i

Fakultat fur Mathematik

Lehrstuhl I7, Theoretische Informatik

Workflow Nets:
Reduction Rules and Games

Philipp Emanuel Hoffmann

Vollstandiger Abdruck der von der Fakultat fiir Mathematik der Technischen

Universitat Miinchen zur Erlangung des akademischen Grades eines
Doktors der Mathematik

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Brokate
Priifer der Dissertation:

1. Prof. Dr. Francisco Javier Esparza Estaun

2. Prof. Dr. Jorg Desel

Die Dissertation wurde am 03.03.2017 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fiir Mathematik am 04.07.2017 angenommen.

I assure the single handed composition of this thesis only supported by declared
resources.

Garching,

111

Zusammenfassung

Workflownetze sind eine Klasse von Petrinetzen, die als Formalismus fiir Business-
Prozesse verbreitet Anwendung findet. Viele Modelle nutzen Workflownetze, um
eine formale Semantik zu definieren und die dargestellten Prozesse zu analysieren.

In dieser Arbeit betrachten wir insbesondere eine Analysemethode, die regel-
basierte Reduktion genannt wird. Dabei wird eine Menge von Regeln definiert;
diese werden dann wiederholt angewendet, um die Gréfle des Netzes schrittweise zu
reduzieren. Die Regeln sind dabei so gewédhlt, dass sie die zu studierende Eigen-
schaften wie “Wohlgeformtheit” des Netzes erhalten.

Wir préasentieren einen Algorithmus, der fiir eine bedeutende Klasse der Work-
flownetze, genannt Free-Choice Netze, vollstandig ist. Dies bedeutet, dass er jedes
wohlgeformte Netz in dieser Klasse (und nur die wohlgeformten Netze) zu einem triv-
ialen Netz reduzieren kann. Durch eine Erweiterung der Regeln gelingt es ebenfalls,
probabilistische Workflownetze zu reduzieren und Eigenschaften wie die erwartete
Anzahl an Transitionen bis zum Erreichen des Endzustandes zu berechnen. Das
préasentierte Verfahren benotigt hochstens polynomiell viele Regelanwendungen in
der Grofle des Netzes.

Im letzten Teil dieser Arbeit gehen wir auf Spiele ein, die auf Workflownetzen
gespielt werden. Wir nehmen an, dass einer der Spieler einige Entscheidungen des
Workflownetzes kontrolliert, andere jedoch nicht, und stellen die Frage, ob dieser
Spieler dann das Erreichen des Endzustandes verhindern oder erzwingen kann. Wir
zeigen, dass das Problem im Allgemeinen schwer zu lésen ist, im Falle eines wohlge-
formten Free-Choice Netzes jedoch in polynomieller Zeit entscheidbar ist.

Abstract

Workflow nets are a class of Petri nets that are used as formalism for business
processes. Multiple models use workflow nets to define a formal semantics and
analyze the represented processes.

In this thesis we mainly focus on an analysis method called rule-based reduction.
In this method, one defines a set of rules which are then repeatedly applied to the
net to reduce it step by step. These rules are constructed in a way that they preserve
important properties such as “well-formedness” of the net.

We present an algorithm for an important class of workflow nets, called free-choice
nets, that is complete for that class. This means that the algorithm reduces every
well-formed net (and only those) in that class to a trivial net. By extending the
rules we can also reduce probabilistic workflow nets and compute properties like the
expected number of transitions fired until termination. The presented algorithm
needs at most a polynomial number of rule applications in the size of the net.

In the last part of this thesis we investigate games on workflow nets. We assume
that one player controls some of the decision points of the net, but not all, and ask
whether this is enough to force termination of the net. We show that in general this
problem has a high complexity, but in the case of sound free choice workflow nets it
is decidable in polynomial time.

Acknowledgments

First and foremost, I would like to express my special appreciation to my advisor
Professor Dr. Javier Esparza who has been an outstanding mentor and provided
guidance whenever needed. You have always taken the time to read or listen to the
current status of my research, discuss difficulties or give advice on what to pursue
next and I am very thankful for that. I would also like to thank my second committee
member, Professor Jorg Desel, with whom I had multiple fruitful discussions about
our work. Furthermore, I want to thank my committee for their comments on and
suggestions for my thesis, thank you. I would also like to thank the whole chair 17,
many of you have provided advice or discussions which have helped me a lot. In
particular, I want to thank Philipp Meyer for his help with LOLA and for providing
the benchmarks used.

A special thanks to my family. I am very grateful for your love and the uncondi-
tional support you all have provided during my time at university and even before
that, and I want to thank you for the sacrifices you’ve made on my behalf. Your
encouragement helped me when I doubted if I chose the right path. I also thank my
friends, in particular Christian Miiller and Teresa Zauner, who have provided ample
feedback on all of my papers, found more typos than I can count and were always
available for a discussion. Finally, I want to thank my girlfriend, Melanie Strauss,
who supported me at all times during the creation of this thesis.

I would also like to thank all the anonymous reviewers of my published work for
their advice and suggestions, they were greatly appreciated.

Contents VII
Contents

[Chapter 1 Preliminaries| 1
(1.1 _Introductionl. 3
(1.2 Math Basics/Used Symbols| 6
(1.2.1 Probability Theoryl. 6

[1.2.2 Magzurkiewicz Equivalence] 11
|Chapter 2 Petri Nets and Workflow Nets| 13
2.1 Petri Netsl o 15
2.1.1 TIntroductionl o 15

[2.1.2 Syntax and Semantics|o 15

2.1.3 Free Choice Netsl 18

2.1.4 TLive and Bounded Free Choice Nets| 21

2.2 Workflow Netsl oo 25
2.2.1 Introductionl 25

222 Workflow Nets and Soundness|. 25

2.2.3 Colored Workflow Netd 28

2.2.4 Probabilistic Workflow Netsf 29
[Chapter 3 Rule-based Reduction| 45
3.1 Reduction Rules| oo 47
[3.1.1 Inspiration: Finite Automatal 47

[3.1.2 Reduction Rules for Workflow Nets. 49

[3.1.3 Merge Rule] oo 49

3.1.4 Tteration Rulel.o oL 51

B.1.5 Shortcut Rulel. o 52

3.2 Reduction of Simple Cases|. 56
[3.2.1 Acyclic Nets| 57
B22 S Netd . . . v oo e 64

[3.3 A Complete Reduction Algorithm|. 68
[3.3.1 The Algorithm| 68

[3.3.2 Computing Synchronizers and Fragments| 79

[3.3.3 Runtime Analysis|. oL 83

3.4 Colored Workflow Netsl. 84
8.5 Probabilistic Nets. o oo oo 86
[3.6 Implementation and Experimental Results|. 90
[Chapter 4 Games on Workflow Nets| 95
4.1 Introductionl. 97
4.2 Analysis Problems|o oo 97
4.3 Free Choice Gamesl Lo oL 105
[Chapter 5 Conclusion and Future Work| 111
D.1 Conclusionl e 113
b2 Future Workl 113
Bib grap 115

CHAPTER].

Preliminaries
Contents
[L1 TIntroduction] 3
[L.2 Math Basics/Used Symbols|. 6
M21 Probability TROOTY] « « « « v o oo e e 6
11.2.2 Mazurkiewicz Equivalence|o o000 11

1.1. INTRODUCTION 3

1.1 Introduction

Properly structuring work in larger organizations to be efficient and to function
flawlessly has always been a major topic in industry. In recent years, the trend is
to model business processes using “process-aware” information systems [14]. While
there exist multiple business process models such as UML diagrams [I3], Business
Process Modeling Notation (BPMN) [45] and Event-driven Process Chains [2], most
models do not have a rigorous semantic and formalization. Thus, Petri nets [38] are
often used to define the semantics of a modeling language or to model the process
directly and enable formal reasoning.

Petri nets are a formalism for concurrent systems that can model complex inter-
play of concurrency, causal dependencies and conflict. They have been widely used
and a rich field of mathematical theory has been developed [37, 10, 38, [35]. Usually,
a subclass of Petri nets called workflow nets is used [6, [}, [}, 36], for which an explicit
start and end exists.

Once the business process is modeled in a modeling language or directly as a
workflow net, it is desirable to check for errors in the modeled process. A crucial
criterion for a “good” process is soundness [1], the property that processes will not
get stuck and will always be able to finish. In this thesis, we study ways to decide
whether a workflow net is sound efficiently. We then modify our approach to cover
various extensions of workflow nets.

Example 1.1.

Consider Figure [I.I which depicts two workflow nets. Petri nets are directed
graphs with two types of nodes: places (depicted as circles) and transitions
(depicted as squares). Edges may only connect one type of nodes to the other,
but not two nodes of the same type. Every place of a net may contain tokens,
graphically represented by black dots. The tokens present on the places form
the marking, the current state of the Petri net.

Transitions represent the active part of the Petri net. If for a given transition
all places with edges leading to that transition (the so called input places)
contain a token, that transition is enabled and may fire. When a transition
fires, it consumes one of the tokens on each of its input places and produces
one token on each of its output places, the places at which an edge originating
at the transition ends. In the net on the left of Figure there is a single
token on the place ¢ which is the only input place to the transition ¢;, thus
that transition is enabled. Firing it removes the token from i and puts a token
on s1 and s9 each. Then, t2, t3 and t4 are all enabled.

Workflow nets have two special places, ¢ and o, the input and output place.
We begin with a single token on the input place, the workflow ends when there
is a single token on the output place and no token elsewhere (called the final
marking). Any other marking that does not enable a transition is considered a
deadlock. For a workflow it is of course desirable that the workflow can always
be completed, i.e. the final marking can always be reached. This property is
called soundness.

The workflow net on the left of Figure is sound, but the one on the

4 CHAPTER 1. PRELIMINARIES

ENDZAERN

© ©

Figure 1.1: Two workflow nets.

“o-m-©

right is not: after ¢; fires the places s; and sy are marked. If to (t4) fires, the
workflow can continue with ¢4 (t2) and then finish with ¢5. If however ¢3 fires,
a deadlock is reached.

A lot of work has already been devoted to checking soundness of workflow nets
[T, B, 6, 24, 20, 12] and weakening or strengthening the definition of soundness
[24, 132, 23] and it is impossible to give a complete overview here. Unfortunately,
due to the expressiveness of workflow nets, analysis of important properties such
as soundness is often only possible with very high complexity [I5]. However, for
a subclass of workflow nets called free-choice workflow nets, polynomial decision
procedures for many problems exist [6, [I0]. Furthermore, free-choice workflow nets
are still expressive enough to model most business processes [5 21].

When modeling a business process, it is desirable to also include additional in-
formation besides the current processing state such as a piece of data that gets
manipulated during the process. A workflow net cannot model such data and does
not have something like an “output value”. We will use different extensions of work-
flow nets such as colored workflow nets [27] to address these shortcomings.

Example 1.2.

In Figure a fragment of a workflow net with data is depicted. Assume
that the tokens carry data in the form of natural numbers. In our example, s;
contains a token with value 3 and sy contains a token with value 5. Transition
t1 takes a token from s;. The data carried by the token on s; is called x and
t1 produces two tokens, one on sg with data f(x) for some function f, and one
on s3 with data g(z) for some function g. For our example, let f(z) = 2? and

1.1. INTRODUCTION 5

f@\
)

Figure 1.2: Fragment of a workflow net with data

S1
(F—®—

uQ—Eﬂ

N
u.
w]

g(x) = x + 1. Then the two tokens produced are one with value 9 on sy and
one with value 4 on s3. Thereafter t5 is enabled and may consume the tokens
on s3 and s; with data z = 4 and y = 5 to produce a token on sg with data
h(y, z) for some function h.

There already exist a number of tools such as LoLA [47], an explicit tool which
uses state exploration methods, and Woflan [43], which uses structural reduction and
S-coverability analysis as well as explicit methods, which can check soundness of a
workflow net. However, to our knowledge they do not allow for an extension with
data. Furthermore, since they apply space exploration methods and the state space
of a Petri net (i.e. the space of all reachable markings) is potentially exponential
in size of the net (known as state space explosion [40]), they give no guarantee of a
polynomial runtime.

Our work on workflow nets is closely related to earlier work on negotiations [16,
17, 11], a model that is quite similar to workflow nets with special constraints so
that the number of tokens is a constant and each token has an identity and can be
traced as it moves through the negotiation.

The algorithm presented in this thesis is based on reduction. In reduction, a set
of rules is repeatedly applied to the net. Using reduction rules has already been
proposed by other authors [35] [I0]. These rules are chosen such that they preserve
the properties one wishes to study so that after the net is reduced, it is easy to see
whether the property holds. We initially concern ourselves only with the property
of soundness. For free choice workflow nets our algorithm reduces all sound nets
and only those to a trivial net, making it easy to decide whether the original net
was sound. It furthermore takes at most polynomial time in the size of the net.

We then propose two extensions of workflow nets, data and probability, and show
how to extend the rules such that properties like the input-output data relation or
the expected number of transitions until termination can be computed.

Finally, we turn to a different topic, games on workflow nets. Games frequently
arise in synthesis problems [7], [34, [39]. In synthesis, the target is to automatically
create a system or controller that adheres to a given specification. This problem can
be translated to a game between the system or controller that should be synthesized
and the (malicious) environment, with the system winning if the specification is
satisfied. Finding a winning strategy implies that there is a system that satisfies the
specification against all possible environments.

For games on workflow nets, we assign control over clusters, which are the decision
points of the net, to the players and study whether one player can force termination

6 CHAPTER 1. PRELIMINARIES

of the net. Intuitively, one can think of a workflow involving different teams in a
company. One of the teams is known to be quite lazy. The question we try to answer
is whether this team alone (which only controls some of the decisions made during
the execution of the workflow) has the power to prevent the workflow from reaching
its designated end.

Similar to games played on pushdown automata [44], vector addition systems with
states (VASS) [8], counter machines [29], or asynchronous automata [34], games on
workflow nets can be translated into games played on the (reachable part of the)
state space. However, due to the state space being possibly exponentially larger
than the workflow net itself, an explicit computation is often undesirable. We study
the general complexity of solving games in the size of the workflow net instead. This
problem turns out to have rather high complexity, but in the case of sound free
choice nets we give a polynomial decision algorithm.

The remainder of this chapter introduces basic notions of mathematics that we
will use throughout this thesis. In Chapter [2] we introduce Petri nets and workflow
nets and present general results regarding those nets. This chapter is largely based
on the work of Desel and Esparza [I0]. Chapter [3| then introduces our reduction
algorithm and its extensions and is based on earlier work published in FASE 2016
[18] and QEST 2016 [19]. Finally, games on workflow nets are studied in Chapter
based on earlier work on negotiation games published in GandALF 2015 [25].

1.2 Math Basics/Used Symbols

The natural numbers are denoted by N = {0,1,2,3,...}. The reals are denoted by
R, the non-negative reals are R>q, the positive reals are R .

For a set ¥, the set 2 denotes the power set of ¥, or equivalently, the set of
functions from ¥ to {0, 1} which each can be identified with a subset of 3.

For a set X, the set X* consists of all finite sequences of elements in X, the set ¢
consists of all infinite sequences of elements in X.

For a sequence o, we denote the i-th element of o by o (i), the prefix of o ending at
o(i) is denoted by o* and for finite sequences the last element is denoted by last(a).

A graph G = (V, E) is a tuple consisting of nodes V' and edges E. The edges may
be directed or undirected, consequently the graph is either directed or undirected.

A path m = vive...v; is a sequence of nodes of length & > 1 such that there
is an edge between v; and v;41 for all 1 < ¢ < k. Undirected paths are paths
in the undirected graph resulting by omitting edge directions. A cycle is a path
T = v1vs ... of length k > 2 with v; = vy.

We say that a (directed or undirected) graph is connected if for every two nodes
v1, v there is an undirected path (of arbitrary length) starting in v; and ending in
vo. A directed graph is strongly connected if for every two nodes vy, vo there is a
directed path (of arbitrary length) starting in v; and ending in vs.

1.2.1 Probability Theory

In this section we will introduce Markov chains and Markov decision processes
(MDPs). Both are probabilistic models which we will use to give a semantics to
our model.

1.2. MATH BASICS/USED SYMBOLS 7

w T

0.6

Figure 1.3: An easy Markov chain

Markov Chains

We begin by introducing Markov chains. A Markov chain is a probabilistic pro-
cess characterized by its memoryless nature: From a certain state, the transition
probabilities to other states are fixed and remain the same.

Example 1.3.

We use a well known example of a very simplified weather model, see for in-
stance [46]. We assume that if today the sun shines, tomorrow with probability
0.8 it will be sunny and with probability 0.2 it will rain. If today it rains, to-
morrow with probability 0.4 it will rain too and with probability 0.6 the sun
will shine.

We can represent this Markov chain with two states (rain and sun) by its
transition matrix:

sun rain
sun | 0.8 0.2
rain| 0.6 04

Another representation which is typically used for Markov chains can be
seen in Figure [[.3] Every state is drawn as a circle and the edges are labeled
with the transition probabilities.

Markov chains with discrete time steps (days in the above example) are sometimes
called discrete-time Markov chains (DTMCs).

Definition 1.1 (Discrete-Time Markov Chain (DTMC)). A discrete-time Markov
chain is a sequence of random wvariables X1, Xo, X3 ... which all share the same
countable set of outcomes 1, called the states of the DTMC, and also fulfill the
Markov property:

P[Xn+1zcn+1]Xlzcl/\.../\Xn:cn]:P[Xn+1:cn+1\Xn:cn]
for any n and for any cq,...,c, such that
P[Xlzcl/\.../\Xn:Cn]>0.

A DTMC may have an initial state ¢ € Q) which means that X1 = c is fized, that
7:8, P[Xl = C] =1.

In this thesis we are only concerned with discrete-time Markov chains and we
always mean DTMCs when we write Markov chain.

The definition above exactly captures that the process is memoryless: the transi-
tion from the current state X, to the next state X,, ;1 does solely depend on X,, and

8 CHAPTER 1. PRELIMINARIES

not on and past event X, where k < n. We therefore can describe a Markov chain
by a series of transition probability matrices (II,),en where each IIj describes the
transition probabilities between the states in €2 in step k. If all those matrices are
equal, the Markov chain is called time-homogeneous. We will only consider time-
homogeneous Markov chains in this thesis. Such Markov chains can be described by
a single transition matrix II.

A path in a Markov chain is a finite or infinite non-empty sequence m = cicacs . ..
where ¢; is the outcome of the i-th random variable X; and P[X,+1 = ¢pt1 | Xpn =
¢n] > 0 for every i > 1. As for paths in any graph, we denote by (i) the i-th state
along 7 (i.e., the state ¢;), and by 7 the prefix of 7 ending at (i) (if it exists). For
a finite path 7, we denote by last(w) the last state of .

We define a probability measure on the Borel sets of infinite paths in a Markov
chain with cylinder sets [28] of finite paths 7 as basic sets: cyl(r) = {77’ | ©’ € Q¥}
are the infinite paths that begin with w. The probability of the cylinder of 7 =
cicac3 ... ¢y is Pleyl(m)] = P[X1 = 1] -PXo=c2 | X1 = 1] -...- P Xy, = ¢ |
Xp1= Cnfl]-

Example 1.4.

In our weather example, let ¢; = sun be the initial state and consider the
path sun rain rain. This path defines a cylinder set of all possible weather
sequences starting with sun today, then two days of rain. The probability that
this cylinder occurs is 1-0.2 - 0.4 = 0.08.

Markov Decision Processes

Markov chains are governed entirely by probability. We now introduce Markov
decision processes which also add an element of choice.

Example 1.5.

We extend the weather example by adding the possibility to buy an umbrella.
There are now four possible states: Two where we have an umbrella and it
either rains or the sun is shining, and two where we do not have an umbrella
and it either rains or the sun is shining.

We can now describe a Markov decision process: Every day, as long as
we do not have an umbrella, we decide whether we buy an umbrella or not.
Depending on our decision, we either move to one of the two states where we
have an umbrella, or to one of the two where we do not have one.

Figure [.4) shows a graphical representation of this extended model. We see
that the states without umbrella have two outgoing edges, buy an umbrella
(u) or go without an umbrella (x). These edges lead to little circles where
the probabilistic decision of the weather is taken. The two states where we
already have an umbrella have only one outgoing edge because we already have
an umbrella and do not want to buy another one.

We turn to the formal definition of this model. For a set @, let dist(Q)) denote
the set of probability distributions over Q.

1.2. MATH BASICS/USED SYMBOLS 9

sun & rain&
noumbrella noumbrella

Figure 1.4: Extension to a Markov decision process

Definition 1.2 (Markov Decision Process). A Markov decision process (MDP) is a
tuple M = (Q, qo, Steps) where Q is a set of states, qo € Q is the initial state, and
Steps: Q — 245URQ) s the probability transition function.

For a state g, a probabilistic transition is taken by first nondeterministically choos-
ing a probability distribution u € Steps(q) and then choosing the successor state ¢’
probabilistically according to .

A path in an MDP is a finite or infinite non-empty sequence m = ¢q 20 g
g2 ... where p; € Steps(q;) for every i > 0. Once again, we denote by (i) the i-th
state along 7 (i.e., the state ¢;), and by 7’ the prefix of m ending at (i) (if it exists).
For a finite path m, we denote by last(w) the last state of 7.

To resolve the decisions, we introduce a probabilistic scheduler.

Definition 1.3 (MDP-scheduler). An MDP-scheduler is a function that maps every
finite path m of M to a distribution of Steps(last(m)).

Notice that once we fix a scheduler, the MDP again collapses to a (possible infinite
state) Markov chain. We first illustrate by example.

Example 1.6.

In our weather example, assume that we buy an umbrella the first time it rains.
The scheduler thus is a function that maps every path in (sun&no umbrella)*
to the distribution where x has weight 1 and every path in

(sun&no umbrella)*rain&mno umbrella to the distribution where u has weight
1. The resulting Markov chain is depicted in Figure [I.5]

In general, the decisions of the scheduler might differ on different visits to the
same state of the MDP, so the Markov chain might have more states than the MDP.

10 CHAPTER 1. PRELIMINARIES

rain&
noumbrella

sun &
noumbrella

0.8

rain&
umbrella

sun &
umbrella

0.8 0.4

0.6

Figure 1.5: Collapse to a Markov chain

Definition 1.4 (Collapse to a Markov chain). For a given MDP-scheduler S, let
Pathspy® denote all finite paths T = qq o, q1 NN q2 - . . starting in sg and satisfying
wi = S(nt) for every i > 0.

We define a Markov chain with the set Q = Q x Pathspy”, initial state (¢,q)
and the transition probability P[X;+1 = (¢, 7') | X; = (¢, 7)] = S(7)(¢) if 7’ = =g
and 0 otherwise, i.e. the transition probability is exactly as in the distribution of
Steps that the scheduler has chosen. We say that under the scheduler S, the MDP
collapses to this Markov chain.

Let Paths® be the infinite paths for a given MDP-scheduler. We can use the
Markov chain we just defined to fix a probability measure Prob® on Paths® by
identifying paths in the MDP and paths in the Markov chain in the obvious way.

We introduce the notion of rewards for an MDP.

Definition 1.5 (Reward). A reward function for an MDP is a function rew : Q — R
together with a commutative binary operator & on R. For a path m and a set of states
F, the reward until F is reached is

min{j|m(j)€F}
R(F,m) := @ rew(m(i))

1=0

if the minimum exists, and co otherwise. Given an MDP-scheduler S, the expected
reward to reach a set of states F is defined as

ES(F) := R(F, 7)dProb®
w€Paths®

where the integral is a Lesbeque integral [22].

1.2. MATH BASICS/USED SYMBOLS 11

Example 1.7.

We continue with the umbrella example. Remember that the initial state is
sun. As a reward function we choose rew(rain&noumbrella) = —1 and set
all other rewards to +1, the operator @ is the minimum operator. That means
we reach a reward of —1 for a path that contains the state rain&noumbrella
and the reward of 1 for all other paths. For our scheduler that chooses to
buy an umbrella on the first rainy day, we will eventually have rain and thus
get a reward of —1 almost surely. To ensure a higher expected reward, a
better Scheduler should buy an umbrella right away. This way, the state
rain&noumbrella can never be reached and the expected reward will be 1.

1.2.2 Mazurkiewicz Equivalence

We will now turn to parallel computations and the subtleties thereof. In such com-
putations, there may be steps which can be executed independently of each other
and steps where one depends on the other. Such dependencies can be described by
an independence relation. Using this relation, multiple observed sequential execu-
tions can be grouped together to an equivalence class of executions which intuitively
describe different interleavings of independent actions, but the same computation in
total. This equivalence relation was introduced by Mazurkiewicz [33] and is therefore
called Mazurkiewicz equivalence.

Example 1.8.

We describe a production facility where every day there are three production
steps A, B and C to be completed. Steps A and B can be done in parallel,
but step C' can only be executed after the other steps have been completed.
Each step requires a single worker. The workers report to a supervisor when
they begin or finish a production step and of course every worker begins a
production step before he finishes it. We will denote by As and Af the reports
that step A starts or has been finished, and similarly Bs, Bf, Cs, Cf.

The supervisor might get multiple different reports such as As, Bs, Bf, Af,
Cs, Cf or As, Af, Bs, Bf, Cs, C'f, but the sequence As, Bs, Bf, Cs, Af,
Cf cannot happen under normal circumstances. The first two executions will
have the same meaning of “everything has worked”, they are, in some sense,
equivalent.

Formally, we define an alphabet ¥ as a set of actions and an independence relation
I C ¥ x ¥ as a symmetric relation on X. Together we call (X,) an independence
alphabet.

Definition 1.6 (Mazurkiewicz Equivalence). For an independence alphabet (3,1),
the Mazurkiewicz equivalence, denoted by =, is the smallest congruence such that
otitec’ = atat10’ for every o,0’ € ¥* and for any t1,ts where (t1,t2) € I.

12

CHAPTER 1. PRELIMINARIES

Example 1.9.

For the above example of a production facility, the independence relation
would contain the pairs (4s, Bs),(As, Bf),(Af, Bs),(Af, Bf) (and their coun-
terparts to make the relation symmetric) as the steps A and B are inde-
pendent of each other. An example for an independence class would be
[As, Af, Bs, Bf,Cs,C f] which contains all reports where

e As comes before Af
e Bs comes before Bf
e the report ends with C's,C'f

which is exactly the class of “good” reports.

CHAPTER 2

Petri Nets and Workflow Nets

Contents
BT PetriNetsd . . . o v 15
2.1.1 Introductionl. 15
2.1.2 Syntax and Semantics| 15
2.1.3 Free Choice Netsl 18
2.1.4 Live and Bounded Free Choice Nets| 21
2.2 Workflow Nets| 25
221 Tntroductionl., 25
2.2.2 Workflow Nets and Soundness 25
2.2.3 Colored Workflow Nets. 28
2.2.4 Probabilistic Workflow Netsl 29

13

2.1. PETRI NETS 15

2.1 Petri Nets

2.1.1 Introduction

Petri nets are a formalism for concurrent systems which is widely used and has been
studied extensively [35] 10, [38]. They provide an easy to understand graphical nota-
tion for stepwise processes which includes key features like conflict and parallelism.
However, in contrast to similar notions like UML diagrams or event-driven process
chains (EPCs) [2], Petri nets feature a precise mathematical definition and semantic
that has given rise to a rich field of mathematical theory around those nets.

The analysis of Petri nets resulted in various algorithms to decide for different
properties whether they hold for a given Petri net. While for most interesting
properties such algorithms exist, they have high lower bounds (EXPSPACE-hard
[15]) and much work has been devoted to finding suitable subclasses where analysis
can be done more efficiently.

One particularly interesting subclass is the class of free choice Petri nets. For these
nets and for important properties like liveness and boundedness, polynomial-time
algorithms exist [I0]. However, attempts to generalize these results to larger classes
have been unsuccessful so far [I5] [31].

The purpose of this section is to familiarize the reader with Petri nets. We first
introduce Petri nets and give their formal definition. We also introduce the notions
of liveness and boundedness. Thereafter we turn to a subclass, the aforementioned
free choice Petri nets, and state one of the central theorems regarding liveness in free
choice Petri nets, Commoner’s theorem. Finally we briefly study the notion of S-
and T-components, the coverability theorems and the relation of these components
and S- and T- invariants.

All results presented in this section are taken from [10].

2.1.2 Syntax and Semantics

We begin with an informal introduction of Petri nets using the graphical notation.
A Petri net consists of two components: a net and an initial marking. A net is a
directed graph with two kinds of nodes: places, represented as circles, and transi-
tions, represented as squares. Edges may only connect one type of nodes to the
other, but not two nodes of the same type. Every place of a net may contain tokens,
graphically represented by black dots. The tokens present on the places form the
marking, the current state of the Petri net.

Transitions represent the active part of the Petri net. If for a given transition all
places with edges leading to that transition (the so called input places) contain a
token, that transition is enabled and may fire. When a transition fires, it consumes
one of the tokens on each of its input places and produces one token on each of its
output places, the places at which an edge originating at the transition ends.

Example 2.1.

Figure shows a transition that is enabled. Firing this transition consumes
one token on each input place and produces one token on each output place,
leading to the marking shown on in Figure [2.1b

16 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

(a) Before the firing (b) After the firing

Figure 2.1: An example of a transition firing

Figure 2.2: Modeling of different behaviors

By composing multiple transitions to form a net, various behaviors such as casual
dependencies, conflict, concurrency and others can be simulated by a Petri net.

Example 2.2.

Figure[2.2)shows a Petri net in which transition ¢ can only fire after ¢; has fired
(casual dependency). After ¢; has fired, to and t3 are both enabled and firing
one of them will disable the other (conflict). Transition ¢5 is enabled initially
and will always stay enabled. Thus it may fire at any point (concurrency).

We now turn to the formal definitions.

Definition 2.1 (Net). A net is a tuple N = (S, T, F) where S and T are two finite,
disjoint sets and F C (S x T) U (T x S) is the flow relation.

The elements in S are called placefﬂ the elements in T" are called transitions. The
elements in S U T are called the nodes of the net.

Definition 2.2 (Pre-Set, Post-Set). For a node n € SUT, its pre-set *n consists
of the nodes {n' : (n’,n) € F}. Similarly, its post-set n® contains the nodes {n’ :
(n,n') € F}.

For a place s, its pre-set ®*s contains the input transitions of s, its post-set contains
the output transitions of s. Similarly, the pre-set of a transition ¢ contains its input
places, the post-set of ¢ contains its output places.

!Petri nets were originally defined in German where places are called “Stellen”

2.1. PETRI NETS 17

Example 2.3.

Consider again Figure The places are the set {s1, s2, $3, S4}, the transitions
are the set {t1,to,t3,t4,t5}. The edge relation F' contains for example (s1,t1),
(t1,s2) and (t2, s1) but not (s1,t2). The post-set ¢§ contains the place s;. The
pre-set ®*s; contains the transition t4 and also the transition t».

Since nets are basically graphs, the usual notion of paths, cycles and connectedness
applies to them. We also formalize the notion of a marking.

Definition 2.3 (Marking). A marking of a net (S,T, F) is a function M : S — N.

A marking can be represented by a vector (M (s1), M(s2),...) where s1, sa,... is
an arbitrary but fixed order of the places.

A place s is marked by a marking if M(s) > 0. A set of places R is marked if
some place of R is marked.

A marking enables a transition t if it marks every input place of . An enabled
transition may fire which changes the marking M to a marking M’ defined as follows:

M(s)—1 ifse®tand s ¢&t°
M'(s)=< M(s)+1 ifs¢* and s et
M(s) if se®tand sct® ors¢g® and s ¢t°

We write M — M’ to denote this marking change when ¢ fires. For a sequence
of transitions o = t1tot3 ..., we say that M enables o if M AT My 2y Moy IO
In particular, M enables t; and after ¢; fires, the marking M; enables ¢ and so on.
For a finite sequence o enabled at M, we write M —— M’ to denote that after all
transitions in o have fired, the marking M’ was reached.

Example 2.4.

The marking in Figure marks the places s; and s4 and is given by the
vector (1,0,0,1). At this marking, ¢; and t5 are enabled. After ¢; fires,
the new marking is (0,1,0,1). We also write (1,0,0,1) BN (0,1,0,1). At
this new marking, for example the sequence o = to,11,t5,t3 is enabled and
(0,1,0,1) - (0,0, 1,1).

We call a marking M’ reachable from M if there is a transition sequence o enabled
at M such that M —Z» M’

Definition 2.4 (Petri Net). A Petri net is a pair P = (N, My) where N is a
connected net with at least one place and one transition and My is a marking of N.

For a Petri net, we call My the initial marking. We call the markings reachable
from My the reachable markings.

We introduce two properties of interest related to Petri nets, liveness and bound-
edness.

Definition 2.5 (Liveness). A Petri net is live, if for every transition t and every
reachable marking M, there is a marking reachable from M that enables t.

18 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

Liveness implies that the system can never reach a position where no transition
is enabled, a so-called deadlock.

Definition 2.6 (Deadlock). A marking that enables no transition is called a dead-
lock.

Proposition 2.7. In a live Petri net, no deadlock is reachable.

Proof. By Definition [2.4] a Petri net has at least one transition and from every
reachable marking a marking can be reached that enables this transition. O

The second property, boundedness, limits the number of tokens on a place.

Definition 2.8 (Boundedness). A Petri net is bounded if there is a bound k such
that no reachable marking puts more than k tokens on one place. A Petri net is
called safe or 1-safe if that bound is 1.

The Petri net in Figure 2.2]is live, bounded and even 1-safe.

Liveness and boundedness are defined as behavioral properties (in contrast to
structural properties like connectedness) via the reachable markings. Such properties
are in general difficult to check (EXPSPACE-hard, see [I5] for a general study)
because the set of reachable markings may be very large or even infinite (if the net
is unbounded). We now turn to a subclass of Petri nets, free choice nets, for which
there exists an efficient procedure to check whether the net is live and bounded.

2.1.3 Free Choice Nets

As seen in the previous section, Petri nets allow one to model different behaviors
like conflict and concurrency. In free choice Petri nets, we do not allow certain
combinations of behavior by syntactically restricting the net. In particular, we do
not allow a combination of conflict and synchronization, the latter being a transition
where the system waits for concurrent parts of the net to have reached a certain
point.

Example 2.5.

Consider the Petri net shown in Figure There are two tokens initially, on
s1 and s9. The transitions ¢; and ¢ are enabled. After s fires, the transition
t3 aims to synchronize the two tokens on s; and s3. The transition ¢; however,
is in conflict with t3 but its pre-set does not contain s3. This combination of
synchronization and conflict is not allowed in free choice Petri nets.

Another way to look at the restriction is that initially the only transition
enabled involving the token on s; is t1. After to fires, t3 is enabled as well.
This means that the token on s; has different choices depending on whether
there is a token on s3, thus the choice is not “free”.

There are many equivalent definitions of free choice Petri nets [10], we give just
one of them here.

Definition 2.9 (Free Choice). A net is free choice if for every two places s1,s2 € S
either s3 N sy =0 or s} = s3. A Petri net is free choice if its net is free choice.

2.1. PETRI NETS

19

OO

Figure 2.3: Synchronization and conflict

O, O,

Figure 2.4: Two example nets

20 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

The net on the left of Figure 2:4] is not free choice, for example because of the
places so and s3. The Petri net on the right of Figure however is free choice.
We introduce the notion of clusters.

Definition 2.10 (Cluster). Let N = (S, T, F,i,0) be a net, z € SUT a node of N
The cluster of x is the unique smallest set [x] C SUT such that:

o x € [z],
o if s€ SNz| then s* C [z], and
o ift €T Nx], then *t C [x].

A set X C SUT is a cluster if X = [z] for some node z.

Example 2.6.

The net in Figureon the left contains four clusters: {s1,¢1}, {s2, s3,t2,t3,t4},
{s4, 85,15} and {sg}. Observe that some clusters may contain a place s and a

transition ¢ such that s is not a pre-place of ¢, for example the place so is not

a pre-place of t4.

The clusters [z] in free choice nets have a special structure: Every place s € [z] is a
pre-place for every transition ¢ € [z]. This can easily be inferred from the definition
of free choice net.

Example 2.7.

The net in Figure on the right consists of six clusters: {si,t1,t2}, {s2,ts},
{s3,ts}, {sa,ta}, {s5,56,t5,t7} and {s7}. In every cluster all places are pre-
places of every transition in that cluster (and exactly those transitions).

It is easy to see that clusters, in free choice nets as well as in general nets, are
either equal or disjoint, and thus the clusters of a net form a partition of that net.
We say that a marking M marks a cluster if it marks every place in that cluster.
Notice that this differs from our definition of M marks a set, where only some place
of the set has to be marked.

We introduce the notion of free choice clusters, clusters of a net that offer free
choice even if the net is not a free choice net.

Definition 2.11 (Free Choice Cluster). A cluster ¢ is a free choice cluster if
o s*=cNT for every s € C' NS, or equivalently
e *t=cnS foreveryT € CNT.

Notice that in free choice nets, every cluster is a free choice cluster, and the
converse also holds as the following theorem states.

Theorem 2.12. A net is free choice iff all of its clusters are free choice clusters.

2.1. PETRI NETS 21

Figure 2.5: Siphons and Traps

2.1.4 Live and Bounded Free Choice Nets

We state some important results of [10] which we will use in the remainder of this
thesis. The first result regards the complexity of deciding whether a net is live and
bounded.

Theorem 2.13. It can be decided in polynomial time whether a given Petri net P
is live and bounded.

For the second result regarding liveness in free choice Petri nets, we need the
notion of siphons and traps.

Example 2.8.

Consider the net in Figure If a marking M does not mark the set {s1, s2},
then no marking reachable from M will ever mark that set because the tran-
sitions putting a token on that set require a token already in the set. We call
such a set a siphon.

Similarly, if a marking M marks the set {s3, s4}, then any marking reachable
from M will mark that set because every transition that removes a token from
the set {s3,s4} also puts one token back into the set. Such a set is called a
trap.

Definition 2.14 (Siphon, Trap).
A non-empty set R of places of a net is a siphon if *R C R®.
A non-empty set R of places of a net is a trap if R®* C *R.

Using siphons and traps, the following theorem characterizes liveness in free choice
Petri nets in a structural way.

Theorem 2.15 (Commoner’s Theorem). A free choice Petri net is live if and only
if every siphon contains an initially marked trap.

The remainder of this chapter focuses on S- and T-components as well as S- and
T-invariants. We mostly collect important known results that we will later use.
This part can be skipped and read when referred to later.

We first illustrate the concept of S-components by example.

22 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

N
, B

(=]
©

te

Figure 2.6: A live and bounded free choice Petri net

Example 2.9.

Consider the Petri net shown in Figure 2.6l It is a live and bounded free
choice Petri net and was obtained from the free choice example on the right
of Figure 2.4 by adding the transition tg.

From the initial marking, there are two choices: t1 and to are enabled. If ¢;
fires, there is neither choice nor concurrency until the token is back at s;. If
however t, fires, there are two tokens on s3 and s4 and the transitions ¢3 and
t4 can fire concurrently.

This behavior is captured by the decomposition in Figure Notice that
some places like s1 are present in both nets of the decomposition, but those
places where there is true parallelism, s3 to sg, are only present in one of them.
Furthermore, we have not “removed a choice”: For every place, the input and
output transitions are the same as in the original net.

One interpretation of this decomposition is that the Petri net is composed of
multiple processes which sometimes take their steps synchronously and sometimes
independently of each other. We now formalize of this kind of decomposition.

Definition 2.16 (S-Component). Let N = (S, T, F) be a net. An S-Component of
N is anet N' = (S, T', F") such that

e S'CS.

o T' = Jseq *sUs® where *s and s* are the pre- and post-set in the original net

N.
o ForallteT': |°t| =1=|t*| where *t and t* are the pre- and post-set in N.

o N’ is strongly connected

2.1. PETRI NETS 23

(22
5 ¢
& ¢
1w B

Figure 2.7: Decomposition of the net in Figure

&0

We investigate some properties of S-components (and forget about the rest of
the net for a moment). Due to the third condition in the above definition, the
number of tokens in an S-component is constant: Every transition fired will consume
and produce exactly one token. Due to the fourth condition that N’ is strongly
connected, a token can move from any place to any other place. Thus if there is
a token in the S-component, every transition in this component can fire and the
component is live.

It turns out that for free choice Petri nets, there is a strong connection between
S-components which are always live and bounded, and liveness and boundedness of
the Petri net as a whole.

Definition 2.17. Let C be a set of S-components of a net. C is an S-cover if every
place of the net belongs to an S-component of C. A net is covered by S-components
if it has an S-cover.

Theorem 2.18 (S-Coverability [10]). The net of a live and bounded free choice
Petri net is covered by S-components.

Similar to S-components, we can define the notion of T-components as follows:

Definition 2.19 (T-component). Let N' = (S,T,F) be a net. A T-component of
N is anet NV = (S, T', F') such that

e T'CT.

o 5" = U "t Ut® where *t and t* are the pre- and post-set in the original net

e Forallse€ S': |°s| =1 =1s*| where ®s and s* are the pre- and post-set in N.

o N’ is strongly connected

24 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

This is exactly dual to the definition of an S-component and just as for S-
components, there is a coverability result for live and bounded free choice Petri
nets.

Theorem 2.20 (T-Coverability). The net of a live and bounded free choice Petri
net is covered by T-components.

For T-components, we present another result related to activation of T-components.

Definition 2.21 (Activation of T-components). Let N be a T-component of a net
N. A marking M of N activates N if N' with the marking M restricted to N is
live.

Theorem 2.22. For every T-component N' in a live and bounded free choice work-
flow net there is a reachable marking M which activates N”.

We furthermore introduce the concept of S-invariants and T-invariants, an alge-
braic concept that for live and bounded free choice workflow nets turns out to be
closely related to S-components and T-components.

Definition 2.23 (S-invariant, T-invariant). Let N = (S, T, F) be a net, I the inci-
dence matriz, i.e. a matriz of size |T'| x |S| where I; j = 1 iff (ti,s;) € F. A solution
vs to the equation

vs - I =0 (2.1)
vg #0
is called an S-invariant. A solution vy to the equation
I-v=0 (2.3)

is called a T-invariant.

Definition 2.24 (Minimality of Invariants). A non-negative (S- or T-, resp.) in-
variant is minimal if it is not the sum of two non-negative (S- or T-, resp.) invari-
ants.

Theorem 2.25. Every non-negative (S- or T-, resp.) invariant is the sum of min-
imal non-negative (S- or T-, resp.) invariants.

We now state some results that relate invariants and components.

Proposition 2.26. Every S-component of a net N induces an S-invariant v where
v(s) =1 iff s is in the S-component.

Proposition 2.27. Let v be a non-negative minimal S-invariant of a live and
bounded free choice net. Then the places s such that v(s) > 0 together with their
pre- and post-transitions form an S-component.

Proposition 2.28. Fvery T-component of a net N induces a T-invariant v where
v(t) =1 iff t is in the T-component.

Proposition 2.29. Let v be a non-negative minimal T-invariant of a live and
bounded free choice net. Then the transitions t such that v(t) > 0 together with
their pre- and post-places form a T-component.

2.2. WORKFLOW NETS 25

2.2 Workflow Nets

2.2.1 Introduction

Petri nets are a versatile and expressive tool to model various scenarios. One par-
ticular application for Petri nets is modeling of workflows. While many different
industry standards like UML diagrams, Event-driven Process Chains (EPCs) [2]
and Business Process Modeling Notation (BPMN) [45] exist, those usually do not
feature a precise mathematical definition. Instead Petri nets can be used to define
the semantics of those notations.

We will introduce workflow nets, a subclass of Petri nets with a distinguished
beginning and end. Using Petri nets allows us to use the rich field of theory already
developed and apply it to workflows. In particular, we will use results about liveness
and boundedness, about S- and T-components and invariants in free choice systems.

One of the most important properties regarding workflow nets is soundness, a
notion of well-formedness of the net. It captures the idea that a workflow net should
never “get stuck” and should always be able to terminate. Since an analysis of the
reachable states is impractical due to an exponential state space, we use an analysis
technique known as reduction. This technique aims to reduce the state space of the
net by applying reduction rules while preserving the properties we wish to study.

We also address an important shortcoming of workflow nets, the abstraction from
any data. When modeling a business process, it might be desirable to also include
additional information besides the current processing state. A workflow net cannot
model such data and does not have something like an “output value” that depends
on the processing and possibly an initial state. We will address this by introducing
an extension to workflow nets called colored workflow nets [27].

The remainder of this section is devoted to the definition of workflow nets and
soundness as well as extensions of workflow nets with data or probabilities.

2.2.2 Workflow Nets and Soundness

As mentioned in the introduction, workflow nets are a subclass of Petri nets which
have two distinguished places, one where the workflow starts and one where it ends.

Definition 2.30 (Workflow Net). A workflow net is a tuple W = (S,T, F,i,0)
where

e (S,T,F) is a net
e i,0€c S are places with *i = 0®* = ()
e The net (S,T,F U (o,1)) is strongly connected.

The initial marking © is the marking that only marks i. The final marking o is the
marking that only marks o.

We will call sequences enabled at ¢ firing sequences. Finyy is the set of all firing
sequences of W that end in the final marking.

We introduce one of the most studied properties of workflow nets, soundness.
Intuitively, a well-formed workflow net should never get stuck and always be able to
terminate with the final marking.

26 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

/@
ek

~
E

© ©

Figure 2.8: Three unsound workflow nets

Example 2.10.

Consider the three workflow nets in Figure 2.8 In the leftmost workflow net,
after either ¢1 or t9 fires, no more transition is enabled and a deadlock is
reached. In the second workflow net, after ¢; fires the places s; and sy are
marked. If to (¢4) fires, the workflow can continue with ¢4 (¢2) and then finish
with t5. If however t3 fires, a deadlock is reached. In the rightmost workflow
net, after ¢; has fired either ¢ or t3 can fire and then ¢4 is enabled. If 5 was
fired, the final marking is reached after ¢4, but if ¢3 fired, a token on s; remains
there and the final marking o can never be reached.

Formally, we define soundness as follows.
Definition 2.31 (Soundness). A workflow net is sound iff
e the final marking is reachable from any reachable marking, and
e cuvery transition occurs in some firing sequence.

The above semantic characterization can be expressed via liveness and bounded-
ness as has been shown by van der Aalst [1].

Definition 2.32 (Extended Net). For a workflow net W = (S, T, F,i,0) we define
the extended net W = (S, T, F U (o,1)).

Theorem 2.33 ([I]). A workflow net W = (S, T, F,i,0) is sound iff the Petri net
P = (W, 1) with the extended net and initial marking i is live and bounded.

Together with Theorem [2.13] from the previous section, it follows that soundness
for free choice workflow nets can be decided in polynomial time. In general this is
unlikely according to the following theorem.

2.2. WORKFLOW NETS 27

Theorem 2.34 ([31]). The soundness problem is PSPACE-hard for general workflow
nets and PSPACE-complete for bounded workflow nets.

There exist alternative notions of soundness as introduced in [24] (see also [6]):
k-soundness and generalized soundness. We show that for free choice workflow nets
they coincide with the standard notion.

Definition 2.35. Let W = (S, T, F,i,0) be a workflow net. For every k > 1, let i*
(oF) denote the marking that puts k tokens on i (on o), and no tokens elsewhere. W
is k-sound if o* is reachable from every marking reachable from i*. W is generalized
sound if it is k-sound for every k > 1.

Theorem 2.36. Let W be a free choice workflow net. The following statements are
equivalent:

(1) W is sound

(2) W is k-sound for some k > 1

(8) W is generalized sound.

Before we prove this theorem, we recall the following theorem from [10].

Theorem 2.37. Let W be a sound free choice workflow net, M a reachable marking
of W. Then W with the marking M is live iff every S-component of W is marked
by M.

We now prove Theorem [2.30]

Proof. (1) = (3). Assume W is sound which is the same as being 1-sound. Fix
k > 1, and let i* -5 M be an arbitrary occurrence sequence of W. We prove that
there exists an occurrence sequence 7 such that M —— oF.

Consider the Petri net P = (W,14) as used in Theorem We denote the
transition connecting o and ¢ by t*. Since W is sound, P is live by Theorem [2.33
By Commoner’s Theorem, adding tokens to a live and bounded marking of a free
choice net preserves liveness, therefore the Petri net (W, ik) with i* as initial marking
is live as well.

We construct the occurrence sequence 7 iteratively. Since (W,i*) is live and M
was reached from ¥, it is a live marking. Thus there is a sequence that ends with
t* being fired and that contains t* only once. We fire this sequence except for the
occurrence of t* which leads to one token being placed on o. We claim that if we
remove this token, the resulting marking is still live and we can repeat the above
argument until all tokens have reached o without firing t*.

Indeed, by Theorem a marking is live if it marks every S-component. Since
all S-components were initially marked by k > 1 tokens, removing a token from o
will still leave £ — 1 > 0 tokens in each S-component, thus the marking obtained is
live. By repeating the above argument until all tokens are on o, we can construct
the sequence 7 such that M — oF.

(2) = (1). Assume W is k-sound for some k > 1. By definition of k-soundness,
the net (NV,4*) is bounded and deadlock-free. Theorem 4.31 of [I0] states that in
bounded and strongly connected free choice nets, deadlock freedom is equivalent to
liveness, thus (N,i*) is live. By Commoner’s Theorem, (N, i) is also live, and by

28 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

S5 z
h(y, z)
O

Figure 2.9: Fragment of a workflow net with data

the S-coverability Theorem it is also bounded. Therefore, the workflow net W is
sound by Theorem [2.33]
(3) = (2). Obvious from Definition [2.35]

Another direct result from Theorem [2.37]is the following:

Corollary 2.38. Let W be a sound free choice workflow net. Then every S-component
of W contains i and o.

2.2.3 Colored Workflow Nets

We introduce a variant of workflow nets with data, colored workflow nets. In this
model, the tokens carry data that is transformed by transitions.

Example 2.11.

In Figure 2.9 a fragment of a workflow net with data is depicted. Assume
that the tokens carry data in the form of natural numbers. In our example, s1
contains a token with value 3 and so contains a token with value 5. Transition
t1 takes a token from s;. The data carried by the token on s; is called z and
t1 produces two tokens, one on sg with data f(x) for some function f, and one
on s3 with data g(z) for some function g. For our example, let f(z) = 22 and
g(z) = x + 1. Then the two tokens produced are one with value 9 on sy and
one with value 4 on s3. Thereafter to is enabled and may consume the tokens
on s3 and s; with data z = 4 and y = 5 to produce a token on sg with data
h(y, z) for some function h.

Formally, the data is reflected in the marking which is now a colored marking.

Definition 2.39 (Colored Workflow Net [27]). A colored workflow net (CWN) is a
tuple W = (S, T, F,i,0,V,\) where (S,T, F,i,0) is a workflow net, V is a function
that assigns to every place s € S a color set Cs and A is a function that assigns to
each transition t € T a left-total relation A(t) C [lsee; Cs X [Iscie Cs between the
values of the input places and those of the output places of t.

A colored marking M of W is a function that assigns to each place s a multiset
M(s) over Cs, interpreted as a multiset of colored tokens currently on s. A colored
marking is initial (final) if it puts one token on place i (on place o), of any color in
C; (C,), and no tokens elsewhere.

2.2. WORKFLOW NETS 29

Observe that there are now multiple initial and final markings. We call A(¢) the
transformer associated with t. We address elements of a tuple A € A(t) by A" for
an input place s of ¢, and by A% for an output-place s of t. When a transition ¢
fires, the colored marking M changes to a marking M’ in the expected way [27]:

For some color tuple ¢ € [T,ce; M(s), let A € A(t) such that ¢, = A for all s € *t.
Then for all places s

M'(s) = M(s) — A" 4 204,

The addition and subtraction here are the usual operations on the multiset M (s),
adding an element and removing one element.
Intuitively, the following happens:

e remove a token from each input place of ¢;

e choose an element of \(t) whose projection onto the input places matches the
tuple of removed tokens;

e add tokens whose colors are the projection of A(¢) onto the output places to
the output places of t.

Example 2.12.

We again inspect Figure with concrete examples. Take f(z) =2-x, g(x) =
x4+ 1 and h(y,z) = y - z. Consider the marking M = ({3},0,0,0,{2,4},0),
which puts a token with data 3 on s; and two tokens with data 2 and 4 on ss.
Then the following sequence is possible:

({3},0,0,0,{2,4},0) > (0, {6}, {4},0,{2,4},0) = (0,{6},0,0, {4}, {8})

One interesting problem related to CWNs is to determine the input-output rela-
tion or summary of the CWN.

Definition 2.40 (Summary). Let W be a colored workflow net. Let M; and M,
be the sets of initial and final colored markings of W. The summary of W is the
relation S C M; x M, given by: (M;, M,) € S iff M, is reachable from M.

We define equivalence of CWNs.

Definition 2.41 (Equivalence of CWNs). Two CWNs W, and Wa are called equiv-
alent, denoted by W1 = Wh, if they have the same summary and are either both
sound or both unsound.

In Chapter [3] we will study how to compute the summary via reduction rules that
partially reduce the net until just one transition remains that contains the whole
input output relation.

2.2.4 Probabilistic Workflow Nets

A second extension of workflow nets we will study are probabilistic workflow nets
(PWNs). Our aim is to decide conflict by assigning probabilities to transitions.
However, concurrency should not be resolved by probability, but nondeterminis-
tically (or equivalently, by a scheduler). We will see that in general conflict and

30 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

g/@\
§9:

~
(=)

Figure 2.10: A probabilistic workflow net

concurrency may interfere which each other, resulting in the scheduler resolving not
only concurrency but also deciding for some transitions whether they can fire at all.
We will therefore restrict ourselves to a class of workflow nets where this does not
happen.

We first introduce the notion of conflict in a formal setting.

Definition 2.42 (Independent Transitions, Conflict, Conflict Set). Two transitions
t1, to are independent if *t; N *ty = (). Two transitions are in conflict at a marking
M if M enables both transitions and they are not independent. The set of transitions
in conflict with a transition t is called the conflict set of t at M.

The following example gives an intuition how an execution of our probabilistic
workflow nets will look like.

Example 2.13.

Consider the workflow net in Figure Starting from the initial marking,
only one conflict set is enabled which contains ¢; and ¢5. The numbers besides
those transitions are the probabilities with which they fire and with probability
% transition to occurs. Thereafter t3 and ¢4 are both enabled concurrently, each
is their own conflict set, and one of the two is chosen by the scheduler. Say
t4 fires first. Then only t3 is enabled and fires. Now the only conflict set en-
abled contains t7 and t5 and the transition that fires is chosen probabilistically
between those two.

We now give the definition and semantics of our net. We also add a reward
function that assigns a reward to each transition.

Definition 2.43 (Probabilistic Workflow Nets). A probabilistic workflow net (PWN)
is a tuple W = (S, T, F,i,0,w,r,®) where (S,T, F,i,0) is a workflow net, w: T —
R< is a weight function, r : T'— R s a reward function, and & is a commutative
binary operator on R.

2.2. WORKFLOW NETS 31

We will use MDPs to give a semantic for PWNs. Remember that an MDP was
defined as a tuple M = (Q, qo, Steps) where @ is a set of states and Steps assigns
to each state a set of probability distributions over (). One of those probability
distributions is chosen nondeterministically by a scheduler and then the step is
taken probabilistically. We also defined a reward function for an MDP as function
rew : S — R together with a commutative binary operator & on R, the binary
operator allowed us to accumulate the reward along a path.

As for MDPs, the reward function r for PWNs together with the sum operator &
extend to transition sequences in the natural way by summing up over all transitions.
In our examples we will use standard addition as well as the maximum operator for
.

For PWNs, we would like the scheduler to pick a conflict set from which one
transition is chosen probabilistically and fired. Since a PWN is not necessarily free
choice, conflict sets for a transition may change depending on the marking (at points
where the choice is not free) and we cannot give probabilities for transitions directly.
We instead assign weights to the transitions which are then normalized.

Definition 2.44 (Probability distribution). Let W = (S, T, F,i,0,w,r,®) be a
PWN, let M be a marking of W enabling at least one transition, and let C' be a
conflict set enabled at M. The probability distribution Pyc over T is obtained
by normalizing the weights of the transitions in C' so that they add up to 1, and
assigning probability 0 to all other transitions.

We now define the MDP of a PWN which defines the semantic of the PWN. To
represent the state of the PWN in an MDP, it would be sufficient to have one place
per reachable marking. As we also want to translate the reward function (which
is defined on transitions in the PWN and on states in the MDP), we include the
transition used to reach the current marking in the state of the MDP we construct.

Definition 2.45 (MDP of a PWN). Let W = (S, T, F,i,0,w,®) be a PWN. The
MDP My = (Q, qo, Steps) of W is defined as follows:

e Q= (MxT)U{i,o} where M are the reachable markings of W, and qy = i.

e For every transition t:

— Steps((0,t)) contains exactly one distribution, which assigns probability
1 to state o, and probability 0 to all other states.

— For every marking M # o enabling no transitions, Steps((M,t)) con-
tains exactly one distribution, which assigns probability 1 to (M,t), and
probability 0 to all other states.

— For every marking M enabling at least one transition: Steps((M,t)) con-
tains a distribution uc for each conflict set C enabled at M. The distri-
bution uc is defined as follows.

x For the states i,0: pc(i) =0 = pc(o).

x For each state (M',t') such thatt' € C and M M pe(M',t) =
PM,C(t/).
x For all other states (M',t'): uc((M',t")) = 0.

32

CHAPTER 2. PETRI NETS AND WORKFLOW NETS

i O 3 ({82,583}, 2)
/

({s3,54},t3) wﬂ%}?m)

{8273 1
({51}, tl)@ g)\ 3}, t5) /I

({34a55}7t4) ({54335}7t3)

(0, t6) ()\ //(0(2)
O

Figure 2.11: The MDP of the PWN in Figure m

o Steps(i) = Steps((2,t)) for any transition t.

e Steps(o) = Steps((o,t)) for any transition t.

The reward function rewyy of W is defined by: reww(i) = 0 = reww(o), and
reww((M,t)) = r(t), the reward operator & is used for the MDP as well.

Example 2.14.

Figure shows the MDP of the PWN in Figure From the initial
marking ¢ there is just one outgoing transition because only one conflict set is
enabled. The choice between the transitions ¢; and ¢, is made probabilistically
and this is reflected in the MDP. If ¢5 is fired, thereafter two transitions ¢3 and
t4 are enabled and not in conflict because they do not share an input place.
Thus in the MDP the state ({s2,s3},t2) has two outgoing edges, one per
transition. Note that o is an absorbing state (i.e. there is a single transition
that leads back to o with probability 1) and is in fact the only absorbing state
in this MDP.

In general, conflict sets are not necessarily equivalence relations. We will see in the

following example that this results in the scheduler having the power to decide which
transitions fire, thus resolving not only concurrency. To prevent this, we introduce
a class of workflow nets for which conflict sets are an equivalence relation.

Example 2.15.

Consider the net in Figure The conflict set of transition ¢ is {t1,¢2}, but
the conflict set of transition ty is {¢1, t2,t3}. By choosing one of those conflict
sets, the scheduler already makes a decision whether it is possible for t3 to fire
or not. This contradicts the idea that the scheduler only resolves concurrency.

2.2. WORKFLOW NETS 33

S1 S92

Figure 2.12: A confused marking

It is clear that for free choice nets the conflict relation is an equivalence relation
as the conflict set of a transition is exactly its cluster. However, we can define a
broader class with a definition similar to free choice but in a semantic way.

Definition 2.46 (Confusion-Free). A marking M of a workflow net is confused if

there are two independent transitions t1,ts enabled at M such that M Y M and
the conflict sets of to at M and at M’ are different.
A workflow net is confusion-free if no reachable marking is confused.

Proposition 2.47. Every free choice workflow net is confusion free.
Proof. The conflict sets in a free choice nets are exactly the clusters. O

We now work towards showing that the expected reward of PWNs is independent
of the scheduler. Our work is based on an unpublished paper by Varacca and Nielsen
[42] which we adapted to workflow nets. All definitions, lemmas and theorems that
are adaptations of this paper are annotated with [42], the proofs are mostly the same
with some changes due to the adaptations or for improved readability.

Lemma 2.48 ([42]). Let W be a 1-safe, confusion-free workflow net. For every
reachable marking of W the conflict relation on the transitions enabled at M is an
equivalence relation.

Proof. Consider a workflow net W and a reachable marking M of W for which
the conflict relation is not an equivalence relation. The conflict relation is always
reflexive and symmetric, therefore it must be non-transitive. Then there are three
transitions t1, to, t3 so that t; and t3 are in the conflict set of t5 but ¢; and t3 are
not in conflict. However firing ¢; disables t2 and thus modifies the conflict set of
t3 which is independent of ¢;. Therefore the marking M of W is confused and W
cannot be confusion-free. O

In our studies, we will focus on the expected value of a PWN under a scheduler.
Intuitively, an execution o of the net has an associated reward r(¢). Summing up
over all executions permitted by a scheduler, weighted by their respective probability,
gives an expected reward. Since the reward function is an arbitrary function to the
reals and the operator & can be any commutative binary operator, we can compute
many attributes of a PWN that way. For example, setting the reward of each
transition to one and using standard addition for @ results in r(o) being equal to
the number of transitions in o, which allows us to compute the expected number of
transitions fired during an execution. If on the other hand we set the reward of a
single transition ¢ to one and all others to zero and use the maximum operator for
@, then r(o) is one if ¢ occurred and zero otherwise. The expected reward is then
the probability that t occurs in an execution of the PWN.

We begin by formally defining the expected value via the MDP and proceed to
show that there is an equivalent definition directly on the net.

34 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

Definition 2.49 (Expected Reward of a PWN under a Scheduler). Let W be a
PWN, and let S be a scheduler of its MDP. The expected reward V(W) of W

under S is defined as the expected reward E°(0) to reach the final state o in the
MDP My of W.

The remainder of this section has two main targets. First, we show that for free
choice PWNs the expected reward can be computed without constructing the MDP
by using the firing sequences of the net. This is an important step towards using
reduction rules: When arguing about the rules, we can inspect the changes they
cause on the net and do not have to concern ourselves with the changes caused
to the underlying MDP. Second, we show that the value of a free choice PWN is
independent of the scheduler. This is again necessary to argue about the rules as it
allows us to freely choose a scheduler of our liking to compute the value.

We now establish correspondences between the MDP and the net itself, beginning
with schedulers. In the MDP the MDP-scheduler chooses the probability distribution
which determines the next state. By construction, those probability distributions
correspond to conflict sets in the net. We give the definition of a net-scheduler which
chooses the conflict set.

Definition 2.50 (Net-Scheduler). Let W be a PWN. A net-scheduler of W is a
function that assigns to each finite firing sequence i — M of W one of the conflict
sets of transitions enabled at M, or the empty set if M enables no transitions.,

The correspondence between net-schedulers and MDP-schedulers is obvious. For
a net-scheduler Sy the corresponding MDP-scheduler Sy always picks according to
the choice C of Sy: S5 chooses the probability distribution that was obtained from
the conflict set C. Because of this simple 1-to-1 correspondence, we will mostly not
distinguish between net-schedulers and MDP-schedulers and simply use the term
scheduler. Moreover, we will convert from one type of schedulers to the other as
necessary without explicit notice.

For a net-scheduler, we can define its probabilistic language. This language is a
function that assigns each finite firing sequence a probability. Intuitively, this is the
probability that this firing sequence will happen. More formally, it is the probability
of the cylinder of all paths that “follow” that firing sequence.

Definition 2.51 (Probabilistic Language of a Scheduler [42]). The probabilistic
language vs of a scheduler S is the function vs: T* — Rxq defined by vg(o) =
Prob®(eyl®(my)). A transition sequence o is produced by S if vg(o) > 0.

Example 2.16.

We return to our example PWN again depicted in Figure After to fires,
t3 and t4 are concurrently enabled and not in conflict. A very simple scheduler
might always pick {t3} as conflict set and thus fire ¢3 before t4.

Its probabilistic language vg then assigns the following values: v(ty) = %,
V(t2t3) = %, I/(t2t4) =0.

Observe that for any transition sequence ¢ that is not a firing sequence, any
scheduler S will have vg(o) = 0.

Using the definition of vg we are now able to compute the expected value V(W)
using transition sequences instead of paths in the MDP. Remember that Finy, are

2.2. WORKFLOW NETS 35

5

{EI
—_
[SA1\)
[S3{[SV]
~
V)

()

\Z/

=] ()
=

#—(2)

D\@

Figure 2.13: A probabilistic workflow net

the firing sequences in W ending in the final marking, r is the reward function of
W and for an MDP we defined R(F,w) as the reward along a path 7 until a set
of states F' is reached. We write R(g,) instead of R({¢q},n) for a set F' that only
consists of a single state q.

Lemma 2.52. Let W be a 1-safe confusion-free PWN, and let S be a scheduler. If
W is sound, V(W) is finite and

VW) = 3" R(o,7) - Prob®(cyl®(m)) = > (o) vs(o)

mell o€ Finyy

where II are the paths in the MDP My leading from the initial state i to the final
state o.

If W is unsound, either V5(W) is finite and the above equation holds or VS(W) is
infinite and so is VE(W) for any other scheduler R.

Proof. We repeat the original definition: V(W) = E¥(0) = [, punss R(0, m)dProb®.

We begin with the sound case.

We first show that for some number k the probability to reach the final marking
from any given marking in at most k steps can be bounded away from zero.

Since W is sound, the final marking is reachable from every marking. Furthermore,
the reachability graph is finite because W is bounded. Let k be the size of the
reachability graph. Let M be some marking, o a shortest sequence to reach the final
marking from M. Observe that the length of o can be at most k.

We let the scheduler pick some conflict set C'. We claim that in o, some transition
in C must occur. Let ¢’ be some transition in C. Indeed, since t’ is enabled and W
is confusion-free, the conflict set C' of ¢ may not change until some transition in C
is fired. Since after o the final marking is reached, this has to happen at some point.

Let t be the first transition of C that appears in o. Then all transitions before ¢
in 0 must be independent of ¢ and ¢ must already be enabled at M. Let M’ be the

marking such that M —-» M.

36 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

We remove the first occurrence of ¢ from o to obtain o and claim that M’ -7 o.
This is obvious since we only switched the order of independent transitions.

In this way we modify the order of the transitions in ¢ to conform with the choices
of the scheduler and obtain a transition sequence where the conflict sets were chosen
by the scheduler that ends in the final marking. Since the weights are all positive,
this sequence occurs with a positive probability.

So far we have shown that the set of reachable markings is finite and for each of
those markings, there is a transition sequence that leads to the final marking and
occurs with positive probability. It follows that the probability to eventually reach
the final marking is equal to 1. Recall that II are the paths in the MDP M,y leading
from the initial state i to the final state o as defined in the statement of this lemma.

Since the probability to eventually reach the final marking is equal to 1, it holds
that

/ R(o,m)dProb® = / R(o,7)dProb®.
7€ Paths® wecylS (IT)
Furthermore, for a path 7 € II, it holds that R(o,7) = R(o,7’) for all 7’ € cyl®(r)
because last(m) = 0. We obtain

/ R(o,7)dProb® = Z R(o,) - Prob®(cyl® (r))
mecylS (II) rell

and therefore the first equality. Together with r(o) = R(0,7,), the obvious corre-
spondence between paths in Il and sequences in Fin and the definition of vg, the
second equality follows.

We now focus on the unsound case.

Let W be an unsound PWN. Then W is either unbounded or not live by Theo-
rem Since per the lemma statement W is 1-safe, W is as well and thus W must
be non-live. This means there is a marking M reachable from the initial marking
such that some transition ¢ can never occur in any transition sequence starting from
M. We distinguish two cases.

(1) ¢ is not such a marking M, i.e. every transition occurs in some occurrence
sequence starting in the initial marking. Then it is clear that from M the initial
marking cannot be reachable, and therefore the same holds for the final marking.
Let o be a sequence that ends in M starting from the initial marking. Using a
similar reasoning as in the sound case, we can show that there is a sequence T
that is Mazurkiewicz equivalent to oo’ for some ¢’ and that occurs with positive
probability under S. We show this by rearranging the transitions in oo’ so that
they are in the order that S chooses. 7 furthermore has infinite reward because
no sequence starting with 7 ever reaches the final marking, thus the PWN has an
infinite expected value.

(2) M = i. That means some transition ¢ does not occur in any occurrence
sequence starting from the initial marking. By definition of the MDP of W and the
reward of an MDP, if ¢t never occurs in any occurrence sequence it has no effect on
the expected reward. If we remove all such transitions ¢ and the net is still unsound,
the expected reward is infinite by (1). If the net is sound after the removal, we can
use the argumentation for the sound case to show that the equalities hold.

Note that the argument made in (1) holds independently of the scheduler S, i.e.
if the value is infinite for some scheduler .S, it is infinite for every scheduler. O

2.2. WORKFLOW NETS 37

We now turn to the task of proving that the expected reward is independent of
the scheduler. First, we extend the notion of schedulers to partial schedulers

Definition 2.53 (Partial Scheduler). A partial scheduler of length n is the re-
striction of a scheduler to firing sequences of length less than n. Given two partial
schedulers R, S on lengths nr,ng, we say that R extends S if ng > ng and S is the
restriction of R to firing sequences of length less than ng.

We extend the notion of Mazurkiewicz equivalence to schedulers. As the notion
of independent transitions is symmetric, the transitions form an independence al-
phabet and therefore Mazurkiewicz equivalence on transition sequences is defined
by Definition and will be denoted by =.

Definition 2.54 (Mazurkiewicz Equivalence of Partial Schedulers). Given a partial
scheduler S of length n, we denote by Fg the set of firing sequences o of W produced
by S such that either |o| =n or o leads to a marking that enables no transitions.

Two partial schedulers R, S with probabilistic languages vgr,vs are Mazurkiewicz
equivalentﬂ denoted by R =S, if they have the same length and there is a bijection
¢: Fr — Fg such that o = ¢(0) and vr(o) = vs(p(o)) for every o € F,.

Example 2.17.

For our running example in Figure 2.13] there are two partial schedulers of
length 2, the one that chooses t3 after t5 and the one that chooses t4:

R: e~ {tl,tg} t1 — {tﬁ} to — {tg}
S: e— {tl,tg} t — {tﬁ} to — {t4}

Those schedulers are not Mazurkiewicz equivalent since R produces the se-
quences Fr = {tits, tats} while S produces the sequences Fg = {t1tg,tats}
and no bijection ¢ can satisfy o = ¢(o) for every o € Fp.

We now present the main result of [42] in our own terminology.

Theorem 2.55 (Equivalent extension of schedulers [42]E[). Let R, S be two partial
schedulers of a confusion-free PWN W. There exist two partial schedulers R, S" of
W such that R' extends R, S’ extends S and R' = S'.

Example 2.18.

We can extend the schedulers R and S from the above example as follows:

R: ... t1t6'—>@ tots — 1y
S t1t6'—>® toty — 13

Now we have Frr = {t1ts, tatsts} and Fsr = {t1tg, tatsts}. We choose the ob-
vious bijection, which works because we have taotsty = totgts and v (tatsts) =
3/5 = vs(tatats).

2In [@2], this is called strongly Mazurkiewicz equivalent

3 Stated as Theorem 2, the original paper gives this theorem with R’ and S’ being (non-partial)
schedulers. However, in the paper equivalence is only defined for partial schedulers and the
schedulers constructed in the proof are also partial.

38 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

We prove Theorem [2.55] by induction over the length of the partial schedulers.
Trivially, for two partial schedulers of length 0 the theorem holds. For the induction
step, we need an intermediate result.

Lemma 2.56 ([42]). Let R, S be two partial schedulers that are equivalent. Then
for every partial scheduler R’ that extends R there is a partial scheduler S’ that
extends S such that R’ = 5’.

Proof. Let R, S be two equivalent partial schedulers of length n. Clearly it is enough
to show the lemma for extensions of length n+ 1. Let R’ be such an extension of R.
We construct an extension S’ of S (also of length n + 1) that is equivalent to R’

Let ¢ : Fr — Fg be a witness of R = S as in Remember that Fr are the
sequences ¢ produced by R which are either of length n or lead to a marking that
enables no transition. We build a partial scheduler S’ as follows:

S(o) if o] <n
S'(0) =< R (¢ (o)) if|o|=nand vs(c) >0

arbitrary otherwise

We first check that S’ is a well defined scheduler that extends S. It is clear that
the restriction of S” to sequences of length less than n is S. We furthermore have to
show that R'(¢~'(0)) is a conflict set enabled after 0. As o = ¢~!(0) and equivalent
transition sequences fire the same transitions and thus lead to the same marking,
the conflict sets are the same and therefore R'(¢~!(c)) is a conflict set enabled after
.

To prove equivalence, we define ¢’ : Frr — Fg as follows:

o [o) il <=n
(b (U) = / . / 3 /
o(o)t if o =o't with |o/| =n

The function ¢’ is injective as ¢ is a bijection by definition, and it is also surjec-
tive due to our construction of S. The corresponding sequences are equivalent by
construction. As for the probabilities:

vg/(a't) = Prob®(eyl(o't)) = Prob®(cyl(c’)) - Pyt =

Prob®(cyl(¢™' (o)) - Py = v (67 (0')t) = v (¢ 1 (o))
O

To prove Theorem by induction, let R and S be two schedulers with |R| =n
and |S| = m. By induction hypothesis there exist equivalent schedulers R’ and
S’ extending R and S, respectively. Let R,.1 be a scheduler extending R with
|Rn+1| = n+ 1 We prove that there are two equivalent schedulers extending R,
and S, respectively.

Let k be the length of R and S’. Our idea is depicted in Figure We
start by building two equivalent schedulers R” and Ry that extend R’ and R, 11,
respectively. Then we apply Lemma Since R” extends R’ and R’ is equivalent
to S, we get a scheduler S” which is equivalent to R” (and thus also to Rj41) and
is also an extension to S” and thus to S. Therefore Ryy1 and S” are the schedulers
we are looking for.

2.2. WORKFLOW NETS 39

Length
n / R S
n+1l Rpp Ind. Hyp.
k R = g
This proof Lemma 250
k+1 Ry.1 = R' = gt

Figure 2.14: Illustration of the proof of Theorem edges are extensions

As a first step we build R” that extends R’. Intuitively, we need to replicate the
additional behavior of R, if it has not already happened. This behavior consisted
of one conflict set chosen in the n 4 1-th step.

Let k be the length of R and S’. Let o7 be a sequence of length k with |o| =n
produced by R'.

1] if o7 enables no transitions
R'(o7) = Ry+1(0) if there isno i € 1,...,|7| with R'(07%) = Ry11(0)
any enabled

; otherwise
conflict set

Since the net is confusion free, if the conflict set R,,11(c) was never picked by R/,
then it must still be enabled after o7 which is why we can define R” as above.

As a second step, we build Ry by extending R, step by step, construction in-
termediate schedulers R, 49, ..., R along the way. We intuitively follow the actions
of R’ until R’ chooses the conflict set that R,1 chose in the n + 1-th step. Since
R, 11 already chose that conflict set, we skip it and continue to follow the actions of
R'. If we never find such a point, we choose that conflict set in the k + 1-th step.

While we define the extensions R, ; of R, 11 we also define an additional function
$fpp; (for shift point) which keeps track of when (if at all) R’ behaved like R,11.
This function can produce two kinds of values:

e an integer h, if position h is the first point up to n + ¢ when R’ behaved like
Rn+1

e | if R’ has not behaved like R, 1 until position n + i.

We need the following function on sequences:

Shifti7j(t1 R R tj e tn) =t1...0-1ti41 - tjfltjtitj+1 oty
We also define shift; ; as the identity. Notice that if ¢; is independent of ;41 ...¢;
then shift; ; (t1...ty) =t1...tp.
Let oty 41 be produced by R,+1 with |o] = n. In the following, we construct the

schedulers Ryy2,...,Rip+1 where each R;1; will be an extension of R; for n 4+ 2 <
i < k+1. We first define sfp,, ;o and R, yo:

40 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

n+1 ift,4 € R(0)

1 otherwise

8fPpyo(0tny1) = {

R(otpy1) if Sfpn+2(atn+1) =n+1

R, o(0t, =
+2(0tn1) {R’(a) otherwise

For 2 <i <k —n and a sequence oty ...t,+; produced by R,; we define

h if Sfpn+i(0tn+1 .. .tn+7;71) =h

nti it $fDpyi(Otnsr .. tpyic1) = L and
tn+7; € R/(O')

1 i Sfpn+i(0tn+1 PN tn—i—i—l) =1 and
Inti g R/(U)

8fpntit1(Otng1 - tnyi) =

Then for 2 <i< k —n:

R/(Sh’iftn+17h(0tn+1 e tn-i—z)) if Sfpn+i+1(0tn+1 ‘e tn+i) =heN

R, . 1(0tnat ... thas) =
n+i+ (n+ n—l—z) {R/(Utn+2 . tn—i—i) otherwise

And for i =k — n:

R/ (shift,, 1 p(0tny1 .. tg)) if sfppyq(otner .. ty) =h €N

Riiq1(otpet ... ty) =
+1(tar) R (otpio.. . tp_1) otherwise

We show that each R,,; is a well-defined scheduler, i.e. it picks a conflict set that
is enabled. This follows from confusion freeness and the definitions of sfp:

First assume that sfp, ;4 1(0tnt1...thss) = L. Then R’ has not picked the
conflict set R,4+1(0) yet, and thus a) this conflict set is still enabled and b) all
transitions after o were independent of the transitions in that conflict set. That
means that we can keep following R’ for another step.

Now assume that sfp,, ;4 1(0tnt1 ... tnts) = h. Then R has picked the conflict set
R, +1(0) in position h. Before that, only conflict sets independent of this set have
been picked, thus the sequence shift,, 1 5(0tn41...1) is a sequence produced by R
and we follow R’ from there.

It is easy to see that R” and Rg,; will produce equivalent sequences with the
same probabilities: In the construction of Rjpi; we have mimicked every choice of
R” with the only change that the set R,41(c) has been picked earlier, but it has
been swapped only with independent conflict sets. Since the net is confusion-free
this is possible without influencing the probabilities that a specific sequence (or an
equivalent one) arises. This concludes our proof of Theorem O

We need one more observation about Mazurkiewicz equivalence before we arrive
at our main theorem. Recall that PWNs have an associated reward function r that
extends to transition sequences via the commutative reward operator &.

Proposition 2.57. Let W be a confusion-free PWN. Then for any two firing se-
quences o and T that are Mazurkiewicz equivalent, it holds that r(o) = r(7).

2.2. WORKFLOW NETS 41

This follows by the definition of Mazurkiewicz equivalence and the commutativity
of the reward operator. We can now show one of our main results.

Theorem 2.58. Let W be a I-safe confusion-free PWN. Then the expected reward
VI(W) does not depend on the scheduler S.

Proof. Pick any two schedulers R, S. We show that there is a bijection between
Mazurkiewicz equivalent firing sequences that end in the final marking and that are
produced by those schedulers.

By Theorem [2.55 any two partial schedulers can be extended to two equivalent
partial schedulers, in particular the partial schedulers R¥, S* that are the restrictions
of R and S to firing sequences of length less than k.

Let R’ be a partial scheduler extending R*, S’ a partial scheduler extending S*
such that R’ = S’. Let o be a firing sequence of length k produced by R that ends
in the final marking. By definition of equivalence, there is a firing sequence 7 such
that o = 7 and vg/(0) = vg/(7). Since o and 7 are Mazurkiewicz equivalent, 7 also
ends in the final marking and also has length k. Since o is of length k, it was already
produced by RF and thus by R, and 7 was already produced by S.

Repeating this for every k, we can construct a bijection ¢ that maps every firing
sequence o produced by R that ends in the final marking to a Mazurkiewicz equiv-
alent firing sequence ¢(o) of the same length produced by S that ends in the final
marking.

Using Proposition we know that r(o) = r(¢(0)).

We use Lemma[2.52] In the case that for some scheduler the value of W is infinite,
this lemma already states that the value is infinite for all schedulers. Otherwise, we
get:

VEW) = 3" r(0) -vr(o) = 3 r(6(0) - vs(d(0) = 3 r(0) -vs(o) = V(W)

oeY oEY oEX

where the third equality is just a reordering of the sum. O

Example 2.19.

We continue with our running example. For convenience we have repeated
the PWN in Figure We have picked two partial schedulers R and S and
extended them to two equivalent partial schedulers R’ and S’ by setting

R: e~ {tl,tg} t1 — {t(j} to — {t3} t1tg — @ tots — 14
S/: € +— {tl,tg} tl — {tﬁ} tz —> {t4} tlt(j — @ t2t4 — t3

We extend those partial schedulers to (non-partial) schedulers R” and S” in
the following way: R’ will continue to pick {t3} first if ¢3 and t4 are enabled,
S” will continue to pick {t4} first.

The sequences produced by R” have the form titg or totsts(tststs)*t7. We
compute vrr.

vre(tite) =

1474 (t2t3t4(t5t3t4)kt7) =

[SA{[JVRNG]\V]
[~}

?r"—'
N|—

42 CHAPTER 2. PETRI NETS AND WORKFLOW NETS

Figure 2.15: A probabilistic workflow net

If we set all rewards to 1, the reward (o) for a single transition sequence o
is equal to its length. We compute the expected reward VE" under R".

113
(3 k4+4)= "2
(3-k+4) =5

” 2 >3 1
k=0

ceFinyy

N =

We do the same for S” which will produce sequences of the form ttg or
t2t4t3(t5t4t3)*t7.
v (tite) =
v (tatats(tstats)Ftr) =

It is obvious that the expected value will the same as there is a one-to-one
correspondence of equal length sequences with equal probability.

gl N

L1
2F 2

Theorem thus allows us to speak of the expected reward of a confusion-free
PWN and also enables us to define equivalence on confusion-free PWNs.

Definition 2.59 (Equivalence of PWNs). Two 1-safe confusion-free PWNs W, and
Wy are called equivalent, denoted by Wi = W, if they have the same expected value
and are either both sound or both unsound.

To see that Theorem no longer holds on nets that are not confusion-free,
consider the following example.

Example 2.20.

Consider the confused workflow net shown in Figure 2.16] After ¢; fires, all
three remaining transitions are enabled. However, there are three different
conflict sets: The conflict set of tg is {t2, t3}, the conflict set of t3 is {to, 3,14}

2.2. WORKFLOW NETS 43

¢

@@
A

Figure 2.16: A confused workflow net

and the conflict set of t4 is {ts,t4}. After the initial choice of a conflict set,
there is always one or no conflict set enabled. Consequently, there are three
possible schedulers, one per conflict set.

We set all rewards to 1 and all weights to 1. We now compute the expected
value for the scheduler R that always chooses the conflict set of to and the
expected value for the scheduler S that always chooses the conflict set of ¢3.

After R chooses {t2,t3}, both transitions appear with probability % Thus
the transition sequence o = tit3 has v(0) = % and r(0) = 2, the transition
sequence T = t1tyty has v(7) = 5 and r(7) = 3 and in total we get an expected
value VE(W) = 3.

After S chooses {to,t3,t4}, all three transitions appear with probability %
Thus the transition sequences t1t3, t1tats and t1t4ts are all equally likely, their

rewards are equal to their lengths and we get an expected value V(W) = %.

CHAPTER

Rule-based Reduction

Contents
B.1 Reduction Rules 0oL 47
13.1.1 Inspiration: Finite Automatal 47
B3.1.2 Reduction Rules for Workflow Netsl 49
B.1.3 Merge Rule| 0o 49
B.1.4 Tteration Rulel 51
B.1.5 Shorteut Rulelo 52
3.2 Reduction of Simple Cases| 56
8.2.1 Acyclic Nets|. oo 57
B22 SNefsl . . .o oo oo 64
8.3 A Complete Reduction Algorithm| 68
3.3.1 The Algorithm| 68
13.3.2 Computing Synchronizers and Fragments| 79
3.3.3 Runtime Analysis|. 83
B.4 Colored Workflow Netsl 84
8.5 Probabilistic Netsl 86
3.6 Implementation and Experimental Results| 90

45

3.1. REDUCTION RULES 47

3.1 Reduction Rules

In the previous chapter we have defined soundness of workflow nets, the summary of
a colored workflow net and the expected value of a probabilistic workflow net. We
now focus on a reduction procedure that reduces sound workflow nets to a trivial net.
By extending the reduction rules, it will also be possible to compute the summary
or expected value of a CWN or PWN, respectively, and we will do so towards the
end of this chapter.

For a first idea, we look at the labeled transition graph of a given workflow net.
This graph is defined as the (uncolored) marking graph, but labeling the edges

corresponding to a transition M s M’ with t. As there may be multiple transitions
which connect the same two markings, this graph is actually a multigraph. Figure|3.1
shows an example workflow net and its labeled transition graph.

For every bounded workflow net the labeled transition graph is finite and we can
apply a reduction procedure similar the procedure of transforming finite automata to
regular expressions [26]. However, the labeled transition graph may be exponential
in the size of the workflow net and thus the algorithm will have exponential running
time. In this section, we present an idea that helps to overcome this state-space
explosion: We create a set of rules that is inspired by the rules for labeled transition
graphs, but our rules work directly on the workflow net and therefore avoid the
exponential blowup.

This chapter has been published in parts in [I8] and [I9]. It is based on earlier
work on negotiations [16} (17, [I1] where these reduction rules were defined and the
algorithm has been introduced and proven to be polynomial. Negotiations are a
model close to workflow nets, but instead of tokens the moving parts are called
agents and can be thought of as tokens with an identity. It is thus possible to follow
an agent as it moves through the net. The proofs presented here have been adapted
to workflow nets where “following a token” is closely related to the S-components of
a net. In particular, the shortcut and merge rule have been introduced in [16] and
have been shown to be complete for acyclic negotiations (together with an additional
useless-arc rule which is not important for our rule on workflow nets). The proofs
of Theorems [3.9] and [3.T1] are translations of these proofs, the main difference is
the addition of S-components which replaces the concept of agents for negotiations.
Cyclic negotiations have been subject of [I7], but the algorithm presented there is
unfortunately wrong and has been corrected in [IT]. The adaptation to workflow
nets [I8] concludes with Theorem and is once again more involved because,
intuitively, it is not easily possible to “follow a token” in a workflow net and we need
to resort to S-components for the definition of synchronizers.

3.1.1 Inspiration: Finite Automata

We use the standard notation where | denotes the choice operator and * denotes the
Kleene star operator.

The reduction procedure for finite automata based on state elimination proceeds
by iteratively applying one of the following three rules:

(1) Replace two distinct edges M L M and M 25 M’ by a new edge M iz

48 CHAPTER 3. RULE-BASED REDUCTION

© :

Figure 3.1: A workflow net and its labeled transition graph

(2) Given a self-loop M Y5 M, replace every edge M ANV by an edge M L

and then remove the self-loop.

(3) Given an edge M Ly M’ such that M # M’ and M’ has at least one successor,

add for every edge M’ —*» M" a shortcut edge M -+ M", then remove the

edge M —s M’. Furthermore, if M’ has no more incoming edges, remove M’
and all its outgoing edges.

The algorithm applies these rules in a certain order until no rule can be applied
any more:

e Apply rule (1) as long as possible.
e Apply rule (2) as long as possible.

e When neither rule (1) nor rule (2) are applicable, choose a marking M that
has both incoming and outgoing edges and apply rule (3) to all its incoming
edges. Observe that this leads to the removal of M.

Every time we begin applying rule (3), we will keep applying this rule until we
remove a node in the graph. We therefore reduce the number of nodes until this is
no longer possible, that is, until every node either has no incoming or no outgoing
edges.

We now explore the effects of this algorithm on a labeled transition graph of a
workflow net. The only node without incoming edges is by definition the initial
marking. If the workflow net was sound, only the final marking has no outgoing

3.1. REDUCTION RULES 49

edges and the resulting graph will have two nodes, the initial and the final marking,
connected by a single edge.

For a sound workflow net, every node in the labeled transition graph lies on a path
from the node ¢ to the node o and after the algorithm is finished, only these two
nodes will remain, connected by a single edge. In the unsound case, if from some
marking the final marking is not reachable, we will end up with additional nodes.
If the workflow net is unsound because some transition can never be fired, we will
end up with two nodes and a single edge as in the sound case, but the transition in
question will not appear in the regular expression.

Figure [3.2] shows the intermediate steps in the reduction of the graph shown in
Figure As the workflow net from which we obtained the labeled transition graph
is sound, the reduction ends with a single transition remaining.

3.1.2 Reduction Rules for Workflow Nets

As mentioned earlier, the labeled transition graph of a workflow net may be exponen-
tial in the size of the workflow net, thus we want to work directly on the net instead.
We begin with a formal definition of reduction rules and the terms correctness and
completeness.

Definition 3.1 (Rules, Correctness, and Completeness). A reduction rule, or just
a rule, is a binary relation on the set of workflow nets. Given a rule R, we write
Wh i) W for (Wl,WQ) € R.

A rule R is correct if its application to a workflow net preserves soundness, that
is Wh i> Wy implies that Wy is sound iff Wh is sound.

Given a correct set of rules R = {R1,..., Ry}, we denote by R* the reflexive and
transitive closure of Ry U ... U R,. We say that R is complete with respect to a
class of workflow nets if for every sound workflow net W in that class there is a
workflow net W' consisting of two places and a single transition between them such

that W X5 W',

The trivial net consisting only of the places ¢ and o and a single transition between
them is always a sound workflow net. Thus for a correct set of rules, only the sound
workflow nets can be completely reduced to a trivial net as correctness implies that
the rules preserve soundness. We describe our rules as pairs of a guard and an
action: YW i> Wy holds if W, satisfies the guard and W, is a possible result of
applying R to W;.

3.1.3 Merge Rule

Rule (1) for the labeled transition graph was the following:

(1) Replace two distinct edges M L M and M 25 M’ by a new edge M bt

This rule can be easily lifted to the workflow net: If two transitions t;, to have

the same pre-set and post-set, then M B M7 M2 MY and we can merge the
two transitions.

50 CHAPTER 3. RULE-BASED REDUCTION

t1 3]
/i tits 5t
t4 t;tg
ts
°
) Initial graph (b) After applying rule (2)

* * *
t2t3t4 é t2t4t2t3 tl <t2t3t4 U t2t4t2t3)t5

Y
L]

(d) After applying rule (1) and

) After applymg rule (3) twice then rule (3) twice

Figure 3.2: Example of the simple reduction procedure

3.1. REDUCTION RULES o1

merge
rule

OO0, ONONO,

Figure 3.3: Example merge rule application

Definition 3.2. Merge Rule
Guard: W contains two distinct transitions t1,to € T such that *t; = *ts and
=1
Action: (1) T := (T \ {t1,t2}) U{t;m}, where t,, is a fresh name.
(2) to, =t} and *t,, = *t;.

Figure depicts a fragment of a workflow net with an example application of
the merge rule.

Theorem 3.3. The merge rule is correct.

Proof. We have to show that an application of the merge rule preserves soundness
or unsoundness. Let W; —4° W, By Theorem it is equivalent to show that
W, is live and bounded iff W is live and bounded. This however is an immediate
consequence of the definition: The reachable markings are unchanged, thus bound-
edness is preserved. The transition t,, is enabled at the same marking that ¢; and
to were enabled, thus liveness is preserved. O

3.1.4 Iteration Rule

The following was rule (2) for the labeled transition graph:
(2) Given a self-loop M Y5 M, replace every edge M NV by an edge M L
and then remove the self-loop.

Again, this rule can be lifted to workflow nets: A transition does not change the
marking if its input-places and output-places coincide. If preserving soundness is
the only issue, we can simple remove all such self-loops. However, our aim is to
later extend the rules to work for CWNs/PWNs. We therefore restrict ourselves to
transitions of free choice clusters where it is possible to “preserve the effect” of the
removed transition by shifting it to the other transitions in that cluster, similar to
the modification of rule (2) which changes ¢’ to t*t'.

Definition 3.4. Iteration Rule

Guard: W contains a free choice cluster ¢ with a transition t € ¢ such that
t* = *t.
Action: T := (T\{t}).

In Figure a fragment of a workflow net with an example application of the
iteration rule is shown.

52 CHAPTER 3. RULE-BASED REDUCTION

iteration
rule

ONOMNO & @ ©

Figure 3.4: Example iteration rule application

Theorem 3.5. The iteration rule is correct

Proof. We have to show that an application of the iteration rule preserves soundness

or unsoundness. Let W; iteration Wsy. As for the merge rule, we show that W, is

live and bounded iff W, is live and bounded. The application of the iteration rule
removes a transition but does not change the reachable markings, thus boundedness
is preserved. Since the net is strongly connected, ¢ cannot be the only transition in
the free-choice cluster ¢, therefore liveness is also preserved. O

3.1.5 Shortcut Rule

The following was the third reduction rule for finite automata:

(3) Given an edge M —Ly M’ such that M # M’ and M’ has at least one successor,

add for every edge M’ s M a shorteut edge M 25 M", then remove the

edge M — M'. Furthermore, if M’ has no more incoming edges, remove M’
and all its outgoing edges.

This rule is much more complicated to transfer to workflow nets. The intention
of the rule is to make the edge M 5 M’ redundant by creating shortcut edges.
Moreover, sometimes the rule removes a node from the graph.

However, when we consider a workflow net, it is much harder to define shortcuts
so that a transition is redundant.

Example 3.1.

Consider the workflow net in Figure[3.5 on the left. The net has two occurrence
sequences, 01 = t1tyts and o9 = totststs. We can therefore conclude that after
t3 fires, it will always be the case that t4 fires next. We want to create a new
transition that is enabled whenever t¢3 is enabled and that combines t3t4 into
one transition.

This however is not that easy as t4 can only fire when the place sy € 13
is marked and additionally s3 is marked. If the shortcut transition ignores
the token on s3 and puts a token on s4 and ss, that token on s3 will never
be removed resulting in an unsound net. Our result might look like the net
shown in Figure [3.5| on the right.

3.1. REDUCTION RULES 93

Figure 3.5: Trying to shortcut t3

We try to generalize this approach : Take two transitions ¢ and ¢ such
that t* N *t’ # 0. Create a shortcut transition tg with *t; = *t U *#/\¢* and
e =t U\t

Figure[3.6|shows the problems of this approach: What if some tokens needed
by t' can only be produced after ¢ has fired? In this case, we try to shortcut
t1 and t3. The transition t3 consumes a token from s3 which is only produced
after £; and then to has fired. Creating the transition t1t3 which has s3 as
pre-place creates a dead transition.

For this reason, we restrict possible shortcuts to transitions ¢ such that after
executing them from any marking that enables ¢, a cluster c is enabled. In this case,
we know that some transition in ¢ will eventually be fired as a consequence of ¢t. For
example, in Figure [3.5] we know that after ¢; fires, t4 will be enabled and we can
apply a shortcut there.

Definition 3.6 ([18]). A transition t unconditionally enables a cluster ¢ if cNS C t°.

Observe that if ¢ unconditionally enables ¢ then any marking reached by firing ¢
enables every transition in c.

We now turn to the second aspect: We need to remove places from the net if
we ever want to arrive at a net consisting of only two places, and removing places
(free choice clusters, actually) is also necessary to ensure that soundness is preserved:
Removing the transition ¢ may have the effect that the cluster ¢ can never be enabled
again and thus ¢ must be removed.

54 CHAPTER 3. RULE-BASED REDUCTION

t1ts

© ©

Figure 3.6: Problems with the approach

Combining the above observations, we arrive at the following formulation of the
shortcut rule.

Definition 3.7. Shortcut Rule

Guard: W contains a transition t and a free choice cluster ¢ & {[t],[o]} such
that t unconditionally enables c.

Action: (1) T :=(T\{t}) U{t, |t € c}, wheret are fresh names.
(2) For allt' € cNT: *tl :=*t and t.* := (t*\ *t') U t".
(3) If *s = 0 for all s € ¢N S, then remove ¢ from W.

An example of a shortcut rule application is shown in Figure Transition #;
unconditionally enables the cluster {ss, s4,t2,t3}. This cluster contains two tran-
sitions, thus there are two new shortcut transitions oy and ¢3y generated by the
shortcut rule. As the cluster had no other incoming transitions, it is removed.

Theorem 3.8. The shortcut rule is correct.

Proof. Assume the transition ¢ and cluster ¢ are as in Definition We say that ¢
occurs in a firing sequence o if some transition t € ¢ T occurs in o.

Let W, be the result of applying the shortcut rule to Wi. The proof is divided
into four parts.

(1) For every initial firing sequence o9 of W, there is an initial firing sequence o
of Wi leading to the same marking.

Let o1 be the result of replacing all occurrences of ¢, (as in Definition [3.7))
in o9 by the sequence tt'. Clearly this yields an initial firing sequence o

3.1. REDUCTION RULES 95

o

shortcut
rule

) Q01O

Figure 3.7: Example shortcut rule application

of W;. The marking reached by these two sequences is the same. We call
o1 the corresponding sequence of oo in Wi.

Let W; be sound (thus bounded by Theorem , K € N such that W is
K-bounded. Then for each initial firing sequence o1 of Wy, there is an initial
firing sequence o9 of W5 and a k € N with 0 < k < K such that oo leads to the
same marking as o1t*F for some t* € c.

Since t unconditionally enables ¢, after ¢ has fired all places of ¢ are marked.
We define o, as follows: First, we extend o1 by as many occurrences of t* as
possible. Notice that this can be at most K many. Let k& be the number of
occurrences of t* we have added.

Then we iteratively apply the following step to oi:
(a) Find the first occurrence of ¢. If there is none, stop.

(b) Find the first occurrence of ' € ¢NT after the occurrence of ¢ found in step
(1). If there is none, stop.

(¢c) If there was an occurrence of ¢’ found in step (2) remove it and replace the
occurrence of ¢ found in step (1) by t..

We claim that this yields a firing sequence o9 in W, which leads to the same
marking as o1t**. Indeed, since we have added as many occurrences of t* as
possible and ¢ unconditionally enables ¢, there must be at least as many occur-
rences of some ' € ¢NT as there are occurrences of t. Thus step (b) will always
find a transition ¢’ and o9 will not contain any occurrences of t. By definition
of the shortcut rule the sequences lead to the same marking. We call o2 the
corresponding sequence of o1 in W;.

If Wy is sound then W, is sound.

We first show that every transition in W, can be enabled by some initial firing
sequence. Since every transition in W can be enabled by some initial firing
sequence, using the corresponding sequence in Wa, which exists by (2), we are
done for all transitions but those in c. If ¢ still exists in W5, there must be some
t"” € T such that such that t” # t and s € t"* for some s € ¢NS. Since t” # t,

o6 CHAPTER 3. RULE-BASED REDUCTION

the transition ¢’ is unchanged in W5. By soundness of Wi, some initial firing
sequence o enables t”. We extend it by an occurrence of ¢’ and then to a firing
sequence o1t”p; leading to the final marking in W;, which is possible since W
is sound. This sequence contains an occurrence of ¢ which is not matched by a
prior occurrence of ¢, and so does the corresponding sequence in Ws. Together
with the fact that c is a free choice cluster, it follows that all transitions in ¢
can be enabled in Ws.

We now prove that every initial firing sequence o9 in Ws can be extended to a
sequence that ends with the final marking. Take the corresponding occurrence
sequence o1 in Wy, and extend it to a sequence 7, = o1p1 that ends with the final
marking in W, (possible by soundness of W;). The corresponding sequence in
W is 79 = o9p2, which is the extension of oy (by construction of corresponding
sequences) that ends with the final marking.

(4) If Wy is sound then W), is sound.

Since every transition in W, can be enabled by some initial occurrence sequence,
using the corresponding sequence in W; we see that the same is true for all
transitions but those in c¢. However, it is then easy to show that the transitions
in ¢ can also be enabled in Wj: take the initial firing sequence that enables ¢
and extend it by ¢ which unconditionally enables c.

For an initial occurrence sequence o1 in Wi, the corresponding occurrence se-
quence o2 in W, can be extended to a sequence 1o = og9p2 that ends with the
final marking in Ws. The corresponding sequence 7 in W; is either o1p; or
o1t'py for some t' € ¢cN T, an extension of oy that ends with the final marking.

By (3) and (4) the shortcut rule is correct. O

We have defined three correct rules for workflow nets: The shortcut, merge and
iteration rule. The remainder of this chapter is structured as follows: First we discuss
two syntactic special cases of workflow nets and study how our rules can be used to
reduce these cases. Then we extend our approach to cover the general case and we
show that our three rules are complete for free choice workflow nets. In Sections [3.4]
and we present adaptions of our rules to colored workflow nets and probabilistic
workflow nets and show that these adaptions are correct for those classes (with
slightly different versions of correctness that include the summary or expected value).
Finally we present an example implementation and give experimental results.

3.2 Reduction of Simple Cases

In this section, we explore ways to reduce two special subclasses of workflow nets
using our rules. We start by considering nets which are acyclic and then turn to
S-nets, nets that consist of a single S-component. In the latter the number of tokens
remains constant, as in any S-component, and we have a single token that moves
through the net. The solution to these two cases will be used in the next section to
create a general algorithm.

3.2. REDUCTION OF SIMPLE CASES o7

Figure 3.8: No rule is applicable

3.2.1 Acyclic Nets

Even for acyclic nets, the three rules we presented are not complete.

Example 3.2.

Figure shows an acyclic sound workflow net where no rule is applicable.
Obviously the merge rule is not applicable as there are no two transitions with
the same input- and output-places. The iteration rule is not applicable either.
For the shortcut rule, notice that the clusters are {i,t1,t2}, {s1, 2, s3,t3,t4}
and {o}. No transition unconditionally enables any of those clusters except
{0} and therefore the shortcut rule is not applicable.

However, if we focus on free choice nets, we get a completeness result.

Theorem 3.9. The shortcut and merge rule are complete for acyclic free choice
workflow nets.

Proof. Since the correctness of the rules has already been proven, we have to show
that the rules completely reduce every sound acyclic free choice workflow net. Let
W be a sound acyclic free choice workflow net. The proof has three parts:

(1) If W has more than two places, then the shortcut rule is applicable.

Since W is acyclic, its graph induces a partial order < on the places. We define
a partial order on the clusters by setting ¢; < co if for some places s1 € ¢; and
S9 € co we have s; < so. We claim that this partial order is well defined for
sound acyclic free choice nets.

Assume the contrary: There are two clusters c1,c2 and four places s1,s] € ¢
and s, s, € o such that s1 < s and s) < s{. This means in the graph of the
workflow net there is a path 71 from s; to sy and also a path 7o from s to
s}. By soundness, any transition in ¢; can be enabled, in particular the first
transition ¢ of 1. We start with a sequence o that enables ¢; and extend it by
firing ¢;. By soundness, the final marking must be reachable after o. Therefore

o8

CHAPTER 3. RULE-BASED REDUCTION

some transition in the cluster containing the next transition along m; can be
enabled (because there is a token on at least one pre-place of that transition)
and by the free choice condition, all transitions in that cluster can be enabled,
in particular the next transition of 7. Continuing with this argument yields a
transition sequence that enables co. We argue in the same way following the
path my and then eventually c¢; can be enabled again, thus there is a cycle in W.

We now consider an arbitrary linearization of that partial order. Let ¢; be the
first cluster after [i]. Since ¢; can be enabled by soundness and its only incoming
edges are from the cluster [i], there must be a transition in that cluster that
unconditionally enables ¢; and therefore the shortcut rule is applicable.

The shortcut and the merge rule cannot be applied infinitely often.

Let W, be the result of applying any of the rules to a workflow net W;. For
every firing sequence o9 in W5 leading to the final marking, let ¢(o3) be defined
as follows: If the merge rule was applied with t1,ts,t, as in Definition
replace every occurrence of t,, in o9 by t1. If the shortcut rule was applied with
t,t" and t, as in Definition replace every occurrence of ¢ in o9 by tt'. Then
we have |o2| < |p(02)| for all such sequences o2 and for at least one of them
we have |og| < |¢(o2)| if the shortcut rule was applied. Since the set of firing
sequences leading to the final marking in an acyclic workflow net is finite, the
shortcut rule cannot be applied infinitely often. Since the merge rule reduces
the number of transitions by one, it also cannot be applied infinitely often.

If W has exactly two places, the merge rule can be applied until there is exactly
one transition left.
In this case the only two places are ¢ and o. Since W is sound, all transitions

have as pre-place ¢ and as post-place o and the merge rule can be applied.

O

We have shown that acyclic nets can be completely reduced by applying the
shortcut and merge rule. However, applying the shortcut rule has one important
shortcoming: It generates additional transitions, potentially exponentially many.
This leads to an exponential number of merge rule applications.

Example 3.3.

Figure 3.9 shows a workflow net in which it is possible to create exponentially
many transitions using the shortcut rule. Transition ¢; unconditionally enables
all k clusters from [s1,4] to [skq]. If we shortcut all of those, 2* transitions will
be created.

This exponential blowup can however be avoided by first applying the short-
cut rule to t1, and the cluster [s13], also to t1. and the cluster [sj.], and then
merging the two transitions of the cluster [s1,] which then both have as post-set

S1d-

We therefore introduce a variant of the shortcut rule with the following addition
to the guard: the cluster ¢ unconditionally enabled by ¢ contains only one transition.

3.2. REDUCTION OF SIMPLE CASES

99

Figure 3.9: Exponentially many shortcuts possible

60 CHAPTER 3. RULE-BASED REDUCTION

Definition 3.10. D-Shortcut ruld]

Guard: W contains a transition t and a free choice cluster ¢ & {[t],[o]} such
that t unconditionally enables ¢ and |[cNT| = 1.

Action: 1) 7 .— (T\ {t}) U{t, | ' € c}, where t, are fresh names.
(2) Forallt' € cNT: *t, ="t and t.* := (t*\ *t') Ut'".
(3) If *s =0 for all s € cN S, then remove ¢ from W.

The proof that the d-shortcut rule and the merge rule are still complete is much
more involved, but will result in a polynomial number of rule applications.

Theorem 3.11. The d-shortcut and merge rule are complete for acyclic free choice
workflow nets.

An additional term will be used during the proof of this theorem.

Definition 3.12 (Irreducible). We call a net irreducible if neither the d-shortcut
nor the merge rule is applicable.

We split the proof of Theorem [3.11]into three lemmas from which the result follows.
Recall that by Theorem for a sound free choice workflow net ¥ the extended
net W is live and bounded and by Theorem W is covered by S-components.

Lemma 3.13. Let W be an acyclic sound free choice workflow net that is irreducible
and let s € S be a place of W with |s®*| > 1. Then every S-component of W contains
an element in [s]NS.

Proof. We proceed in two steps.

(a) There is a transition t in s® such that: either ¢* = {o} or t unconditionally
enables some cluster ¢ with |[cNT| > 1.

This is the core of the proof. We first claim: if ¢ unconditionally enables some
cluster ¢, then (a) holds. Indeed: if ¢t enables some cluster ¢, then either ¢ = [o]
or [cNT| > 1, because otherwise the d-shortcut rule can be applied to ¢ and c,
contradicting the irreducibility of W. This proves the claim.

It remains to prove that ¢ unconditionally enables some cluster c. For this, we as-
sume the contrary, and prove that WV contains a cycle, contradicting the hypothesis.

Since the merge rule is not applicable to W, the set s® contains two transitions
t1,t2 such that ¢ # t5. We proceed in three steps.

(al) For every reachable marking M that marks [s] there is a sequence o such that

M 2o My and M LA My for some markings My, Mo, and the sets C; and Cy
of clusters marked by Mi, My are disjoint.

Let o be a longest occurrence sequence such that M LNy Vs 1 and M L2, M for
some markings M7, My (notice that o exists, because all occurrence sequences
of W are finite by acyclicity). We have C; N Cy = (), because otherwise we
can extend o by firing any transition of any cluster marked by both markings.
In particular it must be that M; # o # M, which also follows from the fact
that t} # t5 and therefore the sequences t;0 and ta0 cannot end in the same
marking.

'This rule was first defined for negotiations [I6] where it was used to summarize deterministic
negotiations, thus d-shortcut rule or deterministic shortcut rule

3.2.

REDUCTION OF SIMPLE CASES 61

(a2)

For every ¢; € C there is a path leading from some co € Cs to ¢1, and for
every cg € Cs there is a path leading from some ¢; € C; to cs.

By symmetry it suffices to prove the first part. Since C; and Cy are disjoint,
c1 is marked by M; but not by M. Thus there is a place s; in ¢; that is
not marked by M. Since the sequences t10 and t9o only differ in their first
element, it must hold that s; € ¢} and s; ¢ t3. Let R be an S-component of
W that contains s;. Then R contains ®*s; and thus ¢;. It also contains some
place in ¢; = ®t; and therefore also each transition in ¢; and in particular to.
In R, let s2 be the post-place of to. It is clear that so # s; and even s9 ¢ ¢1
as an S-component can only contain one place per cluster.

Comparing the markings after ¢; fired and after ¢, fired, the token of R is in
s1 in the first case and in s, in the second case. As argued above, the places
s1 or sg will remain marked during the sequence o and Ms marks so while M;

marks s1 (see Figure [3.10]).

L] [

e Marking M,

o Marking M

[® Q0.0

r 81\,\/

Figure 3.10: Hlustration of the proof of Lemma

We first show that there is a path from [s2] to [s1] = ¢;. By assumption, there
is no transition ¢ of [s] such that ¢ unconditionally enables some cluster ¢, and
in particular ¢; does not unconditionally enable ¢;. Thus ¢; contains a place
r # s1 such that r € ¢}, and since M; marks ¢; (and therefore r), it holds that
either some transition in o marked r or r was already marked by M. Therefore
M5 must also mark r.

Since My marks r, and W is sound, there is a sequence of transitions 7 such
that My — M} and M} marks [r] = ¢;. Since in My the token in the S-
component of s1 is on sg, there is a path from sy to s; and thus from [sg] to
1.

We now prove that there is a path from some ca € Cs to [s2]. If [sg] is marked
by Ma, then [s3] € Co and we are done. If [so] is not enabled at My (as in
the figure) then, since My marks sy and W is sound, there is a sequence of
transitions 7 such that My — M} and M} enables [s2]. We claim that for

62 CHAPTER 3. RULE-BASED REDUCTION

every transition ¢ fired along 7 either [t] € Cy or there is a path from some
cluster in Cy to [t]. This again easily follows since C9 is exactly the set of
enabled clusters. As this holds for all ¢ along 7, it also holds for s,.

(a3) N contains a cycle.

Follows immediately from (a2) and the finiteness of N; and No.

(b) Every S-component of W contains a place of [s].

By repeated application of (a) we find a sequence of clusters and transitions
(a1,t1)...(ag,tg) such that a; = [s], ax = o, t; € a; N'T and t; unconditionally
enables a;11 for every 1 < ¢ < k — 1. Since every S-component contains o by
Corollary [2.38] every S-component must contain ¢,_; and also a place of a,_1, and
also a place of a,,_9,...,a1. O

Lemma 3.14. Let W be an acyclic sound free choice workflow net that is irreducible.
Every S-component of W contains a place of every cluster, and for every transition
t there is a cluster c satisfying t* =cNS.

Proof. We first show that every S-component of W contains a place of every cluster.
By Lemma it suffices to prove that every cluster ¢ # [o] contains more than
one transition. Assume the contrary, i.e., some cluster different from [o] contains
only one transition. Since, by soundness, every transition can occur, there is an
occurrence sequence tq ...t such that [tx] contains only one transition and all of

[t1], ..., [tk—1] contain more than one transition. We denote by ¢; the cluster [t;] for
each 1 < ¢ < k. By Lemma every S-component of W contains a place in all
of ¢1,...,cg. It follows that t; unconditionally enables c¢; 11 for every 1 < <k — 1.

In particular, t;_; unconditionally enables c;. But then, since c; only has one
transition, the d-shortcut rule can be applied, contradicting the hypothesis that W
is irreducible.

For the second part, assume there is a transition ¢ and two clusters ¢y, ¢y such
that ¢y Nt® # 0 # co Nt*. Let s; be some place in ¢; Nt* and so some place
in co Nt*. By the first part, every S-component contains a place in [t], ¢; and
c2. Since W is sound, some reachable marking M marks [t]. Moreover, since all
S-components contain a place in [t], and every S-component contains exactly one

token, the marking M marks exactly [t]. Let M’ be the marking given by M L.
Since the S-component of s; contains a place in every cluster, no cluster different
from c¢; can be marked at M’. Symmetrically, no cluster different from co can be
enabled at M'. So M’ does not mark any cluster, contradicting that W is sound.
Therefore we obtain that for every transition t there is a cluster ¢ such that ¢t* C c.
To show equality, again assume the contrary. Then following the same reasoning as
above, after an occurrence sequence that ends with ¢, only places in ¢ are marked but
c is not marked. Thus the marking does not mark any cluster, again contradicting
soundness. O

Lemma 3.15. Let W be an irreducible sound acyclic free choice workflow net. Then
W contains only two clusters [i], [o].

Proof. Assume W contains more than two clusters. For every cluster ¢ # [o], let
l(c) be the length of the longest path from ¢ to o in the graph of W. Let c¢pin be
any cluster such that [(cpiy) is minimal, and let ¢ be an arbitrary transition of ¢y
(notice that ¢, cannot be [i]).

3.2. REDUCTION OF SIMPLE CASES 63

Algorithm 1 Reduction procedure for acyclic workflow nets W

1: while W is not reduced completely do
2 apply the merge rule exhaustively
3: apply the d-shortcut rule

4: end while

By Lemma there is a cluster ¢’ such that ¢ unconditionally enables ¢/. If
¢ # [o] then by acyclicity we have I(¢/) < I(¢min), contradicting the minimality of
Cmin- S0 we have t* = [o] for every transition ¢ of cyip.

If cmin has more than one transition, then the merge rule is applicable. Otherwise,
since W is strongly connected some transition ¢ must have an output-place in ¢N S
and thus by Lemma it must hold that ¢* = ¢N S. Then the d-shortcut rule
is applicable to ¢’ and ¢;,;,. In both cases we get a contradiction to irreducibility,
therefore the lemma holds. O

The above lemmas prove that as long as the free choice workflow net WV consists
of more than two clusters and one transition, one of the rules is applicable. We
now show that an application of the rules actually completely reduces the net in
polynomial time. The algorithm can be found as Algorithm

Theorem 3.16. Every sound free choice workflow net W = (S, T, F,i,0) can be
completely reduced by means of |T'| applications of the merge rule and |T| - |C| ap-
plications of the d-shortcut rule where C is the set of clusters of W.

Proof. Since W is acyclic the transitions induce a partial order < on the places and
as we have already shown in the proof of Theorem also on the clusters. We
choose an arbitrary linearization [i] < ¢; < ca < ... < [o].

The merge rule removes a transition, and since the d-shortcut rule does not change
the number of transitions, the number of merge rule applications is bound by |T|.

For the d-shortcut rule, we associate a transition ¢ with the regular expression
r(t) that expresses the relation between this transition and the original net, i.e., if
the merge rule is applied to t; and ¢t we associate the regular expression r(¢y)|r(t2)
with the new transition, for the shortcut rule and transition ¢ and ¢/, we associate
the regular expression r(¢)r(¢') with the new transition. Notice that every transition
sequence that can be formed according to 7 () corresponds to a transition sequence
in the original net that can be fired from any marking that enables ¢t by definition
of the shortcut and merge rule.

Since the net is acyclic, no transition sequence can ever contain the same transition
twice. (This is an easy consequence of the fact that W is covered by S-components
by Theorem and every S-component without the additional transition in W
is acyclic if W is acyclic.) Therefore, if the regular expression associated with a
transition ¢ contains some transition ¢, it cannot happen that the shortcut rule with
t and [t'] is applicable. We identify the newly created and the removed transition
of the d-shortcut rule and infer that the d-shortcut rule can be applied at most
once to each pair of a transition and a cluster, limiting the number of shortcut rule
applications to |T'| - |C]. O

64 CHAPTER 3. RULE-BASED REDUCTION

Figure 3.11: A workflow net where every cluster except [0] contains two transitions

3.2.2 S-Nets

We now turn to workflow nets W where the extended net W is an S-net.

Definition 3.17 (S-Net). A Petri net is called an S-net if the net is an S-component
of itself.

In S-nets the number of tokens is constant. Thus, as we start with a single token
on ¢, we will only ever have to deal with one token. We describe a procedure that
will reduce all free choice workflow nets where the extended net is an S-net. Notice
that in an S-net, the shortcut rule can be applied to every transition as it always
unconditionally enables the cluster of its post-set.

However, there are two pitfalls: first, the shortcut potentially creates more edges
than it removes. Thus, we have to be careful not to create exponentially many edges.
Previously, we have addressed this by using the d-shortcut rule, but this is no longer
possible as there are cyclic nets where each cluster except [0] contains at least two
transitions, for example the one in Figure [3.11] We will show later on that it suffices
to always prioritize the merge and iteration rule over the shortcut rule to keep the
number of rule applications polynomial.

The second problem is that it is possible to shortcut without making progress, as
the following example demonstrates.

Example 3.4.

In Figure [3.12| on the left the transition ¢; unconditionally enables the cluster
{s1,t2} and we can apply the shortcut rule to obtain the net on the right. The
new transition ¢} unconditionally enables the cluster {sq,t3,t4}. We apply the
shortcut rule again and merge one of the new transitions with t5 to arrive at
a net with the same structure as the original net.

To address the second pitfall, we fix an arbitrary total order < of the clusters with
two restrictions: [i] is the first (smallest) and [o] is the last (largest) cluster in that
order. Using this total order [i] < ¢; < ¢2 < ... < [0], we categorize transitions into
two sets: forward transitions, those which lead from a smaller to a larger cluster,
and backward transitions, the remaining ones. Our procedure will aim to remove

3.2. REDUCTION OF SIMPLE CASES 65

s ./@\ shorteut @\

shortcut

and merge

Figure 3.12: Shortcut rule and cycles

all backward transitions which will create an acyclic net to which we then apply the
d-shortcut and merge rule until it is completely reduced.
We start with an important observation:

Corollary 3.18. Let W be a workflow net such that W is an S-net. Let < be any
total order on the clusters and let the transitions be categorized into forward and
backward transitions where forward transitions are the transitions leading from a
smaller to a larger cluster and backward transitions are the remaining ones. Then
every cycle in W contains a backward transition.

This is a straightforward observation as at some point during the cycle, there must
be a decrease along a transition. By contraposition, Corollary implies that if
there are no backward transitions, W is acyclic.

From now on, we always assume that we have chosen a total order < and catego-
rized the transitions.

We introduce a new notion for S-nets.

Definition 3.19 (Output Cluster). Let W be a workflow net such that W is an
S-net. For a transition t, we call the cluster of its unique output place the output
cluster of t.

Our algorithm will always prioritize the merge rule, then the iteration rule, and
if none of those two rules is applicable it will apply the shortcut rule in a special
order: To reduce the number of backward transitions, we always choose a transition
where the output cluster is minimal according to our total order. If we apply the
shortcut rule to such a transition, we claim that any newly created backward or
forward transition will have a larger output cluster than the chosen (and removed)
transition.

66 CHAPTER 3. RULE-BASED REDUCTION

Algorithm 2 Reduction procedure for workflow nets W where W is an S-net

fix a total order on the clusters with [i] as smallest and [o] as largest element
while W is cyclic do

apply the merge rule exhaustively

apply the iteration rule exhaustively

apply the shortcut rule to a backward edge whose output cluster is minimal
end while
apply Algorithm

Lemma 3.20. Let W be a workflow net such that W is an S-net. Let t be a
backwards transition with minimal output cluster c. Assume the iteration and merge
rule have been applied exhaustively. Then any transition t., created by applying the
shortcut rule to t and ¢ will have a larger output cluster than c.

Proof. Assume this is not the case and the cluster of the post-place of ¢’ is smaller
than c. Let ¢’ € ¢ be the transition from which ¢, was created. Ast’ € ¢ and ¢’ ends
at a smaller cluster than ¢, it must have been a backwards transition. This however
contradicts that we have chosen ¢t such that its output cluster is minimal. O

Due to Lemma [3.20], we know that the output clusters of backwards transitions
get larger until eventually they become forward transitions.
The algorithm can be found as Algorithm

Example 3.5.

Consider the S-net in Figure [3.13| on the upper left. The numbers beside the
places are the ordering we choose. The transition t7 leads from s4 to s; and
is the only backward transition. We apply the shortcut rule and obtain the
net shown in Figure 313 on the upper right. The transitions t7ty and t7ts
are created, both backward edges. We start with t7t3 as s3 is smaller than so
in our order. After one shortcut the resulting transition can be merged with
t5 (which we skip in the drawing to show the resulting transition). After we
shortcut ¢7t2, the result is a self-loop in s4 (shown on the lower left) and we
apply the iteration rule to obtain an acyclic net shown on the lower right of
Figure (3.13

To obtain a runtime bound, consider the vector (back([i]), back(ci1), ..., back([o]))
where back(c) is the number of backward transitions with output cluster ¢. With
every application of the shortcut rule as described above, the first non-zero entry
of this vector decreases by one, and all zero entries before that entry stay zero by
Lemma After exhaustive applications of the merge rule, every entry back(c) is
bounded by the number of clusters. Thus the number of shortcut rule applications
is bounded by |C|? where C is the set of clusters of the net.

After each application of the shortcut rule, we apply the merge rule and the
iteration rule exhaustively. Since the cluster c¢ in the definition of the shortcut rule
has at most |C| outgoing transitions (one per possible output cluster) when the
shortcut rule is applied, at most |C| new transitions are created. The shortcut rule
is applied at most |C|? times, thus at most |C|? transitions are created. Both the

67

3.2. REDUCTION OF SIMPLE CASES

shortcut

0

@F@m

‘lﬁvlﬁ

-~

™

-~

I~ @
Yol
-~ -~

<
+~

N
+

~
+

Figure 3.13: Reducing an S-net

68 CHAPTER 3. RULE-BASED REDUCTION

merge and the iteration rule reduce the number of transitions by 1, thus the number
of applications of the merge or iteration rule is bound by |C|3 + |T|.
We obtain the following bound:

Corollary 3.21. Let W be a free choice workflow net where the extended net W is
an S-net, and let C' be the set of clusters of W. Then W can be reduced to an acyclic
negotiation with at most |S| places and |C|? transitions by |C|* applications of the
shortcut rule and |C|® + |T| applications of the merge or iteration rule.

3.3 A Complete Reduction Algorithm

3.3.1 The Algorithm

We have seen how to reduce acyclic nets and S-nets by means of the merge, iteration
and (d-)shortcut rule. In this section, we extend the approach to all free choice
workflow nets.

In the case of S-nets, we used a total order on the clusters to classify transitions
as forward or backward. This was possible because each transition has exactly one
pre-place and one post-place. In the general case this no longer holds true. We
approach this problem by considering fragments, cyclic parts of the workflow net,
and show that we can choose such a part and reduce it using the d-shortcut and
merge rules until it consists only of clusters where for every transition, the post-set
contains exactly the places of some cluster. This reduced fragment is then effectively
the same as an S-component and can be reduced by the algorithm for S-nets.

We start with some definitions concerning cyclic workflow nets.

Definition 3.22 (Loop). Let W be a workflow net. A non-empty transition sequence
o is a loop of W if M 25 M for some reachable marking M.

Definition 3.23 (Synchronizer). Let W be a workflow net. A free choice transition
t synchronizes a loop o if t appears in o and for every reachable marking M : if M
enables t, then M(p) =0 for every p € (Uyeo,)2 *t')- A free choice transition is
a synchronizer if it synchronizes some loop.

The above definition describes that when a synchronizer ¢ is enabled, of all places
that are pre-places of transitions that appear in the loop, exactly the pre-places of
t are marked (thus the name).

Definition 3.24 (Fragment). Let W be a workflow net and let t be a synchronizer
of W. The fragment W, is the net that contains every transition appearing in some
loop synchronized by t, together with its input and output places.

Example 3.6.

Figure depicts an example workflow net. An example of a loop is the
sequence totgtstgtrts. This loop is synchronized by t9, t7 and tg. The fragment
of these synchronizers is shown in Figure [3.14D] and contains the mentioned
transitions as well as t5, and all pre-places of those transitions. The whole
fragment is also synchronized by to, t7 and ts.

3.3. A COMPLETE REDUCTION ALGORITHM 69

While t5 is not a synchronizer of the first fragment, there is a loop that
is synchronized by t5: the loop tststs. The fragment consists of those three
transitions and their pre-places and 5 is the only synchronizer and is shown

in Figure
The fragments also induce an ordering on the synchronizers via inclusion.

Definition 3.25 (Minimal Synchronizer). A synchronizer is minimal if its fragment
does not contain a smaller fragment of another synchronizer.

We now proceed to show a crucial point concerning cyclic free choice workflow
nets. It is easy to construct a cyclic workflow net without a synchronizer.

Example 3.7.

Consider the workflow net shown in Figure [3.I5] After firing ¢;, there are
tokens on s1, so and s4. The transitions ¢ and t3 simply move the token from
S9 to s3 and back.

The net is sound and cyclic and has a loop, tot3, but neither of those tran-
sitions is a synchronizer.

However, for sound free choice workflow nets, it is always possible to find a syn-
chronizer if the net is cyclic, as the following lemma states.

Lemma 3.26. Every sound cyclic free choice workflow net has at least one synchro-
nizer.

Proof. We first show that every sound cyclic free choice workflow net has a loop.

Let m be a cycle of the graph of the net W. Let t; be an arbitrary transition
occurring in 7, and let to be its successor in 7. Then t} # {0} because o has no
outgoing transitions, and hence no cycle contains o.

By soundness some reachable marking M; enables t1. Furthermore it holds that
ty N °ty # 0. Let M{ be the marking reached after firing ¢; from M;. Again by
soundness, there is an occurrence sequence from M; that leads to the final marking.
This sequence has to contain an occurrence of a transition of the cluster [ta] because
there is a token on at least one place of this cluster. In particular, some prefix of
this sequence leads to a marking Ms that enables 5.

Repeating this argument arbitrarily for the transitions t1, to, t3, ..., tp = t1 of
the cycle 7w, we conclude that there is an infinite occurrence sequence, containing
infinitely many occurrences of transitions of the cycle 7. Since the set of reachable
markings is finite, this sequence contains a loop.

Let now o be a minimal loop, i.e. a loop containing the least amount of different
transitions possible. We show that ¢ contains a synchronizer.

Let M be a marking where some transition in o is enabled. By soundness, there
is some occurrence sequence 7 enabled at M which leads to the final marking. Let ¢
be the last transition in 7 such that [t] = [t*] for some transition ¢* that is contained
in 0. We claim that t* is a synchronizer of o.

Assume that this is not the case, i.e. there is a marking M™* that enables t*
(and since the net is free choice, also t) and also marks some other place p* €
(Upeo, w21+ ') We construct an occurrence sequence that is a loop and uses only
transitions in ¢ but not t* contradicting the minimality of o.

70 CHAPTER 3. RULE-BASED REDUCTION

]

AL OOy OF @ [:]-(2)

(a) A cyclic workflow net

ONISON

(b) The first fragment

~
H

E

he second fragment

ON
O

56

~
H

—

()

Figure 3.14: Example net and its fragments

3.3. A COMPLETE REDUCTION ALGORITHM 71

Figure 3.15: A cyclic net without a synchronizer

We use a minimal cover of S-components of W which exists by Theorem since
W is sound and free choice. Let R be an S-component that contains ¢ (and thus also
t*). We pick a subsequence 7/ = tytats ... of 7 which begins with ¢; = ¢ and contains
all subsequent transitions in 7 that are present in R. Intuitively, this subsequence
pushes the token of R along its path toward the final marking.

We now construct an occurrence sequence p starting from the marking M* as
follows:

1. p begins with ¢.
2. Whenever a transition in o is enabled, extend p by firing that transition.

3. If no transition of o is enabled, but a transition in 7’ is enabled, extend p by
firing that transition.

4. Otherwise, extend p by a minimal transition sequence that either ends with
the final marking or enables some transition in o or 7’.

First observe that there will always be some marked place in the set [J{*t' | ¢’ € o}.
Indeed, initially p* is marked by assumption that t* is not a synchronizer. Since
[t] = [t*], after ¢ is fired in step (1) p* is still marked. Whenever we fire a transition
in o in step (2), this transition will again mark some place in this set. If no transition
in o is enabled, the marking of the whole set [J{*t' | #' € o} cannot change since the
net is free choice.

We argue that step (3) and (4) can only appear finitely often. Since 7’ is finite,
we can only finitely often add transition sequences that enable a transition in 7" and
subsequently fire it, i.e. step (3) appears only finitely often and therefore step (4)
only finitely often ends with a transition in 7" being enabled. Whenever step (4) ends
with a transition in o being enabled, it must be the case that for some S-component
of our chosen cover, the token of that component is now on J{*t' | ¢ € ¢} and was

72 CHAPTER 3. RULE-BASED REDUCTION

not in that set before. This however can also only happen finitely often since the
minimal cover consists of finitely many S-components. Thus it has to be the case
that transitions of o appear infinitely often in p. (Because of soundness and because
the final marking is not reached, p has to be infinite, otherwise there would be a
deadlock.)

However, t and t* cannot be enabled ever again: the token of R, an S-component
that contains ¢, cannot be in the set [J{*¢' | ' € o} by construction of 7/. Thus
there must be a loop which uses only a subset of transitions in ¢ contradicting the
minimality of o.

Thus our assumption that t* is not a synchronizer must be false and we have
shown that o contains a synchronizer. O

Thanks to Lemma [3.26] we know that as long as the net is cyclic, we can pick a
synchronizer. The following lemma shows that fragments of minimal synchronizers
have a very special structure.

Lemma 3.27. Let t* be a minimal synchronizer of a cyclic sound free choice work-
flow net. Then all cycles in the fragment Wy= contain a synchronizer.

Proof. Let m = {t1,ta,...,tx} be a cycle in Wy« and let {s1,...,sx} be a set of
places such that s; € t7 N *ta,..., s, € 1} N °t.

We use the same argument as in the proof of Lemma [3.26] to show that there is an
infinite sequence 7 that is enabled at the initial marking and that contains infinitely
many occurrences of all transitions in 7. We start with a sequence 19 that enables t;
in 7 (exists by soundness). We then extend this sequence according to the following
rules:

(1) If the next transition in 7 is enabled, fire that transition.

(2) Otherwise, pick a shortest sequence that leads to the final marking and fire
transitions until the next transition in 7 is enabled.

By soundness, (2) is always possible. Since the net is free choice and there is
always a token on some pre-place of a transition of 7, (1) will occur infinitely often.

The constructed sequence 7 must contain a loop since the number of markings
is finite. In particular, it must contain a loop that contains every transition of .
We call this loop o. This loop corresponds to a T-invariant v. By Theorem
v is the sum of minimal T-invariants. Since v(¢;) > 0, some minimal invariant v*
must also have v*(¢1) > 0. But then it must also have v*(¢') > 0 for some transition
t' € [s1] and since the only transition in [s;] that we fired is ta, it must be that
t" = ta. Repeating this reasoning, v* must have v*(¢) > 0 for all ¢ € 7.

According to Proposition v* corresponds to a minimal T-component and by
Theorem this T-component can be activated. Thus this T-component contains
a minimal loop ¢* and according to the proof of Lemma [3.26| a synchronizer. By
construction, if this component is activated there is some token on the pre-place of
a transition in 7 and during ¢* this will always be the case, thus the synchronizer
by definition must be one of the transitions in . O

We now show that due to the special structure of minimal fragments shown in
Lemma [3.27], it is possible to use the d-shortcut and merge rule to remove all non-
synchronizers from such a minimal fragment.

3.3. A COMPLETE REDUCTION ALGORITHM 73

Lemma 3.28. Let t* be a minimal synchronizer of a cyclic sound free choice work-
flow net. Then all non-synchronizers of W= can be removed by means of applications
of the d-shortcut and merge rules.

Proof. Let W = (S, T, F,i,0) be a cyclic sound free choice workflow net, ¢* a minimal
synchronizer, W« its fragment, and U the set of synchronizers in W;«. Remember
that Wy« is defined as the set of all transitions ¢ such that ¢ is a part of some loop
synchronized by t*, together with all input and output places of those transitions ¢.
We construct an auxiliary net which will be acyclic.

Every cycle in Wy« must contain some transition in U by minimality of t*. We
now describe our auxiliary net:

W' = (S, T',F',i,0") such that
o S'={seW pU{i/, 0} U{s |set"}.
o T'={te Wt uU{t t"}.

For each t € W;:
— *tin W is the same as in W.
{o} ifteU andt#t-

—t*inWis o(1%) otherwise, where ¢ replaces every place s € *t*
by its copy s’ € S’.

i,t') € F'.

t',s) € F for all s € *t*.

(i
(
(s',t") € F' for each s € *t*}.
(

° t//)

Finally, we remove all unreachable clusters.

We describe the construction above informally. We take the fragment of ¢, add a
copy of the places *t* and also an additional start place 7' and end place o'.

We redirect each synchronizer except t* directly to the output place o/. We also
redirect all transitions that have as post-place some place in °t* to the copy of °t*.

We add a transition ' that takes a token from ¢ and places one on each place of

t*. We furthermore add a transition ¢’ that has as pre-set the copy of *t* and as
post-set the output place o'.

Intuitively, we start by enabling the cluster of t* and whenever we hit a synchro-
nizer, we stop and go to the final marking.

To ensure soundness, we remove all non-reachable clusters. Clusters could be
unreachable because they do not appear on a path from [¢*] to another synchronizer’s
cluster, but e.g. on a path from another synchronizer’s cluster to [t*].

We claim that W' is an acyclic sound free choice workflow net. W contains all
paths in the fragment W« leading from [t*] to any synchronizer in S. The extended
net W' is strongly connected because we have removed all unreachable clusters.
Since all cycles in the fragment Wy« contain a transition in U, the net W must be
acyclic by construction. Any deadlock in W’ would mean that in W the tokens get
stuck, thus W is deadlock-free and therefore sound: the final marking is always
reachable because the net is acyclic and deadlock-free. Every transition occurs in

74 CHAPTER 3. RULE-BASED REDUCTION

some sequence because the net is strongly connected and free choice which means
that for a given path to a transition, we can fire exactly the transitions along the
path (possibly with other transitions interleaved) until the transition in question is
fired.

It follows that W' can be reduced by means of the d-shortcut and merge rules.
While the d-shortcut rule may be applicable to ¢’ and [t*] at some point, we defer
this application to the end of the reduction.

Applying the same rule sequence in the original net W (we do not formally define
what it means to apply the sequence to the original net, but it should be clear from
Example results in the transition ¢* in Wy being shortcut to directly enable
some t € U. We repeat this for the other synchronizers in S and thus reduce the
fragment to synchronizers only. O

Example 3.8.

We continue with the net shown in Figure We start with the small-
est fragment, again depicted in Figure This fragment contains non-
synchronizers t3 and t4. The auxiliary net W' is depicted in Figure The
places s5 and sg have been duplicated, the transitions 3 and t4 redirected to
the copies.

The d-shortcut rule is applicable to t5 and [t3] and also to t5 and [t4] and we
apply it in W. We also apply the d-shortcut rule to t5 and [t3] and also to t5
and [t4] in the fragment. Figures [3.16¢| and [3.16d| show the resulting fragment
and auxiliary net.

Notice that while in the auxiliary net and in the fragment the transitions t3
and t4 are removed by the application of the d-shortcut rule, this is not the
case if we apply the d-shortcut rule to the same transitions in the complete
net shown in Figure The result of these two shortcuts is depicted in
Figure [3.17] However, the transitions t3 and ¢4 are no longer part of the
fragment synchronized by t5. As a result, t5 is now a self-loop with pre-set
and post-set {ss, s¢} and can be removed via the iteration rule. The effect on
the original net is depicted in Figure

We continue with the second fragment, depicted in Figure [3.18b] This frag-
ment contains non-synchronizers ts, t4 and tg which can be removed by re-
peated application of the d-shortcut rule with ¢5. The result is the fragment
shown in Figure This fragment contains only synchronizers.

Due to Lemma [3.28] we can reduce the fragment of a minimal synchronizer until it
contains only synchronizers. Thereafter, the structure of the fragment is very similar
to an S-component: every transition has as post-set exactly one other cluster or its
post-set lies completely outside of the fragment. Intuitively, the synchronizer-only
fragment is an S-component where some places were duplicated. We describe an
auxiliary workflow net which has a similar structure as the fragment and is an S-
net.

Let W be a free choice workflow net, ¢, a minimal synchronizer, W;, = (S, T, F)
its fragment containing only synchronizers. We define the net W' = (8", 7", F', i, 0')
where

e 8" ={c|ccluster in W, } U0

3.3. A COMPLETE REDUCTION ALGORITHM 75

@rﬁ
rr\

(a) The smallest fragment

/@* P
\14> >@

(b) The auxiliary net

(c) Fragment after two shortcuts

A A
@

(d) Auxiliary net after two shortcuts

Figure 3.16: Reducing the smallest fragment

76 CHAPTER 3. RULE-BASED REDUCTION

]

S

OO TR

-0

Figure 3.17: Original net after two shortcuts

T ={t'|teT}

o i/ ="°¢,

(e,tye Flif®t=cnS
o (t'e)e Flift* =cnSand c#7
o (t'o)e Fift*=cnS and c=7".

This auxiliary net combines the places of each cluster into a single place and also
splits the cluster of ¢, into two, the starting point 7’ with the transitions and the
end point o' to which all transitions that would lead into [t,] are redirected.

The net we constructed is an S-net and we can apply Algorithm [2] to reduce the
net. We apply the same rules to the original net and reduce the fragment. When the
auxiliary net is reduced completely, the fragment will consist of a single self-loop in
[t+] which can be removed with the iteration rule. Due to additional transitions which
originate in the fragment but to not belong to the fragment, it may be necessary to
substitute the d-shortcut rule with the shortcut rule during the reduction.

Example 3.9.

We continue with the synchronizer-only fragment shown in Figure The
auxiliary net is depicted in Figure and can be reduced by three applica-
tions of the d-shortcut rule. We apply the same rules to the original net and
obtain a self-loop in s; which we remove with the iteration rule. Observe that
when we apply the d-shortcut rule to [tg], in the original net the cluster con-
tains another transition, t9, and so we have to apply the shortcut rule there.
The remaining net is acyclic.

We have now established the theoretical foundation and can present our reduction
algorithm for sound free choice workflow nets. The algorithm is given as Algorithm 3]
including some comments regarding the unsound case that we will discuss later.

We begin with a possibly cyclic workflow net WW. While this workflow net is cyclic,
Lemma|3.26[states that there is a synchronizer and so in line 2 we can pick a minimal
synchronizer and compute its fragment. Computing a synchronizer and its fragment

3.3. A COMPLETE REDUCTION ALGORITHM 77

O

(a) After reduction of the smallest fragment

=]

GL

+ S+~
Eu

()
& 65

(b) The remaining fragment

]

@\

(c¢) Synchronizer-only fragment

@F@»Fkko

d) Auxiliary net

GL

Figure 3.18: Reducing the fragments

78 CHAPTER 3. RULE-BASED REDUCTION

is quite complicated, thus we describe how to compute them in detail in the next
subsection.

By Lemma [3.28 we know that in a fragment of a sound free choice workflow net,
all non-synchronizers can be removed by means of the d-shortcut and merge rule.
We thus apply these rules in lines 4-8, prioritizing the merge rule and also adding
the iteration rule as the shortcuts might create a self-loop.

After removing all non-synchronizers, the fragment F' is reduced by applying the
algorithm for S-nets as described above. In line 15, we need to apply the iteration
rule to remove self-loops created by shortcutting the last backwards transition inside
F'. Thereafter, F' is acyclic and we can continue, either with another fragment if VW
is still cyclic, or with the algorithm for acyclic nets if W is no longer cyclic.

We now turn to the case of unsound nets. We discuss the lines where in the case
that the net is unsound, errors can occur.

In line 2, we pick a minimal synchronizer of the cyclic workflow net W. If the net
is unsound, it may happen that there is no synchronizer and we stop here reporting
that the net is unsound.

In line 3, we construct the fragment of c. From the above observations, we know
that in the sound case, every transition that originates in the fragment has a post-set
that either lies completely inside or completely outside the fragment. Furthermore,
transitions of the second type must originate from a synchronizer. If one of those
conditions is violated, we immediately stop and report that the net is unsound.

We then start reducing the fragment starting in line 4. In every iteration, we
apply the shortcut rule at least once. By Lemma this must be possible as long
as there are non-synchronizers, otherwise the net cannot be sound and we can abort
the procedure. Furthermore, this while loop must terminate after a polynomial
amount of rule applications: The merge and iteration rule both remove a transition
and the d-shortcut rule does not increase the number of transitions, so the first two
rules can only be applied at most |T'| times. Assume the d-shortcut rule can be
applied |T'|? times. If we identify the removed and added transition, there must be
some transition to which the d-shortcut rule was applied at least |T'| times. This
however would imply that there is a cycle of clusters which all have only one outgoing
transition, the transition that belongs to the cycle, which is a contradiction to strong
connectedness of the extended net.

We continue by fixing a total order on F. By now, F' can only consist of synchro-
nizers and for every transition, the post-set is a single cluster, so F' must be a sound
part of the net. We continue by reducing F'.

After we have removed all fragments, W is no longer cyclic and we apply the
reduction algorithm for acyclic nets. Again, if no rule application was possible, the
net must be unsound due to Theorem [3.11]

We arrive at the following theorem:

Theorem 3.29. Every sound free choice workflow net can be summarized by Al-
gorithm [3. Any unsound free choice workflow net can be recognized as unsound by
Algorithm [3

Before we turn to the computation of synchronizers and fragments as well as a
runtime analysis, we illustrate our algorithm by example.

3.3. A COMPLETE REDUCTION ALGORITHM 79

Algorithm 3 Reduction procedure for cyclic free choice workflow nets W

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

while W is cyclic do

¢ < a minimal synchronizer of W > If there is none, return
F' < the fragment of ¢ > If fragment is malformed, return
while F' contains non-synchronizers do

apply the merge rule exhaustively

apply the iteration rule exhaustively

apply the d-shortcut rule to F > If not possible, return
end while
fix a total order on F'
while F' is cyclic do

apply the merge rule exhaustively

apply the iteration rule exhaustively

apply the shortcut rule to the backward transition which ends at

a minimal cluster
end while
apply the iteration rule exhaustively

end while
while W is not reduced completely do

apply the merge rule exhaustively
apply the d-shortcut rule to F > If neither was possible, return

20: end while

Example 3.10.

We reduce the example net shown in Figure Initially, #; uncondition-
ally enables [tg] and we apply the shortcut rule. Since [tg] N T = {ts}, exactly
one new transition tg is created. Furthermore ¢1, s; and tg are removed (Fig-
ure |3.19b)).

Next, t5 unconditionally enables [t3] and [t4]. We apply the shortcut rule
twice and call the result t9 (Figure .

Transition tg now satisfies the guard of the iteration rule and can be removed
(Figure |3.19d)).

Since ts unconditionally enables [t3] and [ts4], we apply the shortcut rule
twice and call the result ¢1g. (Figure

After applying the shortcut rule to t19, we apply the merge rule to the
two remaining transitions, which yields a net with one single transition (Fig-

ure .

3.3.2 Computing Synchronizers and Fragments

We now focus on how to find minimal synchronizers and their fragments for a cyclic
free choice workflow net. We will split this task into three steps: First we compute a
minimal cover of S-components of W which by Theorem exists if the workflow
net is sound. We then use this cover to formulate a linear program for each transition
t that has a solution exactly if ¢ is a synchronizer. Finally, we show how to compute
the fragment for a given synchronizer again using the minimal S-cover.

80 CHAPTER 3. RULE-BASED REDUCTION

©
—#]

to
Ll @/I

(a) A workflow net (b) The first shortcut

Figure 3.19: Example of reduction

Throughout this subsection, whenever we write |v| for a vector, we mean the
1-norm, i.e. the sum of the entries in the vector.

Computing a minimal S-cover

We first compute a minimal cover of S-components of W which by Theorem m
exists if the workflow net is sound. A single S-component containing a given place s
can be found by solving the following linear program where I is the incidence matrix
of the extended net W as in Definition @ and v is a vector of length |S|:

min |v|
v-I=0
v>0

vs =1

An optimal (minimal) solution v to this linear program is a non-negative minimal
S-invariant. Since an S-cover of W exists and by Proposition an S-component
induces a non-negative S-invariant, there must be a solution to the above linear
program for every s € S.

According to Proposition for a solution v, the net that contains every place
s where v(s) > 0 together with its pre- and post-transitions is an S-component of
W if W is a sound free choice net. We simply check whether the result is indeed an
S-component, if not we can report that the net is unsound.

We can now compute a minimal cover of S-components in the following way:
While not all places are covered by some S-component, pick a place s that is not yet
covered and compute a component containing s. Add this component to the cover.
Finally, check if any component in the cover is redundant, i.e. every place in that

3.3. A COMPLETE REDUCTION ALGORITHM 81

(e [
K;w 7

O,

(c) After two more shortcuts (d) After iteration rule

®

~
=
o

© ©

(e) After two more shortcuts (f) Final net

Figure 3.19: Example of reduction (continued)

82 CHAPTER 3. RULE-BASED REDUCTION

component is also covered by another component. If so, remove that component
from the cover.

Finding Synchronizers

Before we give a characterization of synchronizers by means of a linear program, we
need an observation regarding synchronizers and S-components.

Lemma 3.30. Let W be a sound free choice workflow net, t a synchronizer, o a
loop synchronized by t and C' an S-component of W. If C contains a transition in
o, it also contains t.

Proof. As o is a loop, there is a reachable marking M such that M —=s M. Recall
that since t is a synchronizer, whenever t is enabled, out of all pre-places of transitions
in o exactly the pre-places of ¢ are marked. Also note that there is exactly one token
in C at all times by the definition of S-component and Corollary 2.38] Finally note
that the token in C' cannot “exit” the loop, i.e. end up on some place that is not a
pre-place of a transition in o as otherwise it would not be possible that M —Z» M
because the token would stay there from that point on. Thus when ¢ is enabled, the
token of C' must be on some pre-place of ¢ and therefore C' contains t. O

We now show how to compute synchronizers.

Theorem 3.31. Let W be a sound free choice workflow net, C a minimal cover of S-
components ofW. For a transition t, let Uy = {t' | t' is contained in an S-component
of C which does not contain t}.

The synchronizers of W are exactly the transitions for which the following linear
program has a solution:

min [v|
I-v=0
v>0
vy =1

vy =0 for all t' € U,

Proof. We first show that for every synchronizer ¢ the linear program above has a
solution. Let ¢ be a minimal loop synchronized by ¢. Then the vector v that counts
for each transition ¢’ the number of occurrences of ¢’ in o is a (not necessarily optimal)
solution to the linear program above. To see that v fulfills the last condition, apply
Lemma [3.30l

We now show that if the above linear program has a solution for some ¢, then
t is a synchronizer. A solution v to the linear program is a minimal T-invariant.
By Proposition [2.29] this invariant induces a T-component that can be activated by
Theorem Let M be a marking that activates this T-component. By liveness of
the T-component, there is a sequence 7 of transitions in the T-component after which
t is activated. We fire this sequence and then ¢. Repeating this argument yields an
infinite transition sequence and thus (since the reachable markings are finite) a loop
o containing ¢ and only transitions in the T-component. Since t is contained in all
S-components that intersect the T-component, whenever ¢ is activated exactly the
pre-places of t are marked inside the T-component, thus ¢ is synchronized by ¢,
therefore t is a synchronizer. O

3.3. A COMPLETE REDUCTION ALGORITHM 83

For our algorithm we need to find a minimal synchronizer. By Lemma we
know that for two synchronizers ¢, t', if the fragment of ¢ contains the fragment of ¢/
then ¢ must be contained in all the S-components that contain ¢. Thus if we pick
a synchronizer that is contained in as few S-components as possible, this must be a
minimal synchronizer.

Computing a fragment

Previously we have computed a minimal cover of S-components and a synchronizer ¢
together with a T-component that contains . We have also seen that ¢ synchronizes
all loops in the T-component, thus that T-component is a part of the fragment of
t. We now extend this T-component to obtain the complete fragment of t. We call
this T-component our preliminary fragment and proceed as follows:

e Pick some transition ¢’ such that ®t’ is in the preliminary fragment but ¢’ is
not.

e If there is a loop containing ¢’ and only transitions contained in (a subset of)
the S-components that contain ¢, add this loop to the fragment

e Otherwise, exclude ' from further computations.

We can check for loops containing ¢’ using the same linear program as above, but
setting vy = 1 instead of vy.

min |v]
I-v=0
0<v<l1

vy =1

v =0 ift" € Uy

Excluding ¢’ from further computations amounts to setting vz = 0 from that point.
If we find another T-invariant, again we know that the T-component corresponding
to it can be activated and all transitions will belong to loops synchronized by ¢.
We continue this computation until the preliminary fragment has no more outgoing
transitions we have not considered. The result is the fragment synchronized by ¢.

3.3.3 Runtime Analysis

Due to careful analysis, we can give a polynomial bound on the number of rule
applications for Algorithm

Theorem 3.32. Fvery sound free choice workflow net can be summarized in at most
O(|C|* + |C2 - |T|) shortcut rule applications and O(|C|* +|C|?-|T|) applications of
the merge or iteration rule where C' is the set of clusters of the net. Any unsound
free choice workflow net can be recognized as unsound in the same number of rule
applications.

Proof. We start by bounding the number of clusters and transitions that may arise
during the reduction. Since none of our rules create places or clusters, the number

84 CHAPTER 3. RULE-BASED REDUCTION

of clusters in any fragment or the net itself will always be bounded by |C|. The
number of transitions only increases if we apply the shortcut rule to a cluster with
more than one transition. This happens during the reduction of the synchronizer-
only fragment. However, the total number of unique transitions (i.e. different pre-
set or post-set from every other transition) produced in this way during the whole
reduction procedure is bounded by |C|? + |C| - |T|: at most |C|? transitions can be
produced inside the synchronizer-only fragment, one for each pair of clusters. For
transitions leading outside of the fragment, each such transition must originate from
some cluster, and since we reduce a synchronizer only fragment, the new transition’s
post places are exactly the post places of an existing transition, thus at most |C|- |T|
unique transitions can be created.

Table [3.1] lists the number of rule applications in the different phases of the algo-
rithm and is explained below.

We first bound the number of rule applications it takes to reduce a minimal
fragment with clusters Cr and transitions Tr to a synchronizer only fragment. We
already know that |Cr| is bounded by |C| and |TF| is bounded by |C|? + |C] - |T].
During this reduction, only the d-shortcut and merge rule are applied. Using the
auxiliary net construction from Lemma |3.28| we see that for each synchronizer, an
acyclic net with O(Cr) clusters and O(TF) transitions is reduced. By Theorem
this reduction takes at most O(|Cr| - |Tr|) = O(|C|?> + |C|? - |T'|) applications of
the d-shortcut rule and at most O(|Tr|) = O(|C|> + |C| - |T|) applications of the
merge rule. We also apply the iteration rule to any self-loops formed during this
reduction, the number of iteration rule applications is as well bounded by O(|Tr|) =
O(|C|? + |C| - |T|). This reduction takes place once for each synchronizer in W.

Next we bound the time to reduce a synchronizer only fragment with clusters C'rp
and transitions Tr. Again we bound |Cr| by |C| and |Tr| by |C|? + |C| - |T|. The
auxiliary net defined above is a S-net with O(|CF|) clusters. By Corollary the
reduction reduces the fragment in O(|Cr|?) = O(|C|?) applications of the shortcut
rule and O(|Cr|? + |Tr|) = O(|C3|+ |C| - |T|) applications of the merge or iteration
rule. This reduction takes place once for each fragment in W.

Finally, applying the reduction procedure to an acyclic net W4 with Cy4 clusters
and T4 transitions takes again O(|Ca|-|Tal) = O(|C|? +|C|? - |T|) applications of
the d-shortcut rule and O(|T4|) = O(|C|?> +|C| - |T|) applications of the merge rule
by Theorem [3.16]

Summing up, we obtain for the shortcut rule

o(Cl-(ICP + CP-|T) +|C| - |CP + |CP + |C* - |T|) = O(|C|* + |C* - |TY)
rule applications and for the merge or iteration rule
O(lC|-(ICP+|C|- T +|C|- (IC?| +|C|-|T]) + |C[+|C|-|T]) = O(|C|* +|C|*-|T))

rule applications suffice.
O

3.4 Colored Workflow Nets

We now show how to extend the reduction rules defined in the previous sections
to colored workflow nets. We aim to completely reduce a CWN and during the

3.4. COLORED WORKFLOW NETS 85

shortcut merge/iteration how often

min. fragment
to sync. only, O(|CP+[C*-|T]) O(CP?+[C|-|T]) O(|C))
lines 4-8

reduce sync.

only, lines o(C?) o(cl+[c]-IT) o(lC)
10-14

acyclic net,
lines 17-20

O(ICP +C?-IT1) O(C]*+[C] - |T) 1

Table 3.1: Number of rule applications during Algorithm

reduction also compute the summary.

Recall that for colored workflow nets, each token has a color and transitions ¢
have associated transformers A(¢) that determine the colors of the tokens produced
by the transition depending on the colors of the consumed tokens. The summary of
a CWN is the relation that contains for each initial marking M; the pair (M;, M,)
if M, is a final marking reachable from M;.

First we define the concatenation, union and Kleene star of the transformers A(t)
that occur in CWNs. For that, we extend each transformer A(¢) to a relation between
two colored markings where all tokens except those on *t U t* are unchanged and
call M the set of reachable markings.

Mt A(t2) ={(M, M') € M x M | (M, M") € A(t1) and
(M", M') € X(t2) for some marking M" € M}
A(t1) UA(t2) ={(M,M') € M x M| (M, M) € Mt1) or (M, M') € A(t2)}
)\(to—{(M M)eMx M| M e M}
M) =A()A
A = At

>0

(t) for every i > 0

For a transition sequence o, its transformer is the concatenation of the individual
transformers. By definition the summary is the union of all transformers of the firing
sequences ending in the final marking.

We state the extended version of the rules. Observe that the only additions to
the rules concern the transformer, otherwise the rules remain unchanged.

Definition 3.33. Merge Rule for CWNs
Guard: W contains two distinct transitions t1,to € T such that *t1 = *ty and
P=13.
Action: (1) T := (T \ {t1,t2}) U{tm}, where t,, is a fresh name.
(2) to, =1t} and *t,, = *t;.

(3) A(tm) := A(t1) U A(t2).

86 CHAPTER 3. RULE-BASED REDUCTION

Definition 3.34. Iteration Rule for CWNs

Guard: W contains a free choice cluster ¢ with a transition t € c such that
t* = *t.
Action: (1) T :=(T\ {t}).

(2) For allt' € cnNT: A({t') := A)*A().

Definition 3.35. Shortcut Rule for CWNs

Guard: W contains a transition t and a free choice cluster ¢ ¢ {[t], [o]} such
that t unconditionally enables c.

Action: (1) T:= (T \ {t})U{t, |t € c}, wheret) are fresh names.
(2) For allt' € cNT: *t, :="°t and t.* := (t*\ *t') Ut".
(8) For allt' € cNT: A(th) := ANE)A\(t).
(4) If *s =0 for all s € cN S, then remove ¢ from W.

We extend the definition of correctness to reduction rules for CWNs.

Definition 3.36 (Correctness for CWNs). A rule R is correct for CWNs if its

application to a CWN produces an equivalent CWN, that is W A, Wy implies that
W1 = WQ.

Theorem 3.37. The merge, iteration and shortcut rule for CWNs are correct for
CWNs.

Proof. It was already shown in Theorems and [3.8|that the rules without the
changes to the transformers preserve soundness. We therefore only have to show
that they also preserve the summary. For the merge and iteration rule, this is quite
obvious from the definition.

For the shortcut rule, we have shown in the proof of Theorem [3.§| that if

Wi shortut W, then for every initial occurrence sequence that leads to the final
marking in W, there is a corresponding initial occurrence sequence that leads to
the final marking in W, and also the other way round. Corresponding sequences
were constructed in a way that they contain the same transitions except for the
transitions modified by the application of the shortcut rule. For these transitions,
every occurrence of the new transition ¢, is replaced by the sequence ¢t to obtain
the corresponding sequence of a sequence in W, (the corresponding sequence of
a sequence in W is constructed similarly but more complicated for sequences in
W;). Corresponding sequences by construction have the same transformer, thus the
summary of W; and W, must be equal. O

3.5 Probabilistic Nets

Our final aim will be the computation of the expected reward using our reduction
rules. To that end, we manipulate the weights and rewards of the transitions when
we apply rules so that the reduced net has the same expected value. We then

3.5. PROBABILISTIC NETS 87

apply our algorithm and compute the expected value for sound free choice PWNs
in polynomial time.

Recall that in PWNs each transition ¢ has an associated weight w(t) and a reward
r(t). We will assume that for every free choice cluster (where the conflict set is ex-
actly the cluster), the weights of the transitions in that cluster have been normalized
to sum to one. We state the adapted rules:

Definition 3.38. Merge Rule for PWNs
Guard: W contains two distinct transitions t1,to € T such that *t; = *ts and
Tt
Action: (1) T := (T \ {t1,t2}) U{tm}, where t,, is a fresh name.

(2) to, =t} and *t,, = *t;.

w(t w(t
(3) T(tm) =m0 + arsimy T(t).
(4) w(tm) = w(ty) + w(tz).

Definition 3.39. Iteration Rule for PWNs

Guard: W contains a free-choice cluster ¢ with a transition t € ¢ such that
t* = °t.
Action: (1) T := (T \ {t}).

(2) For allt' € c\ {t}: r(t') := % r(t) +r(t)

(3) For allt' € ¢\ {t}: w(t') :== {24

Definition 3.40. Shortcut Rule for PWNs

Guard: W contains a transition t and a free-choice cluster ¢ # [t] such that t
unconditionally enables c.

Action: (1) T:= (T \ {t})U{t, |t € c}, wheret) are fresh names.
(2) For allt' € c: *t, :="°t and t.* := (t*\ *t') U .
(3) For allt' € c: r(t)) :=r(t) +r(t).
(4) For allt' € c: w(t)) = w(t) - w(t)).
(5) If *p = 0 for all p € ¢, then remove ¢ from W.

Definition 3.41 (Correctness for PWNs). A rule R is correct for 1-safe confusion-
free PWNs if its application to a 1-safe confusion-free PWN produces an equivalent
1-safe confusion-free PWN, that is W, A, Wo implies that Wi = Ws.

Theorem 3.42. The merge, shortcut and iteration rules for PWNs are correct for
1-safe confusion-free PWNs.

Proof. It was already shown that the rules preserve soundness for workflow nets.
We thus only have to show that the rules preserve the expected reward of the net.
We first focus on the unsound case.
Let W be an unsound 1l-safe confusion-free PWN. Then W is either unbounded
or not live by Theorem Since W is l-safe, WW must be non-live. This means

88 CHAPTER 3. RULE-BASED REDUCTION

there is a marking M reachable from the initial marking such that some transition
t can never occur in any transition sequence starting from M. We distinguish two
cases.

(1) M # i, i.e. every transition occurs in some occurrence sequence starting in
the initial marking. Then it is clear that from M the initial marking cannot be
reachable, and therefore the same holds for the final marking. Let o be a sequence
that ends in M starting from the initial marking. Since all weights are positive, the
cylinder of paths that extend the path m, has positive probability. It furthermore
has infinite reward because no path ever reaches the final marking, thus the PWN
has an infinite expected value. By inspection of our rules, the merge and iteration
rule do not change the reachable markings and while the shortcut may remove the
marking M from the marking graph, some marking M’ reachable from M will still
be reachable. Therefore the expected reward of the resulting net after the rule
application is still infinite and was preserved by the rules.

(2) M = i. That means some transition ¢ does not occur in any occurrence
sequence starting from the initial marking. By definition of the MDP of W and the
reward of an MDP, if ¢t never occurs in any occurrence sequence it has no effect on
the expected reward. If we remove all such transitions ¢ and the net is still unsound,
the expected reward is infinite by (1) and will remain infinite. If the net is sound
after the removal, the expected reward is the same for W and we argue below why
the rules preserve the expected reward in that case.

We now focus on the sound case.

By Theorem [2.58|the expected reward of the net does not depend on the scheduler.
We use this fact in the following way: For each rule, we pick two schedulers, one for
the net before the rule application and one for the net after the rule was applied.
These schedulers will be such that it is easy to show that their expected rewards are
equal. We begin with the shortcut rule.

Shortcut rule. Let Wi, Wy be such that Wy Shit%‘“ W,. Let ¢, t be as in Definition
Let S; be a scheduler for Wy such that Sy(o1) = ¢ if 01 ends with ¢. Since ¢
unconditionally enables ¢, this is a valid scheduler.

We define a mapping ¢ that maps firing sequences in Ws to firing sequences in
Wi by replacing every occurrence of t, by t¢'. Next we define a scheduler Sy for W,
by Sa(02) = Si(¢(02)).

Observe that ¢ is a bijection between sequences produced by S; that do not
end with ¢ and sequences produced by S». In particular ¢ is a bijection between
sequences produced by S7 and S that end with the final marking.

Let now o2 be a firing sequence in Ws and let 01 = ¢(02). We claim that o;
and o9 have the same reward and also vg, (01) = vs,(02). Indeed, since the only
difference is that every occurrence of ¢/, is replaced by tt' and r(t.) = r(t)+r(t’) and
w(t,) = w(t)w(t') by the definition of the shortcut rule, the reward must be equal
and vg, (01) = vg,(02).

We now use these equalities, the fact that ¢ is a bijection between firing sequences
that end with the final marking, and Lemma [2.52

vore) FmeBE SN 60) g, (0) YET ST r(6(02) - vs, (6(02))

UgGFinW2 UQGFinW2

¢£ij. Z 7”((71) . l/s1 (01) = V(W1> .

UleFiTLWI

3.5. PROBABILISTIC NETS 89

Iteration rule. Let W;, W5 be such that W, iteﬂon Ws. Let ¢, t be as in Definition
Let Sy be a scheduler for Wy such that Se(o2) = ¢ if ¢ is enabled after oo.

We define a mapping ¢ that maps firing sequences in W; to firing sequences in
Wy by removing all occurrences of t. Next we define a scheduler S7 for W; by
Si(o1) = Sa(¢p(01)). Note that ¢ is not a bijection but it is surjective.

Let r1 and r9 be the reward functions of W; and Ws. For a sequence oy in W,
we claim:

rao(09) - vs,(02) = Y ri(on) - vs, (1) -

c1€¢1(02)

Let k be the number of times c is enabled during 3. We only consider the case
k =1, the general case being similar. We observe that o2 is also a sequence in Wj.
We have

vsi(02) = vs,(02) - (1 —w(t)) (3.1)

w®) (3.2)

7“1(02) = Tg(dg)—m

because the probabilistic choice must pick something other than ¢, and because the
iteration rule adds 1105()15) - ¢(t) to the reward of every transition in ¢ in Wh.

We now insert [occurrences of t in o9, at the position at which c¢ is enabled, and call
the new sequence 7. We have ¢~ 1(02) = {7, | I > 0}. Further 71 (1) = r1(02)+1-c(t)

and vg, (1) = vs, (1) - w(t)!, and so summing over all [we get:

Y. o) vs(on) = Y ori(n)-vs(n)
=0

o1€471(02)
(ri(o2) +1-¢(t)) - w(t)!

- s E o)

ne+525) ovBD
= vg,(02) - ra2(02) (by

Mg

= Vs (02) :

~
Il
=)

= 1/52 0'2

and the claim is proven.
Now, using the claim we obtain:

VWe) = Y ra(oe) vs,(o) = Y > rilor) vs,(01)

o2€ Finyy, o2€Finy, o1€¢~1(02)
— Z ri(o1) - vs, (o1) =V (W)
UlGFiTlWl

where the third equality follows from the fact that ¢ is defined on all sequences of
W, and thus ¢! hits every sequence in W, exactly once.

Merge rule. Let Wi, W5 be such that W; oee Ws. Let t1, to be as in Definition
Let Sz be a scheduler for Wh.

We define a mapping ¢ that maps firing sequences in W; to firing sequences in
W, by replacing all occurrences of ¢ and to by t,,. We define a scheduler S for W,

by Si(o1) = S2(¢(01)).

90 CHAPTER 3. RULE-BASED REDUCTION

Once again, ¢ is a surjective function. For a sequence o9 in W5, we claim that

r(o2) - vs,(o2) = Y r(o1) - vs,(00).

o1€01(02)

Indeed, every sequence o the set ¢! (02) can be obtained by replacing t,, by either
t1 or ta. So, by Definition the sums are equal.

As for the iteration rule, this equality and the fact that ¢ is defined for every
sequence in W; imply that the expected rewards of W; and W, are equal. O

As the rules are correct for 1-safe confusion-free PWNs and complete for free
choice workflow nets, we can compute the expected value of a 1-safe free choice
PWN using Algorithm [3]

Example 3.11.

We illustrate a complete reduction by reducing the example PWN shown in
Figure [3.20al We set the reward for each transition to 1, so the expected
reward of the net is the expected number of transition firings until the final
marking is reached. In the next figures, transitions will have labels (p, r) which
indicate their weight p and reward r.

Initially, ¢; unconditionally enables [ts] and we apply the shortcut rule. Since
[ts] = {s1,t6}, exactly one new transition tg is created. The new transition has
reward 2 and weight % Furthermore t1, s1 and tg are removed (Figure .

Next, t5 unconditionally enables [t3] and [t4]. We apply the shortcut rule
twice and call the result t9 (Figure which has weight % and reward 3.

Transition tg now satisfies the guard of the iteration rule and can be removed,
changing the label of t7 to (1,4) (Figure |3.20d)).

Since ty unconditionally enables [t3] and [ts4], we apply the shortcut rule
twice and call the result ¢19. (Figure

After applying the shortcut rule to t19, we apply the merge rule to the two
remaining transitions, which yields a net with one single transition labeled by
(1,5) (Figure . So the net terminates with probability 1 after firing 5

transitions on average.

3.6 Implementation and Experimental Results

The algorithm described above has been implemented including the extension for
probabilistic workflow nets. In this section, we report on our findings regarding the
performance of our algorithm. We use four existing tool as comparison to our tool:
LoLA [47], an explicit tool which uses state exploration methods, Woflan [43], which
uses structural reduction and S-coverability analysis as well as explicit methods,
SESE [41], an approach based on structural reduction and heuristics combined with
state exploration and PrisM [30], an explicit state space exploration tool for Markov
chains and MDPs.

In a first step, we apply the algorithm purely to check soundness and compare our
performance with the performance reported in [20]. We find that the performance

3.6. IMPLEMENTATION AND EXPERIMENTAL RESULTS 91

”
a7

)

N4
~

H
~

ot
~

N
—
[S1{1]
[\
N—r
~
H
~—
p—
p—
N—
~
w
~
H
~
N
~
-
a
SN—

(a) A PWN (b) The first shortcut

Figure 3.20: Example of reduction

of our algorithm is comparable to the reported performance of Woflan, LoLA and
SESE.

In a second step, we add probabilities to the benchmark nets and evaluate the
performance of our algorithm in comparison with PRISM. As expected, our polyno-
mial algorithm for free-choice workflow nets outperforms PRISM’s exponential, but
more generally applicable algorithm.

All experiments were carried out on an 3.60 GHz i7-3820 CPU using 1 GB of
memory.

Industrial Benchmarks. We used 1385 free-choice workflow nets previously studied
n [20], of which 642 nets are sound. The workflows were obtained from industrial
business models designed at IBM. In [20] it was reported that checking soundness for
each net in the library takes around 6.5 seconds with Woflan on a 1.66 GHz CPU,
around 12 seconds with LoLA on a 2.16 GHz CPU with 11 nets timing out, and
around 6.5 seconds with SESE on a 2GHz CPU. Our algorithm took 3.3 seconds to
analyze the library.

As the workflow nets provided do not contain probabilistic information, we as-
signed to each transition ¢ the probability % (i.e., the probability is distributed
uniformly among the transitions of a cluster). We study the following questions,
which can be answered by both our algorithm and Prism: Is the probability to
reach the final marking equal to one (equivalent to “is the net sound?”). And if so,
how many transitions must be fired on average to reach the final marking? (This

corresponds to a reward function assigning reward 1 to each transition.)

PRrisM has three different analysis engines able to compute expected rewards:
explicit, sparse and symbolic (bdd). In a preliminary experiment with a timeout
of 30 seconds, we observed that the explicit engine clearly outperforms the other
two: It solved 1309 cases, while the bdd and sparse engines only solved 636 and
638 cases, respectively. Moreover, 418 and 423 of the unsolved cases were due to

92 CHAPTER 3. RULE-BASED REDUCTION

©

(c) After two more shortcuts (d) After iteration rule

®

(e) After two more shortcuts (f) Final net

Figure 3.20: Example of reduction (continued)

3.6. IMPLEMENTATION AND EXPERIMENTAL RESULTS 93

(1 2)

e

ALY,
Ay

Figure 3.21: The academic benchmark

memory overflow, so even with a larger timeout the explicit engine is still leading.
For this reason, in the comparison we only used the explicit engine.

After increasing the timeout to 10 minutes, the explicit engine did not solve any
further case, leaving 76 cases unsolved. This was due to the large state space of the
nets: 69 out of the 76 cases have over 10° reachable states.

The 1309 cases were solved by the explicit engine in 353 seconds, with about 10
seconds for the larger nets. Our implementation solved all 1385 cases in 3.3 seconds
combined. It never needs more than 50 ms for a single net, even for those with
more than 107 states (for these nets we do not know the exact number of reachable
states).

In the unsound case, our implementation still reduces the reachable state space by
at least an order of magnitude which makes it easier to apply state exploration tools
for other problems than the expected reward, like the distribution of the rewards.
After reduction, the 69 nets that initially had at least 10° states were reduced to an
average of 5950 states, with the largest at 313443 reachable states.

An academic benchmark. Many workflows in our suite have a large state space
because of fragments modeling the following situation: multiple processes do a com-
putation step in parallel, after which they synchronize. Process i may execute its
step normally with probability p;, or a failure may occur with probability 1 — p;,
which requires to take a recovery action and therefore has a higher cost. Such a sce-
nario is modeled by the free-choice PWNs net of Figure where the probabilities
and costs are chosen at random. The scenario can also be easily modeled in PRISM.
Figure shows the time needed by the three PRISM engines and by our imple-
mentation for computing the expected reward using a time limit of 10 minutes. The
number of reachable states grows exponentially in the number processes, and the
explicit engine runs out of memory for 15 processes. Since the failure probabilities
vary between the processes, there is little structure that the symbolic engine can
exploit, and it times out for 13 processes. The sparse engine reaches the time limit

94 CHAPTER 3. RULE-BASED REDUCTION

700
—— bdd
—#—explicit
600
—%—sparse
—&— Rule-
500 hased

400

300

Time(s)

200

100

1 2 3 4 5 6 7 & 9 1011 1213 14 15 16 17 18 19 20 ... 100 ... 200 ... 500

Mumber of processes

Figure 3.22: Runtimes for the academic benchmark

at 20 processes. However, since the rule-based approach does not need to construct
the state space, we can easily solve the problem with up to 500 processes.

CHAPTER 4

Games on Workflow Nets

Contents
M1 Introductionlo 97
4.2 Analysis Problems| 0oL 97
4.3 Free Choice Gamesl 105

95

4.1. INTRODUCTION 97

4.1 Introduction

In this chapter we study games on workflow nets. We introduce two players with
conflicting goals, one wanting the workflow to reach the final marking while the other
tries to prevent the final marking. We study games where control over the clusters
is divided between the players, each deciding which transition inside a cluster is
fired when a scheduler picks that cluster. Intuitively, one can think of a workflow
involving different teams in a company. One of the teams has a lot of inexperienced
members and is likely to fail tasks it is involved in. The question we try to answer
is whether this team alone (which only controls some of the decisions made during
the execution of the workflow) has the power to prevent the workflow from reaching
its designated end.

We investigate the general complexity of solving games in the size of the workflow
net and aim to find algorithms that decide the winner in polynomial time. Our first
result is that these games are EXPTIME-complete in general, even if the workflow
net is free choice, and it seems that a polynomial algorithm is out of reach. However,
in the case that the workflow net is sound and free choice, we are able to show that
the winner can be decided in polynomial time.

This chapter is based on earlier work regarding Negotiation Games [25].

4.2 Analysis Problems

We study a setting of games played on workflow arenas, a workflow net where the
clusters have been partitioned into two sets C; and Cy. We consider a concurrent
game with three players, Player 1, Player 2 and Scheduler. In each step, Scheduler
chooses a subset of the clusters enabled at the current marking. For each cluster
chosen, the player who was assigned that cluster chooses one enabled transition of
that cluster which is fired. This choice is done simultaneously and independently of
the choices the other player makes in this step. The game terminates if a marking
is reached that enables no transition, otherwise it continues forever.

Formally, a partial play is a sequence of tuples (S;, F1, F2;) where S; is a set
of clusters and Fi;, Fy; are functions that assign to each cluster ¢ in S; N C; and
S; N Ca, respectively, a transition in c¢. Furthermore it must hold that each cluster
in S; contains an enabled transition after the transitions chosen by Fj ;, Fb; have
occurred for all j < 4, and the transitions chosen by F7; and F5; each must be one
of those enabled transitions.

A partial play is a play if it is either infinite or ends in a marking that enables
no transitions. For a play m, we denote by m; the prefix of 7 of length i. In the
termination game, Player 1 wins if the play ends in the final marking, otherwise
Player 2 wins.

A strategy o; for Player j, j € {1,2}, is a partial function that, given a partial
play (S, F1i, F23),...,(Si, F14,F2;) and a set Sj;q returns an assignment Fjj; 4
according to the specifications above. A play is said to be played according to o; if
Fj; = 0j(mi—1,8;) for all i. A strategy o; is winning for Player j if he wins every
play that is played according to o;. Player j is said to win the game if he has a

98 CHAPTER 4. GAMES ON WORKFLOW NETS

i d i
SEXC)

Figure 4.1: Scheduler influences who wins this game

winning strategy. Notice that if Player j has a winning strategy then he wins against
every pair of strategies of Scheduler and the other player.

Definition 4.1. Let W be a workflow net, C1 and Co the partition of the clusters.
The termination problem is the problem of deciding whether Player 1 has a winning
strategy for the termination game. The non-termination problem is the problem of
deciding whether Player 2 has a winning strategy for the termination game.

Notice that the termination problem and the non-termination problem are not
dual as Scheduler may influence the game by his choice of the clusters.

Example 4.1.

Consider Figure We partition the clusters so that [t2] is controlled by
Player 1, all other clusters are controlled by Player 2. The game ends if either
to and t4 are fired, or t3 and t5 are fired. Thus Player 1 needs to “mirror the
choice” of Player 2 in a certain sense. However, if Scheduler picks [ta] before
[ta], Player 1 has no chance to win. Conversely, if Scheduler picks [t4] first,
Player 1 can always win. If Scheduler picks both clusters together, neither of
the players has a deterministic winning strategy but picking randomly gives a
winning probability of 0.5 to both players.

We first investigate the general complexity of the problem.

Theorem 4.2. The termination problem and the non-termination problem are in
EXPTIME.

For the proof we need some definitions and results from [7].
A concurrent game structure is a tuple G = (k, Q,II, 7w, d, §) where

e k > 1 is a natural number, the number of players.

4.2. ANALYSIS PROBLEMS 99

Q is a finite set of states.

II is a finite set of propositions.
e T assigns every state ¢ € Q a set of propositions that are true in q.

e d assigns every player a € {1,...,k} and every state ¢ € () a natural number
do(q) > 1 of possible moves. We identify these moves with natural numbers

k
1,...,dq(q). For each state ¢, we write D(q) for the set []{1,...,d;(¢)} of move
i=1

vectors.

e (is the transition function that assigns a state ¢ € @ and a move vector
(J1,---,Jk) € D(q) a state d(q, j1, ..., i) that results from state g if every player
a € {1,...,k} chooses move j,.

The following is one of the results from [7]:

Theorem 4.3. Determining whether a player can force reaching a certain set of
states or prevent the game from reaching a certain set of states on a concurrent
game structure is possible in time linear in the number of transitions.

We now give the proof of Theorem [4.2]

Proof. We construct a concurrent reachability game of single exponential size such
that Player 1 (Player 2) wins if Player 1 (Player 2) has a winning strategy in the
termination game. By Theorem our result follows.

The states of the game are either markings M of the workflow net, or pairs
(M, Chr), where M is a marking and C)y is a set of clusters enabled at M. Nodes M
belong to Scheduler, who chooses a set C), after which the play moves to (M, Cy).
At nodes (M, C)s) Players 1 and 2 concurrently select transitions for the clusters
Cyur, and depending on their choice the play moves to a new marking.

The states of the concurrent game structure are the following:

Q = {M : M a reachable marking} U {(M,Cys) : M a reachable marking,
Chr a set of clusters with at least one enabled transition M}

Only one proposition is needed to mark the final state:
IT = {final}

(M) = final if M =o
0 otherwise
m((M,Cn)) =0
The move vectors, given by the Cartesian product of the possible moves of each
player, are defined as follows:

e D(M) = {1} x {1} x 29 is the set of move vectors from state M, where S is
the set of all clusters containing a transition enabled at M.

o D((M,Cyp)) = {F1}x{F2}x{1} is the set of move vectors from state (M, Cys),
where F; is the set of all functions assigning each ¢ € Cy; N C; an enabled
transition t € c.

100 CHAPTER 4. GAMES ON WORKFLOW NETS

The transition function ¢ is defined by §(M, (1,1, Cyr)) = (M, Cyy), and
0((M,Cur), (f1, f2,1)) = M', where M’ is the marking reached from M after all
clusters of Cj; occur with the transitions specified by fi, fo. Notice that M’ does
not depend on the order in which they occur.

Player 1 wins if the play reaches the final marking M. Player 2 wins if the game
never reaches the final marking. Using Theorem the result follows. O

While Theorem gives only an upper bound for the complexity, unfortunately
the lower bound matches the upper bound and makes both the termination and the
non-termination problem EXPTIME-complete.

Theorem 4.4. The termination problem and the non-termination problem are EXPTIME-
hard even for free choice workflow arenas, and even for arenas where Scheduler never
has any choice.

Proof. We reduce the acceptance problem of linearly bounded alternating Turing
machines (TM) [9] to a workflow game. Recall that an alternating Turing ma-
chine has four types of states, existential and universal, accepting and rejecting.
Acceptance for existential and universal states can then be defined as follows: An
existential state is accepting if there is a transition that leads to an accepting state,
a universal state is accepting if all transitions lead to an accepting state. The TM
accepts if its initial state is accepting.

In the workflow game we construct, there will always be at most one cluster that
is enabled. Therefore Scheduler never has any choice and the termination problem
and non-termination problem are dual to each other and EXPTIME-hard.

We are given an alternating TM A with transition relation ¢, and an input x of
length n. We assume that A always halts in one of two designated states ggecept OF
Qreject, and does so immediately after reaching one of those states.

To ease understanding, we split the construction into two parts: First we construct
a workflow net which is not free choice, but contains the core idea of how to simulate
the TM nevertheless. However, due to the construction, a large part of the workflow
net consists of a single cluster and it will not be possible to model universal and
existential quantifiers. In the second part we modify the construction so that the
resulting net is free choice and show how to assign the clusters to the players.

We first describe the initial construction informally. We define a workflow net
which will, aside from the initial and final marking, use two tokens to model the
head position and internal state of M, and one token for each cell describing its
content. Aside from the input place 7 and the output place o, there will be

e one place per internal state of M
e one place per possible head position, i.e. per cell on the tape

e one place for each alphabet symbol and cell.

There will be one transition in the workflow net for each transition (¢,«a) —
(¢',a/, D) of M and each possible head position, where ¢, ¢ are control states, «, o/
are letters and D is the direction that the head moves, either “R”, “L” or “N” (right,
left, no movement). The construction is shown in Figure Intuitively, we move
the three tokens that represent the head, the current cell content and the internal
state according to the transition of the Turing machine.

4.2. ANALYSIS PROBLEMS 101

Internal state

Cell content

tape cell k tape cell k+1

(current cell

Head position

Figure 4.2: Part of the workflow net representing a TM, the transition drawn
represents the transition (q1,a) — (g2, b, R)

Finally, the workflow net also has an initial transition that, loosely speaking, takes
care of modeling the initial configuration, and a block of final transitions that “clean
up” after guccept has been reached as internal state.

Since every transition that actually simulates the TM will have the internal state
in its pre-set (and there is only one internal state at all times), all enabled transitions
will be in conflict with each other. However, there is only a single cluster containing
all transitions simulating the TM.

Formally, we are given an alternating TM M = (Q,T, 4, qo, g) with tape alphabet
I’ and a function g: Q — {A,V, accept, reject} that determines the state type, and
an input x of length n. We assume that M always halts, does so in designated states
Qaccept OF Greject, and does so immediately when reaching one of those. We define a
workflow game Wy, as follows:

e The set of places is

S ={i,o}U{sq|qeQ}U{sp |1 <k <n}U
{Sa,k|O‘6F71§k§n}u{sclean,k|1§k§n}

54 will model the current state, s the head position, s, the content of cell £
and Scjeqn,k Will be used to clean up.

e The set of transitions is

T ={t:} U{tceank | 1 <k <n}U{tgeanar |a €1 <k <nju
{tgakgor|(@a)—=(d,d',R)€d1<k<n}U
{tgakgor] (@ a) = (¢,o/,L)€d,1<k<n}U
{tgakg N | (@,0) = (¢, 0/, N) € 6,1 <k <n}

t; initializes all cells, tg o k¢ o/,p models a transition of the TM, teeqn i and
telean,a,k are used to clean up.

102 CHAPTER 4. GAMES ON WORKFLOW NETS

SQaccept

Internal state

Sclean,1 Sclean,k Sclean,k+1

Cleanup state O

8 |
|
' |
! |
' Shkt1
|
Cell content | O !
! ‘
|
: Sc,k—l—l :
! |
| |
| |
| |

tape cell k
(current cell)

Head position

Figure 4.3: Two transitions of the cleanup procedure

e The pre- and post-sets are
°t; ={i}
t; ={5qy, 51} U {5,k | cell k initially contains o}
.tq,a,k,q’,a’,D :{SQ7 Sa,ks Sk}
{Sk+1} iftD=R
t;,a,k,q’,a’,D :{Sq/, Sa/,k} U {Skfl} ifD=1L
{sk} ifD=N
.tclecm,k :{Sqaccepu Sk}
t;lean,k: :{Sclean,l}
o
tclean,a,k :{Sclean,ka Sa,k}

+° _ {sclean,kJrl} ifk<n
clean.cck {o} otherwise

e The set C of conflict sets owned by Player 1 contains ¢;, all conflict sets con-
taining some tcjeqn k OT tejean,,k and all conflict sets containing some ty o k. ¢/ o/, D
such that g(q) # A. The set Cy contains all other conflict sets.

We briefly discuss the cleanup procedure. Two of the cleanup transitions are
depicted in Figure After the TM has reached the accepting state ggccept, We
need to collect all the tokens to reach the final marking. First we collect the head
token on s and the state token on sg,...,, Wwith the transition f.eqn k- Then we

4.2. ANALYSIS PROBLEMS 103

Figure 4.4: Creating free choice

collect the tokens in the cells, one by one, via the places Sceank and transitions
tetean,a,k- The last cell is cleared by transitions tceqn,a,n for some o, this transition
puts a token on the output place o.

Observe that, in general, the workflow net Wy, is not free choice and also un-
sound: if the TM does not accept, the state guccept is not reachable and therefore
the cleanup procedure is never executed, making the final marking unreachable.

Initially, only ¢; is enabled. Thereafter, at any point in time, exactly one conflict
set is enabled until either sg,...,. OT Sq,.;.., is marked. If sy, is marked, after the
cleanup the final marking is reached. To model universal and existential quantifiers,
we would like to assign conflict sets to the players instead of clusters. In general
however this is unpractical as there may be exponentially many conflict sets. Instead,
we focus on modifying the above construction to yield a free choice arena.

We apply the following idea to transform the above construction to a free choice
net: assume that t; and ¢y are two transitions that share an input place, but not all
input places. That means ¢; and to directly conflict with the free choice property.
However, we can separate the two transitions by creating additional places and two
“choice transitions” that choose between t; and to. This construction is depicted
in Figure While this construction generally produces unsound behavior (if the
wrong choice is taken, the result may be a deadlock), we can neglect this as our
construction is already unsound.

Our altered construction is detailed in the remainder of the proof.

We remove the places s; and s;, and instead add the following places:

® Sq,k,head and Sq,k,state for all qc Qa 1<k<n
® Sokhead foralla e ' 1 <k <n
® Sq,a,k,heads Sq,a,k, state and Sq,a,k,cell for all qc Qa (ORS F> 1<k<n
We modify the existing transitions as follows
b ={i}
t7 ={Sq0,1,head> Sqo,1,state } U {Sak | cell k initially contains a}
.tq,a,k,q’,cx’,D :{Sq,a,k,heada Sq,0,k,state> Sq,a,k,cell}

{Sq’,k+1,head7 3q’,k+1,state} itD=R

(] .
tq,a,k,q’,a’,D :{Sa’,k} U {sq/,kfl,heada Sq’,kfl,state} itD=1L
{Sq/,k,heada Sq’,k,state} itD=N

104 CHAPTER 4. GAMES ON WORKFLOW NETS

We add new transitions tg q i cenr and tg.q.k state With the following pre- and post-
sets:

°
tq,a,k,cell :{sq,k,heaab sq,k,state}
.
tq,oc,k’,cell :{Sa,k,heada Sq,a,k,state}
°
tq,a,k,state :{Sa,ka Sa,k,head}

°
tq,oz,k,state :{Sq,a,k,heada Sq,a,k,cell}

This construction is shown in Figure@ Intuitively, the cell content token in s,
waits for the head to arrive in s,k pead- The head and the state are in s4 4 peqqd and
Sqk,state- Lhere they “guess” via a transition ¢ ok cen the letter o of the cell k. The
state then moves to sy q i state While the head moves to s,k heqq to collect the cell
content. From there, they again “guess”, this time the internal state, by choice of
the transition t, o k state, and move to Sq ok head a0 Sq ok cell, TESPectively.

We also need to improve the process of cleaning up. We remove the places s¢ean,k
as well as the transitions fieqn i and teeanar and instead add new transitions
teteank.o A tejean.a ko for all 1 <k <n, a,a’ € T and set

.
tclean,k,a :{SQaccept7k75t0t67 S(Iaccept,k,head}
[]
tclean,k,a :{Sa,l,head}

.

tclean,a,k,a’ :{Sa,ka Sa,k,head}

_ {Sa’ k+1,head} ik <n
{o} otherwise

t

°
clean,o,k,of

Again, during the clean-up we need to guess for each of the cells the state it is
in. Two transitions of the construction are shown in Figure [4.6] Notice that the
cleanup transitions teqn ok« have the same pre-set as ¢y o i state Where head and
cell content guess the current state together. This will however not be a problem:
Any guessing we have added in the above construction will be done by Player 1,
so “guessing right” will be a part of his winning strategy. Guessing correctly is
possible as Player 1 can simply keep track of the tape contents and internal state
by simulating the TM.

Thus the partition of the clusters is: The set containing t; and all conflict sets
containing some t, o i ¢/.o/,p such that g(q) # A belong to Player 1. Additionally,
all conflict sets containing a transition tq q k.cenr OF tg.ak state Pelong to Player 1.
Furthermore, the cleanup conflict set containing the transitions ¢.jeqn, ko belongs to
player 1. All remaining conflict sets belong to Player 2.

By this partition of the clusters, Player 1 decides all existentially quantified choices
of the Turing machine while Player 2 resolves the universal quantifiers. Player 1 does
all the guessing, but guessing correctly is easily possible. Therefore Player 1 has a
winning strategy iff M accepts z. O

4.3. FREE CHOICE GAMES 105

4.3 Free Choice Games

As we have seen in the previous chapters, checking for soundness of a workflow net,
a PSPACE-hard problem, is achievable in polynomial time if the workflow net is free
choice. Theorem suggests that for games, there is no such tractability result.
We provide a result that shows the contrary.

Well-designed workflow nets should have neither deadlocks nor livelocks and there-
fore should be sound. We prove that for sound free choice workflow nets, the termi-
nation and non-termination problem can be solved in polynomial time. To this end,
we modify the well-known attractor computation.

Definition 4.5 (Attractor). Let W be a workflow arena, C; and Cy the partition of

(0.]

the clusters. The attractor of the output place o is A = |J Ay, where Ay = {[o]}
k=0

and

A1 =AU {ceC|THtecVset: [s] € A}
U {cel|VtecVset®: [s] € Ay}

The attractor position of a cluster c¢ is the smallest k such that ¢ € Ay. The
attractor position of a place is that of its cluster. We say that a place is in the
attractor if its cluster is in the attractor.

Theorem 4.6. Let N be a sound free choice workflow arena. Player 1 has a winning
strategy in the termination game iff [i] € A.

Proof. («<): Assume that [i] € A. We fix the attractor strategy for Player 1. The
strategy for a cluster ¢ € C; N A is to choose any transition ¢ such that all places
s € t* have smaller attractor position.

Such a transition exists by construction of A. For clusters ¢ € C; \ A we choose
an arbitrary transition. Notice that this strategy is not only memoryless, but also
independent of the current marking.

We show that the attractor strategy is winning. By definition of the game, we
have to prove that every play following the strategy ends with the final marking.

Assume the contrary: there is a play m where Player 1 plays according to the
attractor strategy, which never reaches the final marking. We claim that for all
markings reached along 7, all marked places are in the attractor. We first observe
that initially all marked places are in the attractor since [i] € A by assumption.
Now, assume that in some marking reached along 7 all marked places are in the
attractor A. Then of course all enabled clusters are in the attractor, and therefore
also the clusters chosen by Scheduler. By definition of A, after a cluster of Co N A
occurs, the tokens on ¢* are in A for the transition ¢ € ¢ that was fired; by definition
of the attractor strategy, the same holds for clusters of C; N A. This concludes the
proof of the claim.

We now make use of Theorem 2.I8 Since the workflow arena is sound and free
choice, the extended net W obtained by adding a transition which removes a token
from o and adds one to ¢ is safe and live by Theorem [2.33| and therefore covered by
S-components. We choose a minimal cover and order these S-components arbitrarily.
All of these components are marked initially by Corollary [2.38 and thus stay marked
with exactly one token.

106 CHAPTER 4. GAMES ON WORKFLOW NETS

Since all markings M reached along 7 satisfy that all marked places are in A, for
each marking there is an associated attractor position vector whose components are
natural numbers, the attractor positions of the marked places of each S-component.
Let Py denote the position vector of the marking reached after £k > 0 steps in .
Initially only 7 is marked, and so Py = (ko, ko, - - ., ko), where kg is the attractor
position of i. We have ko < |S| as the number of places is an upper bound for the
number of clusters. Given two position vectors P = (p1, ..., pp) and P’ = (pf, ..., pl,),
we say P < P’ if p; < p) for every 1 < i <m, and p; < p] for at least one 1 <1i < m.

By definition of the attractor strategy, the sequence Py, P1, ... of attractor positions
satisfies P;y1 < P; for every i. Since < is a well-founded order, the sequence is finite,
i.e., the game terminates. By definition of the game, it terminates at a marking that
does not enable any transition. Since, by assumption, the play never reaches the
final marking, this marking is a deadlock, which contradicts the soundness of W.
(=): Let B=W\ A, and assume [i] € B. We give a winning strategy for Player 2.
The strategy for a cluster ¢ € C2 N B is to choose any transition ¢ such that at least
one place s € t* is not in A. Such a transition exists because, since ¢ € BB, we have
¢ ¢ Ay, for every k, and so by definition and monotonicity of Ay there exists some
t € c such that [s] ¢ Ay for some s € t* and every k. For atoms in C \ B we chose
an arbitrary transition.

We show that this strategy is winning for Player 2. Once again, because the
workflow net is sound, no play played according to this strategy ends in a deadlock.
So we have to prove that every game played following the strategy never ends. Since
[o] € A, it suffices to prove that the play never reaches a marking at which every
marked place is in the attractor.

Initially all tokens are on i, and [i] € B. Now, assume that at some marking M
reached along 7 there is a marked place s that satisfies [s] € B. We prove that
the same holds for the marking M’ reached after one step of the play. If [s] is not
enabled at M, then we have M'(s) = M(s) and we are done. The same holds if [s]
is enabled at M, but is not selected by Scheduler. If [s] is enabled and selected by
Scheduler, there are two possible cases. If [s] € C; then by the definition of A for
every transition ¢ € [s] there is a place s’ € t* such that [s'] € B. If [s] € Cy, then by
definition the strategy chooses a transition ¢ for which there is a place s’ € t* such
that [s'] € B. O

The above proof not only yields a strategy for Player 1 if [i] € A, but also gives
us a strategy for Player 2 if [i] is not in the attractor. Thus the choices made by
Scheduler cannot influence the result of the game in the sound free choice case.

Corollary 4.7. For the termination game over sound free choice workflow arenas,
the following holds:

(a) The game collapses to a two-player game.
(b) Memoryless strategies suffice for both players.
(¢) The winner and the winning strategy can be computed in O(|T| - |S|) time.

Proof. (a) and (b): The attractor computation and the strategies used in the proof
of Theorem are independent of the choices of Scheduler; the strategies are mem-
oryless.

(c): We describe an algorithm that computes the set A and the winning strategy
for Player 1, listed as Algorithm (4] on page [107]

4.3. FREE CHOICE GAMES

107

Algorithm 4 Attractor computation

e e e e T e

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

array|| count

array[] transitionCount

array|| strategy

set border

set A

for every cluster ¢ do
transitionCount|c] < |cNT)|
for every transition t € ¢ do

count[c][t] < |t*]

end for

. end for

A {[ol}

border < {[o]}

. transitionCount[[o]] < 0
: while border # () do

choose and remove a cluster ¢ from border
for every transition ¢’ € T where t'* N ¢ # () do
count[t'] + count[t'] — [t"* N¢|
'+ [t']
if count[t'] = 0 and ¢ € C; then
transitionCount[c’] + 0
strategy[c] <t
border < border U {c'}
end if
if count[t'] = 0 and ¢ € Cy then

transitionCount|c’] < transitionCount[c] — 1

if transitionCount|[c'] = 0 then
border + border U {c'}
end if
end if
end for
end while
return A

Intuitively, count[t] counts the output places of ¢ that do not reach the attractor,

transitionCount|c] counts the transitions of ¢ for which count[t] # 0 or is zero if ¢
is in the attractor.

This algorithm terminates and computes .4, the check [i] € A is done by check-

ing whether transitionCount|[i]] is zero. Furthermore, the strategy for Player 1 is
computed in strategy[]. Every transition is inspected at most once per cluster, thus
the running time is at most O(|T| - |S|). This leads to a total running time of at
most O(|T| -S|+ [S|) € O(|T| - |S|). Computing the strategy for Player 2 can be
done in a straightforward loop over all transitions choosing any transition for which
count[t] # 0 in running time O(|T).

O]

CHAPTER 4. GAMES ON WORKFLOW NETS

108

Sq1,k,head Sqo,k+1,head

O

Internal state

wﬁ,??mgwm

Sq,a,k,head

Cell content m

tape cell k tape cell k+1

(current cell) Lay,a,k,cell

Head position

Sq1,k,state Sqo,k+1,state

Figure 4.5: The free choice construction

109

4.3. FREE CHOICE GAMES

UOTIONIISUOD 010D 991 oY) Ul aInpadold dnuea[d oy} JO JIRJ :9°F 2INSL

@ﬁuwmhu\" ﬂ&muud@%

2'y‘upao
(1109 yuemo) ooy

T+ [[0° odey ¥ [[0o ade)
Py T+yog T+34'9g poay‘1og

%v\,didﬁow

ﬁdwﬁﬁv\" N&muod@%

uorysod peay

LDIUOD [0

99e)s [eUIIU]

CHAPTER 5

Conclusion and Future Work

Contents
H.1 Conclusionl 113
h.2 TFuture Workl 113

111

5.1. CONCLUSION 113

5.1 Conclusion

In this thesis, we have introduced the reader to Petri nets and workflow nets. We
have described properties such as liveness, boundedness and free choice of Petri
nets as well as soundness of workflow nets and described the connection between
them. We have also introduced extensions of colored workflow nets and defined
the summary of a workflow net. In another extension we have defined probabilistic
workflow nets and the expected reward.

Using the reduction procedure for finite automata as inspiration, we have defined
reduction rules for workflow nets that are correct for workflow nets and summarize
all sound free choice workflow nets, and only the sound nets, to a trivial net. With
slight modifications to the rules it is also possible to compute the summary of a
CWN or the expected value of a PWN. Furthermore, the algorithm needs at most
a polynomial number of rule applications.

In the last chapter, we have introduced games on workflow nets. An initial study
on the complexity of computing a winner and winning strategy yielded disappointing
complexity bounds for the general case and even for the free choice case. However,
a restriction to sound free choice workflow nets enabled us to give a polynomial
algorithm and we were able to show that the game collapses to a two-player game
with memoryless strategies.

5.2 Future Work

Both extensions of workflow nets presented in this thesis, colored workflow nets and
probabilistic workflow nets, can be interpreted as workflow nets where the transitions
are labeled with an element of a given semiring. The summary/expected value can
then be defined by also associating a semiring element with each Mazurkiewicz trace
via the multiplication of the semiring, then summing up over all traces to obtain the
summary /expected value.

This more general setting would also allow us to show that our rules are correct
for workflow nets with timed transitions where each transition fires according to an
exponential distribution and the task is to compute the expected time until the final
marking is reached. Thus we would like to prove that the rules are also correct in
this setting.

For games, an interesting extension might be to also consider probability, for
example as an additional player that controls some of the clusters. The task is then
to compute the probabilities with which the players can achieve their goals.

Bibliography

1]

[10]

[11]

[12]

W. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(1):21-66, 1998.

W. van der Aalst. Formalization and Verification of Event-Driven Process
Chains. Information and Software Technology, 41(10):639-650, 1999.

W. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-Net-based Techniques. In Business Process Management, pages 161-183.
Springer, 2000.

W. van der Aalst, J. Desel, and A. Oberweis. Business Process Management:
Models, Techniques, and Empirical Studies. Springer, 2003.

W. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, 2004.

W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek,
M. Voorhoeve, and M. T. Wynn. Soundness of Workflow Nets: Classifica-
tion, Decidability, and Analysis. Formal Aspects of Computing, 23(3):333-363,
2011.

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-Time Temporal
Logic. J. ACM, 49(5):672-713, 2002.

T. Bréazdil, P. Jancar, and A. Kucera. Reachability Games on Extended Vector
Addition Systems with States. In ICALP (2), volume 6199 of LNCS, pages
478-489. Springer, 2010.

A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):
114-133, 1981.

J. Desel and J. Esparza. Free Choice Petri Nets, volume 40. Cambridge uni-
versity press, 2005.

J. Desel, J. Esparza, and P. Hoffmann. Negotiation as concurrency primitive.
Computing Research Repository, abs/1612.07912, 2016.

B. van Dongen, M. H. Jansen-Vullers, H. Verbeek, and W. van der Aalst. Veri-
fication of the SAP Reference Models using EPC Reduction, State-Space Anal-
ysis, and Invariants. Computers in Industry, 58(6):578-601, 2007.

115

116

Bibliography

[13]

[16]

[17]

[24]

[25]

[26]

M. Dumas and A. ter Hofstede. UML Activity Diagrams as a Workflow Spec-
ification Language. In International Conference on the Unified Modeling Lan-
guage, pages 76-90. Springer, 2001.

M. Dumas, W. van der Aalst, and A. ter Hofstede. Process-Aware Information
Systems: Bridging People and Software through Process Technology. John Wiley
& Sons, 2005.

J. Esparza. Decidability and Complexity of Petri Net Problems - An Intro-
duction. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets,
the Volumes Are Based on the Advanced Course on Petri Nets, pages 374—428.
Springer-Verlag, 1998.

J. Esparza and J. Desel. On Negotiation as Concurrency Primitive. In CON-
CUR, volume 8052 of LNCS, pages 440-454. Springer, 2013.

J. Esparza and J. Desel. On negotiation as concurrency primitive II: Deter-
ministic cyclic negotiations. In A. Muscholl, editor, FoSSaCS, volume 8412 of
LNCS, pages 258-273. Springer, 2014.

J. Esparza and P. Hoffmann. Reduction Rules for Colored Workflow Nets. In
FASFE 2016, volume 9633 of LNCS, pages 342—-358. Springer, 2016.

J. Esparza, P. Hoffmann, and R. Saha. Polynomial Analysis Algorithms for Free
Choice Probabilistic Workflow Nets. In QEST 2016, volume 9826 of LNCS,
pages 89-104. Springer, 2016.

D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Vélzer, and
K. Wolf. Instantaneous Soundness Checking of Industrial Business Process
Models. In Business Process Management, volume 5701 of LNCS, pages 278—
293. Springer, 2009.

C. Favre, D. Fahland, and H. Volzer. The Relationship between Workflow
Graphs and Free-Choice Workflow Nets. Information Systems, 47:197-219,
2015.

R. A. Gordon. The Integrals of Lebesque, Denjoy, Perron, and Henstock. Num-
ber 4. American Mathematical Soc., 1994.

K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In ICATPN, volume
2679, pages 337-356. Springer, 2003.

K. van Hee, N. Sidorova, and M. Voorhoeve. Generalised Soundness of Workflow
Nets is Decidable. In International Conference on Application and Theory of
Petri Nets, pages 197-215. Springer, 2004.

P. Hoffmann. Negotiation Games. In GandALF 2015, volume 193 of EPTCS,
pages 31-42, 2015.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

Bibliography 117

[27]

[28]

[42]

K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Springer Science & Business Media, 2009.

J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains: with
a chapter of Markov Random Fields by David Griffeath, volume 40. Springer
Science & Business Media, 2012.

A. Kucera. Playing Games with Counter Automata. In Reachability Problems,
volume 7550 of LNCS, pages 29-41. Springer, 2012.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In CAV 2011, LNCS, vol. 6806, pages 585—
591, 2011.

G. Liu, J. Sun, Y. Liu, and J. Dong. Complexity of the Soundness Problem of
Workflow Nets. Fundamenta Informaticae, 131(1):81-101, 2014.

A. Martens. Analyzing Web Service Based Business Processes. In International
Conference on Fundamental Approaches to Software Engineering, pages 19-33.
Springer, 2005.

A. Mazurkiewicz. Trace Theory. In Petri Nets: Applications and Relationships
to Other Models of Concurrency, pages 278-324. Springer, 1986.

S. Mohalik and I. Walukiewicz. Distributed Games. In FSTTCS, volume 2914
of LNCS, pages 338-351. Springer, 2003.

T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541-580, 1989.

A. Oberweis. Modellierung und Ausfihrung von Workflows mit Petri-Netzen.
Springer-Verlag, 2013.

J. L. Peterson. Petri Nets. ACM Computing Surveys (CSUR), 9(3):223-252,
1977.

W. Reisig. Petri Nets: An Introduction, volume 4. Springer Science & Business
Media, 2012.

W. Thomas, T. Wilke, et al. Automata, Logics, and Infinite Games: A Guide
to Current Research, volume 2500. Springer Science & Business Media, 2002.

A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, pages 429-528. Springer, 1998.

J. Vanhatalo, H. Vélzer, and F. Leymann. Faster and more focused control-
flow analysis for business process models through SESE decomposition. In
Service-Oriented Computing - ICSOC 2007, volume 4749 of LNCS, pages 43—
55. Springer, 2007.

D. Varacca and M. Nielsen. Probabilistic Petri Nets and Mazurkiewicz Equiv-
alence. 2003. Unpublished Manuscript. Available online at http://www.lacl.
fr/~dvaracca/works.html. Last retrieved on May 27, 2016.

http://www.lacl.fr/~dvaracca/works.html
http://www.lacl.fr/~dvaracca/works.html

118 Bibliography

[43] H. M. Verbeek, T. Basten, and W. van der Aalst. Diagnosing Workflow Pro-
cesses using Woflan. The Computer Journal, 44(4):246-279, 2001.

[44] 1. Walukiewicz. Pushdown Processes: Games and Model-Checking. Inf. Com-
put., 164(2):234-263, 2001.

[45] S. A. White. Introduction to BPMN. IBM Cooperation, 2(0):0, 2004.

[46] Wikipedia. ~Markov Chains — Wikipedia, the Free Encyclopedia, 2016.
Available online at https://en.wikipedia.org/wiki/Markov_chain. Last re-
trieved on Dec 01, 2016.

[47] K. Wolf. Generating Petri Net State Spaces. In International Conference on
Application and Theory of Petri Nets, pages 29-42. Springer, 2007.

https://en.wikipedia.org/wiki/Markov_chain

	Preliminaries
	Introduction
	Math Basics/Used Symbols
	Probability Theory
	Mazurkiewicz Equivalence

	Petri Nets and Workflow Nets
	Petri Nets
	Introduction
	Syntax and Semantics
	Free Choice Nets
	Live and Bounded Free Choice Nets

	Workflow Nets
	Introduction
	Workflow Nets and Soundness
	Colored Workflow Nets
	Probabilistic Workflow Nets

	Rule-based Reduction
	Reduction Rules
	Inspiration: Finite Automata
	Reduction Rules for Workflow Nets
	Merge Rule
	Iteration Rule
	Shortcut Rule

	Reduction of Simple Cases
	Acyclic Nets
	S-Nets

	A Complete Reduction Algorithm
	The Algorithm
	Computing Synchronizers and Fragments
	Runtime Analysis

	Colored Workflow Nets
	Probabilistic Nets
	Implementation and Experimental Results

	Games on Workflow Nets
	Introduction
	Analysis Problems
	Free Choice Games

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

