [LM87]. SDF provides a sound theoretical foundation; however, in practice the
problem is of choosing the right queue size for the input messages. A queue for input messages
could help to compensate for occasionally longer execution times of a task, assuming that a task
in average can still drain the queue. While this might seem helpful at first glance, in real-world
robotic cases, it hardly makes sense to process an old input message if a newer message already
is available on the input port. For this reason, and to simplify the execution semantics, hereinafter
an input buffer of size one is assumed. Thus, a message is stored in an input buffer until the next
update arrives, which overwrites the buffer (also in the asynchronous case below).

Furthermore, it is worth noting that commonly a task might require data from more than one
input. With respect to the task trigger, two cases can be distinguished. First, as argued above,
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at most one input should act as the task’s trigger, meaning that all the other inputs are accessed
asynchronously (i.e., non-blocking, see below). If more than one input should trigger the task’s
execution cycles (which is a relatively rare case), then the well-known AND- and OR-activation
semantics [Hen+05] should be used to combine several input ports, which would again appear as
one single and consistent trigger.

The other option to access data from inputs is the asynchronous case (i.e., non-blocking read).
The task is executed with its own update rate independently of any inputs. As a result, depending
on the individual update rates between the input(s) and the task, data might be either oversampled
or undersampled, meaning that sometimes the same data values are used in several successive
cycles of a task, or some intermediate data values are skipped. In practice, whether oversampling
and/or undersampling is acceptable or not depends largely on the actual algorithm used in a task.
In general, algorithms that can handle over-/undersampling allow for a higher reusability because
the implementation of a task then becomes independent of the actual inputs and is thus more
flexible and preferable.

For the interaction between a task and an output service, the following options need to be con-
sidered. An output service can appear to other components as being either periodic or sporadic.
The periodicity might be the result of the periodicity of the associated task that calculates the
respective results for that output service. Another (rather theoretical) option is that the output
service itself is an active entity and thus can be executed independently of the linked task. This
means that the output might publish old messages multiple times (i.e., oversampling the task’s
results) or skip some messages in between (i.e., undersampling the task’s results). This leads to
the following question: Why should a service actively do that without knowing the actual needs
of the later connected subscribers? One might argue that undersampling in the output could save
communication bandwidth in case none of the subscribers needs such a high frequency. But then
again, if none of the subscribers needs such a high update rate, why should the producer task exe-
cute at such a high update frequency in the first place? In practice, it is sufficient to synchronously
link a task with an output service and to configure the task directly if an update rate needs to be
adjusted for the downstream subscribers. As a side benefit, this leads to a simplified computation
model. Consequently, from the semantics point of view, the task and the output service can ap-
pear as one single entity (although the technical separation still makes sense as shown in a later
Section 5.3).

In summary, the execution semantics of an output service directly depends on the execution
semantics of its interlinked producer task. A task can be configured to either synchronously
follow the update frequency of one input service, or be triggered by its own internal trigger
(which is either an internal hardware trigger or a periodic timer). All the other input services are
accessed asynchronously, thereby always using the newest available message.

4.1.3. Component’s orchestration interface and lifecycle state automaton

The main purpose of every component is to be eventually integrated and then later executed in
a bigger system. During operation, the system will need to coordinate the execution of several
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components in such a way that they altogether realize a system function (e.g. navigation, human-
robot interaction, etc.). Multipurpose robots will implement several such functions and execute
them in any order and some of them in parallel. Each system function might acquire certain
system resources such as memory, CPU time, and devices. Some resource acquisitions and thus
system functions might be mutually exclusive. For example, a camera mounted on a pan-tilt unit
can only look in one specific direction at a time. In some other cases, it might not make much
sense to combine certain system functions. For instance, it might not be possible (nor reasonable)
to search for objects to manipulate while the robot navigates from one location to the next. For
these reasons, and to save resources, it makes sense to switch off those system functions that are
not needed for the currently executed activity. The main entities within a component that are
responsible for resource consumptions are the tasks. Technically, an active task acquires certain
resources which are released if a task becomes inactive. Therefore, controlling the activation and
deactivation of the component’s tasks also controls the component’s resource consumption.

There is another link between the component’s resource consumption and the system functions.
A system function is realized by several interacting components. As shown in Section 4.1.1, com-
ponents interact through services. Moreover, Section 4.1.2 shows that a service of a component is
directly linked to one of the component’s tasks and is therefore directly linked to the component’s
resources. Therefore, coordinating the (de-)activation of tasks of a component also coordinates
the (de-)activation of the component’s services.

This coordination is the main concern of the so-called sequencer [SLS11b; Lut+14]. In short,
a sequencer is the master entity on the robot and is responsible for determining appropriate se-
quences of actions for accomplishing assigned missions. Single actions involve the execution
of relevant system functions and thus the coordination of components with their services, re-
sources, and tasks. This results in a clear control hierarchy, which is also called system orches-
tration [SLS11b; Lut+14].

Figure 4.4.: Generic Lifecycle of a Component [SLS11a]

The core mechanism to control the component’s tasks and services is the component’s life-
cycle state automaton [LSS11; SLS11a] displayed in Figure 4.4. The component’s life-cycle state
automaton controls the component’s coordinated initialization, execution, and destruction. Only
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within the Alive state is the component able to provide its services. The Alive state in itself can
contain several configuration modes of the component, each controlling whether relevant tasks
are activated or not (see [LSS11; SLS11a] for more details). This makes the component’s current
state explicit, effectively prevents inconsistencies in execution, and increases the overall system
robustness in execution. In practice, there are typically only a few defined modes a component
can be switched into. Within the scope of this dissertation, this means that, for all those modes
which might be critical in the sense that certain end-to-end guarantees must be met, relevant
task configuration sets need to be specified and analyzed. This means that each individual task-
configuration set might involve its own independent performance analysis (which is not in conflict
with the approach presented here).

At this point, it is worth noting that system orchestration requires further standard services
of a component, namely parameter [Sta+16], dynamic wiring [Sch04], and events [SSL12b].
However, these standard services are not relevant for analyzing and designing the component’s
execution performance. Hence, they fall outside the scope of this dissertation.

4.2. Extended SmartSoft Component Meta-Model and Flexible
Task Implementation

This section presents the realization of the component properties discussed so far in an extended
SMARTSOFT component meta-model. The extended component meta-model is separated into
two Ecore meta-model packages (shown in Figure 4.5) to better distinguish between the com-
ponent’s basic structures described in Section 4.2.1 and the performance-related extensions de-
scribed in Section 4.2.2. Section 4.2.3 additionally describes the framework-level extensions
related to a flexible task-trigger implementation.

Figure 4.5.: The two Ecore-based component meta-model packages

At this point, it is worth mentioning that, while Ecore became a de facto standard for for-
malizing software meta-models (as also argued in Section 3.3), the presented structures and ab-
stractions are neither limited nor specific to Ecore and can be easily redefined using any other
preferred notation for specifying meta-models. Nonetheless, using a formal notation such as
Ecore is important to ensure consistency and feasibility of the discussed structures and abstrac-
tions. However, Ecore alone is not enough to fully specify all the aspects (i.e., semantics) of a
language. Therefore, this section additionally provides some technical details that complement
the meta-model definition. At the time of writing, these details are specific to the Ecore-based
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meta-model definition, which can be considered a limitation of the Ecore-based approach. How-
ever, to the best of my knowledge, Ecore still is the most matured and widely used approach for
specifying meta-models (despite its limitations).

4.2.1. Simplified component model with configurable services

The component Ecore package (on the left in Figure 4.5) is realized as the component meta-model
in Figure 4.6. Appendix A.2 additionally provides a derived Xtext grammar that demonstrates
one possible textual syntax. The component meta-model provides common elements which can
be found in virtually any other popular component model. The general idea is not to reinvent
the common elements from other component models but to provide an abstraction level which
can also be mapped or even exchanged by the original model elements of any other preferred
component model. In other words, this meta-model is a common denominator among several
popular component models (see Section 4.3 for an overview). It is important to note that the core
value does not come from this simple meta-model itself but from the interconnection with the
other subsequent models. It is this very interconnection between several model views that enables
a step-wise development of the entire system while guaranteeing overall system consistency.

At this point, it is worth mentioning that there is a common confusion about the meta-ness
of a model. According to Voelter [Voe13, pp. 26–27], a meta-model defines the basic elements
that can be instantiated in a model. A model therefore conforms to a meta-model. However, a
meta-model itself can be a model conforming to a yet another, more abstract meta-model and so
forth. In this dissertation, the term “meta-model” always refers to the Ecore-based meta-model
definition (such as the Ecore diagram in Figure 4.6), whereas the term “model” refers to either an
instantiated model or yet another meta-model (particularly when referring to related approaches,
where these terms are also used interchangeably).

The root element of the component meta-model in Figure 4.6 is the EClass ComponentModel.
A ComponentModel can have zero or one Component element. This restriction is important
for the following reasons. First, it emphasizes the guideline for component developers to focus
on one component at a time. Technically, each component project in Eclipse will instantiate
exactly one component model with only one component definition. Second, if more than one
Component element were allowed, one might be easily tempted to also define some connections
between InPort and OutPort elements, which would be in violation of the component developer’s
responsibilities. A component must remain independent of any other component until the system
integration phase (which is explained in detail in the next chapter).

Since the Component element is to be referenced in later system-integration models, it must
be a named model element. Therefore, the Component element has an EAttribute name of type
EString. It is interesting that the Ecore type EString is realized by the Java class String, which
is a weak type for identifiers. A Java String thus acts as a technical primitive data type without
any syntactic restrictions. In order to make the identifiers compatible with the Java identifiers,
the type EString is further restricted by the notion of the Xtext’s common terminal rule ID (see
specification in Listing 4.1).
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Figure 4.6.: Component Ecore meta-model

� �
terminal ID: ’ˆ’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;� �

Listing 4.1: Xtext’s common terminal rule for IDs

In general, each named element—an EClass with an EAttribute called name of type EString—
can be referenced in other meta-models. To prevent name conflicts, the hierarchy of EClasses
is translated into Java namespaces. Thus, only local elements—these are the infant elements
defined from the same parent element—need to have unique names. For instance, all InPort
elements in a component need to have a unique name, but InPort elements in different components
can have the same name. By design, each Ecore element must have exactly one distinct parent
element. As a result, named elements can be referenced using the so-called qualified names or
respective qualified IDs (see specification in Listing 4.2, and its usage in the Xtext grammar in
Appendix A.2).
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� �
QID:
ID (’.’ ID)*

;� �
Listing 4.2: Definition of a qualified ID

The second EAttribute of the Component element is hasParameters of type EBoolean. This
attribute is a flag specifying whether a component additionally has component-related parameters,
which are defined in a separate Xtext grammar (see [Sta+16] for more details).

Now, the three core elements that a component is comprised of are InPorts, OutPorts, and Tasks
(see Figure 4.6). InPorts and OutPorts specify interaction points to other potential components
in subsequent system-integration models. Hence, an InPort defines the requirement of this com-
ponent to receive specific data messages, while an OutPort itself provides certain data messages
to other potential components in a later system. In other words, InPorts and OutPorts define the
interaction points between other components in a system and the current component’s internal
structures. Which other components exactly that might be should be irrelevant at this stage in the
development. The only required semantic information is that certain message types are received
and certain message types are produced. Message types define the communicated data structures.
There are many suitable languages for defining message types such as the DDS Interface Defi-
nition Language (IDL). The presented component meta-model uses the Communication Object
specification, which is defined in the Xtext grammar provided in Appendix A.1. However, any
other convenient IDL can be used, which only needs to provide named elements (as described
above) for all defined message types.

At this point, one might be curious about the abstracted definition of a service. As described
in Section 4.1.1, a service has three distinct views: (1) the communication semantics between
components, (2) the component’s internal communication API, and (3) the mapping toward the
underlying communication middleware. The only concern for a component developer should be
to provide an implementation which uses the stable communication API of view (2) and other-
wise leave the views (1) and (3) to the system integrators (see Chapter 5). Technically, the API of
view (2) boils down to a getter method for requesting incoming messages and a setter method for
publishing a message. Section 4.2.3 provides additional framework-level implementation details
with respect to the API of view (2). These methods can be considered as an abstract API whose
concrete mapping into the middleware is postponed until the system-integration phase. Depend-
ing on the later system-specific needs, these methods will be mapped to either a synchronous
or an asynchronous call of the communication API. This decision should neither be prematurely
made by the component developer, nor be part of the component model.

The connecting element between InPorts and OutPorts within a component is the definition of
Tasks (see Figure 4.6). A Task represents, on the one hand, a functional block implementing the
core functionality of its component, and on the other hand, a configurable active object. As an
active object, a Task has a separate thread of execution with the execution characteristics specified
in Section 4.1.2.
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By design, a component can have more than one Task. Many popular component models such
as e.g. RTC [And+05] restrict the usage of tasks to a maximum of one task per component, or
even to sharing one task between several sequenced components. Although the rather simple RTC
design might be appealing at first, it ultimately leads to rather fine-grained components more
resembling active classes than independent components. The usage of sophisticated libraries
such as OpenCV and MRPT demands a certain implementation flexibility within a component.
Such libraries are naturally multi-threaded. Moreover, it is not always feasible to distribute the
threads over several components because some threads might have very tight dependencies and
lots of interactions that would lead to unreasonable resource overhead if these threads were to be
distributed. Restringing the number of threads within a component would thus unavoidably lead
to users defining their own threads beyond the component model, which would defeat the purpose.
One of the common arguments for prohibiting multiple threads involves avoiding common multi-
threaded programming errors such as race conditions and deadlocks. While there is some truth
in this statement, there are also powerful design patterns such as the observer pattern and active
message queues, which can be even automatically generated into a component (see Chapter 8).
The point is that restricting the number of threads simply is not an option if the component model
is to be accepted and adopted by real users—preferring an engineering model to a scientific
model.

By definition, a component is never completely isolated (otherwise it would be an independent
system). Instead, a component has at least either one InPort or one OutPort to interact with the
rest of a system. Furthermore, a Task within a component might either require data coming from
one or several InputPorts and/or itself generate data that is published over an OutPort. Messages
arriving on one particular InPort can be shared between several Tasks. Moreover, a Task can use
internal data sources such as a sensor driver. At the end of each Task cycle, calculated results
are either directly propagated to an internal data sink (such as an actuator driver) or published
through exactly one distinct OutPort. As described in Section 4.1.2, an OutPort cannot exist on
its own without a Task, but a Task can be defined independently of an OutPort. This dependency is
specified as dataProviderTask reference between an OutPort and a Task in the component model
in Figure 4.6. Individual InPorts do not directly depend on specific Tasks, but a Task might require
data from certain InPorts. More precisely, a Task might either strictly depend on certain InPorts
or be able to optionally use some of the InPorts if available in the system and otherwise skip them
during execution. This variable dependency is specified by the Boolean attribute named optional
of the InputLink element between a Task and an InPort. For later referencing in other models,
the InputLink must be a named element. However, from the component developer’s perspective,
it would be cumbersome to define an artificial name just for the link. Therefore, the name of the
InputLink is automatically derived from the associated InPort reference (which is possible due to
their parent–child relationship).

The remaining yet-to-be-described element in the component model is the abstract element
named TaskExtension. Initially, this element might not make much sense on its own, because
abstract elements cannot be instantiated and need to be derived by concrete elements. However,
the element TaskExtension is only a placeholder for additional (not yet defined) properties of a
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task which are defined later in the meta-model extension described next. Therefore, it makes
sense to specify an abstract element without children to indicate a specific extension point.

4.2.2. Component-performance extension

This subsection presents the performance extension (see Ecore diagram in Figure 4.8) of the
component meta-model from the previous subsection. Technically, the extension is realized by
derivation as shown in Figure 4.7.

Figure 4.7.: Performance Extension meta-model extends the component meta-model through
derivation

The performExtension meta-model inherits all the elements from its parent component meta-
model and thus can be used interchangeably. Some of the component meta-model elements are
refined by accordingly derived elements to provide additional model details. The Xtext grammar
provided in the Appendix A.2 is based on the performExtension meta-model, including all the
elements from the component meta-model. One of the reasons for separating the core elements
in the component meta-model from their extensions is the need to keep the original meta-model
simple and clean, and thus exchangeable with other popular component meta-models.

Figure 4.8.: Component Performance Extension Ecore meta-model

Figure 4.8 shows some of the imported core elements from the component meta-model (the
faded-out elements) with their extensions (all the derived elements). The first extension is the
EClass ActivationConstraints. This element is derived from the abstract core element TaskEx-
tension, thus providing an initial specific extension of a Task. In other words, a Task composes
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ActivationConstraints elements, which was not yet possible in the original Ecore meta-model
(see preceding section). Unfortunately, there is no direct way to specify (or respectively restrict)
the cardinality of ActivationConstraints. Because an arbitrary number of TaskExtension elements
can be created for each Task, an equally arbitrary number of ActivationConstraints can be created,
and Ecore does not provide any direct way to restrict the number of derived elements. However,
for the ActivationConstraints, it does not make sense to define more than one element per Task.
In general, this is a common problem when extending Ecore meta-models, and there is a rather
recent initiative within the Eclipse ecosystem called EMF Facet1, which addresses several issues
related to model extensions in Ecore. However, at the moment EMF Facet is not yet matured
enough to be integrated, and the performExtension is a rather simple extension with only one
single “problematic” element. Therefore, a hand-crafted solution is preferred based on an Xtext
model check. The Xtext infrastructure by default allows specifying additional model checks
which are executed while the model is created in the model editor or is parsed from a character
stream. Listing 4.3 shows the respective model check (implemented with Xtend2) that prints an
error in case more than one ActivationConstraint element have been defined for a Task.� �
@Check
def checkSingleActivationConstraintsPerTask(Task task) {

if(task.taskExtensions.filter(typeof(ActivationConstraints)).size > 1) {
error("There are several ActivationConstraints elements defined for the
task "+task.name, ComponentPackage.Literals.TASK__TASK_EXTENSIONS)

}
}� �

Listing 4.3: ActivationConstraints cardinality check

Now, the model semantics for ActivationConstraints is as follows. As shown in Section 4.1.2,
the cyclic execution of a Task can be triggered from different sources. For instance, a Task can
use an internal trigger provided by e.g. an internally used sensor driver. In this case, the Task
execution characteristics cannot be arbitrarily changed but are bound to the execution charac-
teristics of the sensor driver. Therefore, ActivationConstraints provide the Boolean flag called
configurable, which in this case needs to be set to false. In addition, the maximal and/or minimal
activation frequencies (of e.g. the sensor driver) can be specified using the respective optional
attributes maxActFreq and minActFreq of ActivationConstraints. Another common use case is
that the Task does not strictly depend on a specific trigger. A common mistake in this situation is
to prematurely bind the Task to be triggered by one of the associated InPorts, or to even manually
implement a periodic timer. The interesting point is that, in retrospect and from the perspective
of the appropriate Task implementation, it does not make much difference whether the Task is
triggered by one of the InPorts or by a timer. However, at the system level it is of great value
to be able to choose between these different trigger sources (as is explained in more detail in
Chapter 5). For this reason, neither an InPort trigger nor a periodic timer is allowed to be di-

1EMF Facet: http://www.eclipse.org/facet/ (last visited on 6th May 2016)
2Xtend language: http://www.eclipse.org/xtend/
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rectly defined within a component model. Instead, a component developer can optionally specify
execution boundaries for each Task using, again, the attributes maxActFreq and minActFreq. In
addition, the Boolean flag configurable set to true indicates that the task’s trigger can be later
changed considering the minimal and maximal execution boundaries.

The next extensions are the two derived EClasses—CooperativeTask and PreemptiveTask.
These two elements do not add any further attributes. Instead, they are placeholders for a re-
fined semantic behavior of a task. More precisely, PreemptiveTasks within a component, on the
one hand, are directly mapped onto actual system threads (if the system provides them), which
can be executed and distributed across several physical CPU cores. CooperativeTasks, on the
other hand, are not really executed in parallel. Instead, they are sequential and an internal sched-
uler determines their order of execution based on common scheduling strategies such as First-In
First-Out (FIFO) or earliest deadline first (EDF). Both kinds of tasks have their pros and cons. For
instance, PreemptiveTasks allow utilizing multicore CPUs, but, if data is exchanged between the
tasks, the component developer needs to manually implement relevant mutual exclusion and syn-
chronization mechanisms (thereby using mutexes, semaphores, guards, condition variables, etc.).
CooperativeTasks, on the other hand, ease the implementation of a task and prevent potential race
conditions because different tasks can never write and read the same data at the same time. There
is no universal rule to prefer one task type over the other. However, if tasks within a component
are independent of each other (i.e., no data is exchanged), PreemptiveTasks typically allow for
more efficiency, because the system scheduler can then optimally schedule their execution con-
sidering all the other system tasks. However, if a component consists of many tasks with many
interaction points and rather short individual cycle times, then CooperativeTasks might be a better
choice. Ultimately, this decision is the responsibility of the component developer, because he/she
is the one providing the respective task implementations and is aware of implementation-specific
needs and implications.

Next, the EClass InputLinkExtension extends the InputLink from the component meta-model
by providing two additional attributes: the Boolean flags oversamplingOk and undersamplingOk.
Again, the component developer should not directly select a task-trigger, but he/she should define
execution boundaries by specifying ActivationConstraints. As shown in Section 4.1.2, this means
that the relevant task(s) might asynchronously read data from the linked InPort(s). In other words,
tasks might be executed with different update frequencies than the incoming data. This leads to
either oversampling or undersampling of data. As further discussed, an InPort does not have an
input queue but only a buffer of size one, thus only storing the newest data message. Analyzing
common component implementations reveals that there are different cases. In some cases, it
does not make much difference whether old values are used several times or some values are
skipped in between. In other cases, data values should not be skipped or old values should not be
reused. Ultimately, whether under- and oversampling are acceptable or not needs to be decided
and specified by the component developer, since he/she has the relevant knowledge about the
implementation-specific constraints (if any).

The last extension is the EClass CompoundInPort. This element allows grouping several In-
Ports together in order to use that group as one distinct InPort trigger for a task. In most cases,
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the different InPorts of a component should be independent of each other because their individual
data typically result from different components in a system. However, in some rare cases it might
make sense to synchronize the arrival times from different InPorts, for example, in order not to
miss any incoming updates and to immediately react to incoming updates. For these rare cases,
the CompoundInPort groups several (at least two) relevant InPorts of a component and is used in
place of an InPort. The EAttribute composStrategy allows specifying the required composition
strategy based on the AND- and OR-activation semantics [Hen+05].

4.2.3. Flexible TaskTrigger implementation and decoupled component’s
internal service interface

The preceding section described the component meta-model independently of any robotic frame-
works. However, at some point a meta-model needs to be mapped onto a concrete robotic frame-
work so as to provide a grounding into an implementation (according to the general MDSE ideas).

This section describes some design aspects of the flexible (i.e., configurable) task definition.
Thus, the meta-model elements from the component meta-model presented above are mapped
onto the ACE/SMARTSOFT’s framework classes in a model-to-text transformation step (i.e., the
code generation) according to mappings in Table 4.1.

Component meta-model element ACE/SMARTSOFT framework class name
Component SmartComponent

PreemptiveTask ManagedTask
CooperativeTask (not yet implemented)

InPort PushClient
OutPort PushServer

Table 4.1.: Mappings from component meta-model elements toward corresponding classes in the
ACE/SMARTSOFT framework

Figure 4.9 shows a UML class diagram with selected C++ classes of the ACE/SMARTSOFT

framework that implement the configurable interaction between a Task (implemented as Mana-
gedTask) and the InPorts (implemented as PushClient ports).

The two classes PushClient and ManagedTask (colored yellow in Figure 4.9) are part of
the ACE/SMARTSOFT API that a component developer can use to provide component-specific
implementations. For each modeled PreemptiveTask, a ManagedTask is initialized and the
component developer needs to implement at least the core task method on execute(), which
is cyclically executed according to a configured trigger. Besides, the two optional methods
on entry() and on exit() can be overloaded and implemented to provide optional ini-
tialization and the respective clean-up procedures of a task (if necessary). It is worth noting that
the code within on execute() never directly calls methods from PushClients. Instead,
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Figure 4.9.: Generic Task-Trigger UML Class Diagram

a ManagedTask automatically calls the getUpdate(...) method from each associated
PushClient within the task’s method updateAllCommObjects() at the beginning of
each new task cycle. Each updated Communication Object is then stored as a member of the
relevant ManagedTask instance and can be directly accessed at any time during a task cycle.

All ManagedTasks and PushClient ports are initialized properly from within a Smart-
Component class (not displayed in the UML class diagram). There are three different al-
ternatives to how a ManagedTask can be triggered, which are controlled using the task’s
setTaskTrigger(...) method. First, if the ActivationConstraints provide a configurable
flag set to false, a custom trigger implementation needs to be provided by overloading the virtual
method wait on trigger() in the derived task classes. If the configurable flag is set to true,
it depends on the later performance model (see the next Chapter 5) whether the trigger will be a
PeriodicTimerTrigger or a PushClientTrigger (see the two classes at the bottom in
Figure 4.9 in green). In technical terms, this decision is stored in an ini file, which is read during
the initialization of the component and the respective trigger-kind is passed to the task. Both
trigger classes derive from the GenericTaskTrigger base class, thus inheriting the interface
of the base class. The method waitOnTrigger(...) of the GenericTaskTrigger is
used by a task to wait on the next task cycle according to the individual trigger strategy. The
individual trigger strategy is specified by the relevant base class TimeHandler or Push-
ClientObserver. The TimeHandler is triggered from a configured system timer class
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(not displayed in the diagram) that periodically calls the virtual method timerExpired().
The derived PeriodicTimerTrigger class implements the method timerExpired() in
such a way that the method signalTrigger() from the parent GenericTaskTrigger
class is called, which again releases the blocked method waitOnTrigger(...) and thus
initiates the next task cycle.

The PushClientTrigger implements the observer design pattern [Bus+96]. The Push-
Client class thus derives and implements a PushClientSubject, which is the subject
part (also referred to as model) of the observer pattern. Each time an update arrives in the
PushClient, the notify() method is called, which again calls all update() methods of
the attached observers (also referred to as views). One peculiarity of the PushClientSubject
is that it can be optionally configured to call the signalTrigger() method upon each nth up-
date, specified by the prescale factor. By default, the prescale is set to one, meaning that
each time the update() method is called, the signalTrigger() method is executed.

Overall, an advantage of this design is that InPorts and Tasks are effectively separated from
each other and their coupling becomes configurable at the system level. Thus, implementation-
specific requirements can be considered, and a new degree of freedom is provided for later system
integration, which makes the components more flexible, reusable, and thus generally more useful.

4.3. Related Works and Conclusion

This section selectively lists some other works related to component modeling particularly in the
domain of service robotics. This list is not meant to be exhaustive in the sense of reflecting all
general model-driven approaches in robotics, but it focuses only on components (according to the
focus of this overall chapter). The other approaches are listed in the related works sections of the
successive core chapters. A general overview of related works is given in Chapter 2.

4.3.1. Component models

Several attempts have been made to unify and to harmonize several component models to find the
one that is generally and universally applicable. The OMG’s CORBA Component Model (CCM)
[CCM06] and the component definition of UML [UML15] are just two prominent examples in
this category. In the entire history of computer science, no attempt to unify component models
has achieved a satisfactory result that can be widely accepted. There are many reasons for that.
For example, the unification of component models typically leads to one of the following two
extremes. First, more and more details are thrown away until a very generic component model
remains which does not conflict with the widely accepted constraints. However, this component
model is so generic that it is practically useless; it neither provides relevant properties of a com-
ponent, nor can it be transformed into a helpful code. What typically remain are entities called
components with ports, which are basically what UML [UML15] offers. The other extreme is
that many overlapping details are included, many of them optional and some even conflicting.
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CCM [CCM06] is an example for this category. These component models inevitably become so
complex that ultimately nobody really understands or uses them.

Consequently, component models need to be domain-specific. Although this means that each
domain comes up with at least one component model specification of its own, this approach
is much more rewarding and has produced several helpful domain-specific component model
standardizations. For instance, for the DRE domains3 AADL [AAD04], MARTE [MAR11],
and SysML [Sys12] are good examples. Furthermore, RobotML [Dho+12], BCM [Bru+13],
RTC [And+05], and SMARTSOFT [SW99] are popular examples for robotic component model
specifications. Although these models are definitely valuable contributions, it is important to note
that isolated component models alone are not enough. Instead, component models essentially
need to be connected with system (integration) models.

Another rather recent initiative is the Unified Component Model (UCM) [UCM]. It has been
at the beta stage during the time of writing. UCM provides a flexible and extensible component
model based on the component-port-connector idea, which allows additional annotation of poli-
cies and contracts at the modeling level. While this recent development is promising, it remains
to be seen in what ways this standard develops and whether it gets widely accepted. For future
studies, it could be interesting to investigate whether the presented structures and abstractions
(which are independent of any concrete component model) can be expressed with UCM.

But then again, component models should be interconnected with system models so as to en-
sure a systematic and consistent handover of knowledge between successive development phases
with their individual views on the system and involved developer roles. Furthermore, linking
modeling views is possibly the core ingredient for making the step from a model-based (i.e., mod-
els just for documentation) toward a model-driven engineering approach that includes helpful
code generation, stepwise system refinement, and inherent consistency checks.

4.3.2. Robotic frameworks and communication middlewares

Component models alone are not enough to realize a truly model-driven approach. Instead, the
semantics of a component model are partially defined by its grounding in the implementation of
an actual component. There are basically two ways to realize this mapping. First, a component
can be entirely generated out of a component model. While this might be an appealing option in
theory, it is quite unrealistic in practice. Real component implementations use sophisticated and
efficient libraries that sometimes do not have any software models. Moreover, components should
rely on powerful middleware implementations, which also sometimes do not have a model-base.
Therefore, component realizations (in short- or mid-term) will likely remain a combination of
model-driven parts (i.e., models and code generation) and other parts directly implemented in a
robotic framework and communication middleware.

The robotic community has presented a several robotic frameworks such as ROS [Qui+09],
OROCOS [Bru01], RT-Middleware [And+05], and SMARTSOFT [SW99] (to name just a few

3DRE domains are considered generally related and similar to the domain of service robotics.
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prominent ones). Within the scope of this dissertation, the proposed component model is indepen-
dent of a specific framework implementation. Yet, the presented component model requires cer-
tain features of a framework to be exposed for modification (such as the internally used threads,
exact communication characteristics i.e., synchronicity, and communication buffers). This dis-
sertation uses the SMARTSOFT framework due to its rich and flexible interface, which has been
further refined to allow an even more flexible configuration of threads in a component. Other
frameworks such as ROS might provide valid alternatives for future works. This, however, is yet
to be assessed.

Another important aspect of components is related to communication. There is a huge commu-
nity providing many powerful and general-purpose middleware solutions. The Object Manage-
ment Group (OMG) alone provides two common standards—DDS [DDS07] and CORBA [Cor].
As stated in Section 4.1.1, it is important that a component model can be mapped on any existing
middleware implementation if it offers the required performance and quality properties. This also
means that the component model itself should be freed from any middleware specifics, which is
also the case in this dissertation. The dissertation of Schlegel [Sch04] discusses in detail how
this abstraction level can be achieved and which issues need to be solved. Hence, the middleware
abstraction layer for robotic component models can be considered solved. Consequently, a more
in-depth comparison of different middleware solutions would be pointless for this dissertation.

4.3.3. Conclusion

This chapter has presented the component developer’s perspective as a distinct phase of the over-
all robotic development workflow. The relevant needs and concerns of a component developer
are discussed in Section 4.1. Thereafter, Section 4.2 discusses a design of a meta-model for this
development phase. Thus, the individual design choices are explained along with the involved
semantics. Section 4.2 also presents a flexible task-trigger design at the framework level, allow-
ing a direct mapping from the model level. Finally, Section 4.3 lists some related works with a
restricted focus based on the scope of this chapter.

Overall, the component meta-model presented in this chapter allows the complete implemen-
tation of a component in such a way that the component’s code can be considered as closed-
source in the next development phases. Simultaneously, as will be shown in the next chapter,
the component model reveals enough details and configuration options at the model level, which
enable system integrators to adjust the components so that the then available application-specific,
system-level needs can be satisfied.
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“Everything is theoretically impossible, until it is done.”

—Robert A. Heinlein

5
Models in the System Integration Phase

The preceding Chapter 4 described the component model as the main view during the component
development phase. The objective of that phase is to design, develop, and implement flexibly
usable building blocks. These building blocks are now used as the main elements in the next
development phase, namely system integration, which forms the focus in this chapter hereinafter.
The building blocks are configured using modeled (i.e., predefined) configuration options only
(i.e., gray box components).

PC1

System Configuration View Deployment View

Task1

Task2

Task4

Task5
Task3

Task6
Performance View data-flow-path

end-to-end
timings

Figure 5.1.: Conceptual overview of the three core system integration views
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The system integration phase combines several views with specific concerns. In general, sys-
tem integration is about building up an entire system out of reusable components. The main focus
in the system-configuration view (see top left in Figure 5.1) is to instantiate components, to spec-
ify initial wiring, and to refine component configurations. Moreover, system integration needs
to prepare the designed system for deployment. Therefore, platform-specific details need to be
specified such as the distribution of component artifacts over several network nodes on the robot
and the specification of the execution environment. These platform-related details are related to
the deployment view (see top right in Figure 5.1). These first two views have been inspired by
our previous SmartMDSD Toolchain (version 2). Additionally, these two views have been refined
and extended in such a way that they can provide a consistent foundation for the next novel view
named performance (see bottom in Figure 5.1).

The performance view allows modeling performance-related aspects of components at the sys-
tem level. In this view, the interaction links between individual tasks are refined and configured
in such a way that desired overall end-to-end response times are satisfied. Therefore, individual
tasks have to be configured only at the model level within their individually predefined con-
figuration boundaries, ensuring that the configurations do not conflict with component imple-
mentations. Furthermore, the overall end-to-end latencies and jitter of data-flow paths must be
calculated to analyze individual configuration choices. This calculation requires simulating run-
time conditions, such as the scheduling of tasks considering their mutual dependencies (e.g. syn-
chronous triggering) and the occurring sampling delays. Therefore, external analysis tools can be
used as described in the next Chapter 6.

This chapter hereinafter is structured into three parts. First, the next section discusses some
common aspects of the system integration phase. This discussion emphasizes the role of system
integration in an overall robotic development workflow that involves the interactions with the
preceding component development phase and the successive runtime phase. Section 5.2 presents
the meta-models from the first two views (on the top in Figure 5.1), and Section 5.3 introduces
the meta-models of the novel performance view (on the bottom in Figure 5.1).

5.1. The System-Integrator View

System integration is about combining the hitherto independent parts (i.e., the software com-
ponents) into a coherent whole (i.e., the overall system) and to make the system ready to be
deployed and systematically executed on the robot. The core responsibility of system integrators
in this phase is to design the overall system in such a way that all relevant application-specific
needs are satisfied. The system integration phase acts as a bridge between individual component
development and coordinated execution on the robot.

The first common step in this phase involves the selection of the right components that provide
the required functionality with required quality and performance properties. Thus, integration
means defining initial connections between interacting components, the initial parametrization
of components, the platform details, and the mapping of components to platforms and the ac-
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tual hardware. System integrators are application domain experts with a deep knowledge about
application-specific needs and constraints. The driving force for system integrators is the aim to
satisfy customer needs. Therefore, system integrators need to understand technical features, per-
formance attributes, and quality properties of components without the need to go into too many
technical details. This enables system integrators to make informed and balanced decisions for
finding the right trade-offs between what customers really need, what is technically possible, and
what is economically reasonable.

System integrators rely on component models rather than on component implementation. Thus,
component models should expose open configuration options as well as those properties that
have a system-level impact. Consequently, system integrators can select the right components
and tailor them to meet the application-specific needs, without being forced to understand all
the internal, low-level implementation details of each individual component. Hence, anything
else that is not relevant at the system level should be hidden (i.e., encapsulated) within relevant
components. This additionally means that, technically, the component and the system-integration
models must be interlinked at the meta-model level so as to automate and formalize the handover
of knowledge from component developers to system integrators and later to the executed system.
In brief, this allows implementing model-driven tools that guide and support different developer
roles in different development phases with proper abstraction levels.

The following section discusses the role of system integration with respect to runtime adap-
tation. Section 5.1.2 discusses the meaning of the system’s overall responsiveness as one of the
core qualitative system properties. Finally, Section 5.1.3 introduces the notion of cause–effect
(task) chains.

5.1.1. Variability management and stepwise system refinement

Bridging the gap between component development and runtime involves two related concerns for
system integrators. On the one hand, system integrators can exploit available design variability in
a component model to adjust the components so that they fit into the current system, by restrict-
ing or binding some of the provided configuration options. Model-driven tooling can support in
ensuring the overall consistency between the individual configurations. On the other hand, the
system must not be completely fixed before deployment, instead, system integrators can leave
open some of the configuration options that can be exploited by the robot itself for autonomously
making own decisions at runtime and thus for adapting to contingencies and changing situations
(see [Lot+14] for more details on this topic). The role of the model-driven tooling thereby is to
ensure the overall system consistency at design-time and to transfer a consistent system configu-
ration into the runtime (either through code generation or through runtime model interpretation).

In this sense, system integration is about finding the right trade-off between binding (i.e., re-
stricting) design-time variability and equipping the robot with sufficient runtime adaptability.
This trade-off will shift between different systems, as it depends on the target application with
its inherent environment complexity (i.e., dynamic or static), the tasks to perform (i.e., multi- or
single-purpose robot), and the desired degree of autonomy. Interestingly, realistic robotic systems
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always need to effectively strike a balance between two extremes; it is neither reasonable to pre-
program every decision of the robot in advance, because the robot then simply is too inflexible,
nor is it feasible to let the robot itself learn everything on demand due to the unbounded com-
plexity of the real world. As a result, system integration is not the final step in robotic software
development. In fact, runtime variability also has a severe impact on the overall system design
and on analyzing the overall system performance. This particularly means that one single and
static performance analysis for an entire robotic system is not enough, and that runtime reconfig-
urations need to be considered. In other words, a typical system will require the specification of
a finite number of configuration sets and the performance of each configuration set needs to be
individually analyzed.

5.1.2. Designing reactivity and responsiveness of a robotic software system

Another common concern of system integration is to define the flow of data between intercon-
nected components that form networks of components. Compared with the component develop-
ment view (discussed in Section 4.1) there is a systematic shift from component-internal view—
where data flows from the component’s InPorts through the component’s Tasks toward the com-
ponent’s OutPorts—to the component-outer view—where data flows from one component’s Out-
Ports toward another component’s InPorts and after a “magic” internal transformation within that
component, new data appears on the OutPorts of that component, which again can be used by yet
another component’s InPorts and so on. This means that components form interconnected chains
or even networks of components.

Because service robots operate in dynamic environments (sometimes involving unpredictable
interactions with humans), they always need to cyclically scan the environment using their sensors
to determine relevant aspects of the world’s current state, which continuously changes. Moreover,
a robot needs to execute appropriate actions to achieve its designated objectives. Real-world
actions are not atomic but take a certain amount of time to complete and they can fail while
executing or can produce unexpected results (respectively changes in the world). Consequently,
for the robot, executing actions means cyclically monitoring the environment and the progress of
the current action to react to anomalies and contingencies that deviate from the expected results.

This particularity of robots has a direct influence on the overall robot’s software-system design.
For instance, some components implement sensor functionality of the robot. These components
usually do not need any InPorts but use an internal driver that directly communicates with a
sensor device mounted on the robot to regularly receive new sensor updates and to publish the
sensor-data using the component’s OutPorts. Other components receive data from one or several
such sensor components (through their InPorts) to derive new information by aggregating and
transforming data using all kinds of powerful robotic algorithms. These components publish
their produced information through their OutPorts. Finally, yet other components are responsible
to operate the robot’s actuators. These components typically have some InPorts to regularly
receive action commands and these components typically do not require OutPorts, but directly
communicate with an internal actuator driver.
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An interesting observation is that individual components do not always implement one single
function; instead, they regularly cluster and implement several functions that belong together.
For instance, a component can act as both; an actuator and at the same time as a sensor because
many actuators also directly provide their internal state (such as the odometry). Nevertheless,
it is highly desirable to be able to deliberately design the reactivity and responsiveness of the
overall system because this has a direct impact onto the robot’s safety and execution quality (as
is also discussed in Section 3.2.5). The overall system’s responsiveness is defined by the end-to-
end time from receiving sensor updates, traversing several intermediate components, and finally
commanding an action.

There are many system factors that directly or indirectly influence this end-to-end time. For
instance, the available processing power and communication bandwidth of the execution context
provide the foundation for the possible execution and communication times. However, it then
depends on how many tasks are executed in parallel on the same processor, the used scheduling
policy, and how much data is communicated on the same communication channel within a certain
period of time, which, altogether directly influence the overall delays from sensors to actuators.
Designing these factors alone is a great challenge, which nevertheless might be manageable using
common real-time scheduling and real-time communication approaches. However, there is yet
another aspect that needs to be considered, which is discussed next.

5.1.3. Cause–effect (task) chains

As mentioned in the preceding section, designing end-to-end delays from sensors to actuators is
a crucial factor for the system integration phase. Therefore, the execution of threads needs to be
simulated and analyzed. Individual threads in a system are specified by individual component’s
tasks. Since components have mutual dependencies and need to interact (i.e., communicate)
with each other, some tasks might also depend on each other, which needs to be considered in a
performance analysis (see Chapter 6 for more details). In other words, some tasks might trigger
other follower tasks in a kind of execution chain. Therefore, the next part of this section discusses
those system factors that influence the interaction options in such execution chains.

From the computation point of view, the component’s boundaries are not important. A com-
ponent is meant to provide a container for the component’s InPorts, OutPorts, and Tasks. InPorts
and OutPorts represent passive interaction points to other components. Tasks are the only ac-
tive parts of a component. In other words, Tasks are the actual physical entities in a system
that interact with each other. For this reason, the management of end-to-end times demands a
more physical view of the system by exposing the component’s internal Task specifications and
their interaction possibilities. These two concerns seem contradictory at first glance, because en-
capsulation means hiding certain details, while exposing Tasks means exposing the component’s
internal details. However, there are two mitigating factors that are discussed next.

First, as shown in Section 3.2.5, not all system functions of a robot are time critical (nor even
safety-related) and thus would need to be considered for the responsiveness of a system. This
reduces the actual number of Tasks to be considered in a performance analysis. Second, not all
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details of Tasks need to be exposed at the system level. For instance, the component meta-model,
as defined in the previous chapter, already specifies Tasks with links to InPorts and OutPorts. The
remaining configuration options relate to further specifying the synchronicity between InPorts
and Tasks and to specifying the activation semantics (i.e., the trigger) for individual Tasks. All this
allows the definition of a lightweight task-configuration meta-model which does not overwhelm
a system integrator with otherwise unimportant details. Such a meta-model view enables system
integrators to design the overall system’s responsiveness properties at the right point in time where
the relevant knowledge about the application domain becomes available and before redesigns
might become too costly.

The management of the different task-configuration options is the main concern of the perfor-
mance meta-model described in Section 5.3. This performance view provides a novel degree of
freedom that can be exploited by system integrators for refining the overall system’s design with-
out conflicting with the component’s internal implementations. In this view, Tasks—connected
through refined interaction links—form task nets where individual loop-free paths starting from
sensor-tasks and ending in actuator-tasks are called cause–effect task chains (or more shortly
cause–effect chains), which are important system aspects for the later performance analysis (de-
scribed in Chapter 6).

5.2. The System Integration Meta-Models

As introduced at the beginning of this chapter, the system-integration phase is subdivided into
three separate views, which individually are realized as the three Ecore packages (illustrated in
Figure 5.2): system-configuration (short system), deployment definition (short deployment) and
performance specification (short performance).

Figure 5.2.: The three system-integration views (realized as Ecore meta-model packages)

The three system-integration views (in Figure 5.2) build on one another. Respectively, the over-
all system model is extended and refined throughout these sequenced views. This section thus
is structured as follows. First, Section 5.2.1 presents the system-configuration view that allows
selecting components that build up a system. In contrast to the component-development step
from the previous Chapter 4, system-configuration is the first step where the overall system takes
shape and all the components are considered in combination (rather than individually). Next,
Section 5.2.2 discusses the deployment view, which is about adding platform-specific details and
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mapping the previously specified components to hardware. These first two views can be consid-
ered generic and might be available in a similar form in some other frameworks or component
models. The idea in this dissertation is not to reinvent these models but to provide a consistent
representation and a consistent realization as a basis for the new performance view presented in
the next Section 5.3. This new view bridges between the system-level views based on components
and the lower-level, task-based view without conflicting with the already provided specifications
in the preceding models.

5.2.1. Simplified system-configuration meta-model

The section hereinafter presents the system-configuration view (see Figure 5.3). The system-
configuration view is realized as an Ecore meta-model shown in Figure 5.4. This meta-model
directly references the component meta-model (described in Section 4.2.1). The relevant system-
configuration Xtext grammar is provided in the Appendix A.3.

Figure 5.3.: The system-configuration view

The focus of this system-configuration view is to define component instances, to specify an
initial wiring between components and to refine initial component configurations. Therefore, the
SystemModel root element in Figure 5.4 creates elements of type ComponentInstance and Con-
nection. The ComponentInstance element instantiates a distinct component, referenced by the
compRef attribute and specifies a unique instance-name. Instantiating components is reasonable
because there might be more than one instance from the same component in a system. For exam-
ple, in this way it is possible to instantiate two (or more) laser scanner components of the same
type for several laser scanners mounted at different places on the robot.

Each ComponentInstance also instantiates the InPorts and OutPorts of the referenced Compo-
nent. From the semantics point of view, instantiating ports is not necessary because the ports
cannot be different from those defined in the referenced component model. This is important
because specified ports cannot be removed or new ports invented without affecting the compo-
nent’s internal functionality. However, for technical modeling reasons, the Connection element
demands the existence of port elements as direct children of a ComponentInstance. For this rea-
son, a ComponentInstance allows creating and composing InPortInstances and OutPortInstances.
InPortInstances and OutPortInstances are named elements, but their names are automatically de-
rived from the respectively referenced InPorts or OutPorts. The derived name already ensures that
neither an InPortInstance nor an OutPortInstance can be initialized more than once in a Compo-
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Figure 5.4.: System-configuration Ecore meta-model

nentInstance (which otherwise is automatically detected as a name conflict). However, this does
not guarantee that all the specified InPorts and OutPorts of a component are also instantiated
within the respective ComponentInstance. On the one hand, non-instantiated OutPorts are not
harmful because if no component in the system ever needs to use data from that OutPort, it can
also be omitted in the model. On the other hand, if non-optional InPorts are not instantiated and
thus not connected to a relevant OutPort, then the component and thus the system will not func-
tion correctly. Unfortunately, Ecore does not provide any means to directly check this constraint.
Formally, these two model constraints can be expressed using predicate logic as is demonstrated
by the following two equations:

∀ comp ∈ ComponentInstance : ∀ task ∈ comp.compRef.tasks

∃ inputLink ∈ task.inputLinks : ¬inputLink.optional
=⇒ ∃ inPortInst ∈ comp.inPorts : inPortInst.inRef = inputLink.inRef (5.1)

∀ comp ∈ ComponentInstance : ∀ inPortInst ∈ comp.inPorts :

∃ conn ∈ Connection : conn.inRef = inPortInst (5.2)

While this formalism allows expressing the model constraints, they ultimately need to be inte-
grated and implemented within the meta-model itself. One solution for this problem is to define
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invariants for the ComponentInstance element using the Object Constraint Language (OCL). For
such cases, Eclipse provides the OCLinEcore1 editor. Listing 5.1 shows the representation of the
ComponentInstance element within the OCLinEcore editor.� �
class ComponentInstance extends AbstractSysElem

2 {
attribute name : String[1];

4 property outPorts : OutPortInstance[*] { ordered composes };
property inPorts : InPortInstance[*] { ordered composes };

6 property compRef : component::Component[1];
attribute hasRefinedParameters : Boolean[1] = ’false’;

8 invariant allInPortsInstantiated(’At least one non-optional InPort is not
yet instantiated’):
self.inPorts->collect(inRef)->includesAll(

10 self.compRef.tasks->collect(inputLinks)->flatten()
->select(optional=false)->collect(inRef)

12 );
invariant allInPortsConnected(’At least one InPort is not yet connected’):

14 self.inPorts->forAll(inPort:InPortInstance |
self.oclContainer().oclAsType(SystemModel).elements

16 ->selectByType(Connection)->exists(inRef=inPort)
);

18 }� �
Listing 5.1: OCL invariant ensuring that all InPorts are instantiated and connected

Besides of the regular properties and attributes of a ComponentInstance (lines 1–7), Listing 5.1
additionally demonstrates (in lines 8–17) the definition of two OCL invariants. The first invariant
checks that all non-optional InPorts of the referenced Component also are instantiated within the
ComponentInstance. The second invariant checks that each instantiated InPort is connected.

Technically, OCL is integrated within Ecore using EAnnotations. Therefore, the actual OCL
invariants are stored as strings within the Ecore meta-model without any further syntactical con-
straints. This has several negative implications. First, the OCL invariants are not visible within
the Ecore meta-model diagram (see e.g. Figure 5.4). Second, the actual syntax of the OCL invari-
ants is not checked by a Java compiler. OCL invariants are only checked within the OCLinEcore
editor and are later directly interpreted in a deployed Eclipse instance. This means that in case
where the Java implementation of the meta-model is changed (for any reasons), the Java compiler
will not detect inconsistent OCL constraints. Instead, an inconsistent OCL constraint leads to a
runtime error in a deployed Eclipse instance. Consequently, this leads to increased accidental
complexity and to a tool lock-in because of an additional language and tool. All these reasons
motivate another approach. Because the actual model editor is based on Xtext and Sirius, the
validation functionality from Xtext and/or Sirius can be used instead. Prior to that, the subtle
difference between invariants and the model validation in Xtext/Sirius needs to be highlighted:
While the invariants express the positive case (i.e., how the correct model is supposed to be), the

1OCLinEcore: wiki.eclipse.org/OCL/OCLinEcore
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model validations check the negated facts (i.e., they try to find model inconsistencies). Therefore,
the two invariants first need to be negated before being implemented as a model validation check.
The following Equation (5.3) shows the negated version of first invariant from Equation (5.1),
which has been additionally slightly modified to become more implementation friendly.

∀ comp ∈ ComponentInstance : ∀ inPort ∈ comp.compRef.inPorts :

∃ task ∈ comp.compRef.tasks : ∃ inLink ∈ task.inLinks :

inLink.inPort = inPort ∧ ¬inLink.optional
=⇒ ¬∃ inPortInst ∈ comp.inPorts : inPortInst.ref = inPort (5.3)

Listing 5.2 shows the implementation of the model validation check using the Xtend language
for the negated invariant from Equation (5.3). This model validation check is part of the actual
system-configuration Xtext grammar (provided in Appendix A.3).� �
@Check

2 def checkComponentInstantiatesAllInPorts(ComponentInstance comp) {
// check whether all non-optional InPorts of a component are instantiated

4 for(in: comp.compRef.inPorts) {
if(comp.compRef.tasks.exists[

6 it.inputLinks.exists[it.inRef==in && it.optional==false]
])

8 {
// there is at least one Task that has an inputLink to the current InPort
marked as non-optional

10 if(!comp.inPorts.exists[it.inRef==in]) {
warning("At least one non-optional InPort is not yet instantiated",

12 SystemPackage.Literals.COMPONENT_INSTANCE__IN_PORTS)
}

14 }
}

16 }� �
Listing 5.2: Xtend check that warns if not all InPorts are instantiated

Technically, the model validation check in Listing 5.2 searches for those cases where one
of the non-optional InPorts (explained further below) is not yet initialized, and if so, generates
according warning messages that are attached to the InPortInstances list of the corresponding
ComponentInstance model-element. Only non-optional InPorts need to be connected and thus
instantiated. The optionality is defined as follows: A Component can define several Tasks, which
may share the same InPort through respective InputLinks. Each of these InputLinks can be either
optional or non-optional. If at least one of these InputLinks (for the same InPort) is non-optional,
then this makes the referenced InPort altogether as non-optional (regardless of whether other
InputLinks might be optional). Therefore, the check in Listing 5.2 (in lines 5–7) first needs to
check whether there is a relevant InputLink that is both non-optional and references the currently
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checked InPort. If so, the current InPortInstance is searched within the InPortInstances list (in
line 10). If not found, a proper warning message is generated (in lines 11–12).

In a similar way, the negated version of the second OCL invariant from Listing 5.1 (and re-
spectively Equation (5.2)) results in the following formalism (that has been slightly extended to
include the differentiation between optional and non-optional InPorts):

∀ comp ∈ ComponentInstance : ∀ inPortInst ∈ comp.inPorts :

∃ task ∈ comp.compRef.tasks : ∃ inLink ∈ task.inLinks :

inLink.inPort = inPortInst.ref ∧ ¬inLink.optional
=⇒ ¬∃ conn ∈ Connection : conn.inRef = inPortInst (5.4)

Listing 5.2 demonstrates the appropriate Xtend-based implementation.� �
@Check
def checkConnectedInPortInstance(InPortInstance in) {
val comp = (in.eContainer as ComponentInstance)
val system = (comp.eContainer as SystemModel)
if(comp.compRef.tasks.exists[it.inputLinks.exists[it.inRef==in.inRef &&

it.optional==false]])
{

// there is at least one task that uses the current InPort as non-optional
if(!system.elements.filter(typeof(Connection)).exists[it.inRef==in]) {

warning("Non-optional InPort " + in.name +
" seems not yet to be connected to any OutPort",
SystemPackage.Literals.IN_PORT_INSTANCE__NAME)

}
}

}� �
Listing 5.3: Check whether all InPortInstances are connected

The system-level semantics of a purely optional InPort (i.e., all associated InputLinks are op-
tional) is that it can be optionally connected in a system. However, this InPort technically be-
comes non-optional as soon as the system defines an initial connection between that InPort and
a relevant OutPort. This is important, since ports at runtime should not arbitrarily disappear
for any reasons. It would be unnecessarily difficult to implement a component that can deal
with arbitrary InPort disappearance and thus connection losses. There is one exception, namely
the DynamicWiring pattern (shortly mentioned in Section 4.1.3). This component-coordination
pattern allows dynamically changing the wiring of the component’s InPorts at runtime without
provoking system wide failures.

The remaining element in the system-configuration model is the EClass Connection. A Con-
nection allows specifying the initial wiring of an InPortInstance with an OutPortInstance. One
InPortInstance can only be connected to exactly one OutPortInstance that uses the same Com-
municationObject. This can be expressed as follows:
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∀ conn ∈ Connection :

∃!inPort ∈ conn.in : inPort.dataType = conn.out.dataType (5.5)

Yet again, this invariant needs to be negated to be implemented as a model validation check:

∀ conn ∈ Connection :

¬∃!inPort ∈ conn.in : inPort.dataType = conn.out.dataType (5.6)

The negated model check in Equation (5.6) is implemented as an Xtend model check shown in
Listing 5.4. The meta-model specifies that several InPortInstances can be connected to the same
OutPortInstance. This implements the classical publish–subscribe communication pattern with
one publisher and several subscribers. It is interesting to note that a publisher (or respectively an
OutPortInstance) can exist without any InPortInstances ever connected. However, a non-optional
InPortInstance cannot exist in a system without a matching and connected OutPortInstance.� �
@Check
def checkConnection(Connection conn) {

// check that inPort and outPort in the connection use the same
communication object type

if(conn.inRef.inRef.dataType != conn.outRef.outRef.dataType) {
error("CommunicationObjects mismatch between the inPort "
+ conn.inRef.name + " and the outPort " + conn.outRef.name,
SystemPackage.Literals.CONNECTION__IN_REF)

}

// check that an inPort is only connected once
val sysConfig = (conn.eContainer as SystemModel)
for(other: sysConfig.elements.filter(typeof(Connection))) {

if(conn != other && conn.inRef == other.inRef) {
warning("InPort "+conn.inRef.name+" is connected multiple times",
SystemPackage.Literals.CONNECTION__IN_REF)

}
}

}� �
Listing 5.4: Connection Xtend check

A vigilant reader might have noticed one remaining attribute, which has not yet been described,
namely the boolean flag hasRefinedParameters of the ComponentInstance element (see Fig-
ure 5.4). This optional flag allows further constraining the component’s initial parameters based
on the application-specific needs (if necessary). Therefore, an appropriate parameter [Sta+16]
Xtext grammar is used (which is considered out of scope in this dissertation and thus not further
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explained). The typical outcome of the system-configuration model is an ini-file for each instan-
tiated component, specifying the initial connections, component parameters and other possible
component configurations.

5.2.2. Deployment meta-model

The system-configuration model mentioned above defines the overall system, independent of
any specific platform. This section presents the successive deployment definition view (see Fig-
ure 5.5) realized as the Ecore meta-model illustrated in Figure 5.6. The relevant Xtext grammar
is provided in the Appendix A.4.

Figure 5.5.: The deployment view

The deployment meta-model seeks to provide the computer infrastructure of the target plat-
form and to assign component artifacts to relevant computer devices. This meta-model is closely
related to the standard UML deployment model. For each system-configuration model several de-
ployment models can be defined, thus reflecting potentially different platforms. The root element
DeplyomentModel in Figure 5.6 needs to be a named element to uniquely distinguish between
different platforms. The system-configuration model is referenced through the attribute system-
Model of the DeplyomentModel element. The optionality of the systemModel is a pure comfort
feature that allows defining the devices and the network infrastructure in the deployment model
independent of a system-configuration model. However, to assign relevant component artifacts, a
distinct system-configuration model needs to be referenced.

The main two elements of a deployment model are Devices and NetworkConnections. A Device
is a named element that represents a physical computer unit mounted on the actual robot platform.
The three mandatory attributes of a Device are (i) the loginName, (ii) the deploymentDir and (iii)
the ip address. The first two are self-explaining and define (i) the account name of the target
computer, which is used as log-in account for deploying the component artifacts and (ii) the
deployment directory, which is a system path where the component artifacts are deployed to on
the target computer. The third element specifies the main network interface address that should
be accessible from the host (i.e., the developer’s computer). While a real platform might consist
of more than one physical network devices, in practice, usually only one of them is used as the
main communication interface, which then calls for a model-based configuration. All the other
interfaces are typically configured to statically forward the requests to the main interface and are
thus a matter of the overall network infrastructure. For simplicity reasons, only the main interface
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Figure 5.6.: Deployment Ecore meta-model

has been made explicit on model level. However, a proper extension for multiple interfaces is
conceptually straightforward.

The two optional attributes of a Device are the CPU definition and the NamingService. The
CPU definition is a generic element which is not imperative for deploying the component arti-
facts. This element is a placeholder for the device’s main processor and is later referenced within
the performance model (see next section). It should be noted that one could specify a much more
detailed platform definition than that, including several CPUs, memory specifications, and fur-
ther communication-related details. However, this huge amount of details is not (yet) required
in typical robotic systems. For this reason and for reducing initial complexity, these details are
omitted in the initial meta-model. As before, these details can be easily introduced within the
deployment model.

The NamingService element represents a directory service daemon installed on a device. This
directory service translates the logical OutPort names of respective components in a device into a
platform-specific address representation such as a TCP/IP address with a port number. The actual
implementation of the directory service depends on the used communication middleware such
as e.g. the CORBA naming service or the ACE/SMARTSOFT naming service. Technically, the
naming service can be used in two different ways. First, a naming service is installed as a central
master on one of the devices and is shared among all other devices in the network. Second, a
separate naming service instance is installed on each device (i.e., no central point of failure), thus
allowing the individual naming service instances to have a local copy of the directory entries,
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which are typically automatically synchronized among the individual instances. The latter case
is particularly reasonable if the network connection between devices is unreliable e.g. using a
wireless network, which then allows the local components to continue working despite network
dropouts.

The remaining element is a ComponentArtifact, which is a placeholder for the binary repre-
sentation of a component including everything that this component might require (such as e.g. an
ini-file, a grid-map file, etc.) for being deployed to and executed in the target device. The name of
the component artifact is derived from the referenced ComponentInstance of the accordingly ref-
erenced system-configuration model, because there is no reason to define yet other names for the
components different to what already has been specified within the system-configuration model.
An additional model check needs to ensure that each ComponentInstance is only used once in all
artifacts of all devices. The constraint can be expressed mathematically as follows:

∀ar ∈ Artifact, ∀dev ∈ Device :

¬∃ar2 ∈ dev.artifacts : ar2 6= ar ∧ ar2.compInst = ar.compInst (5.7)

Simply speaking, this constraint states that no two artifacts must use the same ComponentIn-
stance. Because the multiplicity cannot be expressed with this kind of statements, the constraint
needs to state (slightly more complicated) that there is no artifact different from the currently
checked one but uses the same referenced ComponentInstance. The negated model validation
check in Listing 5.5 just needs to find all those artifacts which reference the same ComponentIn-
stance.� �
@Check
def checkArtifact(ComponentArtifact ar) {
if(ar.eContainer.eContainer instanceof DeploymentModel) {

val depl = (ar.eContainer.eContainer as DeploymentModel)
for(dev: depl.devices) {

for(arOther: dev.artifacts) {
if(ar!=arOther) {

if(ar.componentInstance==arOther.componentInstance) {
warning("Same artifact is deployed to multiple devices",
DeploymentPackage.Literals.
COMPONENT_ARTIFACT__COMPONENT_INSTANCE)

}
}

}
}

}
}� �

Listing 5.5: ComponentArtifact check
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Now all the duplicates have been filtered out, but this does not yet say anything about the
completeness in the sense that all ComponentInstances from the DeploymentModel also are used
by any of the artifacts. Again, this constraint can be expressed mathematically as follows:

∀compInst ∈ ComponentInstance :

∃dev ∈ Device : ∃ar ∈ dev.artifacts : ar.compInst = compInst (5.8)

The negated version of this constraint is implemented as the model check shown in Listing 5.6,
which checks the absence of an artifact referencing the currently checked ComponentInstance.� �
@Check
def checkAllInstancesAreDeployed(DeploymentModel depl) {

if(depl.systemModel != null) {
for(comp: depl.systemModel.elements.filter(typeof(ComponentInstance))) {
if(!depl.devices.exists[
it.artifacts.exists[it.componentInstance==comp]

]) {
warning("The "+comp.name+" ComponentInstance is not yet deployed "+
"to any device",
DeploymentPackage.Literals.DEPLOYMENT_MODEL__SYSTEM_MODEL)

}
}

}
}� �

Listing 5.6: Checking that all ComponentInstances are assigned to a device

One of the interesting aspects about the deployment step is its outcome. A deployment model
can be considered as the last model before the components are deployed to and executed on the
actual hardware. In other words, this model handles the actual transition between design-time
and runtime. This also is the last step where platform-specific adjustments of components can
be made. For instance, to that point components might exist as source code only, or they were
compiled without already being linked to a middleware. This means that the actual deployment
might involve either a cross compilation of the component binaries, or just linking against the
relevant communication middleware and execution environment. In addition, platform-specific
start-scripts can be generated that allow easy startup of all involved components on the target.
Optionally, the development tool might provide a functionality to copy the binaries to the target
device over the network.

5.2.3. Further possible meta-models

So far, two core system-integration views system-configuration and deployment have been pre-
sented. The next section presents the novel performance view as a main contribution in this
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dissertation. It is worth mentioning that these three views individually address some of the funda-
mentally important concerns during the overall system-integration phase. However, there might
be other views that complement this phase. For instance, other common views might be related
to a more detailed hardware model of the target system including details related to the used HW
devices (the actual sensors and actuators), as well as the physical relations between the HW de-
vices such as the coordinate-system frames. Another important part of system-integration relates
to designing and defining action-plots (also called behavior models, see [Sta+16]).

Overall, this dissertation does not claim to entirely solve the overall system-integration phase
on all levels, nor to provide all encompassing meta-models. Instead, the focus in this dissertation
is to provide and discuss all relevant views that are minimally required to design performance
related aspects of a system. Each of the presented views separates the individual concerns of the
involved developer roles. Thus, the individual complexity is reduced, while the overall system
consistency is ensured by construction.

5.3. The Performance Specification View

This section presents the performance specification view (see Figure 5.7) realized as the Ecore
meta-model illustrated in Figure 5.8. The related Xtext grammar is provided in the Appendix A.5.

Figure 5.7.: The system-performance view

Before the performance view is explained, a subtle relation between the performance view and
the other two preceding views (see Figure 5.7) deserves further explanations. While the preced-
ing two views use components as the main building blocks, the performance view removes the
component boundaries and uses the components’ internal Task specifications as the basic building
blocks. This does not contradict with the preceding views for the following reasons. First, one of
the main concerns of a component is to cluster (i.e., to bundle) related functional parts. Moreover,
functions are wrapped by Tasks within a component and offer specific configuration options, thus
allowing modification of the functional behavior in a consistent way even if the component has
been fully implemented and closed (i.e., compiled to a binary).

This feature can be exploited for injecting performance-related configurations (as explained in
Section 5.1.2 and Section 5.1.3) into a component even after the component development phase.
This allows modeling and refining the performance aspects in a separate view. The refinement of
component internal structures without causing inconsistencies is only possible due to the specific
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Component meta-model design in Section 4.2 that carefully avoids all those system related design
decisions which relate to the here presented performance view.

Another delicate aspect is the chosen order between the three system-integration views in Fig-
ure 5.7. On the one hand, Section 5.2.2 describes the deployment view as the last step before
the component artifacts are deployed to the real hardware for execution. Hence, one could infer
that no further models can follow deployment. On the other hand, the deployment view can be
further subdivided into the platform definition (with Devices and ComponentArtifacts) and the
actual deployment action (i.e., the copy action that transfers the component binaries and other
related artifacts to the actual execution platform). Semantically, the performance view would be
in between these two deployment sub-steps. However, the deployment view has been kept united
to keep related concerns together and to prevent too finely grained views. In addition, the actual
triggering of the deployment action is a matter of the right tooling ensuring that the potential out-
comes (i.e., further artifacts) of the performance view are also included in the deployment action.
In fact, the outcome of the performance view is twofold. On the one hand, performance models
refine the components’ configurations (technically, by providing additional ini-file parameters).
On the other hand, performance models are the basis for the later Compositional Performance
Analysis (CPA) (see next Chapter 6). It is perfectly reasonable to define several alternatives
of performance models for the same system to experiment with (i.e., to find a good trade-off
between) different system designs. Moreover, different configuration sets for relevant runtime
system configurations can be simulated and analyzed in this way. All these reasons lead to one
conclusion that the performance view must follow the deployment view and must hook into the
relevant deployment action.

The main concern of the performance view is to gain control over non-functional system as-
pects such as responsiveness (see Section 5.1.2 for more details). The overall idea is to make
such aspects a deliberate design choice instead of accidental system behavior. Therefore, the per-
formance meta-model illustrated in Figure 5.8 combines two related concerns. The first concern
is to refine the individual couplings between InPorts and Tasks of a component by exploiting the
purposefully left-open variation points of a component model. The other concern is to specify
relevant information about the system so that a Compositional Performance Analysis (see next
Chapter 6) can be performed. While these two concerns could also be separated into two sepa-
rate meta-models, they have a lot in common with many overlaps, which suggest keeping them
united. In the end, it is a trade-off between clustering related concerns (thus reducing potentially
extremely finely grained views) and splitting up less related concerns (whatever this might mean
in detail), thus reducing the complexity of individual views.

The performance meta-model illustrated in Figure 5.8 might appear slightly overloaded at
first. However, the meta-model is just the basis for real model-editors, who by themselves can
reduce model-complexity using e.g. model-layers (see model examples in Chapter 7). Moreover,
the meta-model complexity might be further reduced (in future work) by splitting up potentially
less related concerns like the definition of activation sources from the definition of task chains
(indicated by the two different background colors in Figure 5.8).
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Figure 5.8.: Performance Ecore meta-model

The root element of the performance meta-model (in Figure 5.8) is the named element Perfor-
manceModel. It can optionally reference a deployment model over the deployRef attribute. This
optionality is important due to the idea of conducting hypothetical system performance analyses
without fully specified system models. Hence, system-level performance aspects can be deter-
mined and designed early in the overall system integration step in parallel to the actual system
specification. While the performance analysis can become more precise the more details about
the actually used platform and the selected components become available through relevant system
and deployment models, a hypothetical performance analysis itself can provide additional infor-
mation and clues for selecting the right components for the current system (thus closing a loop to
the beginning of the system integration step).

The child elements of the PerformanceModel root element can be clustered into two main
groups. One for specifying task nets (described in Section 5.3.1), the other for selecting unique
data-flow paths within that task nets also called cause–effect chains (see Section 5.3.2). Sec-
tion 5.3.3 describes the remaining elements with some concluding remarks.
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5.3.1. The definition of task nets

This subsection describes the elements related to defining task nets—these are all the elements
in the lower and the right half of the Ecore diagram in Figure 5.8 (additionally marked with the
light-green background color in the diagram figure). The two main elements are the TaskNodes
and the DataFlows. TaskNodes represent individual nodes in a task net. Each TaskNode can
consist of several InputNodes. Now, a DataFlow element represents a virtual communication
channel between a TaskNode and an InputNode of another TaskNode. A communication channel
abstracts away the actual communication technology and hides the crossings of the component’s
boundaries in between (as explained next).

TaskA1
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TaskB1

TaskC1

TaskD1

ComponentA

ComponentB

ComponentC

ComponentD

InA1

InA2

OutA1

OutA2

InB1
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TaskNodeA1

InA1

InA2

TaskNodeA2
InA2

TaskNodeB1 TaskNodeC1

TaskNodeD1

InB1

InB2

InC1

InD1

Figure 5.9.: From component models to task net models

Figure 5.9 illustrates the relations between task nets and component specifications. This figure
only is a schematic representation used to illustrate the semantic transition and does not represent
the actual graphical models (real examples are shown in Chapter 7). In this example, Compo-
nentA (in upper left in Figure 5.9) consists of two Tasks TaskA1 and TaskA2, two InPorts InA1
and InA2 and two OutPorts OutA1 and OutA2. TaskA1 receives data from both InPorts InA1
and InA2 and propagates its results through the OutPort OutA1. TaskA2 receives data from the
InPort InA2, thus sharing this InPort with TaskA1 and propagates its results through the OutPort
OutA2. The two rectangles (in lower left in Figure 5.9) show the appropriate representations
of the Tasks as TaskNodes with InputNodes. A TaskNode thereby semantically combines a Task
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and the associated OutPort in one element. An InputNode is not so much a representation of an
InPort but rather the InputLink between a Task and an InPort. For example, both TaskNodeA1
and TaskNodeA2 use the same InPort InA2. The names of the TaskNodes and the InputNodes
can be arbitrarily defined independent of the originating Task, OutPort or InPort specifications.
This is important for avoiding potential name conflicts, because each component opens up a new
namespace for Tasks, while all the TaskNodes are within the same namespace.

Next, the connection between a TaskNode and an InputNode is called DataFlow. A DataFlow
semantically skips the intermediate OutPort and InPort specifications because they are not impor-
tant for this view. A TaskNode can serve as a source for several InputNodes such as for example
the TaskNodeB1 serves as a source for both InC1 and InD1. However, each InputNode must
be served by at most one distinct TaskNode. At this point, it might appear that the definition of
InputNodes is redundant compared with the definition of DataFlows. However, this redundancy
is purposeful and reasonable because an InputNode just is an abstract placeholder for either a
RegisterInputNode or a TriggerInputNode (see relevant elements in Figure 5.8). Only a Trigger-
InputNode can be used as an ActivationSource for a TaskNode (see below) and thus needs to be
distinguished.

G = (N,E) where N = {N1, .., Nn} and E = {Ni → Nj} with i, j = 1, .., n and i 6= j (5.9)

P = {e1, .., ek} where ei = {Ni → Ni+1} ∈ E with i = 1, .., k and k ≥ 2 (5.10)

Overall, TaskNodes, InputNodes, and DataFlows allow the definition of task nets with bran-
ches, forks and even loops over several TaskNodes. A task net can be expressed mathematically
as a directed graph G (shown in Equation (5.9)) consisting of TaskNodes N and DataFlow edges
E where the edges connect different nodes. Furthermore, individual data-flow paths p ∈ P (see
Equation (5.10)) can be selected as a subset of all the edges E. Task-nets in this form are gener-
ally comparable to Petri Nets [Mur89]. Thus, TaskNodes represent places, InputNodes represent
transitions and DataFlows represent arcs. Moreover, in some cases where for all TaskNodes in
a task net the DataTriggered ActivationSource is selected, this task net additionally realizes the
Synchronous Data Flow (SDF) semantics [LM87]. However, since individual TaskNodes can also
be asynchronously connected (i.e., using the register semantics), the task net is not necessarily an
SDF graph. The asynchronous case is more related to Kahn Process Networks [Kah74] where the
initiating tokens come from a periodic timer rather than from communication. All these graph
models (and there are many derivatives form them) have their pros and cons and resulted in differ-
ent analysis tools for different purposes. Despite all the similarities or differences between these
semantics, the main point in this dissertation is to reduce the overall (meta-)model complexity
to a reasonable set of useful and sufficient semantics (in accordance with Lee’s freedom-from-
choice philosophy [Lee10]). From analyzing different real-world examples and scenarios in the
domain of robotics (such as e.g. the one presented in Section 3.2.1) and from the discussion in
Section 4.1.2, two main graph models seem to be sufficient, namely the SDF and a time-triggered
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KPN. These two models will be used for activation-source semantics (see below) under the terms
DataTriggered (for SDF) and PeriodicTimer (for time-triggered KPN). As will be shown in a
later Chapter 7, these two semantics are sufficient for modeling all the required, performance
related system properties of a real-world robotic scenario and for conducting a Compositional
Performance Analysis (CPA). Nevertheless, adding further semantics is always possible, yet, in-
creasing the flexibility should always be balanced with reduction of accidental model complexity.

Meta-model name original element → performance model element
component 1 Task → 1 TaskNode
performExtension 1 InputLinkExtension → 1 InputNode
system-configuration 1 Connection → 0..* DataFlow

Table 5.1.: Mapping from component and system models to the task net elements

One of the main purposes of the performance view is to specify task nets and to annotate
properties related to the two data-flow semantics from the preceding paragraph. There are two
alternatives how task nets can be specified. First, because there is a direct mapping between
the elements in a task net and the elements defined in the preceding system and component
models (see Table 5.1), it is possible to pre-generate an entire task net. It is a matter of the right
tooling to provide this model-generation step. For instance, Xtext allows implementing code-
completion handlers for such purposes. Listing A.6 in the Appendix demonstrates the appropriate
completion proposal provider of the performance Xtext grammar (in Listing A.5) for generating
TaskNodes with InputNodes. However, this pre-generation step just is an optional comfort feature.
The second option involves specifying a task net upfront even before any system or deployment
models are known. In this case a hypothetical task net is specified, which can be checked against
the preceding model elements as soon as the relevant reference is specified over the deployRef
attribute of the PerformanceModel root element. Having this reference specified, the individual
TaskNodes can be linked to the relevant Task specifications by defining the optional TaskReali-
zation elements for TaskNodes and by defining the inputLink attributes for the InputNodes.

The InputNode is an abstract element, which derives to either the RegisterInputNode or the
TriggerInputNode. The semantics of the RegisterInputNode is that the parent task will always
use only the latest available data values each time the next task-cycle is activated (see Activa-
tionSource below). This means that all the intermediate values will be ignored that might arrive
in-between while the task is in its current cycle. Or, if the update period of the task is higher than
the update frequency of the InputNode then the task takes the old value for several task cycles
until a new data value becomes available. This comes with some consequences for the selection
of the ActivationSource (discussed further below).

On the contrary, the semantics of a TriggerInputNode is to define a potential data-trigger-
source, which can be used to trigger the task’s cycle activations. This means that each time a
new data value arrives on the TriggerInputNode, this data value is directly propagated to the task
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and the task is triggered to execute its next cycle. In case the InputNode is linked with a relevant
InputLink (from the component specification), the optional flag of the InputLink needs to be
checked. Only non-optional InputLinks can be used as a TriggerInputNode because, as shown
in Section 5.2.1, only non-optional InPorts need to be really connected and used in a system.
In other words, an optional InPort might not be used at all and thereby not trigger the potential
task, which would lead to undesirable behavior that should be avoided. This constraint can be
mathematically expressed as follows:

∀tr ∈ TriggerInputNode : tr.inputLink = null ∨ ¬tr.inputLink.optional (5.11)

A corresponding Xtend check in Listing 5.7 prints a warning message for all those model ele-
ments where this constraint does not hold (i.e., the negated version—using De Morgan’s laws2—
of the constraint from Equation (5.11)).� �
@Check
def triggerInputNodeWithNonOptionalLink(TriggerInputNode trNode) {
if(trNode.inputLink != null && trNode.inputLink.optional == true ) {

warning("TriggerInputNode should not be used with an InputLink defined as
optional", PerformancePackage.Literals.INPUT_NODE__INPUT_LINK)

}
}� �

Listing 5.7: Checking that TriggerInputNode is non-optional

The next attribute of a TaskNode is the definition of the task’s ExecutionTime. As mentioned
in [Lot+16] there are basically two main ways to define the ExecutionTime. The first is to sim-
ulate different execution paths of an algorithm, which includes branch prediction and estimation
of shared resources to derive the overall Worst-Case Execution Time (WCET). As argued in
[Lot+16] this approach is too limiting and too inflexible for robotics. Instead, another approach
is to use profiling, i.e., to instrument the source code and to measure the execution times directly
on the target platform. This latter approach seems to be much more straightforward and feasible
for the robotic cases where algorithms might be heavily complex for a holistic analysis. In some
cases, it is also possible to use anytime approaches such as e.g. demonstrated in [LSS12]. In any
case, providing a realistic ExecutionTime is the responsibility of the performance model designer
who has all the required knowledge about the basic component specifications and the execution
context.

While the ExecutionTime defines the real calculation time of a task, the task’s update-rate is
defined differently. Therefore, the ActivationSource element of a TaskNode allows selection from
among three different options—PeriodicTimer, Sporadic, and DataTriggered. In case, the Task-
Node already references a component’s Task over the TaskRealization element, the choice for the
ActivationSource is not arbitrary but depends on the ActivationConstraints of the referenced task.

2De Morgan’s laws: https://en.wikipedia.org/wiki/De_Morgan%27s_laws
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ActivationConstraints allowed ActivationSource
configurable == false Sporadic
configurable == true PeriodicTimer or DataTriggered

Table 5.2.: Mapping from ActivationConstraints to ActivationSources

More specifically, the configurable flag of the ActivationConstraints element defines whether
Sporadic or PeriodicTimer and DataTriggered can be selected according to Table 5.2. The invari-
ant for this constraint can be expressed as follows (some element names have been shortened for
readability reasons):

∀tnode ∈ TaskNode :

(tnode.activation = null ∨ tnode.taskRealiz = null) ∨
(¬tnode.taskRealiz.activConstr.configurable ∧ tnode.activation = Spradic) ∨

(tnode.taskRealiz.activConstr.configurable ∧
(tnode.activation = PeriodicT imer ∨ tnode.activation = DataTriggered)) (5.12)

Again, using the De Morgan’s laws, the negated version of this constraint can be implemented
as a model validation check shown in Listing 5.8 (please note that the access of activation-
constraints required an additional, implementation-specific step in between).� �
@Check
def checkActivationSourceFitsToActivationConstraints(TaskNode tnode) {

if(tnode.activation != null) {
if(tnode.taskRealization != null

&& tnode.taskRealization.task.taskExtensions.size > 0) {
val activConstraints = tnode.taskRealization.task.taskExtensions
.filter(typeof(ActivationConstraints)).head;

if(activConstraints != null) {
if(activConstraints.configurable == false) {
// only Sporadic activation source is reasonable
if(tnode.activation instanceof DataTriggered

|| tnode.activation instanceof PeriodicTimer) {
warning("Task realization "+tnode.taskRealization.task.name
+ " defines non-configurable ActivationConstraints,"
+ " therefore the ActivationSource should be Sporadic",
PerformancePackage.Literals.TASK_NODE__ACTIVATION);

} // end if(tnode.activation instanceof DataTriggered
} else {
// configurable == true => ActivationSource cannot be Sporadic
if(tnode.activation instanceof Sporadic) {

warning("Task realization "+tnode.taskRealization.task.name
+ " defines configurable==true ActivationConstraints,"
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+ " therefore the ActivationSource should be"
+ " a PeriodicTimer or DataTriggered",
PerformancePackage.Literals.TASK_NODE__ACTIVATION);

} // end if(tnode.activation instanceof Sporadic)
} // end else if(activConstraints.configurable == true)

} // end if(activConstraints != null)
} // end if(tnode.taskRealization != null && ...)

} // end if(tnode.activation != null)
}� �

Listing 5.8: Checking that ActivationSource fits to ActivationConstraints

The case where the flag configurable is set to false means that the related task implements an
internal trigger, whose activation characteristics are unchangeable (see Section 4.2.2 for more de-
tails). In this case, the only reasonable choice is the Sporadic ActivationSource, which describes
hard facts with respect to minimum and maximum activation frequencies (defined in Hertz unit)
of that task. The selection of the Sporadic ActivationSource has two effects on the parent Task-
Node. First, the selected minimal and maximal ExecutionTime values must be smaller than the
inverse of the relevant maximal and minimal activation frequencies (see Equation (5.13)).

MinExecT ime ≤ 1

MaxActFreq
∧MaxExecT ime ≤ 1

MinActFreq
(5.13)

In other words, the defined ExecutionTime must fit within the boundaries defined by the acti-
vation frequencies of the PeriodicTimer or Sporadic ActivationSources. The somewhat lengthy
invariant in Equation (5.14) shows the relevant model constraint (again, some names have been
shortened for readability reasons).

∀ task ∈ TaskNode :

(task.activ = PeriodicT imer ∧ task.execT ime.min ≤ 1

task.activ.perActFreq
∧

task.execT ime.max ≤ 1

task.activ.perActFreq

)
∨

(task.activ = Sporadic ∧ task.execT ime.min ≤ 1

task.activ.maxActFreq
∧

task.execT ime.max ≤ 1

task.activ.minActFreq

)
(5.14)

The negated version of the invariant from Equation (5.14) is implemented as a model validation
check shown in the following (see Listing 5.9).� �
@Check
def checkExecutionTimeFitsInUpdateRate(ExecutionTime et) {
val task = (et.eContainer as TaskNode)
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if(task.activation != null) {
if(task.activation instanceof PeriodicTimer) {
val pt = (task.activation as PeriodicTimer)
if(getTime(et.minTime) > 1.0/pt.periodicActFreq) {
error("Minimal ExecutionTime is too high for the selected periodic"
+ " activation frequency of " + pt.periodicActFreq.toString,
PerformancePackage.Literals.EXECUTION_TIME__MIN_TIME);

} else if(getTime(et.maxTime) > 1.0/pt.periodicActFreq) {
warning("Maximal ExecutionTime violates the selected periodic"
+ " activation frequency of " + pt.periodicActFreq.toString,
PerformancePackage.Literals.EXECUTION_TIME__MAX_TIME);

}
} else if(task.activation instanceof Sporadic) {
val sp = (task.activation as Sporadic)
if(sp.minActFreq > 0.0 && getTime(et.maxTime) > 1.0/sp.minActFreq) {
error("Maximal ExecutionTime is too high for the minimal sporadic"
+ " activation frequency of " + sp.minActFreq.toString,
PerformancePackage.Literals.EXECUTION_TIME__MAX_TIME);

} else if(sp.maxActFreq > 0.0
&& getTime(et.minTime) > 1.0/sp.maxActFreq ) {

error("Minimal ExecutionTime is too high for the maximal sporadic"
+ " activation frequency of " + sp.maxActFreq.toString,
PerformancePackage.Literals.EXECUTION_TIME__MIN_TIME)

}
}

}
}
// this local method converts the TimeValue into seconds of type double
def private double getTime(TimeValue tv) {

var double result = 0.0
switch(tv.unit) {

case TimeUnit::SEC: result=tv.value
case TimeUnit::MSEC: result=tv.value/1000.0
case TimeUnit::USEC: result=tv.value/1000.0/1000.0

}
return result

}� �
Listing 5.9: Checking that ExecutionTime fits to ActivationSource

The second effect of selecting the Sporadic activation source is that all the InputNodes of the
parent task are used as registers. This means that, at any activation of that task, only the latest
data value currently available at each InputNode is taken. This again implies that depending on
the update frequencies of the relevant InputNodes and the actual activation frequencies of the
task, either undersampling or oversampling of data values can occur. Whether undersampling
and/or oversampling are harmful in the internal implementation of a task is specified by the
Boolean attributes undersamplingOk and oversampligOk of the ActivationConstraints element.
These two constraints cannot be directly checked at the model creation time, because the update
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frequencies of the InputNodes might not only depend on the preceding TaskNode but can be even
a propagation of triggering events in a chain of several preceding TaskNodes. Therefore, the
two constraints can be first checked in the later performance analysis and then additionally be
monitored at runtime.

In case the configurable flag is set to true, one of the other two ActivationSources can be se-
lected (see Table 5.2). A PeriodicTimer thereby defines, as the name suggests, an internal timer
that periodically triggers the next task cycle with the activation-frequency (in Hertz units) defined
by the attribute periodicActFreq. Similar as with the Sporadic element (above), the Execution-
Time values must be lower than the inverse of the periodicActFreq, and the InputNodes of the
task (which are used as registers) must again satisfy the over-/undersampling constraints of the
relevant ActivationConstraints.

Finally, the DataTriggered ActivationSource links the update frequency of the parent Task-
Node to one of its InputNodes. Only the TriggerInputNodes are allowed as the activation trig-
ger. Because a TaskNode can consist of exactly one ActivationSource, this implies that exactly
one InputNode only can be used as a trigger for that task. The definition of more than one
ActivationSource for a task would be technically possible but might also lead to a hardly pre-
dictable execution behavior (as also discussed in Section 4.1.2). Semantically, a TaskNode with
the DataTriggered ActivationSource follows the activation frequency of the preceding TaskNode
connected through the referenced TriggerInputNode and a DataFlow link. The activation fre-
quency of the preceding TaskNode can be further subdivided by a prescale factor defined in the
DataTriggered element. The preceding TaskNode itself might depend on yet another InputNode’s
activation frequency, which again might be subdivided, and so forth. At a certain point, there is
one initial TaskNode that acts as the first trigger with a defined activation frequency. The selection
of the different ActivationSource elements for the individual TaskNodes in a task net has a direct
influence on the overall end-to-end latency and jitter values for individual data messages flowing
through the task net (typically starting from certain sensor-tasks, traversing some intermediate
filter-tasks, and arriving at certain actuator-tasks; see the next section for further details).

5.3.2. The definition of cause–effect task chains

This subsection describes the elements related to specifying task chains—defined by the three
elements TaskChain, NodeRef and End2EndSpecs in the upper left corner of the Ecore diagram
in Figure 5.8 (additionally marked with the light-blue background color in the diagram figure).
The main concern of task chains is to identify relevant acyclic paths in a task net and then to
annotate application-specific constraints related to the overall responsiveness of the system.

The preceding subsection introduced the definition of task nets where individual TaskNodes
interact with each other through InputNodes and DataFlow links. In such a task net, many po-
tential paths can be found, arbitrarily starting from one of the TaskNodes, traversing a chain of
intermediate TaskNodes, potentially with infinite loops in-between and finally reaching any ar-
bitrary TaskNode acting as an end-node. As mentioned in the Section 5.1.2 and Section 5.1.3,
responsiveness is an important aspect to be designed during the system integration phase that
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needs a deliberate design of response times related to such chains of TaskNodes. One compelling
approach might be to try to automatically derive unique TaskNode paths from the task net, to cal-
culate end-to-end latencies and jitter values for each of these paths and to present the results to the
system integrator as an additional source of information about the system. While this approach
might appear tempting at first, it also brings with it some unrealistic assumptions. For instance,
loops (i.e., cycles) in a task net are natural, unavoidable, and unresolvable in an automatic and
generic way. Moreover, as described in Section 3.2.5, responsiveness is neither realized by a
single component nor does it impose the same requirements on all the involved components of a
system. Nevertheless, responsiveness directly relates to a few clearly identifiable paths in a task
net. Such paths start from one particular TaskNode (typically implementing a sensor function-
ality), traversing an acyclic path of intermediate TaskNodes, and ending in a specific TaskNode
(typically implementing an actuator functionality). For a system integrator, it is often very easy
and intuitive to identify the relevant paths in a task net. Therefore, a pragmatic solution is just to
provide the tools for system integrators to select the paths of interest and to annotate end-to-end
timing constraints individually for each of these selected paths.

The meta-model for the selection of paths in a task net is fairly simple, only consisting of
three main elements, namely the TaskChain, NodeRef and End2EndSpecs (see upper left corner
in Figure 5.8). The TaskChain is a named element that consist of at least two NodeRef elements.
A NodeRef element directly selects and derives its name from one of the TaskNodes in a task
net. Each TaskNode can be referenced from several TaskChains at the same time, because some
paths in a task net might naturally cross the same TaskNodes. Now, a task chain is defined
by a list of concatenated NodeRef elements. It is imperative that successive NodeRef elements
reference TaskNodes that are directly connected through a DataFlow link. This dependency can
be mathematically expressed as follows:

∀ chain ∈ TaskChain : ∀ node ∈ chain.nodes :

∃ flow ∈ DataF low : flow.source = node ∧
flow.destination = InputNodeOf(node+ 1) (5.15)

In this invariant, the flow.destination actually references an InputNode instead of a Task-
Node. Therefore, we assume (as a small simplification due to the limited expressiveness of pred-
icate logic) that InputNodeOf(node+ 1) returns the matching InputNode of the next NodeRef
in the TaskChain list. Just like with the invariants before, it is negated and implemented as an
Xtend-based model validation check shown in Listing 5.10. As can be observed, the realization of
the InputNodeOf(. . .) method is implemented as a combination of a “for” loop and the usage
of the “findFirst” method in lines 10–11 of Listing 5.10.� �
@Check

2 def checkReachableNodeRef(NodeRef curr) {
val chain = (curr.eContainer as TaskChain);

4 val perfModel = (chain.eContainer as PerformanceModel);
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val ind = chain.nodes.indexOf(curr);
6 if(ind > 0) {

val prev = chain.nodes.get(ind-1);
8 // search for a Flow between PREV.REF and one of the CURR.REF.INPUTS

var found = false;
10 for(input: curr.ref.inputs) {

val flow = perfModel.dataFlows.findFirst[it.destination==input];
12 if(flow != null && flow.source == prev.ref) {

found = true;
14 }

}
16 if(!found) {

warning("Node " + curr.name +
18 " seems not to be connected with its preceding node " + prev.name,

PerformancePackage.Literals.NODE_REF__NAME);
20 }

}
22 }� �

Listing 5.10: Checking that NodeRefs are concatenated

In addition to the model validation check in Listing 5.10, a simple Xtext completion proposal
provider (shown in Listing A.7 in the Appendix chapter) supports in selecting successive NodeRef
elements in a TaskChain. Because the NodeRef element derives its name from the referenced
TaskNode, this also ensures that no duplicates can be modeled, which in turn ensures that the task
chain is free of cycles (which otherwise would result in a name conflict).

Activation-
Constraints

Activation-
Source

E2ELatency-
Specification

component development system integration run-time

- components
- tasks
- in-ports
- out-ports

- monitoring
- configuration

- instances
- task-refs

- conn.

Figure 5.10.: Relation between Activation-Constraints, Activation-Source and End2End latencies

Finally, each TaskChain can optionally consist of one End2EndSpecs element that specifies—
as the name suggests—end-to-end timing requirements for that task chain. There is an interesting
relationship between the three elements ActivationConstraints, ActivationSource and End2End-
Specs, which are distributed over several views (see illustration in Figure 5.10). In the compo-
nent view, ActivationConstraints define boundary conditions for each Task, which restrict the
selection of relevant ActivationSource options in the performance view. The combination of se-
lected ActivationSource elements for all TaskNodes in a task chain directly affects the overall
end-to-end latency and jitter for data messages that are propagated in that task chain. The role of
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End2EndSpecs thereby is to provide application-specific requirements for that end-to-end latency
and jitter values, which can first be checked after the performance analysis is performed (see next
Chapter 6). However, any offline analysis only is a more or less accurate (preferably pessimistic)
estimation of the real robot’s behavior. Therefore, it makes sense to not only use the End2End-
Specs requirements for the design process alone but in particular to directly influence the runtime
execution behavior of the robot by generating and configuring a monitoring infrastructure for in-
dividual components (see Section 6.3), which detects and even allows to react to potential time
violations without breaking the overall system. Hence, even a system only providing best-effort
capabilities can robustly execute its tasks while maintaining (as good as possible) the desired
quality in execution.

5.3.3. Further performance-analysis related elements

The remaining two elements in the performance view (in Figure 5.8) are the CPUCore and the
Scheduler. A CPUCore allows binding of each TaskNode to one particular CPU of a Device.
The performance view additionally allows defining several cores for each CPU and assigning
each TaskNode to a specific core number. The modeled dependency is from a TaskNode toward
a CPUCore (not the other way around, which also would be possible). The advantage of this
design is that each TaskNode can be assigned to at most one particular CPUCore and there are no
further model checks required. It is then just a matter of the right model-editor tooling to display
the TaskNode elements attached to the relevant CPUCore (see example models in Chapter 7).
Interestingly, one could define additional CPU-specific properties such as the CPU architecture.
However, it always is a trade-off between providing as much structure and specifications as nec-
essary but not more. For the initial meta-model design, this additional complexity has been
excluded. Nevertheless, a relevant extension is conceptually straightforward.

The Scheduler element defines—as the name suggests—the scheduling strategy to be used
for each individual TaskNode. Presently, FIFO, RR (RoundRobin), and DEFAULT scheduler
types are supported. The latter is a placeholder for any standard scheduler available on the target
Operating System (OS) (such as the default scheduler of Linux or Windows). Additionally, the
scheduler priority can be specified for each TaskNode individually. If not specified, the same
neutral priority is used by default (which again depends on the currently used OS).

5.4. Related Works and Conclusion

This section selectively lists and shortly discusses some approaches related to the overall system-
integration phase. Therefore, the following Section 5.4.1 addresses related approaches from the
domain of service robotics while the follow-up Section 5.4.2 reaches out for other approaches
outside of robotics.
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5.4.1. System integration approaches within the domain of service robotics

Within the domain of service robotics, there are a bunch of approaches and projects that address
(at least parts of) the overall system-integration challenge. First, the BRICS project3 developed
the BRICS Component Model (BCM) [Bru+13] with the BRIDE and BROCRE tools that aim
to ease the search for potential ROS packages that might offer the required functions, which is
a difficult problem due to the rather wide diversity of ROS repositories from all over the world.
The rather recent ReApp project4 [Awa+16] has a similar focus but goes even further by pro-
viding a so-called integration platform. This integration platform allows annotation of semantic
models for individual ROS packages, which eases the search for related and interface-compatible
ROS nodes. While these two projects address a relevant problem when developing ROS-based
systems, they are too closely related to the ROS environment and tools. In particular, unlike
the SmartMDSD component model [Sta+16] (which served as initial work for this dissertation),
these approaches lack a sophistic component model that is detailed enough in such a way that
the required compositional aspects can be effectively managed independent of the ROS-based
semantics. Moreover, they both lack anything related to handling non-functional aspects such as
those identified as relevant in this dissertation.

Maybe the only currently available robotic approach that can be considered close to the scope
of this dissertation is the Robot Construction Kit (in short Rock) [JA11] with its “oroGen” tool.
Rock allows specification of time- and data-triggered activation of components. These semantics
are comparable to the PeriodicTimer and DataTriggered activation sources in this dissertation,
but the specification and analysis of effect-chains as such is not provided in Rock.

5.4.2. System integration approaches outside and beyond service robotics

Outside of robotics, two prominent approaches to deal with similar system-level aspects are the
Architecture Analysis & Design Language (AADL) [AAD04] and the OMG Modeling And Anal-
ysis Of Real-Time Embedded Systems (MARTE) standard [MAR11]. The former originating
in the avionics domain, allows specification of safety critical systems and several safety stan-
dards use AADL notations. A particularly interesting part of AADL is its flow-latency analysis
[Han07] that allows specification and analysis of end-to-end data-flows. Biggs et al. [BFA14]
demonstrate in an ad-hock example the usage of AADL flows for an autonomous wheelchair
example. While AADL already defines several elements that can also be found in the compo-
nent meta-model in this dissertation in a similar form, AADL generally lacks robotic-specific,
focused modeling views that reflect and cluster the needs of relevant developer roles in respective
development phases as shown in this dissertation. In other words, based on the scope of this dis-
sertation, AADL can be considered as a General-Purpose (Modeling) Language (GPML), while
the meta-models in this dissertation provide dedicated views that can be used on top of AADL.
In this sense, AADL and the meta-models in this dissertation can complement each other in a

3http://www.best-of-robotics.org/
4http://www.reapp-projekt.de/

107

http://www.best-of-robotics.org/
http://www.reapp-projekt.de/


Chapter 5. Models in the System Integration Phase

non-conflicting way. The mappings and relations to AADL are therefore conceptually discussed
in Chapter 8.

The OMG MARTE standard [MAR11] originated in the embedded domain. It provides a Gen-
eral Component Model (GCM) that includes specifications for a flow-port and a client-server
port. The flow-port distinguishes between “push” and “pull” semantics. The former is compa-
rable with the DataTriggered activation source while the latter defines a passive receiver, which
could be used to implement the PeriodicTimer semantics (if an additional timer is used to trigger
the task). Overall, MARTE provides a very detailed modeling level with various hardware related
low-level details. However, it is exactly this huge amount of low-level details that makes MARTE
(too) complex and difficult to apply for robotic applications. By contrast, this dissertation pro-
vides modeling views on a higher level of abstraction that minimizes the number of choices to
an essential set and thus reduces the modeling complexity. Consequently, this allows a simple
integration of model analysis tools such as those demonstrated in the follow-up chapter (which is
not that straightforward with MARTE).

Another interesting approach from the embedded domain is Sentilles’s [Sen12] which coined
the term extra-functional properties. The general motivation presented by Sentilles is entirely
in line with the discussions presented in this dissertation. However, Sentilles came to different
conclusions in his work because he addressed a much more broader and more generic context
for non-functional system properties. By contrast, this dissertation is much more focused on
one specific domain, namely service robotics, which allows to radically narrow the modeling
choices and thus to effectively reduce the overall model complexity (which of course comes
with the expense of not being as generic and flexible as the approach by Sentilles). This narrow
modeling focus is entirely on purpose and allows specification of real-world robotic applications
with realistic complexity (as e.g. demonstrated in Chapter 7).

5.4.3. Conclusion

This chapter discussed several aspects of the overall system-integration phase. Thus, three dis-
tinct views have been presented, namely system configuration, deployment, and performance
specification. These three views are interlinked at the meta-model level and allow specifying dif-
ferent system-level aspects (as discussed in Section 5.1) that altogether define the overall system.
While the former two views (presented in detail in Section 5.2) have been inspired by previous
works, the latter performance view (presented in Section 5.3) addresses a novel concern during
development of service-robotic applications and is the foundation for integrating further analysis
tools such as those demonstrated in the follow-up chapter.
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“You don’t have to reinvent the wheel, just attach it
to a new wagon.”

—Mark McCormack

6
SymTA/S Performance Analysis and Other

Runtime Aspects

While the two preceding chapters focused on design-time aspects, this chapter covers three com-
plementary topics related to dealing with dynamic runtime conditions on the robot. In other
words, the structural design-time modeling views from the preceding chapters are bridged with
dynamic runtime aspects in this chapter. There are basically two options how runtime conditions
can be designed and managed. First, they can be simulated and estimated beforehand by e.g. inte-
grating a Compositional Performance Analysis (CPA) into the overall development process (see
Section 6.1). Second, the runtime conditions can be observed and examined in an executed sys-
tem using logging (see Section 6.2) and monitoring (see Section 6.3) mechanisms.

In brief, this chapter is structured as follows. First, Section 6.1 provides some technical details
with respect to integrating a Compositional Performance Analysis (CPA) based on the SymTA/S
& Trace Analyser tool. A CPA allows simulation and analysis of dynamic runtime condition of a
system. This includes a scheduling analysis that considers inter-task dependencies according to
system-models that conform to the meta-models presented in the preceding chapter. This again
allows designing the dynamic system behavior early as part of the overall robotic development
workflow even before the actual target hardware comes to exist (or is built up). Next, Section 6.2
offers some details related to a generic logging infrastructure for capturing ground truth values
that are later used (in Chapter 7) to evaluate the presented abstractions and models using a real-
world robotic scenario example. Finally, Section 6.3 provides conceptual ideas for designing
a monitoring infrastructure that allows capturing all relevant runtime conditions of a system on
the fly and that envisions the usage of the captured information by the system for improving the
overall execution performance at runtime. A concluding Section 6.4 lists some related works
with respect to the three topics in this chapter.
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6.1. Integrating the SymTA/S-based Computational
Performance Analysis (CPA) into the Overall Robotic
Development Workflow

In this dissertation, one of the main objectives is to gain control over specific performance-related
aspects of a system (such as responsiveness) by making them an integral part of the overall system
design. Such performance aspects can be considered to be highly runtime-specific. This means
that at runtime the scheduler decides on the actual order of execution of individual threads and the
communication between threads consumes a variable amount of time (depending on the variable
amount of data transmitted over a communication channel with limited bandwidth). All this
makes it difficult to design performance aspects beforehand. There is an enormous Distributed,
Real-time and Embedded (DRE) community that deals with analysing the end-to-end response
times and delays. AADL [AAD04] with the OSATE 2 tool [OSA] and the Symbolic Timing
Analysis for Systems (SymTA/S) approach with the Symtavision SymTA/S & Trace Analyser
tool1 are just two prominent examples in this community. Unfortunately, such approaches and
tools are not yet common within the domain of robotics. In line with one of the McCormack’s
credos2, i.e., not reinventing the wheel for already available and established solutions, it is much
more expedient to integrate such tools into the general robotic development workflow and to ease
their usage by automating the transition from structural models toward the input models for such
performance analysis tools rather than inventing yet another custom solution. This is also stated
as an overall Objective 1.4 in Chapter 1. The structures presented in this dissertation allow a
flexible usage of different analysis tools such as the SymTA/S & Trace Analyser (as demonstrated
hereinafter) and OSATE 2 [OSA] (as conceptually shown in Chapter 8).

Figure 6.1.: SymTA/S artefacts

The focus in this section is to discuss the mapping between the models from the performance
view presented in Section 5.3 and the performance analysis based on SymTA/S [Hen+05]. This
mapping is realized by two Ecore meta-models SymtaBase and SymtaConfig, and a generated
Python script (see Figure 6.1). Section 6.1.1 presents an automated model-to-model transforma-
tion step from the models in the performance view into SymtaBase. Then, Section 6.1.2 presents
additional elements in the SymtaConfig meta-model, which are specific to the SymTA/S perfor-
mance analysis. Finally, Section 6.1.3 gives some insights into the resulting project configuration
within the SymTA/S & Trace Analyser tool.

1SymTA/S & Trace Analyser: www.symtavision.com/products/symtas-traceanalyzer/
2See McCormack quote at the beginning of this chapter.
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6.1.1. SymtaBase meta-model and the model-to-model transformation

This section presents the SymtaBase meta-model (see Ecore diagram in Figure 6.2). SymtaBase
serves as the interfacing part between the performance view (presented in Section 5.3) and the
SymTA/S performance analysis based on the SymTA/S & Trace Analyser tool. While the Sym-
TA/S & Trace Analyser tool is a fully-fledged, Eclipse-based workbench that can be used inde-
pendently, the tool can also be operated over a Python API. The integration of the SymTA/S &
Trace Analyser tool into the overall robotic workflow as well as into the Eclipse-based toolchain
is realized using the Python API. In general, there are two main alternatives for using this Python
API. First, one could implement a direct model-to-text transformation by generating a Python
script, which creates a project within the SymTA/S & Trace Analyser tool and initializes all the
project elements according to an input model based on the performance view (from Section 5.3).
However, this approach easily leads to an inconsistent use of the Python API because any API
changes are not detected in the model-to-text transformation step. Ultimately, the result from the
model-to-text transformation just is plain ASCII text without any particular syntax. Besides, the
Python API is rather extensive with lots of extra features that are not required within the scope
of this dissertation. For these reasons, in this section some of the API’s core elements are ab-
stracted away and formalized in a separate meta-model. This meta-model is divided into two
parts SymtaBase (described in the following) and SymtaConfig (described next in Section 6.1.2).
The first part SymtaBase provides only those elements and attributes which can be directly and
automatically derived from the preceding model from the performance view. The advantage of
this approach is that, on the one hand, the SymtaBase meta-model can be kept consistent with the
Python API independent of the other meta-models. On the other hand, any potential inconsisten-
cies between the SymtaBase and the performance meta-models are automatically detected within
the model-to-model transformation as a compiler error that allows fixing the inconsistencies early,
before deploying and using the developed Eclipse plugins.

Figure 6.2 shows the SymtaBase Ecore meta-model diagram. The root element called SVWork-
bench represents a new project (with the provided name) within the SymTA/S & Trace Analyser
tool. The root element within a project is a SymTA/S system, represented by the element Sym-
taSystemDef. In theory, several systems per project could be created; however, for reasons of
simplicity and clarity, no more than one system is created for each separate project. Within a
SymTA/S system different elements can be created. From the perspective of this dissertation,
the following four elements are relevant: (i) a CoreDef representing a certain CPU core, (ii) a
TaskDef representing a physical task in a system, (iii) a TriggerDef referring to a data-trigger
source (see below), and finally (iv) a PathDef referring to a task-chain sequence.

The actual model-to-model transformation is implemented with the Xtend language (see List-
ing 6.1 below) using the factory methods from the SymtaBase Ecore meta-model definition for
creating new SymtaBase meta-model element-instances. Table 6.1 additionally summarizes the
core mappings of the model-to-model transformation.
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Figure 6.2.: SymTA/S Base Ecore meta-model
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performance model
element

performance model
attribute

SymtaBase model
element

SymtaBase model at-
tribute

PerformanceModel name SVWorkbench name
PerformanceModel name SymtaSystemDef name
TaskNode name TaskDef name
ExecutionTime minTime (in ms) TaskDef minExecTimeMS
ExecutionTime maxTime (in ms) TaskDef maxExecTimeMS
Scheduler priority TaskDef priority
Scheduler type != DEFAULT TaskDef analyse=true
PeriodicTimer 1000 / TaskDef activationTimeMS

periodicActFreq ActivationType PERIODIC
Sporadic 1000 / TaskDef activationTimeMS

maxActFreq ActivationType SPORADIC
DataTriggered – ActivationType DATA
DataTriggered eContainer.name+ TriggerDef name

”Trigger”
DataTriggered prescale TriggerDef repetitionFactor
DataFlow source TriggerDef caller
CPUCore name CoreDef name
TaskNode* affinity CoreDef parentOf*
TaskChain name PathDef name
TaskChain nodes* PathDef parentOf*
PreemptiveTask – TaskType PREEMPTIVE
CooperativeTask – TaskType NONPREEMPTIVE

Table 6.1.: Mapping from the performance meta-model to the SymtaBase meta-model
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� �
/**

2 * This method does the actual Model2Model transformation: PerformanceModel =>
SymtaBase

* Inconsistencies between the two Ecore meta-models will be detected through
compiler errors

4 */
def transformIntoSymtaBaseModel(PerformanceModel perfModel) {

6 // create SVWorkbench model element
val svWorkbench = SymtaBaseFactory.eINSTANCE.createSVWorkbench;

8 svWorkbench.name = perfModel.name;
// create SymtaSystemDef model element

10 val symtaSystem = SymtaBaseFactory.eINSTANCE.createSymtaSystemDef;
symtaSystem.name = perfModel.name;

12

var taskDefList = new ArrayList<TaskDef>();
14 var triggerDefList = new ArrayList<TriggerDef>();

16 // create PathDefs and TriggerDefs out of TaskNodes with
this.createTaskDefsAndTriggerDefs(perfModel, symtaSystem, taskDefList,
triggerDefList);

18

// add all Task definitions to the SymtaSystemDef model element
20 symtaSystem.elements.addAll(taskDefList);

22 // set-up the caller dependencies from TriggerDefs to according TaskDefs
this.setUpCaller(perfModel, taskDefList, triggerDefList);

24

// add all Trigger definitions to the SymtaSystemDef model element
26 symtaSystem.elements.addAll(triggerDefList);

28 // create PathDefs from TaskChains and add them to SymtaSystemDef
this.createAndAddPathDefs(perfModel, symtaSystem, taskDefList);

30

// create CoreDefs out of CpuCores and add them to SymtaSystemDef
32 this.createAndAddCoreDefs(perfModel, symtaSystem, taskDefList);

34 // assign SymtaSystemDef to SVWorkbench
svWorkbench.system = symtaSystem;

36

// return the completed/transformed SVWorkbench model element
38 return svWorkbench;

}� �
Listing 6.1: Performance => SymtaBase Model2Model Transformation
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The root element PerformanceModel (from the performance view) results in a new SVWork-
bench and a new SymtaSystemDef elements, both with the name of the PerformanceModel (see
lines 7–11 in Listing 6.1). Thereafter, the SymtaSystemDef’s children elements of type TaskDef,
TriggerDef, CoreDef and PathDef with their relevant attributes are created and configured in sep-
arate methods (indicated by the keyword this), which are individually described in the follow-
up listings below.� �

1 def private void createTaskDefsAndTriggerDefs(
PerformanceModel perfModel, SymtaSystemDef symtaSystem,

3 List<TaskDef> taskDefList, List<TriggerDef> triggerDefList)
{

5 for(task: perfModel.tasks) {
val taskDef = SymtaBaseFactory.eINSTANCE.createTaskDef;

7 // set-up task-name
taskDef.name = task.name;

9 // set-up task priority
if(task.scheduler != null) {

11 taskDef.priority = task.scheduler.priority;
if(task.scheduler.type!=SchedulerType.DEFAULT) {

13 taskDef.analyse = true;
} else {

15 taskDef.analyse = false;
}

17 } else {
// default

19 taskDef.priority = 0;
taskDef.analyse = false;

21 }
// get min/max values from the executionTime element

23 val execTime = task.executionTime;
if(execTime != null) {

25 taskDef.minExecTimeMS = execTime.minTime.timeInMS;
taskDef.maxExecTimeMS = execTime.maxTime.timeInMS;

27 } else {
// default values

29 taskDef.minExecTimeMS = 0.0;
taskDef.maxExecTimeMS = 0.0;

31 }

33 // set-up activation type of TaskDef and create a TriggerDef if needed
this.setUpActivation(task, taskDef, triggerDefList);

35

// set-up TaskType
37 val taskRealization = task.taskRealization;

if(taskRealization != null) {
39 if(taskRealization.task instanceof CooperativeTask) {

taskDef.taskType = TaskType.NONPREEMPTIVE;
41 } else {

taskDef.taskType = TaskType.PREEMPTIVE;
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43 }
} else {

45 // this is the default
taskDef.taskType = TaskType.PREEMPTIVE;

47 }

49 // add the current TaskDef to the local list
taskDefList.add(taskDef);

51 }
}� �

Listing 6.2: M2M Transformation: Create TaskDefs and TriggerDefs

For each TaskNode element from the performance model, a TaskDef element as a child of the
parent SymtaSystemDef is created (lines 5–8 in Listing 6.2). The definition of TaskDefs is the
basis for anything else in a SymTA/S system.

In case a Scheduler element is defined for a TaskNode, the Scheduler’s priority value is as-
signed to the TaskDef’s priority attribute (lines 10–21 in Listing 6.2) where higher values refer
to higher priorities. Moreover, in case the Scheduler is of any type different to DEFAULT, the
TaskDef is configured to be considered in a later performance analysis. The reason for this flag is
that some TaskNodes might be defined for the sole purpose to specify their ActivationSource but
not for analysing (nor specifying) their exact execution behavior. This is particularly reasonable
for those TaskNodes that are not time-critical and thus executed with best-effort only in the spare
time not used by the real-time scheduler.

The TaskDef’s minimal and maximal execution times are defined by the respective attributes
minExecTimeMS and maxExecTimeMS (lines 23–31 in Listing 6.2), which are derived from the
TaskNode’s executionTime attribute with its minTime and maxTime values. Both original time-
values need to be converted into the milliseconds unit before being used. The taskType attribute of
a TaskDef is set according to the original type where a PreemptiveTask results in PREEMPTIVE
and a CooperativeTask results in NONPREEMPTIVE types (lines 37–47 in Listing 6.2).� �
def private void setUpActivation(TaskNode task, TaskDef taskDef,

2 List<TriggerDef> triggerDefList)
{

4 val activation = task.activation;
if(activation != null) {

6 if(activation instanceof DataTriggered) {
val dataTriggered = (activation as DataTriggered);

8 val triggerDef = SymtaBaseFactory.eINSTANCE.createTriggerDef;
// set the name of the trigger to the InputNode.name

10 triggerDef.name = taskDef.name+"Trigger";
// repetationFactor = DataTriggered.prescale

12 triggerDef.repetationFactor = dataTriggered.prescale;
// define task to be parentOf this trigger

14 taskDef.parentOf = triggerDef;
// store trigger in local trigegrList

16 triggerDefList.add(triggerDef);
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18 // default values
taskDef.activationType = ActivationType.DATA;

20 } else if(activation instanceof PeriodicTimer) {
val periodicTimer = (activation as PeriodicTimer);

22 // activationTimeMS = (1/activationFreqHZ)*1000
taskDef.activationTimeMS = 1000.0/periodicTimer.periodicActFreq;

24 taskDef.activationType = ActivationType.PERIODIC;
} else if(activation instanceof Sporadic) {

26 val sporadicTimer = (activation as Sporadic);
// activationTimeMS = (1/activationFreqHZ)*1000

28 taskDef.activationTimeMS = 1000.0/sporadicTimer.maxActFreq;
//minActFreq is not relevant for the SymTA analysis and can be skipped

30 taskDef.activationType = ActivationType.SPORADIC;
}

32 } else {
// default values

34 taskDef.activationType = ActivationType.PERIODIC;
taskDef.activationTimeMS = 0.0;

36 }
}� �
Listing 6.3: M2M Transformation: Set-up ActivationType for a TaskDef and (if needed) create a

TriggerDef

Each TaskDef can be triggered either by an external TriggerDef (which is called by another
TaskDef ), or by an internal ActivationType (which can be either PERIODIC or SPORADIC). Both
trigger kinds are mutually exclusive. At this point, it is worth mentioning that this exclusiveness
is not well represented in the SymtaBase meta-model. On the one hand, it would be technically
possible to modify the meta-model in such a way that an abstract base element over the TriggerDef
and over a new element for the internal trigger-types ensures that only one of the different trigger-
types can be defined for each TaskDef. On the other hand, this modified meta-model would not
well represent the SymTA/S Python API any more. Ultimately, it is a trade-off between directly
formalizing the API and aligning the two meta-model semantics. Interestingly, as long as the
original performance meta-model and the model-to-model transformation are both consistent
(which they are), the generated SymtaBase model also becomes consistent (even if it theoretically
allows inconsistent definitions). For this reason, the SymtaBase meta-model is kept closer to the
API rather than closer to the performance meta-model semantics.

The TriggerDef element is derived from the DataTriggered ActivationSource (lines 6–19 in
Listing 6.3). Like any other element derived from SymtaElementDef, the TriggerDef as well
requires a unique name. Unfortunately, the DataTriggered element does not have (and does not
need) a name. Because the TriggerDef is assigned to the respective TaskDef through the parentOf
reference anyway (in line 14), it makes sense to name the TriggerDef similar (but not equal) to its
parent TaskDef. Therefore, the name for the TriggerDef element is constructed from the parent
TaskDef name followed by the postfix “Trigger” (see line 10 in Listing 6.3).
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The repetitionFactor of a TaskDef is directly derived from the prescale attribute of the re-
lated DataTriggered element (in line 12). Semantically, a TriggerDef concatenates two TaskDefs
and propagates the activation frequency (subdivided by the repetitionFactor) from the preced-
ing TaskDef (specified as the caller of the TriggerDef ) toward the follower TaskDef (specified
by its parentOf relation). The DataTriggered activation source further results in the TaskDef’s
activationType set to DATA (line 19).

The mapping from a PeriodicTimer or a Sporadic ActiviationSources toward the relevant trig-
ger kind for a TaskDef is rather straightforward (lines 20–31 in Listing 6.3). For a PeriodicTimer,
the activationType of the TaskDef is set to PERIODIC and the activationTimeMS is calculated by
the following formula:

activationT imeMS =
1000

periodicActFreq
(6.1)

Similarly, the Sporadic ActivationSource results in the activationType set to SPORADIC and
the activationTimeMS is calculated by the formula:

activationT imeMS =
1000

maxActFreq
(6.2)

The minActFreq of the Sporadic element is ignored at the moment due to its irrelevance for
the worst-case analysis. However, this minActFreq could be added as jitter (not yet modeled)
to the TaskDef ’s activationTime, thus improving the accuracy of the best-case analysis. This
improvement is postponed for future works.� �

1 def private void setUpCaller(PerformanceModel perfModel,
List<TaskDef> taskDefList, List<TriggerDef> triggerDefList)

3 {
// set-up the caller dependencies: TriggerDef.caller = TaskDef

5 for(dataFlow: perfModel.dataFlows) {
if(dataFlow.destination instanceof TriggerInputNode) {

7 val taskDef = taskDefList.findFirst[it.name==dataFlow.source.name];
if(taskDef != null) {

9 val taskNode = (dataFlow.destination.eContainer as TaskNode);
val triggerName = taskNode.name+"Trigger";

11 val triggerDef = triggerDefList.findFirst[it.name==triggerName];
// there might be no trigger in case that a task has T

13 // riggerInputNodes but no DataTriggered activation source
if(triggerDef != null) {

15 triggerDef.caller = taskDef;
}

17 }
}

19 }
}� �

Listing 6.4: M2M Transformation: Set-up the caller attribute for all TriggerDefs
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To derive the caller attribute of a TriggerDef element, an appropriate DataFlow element needs
to be found that connects the related TaskNode over a TriggerInputNode to a preceding TaskNode
(see Listing 6.4). The source value of the DataFlow then is the caller of the TriggerDef element.
This completes the creation of all TaskDefs and TriggerDefs including their mutual references
(lines 20 and 26 in Listing 6.1 show their assignment to the parent SymtaSystemDef ).� �
def private void createAndAddPathDefs(PerformanceModel perfModel,

2 SymtaSystemDef symtaSystem, List<TaskDef> taskDefList)
{

4 // for each TaskChain element create a PathDef element
for(chain: perfModel.chains) {

6 val pathDef = SymtaBaseFactory.eINSTANCE.createPathDef;
// set-up pathDef-name

8 pathDef.name = chain.name;
// set-up PathSemantics

10 if(chain.specs != null) {
if(chain.specs.maxAge != null) {

12 pathDef.semantics = PathSemantics.MAX_AGE;
} else if(chain.specs.reaction != null) {

14 pathDef.semantics = PathSemantics.REACTION;
} else {

16 // default
pathDef.semantics = PathSemantics.MAX_AGE;

18 }
} else {

20 // default
pathDef.semantics = PathSemantics.MAX_AGE;

22 }
for(taskRef: chain.nodes) {

24 val taskDef = taskDefList.findFirst[it.name==taskRef.name];
if(taskDef != null) {

26 pathDef.parentOf.add(taskDef);
}

28 }
// add the Path definition to the SymtaSystemDef model element

30 symtaSystem.elements.add(pathDef);
}

32 }� �
Listing 6.5: M2M Transformation: Create PathDefs

SymTA/S specifies dependencies between tasks by event-streams. This means that a task can
serve as trigger for another task along a sequence of tasks. Such a sequence is defined by the
PathDef element. Therefore, each TaskChain element from a performance model leads to a
new PathDef element with the same name (lines 5–8 in Listing 6.5). The semantics attribute of
PathDef (lines 10–22) allows choosing between one of the two PathSemantics: MaxAge (default)
and Reaction. MaxAge refers to the maximal overall signal delay in a chain of tasks on a specific
CPU core taking all intermediate delays, jitters, and periods into account. Reaction is more
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restrictive with the focus on sporadic (i.e., non-periodic) events where the first reaction time
is more important rather than the cyclic delay. The parentOf list of PathDef specifies which
TaskDefs (from the original TaskChain) make up the actual event-streams (see lines 23–28).� �
def private void createAndAddCoreDefs(PerformanceModel perfModel,

2 SymtaSystemDef symtaSystem, List<TaskDef> taskDefList)
{

4 // add a Core definition for each CPUCore in the Performance Model
for(core: perfModel.cpuCores) {

6 val coreDef = SymtaBaseFactory.eINSTANCE.createCoreDef;
// the name is set to the "kind" value of the CPU element

8 coreDef.name = core.name;

10 // set the performance analysis results depending on
// the selected Scheduler types

12 if(perfModel.tasks.exists[it.scheduler==null
|| it.scheduler.type==SchedulerType.DEFAULT])

14 {
// if there is at least one defined TaskNode that

16 // either did not specify a Scheduler or has a
// Scheduler of type default, then the custom

18 // analysis needs to be performed
coreDef.analysisResult = AnalysisResult.CUSTOM;

20 } else {
coreDef.analysisResult = AnalysisResult.ALL;

22 }

24 // set the parent-of dependency for all relevant tasks
for(task: perfModel.tasks.filter[it.affinity == core]) {

26 val taskDef = taskDefList.findFirst[it.name==task.name];
if(taskDef != null) {

28 coreDef.parentOf.add(taskDef);
}

30 }
symtaSystem.elements.add(coreDef);

32 }
}� �

Listing 6.6: M2M Transformation: Create CoreDefs

The last core element type of a SymtaSystemDef is CoreDef. For each original CPUCore ele-
ment from the performance model, a new CoreDef element with the same name is created (lines
5–8 in Listing 6.6). The CoreDef ’s attribute analysisResult (lines 12–22) specifies whether all
modeled TaskDefs need to be considered in the SymTA/S analysis (indicated by the ALL value),
or if some of the specified TaskDefs need to be skipped (indicated by the CUSTOM value). Which
TaskDefs will be skipped in the CUSTOM case depends on the Boolean value of their individual
analysis attribute. The parentOf relation (lines 25–30 in Listing 6.6) between a CoreDef and
several TaskDefs is contrary to the original affinity relation between a TaskNode and a CPUCore.
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Therefore, the list of TaskNodes needs to be filtered for each CPUCore separately. Thereafter, the
relevant TaskDefs (found by the name) are assigned to the parentOf reference list of the related
CoreDef element.

Finally, the SymtaSystemDef element is assigned to the root element SVWorkbench (in line 35
in Listing 6.1), which completes the model-to-model transformation. Technically, the SVWork-
bench element provides an in-memory representation of a SymtaBase model-instance. To make
this model persistent the default SerializerFragment3 form the SymtaBase Xtext grammar
(see Listing A.8) is used.

6.1.2. SymtaConfig meta-model

The previous subsection presented the mapping between the performance and the SymtaBase
meta-models in an automated model-to-model transformation step. Apart from those elements
that can be automatically derived in a model-to-model transformation step, the SymTA/S analysis
requires additional configuration attributes that are provided by the SymtaConfig meta-model pre-
sented in the following. Therefore, SymtaConfig extends the SymtaBase meta-model by deriva-
tion (see Figure 6.3).

Figure 6.3.: SymtaConfig package

Figure 6.4 shows the SymtaConfig Ecore meta-model diagram. The grayed-out elements rep-
resent the original (i.e., imported) SymtaBase meta-model elements. SymtaConfig extends two
original elements: SymtaSystemDef and CoreDef by the two refined elements: SymtaSystem-
Config and CoreConfig.

SymtaSystemConfig extends SymtaSystemDef by the numberOfTraces and the traceTimeMS
attributes. numberOfTraces refers to the number of simulation rounds that a SymTA/S analysis
will execute while simulating different execution times for tasks within their min/max boundaries
and simulating the runtime scheduler. traceTimeMS refers to the desired maximal length of one
trace-run (which limits computational resources for performing the analysis). The default values
for these two attributes have been determined empirically.

Next, the CPU core is extended by a few SymTA/S-specific analysis attributes within the Core-
Config element. The scheduler attribute probably has the highest impact on the performance anal-
ysis accuracy, and on whether the performance analysis will reasonably reflect the real system’s
execution behavior. For the default case, the selection “GenericOSEK” offers the best approxi-
mation for many common Linux-based robotic systems that can use schedulers such as FIFO and
RoundRobin.

3Serialization: https://eclipse.org/Xtext/documentation/303_runtime_concepts.html
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Figure 6.4.: SymTA/S Configuration Ecore meta-model

Using a different speedFactor than 1 allows a temporary change in the CPU speed to experi-
ment with different speed options without the need to modify the actual execution times of the
relevant tasks. The default value of 1 means that the execution times are taken exactly as modeled.
The execBuffer limits the number of waiting activations per task. The general policy followed in
this dissertation is that the activation of tasks should not be queued, which means that if a task
misses an activation, it just waits for the next activation. In practice, however, as an optimiza-
tion, it makes sense to let the thread pass into its next cycle without waiting in case of a missed
intermediate activation. Therefore, the default value of 2 simulates this optimized case. The ker-
nelPrio attribute is a mandatory element that needs to be specified for a SymTA/S analysis and
allows handling the OS overhead priority levels. The default value of 16 has been empirically
determined (however, this value does not have much influence on the overall analysis and might
be statically generated by default in future implementations).

Overall, the SymtaConfig meta-model allows the definition of SymTA/S-specific analysis op-
tions that are not directly related to the actual system but are required to execute the analysis.
Deriving from the SymtaBase has two advantages. First, because the SymtaBase is automati-
cally derived from the performance view, all original model changes are directly reflected in the
SymtaBase model, thus providing a synchronized base for the derived SymtaConfig model. This
easily allows finding inconsistencies in the SymtaConfig model (in cases where base elements
are deleted or new base elements are added). The second advantage is that a code generator can
be implemented based on the SymtaConfig meta-model that also considers the elements from the
SymtaBase meta-model. In fact, that is exactly the approach to generate the Python script out
of the SymtaConfig model (see next section). The generated Python script uses the SymTA/S
scripting API to initialize SymTA/S projects with configured elements according to the original
SymtaConfig model.
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Figure 6.5.: Performance => SymtaConfig model-to-text transformation
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To reduce the effort of manually creating SymtaConfig models with standard values, an ini-
tial version of a SymtaConfig model is automatically generated by default. Figure 6.5 presents
the Performance => SymtaConfig model-to-text transformation (using Xtend’s template mecha-
nism). The generated textual model conforms to the Xtext grammar provided in Appendix A.7.
Thus, the average developer is not immediately confronted with the detailed SymTA/S configura-
tions and can rely on the default values, while at the same time, system-specific adjustments can
be specified (if needed). This model is generated only once at the beginning, and not overwritten
anymore, to keep developer’s potential changes.

6.1.3. SymTA/S Python script generation and SymTA/S project
configuration

Figure 6.6 illustrates the last step in the SymTA/S mapping, namely the model-to-text transfor-
mation from a SymtaConfig model (see preceding Section 6.1.2) toward a Python script that uses
the scripting API of the SymTA/S & Trace Analyser tool.

Figure 6.6.: PythonScript generation step

The Python API from the SymTA/S & Trace Analyser allows initializing a new project as
well as providing all the project details required to analyze the current system. Therefore, the
SymTA/S & Trace Analyser tool is started from a terminal and the generated Python script is
passed to the tool as a console parameter. The following Listing 6.7 shows the relevant command
line call for a Linux OS.� �
./SymTA-S -noSplash -data <output-folder> -script <generated-python-script>� �

Listing 6.7: SymTA/S command line

The SymTA/S & Trace Analyser tool starts, reads-in the Python script, creates the project
structure and executes the analysis, thereby simulating the runtime behavior for the given sys-
tem. Figure 6.7 shows the resulting SymTA/S Project Explorer view of an example system. The
project structure and the generated simulation and analysis results are stored within the generated
Extensible Markup Language (XML) file (such as the PerformNavigationScenario 1.xml file in
the example in Figure 6.7).

Switching into the Results perspective within SymTA/S & Trace Analyser allows closely inves-
tigating all the determined results. Chapter 7 provides a detailed example including a summary
of the relevant SymTA/S analysis results.

Overall, the two transformation steps—(i) M2M from performance toward SymtaBase and
SymtaConfig and (ii) M2T from SymtaConfig toward the Python script—lead to the following
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Figure 6.7.: SymTA/S Project Explorer

advantages. First, both transformations can be automatically executed in the background without
the toolchain user (i.e., system integrator) even taking notice of their existence. Nevertheless, the
toolchain developer can easily maintain the meta-models related to the SymTA/S Python API in-
dependent of the core robotic meta-models. Inconsistencies between these meta-models are auto-
matically detected as compiler errors in the model-to-model transformation. Second, a SymTA/S
performance analysis—which is based on a current performance model—can be directly trig-
gered by pushing a button. Thus, the initial learning curve for using the SymTA/S & Trace Anal-
yser is considerably reduced. In the same way, other analysis tools, such as e.g. MAST [MAS]
or OSATE 2 [OSA] can be integrated and used alternatively or even in parallel to the SymTA/S
& Trace Analyser.
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6.2. Logging End-to-End Delays in a Real System

Logging generally refers to capturing data from an executed system. The data is thus stored
in log-files for a later offline analysis. Which data exactly is captured highly depends on the
desired information to be derived in the offline analysis. The primary goal of this dissertation
is to integrate performance-related aspects, such as end-to-end delays, into an overall robotic
development process. Therefore, a performance analysis based on SymTA/S is integrated and
interlinked with the robotic models. The next Chapter 7 evaluates whether the analysis yields
meaningful results for a real robot. To be able to asses this, first, some ground truth values need
to be captured from the system executed in a realistic setting. Therefore, the following three types
of information are of particular interest in this dissertation:

1. The activation frequency (periodic/sporadic) of individual tasks in a system

2. The real execution times, i.e., cycle times (min/max, average/mean, distribution, etc.) of
individual tasks in a system

3. Overall end-to-end delay times (with jitter) of signals traversing several interlinked tasks
(of a task-chain)

6.2.1. Designing the logging infrastructure

Before the logging functionality can be designed, some initial assumptions need to be made. To
begin with, robotic systems consist of several distributed components, each potentially consisting
of several tasks. Therefore, one could implement a central Logging Server or even to use the
System Logger such as e.g. described in [HJS03b] that interacts with the components over a
generic and networked logging interface. While this is a flexible and powerful solution, it imposes
a severe modification and a heavyweight extension of the underlying framework infrastructure,
which might become a reasonable course of action in future implementations. However, because
this dissertation only requires the logging of rather few local data values, a much simpler and
lightweight solution is more appropriate. The approach is basically to stream all required log
entries into a separate log-file for each component. This can be easily implemented using standard
file-streams.

To derive the three types of information mentioned above, it is necessary to identify the exact
types of data values to be logged and the exact places in the code where relevant events to be
captured occur. Since we are always interested in timings in all three information types (above),
the main value to be logged is the current time-stamp of any relevant event. The exact places in
code depend on the type of information to be derived. First, for deriving the activation frequencies
of tasks, a log entry needs to be generated each time a task starts its current cycle. In a later offline
analysis, the cycle time can be determined by calculating the time differences between successive
task activations.
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Second, for deriving the execution times of tasks, an additional log entry needs to be generated
each time the task finishes its current cycle. The execution times can be calculated by simply sub-
tracting the start times from the end times of each task cycle. Thus, two additional aspects need
to be considered. First, the system scheduler might preempt a task during its current task cycle
by another task with a higher priority. As argued in Chapter 7, this problem can be mitigated
by using a FIFO scheduler and assigning the same priority to all tasks. Hence, a task always
completes its current cycle without being interrupted by other tasks, thus leading to realistic exe-
cution time measures. Second, it turns out that the end of a task cycle is not so clearly defined as
it might appear at first. For instance, because the general function of any task is to produce some
kind of data, the end of a task cycle could be defined as the time just before the task’s calculated
results are published. Alternatively, the end of a task cycle might also include the publication
(i.e., transmission time) of the calculated results to the next component(s). In the current imple-
mentation of the PushServer in ACE/SMARTSOFT, the actual transmission of published results
is effectively performed by the calling task, which means that a task cycle should include the
transmission time in order to determine a realistic worst-case scheduling analysis (as part of the
SymTA/S performance analysis).

The third type of information—related to end-to-end delay measuring—requires additional
efforts with respect to code instrumentation. First, tasks in a system are individual entities and
can be executed either synchronously (i.e., blocking until results from preceding tasks become
available), or asynchronously (i.e., it is not defined which exact result-message from the preceding
task will be used in the current task’s cycle). In both cases, it is necessary to exactly know which
produced message in one task is used in the next cycle of the follower task, which in turn produces
its own message and propagates it to yet another follower task in the chain and so forth. The basic
idea to address this problem is based on the following two extensions. First, each task gets its
own update-counter, which is incremented for each new task cycle. Second, this update-counter is
stored in the produced message that is communicated to the follower component (or respectively
a certain task of that component). At this point, a log entry for the start and the end of a task cycle
needs to store not only the current time-stamp and the current update-counter value but also the
update-counter value of the preceding task in a task-chain. Thus, in a later offline analysis, log
entries of individual task cycles can be linked together along the chain of tasks by correlating the
relevant update-counter values.

6.2.2. Logging core instrumentation

The instrumentation of code for logging can be separated into two distinct parts. One part is
related to a generic logging infrastructure which every component automatically gets by default.
This part can be implemented within the underlying robotic framework. The other part is the
individual instrumentation of the component’s internal business logic. This latter part can be
partially automated by code generators using the generation gap pattern. Thus, the component-
specific logging infrastructure is generated for each relevant element in accordingly generated
base classes, while the actual business logic is implemented in derived classes. The advantage is
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that the logging infrastructure is automatically included for all relevant elements of a component
without bothering the component implementer with irrelevant details.

ManagedTask
#trigegr: GenericTaskTrigger*

#svc(): int
#updateAllCommObjects(): void
+start(): int
+stop(): int
+on_entry(): int
+on_execute(): int
+on_exit(): int
+wait_on_trigger(): int
+setTaskTrigger(trigger:GenericTaskTrigger*): void

<<Singleton>>

GlobalLogger
-logFile: std::ofstream
-logs: std::list<LogEntry>

#on_execute(): int
+log(...,timestamp:TimeValue): int
+startLogging(timout:ACE_Time_Value=1): int
+stopLogging(): int

UserTask
-useLogging: bool
-taskLoggingID: int
-currentUpdateCount: int

+setUpLogging(taskID:int,useLogging:bool=true): void
+isLoggingActive(): bool
+getLoggingID(): int
+getCurrentUpdateCount(): int
#updateAllCommObjects(): void
+on_execute(): int
+<OutPortName>Put(commObj:CommObject): StatusCode
+triggerLogEntry(logID:int): void

if(useLogging==true) {
   LOGGER->log(logID, ...);
}

SmartSoft/ACE Kernel Component

Figure 6.8.: Class-diagram for the two generic logging classes and a UserTask class

Figure 6.8 shows a class diagram with the main logger class GlobalLogger as part of
the ACE/SMARTSOFT framework implementation and an exemplary representation of a custom
UserTask implementation as part of a hypothetical component (see classes with yellow back-
ground color in Figure 6.8). The GlobalLogger implements the singleton design pattern and
thus can be used from everywhere within a component (using the macro LOGGER as shown in the
comment in Figure 6.8). Each call of the log(...) method creates a new log entry, including
the passed arguments and a time-stamp from the system clock. The log entry is then pushed back
onto an internal FIFO queue. A thread drains this queue and writes the entries into a file-stream.� �
Sec|Usec|ID|CurrCO|PrevCO
1471509610|446090|0|0|146
1471509610|448075|1|0|146
1471509610|448082|2|0|146
1471509610|685323|10|0|0
1471509610|712814|0|1|156
1471509610|716006|1|1|156
1471509610|716018|2|1|156
...� �

Listing 6.8: Log-file content example (the ’|’ separates the columns)
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Listing 6.8 shows an example of a typical log-file content. The header line defines a name for
each column. In this example, the first two columns provide the time-stamp (in seconds since
1970 and microseconds of the current second). The third line is an ID that defines the source that
triggered that log entry. This source ID is calculated by combining the taskLoggingID (for
each new task in a component the ID is incremented by 10) and a numerical offset, identifying the
actual place within a task where the log entry has been triggered. For example, ID value 0 refers
to the start time of a cycle from task with the taskLoggingID 0. The ID value of 3 refers to
the end time of that same task. The last two columns store the task’s currentUpdateCount
and the update-count from the preceding task that has in turn generated the currently used input
message.

Figure 6.9 shows a sequence-diagram that illustrates the common procedure to log the above-
mentioned start/end times of each task cycle. The main procedure of each task is executed by
three methods: on entry(), on execute(), and on exit(). The first and the third meth-
ods are executed only once during respectively the initialization and destruction of a task. The
method on execute() is cyclically executed in an infinite loop. In the first step of this loop,
the task awaits a release (i.e., activation) from its own trigger. As described in Section 4.2.3, the
trigger can be configured as one of three options: a PeriodicTimerTrigger, a PushClientTrigger,
or a (custom) trigger by overloading the method wait on trigger() in derived task classes.
In any case, the second step in the loop is to update a local copy for all required communication
objects that are currently available in the referenced input ports. Hence, the task can use a con-
sistent copy of all required communication objects throughout its entire cycle without the objects
being overwritten in between.

The input communication objects store the update-counters from the preceding tasks of a task-
chain. Again, this counter is required to correlate the current task cycle with the relevant task
cycle of the preceding task. Hence, the next step is to log the current time as a current task cycle’s
start time along with the task’s ID, the current (local) update counter value and the update-value
from the preceding task. It is worth mentioning that the time to copy the communication object(s)
is neglected here. Particularly for big communication objects, this time might not be insignificant.
However, in most cases, this time is considerably smaller than the actual execution time of a task
and thus can be neglected.

Subsequently, the task executes its business logic. The results from that part are typically either
propagated through the relevant output port or sent to an internal actuator driver. In any case, the
next step is the time where the current task cycle’s end time has to be logged (which is done the
same way as the start time). The last step is to increment the task’s own update-counter and to
repeat the whole loop.

In summary, this subsection presented a logging mechanism to store the start- and end times of
each task cycle for each individual task in a component. The resulting logs allow reproducing the
sequences of successive task cycles for tasks along a modeled task-chain. Overall, these log-files
are used as input for a manual analysis of the real system’s execution times and end-to-end times,
which are used in the next chapter as ground truth values to evaluate and asses the suitability of a
SymTA/S-based performance analysis for a real system.
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Figure 6.9.: Sequence-diagram showing the logging of task cycle’s start/end times
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6.3. Monitoring System Properties at Runtime

One particularity of the domain of service robotics is that, after a software system has been
deployed to the actual robot platform, the system does not necessarily become static and fixed.
Instead, the system needs to flexibly and continuously adapt to changing situations and conditions
that the robot will face during execution. This means that the robot will reconfigure its on-board
software components according to a predefined set of rules and a currently executed task so as to
maintain a certain service quality in execution. To make informed decisions, a robot requires a
certain level of information, not only about its surrounding but also about its own internal system
state. The extraction of the current system state is often referred to as runtime monitoring.

Runtime monitoring can be considered as an extension to logging (compare Section 6.2). The
general difference between logging and monitoring is that logging stores all the collected infor-
mation in log-files for later offline analysis. Monitoring, on the other hand, additionally analyzes
the recorded information on the fly and directly provides an instant feedback from the system,
typically visualized in a Graphical User Interface (GUI). Both approaches have pros and cons. For
instance, logging typically is more efficient and affects less the runtime behavior of the system but
requires offline analysis tools leading to less efficient overall analysis loops. Monitoring allows
performing in-system debugging, directly triggering testing events according to the monitored
information, as well as feeding the monitored information back into the system as an additional
source of information for improving the overall runtime behavior. The drawback of monitoring is
its higher resource demands. Analyzing information on the fly inevitably consumes computation
resources, thereby affecting the actual runtime behavior.

This section henceforth presents conceptual ideas for designing a monitoring solution and is
structured as follows. First, Section 6.3.1 provides further details about service quality aspects
from the perspective of this dissertation. Then, Section 6.3.2 discusses common runtime proper-
ties that might be interesting for runtime monitoring.

6.3.1. Runtime variability exploitation for maintaining a service quality

Autonomous mobile service robots always need to deal with limited on-board resources, incom-
plete and faulty information, as well as unpredictable outcomes of the robot’s own actions and
the generally unpredictable situations of the real world. Therefore, a service robot needs to do
a trade-off between maximizing the success probability to accomplish the current goal and min-
imizing computation efforts. A service robot thus continuously looks for promising sequences
of actions to accomplish the current mission at hand. As illustrated in [Lot+14], a robot often
finds several alternative sequences with comparable success expectations. In order to choose one
alternative over another, a robot further needs to take additional non-functional aspects [Lot+14]
into consideration such as e.g. maximizing overall execution performance, reducing energy con-
sumption, maximizing safety, etc.

In this context, the overall responsiveness of the robotic system at runtime can be considered
as one of such non-functional system properties that has a direct influence onto the robot’s per-
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formance and the perceived execution quality while interacting with humans. As mentioned at
the start of this dissertation, such properties need to be managed as early as possible in the overall
development process. An appropriate solution based on the SymTA/S & Trace Analyser is pre-
sented in Section 6.1. However, an analysis is always just an approximation of the real runtime
behavior. While the analysis already is highly beneficial during the system design, it must not
stop there. Instead, the resulting system can be additionally instrumented in such a way that it
can monitor its own non-functional system properties as an additional source of information to
adjust and adapt its own execution.

For example, a robot that performs a typical pick-and-place task might determine that the re-
sponsiveness of its own obstacle-avoidance control loop is better than originally presumed during
the system design phase, thus potentially allowing higher velocities without violating any safety
constraints. To increase the overall performance, a robot thus might try to gradually increase its
velocity (bounded by a maximum value) while monitoring the responsiveness. Overall, using a
direct system feedback at runtime for improving the overall execution quality seems to be the next
logical step; however, it is not yet fully explored within this dissertation and can be investigated
in a future work.

6.3.2. Best-effort and hard real-time execution

Another interesting runtime aspect is the required accuracy of the expected and presumed run-
time behavior. Analysis approaches such as e.g. SymTA/S allow predicting the runtime behavior
of a system with a certain accuracy. As argued in Section 3.2.5, for many basic functions of a
robot, best-effort behavior is entirely sufficient. For these best-effort cases, approaches such as
SymTA/S provide an approximation only (i.e., average case values) of the overall timings. It
is important to notice that these average values alone already are a huge support in the overall
system design. However, it might still be of additional interest to know (at least in retrospect)
how the system has behaved in a certain environment with all the specific cases. Therefore, a
dedicated monitoring infrastructure can be injected into each component using structural infor-
mation from the performance models. This infrastructure allows detection of all the cases that
deviate from the simulated limits of the analysis tool. Moreover, as argued above, if a system
behaves in a “more efficient” fashion in a certain environment than what has been predicted in a
performance analysis, then a monitoring solution can be used at runtime by the system to adapt
its own behavior so that it can reduce resource consumption or increase performance without
violating the designed timing constraints. In this sense, a monitoring solution adds flexibility to
the overall system design and increases development efficiency because the system designer can
reduce the efforts of designing an overall system in the traditional (i.e., hard real-time) manner
by using regular hardware components and regular operating systems while still being able to get
in-system feedback for further refinements if needed.

There are different levels at which runtime execution parameters with respect to responsiveness
can be monitored and managed at runtime. It starts within individual components and tasks
that can react to timeouts while receiving incoming data. Moreover, individual time-outs can be
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sometimes cured in a whole chain of involved components or accumulate to time violations of the
overall chain that need to be handled on a higher level. This higher level is the task coordination
layer called the sequencing layer [Lut+14]. How time violations are handled on the sequencing
layer is beyond the scope of this dissertation. However, a prerequisite is again the ability to detect
the time violations in the first place.

This leads to the conclusion that a mechanism is needed that can detect timeouts locally within
a component, allowing implementing local timeout handling strategies. Moreover, system-level
timeouts are of particular interest to be detected by monitoring several chained components in
combination. While the conceptual foundations for this part are clear and a previous work in
[LSS11] introduced a generic monitoring solution, the implementation of monitoring as described
above has not yet been fully realized and thus remains an interesting case for future works. How-
ever, it is important to notice that a monitoring solution is costlier to develop than a comparable
logging solution (regardless of its later usefulness). Therefore, it often makes sense to start with
a simple logging approach (such as e.g. presented in Section 6.2) and then to extend and refine it
toward a fully-fledged monitoring solution (which is often conceptually straightforward).

6.4. Related Works and Conclusion

This section lists some selected approaches related to simulating and analysing the overall exe-
cution performance of a system and an approach related to runtime monitoring.

6.4.1. Performance analysis approaches

The analysis methods for the overall execution performance of a system can be separated into two
main groups. The first group is related to determining the Worst-Case Execution Time (WCET)
and the second group is related to analysing scheduling and network arbitration effects that addi-
tionally consider possible inter-task-dependencies.

There are several approaches for determining a WCET. An overview is provided in [Wil+08].
However, as argued in [Lot+16] such approaches are not well suited for robotic cases due to the
typically rather unpredictable runtime behavior of common robotic algorithms. Instead, it is more
appropriate to use profiling, i.e., to instrument the source code in such a way that the min/max
execution times can be directly measured and logged in the target platform. Therefore, it is
often sufficient to execute isolated parts of a system (which is typically done for testing purposes
anyway).

Having the execution times the next problem to solve is the scheduling analysis of an entire
system. Therefore, there are several approaches such as the work by Liu and Layland [LL73],
which uses Rate-Monotonic Scheduling (RMS), and the work by Dertouzos [Der74], which uses
Earliest Deadline First (EDF) scheduling. While these approaches are precise and useful in small
systems with a global view on the entire system at the lowest possible level of abstraction (i.e., all
threads with priorities are known), these approaches scale badly for more complex systems with

133



Chapter 6. SymTA/S Performance Analysis and Other Runtime Aspects

highly distributed parts and varying guarantee demands, which is very common in robotics as is
also argued in [BS05]. An approach that performs better under such conditions is found in the
work of Lehoczky [Leh90], which uses the busy window approach and other approaches based
on Reservation-Based Scheduling (RBS) such as in [AB01].

As a result, a scheduling analysis alone is not enough to fully analyze specific runtime per-
formance aspects such as end-to-end delays in a system. Instead, additional approaches are re-
quired such as the Pletzer’s Timing Definition Language (TDL) [Ple12], the Flow-Latency Anal-
ysis [Han07] of AADL, and the SymTA/S [Hen+05] approach. As TDL is generally based on
the Logical Execution Time (LET) [Gho+04], it is generally too inflexible for robotic cases as
it requires pressing the execution cycles of all threads into globally synchronized time frames,
which scales badly for more complex robotic systems of realistic size and complexity. A very
appealing approach is the AADL’s Flow-Latency Analysis [Han07], which is implemented as a
plugin within the OSATE2 tool. Unfortunately, at the time of writing, the Flow-Latency Analysis
within the OSATE2 tool had some instability issues. That called for other, more matured tools.
Alternatives include the MAST tool [MAS] and the Symtavision SymTA/S & Trace Analyser
tool. The latter tool has been selected due to its good accessibility and high maturity. As will
be shown in the next chapter, SymTA/S & Trace Analyser tool performs reasonably well with
appropriate precision also for robotic systems.

6.4.2. Monitoring and runtime adaptation

In a previous work published in [LSS11], a monitoring approach has been developed that allows
monitoring different aspects of robotic software components without breaking the components’
encapsulation while minimizing the resource overhead of monitoring. The basic idea is to di-
vide the monitoring solution into two parts: one efficient part embedded into the infrastructure
of each component, and the other more elaborate part consisting of the analysis logic with a
GUI which can be executed on a remote development computer (which is typically less resource
constrained). The basic ideas of this approach are discussed in Section 6.3. However, further
investigation is needed with respect to the use of monitored information in a system for flexible
runtime adaptation.

Beyond the domain of robotics, there is a research community around the topics of self-
adaptive systems [Wey+13; WIS13; IW15], and architecture-based self-adaptation [Ore+99].
The overall idea is that a system is separated into at least two layers, where the lower layer(s)
implement the managed system that directly interacts with the environment and a higher layer(s)
implementing the managing system that adapts the underlying managed system if needed. The
managing system typically comprises the MAPE-K [IBM06; IW15] components, which alto-
gether implement the adaptation control loop for the underlying managed system. In this sense,
monitoring as discussed above is the first part of such a MAKE-K control loop. Further details
related to runtime adaptation for robotic scenarios can be found in [Lot+14].
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6.4.3. Conclusion

This overall chapter has focused on runtime-specific aspects such as the analysis of dynamic run-
time conditions using a Compositional Performance Analysis (CPA) based on SymTA/S. There-
fore, the SymTA/S & Trace Analyser tool has been interlinked with a performance view (see
Section 6.1). Moreover, Section 6.2 presented a flexible logging solution that allows recording
in-system timings. This logging mechanism is used in the next chapter for determining end-to-end
times, which will be helpful for evaluating whether the proposed abstraction of the performance
view along with the presented performance analysis is adequate for designing real-world robotic
applications. In addition, Section 6.3 provided some initial ideas about coming up with a moni-
toring solution as a means to dynamically improve the overall runtime execution performance.
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“In theory there is no difference between theory and practice.
In practice there is.”

—Yogi Berra

7
Demonstration Examples and Performance

Analysis Results

So far, the overall focus in the preceding four method chapters has been on concepts and meta-
models with their structures and semantics. By contrast, this chapter henceforth shifts the focus
toward a real-world system example that is developed using the novel modeling tools. This
allows empirically evaluating the modeling tools. Additionally, the system example is not only
designed at the model level but is particularly grounded in real component implementations that
are executed on a Pioneer P3DX robot in a realistic setting. Consequently, the actual end-to-end
timings are logged on the robot and are used to evaluate the precision of the SymTA/S-based
Compositional Performance Analysis (CPA) that is directly initiated from the example system
models. The idea is to evaluate the hypothesis that a CPA allows estimating and designing vital
performance-related system aspects early in a robotic development process even before the actual
hardware comes to exist.

This chapter is structured as follows. The next Section 7.1 presents and discusses the navi-
gation scenario, which has been chosen to represent common robotic use-cases. Therefore, the
graphical model notation is presented and the involved architectural design choices for individual
component and system models are discussed. Thereafter, Section 7.2 conducts a SymTA/S-based
performance analysis and compares it with ground truth measures from a real robot executed in
a realistic environment. The goal is to assess whether SymTA/S yields realistic results for a real
robot. Section 7.3 concludes this chapter with a discussion of the presented results and reflects
them within the overall scope of this dissertation.

7.1. Navigation Component- and System-Models

In order to evaluate the modeling capabilities of the novel tools from this dissertation, the nav-
igation scenario (shortly introduced in Section 3.2.1) has been selected as one of the recurring
scenarios in the domain of service robotics. The navigation scenario has been remodeled with the
new modeling tools whose implementation is publicly available as open-source on source-forge:
https://sourceforge.net/p/smart-robotics/smartmdsd-v3
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The navigation scenario consist of several components (see Figure 3.5 in Section 3.2.1) whose
internal implementations have been ported to support the flexible task configuration as described
in Section 4.2.3. The modified component implementations together with the accordingly ex-
tended ACE/SMARTSOFT framework are all available as open-source on source-forge (same
URL as above).

This section presents and discusses the models of the involved navigation components and the
designed navigation system. The model-diagrams have been created with a graphical model edi-
tor based on the Eclipse Sirius1 plugin. The model editor provides a graphical representation for
all the meta-model elements and most of their attributes. In some cases, where it is cumbersome
to model element-attributes graphically, another representation has been used. For instance, the
attributes from ActivationConstraints of a component are modeled in tabular form. It is worth
mentioning that any model representation, be it graphical, tabular, or even textual, just is a repre-
sentation of the same in-memory Abstract Syntax Tree (AST). Thus, regardless of which model
editor has been used in the end, Eclipse always keeps the different representations synchronized
and consistent, thus allowing to use personally preferred representations and editors. Again, the
implementations of the modeling tools are publicly available as open-source on source-forge un-
der: https://sourceforge.net/p/smart-robotics/smartmdsd-v3

Meanwhile, a new screencast2 on YouTube demonstrates the usage of the novel modeling
tools. The following two sections present and discuss individual component-models and their
instantiation in system models.

7.1.1. Navigation component-model-diagrams

This section presents the navigation component models using a graphical notation whose ele-
ment mappings with relevant meta-model elements are summarized in Table 7.1. Additionally,
Table 7.2 lists the ActivationConstraints from all presented tasks in relevant components and
Table 7.3 lists the over-/under-sampling configurations of related InputLinkExtensions.

Figure 7.1 (on the left) shows the SmartPioneerBaseServer component. SmartPioneerBase-
Server wraps up the functionality of the Pioneer P3DX driver and provides generic, driver-
independent services that can be used by other components in the system. Thus, SmartPi-
oneerBaseServer acts as both a sensor in the sense that it constantly provides odometry updates
(through the BasePositionServer output port) and as an actuator in the sense that it receives nav-
igation commands (through the VelocityClient input port) that are internally propagated to the
actual velocity controller. The core functionality of the component (i.e., the interaction with the
actual base driver) is implemented within the RobotTask class. As shown in Table 7.2, RobotTask
is not configurable, which means that it is triggered by an own internal trigger (in this case the
communication interface of the internally used device driver). That is, the RobotTask must not be
interrupted (e.g. due to waiting on incoming messages of a component), because this might lead
to hardware communication errors due to violated timings. This is a common case for hardware

1Eclipse Sirius: https://eclipse.org/sirius/
2Toolchain screencast: https://youtu.be/JIYPJXmop3U
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Graphical Element Meta-Model Element

Component

InPort

OutPort

PreemptiveTask

Table 7.1.: Graphical notation of component’s meta-model elements

components where tasks directly interact with hardware devices. Therefore, it makes sense to
separate the interaction with the hardware (implemented in the RobotTask) from the interaction
with the component’s input-port VelocityClient (implemented in the VelocityCommandTask) and
output-ports (implemented in the PoseUpdateTask).

Figure 7.1.: Component diagrams for the SmartPioneerBaseServer (on the left) and the Smart-
LaserLMS200Server (on the right)

At this point, it is worth mentioning that in the initial version of the meta-models (as intro-
duced in the preceding chapters) potential dependencies between tasks within a component (such
as e.g. between the RobotTask and the PoseUpdateTask) have not (yet) been made explicit at
the model level. The reason is related to the focus in this dissertation, namely to introduce the
management of non-functional aspects at the model level, as well as to keep the meta-models
simple and generic. However, in a later implementation (shortly discussed in Chapter 8), the
meta-models have been extended to allow specification of inter-task dependencies, which im-
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proves the readability of the models but can be considered only ornamental for this dissertation.
For the discussion hereinafter, it is sufficient to know that the dependent tasks within a compo-
nent interact with each other at the code level using regular mutual exclusion and synchronization
mechanisms (such as mutexes, semaphores, and guards).

Component- Task- is- MIN MAX
name name configurable Act. Freq. Act. Freq.
SmartPioneerBase- PoseUpdateTask true 10.0 Hz 40.0 Hz
Server
SmartPioneerBase- RobotTask false 10.0 Hz 40.0 Hz
Server
SmartPioneerBase- Velocity- true 10.0 Hz 30.0 Hz
Server CommandTask
SmartLaserLMS200 LaserTask false 33.0 Hz 40.0 Hz
Server
SmartJoystickServer JoystickTask false 1.0 Hz 50.0 Hz
SmartMapperGrid- CurrMapTask true 10.0 Hz 20.0 Hz
Map
SmartMapperGrid- LtmMapTask true 2.0 Hz 10.0 Hz
Map
SmartPlanner- PlannerTask true 4.0 Hz 10.0 Hz
BreadthFirstSearch
SmartCdlServer CdlTask true 5.0 Hz 40.0 Hz

Table 7.2.: Overview of Activation-Constraints for all Tasks of the presented components

Furthermore, as shown in Table 7.2, the PoseUpdateTask is configurable within the interval
from 10 to 40 Hz. Thus, a stable update frequency is guaranteed independent of the actual
configuration of the RobotTask. This provides an additional variation point for system-integrators
for adjusting the component’s behavior to the later system design. Of course, undersampling or
oversampling can occur depending on the according configurations. An alternative design might
be to directly propagate odometry updates from the RobotTask to the BasePositionServer.

The SmartLaserLMS200Server (on the right in Figure 7.1) demonstrates another component
with hardware-related functionality. That is, the LaserTask directly interacts with the locally used
device driver of the respective laser range-finder sensor. Again, as shown in Table 7.2 the Laser-
Task is not configurable because it is triggered by the internal device driver. One particularity
of the SmartLaserLMS200Server component is that it optionally uses odometry updates from the
BaseStateClient input port. The reason is that a laser range-finder can be either mounted on a
mobile (i.e., moving) platform or rigidly fixed on a stationary platform. In the former case, each
new laser scan is stamped with a current odometry value (i.e., six-dimensional pose) so as to
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know at which coordinates this scan was recorded. In the latter case, the laser pose is statically
configured during component startup and the BaseStateClient is not used.

Figure 7.2.: Component diagrams for SmartJoystickServer (left) and SmartJoystickNavigation
(right)

The last hardware related component of the presented navigation stack is the SmartJoystick-
Server (on the left in Figure 7.2). This rather simple component directly interacts with a gamepad
device driver to receive relevant commands (i.e., pushed buttons, joystick movements, etc.). Yet
again, the JoystickTask is non-configurable (see Table 7.2). The interesting functional constraint
of this task is that the gamepad driver might not respond for at most one second as long as no
buttons are pressed and no joysticks are moved. As soon as any button is pressed or a joystick
is moved, the gamepad driver immediately reacts and communicates the changes to the Joy-
stickTask with a maximum frequency of 50 Hz. Therefore, the effective frequency at runtime
dynamically varies between these two boundary values. This behavior is different from the ones
in the LaserTask or the RobotTask, where the update frequency is rather stable during execution
of a component but can be configured to a different value depending on the actually used device
type (e.g. specified by an ini-file parameter of that component). At present these two cases are
not distinguished in the model because in practice it is often not possible to specify the exact
update frequency of a device driver in advance (i.e., whether the update frequency will be stable
throughout the entire runtime of a component or will it be stable for certain periods of time or
can the frequency change at any time?). However, it is mostly possible to define the corner cases,
which are later used for the performance analysis. In order to keep the initial meta-models simple,
this distinction has not yet been introduced within the component meta-model (but an extension
in this direction is straightforward if needed). In consequence, the resulting performance analysis
might be over-pessimistic for this part because there the upper bound (i.e., the max activation
frequency in Table 7.2) always is considered regardless of whether these values actually will be
reached at runtime.

In contrast to the so far presented hardware-related components, SmartJoystickNavigation (on
the right in Figure 7.2) can be considered as a pure filter component. It receives joystick floating-
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point values (in the range from 0 to 1) through the JoystickClient input port, transforms the values
into navigation commands (i.e., translation and rotation velocities in m/s) within the Joystick-
NavigationThread and publishes a new velocity message through the NavigationVelocityServer.
In this case the JoystickNavigationThread is pretty lightweight. The implementation does not
need any particular activation constraints, which are consequently entirely omitted in this model.
The default implicit semantics for this case is that the task can be flexibly configured without any
constraints (i.e., the highest possible flexibility). In most systems, the JoystickNavigationThread
will be configured to synchronously await new incoming joystick messages, yet, this should re-
main a configurable option for system integrators (because this assumption might not hold true
for all future systems).

Figure 7.3.: Component diagrams for SmartMapperGridMap (left) and SmartPlannerBreadth-
FirstSearch (right)

The next two components, the SmartMapperGridMap and SmartPlannerBreadthFirstSearch
(in Figure 7.3) are related to the grid-map-based path-planning functionality of the navigation
stack. The SmartMapperGridMap is another example where the definition of more than one task
makes sense. Within this component the CurMapTask calculates a local occupancy grid-map
by aggregating incoming laser-scans and publishes the updated map through the CurPushServer
output port. The local map is just a section of the overall map (e.g. the map of the current room
but not the entire building). This map is replaced by another section as soon as the robot leaves
the current section. The LtmMapTask, on the other hand, calculates and updates a long-term map
of a bigger area such as the entire building. The long-term map typically is communicated to
other components using the file system, rather than being communicated over the network (due
to the often-extensive map size and comparably rather recent map changes, if any at all). The
CurMapTask requires considerably less computation resources than the LtmMapTask, and thus
the current (local) map can be updated more frequently than the long-term map. There are no
implementation constraints for the update frequencies of these two tasks and thus the concrete
frequencies should remain configurable to be refined in the later system integration. However,
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due to the rather high resource demands some boundary values have been empirically determined
(see Table 7.2) to prevent unrealistic configurations.

Component- InputPort- Task-name over- under-
name name sampling sampling
SmartPioneerBase- VelocityClient Velocity- permissible permissible
Server CommandTask
SmartLaserLMS200- BaseState- LaserTask permissible permissible
Server Client
SmartMapperGrid- LaserClient CurrMapTask not permissible
Map reasonable
SmartPlanner- BaseState- PlannerTask not permissible
BreadthFirstSearch Client reasonable
SmartPlanner- CurrMap- PlannerTask permissible permissible
BreadthFirstSearch Client
SmartJoystick- Joystick- JoystickNavi- not permissible
Navigation Client gationThread reasonable
SmartCdl- Laser- CdlTask not permissible
Server Client reasonable
SmartCdl- PlannerGoal- CdlTask permissible permissible
Server Client
SmartCdl- Joystick- CdlTask permissible permissible
Server Client

Table 7.3.: Over-/under-sampling configuration of the different InputLinkExtensions

At this point, it is worth mentioning that the CurMapTask has an architectural particularity re-
lated to the interaction with the LaserClient input port. It does not make much sense to update the
current map as long as no laser-scan updates are available because this would result in the very
same current map. In other words, oversampling from the CurMapTask toward the LaserClient
would inevitably lead to wasted resources and thus should be avoided. For this purpose, the com-
ponent model extends the input-link specification by additional over-/undersampling constraints.
Table 7.3 provides an overview of all the over-/undersampling specifications for all InputLinkEx-
tensions. While in most cases, over- or undersampling are not harmful and can be permitted,
in some (rare) cases, it needs to be restricted as e.g. in the case of the CurMapTask with the
LaserClient. This restricts permitted configuration choices for the later system-integration phase.

The main recipient of the updated local grid-maps is the SmartPlannerBreadthFirstSearch
component (or any other component implementing a map-based path-planning functionality).
This component is a nice example where a task receives data from more than one input port. In
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this case, the PlannerTask requires an updated grid-map and the current position of the robot
within that map to calculate a path toward the overall goal. At this point, it is worth noting that
the meta-models defined in this dissertation omit details related to behavior coordination (such
as e.g. shown in [Sta+16]). In particular, behavior coordination requires a generic coordination
interface for each component, which at present is generated by default without being shown at the
model level. For example, the overall destination to drive to is commanded to the SmartPlanner-
BreadthFirstSearch component over such an interface from a higher behavior-coordination level
(see Section 4.1.3 for further details).

For the two input ports of the SmartPlannerBreadthFirstSearch component, the PlannerTask
requires the following design considerations. First, both input ports need to be non-optional
because without a current position and the current grid-map, calculating a new path does not
make much sense. Second, although it is likely that the update frequency of the BaseStateClient
input port is higher than the update frequency of the CurrMapClient input port, this cannot be
generally assumed for all future systems. In other words, a typical mistake in this use-case is
to hard-code a strict binding in such a manner that e.g. the PlannerTask is dispatched by newly
incoming messages on the BaseStateClient input port. This design is effectively prevented by not
allowing such a binding already at this step in the overall development process. Still, as shown in
Table 7.3, it is possible to express the constraint that it does not make much sense to oversample
the BaseStateClient, because without knowing the current position, it does not make much sense
to calculate a new path. Thus, the decision about which of the two input ports actually will
trigger the execution of the PlannerTask (or even whether this task will be triggered by a periodic
timer) is separated from the implementation-specific requirement of getting new positions and
maps. Regardless of which trigger is selected, the resulting overall update frequency should be
somewhere in-between the boundaries of 4 to 10 Hz (as shown in Table 7.2).

Figure 7.4.: Component diagram for SmartCdlServer

The last, not yet described, component of the navigation stack is the SmartCdlServer (see Fig-
ure 7.4). Briefly, SmartCdlServer implements a flexible obstacle-avoidance algorithm that uses
laser-scans to calculate an adequate collision-free movement depending on different strategies
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as described below. For this purpose, SmartCdlServer has the three input ports: LaserClient,
PlannerGoalClient and JoystickClient. The LaserClient is non-optional because it provides the
minimally needed information-kind for the internal algorithm to function correctly. The other
two input ports are both optional, which results in the following possible operational modes. The
first operational mode is the purely reactive navigation, where the robot wanders freely in an en-
vironment without a certain direction and yet without causing any collisions. This mode is used
in exploration phases of the robot where the environment is not yet known and e.g. the map needs
to be generated. In this first mode, neither the PlannerGoalClient nor the JoystickClient are used.
The second operational mode is where the SmartCdlServer tries to reach the next goal position
received through the PlannerGoalClient by generating a path that does not cause a collision. This
is a regular operational mode that is used to perform goal-oriented navigation. In this case the
JoystickClient input port is not used. The last operational mode is the joystick-based navigation.
In this case the SmartCdlServer tries to follow the given orientation and velocity command that
is received through the JoystickClient input port as long as this command does not lead to a col-
lision. If a joystick command would lead to a collision, then the given velocity is replaced by a
slower value (in the worst case by zero), which effectively prevents a collision.

Just like with the SmartPlannerBreadthFirstSearch component, the three operational modes of
the SmartCdlServer are commanded from a higher behavior-coordination level (shortly explained
in Section 4.1.3). Yet, the three input ports of SmartCdlServer already specify the different
implementation-specific constraints, namely the general optionality of the PlannerGoalClient
and the JoystickClient as well as the non-optionality of the LaserClient. In addition, as shown in
Table 7.3, oversampling the LaserClient is not permitted because it does not make much sense
to calculate a movement without knowing the newest information (from the newest laser-scan)
about possible obstacles in near surrounding of the robot. That way, a system integrator becomes
able to flexibly use the SmartCdlServer component regardless of which modes will be needed (or
not) in his system.

7.1.2. Navigation model-diagrams in the system-integration phase

The previous section (above) presented individual components of the navigation stack. Thus,
the focus has been on modeling component-specific implementation constraints without foresee-
ing too many application-specific requirements. In this section, these individual components are
combined (i.e., integrated) into a system. Thus, the remaining configuration options of compo-
nents are utilized to decide on application-specific concrete configurations without violating any
component-internal implementation constraints.

Figure 7.5 shows the system-configuration diagram for the navigation scenario and Figure 7.6
presents the related deployment diagram. The main concern in the system-configuration diagram
is to select the right components to be used and to specify the initial wiring between them. It
is worth noting that the wiring between components must not remain static at runtime but can
be dynamically changed using the wiring pattern (see [SSL12b] for more details). Moreover,
each instantiated component is given a unique name, which can be different to the component’s
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Figure 7.5.: System-Configuration Diagram

original name. Thus, the same component can be instantiated multiple times, which makes sense
for components such as e.g. the SmartLaserLMS200Server, which can be instantiated for a laser
mounted at the front of the robot and another laser component of the same type for a laser mounted
at the back (or somewhere else) on the robot. However, as the presented navigation example is
comparably simple, this feature was not (yet) needed.

Another concern of the system-configuration diagram is to specify the initial parameters of
individual component instances. This can be done using another Xtext-based grammar not dis-
played in this dissertation (see [Sta+16] for more details).

Figure 7.6 shows the deployment diagram that is mainly responsible to define deployment-
specific system attributes such as the mapping of individual component artifacts to relevant PC
platforms on the robot. In this example, all the components are deployed to the same PC1 using
the folder location /tmp and the login account Guest on that PC. A single CPU named MainCPU
is specified and a naming-service with the port number 20002 is instantiated.
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Figure 7.6.: System-Deployment Diagram

Graphical Meta-Model Graphical Meta-Model
Element Element Element Element

TaskNode DataTriggered

TriggerInputNode PeriodicTimer

RegisterInputNode Sporadic

ExecutionTime Scheduler

TaskChain MaxAge

End2EndSpecs Reaction

Table 7.4.: Graphical notation of the performance meta-model elements
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Figure 7.7.: System-Performance Diagram (see also [Lot+16])
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Overall, the two modeling views in figures 7.5 and 7.6 are inspired from the previous Smart-
MDSD Toolchain Version 2 (mentioned in Chapter 2). However, they are required as a foundation
for the novel performance view, which will be described by example next. Figures 7.7 and 7.8
show the two main diagram-layers of the performance view for the navigation scenario. Table 7.4
additionally provides an overview of the graphical notation mappings toward the relevant meta-
model elements. The performance view shifts the level of granularity from the component level
toward the task level. The main purpose of this view is to configure individual tasks within their
configuration boundaries in such a manner that altogether they form cause–effect chains that ad-
here to overall end-to-end timing specifications. In other words, the previously specified tasks
within components are now considered in combination, at the system level, independent of where
the individual tasks are actually realized (i.e., regardless of whether some of the tasks are within
the same component or in different components). This abstraction beyond component bound-
aries is important because in the end whether individual tasks need to synchronously follow the
update rates of the preceding tasks or whether some of the tasks require an own timed trigger
is absolutely independent of where the tasks are actually realized. Moreover, hiding component
boundaries effectively removes some of the avoidable model complexity in this performance view
as discussed next.

Figure 7.8.: System-Performance Diagram (Deployment-Reference view)

One of the aspects that deserves further attention is that the tasks are modeled “again” in
the performance view, which might seem redundant at first glance. One might be asking, why
to specify the tasks once more if they are already defined in the component models already?
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Ultimately, it should not be possible to specify tasks, which are not implemented somewhere.
Moreover, tasks are not instantiated independent of their surrounding component (i.e., compo-
nent instantiation implicitly also instantiates the tasks). Nevertheless, the definition of TaskNodes
(and TaskChains) still makes sense due to the following two different modeling use-cases. The
first use-case is that it might make sense to start designing the overall performance-specification
upfront consisting of hypothetical TaskNodes, which may or may not be later bound to actual
TaskRealizations. Thus, one might already start with an initial coarse-grained performance anal-
ysis even before all of the components have been specified, selected, and instantiated. As soon as
additional details about the system become known, the performance analysis can be refined until
all the components and thus tasks are known and mapped. The mappings between hypothetical
TaskNodes and the actual tasks are modeled in a separate diagram layer shown in Figure 7.8. It
is important to note that the overall system first becomes deployable, and thus executable, when
all the specified TaskNodes are also mapped to tasks of relevant components. Prior to that, the
system is analyzable but not executable. The second use-case is that the TaskChains are specified
after the system-configuration has been completed. Even in this case, it is just a matter of the
right tooling to pre-generate the entire TaskChains out of the referenced system and thus com-
ponent and task models. This pre-generation can be implemented as a code-completion step as
e.g. shown in the Appendix in Listing A.6.

Another argument in support of the specification of TaskNodes is that not all defined tasks are
actually time-critical and thus would need to be configured (i.e., refined) in the performance view.
In other words, the number of TaskNodes might only be a sub-set of all the available tasks in all
components. For all these reasons and to make the performance view self-reliant, the addition
of the TaskNode specifications has been introduced in the performance meta-model despite the
hypothetical redundancy. Owing to the removal of the component boundaries, each TaskNode
requires a unique name that differentiates it from all the other TaskNodes, which are defined in
the same global name-space.

InputLink attribute InputNode refinement
optional=true RegisterInputNode
optional=false TriggerInputNode or RegisterInputNode

Table 7.5.: Relation between the InputLink and the InputNode refinements

After the TaskNodes have been defined, the next step is to specify and to refine the interactions
between individual TaskNodes. This can be achieved by specifying different types of InputNodes
for each individual TaskNode. An InputNode defines an interaction point of its TaskNode with
another TaskNode. Although InputNodes might look like input ports of a component at first
glance, they are mapped to a different element, namely the InputLink, which is the dependency
between a task and an input-port (see also Section 5.3.1). Moreover, there is a relationship (as
shown in Table 7.5) between the predefined InputLink parameters and the permissible InputNode
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refinements. If an InputLink has been specified as optional, the only permissible refinement is a
RegisterInputNode. For example, the specification of the optional dependency between the Joy-
stickClient and the CDLTask in Figure 7.4 results in the Joystick RegisterInputNode specification
of the CDL TaskNode in Figure 7.7. This restriction is important to prevent using an optional
InputLink as a trigger for a TaskNode, which would lead to awkward runtime behavior in case the
optional InputLink is not connected to any publisher (which is a valid case).

available InputNodes at a TaskNode permissible ActivationSource types
none PeriodicTimer or Sporadic

only RegisterInputNode(s) PeriodicTimer or Sporadic
at least one TriggerInputNode all three ActivationSource types

Table 7.6.: Relation between the availability of InputNodes of a TaskNode and the permissible
ActivationSource types

The next step is the selection of an ActivationSource for each individual TaskNode. The choice
of a respective ActivationSource thereby depends on the availability of relevant InputNodes as
shown in Table 7.6. For instance, TaskNodes such as e.g. Odom or JoystickServer (in Figure 7.7)
that do not have any InputNodes can only be triggered by a PeriodicTimer or by an own, internal
hardware trigger, which is modeled as the Sporadic trigger type. The same choices are available
in case that a TaskNode only specifies RegisterInputNodes such as e.g. in case of the Laser Task-
Node in Figure 7.7. The only permissible choice for a DataTriggered ActivationSource is the
connection with a TriggerInputNode such as e.g. demonstrated with the CDL TaskNode in Fig-
ure 7.7. However, not every TriggerInputNode must necessarily trigger the respective TaskNode
(i.e., the TaskNode can still use another ActivationSource despite the availability of TriggerIn-
putNodes).

The next two modeling elements are the Scheduler, which allows specifying a scheduling pol-
icy and a scheduling priority for each individual TaskNode, and the CPUCore, which allows
binding of individual TaskNodes to a certain CPU core. As shown in Figure 7.7, the navigation
scenario uses the FIFO scheduling policy for all TaskNodes, which was reasonable for conduct-
ing a Compositional Performance Analysis (CPA) (see Section 7.2). Besides, a single CPU core
has been used for all tasks because, on the one hand, the overall CPU load is quite low (around
17% for this scenario), and on the other hand, the sampling and scheduling effects were easier to
isolate in the abovementioned CPA.

The model elements that have been explained so far are directly related to the runtime configu-
ration of tasks. This means that out of these modeling elements, configuration files are generated
and later are loaded at startup of components. By contrast, the next two modeling elements: Ex-
ecutionTime and TaskChain are rather related to providing additional information that is used for
conducting a CPA (see next section). As argued in Section 5.3, the approach in this dissertation
is to use profiling for specifying the ExecutionTime of TaskNodes. Hence, the ExecutionTime
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is directly measured in components during e.g. the testing phase and then directly annotated as
modeling parameters in the performance view as shown in Figure 7.7.

The remaining (i.e., not yet described) modeling element is a TaskChain that references several
interlinked TaskNodes. TaskNodes with interaction links in between altogether form nets of tasks
with multiple data-flow paths. In practice, not all of the potential paths are actually time-critical.
Therefore, it makes sense to select those paths that are of particular interest for a CPA and to an-
notate additional attributes for these paths such as e.g. the overall end-to-end MaxAge or Reaction
time as is demonstrated with the FastReactiveNavigationLoop in Figure 7.7. These end-to-end
times are used as direct application-specific requirements that are compared against the results
from a CPA. The results then are either within the specified boundaries or not. In the latter case,
the configuration of individual tasks can be changed in such a manner that the overall end-to-
end timings are achieved. For example, the FastReactiveNavigationLoop in Figure 7.7 requires
rather short end-to-end timings. Thus, for the involved TaskNodes, the TriggerInputNodes with
the DataTriggered activation-semantics will be preferred wherever possible. In general, using
TriggerInputNodes with the DataTriggered activation-semantics reduces the overall end-to-end
time while increasing the overall end-to-end jitter. By contrast, using RegisterInputNodes with
the PeriodicTimer activation-semantics stabilizes the end-to-end jitter at the expense of a greater
overall end-to-end data-flow time. While this general relation is rather clear, in practice indi-
vidual TaskChains rarely consist entirely of only synchronous or only asynchronous links. In
the end, it is rather difficult to manually estimate the actual end-to-end timings of a TaskChain
consisting of a combination of synchronous and asynchronous links. For this purpose, a CPA (as
explained in the next section) simulates platform-specific runtime conditions (such as schedul-
ing and sampling effects, or network arbitration) and as result calculates the expected end-to-end
timings.

Further configuration options that affect the overall end-to-end timings are the distribution of
individual TaskNodes over several (i.e., parallel) CPU cores or the usage of a different schedul-
ing policy and scheduling priorities. The overall idea is that effects of individual configuration
options can be directly investigated by conducting a CPA and investigating the results. Thus,
the overall development cycle becomes efficient and performance-related system aspects become
manageable early in an overall robotic development workflow.

7.2. SymTA/S Performance Analysis and its Results

The preceding section presented several models of the navigation scenario. One particularity
in these models is related to the specification of performance-related aspects that influence the
overall end-to-end times in a system. Since one of the general objectives in this dissertation is
to reuse the vast knowledge and matured tools from outside domains close to robotics (which is
also stated as the Objective 1.4 in Chapter 1), this section conducts a Compositional Performance
Analysis (CPA) based on the SymTA/S approach [Hen+05] as an example. SymTA/S simulates
the different runtime conditions of a system (such as scheduling and sampling effects, network
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arbitration, etc.) based on the input information derived from the component and system models
that have been presented in the preceding section. As result from the CPA the effects of individual
configuration options onto the overall end-to-end timings become visible and clear, which is a first
step toward gaining control over application-specific and performance-related system aspects.

For conducting a structured CPA this section follows the guidelines proposed by Kitchen-
ham et al. in [KPP95]. In this context, the CPA is structured as a case-study. Therefore, the
case-study states some hypotheses at the beginning that allow evaluation of the CPA results in
comparison with ground truth measurements from a Pioneer P3DX robot that has executed the
navigation scenario for around half an hour in a realistic environment. There are some compara-
ble case-studies such as in [Kol+10] that give first insights about the usefulness of a CPA—using
SymTA/S among others—within the automotive domain. However, this case-study is not neces-
sarily applicable to the domain of service robotics. As stated in [Lot+16], robotics differs from
automotive in terms of the following: operating system (Linux vs. AUTOSAR/OSEK), schedul-
ing (dynamic vs. static), memory management (dynamic memory allocation on heap vs. static
memory allocation), and types of processes (POSIX-compliant tasks with multiple threads and
memory protection vs. mostly single-threaded OSEK basic tasks, some of them without memory
protection).

A summary of the results has already been published in the core publication [Lot+16]. This
section uses the same results, however with a much deeper level of details with respect to the
collected data, results of the analysis, and derived conclusions. The two main objectives of this
case-study is to (i) evaluate whether the proposed abstraction level of the performance view is
adequate (i.e., detailed enough) for conducting a CPA and (ii) whether the selected SymTA/S &
Trace Analyser tool yields helpful and realistic results also for robotic scenarios.

7.2.1. Case-study context

The case-study context is the navigation stack that has been executed on the Pioneer P3DX mobile
robot in a home-like environment in our robotic lab in Ulm (see Figure 7.9).

The navigation stack has been selected for the following reasons. First, it represents a sub-set
of components that have been used in many other, more complex scenarios in our past projects
and demonstrations. One of such demonstrations is for instance our collaborative robot-butler
scenario3, where two robots collaborate in making and bringing coffee (by operating a coffee
machine, opening a cupboard, etc.). Both robots have been using the same navigation compo-
nents (except for the exchanged hardware-related components such as the SmartRMPBaseServer
instead of the SmartPioneerBaseServer due to a different base platform). Altogether, the naviga-
tion stack provides enough variability and complexity to demonstrate the different architectural
configuration options, while at the same time the overall features, requirements and limitations
of the scenario are well understood.

3Robot-butler video: https://youtu.be/DjjNUPpj36E
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Figure 7.9.: Pioneer P3DX moving in a home-like environment

Moreover, the navigation components have been executed on Ubuntu Linux 12.04 using the
FIFO real-time scheduler that is provided in Linux. This allows executing the navigation compo-
nents with a higher priority than any other processes in the system. Thus, all other components
that might be executed in addition to the navigation components are executed in the spare time
not used by the real-time scheduler and thus do not affect the presented performance results. As
for the target platform, a common mini-ITX PC with a regular Intel dual-core CPU has been
used. This platform is considered representative for many robotic applications where best-effort
is sufficient enough and only small parts of the overall system are designed with hard real-time
guaranties in mind. While there are many works addressing the latter part (see [BS05] for an
overview), even for the best-effort, it still is of value to design and to know the overall end-to-end
times (even if these times might not be reached in all cases, which might in average still be ac-
ceptable). There are various possible gradations in between the best-effort and hard real time. As
one of the extreme examples, the navigation stack has also been used on a PowerPC CPU with
the QNX OS in one of our past industrial collaboration projects.

In terms from [KPP95], the conducted case-study consists of a single project, performed by
a single person. However, even this single project offers enough variation that comes from the
different configuration options of components and tasks. For instance, each of the 8 TaskNodes
in Figure 7.7 can be theoretically configured in three different ways with respect to selecting an
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ActivationSource. This results in a combinatorial total of 38 = 6561 theoretically possible con-
figuration alternatives. Of course, due to the specified ActivationConstraints in individual com-
ponents the practically reasonable configuration options result in a total of 16 alternatives. The
modeling tooling supports in filtering out all the unreasonable alternatives using model checks
and code completions. Yet, even the 16 remaining configuration alternatives leave open enough
design-space to optimize the overall execution performance of a system. Testing each of these
16 alternatives in a real system would be a huge effort though, because for each alternative one
would need to (1) configure the components accordingly, (2) deploy them into the target, (3)
execute the robot for a realistic period of time and then to (4) analyze the log files afterward. Ob-
viously, this is too much effort to just determine the effects of the different configuration options.
Therefore, using an analysis tool that is able to simulate the effects of different configurations in
a few seconds is reasonable.

The presented navigation scenario (shown in Figure 7.7) consists of three TaskChains (i.e., data
flow paths of particular interest), namely the FastReactiveNavigationLoop, the PlannedNaviga-
tionLoop and the JoystickLoop. The first TaskChain selects those TaskNodes that are directly
related to the local collision-avoidance functionality. This means that the configuration of the in-
volved TaskNodes directly impacts onto the actual reaction time of the robot in case of an obstacle
suddenly appearing in front of the robot. For a real application, an overall admissible breaking
distance Sbreak for a robot could be determined by the following formula:

Sbreak = Vmax · treact +
V 2
max

2 · adecel
(7.1)

The maximum allowed velocity Vmax is a safety-critical application requirement that involves
trading off between maximizing the overall (physical) performance of the robot and at the same
time restricting the velocity value due to safety considerations. Moreover, the deceleration adecel
constant is defined by the kinematic constraints of a real robot (i.e., its weight and maximum
possible torque without the wheels to start slipping or preventing the danger of the robot falling
over). The only unknown variable is the reaction time treact, which is basically the end-to-
end MaxAge time of the FastReactiveNavigationLoop in our example. From the system design
point of view, an application designer might decide on a certain admissible treact to achieve an
acceptable maximal breaking distance Sbreak. However, whether the system will actually respond
within that time or not is not obvious just from investigating the model. In conclusion, this time
needs to either be tested in a real system or calculated within a performance analysis as shown in
this section further below. For this purpose, as part of the case-study the overall end-to-end time
of the FastReactiveNavigationLoop will be determined in both, simulation, and reality.

7.2.2. Setting the Hypothesis

The overall goal of the case-study is to evaluate whether a SymTA/S-based performance analysis
sufficiently predicts the actual execution performance of a real robot. In order to assess this, the
following two hypotheses are specified:
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Hypothesis 7.1: The SymTA/S & Trace Analyser yields realistic results for robotic applications
and systems

Hypothesis 7.2: Different configuration alternatives in the performance model similarly affect
the overall end-to-end timings in both the SymTA/S-based CPA and in reality

For evaluating these two hypotheses, the upper and lower bounds of the simulated and mea-
sured end-to-end response-time values are compared by accordingly using two metrics m1 and
m2. Metric m1 denotes the distance between the actually measured minimal end-to-end response
time on the robot rtmin and the simulated Best-Case Response-Time (BCRT) from the SymTA/S-
based analysis: m1 = rtmin − BCRT. Metric m2 denotes the distance between the simulated
Worst-Case Response-Time (WCRT) and the actually measured end-to-end response time rtmax:
m2 = WCRT− rtmax.

For validating the Hypothesis 7.1 the two metrics m1 and m2 are normalized according to
the overall distribution of simulated end-to-end times RTdist, which is calculated by RTdist =
WCRT − BCRT. This results in two derived metrics d1 and d2 that are calculated as shown in
Equation (7.2). The Hypothesis 7.1 is considered fulfilled if both distance metrics d1 and d2 are
below a threshold of 10%.

d1 =
rtmin − BCRT

WCRT− BCRT
=

m1

RTdist

∣∣∣ d2 = WCRT− rtmax

WCRT− BCRT
=

m2

RTdist
(7.2)

For validating the Hypothesis 7.2, the navigation performance model is adjusted in such a
manner that one of the intermediate TaskNodes of the FastReactiveNavigationLoop changes its
activation semantics from a synchronous to an asynchronous mode. Again, the same distance
metrics d1 and d2 are calculated and if they are within the 10% threshold, then the Hypothesis 7.2
is considered fulfilled as well.

7.2.3. Preparing the case-study

In preparation of the case-study all TaskNodes in Figure 7.7 have been assigned to one CPU core
and configured to use the FIFO scheduling strategy (with the same FIFO priority for all specified
TaskNodes). This has the advantage that, on the one hand, all specified tasks are automatically
executed with a higher priority than any other task or process in the system and on the other hand,
the measurements from the robot can be used for two purposes: (1) to incorporate the measured
execution times back into the performance model in Figure 7.7 and (2) to calculate the real end-
to-end times for the relevant TaskChains. Because of the FIFO scheduling strategy, all TaskNodes
always execute their individual cycles to completion without being interrupted or preempted by
other tasks, which leads to realistic execution-time measurements for (1). For deriving the real
end-to-end times in (2), a simple MATLAB script is used that concatenates the individual “raw”
execution times according to the used trigger semantics. Therefore, the individual messages that
flow through the specified TaskChains are traced using the mechanism described in Section 6.2.2.
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To execute the navigation scenario, a simple high-level coordination component has been im-
plemented (not further detailed here) that randomly generates different locations (in the home-like
environment in Figure 7.9) for the robot to drive to. While driving, several dynamic obstacles and
blockages have been put in front of the robot to trigger different strategies for obstacle-avoidance
and path-(re)planing and thus to simulate a realistic operation.

7.2.4. Validating the Hypothesis

For deriving the metrics m1 and m2 the navigation scenario has been executed on the robot for
21 minutes that resulted in a total of 11726 overall cycles of the FastReactiveNavigationLoop. In
the second step, the logged execution times have been incorporated back into the performance
model. The figures A.1 to A.4 in the Appendix A.8 show the histogram plots of the execution-
time distributions and update-frequencies for each individual TaskNode. Then the performance
model is transformed using (1) a model-to-model transformation step and then (2) a model-to-text
transformation step (as described in Section 6.1) into a representation (i.e., a Python script) that is
interpretable by the SymTA/S & Trace Analyser. After that, a CPA is triggered in the tool, which
basically calculates the overall end-to-end times for the three TaskChains in Figure 7.7 (on the
right). In parallel, the real end-to-end times are determined out of the logged data using a simple
MATLAB script (not further detailed here).

As argued in Section 6.2, the execution time of each individual TaskNode includes the com-
munication time of publishing the task’s results over its associated output port(s). Hence, the
performance analysis is realistic without the need to model every single platform detail at the
lowest abstraction level. An obvious disadvantage is that the effects from computation and from
communication are not distinguished in the performance analysis. Either way, the results only
deviate in the level of details. In order not to make the approach too complex from the very
beginning, simplicity has been preferred in the initial implementation over completeness (in the
sense of a possible level of details). Moreover, from the first impression of using the SymTA/S
& Trace Analyser tool for robotic applications, it seems that this approach is sufficiently rich for
many robotic cases and already provides great assistance. However, in future works the model-
to-model transformation might also include the generation of additional platform details with
respect to communication.

In order to evaluate the two hypotheses 7.1 and 7.2, the navigation scenario has been exe-
cuted and evaluated twice, with the difference that the activation-source of the CDL TaskNode in
Figure 7.7 has been changed from DataTriggered to PeriodicTimer, which allows investigating
the effects of this modeling alternative onto the overall end-to-end execution time. Figure 7.10
shows the MATLAB plots that are derived from real measurements of the CDL TaskNode. The
two diagram plots on the top in the figure are the results from the first scenario run with CDL
using the DataTriggered activation semantics, and the two bottom plots are respectively the CDL
TaskNode with the PeriodicTimer activation semantics. Figure 7.11 shows the same comparison
as in Figure 7.10, this time however, using the results from the SymTA/S-based CPA.
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Figure 7.10.: Histogram plots of the logged execution times for the CDL task with two different
configurations
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Figure 7.11.: Histogram plots of the simulated execution times (using SymTA/S) for the CDL
task with two different configurations
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The next two figures 7.12 and 7.13 show the distribution of accumulated end-to-end times for
the FastReactiveNavigationLoop, again for both scenario runs. In the first scenario run, the mea-
sured overall end-to-end times are 101.749ms (min) and 249.114ms (max). The accordingly
simulated values are 0.478ms (BCRT) and 267.995ms (WCRT). First, an anomaly can be ob-
served in Figure 7.13 (on top) showing a gap of around 100ms between the BCRT time and the
lowest histogram bar in the diagram. The reason is that due to the MaxAge semantics all simu-
lated values by default consider the worst case, where the first TaskNode Odom of the FastReac-
tiveNavigationLoop automatically adds its update cycle time to the overall end-to-end time. Be-
cause the Odom TaskNode is configured to use a PriodicTimer with an update frequency of 10Hz,
this results in the initial delay of 1/10Hz = 100ms, which explains the graphical gap on the left
side of the histograms in Figure 7.13. As for the BCRT, it considers the overall (theoretical) best
case, where the first Odom TaskNode finishes its cycle just right before the next Laser TaskNode
begins its own asynchronous cycle. In order to make the simulated and the measured results
comparable, the initial delay of 100ms has been added (as a static offset) to all measured values.
However, in order to accurately calculate the metric m1, this offset needs to be subtracted once
for the minimal measured value that altogether equals to m1 = (rtmin − 1/10Hz) − BCRT =
(101.749ms− 100ms)− 0.478ms = 1.001ms. The calculation of the metric m2 is straightfor-
ward m2 = WCRT− rtmax = 267.995ms− 249.114ms = 18.881ms.

The overall distribution RTdist of simulated end-to-end results is RTdist = WCRT−BCRT =
267.995ms−0.478ms = 267.517ms. Now, the distance values can be calculated by the formula:

d1 =
1.001

267.517
= 0.0037 ≡ 0.37%

∣∣∣ d2 = 18.881

267.517
= 0.070578 ≡ 7.06% (7.3)

Both distance values d1 = 0.37% and d2 = 7.06% are below the 10% threshold, which
confirms the initial Hypothesis 7.1. For evaluating the Hypothesis 7.2 the activation semantics
of the CDL TaskNode has been changed from DataTriggered to PeriodicTimer with an update
frequency of 9.375Hz, which roughly represents the same, measured update frequency from the
first scenario run (see top diagram-plot in Figure 7.10). The two distance metrics now have the
following values:

d1 =
(105.411− 100)− 0.525

283.82− 0.525
=

4.886

283, 295
= 0.01718 ≡ 1.72% (7.4)

d2 =
283.82− 268.513

283.295
= 0.05403 ≡ 5.4% (7.5)

Again, as in the scenario run before, both distance values are within the 10% threshold, which
confirms the Hypothesis 7.2. An explanation and interpretation of the results is provided in the
next section.
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Figure 7.12.: Histogram plots of the overall end-to-end data-flow times (based on logged raw data
that has been aggregated using a MATLAB script) for the FastReactiveNavigation
loop with two different configurations of the CDL task

163



Chapter 7. Demonstration Examples and Performance Analysis Results

Figure 7.13.: Histogram plots of the simulated overall end-to-end data-flow times (as result from
the SymTA/S performance analysis) for the FastReactiveNavigation loop with two
different configurations of the CDL task
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7.2.5. Analysing the results

The objective metrics m1 and m2 already confirm both hypotheses 7.1 and 7.2. However, the
results in the diagrams in figures 7.10 to 7.13 include a lot more information about the overall
behavior and performance of the navigation scenario, which are discussed in this section here-
inafter.

At the beginning of this overall section, the Equation (7.1) to calculate the maximal breaking-
distance has been presented. Knowing the WCRT value, the breaking distance value can be
calculated for the presented navigation scenario. Before doing that, the maximal velocity and
deceleration values need to be defined. The data-sheet of the Pioneer P3DX robot reveals a
maximal possible velocity of 1.4m/s and no limitation for the deceleration value (i.e., in theory
the robot can stop virtually instantly). In practice and for realistic scenarios these values are
typically considerably reduced, e.g. because often additional equipment is mounted on the robot
platform, which increases the overall payload and heightens the center of mass. For the scenario
runs in the above case-study, the maximal velocity has been reduced to 1.0m/s and deceleration
to 400mm/s2. With these values, the maximal breaking distance Sbreak results in the following
value:

Sbreak = Vmax ·WCRT +
V 2
max

2 · adecel
= 1.0m/s · 0.268s+ (1.0m/s)2

2 · 0.4m/s2
= 1.518m (7.6)

Overall, a maximal breaking distance of around 1.5m is acceptable in many scenarios. Interest-
ingly, in the initial configuration of the navigation scenario, the influence of the software-related
reaction time is less than a third of the overall breaking distance, which appears to be a good
value. In case that an even slower reaction time is acceptable then a slower CPU can be used, other
components can be executed in parallel and alternative task-configurations can be selected. For
instance, even the slightly less optimal configuration in the second scenario run with a WCET of
283.82ms results in the braking distance of 1.533m, which only marginally increases by around
15mm. Of course, depending on the specified update-frequencies and activation-semantics of
individual TaskNodes this difference might increase a lot more.

Another interesting observation is the effect of switching between the different activation se-
mantics of a task. For instance, the CDL task has been reconfigured from using a DataTriggered
activation semantic toward using a PeriodicTimer. As a result, the overall WCET increases (com-
pare the plots in Figure 7.12), but at the same time the jitter in the update frequency of the CDL
task considerably decreases as can be seen by comparing the first and the third plots in Fig-
ure 7.10. This is because in the first configuration the CDL task follows the update frequency
of the preceding Laser task, which reduces the latency but at the same time accumulates the jit-
ter. In the second configuration, the CDL task becomes independent of the preceding Laser task,
which considerably reduces the jitter, but in the worst case an additional latency of one update
cycle needs to be included. In conclusion, none of the above two configuration options is univer-
sally good or bad. It rather depends on what is more important in the current application, i.e., a
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rather stable and deterministic execution behavior, or rather short overall end-to-end latencies.
Therefore, being able to influence these options and to directly see the impacts onto the overall
execution performance is considered a great help in - and a general improvement of the overall
development process.

As also shortly discussed in the analysis section of [Lot+16], the shapes of the simulated and
measured histogram plots (compare figures 7.12 and 7.13) are quite different. The main reason is
related to the simulated distribution of execution times for a TaskNode in the SymTA/S & Trace
Analyser. More precisely, SymTA/S by default assumes and simulates a uniform distribution of
execution times for each task between the given min/max boundaries. By contrast, real-world
distributions are not uniform but have peaks and gaps. This difference does not affect the best-
/worst-case calculation though and only leads to a different distribution in-between. Since the
corner cases are not affected by the distribution, the shape of the histogram plots can be consid-
ered ornamental. However, it is also conceptually straightforward to add other distributions (such
as Gamma or Weibull) to the SymTA/S & Trace Analyser to better reflect the actual execution
characteristics of real algorithms [Lot+16].

7.3. Summary and Discussion of the Scenario Results

Overall, this chapter presented and discussed the navigation scenario as a representative for com-
mon robotic applications. This scenario has been used for the following main purposes:

1. to assess that the design and implementation of individual software components is possible
using the presented component model abstractions and that the design and configuration of
cause–effect chains is practically feasible at the model level only (i.e., without the need to
investigate individual component’s internal implementations)

2. to further demonstrate and to empirically evaluate that the chosen level of granularity and
abstraction of the cause–effect chains is reasonable for conducting a Compositional Perfor-
mance Analysis (CPA)

To begin with, the navigation scenario has been selected for various reasons. Among others,
all the functional building blocks of the navigation scenario already existed beforehand and were
easily accessible and modifiable for the scope of this dissertation. This allowed to test the devel-
oped modeling tools in all relevant phases of the overall robotic development process. This gives
a certain confidence that none of the important functional and non-functional aspects have been
overseen (except those that have been explicitly excluded on purpose).

As a general result for (1), all the components of the navigation scenario have been success-
fully ported using the novel modeling tools and all relevant functional boundaries with respect to
components’ performance related constraints have been made explicit as part of the component
models. Moreover, the system integration phase completely relies on component models only for
instantiating, configuring, and composing the components within the navigation scenario. Three
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cause–effect chains have been identified, modeled, and configured, while the previously defined
constraints from the individual component models have also been considered.

While the navigation scenario certainly is a good representative for typical robotic applications,
ultimately it still is only one single scenario so far that has been designed using the proposed mod-
eling tools. Nevertheless, this scenario alone covers many common and recurring design prob-
lems related to system-level performance aspects, which lends some confidence with respect to
the universality of the proposed approach. Yet, modeling further examples will allow refinement
and improvement of the overall structures and abstractions.

As for (2), the three modeled cause–effect chains have been directly connected with (a) the
actual configurations of components in an automated model-to-text transformation step and (b)
a Compositional Performance Analysis that can be easily triggered in an automated model-to-
model transformation step. Regarding (a), this shows that the chosen abstractions not only are
theoretically sound but also are practically feasible. As for (b), this practically demonstrates that
even tools such as SymTA/S & Trace Analyser that have been designed for a different domain can
still be integrated and used as part of the overall robotic development process. Roboticists are not
burdened with a steep learning curve. This is important because they are mainly interested in the
analysis results and not the underlying scheduling mechanics or the analysis capabilities of the
selected analysis tool. As shown in the next Chapter 8, the proposed approach can also be easily
mapped to an entirely different analysis approach such as AADL flow-latency analysis using the
OSATE2 tool. Overall, the proposed approach enables roboticists to gain from the analytic power
of matured analysis tools and makes them easily accessible within the robotic community.

There is another interesting observation from logging the end-to-end latencies directly in the
system. The measurements of execution times for individual tasks are mostly straightforward
and a relevant logging infrastructure can even be automatically generated into each component
by default. However, the calculation of the end-to-end times—using a MATLAB script—has
been very tedious and error-prone. In this dissertation, these calculations have only been done to
get ground-truth values for comparison, which would be entirely impractical as part of a regular
development workflow. For a regular development workflow a CPA is much more appropriate be-
cause it allows simulation of the scheduling and sampling effects and provides the overall results
with an acceptable precision in a few seconds in contrast to recording and manually evaluat-
ing the log-files, which took a couple of weeks (which would need to be repeated for each new
application).
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8
Borderline Topics and Future Works

Working on a certain scientific topic for a longer period of time gives one unique perspective with
a deep understanding of alternative approaches and potential solutions. It is thus only natural that
at the end of an endeavor such as this dissertation new ideas emerge and a lot more interesting
research questions arise. At some point, it is necessary to restrain the overall scope in order to
allow finishing a dissertation in a limited amount of time. Therefore, this chapter covers some
borderline topics that could not be fully investigated as core topics of this dissertation, yet provide
enough insides for follow-up research directions.

8.1. Recent Modeling Refinements

To begin with, the presented modeling tools go through continuous refinements and evolutions
(that will continue even after this dissertation). These refinements can be considered as extensions
to the presented consistent set of modeling views. This section shows some recent meta-model
extensions that are interesting enough to be presented.

Figure 8.1 shows an extended and refined component meta-model (compare with Figure 4.6).
In summary, the extensions comprise a new UpcallHandler as an alternative for a lightweight
Task that does not need its own thread of execution but provides the same structure and API.
Moreover, Tasks and UpcallHandlers within a component can now interact with each other. For
this purpose, an Observer design pattern is used, whose infrastructure is generated into the com-
ponent implementation (which reduces the error-prone handwritten parts).

Figure 8.2 shows the new model of the SmartPioneerBaseServer as an example (compare Fig-
ure 7.1 on the left). In this example, the interaction between the input-port(s) and the RobotTask
is not performed over additional tasks; instead, upcall-handlers are used. There are two main
reasons to prefer upcall-handlers instead of other task-definitions. First, upcall-handlers are ex-
tremely lightweight entities that are synchronously triggered each time a new message arrives at
the associated input port. If the business logic is lightweight as well, as in the LocalizationUp-
dateUpcall which only propagates a copy of the message to the RobotTask, then the usage of an
upcall-handler considerably saves resources. Second, an upcall-handler semantically defines an
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Figure 8.1.: Refined component meta-model including upcall handlers and task/upcall observer
pattern

Figure 8.2.: Component diagram for SmartPioneerBaseServer
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endpoint which cannot be used to generate or propagate data to other components (by contrast,
a task can do this over an output port). Yet, an upcall can define optionality for input data. For
example, the SmartPioneerBaseServer component cannot function correctly without regularly
receiving navigation command updates, but the component works fine without receiving local-
ization updates (although the odometry precision degrades accordingly). This latter optionality
of data is visualized in the component diagram (in Figure 8.2) by a dashed arrow from the input
port LocalizationUpdate toward the LocalizationUpdateUpcall handler. All these design choices
either restrict or open up design flexibility for the later system-integration phase, where system
integrators can adjust the component configurations without violating any functional constraints.

An arrow between an upcall-handler and a task, or between a task and another task (see Fig-
ure 8.2), represents local interaction between upcalls and tasks. For each such arrow, an observer
design pattern is generated where the source entity (task or upcall) of the arrow implements the
subject (or model) part while the destination of the arrow (another task) implements the observer
part. In other words, the observer task implements an update method, which is called by the
source entity each time the source entity finishes its current cycle. For example, each time the
VelocityCommandUpcall handler is triggered from the VelocityClient, it directly propagates the
received message to the RobotTask (which stores a copy of this message as its local member).
The RobotTask itself triggers an update method of the PoseUpdateTask each time the RobotTask
finishes its current cycle.

On the whole, the upcall semantics can be considered as a useful comfort feature that seam-
lessly extends the meta-models without breaking the semantics presented so far.

8.2. Conceptual Mapping Toward AADL

One of the recent works that has been conceptually elaborated without providing a profound
implementation is the option to use AADL [AAD04] for modeling robotic systems. AADL is a
holistic modeling language originating in the avionics domain for modeling time-critical systems
on all levels. One particularly interesting extension of AADL for the scope of this dissertation
is the specification of AADL-Flows [Han07]. As demonstrated in [BFA14], AADL-Flows can
be used for expressing and analyzing the end-to-end times, which is generally comparable to the
performance analysis in this dissertation. However, in contrast to the separated, focused robotic-
specific views in this dissertation, AADL can be considered as a General-Purpose (Modeling)
Language (GPML). In this sense, AADL does not impose a specific structure and consequently
does not provide much help in coming up with consistent overall systems in an overall, structured
development workflow that supports the separation of roles. Owing to the high flexibility and
generality of AADL, it can be used as a generic bottom layer, underneath the presented modeling
views. In other words, just like the robotic modeling views are transformed into source code
and into other, tool-specific representations, the same modeling views can be transformed into an
AADL representation. To assess whether this can be achieved, this section presents a conceptual
transformation of the presented navigation scenario into an AADL representation.
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Figure 8.3.: SmartPioneerBaseServer (modeled with the AADL OSATE2 tool)

Figure 8.3 shows the representation of the SmartPioneerBaseServer component (as an ex-
ample) using AADL. Briefly, the main component-elements can be transformed into AADL as
shown in Table 8.1. In addition, in case that the component’s internal tasks need to interact with
each other, they need to specify additional in/out data ports and wire them accordingly.

Component meta-model element AADL model element
Component process

Task thread
InPort in data port

OutPort out data port

Table 8.1.: Mapping between Component and AADL model elements

Figure 8.4 shows the AADL representation of the system configuration and deployment dia-
grams for the navigation scenario (cf. Figure 7.5 and Figure 7.6). Basically, AADL does not
distinguish between the system definition/configuration and deployment, so both views are com-
bined in a single view. Other than that, the mapping is rather straightforward: the component
processes are instantiated in an AADL system along with an AADL processor and bus.

It becomes more interesting when the performance view from Section 5.3 is transformed into
an AADL representation. Using the navigation scenario as an example, this transformation can
be done in two steps. First, as shown in Figure 8.5 (diagram on top), the previously defined
component threads are extended using derivation. This means that new (local) threads derive
from the existing component threads, adding new attributes (such as the according activation-
source and update-frequency).
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Figure 8.4.: Navigation-scenario system-configuration view (modeled with AADL OSATE2)

Second, as shown in Figure 8.5 (diagram on bottom), data flows are specified, both within
the derived threads and in a new “dummy” system (which is only required as a composite for
the derived threads but has no real representation in the actual implementation). The “dummy”
system helps specify overall end-to-end flows that concatenate the individual thread’s data flows
into paths. Moreover, the synchronous and asynchronous interaction semantics are reproduced in
AADL using the connection-attribute immediate or delayed between the involved threads. Com-
bined with the dispatch protocol set to periodic and an accordingly specified period for each
derived thread, this generally resembles the PeriodicTimer and DataTriggered semantics of the
performance view in this dissertation. However, the performance view is more focused and
straightforward than the individual modeling parameters in AADL, which are distributed over
several model elements (which make the specification of consistent AADL models unnecessar-
ily complex). This focused performance view, which is consistent in terms of construction, is
specifically important for robotic experts, who need to be efficient in the development of robotic
systems (see also Chapter 3).
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Figure 8.5.: Navigation-scenario extending tasks (top) and defining data-flows (bottom) in the system-performance view (mod-
eled with the AADL OSATE2 tool)
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From the data-flow model in Figure 8.5 (bottom), an AADL flow-latency analysis can be trig-
gered that is implemented as a plugin within the OSATE21 tool. OSATE2 is the open-source,
reference implementation of the AADL modeling tools and includes many auxiliary plugins for
analyzing the models and generating certified code. Compared with the SymTA/S & Trace Anal-
yser, similar analysis features can be found in the flow-latency analysis plugin of OSATE2 cou-
pled with a scheduling analysis (e.g. the CHEDDAR analysis over the OCARINA interface).

To sum up, this conceptual investigation shows that the proposed abstraction of the perfor-
mance view is generic and flexible enough (yet at the same time detailed enough) to be mapped
to approaches such as SymTA/S and to be transformed into different representations such as
AADL. The open-source implementation of the flow-latency analysis within the OSATE2 tool
showed some instabilities (in the used version 2.2.1), which might be fixed in future versions. As
an alternative, a different tool for AADL can be used such as e.g. Ellidiss STOOD2 or others. Yet
another analysis tool (beyond AADL) is MAST [MAS], which is also potentially interesting for
future investigations.

8.3. Toward a Combination of the Request-Response - and the
Data-Flow Communication Semantics

One specific issue that has not (yet) been addressed in this dissertation is related to the Query (aka
request–response) communication semantics. Although the publish–subscribe communication
semantics dominate various communication middlewares and component models due to its rather
simple and easily analyzable semantics, there are still many robotic use-cases where it makes
more sense and is more efficient to request data values on demand rather than receiving any
available update and filtering out what is not needed. An interesting research question for future
works might be “whether request–response can actually be analyzed in chains of components in
a similar way much like the data-flow communication as presented in this dissertation?” This
section analyzes some of the involved challenges, proposes potential solutions, which are not yet
consolidated (but give some early hints), and discusses open problems.

Figure 8.6 illustrates a schematic example with two components on the left that use a Query-
Client and one component on the right that provides a QueryServer. A common implementation
of a QueryServer is to use a handler that processes all the incoming query requests. In order
not to affect the connected clients, this handler can be made active, meaning that a QueryServer
pushes all incoming query requests into a queue, and an active task processes each query request
individually (in any imaginable order such as FIFO, prioritized, earliest deadline, etc.) and replies
with an answer to the client. Hence, the initiators and consequently the triggers of that handler
task are all the connected clients. If there were only one QueryClient, one could say that the
query time on the client side would be the communication time for the request and the response
plus the worst-case execution time of the query handler. However, as there might be an arbitrary

1OSATE2: http://osate.org/
2STOOD: www.ellidiss.fr/public/wiki/wiki/stood
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Figure 8.6.: Query communication - schematic example

number of query clients, with each triggering queries on demand, the query time for individual
clients is not easy to determine.

One could start making further assumptions about the QueryServer so that there is a typical
worst-case execution time to answer a query request independent of the other requests or any
other factors, and that the query queue is strictly FIFO. Moreover, another assumption could be
that at some point all the connected clients are known with their individual update frequencies (at
least their worst cases). This might allow a reasonable worst-case execution analysis; however,
the question is how pessimistic this analysis would be and thus how helpful in the overall system
design it might be.

Regardless of whether the Query pattern should be used for time-critical parts (or not), this
pattern can be used for the regular uncritical parts that are not related to the end-to-end data-flow
chains.
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Summary and Conclusions

The approach presented in this dissertation addresses two common engineering needs in robotic
software development. The first engineering need is related to complexity management by means
of CBSE and MDSE. The second is related to managing selected non-functional system aspects
by using external analysis tools, which are seamlessly integrated into the overall robotic develop-
ment process.

This rest of the chapter is structured as follows. The next section sums up the contributions
of this dissertation. Section 9.2 discusses the results by giving answers to the research questions
stated in the introduction. Section 9.3 draws some conclusions from a bird’s-eye perspective and
highlights the achieved step change in the field of robotic software development.

9.1. Summary of the Core Contributions

This section summarizes the dissertation’s contents and contributions. Consequently, individual
core chapters are summed up and the related contributions are highlighted.

After a general introduction in Chapter 1, Chapter 2 presents the fundamentals of this dis-
sertation, which are related to the tools, structures, and implementations around the overall
SMARTSOFT idea. SMARTSOFT is an umbrella term that nowadays stands for an overall idea and
methodology for building robotic software systems. This methodology has been refined and ex-
tended in this dissertation to also seamlessly support the management of selected non-functional
system aspects as part of an overall, systematic robotic development workflow.

The next Chapter 3—as the first core chapter—introduces the overall methodology of this dis-
sertation. First, the overall problem domain of building complex robotic systems is analyzed and
some general guiding rules are derived. In conclusion, it is clear that non-functional system as-
pects need to be considered from the very beginning of a robotic development process, and that
they affect an overall software system at different levels. After that, a common robotic use case
is presented, which helps to categorize available and related approaches while at the same time
allowing the identification of white spots for investigation in this dissertation. For instance, while
there are some common robotic development approaches that use component models and mod-
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eling tools, these tools and approaches generally lack structures and abstractions to express and
manage non-functional aspects such as end-to-end latencies and jitters in chains of components.
Moreover, the relation between component- and task-level composition is discussed. Thereafter,
this chapter concludes by presenting the central role of MDSE in this dissertation as the main
methodology used throughout the next three core chapters. Overall, Chapter 3 addresses the
Contributions 1.1–1.3 at an abstract level.

Chapter 4 focuses on the component-development view as a distinct development phase where
individual building blocks are developed without presuming too many application-specific sys-
tem aspects, which would otherwise hinder the reusability of these building blocks in different
systems. Consequently, a consistent meta-model is designed that exposes vital aspects, struc-
tures, and abstractions of a component at the model level in such a way that enough details are
provided to fully implement the component’s functionality, while, at the same time, enough con-
figuration flexibility remains open, which is later used in the system-integration phase to tailor
that component for a certain system. Moreover, a flexibly configurable task-trigger design at
the framework level is presented, which allows flexibly configuring performance-related compo-
nent attributes even after the component has been entirely developed and implemented. Overall,
Chapter 4 realizes Contribution 1.1.

Chapter 5 focuses on the system-integration phase where entire systems are composed of
reusable building-blocks. The system-integration phase in itself comprises (at least) three dis-
tinct sub-views for which individual meta-models are designed as part of this chapter. The first
two sub-views are related to selecting, wiring and configuring components, as well as providing
platform-specific details for deployment. While these two views are rather generic and can be
found in a similar form in other system-modeling solutions, they are required as a foundation
for the novel modeling view called performance view, which is considered as the core contribu-
tion of this chapter and of this dissertation as a whole. The performance view allows systematic
design and management of performance-related system aspects that directly impact end-to-end
guarantees in sensor-to-actuator control loops. The required structures, abstractions, and se-
mantics are formalized by a meta-model and model-checks, which, on the one hand, consider
configuration constraints from the preceding component meta-model, and on the other hand, are
detailed enough to trigger a Compositional Performance Analysis (CPA) (which is discussed in
the follow-up Chapter 6). Overall, Chapter 5 realizes Contribution 1.2.

Chapter 6 switches the focus from aspects of design time to modeling and simulating dynamic
runtime conditions of a system. This includes, among other things, the analysis of scheduling
and sampling effects. Consequently, the above defined performance view is transformed—via
a model-to-model transformation step—into a representation that can be used to trigger a CPA
within the external SymTA/S & Trace Analyser tool. By so doing, the SymTA/S & Trace Anal-
yser tool is integrated into the overall development workflow, thereby using the performance
models as input. As a second contribution of this chapter, generic logging and monitoring solu-
tions are presented that allow a direct measurement of end-to-end timings in a real system. This is
useful to get ground truth values for comparing the results from the CPA with real measurements
(as is done in the next Chapter 7). Overall, Chapter 6 realizes Contribution 1.4.
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While the preceding core chapters mainly focus on conceptualization and meta-model design,
Chapter 7 shifts the focus to the application of the developed modeling tools in a real-world
system example. Consequently, the navigation scenario is modeled using the developed mod-
eling tools, and the relevant models are discussed in the first part of Chapter 7. After that, a
Compositional Performance Analysis (CPA) is conducted for the presented navigation scenario.
Additionally, the results of the analysis are compared with ground-truth measurements recorded
using a real robot that has been executed in a realistic environment. The results show that the
chosen abstraction level of the performance view is suited for robotic needs and can be linked to
state-of-the-art approaches such as SymTA/S. Overall, Chapter 7 realizes Contribution 1.5.

Finally, Chapter 8 briefly discusses some borderline topics mentioned in this dissertation that
are interesting and detailed enough to be discussed as promising future works. For instance, the
mapping of the performance view to AADL is conceptually demonstrated, which underlines the
flexibility and generality of the specified performance view.

9.2. Discussion of the Achieved Results

The aim of this section is to reflect the overall achievements of this dissertation by giving a direct
answer to the initial research questions mentioned at the outset.

Research Question 1.1: What exactly are the established means of composition that
need to be implemented in a robotic software-development workflow? What are the
important steps in such a development workflow?

Regarding the established means of composition, Section 3.2.2 identifies CBSE and SOA as
the main general paradigms that allow finding coarse-grained structures and basic abstractions.
However, these paradigms alone do not yet give enough guidance about how to exactly structure
the overall system. Instead, as further discussed in Section 2.2.1 and in Section 4.1.1, it then
depends on a careful definition of the component’s services (using well-defined Communication
Patterns), which, depending on their design, either enables or disables composition. Moreover,
composition also depends on a systematic development workflow where the involved developer
roles and their concerns are thoroughly addressed in dedicated modeling views (see next).

As for the robotic development workflow, Section 3.2.3 identifies at least three main phases,
namely: component development, system-integration, and runtime. These three phases have been
sufficient for the scope of this dissertation. However, there might be additional phases, most
notably an initial design phase even before the component development, where the general data
structures for Communication Objects are designed (see [Sta+16] for more details). While this
phase falls outside the scope of this dissertation, it is conceptually straightforward to attach to
this phase without breaking the presented structures. Moreover, the discussed phases themselves
can be further sub-divided into additional sub-steps. For example, the system-integration phase is
subdivided into system-configuration, deployment, and performance sub-steps. Additional sub-
steps are also possible, such as e.g. behavior modeling (see again [Sta+16] for more details) as
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part of the overall system-integration phase. An important point is that these phases and steps are
interlinked at the model level, which allows preservation of overall system consistency throughout
the entire development of a robotic software system. In addition, interlinking the phases helps
to reduce overlapping concerns between the different modeling views, which effectively separate
the responsibilities of the involved developer roles.

Research Question 1.2: How can collaborative and stepwise design of data-flow
chains be enabled without conflicting with (or breaking) required structures and ab-
stractions of that development workflow?

This has been the most effective guiding question for the meta-model design in the two core
chapters 4 and 5. In brief, the proposed component meta-model is detailed enough in such a
way that a component can be entirely designed and implemented without prematurely assum-
ing any application-related system details. Additionally, the component meta-model supports the
specification of functional configuration boundaries so that, in a later system-integration phase,
a component can be tailored to system needs at a model level without conflicting with the com-
ponent’s internal implementation. All the system-level meta-models ensure consistency by de-
sign, which is achieved through model-checks and code completions that filter out all the invalid
(i.e., inconsistent) modeling options.

Research Question 1.3: What are common patterns of typical data-flow chains and
how can these patterns be formalized?

This question has been addressed by analyzing a real-world use case in Section 3.2. Con-
sequently, Section 4.1.2 derives two common patterns of computation within a component that
can be configured in a later performance modeling view presented in Section 5.3. This novel
performance view allows configuration of individual component-tasks so that overall end-to-end
guarantees can be met. Whether these guarantees are actually met in a real system is validated us-
ing the SymTA/S & Trace Analyser tool, which has been linked with the robotic modeling views
as described in Section 6.1. The formalization of the configuration patterns in the performance
view is done using MDSE methods as introduced in Section 3.3.

Research Question 1.4: How can such a workflow be effectively supported with in-
tegrated tooling, thereby supporting and guiding different developer roles in the de-
velopment of realistic, real-world scenarios with real robots?

This dissertation relies on MDSE methods and tools (see Sections 3.3.1 and 3.3.2) to develop
an IDE that combines several interlinked modeling views. The individual modeling views en-
sure overall system consistency by design, which is achieved through interlinking the individual
views at a meta-model level. Thus, individual developer roles of an overall robotic development
workflow are guided and supported in their related development phases. Moreover, the modeling
views have been entirely implemented in an Eclipse-based environment (see also the attached
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Xtext grammars in Appendix A) and a real-world scenario has been developed in Chapter 7 using
the new modeling tools (from above). As further argued in Section 7.3, the selected navigation
scenario provides enough variability, giving the confidence that the modeling tools are sufficient
and rich enough to systematically manage performance-related aspects in a robotic development
process.

9.3. Conclusions

In conclusion, the modeling tools presented in this dissertation enable the management of se-
lected non-functional system properties—related to system performance aspects such as end-
to-end guarantees—in a consistent and systematic way as part of an overall component-based,
robotic software-development workflow. While some existing component-based approaches al-
low the development of robotic systems, these approaches do not support the management of
this kind of non-functional properties. Other approaches, derived from fields other than robotics,
such as AADL from the avionics domain, or SymTA/S from the automotive domain, allow the
design and analysis of end-to-end timings. However, these external approaches and tools are not
common yet, nor are they easily accessible to the domain of robotics. This dissertation presents
systematic methods for a consistent integration and usage of such tools and approaches as part of
a structured robotic development workflow.

On the whole, this dissertation facilitates the challenging transition from hand-crafted lab pro-
totypes to qualitative, industry-strength robotic products by lifting (at least some of the funda-
mentally important) QoS-related system aspects to the model level, thereby making them man-
ageable. Of course, many additional QoS aspects might be relevant as well. However, this dis-
sertation makes the first step in this direction with a strong focus on working engineering models
instead of scientific ones. In this sense, it can be considered as a practice-oriented work where
the developed solutions are evaluated against real-world problems and real-world systems.

Since all the developed modeling tools are published as open-source, they can be easily re-
fined, extended, and used in future projects, which together would hopefully make life easier for
roboticists (such as myself) in the long run.
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A
Appendix

This appendix lists all relevant Xtext grammar specifications and some Matlab plots of the mea-
sured performance results.

A.1. Communication Objects Xtext Grammar

Listing A.1 below presents the Communication Objects Xtext grammar.� �
grammar org.xtext.commObj.CommObj with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate commObj "http://www.xtext.org/commObj/CommObj"

CommObjModel:
(imports += ImportUri)*
(elements += PackageDeclaration)*

;

CommObjDocumentation:
’@doc’ text=STRING

;

ImportUri:
(doc=CommObjDocumentation)?
’ImportUri’ importURI=STRING

;

QN:
ID (’.’ ID)*

;

PackageDeclaration:
(doc=CommObjDocumentation)?
’CommObjectRepository’ name = ID ’Version’ version=Version ’{’
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(’Dependency’ dep=STRING)?
(packagedElements += PkgableElement)*

’}’
;

Version:
major=INT ’.’ minor=INT ’.’ patch=INT

;

PkgableElement:
CommunicationObject | Struct | Enumeration

;

CommunicationObject:
(doc=CommObjDocumentation)?
’CommObject’ name = ID ’{’

(elements += Element)+
’}’

;

SignedIntValue returns ecore::EInt:
(’-’|’+’)? INT

;
RealValue returns ecore::EDouble:

(’-’|’+’)? INT? ’.’ INT ((’E’|’e’) (’+’|’-’)? INT)?
;

Element:
(doc=CommObjDocumentation)?
name = ID ’:’ type=AbstractType

;

Cardinality:
’*’ | INT

;

enum INTENUM :
INT8="Int8" | INT16="Int16" | INT32="Int32" | INT64="Int64"

;
enum UINTENUM :

// UInt8 is an extra type named OctetType
UINT16="UInt16" | UINT32="UInt32" | UINT64="UInt64"

;
enum REALENUM :

FLOAT="Float" | DOUBLE="Double"
;

AbstractType:
PrimitiveType | EnumerationRef | CommObjRef | StructRef

;
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PrimitiveType:
OctetType | SignedDecimalType | UnsignedDecimalType | RealType | StringType
| BooleanType

;

SignedDecimalType:
name=INTENUM (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value=
SignedIntValue)?

;
OctetType:
name=’UInt8’ (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value=
SignedIntValue)?

;
UnsignedDecimalType:
name=UINTENUM (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value=
SignedIntValue)?

;
RealType:
name=REALENUM (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value=
RealValue)?

;
StringType:
name=’String’ (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value=
STRING)?

;
BooleanType:
name=’Boolean’ (many?=’[’ cardinality=Cardinality ’]’)? (defval ?= ’=’ value
=(’true’|’false’))?

;

CommObjRef :
’CommObjectRef’ ’(’ ref = [CommunicationObject|QN] ’)’ (many?=’[’
cardinality=Cardinality ’]’)?

;

StructRef :
’StructRef’ ’(’ ref = [Struct|QN] ’)’ (many?=’[’ cardinality=Cardinality ’]’
)?

;

EnumerationRef :
’EnumRef’ ’(’ ref = [Enumeration|QN] ’)’ (many?=’[’ cardinality=Cardinality
’]’)? (defval ?= ’=’ value=[EnumElement])?

;

Struct:
(doc=CommObjDocumentation)?
’Struct’ name = ID ’{’

(elements += Element)+
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’}’
;

Enumeration:
(doc=CommObjDocumentation)?
’Enum’ name = ID ’{’

(elements += EnumElement)*
’}’

;
EnumElement:

(doc=CommObjDocumentation)?
name=ID

;� �
Listing A.1: Communication Objects Xtext grammar

A.2. Component Xtext Grammar

Listing A.2 below presents the Component Xtext grammar.� �
grammar org.xtext.component.CompDef with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.ecore.org/component" as comp
import "http://www.ecore.org/performExtension" as perf
import "http://www.xtext.org/commObj/CommObj" as commObj

CompDefModel returns comp::ComponentModel:
{comp::ComponentModel}
(component=Component)?

;

Component returns comp::Component:
{comp::Component}
’Component’ name=EString (hasParameters?=’HasParameters’)?
’{’

(inPorts+=InPort)*
(tasks+=Task)*
(outPorts+=OutPort)*

’}’;

QID:
ID (’.’ ID)*

;

EString returns ecore::EString:
STRING | ID;
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EBoolean returns ecore::EBoolean:
’true’ | ’false’;

EDouble returns ecore::EDouble:
’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

InPort returns comp::InPort:
’InPort’ name=EString ’dataType’ dataType=[commObj::CommunicationObject|QID
];

OutPort returns comp::OutPort:
’OutPort’ name=EString ’dataType’ dataType=[commObj::CommunicationObject|QID
] ’dataProviderTask’ dataProviderTask=[comp::Task|QID];

Task returns comp::Task:
PreemptiveTask | CooperativeTask

;

PreemptiveTask returns perf::PreemptiveTask:
’PreemptiveTask’ name=EString
’{’

(inputLinks+=InputLink)*
(taskExtensions+=TaskExtension)*

’}’
;

CooperativeTask returns perf::CooperativeTask:
’CooperativeTask’ name=EString
’{’

(inputLinks+=InputLink)*
(taskExtensions+=TaskExtension)*

’}’
;

InputLink returns comp::InputLink:
InputLinkExtension

;

InputLinkExtension returns perf::InputLinkExtension:
{perf::InputLinkExtension}
’InputLinkExtension’ inRef=[comp::InPort|QID]
’{’

((optional?=’optional’)? &
(oversamplingOk?=’oversamplingOk’)? &
(undersamplingOk?=’undersamplingOk’)?)

’}’
;
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TaskExtension returns comp::TaskExtension:
ActivationConstraints

;

ActivationConstraints returns perf::ActivationConstraints:
{perf::ActivationConstraints}
’ActivationConstraints’
’{’

’configurable’ configurable=EBoolean
((’minActFreq’ minActFreq=EDouble ’Hz’)? &
(’maxActFreq’ maxActFreq=EDouble ’Hz’)?)

’}’;� �
Listing A.2: Component Xtext grammar

A.3. System Xtext Grammar

Listing A.3 below presents the System Xtext grammar.� �
grammar org.xtext.system.SysConfig with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.ecore.org/component" as comp
import "http://www.ecore.org/system" as sys

SystemModel returns sys::SystemModel:
{sys::SystemModel}
’SystemModel’
name=EString
’{’

(elements+=AbstractSysElem)*
’}’;

AbstractSysElem returns sys::AbstractSysElem:
ComponentInstance | Connection;

QID:
ID (’.’ ID)*

;

EString returns ecore::EString:
STRING | ID;

ComponentInstance returns sys::ComponentInstance:
’ComponentInstance’ name=EString ’instantiates’ compRef=[comp::Component|QID
]
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’{’
(hasRefinedParameters?=’HasRefinedParameters’)?
(’inPorts’ ’(’ inPorts+=InPortInstance ( "," inPorts+=InPortInstance)* ’)’
)?
(’outPorts’ ’(’ outPorts+=OutPortInstance ( "," outPorts+=OutPortInstance)

* ’)’ )?
’}’;

Connection returns sys::Connection:
{sys::Connection}
’Connection’
’{’

((’in’ inRef=[sys::InPortInstance|QID])? &
(’out’ outRef=[sys::OutPortInstance|QID])?)

’}’;

InPortInstance returns sys::InPortInstance:
inRef=[comp::InPort|QID]

;

OutPortInstance returns sys::OutPortInstance:
outRef=[comp::OutPort|QID]

;� �
Listing A.3: System Xtext grammar

A.4. Deployment Xtext Grammar

Listing A.4 below presents the Deployment Xtext grammar.� �
grammar org.xtext.system.deployment.SysDeploy with org.eclipse.xtext.common.

Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.ecore.org/deployment" as deploy
import "http://www.ecore.org/system" as system

DeploymentModel returns deploy::DeploymentModel:
{deploy::DeploymentModel}
’DeploymentModel’ name=EString (’systemModel’ systemModel=[system::
SystemModel|EString])?

’{’
(devices+=Device)*
(networkConns+=NetworkConnection)*

’}’;
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QID:
ID (’.’ ID)*

;

EString returns ecore::EString:
STRING | ID;

EInt returns ecore::EInt:
INT;

NetworkConnection returns deploy::NetworkConnection:
’NetworkConnection’ ’{’

device1=[deploy::Device|QID] ’<->’ device2=[deploy::Device|QID] (’kind’
kind=EString)?

’}’
;

Device returns deploy::Device:
’Device’ name=EString
’{’

((’IP-Addr’ ip=EString ’;’) &
(’Login-Name’ loginName=EString ’;’) &
(’Deployment-Dir’ deploymentDir=EString ’;’) &
(namingservice=NamingService ’;’)? &
(cpu=CPU ’;’)?)
(’ComponentArtifacts’ ’{’ artifacts+=ComponentArtifact ( "," artifacts+=
ComponentArtifact)* ’}’ )?

’}’;

CPU returns deploy::CPU:
{deploy::CPU}
’CPU’ name=EString (’kind’ kind=EString)?

;

ComponentArtifact returns deploy::ComponentArtifact:
componentInstance=[system::ComponentInstance|QID]

;

NamingService returns deploy::NamingService:
’NamingService’ ’port’ portNr=EInt

;� �
Listing A.4: Deployment Xtext grammar
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A.5. Performance Xtext Grammar and Two Completion
Proposal Providers

Listing A.5 below presents the Performance Xtext grammar.� �
grammar org.xtext.system.performance.SysPerform with org.eclipse.xtext.common.

Terminals

import "http://www.ecore.org/performance"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.ecore.org/component" as component
import "http://www.ecore.org/performExtension" as performExtension
import "http://www.ecore.org/deployment" as deployment

PerformanceModel returns PerformanceModel:
{PerformanceModel}
’PerformanceModel’ name=EString (’deployRef’ deployRef=[deployment::
DeploymentModel|QID])?

’{’
(cpuCores+=CPUCore)*
(tasks+=TaskNode)*
(dataFlows+=DataFlow)*
(chains+=TaskChain)*

’}’;

QID:
ID (’.’ID)*

;
EString returns ecore::EString:
STRING | ID;

EDouble returns ecore::EDouble:
’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

EInt returns ecore::EInt:
’-’? INT;

CPUCore returns CPUCore:
’CPUCore’ name=EString
’{’

’number’ number=EInt
(’CPU’ cpu=[deployment::CPU|QID])?

’}’;

TaskNode returns TaskNode:
{TaskNode}
’TaskNode’ name=EString (taskRealization=TaskRealization)?
’{’

(’inputs’ ’{’ inputs+=InputNode ( "," inputs+=InputNode)* ’}’ )?
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((’affinity’ affinity=[CPUCore|QID])? &
(’activation’ activation=ActivationSource)? &
(’executionTime’ executionTime=ExecutionTime)? &
(’scheduler’ scheduler=Scheduler)?)

’}’;

InputNode returns InputNode:
RegisterInputNode | TriggerInputNode;

ActivationSource returns ActivationSource:
DataTriggered | PeriodicTimer | Sporadic;

TaskChain returns TaskChain:
’TaskChain’ name=EString
’{’

’nodes’ ’{’ nodes+=FirstNodeRef (nodes+=NodeRef)* ’}’
(’end2endSpecs’ specs=End2EndSpecs)?

’}’;

DataFlow returns DataFlow:
’DataFlow’
’{’

’source’ source=[TaskNode|QID]
’destination’ destination=[InputNode|QID]

’}’;

FirstNodeRef returns NodeRef:
ref=[TaskNode|QID]

;

NodeRef returns NodeRef:
’->’ ref=[TaskNode|QID]

;

End2EndSpecs returns End2EndSpecs:
{End2EndSpecs}
’{’

((’MaxAge’ maxAge=TimeValue)? &
(’Reaction’ Reaction=TimeValue)?)

’}’;

TimeValue returns TimeValue:
value=EInt unit=TimeUnit

;

enum TimeUnit returns TimeUnit:
SEC = ’sec’ | MSEC = ’ms’ | USEC = ’us’;

ExecutionTime returns ExecutionTime:
’{’
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((’minTime’ minTime=TimeValue) &
(’maxTime’ maxTime=TimeValue))

’}’;

TaskRealization returns TaskRealization:
’realizes’ compArtifact=[deployment::ComponentArtifact] ’.’ task=[component
::Task]

;

enum SchedulerType returns SchedulerType:
DEFAULT = ’DEFAULT’ | FIFO = ’FIFO’ | RR = ’RR’;

Scheduler returns Scheduler:
{Scheduler}
’{’

((’type’ type=SchedulerType)? &
(’priority’ priority=EInt)?)

’}’;

RegisterInputNode returns RegisterInputNode:
{RegisterInputNode}
’RegisterInputNode’ name=EString
’{’

(’inputLink’ inputLink=[performExtension::InputLinkExtension|QID])?
’}’;

TriggerInputNode returns TriggerInputNode:
’TriggerInputNode’ name=EString
’{’

(’inputLink’ inputLink=[performExtension::InputLinkExtension|QID])?
’}’;

DataTriggered returns DataTriggered:
’DataTriggered’ triggerRef=[TriggerInputNode|QID]
’{’

’prescale’ prescale=EInt
’}’;

PeriodicTimer returns PeriodicTimer:
’PeriodicTimer’
’{’

’periodicActFreq’ periodicActFreq=EDouble ’Hz’
’}’;

Sporadic returns Sporadic:
{Sporadic}
’Sporadic’
’{’

((’minActFreq’ minActFreq=EDouble ’Hz’)? &
(’maxActFreq’ maxActFreq=EDouble ’Hz’)?)
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’}’;� �
Listing A.5: Performance Xtext grammar

Listings A.6 and A.7 present the implementation of two completion proposal providers, one for
generating TaskNode elements with according InputNodes based on ComponentArtefact elements
from the referenced Deployment model and the other for providing successive NodeRef elements
in a task-chain.� �
override complete_TaskNode(EObject model, RuleCall ruleCall,

ContentAssistContext context, ICompletionProposalAcceptor acceptor) {
2 super.complete_TaskNode(model, ruleCall, context, acceptor)

if(model instanceof PerformanceModel) {
4 val perfomanceModel = (model as PerformanceModel)

if(perfomanceModel.deployRef != null) {
6 for(dev: perfomanceModel.deployRef.devices) {

for(compArt: dev.artifacts) {
8 for(task: compArt.componentInstance.compRef.tasks) {

// check whether a TaskNode already is available
10 if(!perfomanceModel.tasks.exists[it.taskRealization?.task==task])

{
12 // if not, create an according proposal provider

var proposal = "TaskNode " + task.name + " realizes "
14 + compArt.name + "." + task.name + " {\n";

if(task.inputLinks.size > 0) {
16 proposal = proposal + "\t\tinputs {\n"

for(inLink: task.inputLinks) {
18 if(inLink!=task.inputLinks.head) {

proposal = proposal + ",\n"
20 }

if(inLink.optional) {
22 proposal = proposal + "\t\t\tRegisterInputNode "

+ inLink.name + " { ";
24 } else {

proposal = proposal + "\t\t\tTriggerInputNode "
26 + inLink.name + " { prescale 1 ";

}
28 proposal = proposal + "inputLink " + inLink.name + " }";

} // end for(inLink: task.inputLinks)
30 proposal = proposal + "\n\t\t}";

} // end if(task.inputLinks.size > 0)
32 proposal = proposal + "\n\t}";

// create completion proposal
34 var proposalName = "generate TaskNode "+task.name+" body";

val completionProposal =
36 createCompletionProposal(proposal, proposalName,

imageHelper.getImage("smartTask.gif"), context
38 );

acceptor.accept(completionProposal);
40 } // end if(!TaskNode already is available)
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} // end for(task: compArt.componentInstance.compRef.tasks)
42 } // end for(compArt: dev.artifacts)

} // end for(dev: perfomanceModel.deployRef.devices)
44 } // end if(perfomanceModel.deployRef != null)

} // end if(model instanceof PerformanceModel)
46 }� �

Listing A.6: TaskNode completion proposal provider� �
override completeNodeRef_Ref(EObject model, Assignment assignment,

ContentAssistContext context, ICompletionProposalAcceptor acceptor) {
2 //super.completeNodeRef_Ref(model, assignment, context, acceptor)

if(model instanceof NodeRef) {
4 val currNode = (model as NodeRef)

val chain = (model.eContainer as TaskChain)
6 val index = chain.nodes.indexOf(currNode)

val prevNode = chain.nodes.get(index-1)
8 if(prevNode != null) {

val performanceModel = (chain.eContainer as PerformanceModel)
10 val flows = performanceModel.dataFlows.filter[it.source==prevNode.ref]

for(flow: flows) {
12 val destinationTaskNode = (flow.destination.eContainer as TaskNode)

acceptor.accept(
14 createCompletionProposal(destinationTaskNode.name,

destinationTaskNode.name,
16 imageHelper.getImage("smartTask.gif"), context

)
18 );

}
20 }

}
22 }� �

Listing A.7: NodeRef completion proposal provider

A.6. SymtaBase Xtext Grammar

Listing A.8 below presents the SymtaBase Xtext grammar.� �
grammar org.xtext.symtaBase.SymtaBase with org.eclipse.xtext.common.Terminals

import "http://www.ecore.org/symtaBase"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

SVWorkbench returns SVWorkbench:
{SVWorkbench}
’SVWorkbench’ name=EString
’{’
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(’system’ system=SymtaSystemDef)?
’}’;

QID:
ID (’.’ ID)*

;

SymtaElementDef returns SymtaElementDef:
CoreDef | PathDef | TaskDef | TriggerDef;

EString returns ecore::EString:
STRING | ID;

SymtaSystemDef returns SymtaSystemDef:
{SymtaSystemDef}
’SymtaSystemDef’ name=EString
’{’

’elements’ ’{’ (elements+=SymtaElementDef)* ’}’
’}’;

enum AnalysisResult returns AnalysisResult:
ALL=’All’ | CUSTOM=’Custom’

;

CoreDef returns CoreDef:
{CoreDef}
’CoreDef’ name=EString
’{’

’analysisResult’ analysisResult=AnalysisResult
(’parentOf’ ’(’ parentOf+=[TaskDef|EString] ( "," parentOf+=[TaskDef|
EString])* ’)’ )?

’}’;

PathDef returns PathDef:
’PathDef’ name=EString
’{’

’semantics’ semantics=PathSemantics
(’parentOf’ ’(’ parentOf+=[TaskDef|EString] ( "," parentOf+=[TaskDef|
EString])* ’)’ )?

’}’;

TaskDef returns TaskDef:
’TaskDef’ name=EString (’trigger’ parentOf=[TriggerDef|QID])?
’{’

((’minExecTime’ minExecTimeMS=EDouble ’ms’ ’;’) &
(’maxExecTime’ maxExecTimeMS=EDouble ’ms’ ’;’) &
(’activationType’ activationType=ActivationType ’;’)? &
(’activationTime’ activationTimeMS=EDouble ’ms’ ’;’)? &
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(’taskType’ taskType=TaskType ’;’) &
(’priority’ priority=EInt ’;’) &
(’analyse’ analyse=EBoolean ’;’)?)

’}’;

TriggerDef returns TriggerDef:
’TriggerDef’ name=EString ’caller’ caller=[TaskDef|QID]
’{’

’repetationFactor’ repetationFactor=EInt
’}’;

enum PathSemantics returns PathSemantics:
MAX_AGE = ’MaxAgeSemantic’ | REACTION = ’ReactionSemantic’;

EDouble returns ecore::EDouble:
’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

EBoolean returns ecore::EBoolean:
’true’ | ’false’;

enum ActivationType returns ActivationType:
PERIODIC = ’PERIODIC’ | SPORADIC = ’SPORADIC’ | DATA="DATA" |

UNDEFINED = ’UNDEFINED’;

enum TaskType returns TaskType:
PREEMPTIVE = ’PREEMPTIVE’ | NONPREEMPTIVE = ’NON_PREEMPTIVE’ |

UNDEFINED = ’UNDEFINED’;

EInt returns ecore::EInt:
’-’? INT;� �

Listing A.8: SymtaBase Xtext grammar

A.7. SymtaConfig Xtext Grammar

Listing A.9 below presents the SymtaConfig Xtext grammar.� �
grammar org.xtext.symtaConfig.SymtaConfig with org.eclipse.xtext.common.

Terminals

import "http://www.ecore.org/symtaConfig"
import "http://www.ecore.org/symtaBase" as symtaBase
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

SVWorkbenchConfig returns SVWorkbenchConfig:
’SVWorkbenchConfig’ ref=[symtaBase::SVWorkbench|EString]
’{’

systemConfig=SymtaSystemConfig
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’}’;

QID:
ID (’.’ID)*

;
SymtaElementConfig returns SymtaElementConfig:

CoreConfig;

SymtaSystemConfig returns SymtaSystemConfig:
’SymtaSystemConfig’ ref=[symtaBase::SymtaSystemDef|QID]
’{’

((’numberOfTraces’ numberOfTraces=EInt ’;’) &
(’traceTime’ traceTimeMS=EDouble ’ms’ ’;’))
’elementConfigs’ ’{’ (elementConfigs+=SymtaElementConfig)* ’}’

’}’;

EInt returns ecore::EInt:
’-’? INT;

EDouble returns ecore::EDouble:
’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

EString returns ecore::EString:
STRING | ID;

CoreConfig returns CoreConfig:
’CoreConfig’ ref=[symtaBase::CoreDef|QID]
’{’

((’scheduler’ scheduler=EString ’;’) &
(’speedFactor’ speedFactor=EInt ’;’) &
(’kernelPrio’ kernelPrio=EInt ’;’) &
(’execBuffer’ execBuffer=EInt ’;’))

’}’;� �
Listing A.9: SymtaConfig Xtext grammar

A.8. Matlab Histogram Plots for the Execution- and
End-to-End Times

Figures A.1 to A.4 show the plotted execution-times of the different tasks. Therefore, the real
execution times of different task have been logged in a real robot system that has been executed
for half an hour. After that, the logged raw data has been used to plot the presented histogram
plots using Matlab.
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Figure A.1.: Histogram plots of the logged execution-times for the BaseOdometry task (the two
plots on top) and the BaseVelocityCommand task (bottom plots)
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Figure A.2.: Histogram plots of the logged execution-times for the JoystickServer task (the two
plots on top) and the JoystickNavigation task (bottom plots)
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Figure A.3.: Histogram plots of the logged execution-times for the Laser task (the two plots on
top) and the Mapper task (bottom plots)
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Figure A.4.: Histogram plots of the logged execution-times for the Planner task
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