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05 "Gauss'"-matrix GS

Abstract: The matrix GS occurs as triangular scheme of coefficients, if the derivatives
of the Gauss-function are computed.

This article is just a minor extension of the main subject (which covers binomial and
related matrices) and is added here only because of the intriguing hierarchy of the ma-
trix-logarithms of GS and the binomial-matrix. The problem of the computing of inte-
grals is only mentioned at the end, but it seems to be part of an interesting simple
scheme, and is related to the techniques of divergent summation, which will be dealt
with in a later chapter.
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1. Definitions/ Identities

1.1. The (normal) Gaussian-function (normal distribution) and derivatives

The matrix GS occurs, if the coefficients of z in the derivatives of the (standardized) Gauss-function
N(z) are computed.

Let

1 z°
(1.1.1.) N(z)=—r _Z
(z) mexp[ 2]

Rewrite the constant term as ¢, and the exponential-term as E(z). Then define

(11.2) f:=N(z)=c*E(z)

Then
a13) f =cE@E) *( 1)
f =cE@E) * -1z
Vi =cE(z) *(-1 +12°
" =cE(z) ¥ 3z -172)
7 =cE@) * 3 -6 +17%
/7 =cE@* -15:z +1027 -12)
/Y =CE@) *-15 +457° 1520 +129
etc

1.2. The matrix GS and GS !

The infinite lower triangular matrix of the cofactors of z in (7.1.3) is

Example:
-1
= 0 1
1.21) GS = io0 -l

1
Jry
Do D w0 = O
)
'
(=]
)
=

105 o -10% o 21 0 -1j

For the following definition it is easier to use GS™, the reciprocal of GS, which is the unsigned version',
also steming from the formal inverse of the N-function:

2
(1.2.2) 1/N(z)=A2x exp(zz)
Example:
S -
1 .
1 1 .
1.23) GS'= ; : e ! 7
. 15 . 10 . 1 .
1% .45 .15 .1
| . ws . s . 21 .

! (for details see chapter "the reciprocal” below).
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Defining a factorial function only valid for the even numbers n=2m:

0 if nisodd
fn)=1 1

n!

2" (n/2)!

1.2.4. o
(124) if niseven

for instance

J0)=12) =1
f4) = 1%3
1(6) = 1*3*5

1(8) = 1*3*5%7

then for example, the unsigned entries in row » of the first column of GS™ are:

| (125) GS”, = fir) |

The whole matrix GS™ can now be seen as the hadamard-product of the binomial-matrix P and the tri-
angular matrix, which occurs, if the first column of GS™ is downshifted by one row for each column:

Example:
. 1T . T
. 1 . 1 1 .
111 . 1 . 1 2 1 .
1_ .1 . 1 . 1 3 3 1 .
GS™ = 3011 14 65 4 1 .
.3l .11 . 1 . 1 &% 10 10 5 1 .
Sl - .11 1. 1 & 15 20 15 & 1 .
i 511 311 111 ol 1 7 21 35 35 21 7 1
where " 2" denotes the elementwise (Hadamard)-multiplicator
Description of all entries:
(1.2.6) GS'.. =0 (if (r-c) is odd)
= f(r-c¢) * binomial(r,c) (if (r-c) is even)

or, using the Hadamard-product-representation

/
GS _L*@*pm

r—c
wherem =——,(r—c)is even

GS:= GS =
c2" m!
explicitely :
1 17! : .
(1.2.7,) GS=GS, . =——— if (r-c) is even, m=(r-c)/2
2" m! ¢!
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The column-signed version GS;:

A different column-signed version is

using J =diag(1,-1,1,-1,....)
(1.2.8) GS;=GS*J=J*GS

Example:

GS,;=GS*J=J*GS

This triangle with this sign-schema is also known as "Coefficients of unitary Hermite polynomials He n(x)"
in the "Online Encyclopedia of Integer Sequences" (OEIS) [4066325].

A066325 Coefficients of unitary Hermite polynomials He_n(x).

50,-10,0, 1, -15, 0, 45, O, -15, 0, 1, O, -105, O, 105,

1,0,1,-1,0,1,0,-3,0,1,3,0,-6,0,1, 0, 1
-28,0, 1,0, 945, 0,

0,-21, 0, 1, 105, 0, -420, 0, 210, 0,

COMMENT Also number of involutions on n labeled elements with k fixed points times (-1)”~(number of 2-cycles).
Also called normalized Hermite polynomials.

AUTHOR  christian G. Bower (bowerc(AT)usa.net), Dec 14 2001

E. WEISSSTEIN in Mathworld [mw-hermite] reports this as .

& modified version of the Hermite polynomial is sometimes (but rarely) defined by

He, (=22 g, | 2 (59)
A2

(lorgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99 Abramowitz and
Stegun 1972, p. 778). The first few of these polynomials are given by

Hey (%] = = (f=1u)]
Hes (%) = x* - 1 (61)
Hes (%) = x° —3x (62]
Heq (%) = x* - 6" +3 (63)
Hes (x) = x° — 10 %" + 15 x, (B4

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1;
-1,1; -3, 1; 3, -6, 1; 15, -10, 1; ... (Sloane's &A0967 13],
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1.3. The reciprocal GS™

Defining a diagonalmatrix, containing alternating signs,
Jo:=diag([1,-1,-1,1,1,-1,-1,1,..])

(1.3.1.) JZ pr 1= (_]) binomial(r+1,2)
from which also follows
(1.3.2.) J =

then to determine the reciprocal is a simple similarity-transformation/-scaling:
(1.3.3.) GS'=J,*%GS * J,'

GS is just the row and column-signed version of its reciprocal, and the reciprocal has only positive val-
ues:

Example:
- . -
1
1 . 1 .
1 3 . 1
GS 3 & . 1
. 15 . 10 . 1 .
15 .45 18 1.
| 105 05 .21 . 1

This similarity-pair GS and GS™ is mutually related completely analoguous to the pair of the Pascalma-
trices P and its reciprocal P, which are also similar-transforms according to P/ =J * P * J'

(see more about P and P, in the chapter [binomialmatrix])

A consequence of this is, that the row or column-signed-version
JGS =J, * GS = jGS”

is its own reciprocal

H (1.3.4) JjGS *jGS =1 H
since
J,GS=GS' *J,=GS! *Jy'= (1, GS)!
Example:
- | -
o -1
1 o -1 .
s o -3 0 1
JGS *jGS =1 3 o -6 0 1 .
0 -15 0 10 0 -1
15 o -45 0 15 0 -1
x[ o -ws 0 105 0 -21 0 1]
! . 1 [ 1 |
o -1 . 1
1 a1 . 1.
o -3 0o 1 . 1 .
3 o -6 0 1 . 1.
o -15 0 10 0 -1 . 1 .
15 0 -45 0 15 0 -1 1
0 -5 0 105 0 -21 0 =L
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Historical excurs

In his article "Uber eine ausgezeichnete Eigenschaft der Laguerre- und Hermite-Polynomiale" > KURT

ENDL reports this property as "involutory"; common and special to those two (rowscaled) sets of poly-
nomials (and different from other common orthogonal polynomials like Legendre-, Tschebyscheff-
polynomials).

Since the matrix L of the coefficients of the Laguerre-polynomials is only a row-scaled version of the
P,,matrix (see binomialmatrix), and this only a similarity-scaled version of P,,

(13.5) P>, =P, *J="Fac(1)*P, * "Fac(l)”
(1.3.6,) L ="Fac(1)" * P,

and P, being its own reciprocal:

(1.3.7.) P,=P;!

it follows that

(1.3.8.) Py =Py’

as well as

(1.3.9.) (“Fac(1)*L) = Py, = P>;' = ("Fac(1)*L)"

ENDL observed this self-reciprocity of the rowscaled Laguerre-matrix as well as of the rowscaled Her-
mitean matrix (here in its normed version),

(1.3.10,) JjGs = (jGS)”’

and defines a family of orthogonal polynomials Py, which all share this self-reciprocal property, where
P, represents the (rowscaled) Laguerre-polynomials and P, the (rowscaled) Hermitean polynomials.

In my notation this relates to P, and GS , which occur as matrix-exponentials of basic subdiagonal-
matrices (see chapter below) which contain

®  binomial(r,1) (=r)  in the first subdiagonal (P(Pascal/Binomial), resp. +* in P,(Laguerre)),
®  binomial(r,2) in the second subdiagonal (GS™ (Hermitean)),

I assume (without verification) that ENDL's hierarchy is the obvious extension of this scheme.

2 "on a special property of the Laguerre and Hermite-polynomials" (see [Endl])
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1.4. The matrix-logarithm of GS

GS' has a special simple and remarkable matrix-logarithm, very close to that of the binomialmatrix:

(1.41) log(GS”) :=InGS ..,= binomial(c+2,2) ' &
10 .
15 .
21

where the second principal diagonal has the binomial-coefficients binomial(c+2,2) as entries in row/col-
umn (r=c+2, ¢).

The inverse result then of the simplem sign-change for the matrixlogarithm of GS

(1.4.2) GS = exp(- log(GS™) )

Example

InGS = log(GS)

entities with binomials, Bernoulli- and other numbertheoretical numbers athematical Miniatures
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2. Application to the system of derivatives of the Gauss-function N(z)

In matrix-notation the formula (7.1.3) gives a vector DN(z) of derivatives of N(z) depending on a pow-
erseries-vector V(z) in the variable z.

This also means, each r'th row-entry of DN(z) contains the value of the r'th normalized Hermite-
polynomial evaluated at -z, additionally scaled by the cE(z)-term in (1.1.3):

(2.1.1.) DN(z)=cE(z) * GS * V(z)

or more explicitely

(2.1.2) DN(Z)ILQXP —Z—Z *GS*V(z)
New 2

with the value of the 'th derivative at z in row r of the result.
ENDL mentions another benefit, if such polynomials (as given here) own the self-reciprocity:

Since jGS is its own reciprocal, a right-multiplication with a powerseries V(z), which results in a vector
Y(z), and the inverse operation to calculate V(z) from the given ¥(z) can be interchanged with the same
coefficients-matrix (which applies then analoguously to P, and P, )):

2.13) let JGS *V(z) = Y(z)
(2.14.) then Viz) =jGS * Y(z)
with the same set of coefficients

3. Extension to negative derivatives: integrals

The simple form of the matrix-logarithm suggests to extend it to negative indexes.
For instance, a shift by 5 rows/5 columns gives

(3.1.1) 1log(GS) :=InGS .42
= binomial(abs(c-5)+2,2)

_ i - ;
. 1
-6 . -6 . 1
. =3 .. .. . =3 o1
(3.1.2.) exp( . S - )= 3 -1 .1
1 .
|
i -1 | L -1 1]

To evaluate this for the integrals, this matrix must be assumed with infinite extension to the left and the
V(z)-vector infinite extension to the top, representing the negative powers of z. The extension of G to
the left is simply a reflection of the original matrix Gi§ at the 45-deg line, so the summation of a row of
GS with the (infinitely extended) V(z)-vector implies the sum of products of factorials and negative
powers of z, which is divergent for each z<>0.
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If this heuristic is true, then the first integrals of N(z) could be written derived from expression for the
first integral:

(3.1.3.) jN(z)dz N(z)* (7 %+é_g+105 ~--J—r(2kz_k+11)'/!~-]
. z z z
Then the extension to higher integrals should be:
(3.1.4.)
(zi ) .
) _ 1 3 15 105 (2k—1)!!
_[ N(z)dz = \/ﬁ z(]+(zf)2+(zf)"+(zf)5+(zz‘)8+"'+ (i j
(zi)°
[N (=)o e )i1+ I*¥3  3*5  15%7 105*11  (2k=1)!!(2k+1
- \/E 2 (=) (=) (=) (=) T ) 1)
(zi)
[N e )L L 1%6 315 15*28 105%45  (2k=1)!(2k+2
- \/ﬁ 2z (=) (z)f 0 (z) T ()t 2 )T
[ON(z)dz =...

I don't know, whether a handy analytical expression for such a divergent summation depending on a
variable parameter z can be given; but conversely, for instance a value for the summation of the first
series at z=/ could be given by the known value of the integral at the same z.

I found a related remark in /Knopp], which reflects the series for the first integral:

804. §66. B. Beispiele fiir das Summierungsproblem. 571

Durch partielle Integration stellt man leicht fest, daB diese Funktion
mit der in I angetroffenen identisch ist.

b) Wenn die asymptotische Reihe
1+3:5...(2#n —1)

an.yn

_.+...+(....I)"l

vorgelegt ist, hat man @ (1) = (1 + i:-)ﬂ} und folglich
F(x) = }/_f———du— 2 e* ]fo-.e—"dt
V=
Dies liefert noch die asymptotische Entwicklung

@ ! N
G(z)=je"‘d£;::g (5 -

fiir das sog. GAusssche Fehlerintegral, das in der Wahrscheinlichkeits-
rechnung von besonderer Bedeutung ist.

A

+o)

1
218

Konrad Knopp: Unendliche Reihen, S 571, digicenter Univ Géttingen
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