
Calculating exact values of without using recurrence relations

This note describes an algorithm for calculating exact values of , the number of partitions of

⌊ ⌋ into distinct positive integers each less than or equal to , without using recurrence

relations. For example, with , is equal to the number of magic series of order , see

OEIS sequence A052456.

This algorithm does not suffer from the quite heavy memory constraints imposed by algorithms

based on recurrence relations, and can be used successfully to calculate for combinations of

 and that are out of scope for other programs. Also, it is very well suited for parallel

computation.

On the downside, this algorithm has to restart from scratch every time has to be calculated

for new values of and/or , which makes it in principle less suitable for generating tables (unless of

course no other options are available). Even so, our straightforward implementation, without other

optimizations than the ones described in this note, appears to be faster than the C program from

Robert Gerbicz that was used to generate the first 150 terms of OEIS sequence A052456.

Let denote the number of partitions of with at most parts each less than or equal to .

By comparing the definitions of and it is clear that

 ⌊ ⌋

In order to calculate exact values of we will use the following known property of the

 :

∑

 (

)

where the expression of the right-hand side is the -binomial coefficient

(

)

 ∏

An elegant proof of this property can be found in http://ocw.mit.edu/courses/mathematics/18-318-

topics-in-algebraic-combinatorics-spring-2006/lecture-notes/young.pdf, theorem 6.6. Because the

summation on the left-hand side of the previous equation is a polynomial of degree in , the -

binomial coefficient on the right-hand side of the equation is also guaranteed to be a polynomial in

(of course also of degree), which is not obvious from the product form definition of the -

binomial coefficient.

So, if we use the common notation [] to represent the coefficient of in , where

can be any polynomial (or a formal power series) in , we have

http://oeis.org/A052456
http://oeis.org/A052456
http://ocw.mit.edu/courses/mathematics/18-318-topics-in-algebraic-combinatorics-spring-2006/lecture-notes/young.pdf
http://ocw.mit.edu/courses/mathematics/18-318-topics-in-algebraic-combinatorics-spring-2006/lecture-notes/young.pdf

 [] (

)

and substituting ⌊ ⌋ and (, we have

 ⌊ ⌋ [⌊ ⌋] (

)

Now, at least in principle, starting from the known initial values (constant polynomials)

(

)

 (

)

all the coefficients of the polynomial (

)

 of degree in can be computed using a

recurrence formula such as

(

)

 (

)

 (

)

Such an approach requires that all the coefficients needed by the recurrence are stored. As and/or

 increase substantially, this will become problematic.

The same polynomial could also be computed by other (more complicated) methods, e.g. as a

product of certain cyclotomic polynomials. However, in order to find we only need to

determine one particular coefficient of the polynomial. It is possible to determine any coefficient by

evaluating the polynomial for some well-chosen values of (specifically: roots of unity). Moreover,

such evaluations can be performed quite efficiently using the above equation

(

)

 ∏

which, after the substitution (, becomes

(

)

 ∏

So we are looking for a general method which allows us to determine any coefficient of any

polynomial

where the coefficients are unknown, but where nevertheless is given in some form that

allows us to evaluate for certain values of . An example of such a polynomial is

 (

)

because indeed, although we do not know the coefficients in advance, we can still evaluate this

polynomial using the simple equation

 ∏

If the right-hand side contains zeroes in one or more of the denominators, the point in which the

function is being evaluated will always be a removable discontinuity. Anyway, we want to avoid this

complication, and select values of such that none of the denominators are equal to . We do allow

one exception though, , because we know that

 (

)

Now suppose we want to calculate the coefficient (). Select any integer such that

 (we will put further restrictions on later in order to avoid unwanted zero

denominators in the above products). For the moment, let us assume that the polynomial is

evaluated in , the field of complex numbers. Let be the set of all -th roots of unity.

This means that all are of the form , where is a primitive -th root of unity (so has to

be the smallest integer such that). In we can take . Then we have

∑
 ()

 ∑

∑

 ∑ ∑

 ∑ ∑

In the outer summation on the right-hand side we have

 | |

The inner summation on the right-hand side is of the form

∑

with . Now, for all , the following identity holds:

∑

For the terms in the outer summation with , we have | | , and

because is a primitive -th root of unity. So the value of the inner summation is equal to

∑

So the only term left in the outer summation is the one with , and we have

∑
 ()

 ∑

 ∑

Consequently,

∑

 ()

It should now be clear that the value obtained using the above formula will be equal to if

we perform the following substitutions:

 (

)

 ⌊

⌋ ⌈

⌉

Note that the coefficient extraction method described so far can easily be extended for multivariate

polynomials. Other applications can be found in the literature, for example in this article from 1977,

http://www.sciencedirect.com/science/article/pii/0012365X77901170, where essentially the same

method is applied to homogeneous multivariate polynomials.

Optimizations are possible. As long as ⌈ ⁄ ⌉, with , we can take any we

want. Let us assume that is odd, so for some .

 ∑
 ()

 ∑
 ()

 ∑
 ()

Using the fact that

(

)

 (

)

 (

)

 () ()

the last summation can be rewritten as

∑
 ()

 ∑ ()

In terms of a new free variable this can be further rewritten as

∑ ()

Finally, after renaming the free variable and substituting the last term in the above sum for we

obtain

 ∑ ()

 ∑ ()

If is even, we have , so , and

 ∑ ()

 ∑ ()

 ∑ ()

If is odd, we have , so , and

http://www.sciencedirect.com/science/article/pii/0012365X77901170

 ∑ ()

 ∑ ()

 ∑() ()

In any case, we only need the values () for , so we can (almost) halve the execution

time.

Next, let us see if and how we can avoid unwanted zero denominators in the evaluation of

 ∏

We just saw that we only have to evaluate for and (or up to if we

apply the optimization). So, a zero denominator will only appear if , that is if .

Obviously, for we have , which is not a problem because we know that

 (

)

and we do not have to evaluate the product at all. So we only want to guarantee that for

 (or up to if we apply the optimization) and , which means that none of

the products should be a multiple of . A sufficient condition is that the smallest prime factor of

is larger than , so we will add this as a condition when selecting ⌈ ⁄ ⌉. Note that if we restrict

the algorithm to the case that (we do not need an algorithm for anyway), this

additional condition implies that is odd.

Now, in principle we could indeed evaluate the summation in , as explained. However, since we

want to calculate exact values, and irrational numbers are involved, this may lead to numerical

problems. So we will use another well-known numerical technique: we select an appropriate prime

number , and perform all the calculations in the finite field , where all additions and

multiplications are performed modulo . So the result will not immediately be the value we

are looking for, unless , but the value of

If we repeat the whole process for various prime numbers , we can derive the value of

using the Chinese remainder theorem, provided that the product of all the selected prime numbers is

larger than .

Now the prime numbers must be chosen carefully, because the method will fail unless there exists

an element of multiplicative order in , meaning that is the smallest integer such that

 . Remember that in all additions and multiplications are performed modulo . We

know from abstract algebra that the multiplicative order of any element in the multiplicative group

of must be a divisor of the order of the multiplicative group, which is (the element

does not belong to the multiplicative group).

So assuming we have already selected as described earlier, we now have to select prime numbers

such that | . So has to be of the form , where is an even positive integer (must be

even, because, as we explained, if , then must be odd; but then, since must be odd as well,

 and thus must be even). In practice we will use the smallest possible primes, so we start with

 , increment by 2 each time, and drop those for which is not prime.

Once a proper prime number has been selected, we still have to find an element of multiplicative

order in . For this we use a rather brute force method: first we find an element with

multiplicative order (say) such that | . We do this by trying successively, each time

checking whether indeed | . We know from algebra that such values (and) can always be

found. Because we also know that | , we do not necessarily have to completely determine

 in order to decide that a particular value of must be rejected. Finally, we take .

There are in fact more efficient (and more complicated) ways to find , but our brute force method

is good enough because the time needed to compute is very small compared to the time needed

to compute the summation.

This completes the general description of the algorithm, and one possible optimization. It should

now be clear that the algorithm is well suited for parallel computation, since the sums for the various

prime numbers can be calculated in parallel, and independently.

I have implemented this algorithm in C++, using only standard 64 bit unsigned integers. The result is

a list of pairs . From this list it is easy to calculate the value of (I wrote a

small dc script for this, because it is easy, and dc supports large integers). I did not use discrete

logarithms in order to speed up the calculations of the terms in the summations. This would be

counterproductive, since the required additional table(s) would grow proportionally with ,

reintroducing the memory constraints we were trying to avoid. Nevertheless, I still decided to use a

very small table (of size proportional to) in order to speed up the evaluation of the .

Dirk Kinnaes

2013-04-19

