
Calculating exact values of        without using recurrence relations 
 

This note describes an algorithm for calculating exact values of       , the number of partitions of 

⌊        ⌋ into   distinct positive integers each less than or equal to  , without using recurrence 

relations.  For example, with     ,        is equal to the number of magic series of order  , see  

OEIS sequence A052456. 

This algorithm does not suffer from the quite heavy memory constraints imposed by algorithms 

based on recurrence relations, and can be used successfully to calculate        for combinations of 

  and   that are out of scope for other programs.  Also, it is very well suited for parallel 

computation. 

On the downside, this algorithm has to restart from scratch every time        has to be calculated 

for new values of   and/or  , which makes it in principle less suitable for generating tables (unless of 

course no other options are available).  Even so, our straightforward implementation, without other 

optimizations than the ones described in this note, appears to be faster than the C program from 

Robert Gerbicz that was used to generate the first 150 terms of OEIS sequence A052456. 

 

Let         denote the number of partitions of   with at most   parts each less than or equal to  .  

By comparing the definitions of        and         it is clear that 

        ⌊        ⌋        

In order to calculate exact values of        we will use the following known property of the 

       : 
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where the expression of the right-hand side is the  -binomial coefficient 
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An elegant proof of this property can be found in http://ocw.mit.edu/courses/mathematics/18-318-

topics-in-algebraic-combinatorics-spring-2006/lecture-notes/young.pdf, theorem 6.6.  Because the 

summation on the left-hand side of the previous equation is a polynomial of degree    in  , the  -

binomial coefficient on the right-hand side of the equation is also guaranteed to be a polynomial in   

(of course also of degree   ), which is not obvious from the product form definition of the  -

binomial coefficient. 

So, if we use the common notation [  ]     to represent the coefficient of    in     , where      

can be any polynomial (or a formal power series) in  , we have 
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and substituting   ⌊        ⌋ and       (      , we have 
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Now, at least in principle, starting from the known initial values (constant polynomials) 
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all the coefficients of the polynomial ( 
 

)
 

 of degree        in   can be computed using a 

recurrence formula such as 

(
 
 

)
 
   (

   
 

)
 
 (

   
   

)
 

 

Such an approach requires that all the coefficients needed by the recurrence are stored.  As   and/or 

  increase substantially, this will become problematic. 

The same polynomial could also be computed by other (more complicated) methods, e.g. as a 

product of certain cyclotomic polynomials.  However, in order to find        we only need to 

determine one particular coefficient of the polynomial.  It is possible to determine any coefficient by 

evaluating the polynomial for some well-chosen values of   (specifically: roots of unity).  Moreover, 

such evaluations can be performed quite efficiently using the above equation 
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which, after the substitution       (      , becomes 
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So we are looking for a general method which allows us to determine any coefficient    of any 

polynomial 

                 
  

where the coefficients    are unknown, but where nevertheless      is given in some form that 

allows us to evaluate      for certain values of  .  An example of such a polynomial is 
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because indeed, although we do not know the coefficients    in advance, we can still evaluate this 

polynomial using the simple equation 
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If the right-hand side contains zeroes in one or more of the denominators, the point in which the 

function is being evaluated will always be a removable discontinuity.  Anyway, we want to avoid this 

complication, and select values of   such that none of the denominators are equal to  .  We do allow 

one exception though,    , because we know that 
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Now suppose we want to calculate the coefficient    (     ).  Select any integer   such that 

              (we will put further restrictions on   later in order to avoid unwanted zero 

denominators in the above products).  For the moment, let us assume that the polynomial is 

evaluated in  , the field of complex numbers.  Let             be the set of all  -th roots of unity.  

This means that all    are of the form      , where   is a primitive  -th root of unity (so   has to 

be the smallest integer    such that     ).  In   we can take         .  Then we have 
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In the outer summation on the right-hand side we have 

                          |   |    

The inner summation on the right-hand side is of the form 
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with       .  Now, for all    , the following identity holds: 
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For the terms in the outer summation with    , we have   |   |   , and          

because   is a primitive  -th root of unity.  So the value of the inner summation is equal to 
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So the only term left in the outer summation is the one with    , and we have 
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Consequently, 



   
 

 
∑

 (  )

   

   

   

 

It should now be clear that the value    obtained using the above formula will be equal to        if 

we perform the following substitutions: 
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⌋                    ⌈

 

 
⌉      

   
  

Note that the coefficient extraction method described so far can easily be extended for multivariate 

polynomials.  Other applications can be found in the literature, for example in this article from 1977, 

http://www.sciencedirect.com/science/article/pii/0012365X77901170, where essentially the same 

method is applied to homogeneous multivariate polynomials. 

Optimizations are possible.  As long as   ⌈  ⁄ ⌉, with         , we can take any     we 

want.  Let us assume that   is odd, so         for some    . 
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Using the fact that 
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the last summation can be rewritten as 
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In terms of a new free variable       this can be further rewritten as 
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Finally, after renaming the free variable   and substituting the last term in the above sum for     we 

obtain 
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If   is even, we have     , so      , and 
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If   is odd, we have       , so        , and 

http://www.sciencedirect.com/science/article/pii/0012365X77901170
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In any case, we only need the values  (  ) for        , so we can (almost) halve the execution 

time. 

Next, let us see if and how we can avoid unwanted zero denominators in the evaluation of 
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We just saw that we only have to evaluate      for      and           (or up to   if we 

apply the optimization).  So, a zero denominator will only appear if     , that is if      .  

Obviously, for     we have       , which is not a problem because we know that 
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and we do not have to evaluate the product at all.  So we only want to guarantee that       for 

          (or up to   if we apply the optimization) and        , which means that none of 

the products    should be a multiple of  .  A sufficient condition is that the smallest prime factor of   

is larger than  , so we will add this as a condition when selecting   ⌈  ⁄ ⌉.  Note that if we restrict 

the algorithm to the case that     (we do not need an algorithm for     anyway), this 

additional condition implies that   is odd. 

Now, in principle we could indeed evaluate the summation in  , as explained.  However, since we 

want to calculate exact values, and irrational numbers are involved, this may lead to numerical 

problems.  So we will use another well-known numerical technique: we select an appropriate prime 

number  , and perform all the calculations in the finite field      , where all additions and 

multiplications are performed modulo  .  So the result will not immediately be the value        we 

are looking for, unless         , but the value of 

             

If we repeat the whole process for various prime numbers  , we can derive the value of        

using the Chinese remainder theorem, provided that the product of all the selected prime numbers is 

larger than       . 

Now the prime numbers   must be chosen carefully, because the method will fail unless there exists 

an element   of multiplicative order   in      , meaning that   is the smallest integer    such that 

    .  Remember that in       all additions and multiplications are performed modulo  .  We 

know from abstract algebra that the multiplicative order of any element in the multiplicative group 

of       must be a divisor of the order of the multiplicative group, which is     (the element   

does not belong to the multiplicative group). 

So assuming we have already selected   as described earlier, we now have to select prime numbers   

such that  |     .  So   has to be of the form     , where   is an even positive integer (  must be 

even, because, as we explained, if    , then   must be odd; but then, since   must be odd as well, 



   and thus   must be even).  In practice we will use the smallest possible primes, so we start with 

   , increment   by 2 each time, and drop those   for which      is not prime. 

Once a proper prime number has been selected, we still have to find an element   of multiplicative 

order   in      .  For this we use a rather brute force method: first we find an element   with 

multiplicative order (say   ) such that  |  .  We do this by trying         successively, each time 

checking whether indeed  |  .  We know from algebra that such values   (and   ) can always be 

found.  Because we also know that   |     , we do not necessarily have to completely determine 

   in order to decide that a particular value of   must be rejected.  Finally, we take        . 

There are in fact more efficient (and more complicated) ways to find  , but our brute force method 

is good enough because the time needed to compute   is very small compared to the time needed 

to compute the summation. 

This completes the general description of the algorithm, and one possible optimization.  It should 

now be clear that the algorithm is well suited for parallel computation, since the sums for the various 

prime numbers can be calculated in parallel, and independently. 

I have implemented this algorithm in C++, using only standard 64 bit unsigned integers.  The result is 

a list of pairs                 .  From this list it is easy to calculate the value of        (I wrote a 

small dc script for this, because it is easy, and dc supports large integers).  I did not use discrete 

logarithms in order to speed up the calculations of the terms in the summations.  This would be 

counterproductive, since the required additional table(s) would grow proportionally with  , 

reintroducing the memory constraints we were trying to avoid.  Nevertheless, I still decided to use a 

very small table (of size proportional to  ) in order to speed up the evaluation of the      . 
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