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Accessing Bernoulli-Numbers by Matrixoperations

1. Introduction

There is a lot of articles available on bernoulli-numbers - so: why another article?

It was my private fun and interest, to learn about the problems and applications of bernoulli-
numbers; also I like to access such problems with the tools of matrix-algebra, which is suitable
for many problems, for instance puzzles in the field of "recreational mathematics". The results,
which I'm to present here, are not really new in most cases; but I find some expressions, which
are not really prominent in most articles, to say the least; so some seem new and even surpris-
ing in their simplyness.

The most interesting results, that I achieved were:

o The binomialmatrix P is expressible by the EXP()-Function applied to a vector of natural num-
bers

o Polynomials, which are constructed of the coefficicients from the binomialmatrix P, have roots
at complex x of the form x=1/2 + i*tan(t), where t represent equidistant points on the circle

o The bernoulli-numbers can be found in the first eigenvector of the signed binomialmatrix P,
(=P*J) bzw P,; (=J*P); the matrix of eigenvalues is just the unit-matrix J with alternating signs

o The frequently discussed definition of the bernoulli-number f3; as + or - 1/2 (here as bernoul-
livectors B, resp. B,,) can be resolved as specific solution of the same systematic concept (like
transposed solutions in matrixalgebra following from the non-commutativity) and formulae,
based on that definitions, can be translated from one to another (as far as the matrix-concept
reaches)

o The set of eigenvectors (in the following named as G-matrix) contains the coefficients of the
integrals of the bernoulli-functions; this integrals provide directly the Bernoullian sums-of-
powers for natural arguments, but also common recursive definitions and remarkable graphs for
real-valued arguments.

Most results were primarily heuristical; the relations to the known formulae are usually not
easy to recognize; it was useful, that in at least some handbooks some tables with actual printed
coefficients were provided, so that besides the explication of the matrix-formulae also the re-
sults could be compared.

For an experienced number-theorist that all may possibly be known (and much is, as I already
learned) - in the case, the reader of this article belongs to this category, he/she might feel at
least a philatelistic pleasure of this small collection of views...

Perspectives:

The matrix-tool is immanently restricted by the natural-numbered indexing of matrix-rows.
Given, that the matrix row n provides the coefficient of the power-sum woth exponent n, then the
same is not obvious with rational n or even real or complex-valued exponents x. This problem, as
well as the now possible parametrizition of the eigenvalue-matrix J (which leads to possibly in-
teresting variants of the binomial matrix P) is subject to further study.

One of the most triggering impulses was ironically a tiny error, which appears in many inter-
net-ressources; a small, but significant one.



Accessing Bernoulli-Numbers by Matrixoperations S. -3-

2. A common equation of recursion (containing a significant error)

In the webpage "bernoullinumbers" in /mathworld] the known recursion for the computation
of bernoullinumbers is given as

(B+1)" =Bl (Eq 31)

To keep the following text consistent I reformulate the symbols of this equation and the order
of the terms as:

ey (1+ g = gt

where, as mentioned in that webpage, the i'th powers i=0..n of § are to be replaced by the i'th
bernoulli-numbers: f/i] -> f3;

If one resolves this recursion and puts the rows for running n together, then the following
scheme evolves:

Bo = 1%Bp

B1 = 1*Bp + 1*B8;

B> = 1%Bp + 2%*B1 + 1%

B3 = 1*Bp + 3*81 + 3%  + I*[3

By = 1#Bo + ch(n,1D*B: + ch(n,2)*B: oo + Ch(n,n-1) Bz + 1%Bs

where "ch(n,k)" indicates the binomial coefficients:
n n!
ch\ink)=( )=——
=2 (nk)=(}) k! (n—k)

This scheme can be seen as matrix-formula, where B is the columnvector of the bernoulli-
numbers and P is the lower triangular matrix of coefficients, which represents the Pascal-
triangle.

Thus the given recursion says:

By 1 . .. By
2.3) B=P*B f = R N
5, 1 2 1 . 5,
B 13 3 1] |5

- an interesting equation, which has the form of an eigenvector-problem which can also be ex-
pressed as ("0" indicates a zero-column-vector):

0 0 14
O=P*B-B 0 10 . .|.|A
24 = *
O=(P-1)*B 0 120 .||z
0 13 3 0] |4

From the 2'nd row in (2.4) however, 8y needs to be zero, and from that follows, that in the 3'rd
row also ;=0 etc.; in short: the vector of bernoulli-numbers B needs to equal the zero-vector;
but which is not true.
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3. Two versions Bn, and B, of bernoulli-numbers?

The mistake is in the recursion-equation (2.1), and obviously with n=1/. From (2.1) it is:

3.1 Br=1*Bo+ 1*f

The first bernoulli-number /3y is defined as 1, the 2'nd /3; as -% . Plugged into the equation we
have a contradiction:

(3.2) h=1%1+  1*(-%) =% // contradiction!
For row n = I the equations needs to be:
330 )* 1+ B =Y
or
(3.3b) (1+ R - 1=p1

Since the following bernoulli-numbers with odd index are all zero, it is not obvious, whether
this mistake should be corrected for all following odd-n bernoulli-numbers. But it seems from
the following, that this is a wise assumption, since this leads to a useful and consistent repre-
sentation.

Let I be the unitmatrix with / in the diagonal, always of the appropriate size, fitting the current
matrixequation:

(3.4) I.'=diag(],1,],1,...)
and let J be the resp. diagonalmatrix with alternating signs:
3.5) J :=diag (1,-1,1,-1,...) from which J¥ =1 and J = inv(J)

From this is (since only the sign of f3; in B, and By, are affected and is insignificant for all 33 =
/35 :ﬁ7 = ... :0),

(3.6) Bp = J * Bm
and B,=J *B,

The mistake can now simply be corrected by rewriting:

1 ) ) . 1 1
(3.7) J*P*B, =B, -2y =172
| 2 1. 1/6 1/6

-1 -3 -3 -1 0 0

or, after reformulation of By, into B,

(3.8 J*P *(J*B,) = (J*B,)

3.9 (P*J) p p -2 1 . 1/6 1/6

.

1 -1 . . 1/2 1/2
*

1

1 -3 3 -1 0 0
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Since in J*P only the row-signs alternate and in P*J the signs in the colums, I introduce the
shorthands for this variants:

(3.10) P,.=J*P //signs of rows alternate
P..=P*J //signs of columns alternate

The following three notations are then correct and useful:

(3.11.1) P, *B, =B,
(3.11.2) P.*B, =B,
and since

P. *B,=(P*J) *B,=P *(J*B,) =P *B,
one can also use the unsigned version of the binomialmatrix:
3.11.3) P *B, =B,
The two recursion equations read hence correctly:
D" (1 +/3)[”] = 8" 1/ to compute B,

3.12
12 (1 —/3)["] = B 1/ to compute B,

Table 3.1: By, und B, : vectors of the bernoulli-numbers:

n B, B, I
0 1 1 0
1 -1/2 +1/2 1
2 1/6 1/6 0
3 0 0 0
4 -1/30 -1/30 0
5 0 0 0
6 1/42 1/42 0
7 0 0 0
8 -1/30 -1/30 0

Table 3.2: recursions P. * B, =B, and P, * B, = B,

Rek.1: (1- B, = p,inI Rek.2: (-1)"*(1 + )" = Bl™
| 1 1 1 . ) . 1 1
-1 .. /2| _|1/2 -1 -1 . ) -1/2|_|-1/2
P(_,*Bp— 1 =2 1 . * 1/6 17 11/6 P *B, = 1 2 1 . * 1/6 || 1/6
1 -3 3 -1 0 0 -1 -3 -3 -1 0 0
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4. Computation of bernoulli-numbers by matrixinversion of (P-l)

Using this corrected recursion-formula the bernoulli-vector can now be computed. the follow-
ing definition helps for notation:

4.1) I] S= Bp - Bm = {0,],0,0,0}

from (3113 P* B, =B,

with 4.1 P* B, =B,+I1;
(P-1) B, =1,

follows

(4.2) B, =inv(P-1)*I;

and the bernoulli-vector B,, can be found in the 2'nd column (i=1) of the inverted (P-I) - ma-
trix. Analoguously the bernoulli-vector B, can be determined:

Jrom i3 P* By = B,
with 4.1) P*(Bp-I]) = Bp
B,-1, = invP)* B,
-I, =(nv®P)-1)* B,
follows:
.3) B, =-inv(inv®P)-1)* 1,
and the bernoullivektor B, can be found in the 2'nd column (i=1) of the negative of the in-
verted (inv(P) - 1) matrix.

This computation however cannot immediately be done. By the subtraction of I the matrices P-
I as well as (inv(P) - 1) are singular and cannot be inverted.

inv(P)—1 * B, = -]

0 B, 0

(4.3.1) -10 * ﬂl - _ 1
1 -2 0 B, 0

-1 3 -3 0 B, 0

But as it is easy to see, one can determine solutions for all bernoulli-numbers up to f3,, if the
left-hand matrix has rows up to n+1/; row / determines /3, from that row 2 determines /3; and
so on. This means practically, that one has only to use the appropriate submatrix of a P-matrix
with the highest row-number of n+1.

The both matrices computed this way are denoted as G, (resp. G,,) in the following.

In the following formula P/"*// indicates an extension of 1 row/column of the P-matrix, and
the [rj-indexes show the then selected ranges of rows/columns:

(4.4) Gn:= imv(( P Dy et o)
4.5) G, :=-inv(( inv(P)" ] D/in+1,0.n))

If we remove the same first row from the column-vector I 1[ nH] g well, we get:
(4.6) 1y :={1,0,0..0}

and we are able to determine the bernoulli-vectors from the inverses G, resp. G,
4.7) B, =G, *In =G, j0.n0
4.8) B, =G, *ly =Gy jon0

just by extraction of the first column from G.
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5. J contains the eigenvalues, and G, resp. G, contain the eigenvectors of P,
resp. P.

The interesting news are hence, that B, (resp. By,), which are computed from the expanded
matrix P/"*/_ are just the first eigenvectors of the n-rowed matrix P, (resp P;). Analoguously,
and much more interesting, this is true for the matrices G, (resp. Gn), which contain the full set

of eigenvectors each.

Thus we have the following identities and properties:

Let
P the lower triangular matrix of binomial-coefficients
J =diag(l,-1,1,-1...) the identitymatrix with alternating signs
then
(5.1) J= inv(J)
(5.2) J*P *invd) =J *P *J =inv(P)
(5.3) P *J =P, the binomialmatrix having alternating signs in columns
(5.4) J * P = P, the binomialmatrix having alternating signs in rows
(5.5) P. *G, =G, *J orP. =G, *J *inv(G,)
(5.6) P, *G,, =G, *JorP, =G, *J *invG,)
(5.7) J the diagonalmatrix of eigenvalues of P. and P,
(5.8) G, the matrix of eigenvectors of P,
(5.9) G,, the matrix of eigenvectors of P,
(5.10) J*G,J =G,
(5.11) J* Gm J =Gp

See a proof for this identity in the internet-conversation, copied to

ProofOfGpBeingEigensystem.htm

Table 5.1: G, and G,

Zl Gy, first 5 columns (0..4) G, , first 5 columns (0..4)
0 1 . . . . 1 .

1 -1/2 1/2 . . . 1/2 1/2 .

2 1/6 -1/2 1/3 . . 1/6 1/2 1/3 .

3 0 1/4 -1/2 1/4 . 0 1/4 1/2 1/4 .
4 -1/30 0 1/3 -1/2 1/5 -1/30 0 1/3 1/2 1/5
5 0 -1/12 0 5/12 -1/2 0 -1/12 0 5/12 1/2
6 1/42 0 -1/6 0 1/2 1/42 0 -1/6 0 1/2
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6. The Binomial-Matrix and the Matrixexponential

For me an amazing property of the binomial-matrix is, that it can be expressed as an matrixex-
ponential of an most elementary parameter: namely of a matrix consisting only of the sequence
natural numbers 1..(n-1) in the first principal subdiagonal, which may be denoted here as T

(6.1) P=exp(T)

. 1
Example: =exp

— e e

1
2 1 . .
3 31 .. 3

A proof is in [Helms1] or more in detail in [Edelman].

7. Bernoulli-vectors and the Matrixexponential

Using the matrixexpoential familiar formulae are popping up, if one replaces

invP)= exp (T ) ' =exp(-T)
and denotes the submatrix //..n,0..n-1] of a matrix P
the symbol ‘P :
7.1 B,= ‘(exp( T)-U'*I
(7.2) B, = -(exp(-T)-U" *I,

which gives for By, nicely visible the scalar term of the generatingfunction for the bernoulli-
numbers:

(1] reduced by one row/column, with

1
exp(t) -1
and for B,
-1 exp(t)

exp(— t)— 1 exp(t)— 1

(see the formulae, for instance in [mathworld] or [A&S], where in the numerator also the pa-
rameter t occurs).
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8. The structure of the remaining coefficients in the matrices G, - and G,

Heuristicaly for small » the following -much plausible, but not yet analytically verified- repre-
sentation for the coefficients can be found. Here the row-/column-indices are understood as
starting at zero (I use "r" for rows and "c" for columns):

1
r
(8.) Gm[’”,c]{c)*—sﬂ*Bm[r—c]
1
(8.2) Gp[r,c]=( j —*B [l” C]
s+1

Let the symbol "*#" denote an elementwise multiplication ("Hadamard multiplication") of two
matrices of same dimension, then:

1 S I E
P L T W - .*.g;

121 .18 B B . L

13 3 1] B B B B 7

where the numerators (in left matrix) contain just the binomialmatrix P.
Table 8.1: recall matrices G,, and G,:

Zl G, first 5 columns (0..4) G, , first 5 columns (0..4)
0 1 . . . . 1 .

1 -1/2 1/2 . . . 1/2 1/2 .

2 1/6 -1/2 1/3 . . 1/6 1/2 1/3 .

3 0 1/4 -1/2 1/4 . 0 1/4 1/2 1/4 .
4 -1/30 0 1/3 -1/2 1/5 -1/30 0 1/3 1/2 1/5
5 0 -1/12 0 5/12 -1/2 0 -1/12 0 5/12 1/2
6 1/42 0 -1/6 0 1/2 1/42 0 -1/6 0 1/2

The rowsums in G, equal zero and in G, equal 1,
G,*V(I) =V(0) G,*V(1) = V(1)
and thus also

s . =G, [20]=-3G, [z.s] B,.=G,[20]=1-3G,[z.s]

s=1 s=1

Here again we find known recursion-formulae for the Bernoulli-numbers , which differ by just
2%, = 1, reflecting the both definitions for /3;:

n n 1 %
(8.4.1) =0 Z(( jk+l m,nkJ ﬁp,nzl_;[(kjk+l p,n—kJ
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9. The original problem of Jacob Bernoulli: "Powersums” - from Gp

The computation of the powersums S,,, = I + 2" + 3™ + .. + n" is then a simple matrixmul-
tiplication using G,. We need the Vandermondevector

©.1) V:=V,n) = {I,n,nz,n3,...,nm}
need only multiply to get the vector of all powersums S with the m and dimensions matching:
9.2) S:=G,*V(n) *n

and find in row S/m/ the sum of the m'th powers from / to n:

Table 9.1: Powersums

G, *V(3)*3 =S(3)
1 ) . . 3! 1°42°43° 3
12 1/2 . sl 3 P23 | 6
176 1/2 1/3 . BT 422432 |14

1/4 1/2 1/4] |3* P+234+33 36

Table 9.2 the original problem of Jakob Bernoulli (Quelle:[MICH])

Wahrscheinlichkeitsrechnung (Ars conjectandi). 99

Die Summe der Potenzen der natiirlichen Zallen.

S(n )= 1n* 4 In,

S(n*)= L »n* 4+ Ln® 4 &n,

S n¥)= 1 n* 4 LIn® 4 1%,

S(nt)= L n° + tnt 4 L n*—4n,

S )= b 4 - fynt =y,

S(nd)= Y n" 4+ {n° 4 & n*— {2’47,

S(n")= L n® 4 La ¥|—T’12~725—§717z4+71793“3,

S(n*)= 4 n’ +4n® + Fn'—zu*+ § w0’ —n,

S(n') = Fn''+ In® 4+ 30— Tont - & nt—Jsn?
Sn') = fent 30"+ F ' — 1w’ 1 2% — L0 Fem

Wer aber diese Reihen in Bezug auf ihre Gesetzmiissigkeit ge-
nauer betrachtet, kann anch ohne umstindliche Rechnung die
Tafel fortsetzen. Bezeichnet ¢ den ganzzahligen Exponenten
irgend einer Potenz, so ist
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10. Polynomials of the coefficients of the Binomialmatrix P,

If one uses the entries of the (signed) matrix P, as coefficients for polynomials in x, then inter-

esting functions pop up. Let the Vandermonde -vector {],x,xz,x3,...xz}' = V,(x) of the length
z+1

(10.1) V.(x) = {I,x,xz,x3,...xz}’

and define the polynomials in x using the coefficients of a fixed row from P,
(10.2) Jnz(x):=(PJ - 1).*V (x)
(10.3) Jo 2(x): =PI +1):*V_(x)

the one finds as roots of f,,.(x) complex values for x, which are connected to the cyclotomic
functions:

(10.4) Jmz(x)=0 <--> le + ltcm T *1 for m=2k if z is even
2 2 2 z
1 1 T,m), . o
(10.5) Jp 2(x)=0 <--> x=§ + Etan E*_ *7 for m=2k+1 if zis odd
z

and conversely, if z is odd, so that the zeroes for both functions can be computed from the
cyclotomical roots. Both cases together can then be represented by:

(10.6) Jnz(%) *fp (x)=0 <--> x =% + %z‘an(g * ﬂ} *1 for m=0..z-1
z
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11. Values of the G- and G- polynomials for real x

The above equations produce the inverses Gy, and G, of the (by I reduced) (signed) binomial-
matrices *(J*P - I) resp (P*J - I), which interestingly -together with J- define an eigensystem
of the original unreduced (signed) binomialmatrices.

If we use the entries of a fixed row of Gy, or G, with the rowindex n as coefficients for poly-
nomials in general x (as in (9.), but without the goal to find the powersums for a natural expo-
nent n), then we have the more general functions G, ,(x) and G, ,(x), which come out to be just
the integrals of the bernoulli-polynomials (depending on the sign of f3;) .

A multiplication of G with a vandermonde-(column-)vektor like
Vix) :={x v, x0 x””} !
written as a polynomial looks like this:

(11D Goun() = Gp[n,0]%x + G, 1]* 3> + Gpfn,2] *x° + ... + Gpfn,n]* x"*!
(11.2) Gy a(x) =G, [n,0]%x + G, [, 1]*x° + G, [n,2] *x° + ... + G, [a,n] *x"*!

We get a family of functions with the interesting property, that in the range 2<x<2 the local
minima and maxima get better periodical with increasing » and seemingly approximate to a
sin/cos-shape. The graphs of that functions are shown in the appendix.

This functions have the special values:

Table 11.1:
Gm,n(x) Gp,n(x)
Gun(-1) = +/-1 Gon(1) =1
Gun(0) =0 Gon(0) =0
Gun( 172) = 0 or local extremum Gpu(-1/2) = 0 or local extremum
Gun(1) =0 (n>1) Gyn(-1) =0
Gun(2)=1 (n>1) Gpn(-2) = +/- 1 (n>1)

The derivatives of G, ,(x) resp G, ,(x) are

(11.3) Bmn(x) =d Gun(x) /d x By n(x) =d Gpn(x) / dx
meaning

(11.5) B,..(x) = G,/n,0] + 2*G,[n1]*x + ... + (n+1) G,[nn]*x"

(11.6) B, .(x) = G, [n0] + 2*G, [n1]*x + ... + (n+1) G, [n,n] * X"

and the By, n(x) are just the well-known Bernoulli-Polynomials.

Table 11.2: Special values:

Bun(x) B, (%)
Bun(-1) = +/- 1 Bou(1) =1
Bin(0) = S Bpu(0) = fp,n
Bun(1) =0 Byu(-1) =0
Bun(2) =172 Byu(-2) = +/~.1/2 (n>1)
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All in all this G-functions seem to be much interesting; for instance one finds in OEIS the fol-
lowing entry: /OEIS A002425]:

> 4002425 Denominator of Pi"2n)/(GAMMA(2n)*(1-2(-2n)) *Zeta (2n)).
> 1,1, 1,17, 31, 691, 5461, 929569, 3202291, 221930581,

> 4722116521, 968383680827, 14717667114151, 2093660879252671,

> 86125672563201181, 129848163681107301953, 868320396104950823611,
> 209390615747646519456961 (list)

>

> Consider the C(k)-summation process for divergent series: the series

> Sum((-1)"n*(n+1)"k)==1-2"k+3"k-4"k+..., summable C(I) to the value

> [/2 for k=0, is for each k>=1 exactly summable C(k+1) to the sum s(k+

> 1)=02Nk+1)-1)*B(k+1)/(k+1) and so a(n)=Abs(numerator(s(2n))). -

> Benoit Cloitre (abmt(AT)wanadoo.fr), Apr 27 2002

>

> 0dd part of tangent numbers A000182 (even part is 2°4101921(n)). -

> Ralf Stephan, Dec 21 2004

These are just the odd factors of the denominators, which occur, if one computes the G, ,(x)-
funktions for x=-1/2 . Possibly there are other special values with complex x; but this is not yet
obvious to me




Accessing Bernoulli-Numbers by Matrixoperations S. -14-

12. G, ("Gotti")-Matrix and Stirlingnumbers

For a continuous text it seems useful, to assign easy-to-
remember names also to the G-matrices, as I was hinted
by a reader in the german math-newsgroup; as a provi-
sorial I just took my nickname "Gotti" (which equal also
the name of a famous Mafiabof3 from New York " John
Gotti"”; who has his significance also from his subtrac-
tions (of the wealth of the wealthy) as well from the in-
version (of the legal structure of New York). Picture
taken from "wikipedia")

Here I use as the "Gotti"- matrix primarily the matrix Gy; and its polynomials in x, constructed
accordingly to chapter (10), may be calles as "Gotti"-polynomials.

Then we get:
(2.1) P.=G,*J* Gp'l P,=G, *J* Gm-l
The Gotti-matrix G, own another interesting eigensystem. It seems to be:
(12.2) G,= S2 *R *827 =82 *R *S1
where

S2 : lower triangular matrix of the Stirlingnumbers 2. kind
S1 : lower triangular matrix of the Stirlingnumbers 1. kind
R : diagonalmatrix of the reciprocals of the natrual numbers

Of special interest here is the connection between S1 and S2:

(12.3) S2 =S1”/
All entries of S1 and S2 are integers. (The entries of the analoguous eigensystem of G,, are
rational).
For the basic binomialmatrix P, this means the more detailed eigensystem:
(12.4) P, =(S2 *R*S1) *J * (S2 *R!*81)
or, using N as diagonalmatrix of natural numbers N = diag{1,2,3,...n},
(125.1) P, =(S17/*N7*81) *J * (S17/*N *81)
(12.5.2) =2 *N71*827) *J * (82 *N *827)

which states an impressing hierarchy of known numbers of combinatorics.

Table 12.1
Zl S1, first 6 columns (0..5) S2, first 6 columns (0..5)
0 1 0 0 0 0 0 1 0 0 0 0 0
1 -1 1 0 0 0 0 1 1 0 0 0 0
2 2 -3 1 0 0 0 1 3 1 0 0 0
3 -6 11 -6 1 0 0 1 7 6 1 0 0
4 24 -50 35 -10 1 0 1 15 25 10 1 0
5 -120 274 -225 85 ~-15 1 1 31 90 65 15 1
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13. Sample Pari/Gp-Code

Here follows some example-coding(notation for the software Pari/GP):

dim = 12
\\ size for matrices
J = matdiagonal(vectorv(dim,r, (-1)*(r-1))) \\ unit-matrix with altern. signs

\\ pascalmatrix and row/col-reduced pascalmatrix (P-I)

P = matpascal(dim-1) \\ common pascalmatrix
tmp = matpascal(dim) - matid(dim+1)
P1 I = matrix(dim,dim,r,c,tmp[1l+r,c]) \\ empty (first)row and (last)col: dimension is dim
\\
\\ compute Gm, Gp
Gm = P1 I*-1 \\ compute Gm
Gp=J *Gm*J \\ compute Gp by formula (5.11)

\\

\\ error-estimate: sum of absolute differences of entries of two matrices
errest(M1,M2) = sum(r=1,#M[,1], sum(c=1,#M[1,], abs(Ml[r,c]-M2[r,c1))))

\\ is Gp * J * Gp~-1 eigensystem of P] ?
print(errest(P*J , Gp * J * Gp*-1))

\\ is Gm * J * Gm~-1 eigensystem of JP ?
print(errest(J*P , Gm * J * Gm*-1))

\\isP*Gm =Gp?
print(errest(P *Gm , Gp))

\\
\\ G - and H-funktions at x={-2, -1.5, -1,-0.5, 0, 0.5, 1, 1.5, 2} ----------
VX = matrix(dim,9,r,c, (-2+(c-1)*0.5)"r) \\ vandermondematrix for x-values
fG(x,n) = Gp[n,] * x* V(x) \\ function for G_n(x)

for(n=1,12,ploth(x=-2,2,fG(x,n)))

fH(x,n) = Gp[n,] * V(x) \\ function for H_n(x)
for(n=1,12,ploth(x=-2,2,fH(x,n)))
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14. Pictures

Function G, ; 15(x)  (x=-2..42, y=-2..+2)

x (y=0)

i Gt |

y (x=0)

x=1/2

and zoomed y'=tanh(y*4); in 4 groups of curves Gy, 15913 etc:

x,tanh((y1[1°5° 9713 17]1%4)#)

x,tanh(Cy1[1°5° 9713 17+1]*4)#)

X,tgnh(ﬁyl[l 5913 }7+2J*4)#)

X))

x,tanh(Cy1[1°5° 9713 17+43]%4)#)
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Function G, ; js(x) (x=-2..+2, y=-2..42)

R v e A

x=-1/2

——,

A T R T T s

Note here (as before with G, (x)) the similarity of the local extrema, which seems to improve
with higher degree of n.
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2.+2)

Gu,1.18()/x  (x=-2..+2,y

Funktion : Hy,1..15(x)




S.-19-

Accessing Bernoulli-Numbers by Matrixoperations
Function : Hp,l_,m(x) = Gp,I__Ig(x)/x (x=-2..+2, y=-2..+2)
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x (y=0)
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[OEIS_A002425] N.J.A.S. Sloane, "Online encyclopedia of integer sequences"
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