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1-12 Eulermatrix

Abstract: The lower triangular matrix of Eulerian numbers is considered. Basic properties
are documented. Also the possibility of interpolation to fractional row-indices is dis-
cussed. The property, that the rows of the Eulerian triangle can also sum to values of the
eta-function of integer or fractional arguments seems to be much less widely known.

In a third step the triangle is tried as tool for summing of the strongly divergent alternat-
ing factorial series su = 0! — 1! + 2! — 3! + ... whose sum under the concept of divergent
summation was already considered by L. Euler (while not in that context). The approach
shown here agrees numerically well with the known value su= 0.5963473623231... re-
spectively to the finite trunctation of powerseries (30 correct digits using matrix-
dimension 128x128).
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1. Basic definitions and identities

1.1. Intro: sum of like powers

The coefficients of the Eulerian triangle were found by L. Euler; in [wikipedia] we find a short
reproduction of one table in his book " Institutiones calculi differentialis"®. Here, Euler consid-
ered the evaluation of series of like powers and arrived at these coefficients. Because it is truly
a nice pattern which is involved here, I'll describe the Euler-matrix via the sum-of-like-powers
problem which was my own approach and brought me —by chance— in contact with that num-
bers.

We may observe, that when looking at the binomial numbers we find the perfect powers by
simple summing of neighboured binomials:

13610 15 ...
13 610 ..

14916 25 ..

This is a nice and striking pattern, of course being explainable by the binomial theorem

(n=1)n/2 + n(n+1)/2
=1/2(n-n+n’+n)
=1/2 (2n?)

=n?

We may try whether this is somehow generalizable, we could look at the third powers and
see, whether we can combine the binomial-numbers of next order:

1 4 10 20 35 56.
1 4 10 20 35 ...
1 4 10 20 35...

This is not working well, but if we take a multiple of the middle row, we find

1* 1 4 10 20 35 56 ..
4% 1 4 10 20 35 .
1* 1 4 10 20 ..

1 8 27 64 125 216 ...

Heuristically we will find that this holds when analoguously continued with higher orders of
sums; and to complete the scheme at the beginning we may look back to the low orders.

"in part 2, chap 7. See the reproduction in [wikipedia]
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We can write

and extract a scheme for the multiplicators. This gives a triangle of coefficients

1

1

11

1 4 1
11111 1
1266620 1

which is known as the "triangle of Eulerian numbers" and what we have done so far was to
relate them to the perfect powers of natural numbers.

But besides this nice pattern we can extend this one more step to arrive at similar formulae
for the sums of like powers.

The given binomial numbers in the sequences of some order are also the the sums of that of
one less order. So we have in the square arrangement

A
AWN R
cowpRr
N
cobhpR
W
vl =

that always the sums of the coefficients of one row up to a certain column-position are the
values at the column position in one row below.

So we can simply insert the plus-operators in our scheme above and evaluate to some partial
sum:

1* 1+3+6+10+15 ...
1* 0+1+3+ 6+10 ..

k=  1+4+9+16+25 ...

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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If we actually write out the partial sums as values we get simply

1 * 1 4 10 20 35 56 ..
1 = 1 4 10 20 35 .

and
1=1?
5= 1% 4+ 2°
14 = 1° + 2% + 3?
30 = 1% + 2% + 32 4 42

which is valid the same way for the other orders.

It is obvious that this general scheme can be extended to partial-sums of partial sums ad libi-
tum, but also to their differences.

Having this general pattern, we can describe a unique formula for the generation of the coef-
ficients of the triangle. For example, if we would not know the coefficients for the second row
of the triangle. We set the first coefficient = 1, and treat the second as unknown.

* 1 +3 +6 +10 +15 ...
Xx* 041 +3 + 6 +10 ..

k= 1 +4 +9 +16 +25 ...

This gives an immediate solution for x: just subtract the first row from the sum and divide to
get x:

k? 1 +4 +9 +16 +25 ...
-1* 1 +3 +6 +10 +15 ...

=Xx* 0 +1 +3 + 6 +10 ..

O AR
|
W
Iun
wpR o
X X X

and we find, that all these equations can be simultanously satisfied assuming x=1.

Next example:

k3 1 8 27 64 125 216

-1 1 4 10 20 35 56

X 0 1 4 10 20 35

y* 0 0 1 4 10 20

8 - 4 = 1% = X =4
27 - 10 = 4%4 + 1%y =vy=1

and again these constant coefficients satisfy all equations which result from the evaluation of
all other columns.
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However, this all was only heuristic; using the binomial identities it is not difficult to be proven
for a specific order %

Moreover, we can find two different ways to compute the coefficients of the Euler-triangle:
® one using the combinations of the binomial-coefficients, and even

e one which allows to compute a row of the Eulerian triangle recursively only using the
previous row and its row-index.

See for that rules the sections below.

* which I'm not going to do here, see References for this

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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1.2. Euler-matrix

1.2.1. Appearance

The Eulerian triangle is seen in two different variations; so I'll denote the Euler-matrix giving
two names:

S _
1 0 .
E 1 1 0 .
1 4 1 0
| 1 11 11 1 0
S -
1 1
E1l: 1 4 1 .
1 11 11 1 .
| 1 26 65 26 1]

1.2.2. recursive definition

The coefficients can be computed recursively. Assume the row/col-indexes (r,c) beginning at
zero, and elements outside the matrix as zero. Then

e,«’g = 1
€rc= (r-c) *er—l,c-l + (1 +C) *er—l,c

1.2.3. direct definition

The coefficients can also be described by the following direct formula:

def

E= e, = i(—l)k(r,jl)(c—k +1)

Note that this direct definition formally allows generalization to fractional row-indexes. See
more about this in chap. 2.

1.2.4. Generation function
In the OEIS we find an exponential generating-function for the Eulerian-triangle [OEISA000142]:

S

f(.X, t) =1 §— (exp(s * x) — 1)

translated to Pari/GP:

\\ ==== also using functions from helms's basic matrixlib =====

f(x,t) = (£-1)/(t-exp((t-1)*x ))

pc = polcoeffs( f(x,t) ) \\ extract coefficients at powers of x
dFac(1,13)*(Mat(pc)~) \\ show coefficients in a column, rescale by factorials
[1]

[1]

[t+ 1]

[t*2 + 4%t + 1]

(73 + 11*t*2 + 11*t + 1]

[t™4 + 26%t"3 + 66%t"2 + 26*t + 1]

[t*5 + 57*t™ + 302*%t*3 + 302%t*2 + 57*t + 1]

[t76 + 120%t"5 + 1191*t™4 + 2416*%t*3 + 1191*t*2 + 120*t + 1]

[t*7 + 247%t%6 + 4293*t*5 + 15619*t*4 + 15619*t"3 + 4293*t*2 + 247*t + 1]

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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2. Basic observations

2.1. Rowsums and alternating rowsums

The rowsums give the factorials,
2ol =r!
The alternating rowsums give — not so obvious —
S0 d(-1) * e, =2 n(r)
where n(-r) (="eta") is the alternating zeta-function.
(see [wikipedia] and [mathworld] for more properties)

(This was also proven in [Stopple], 2003) Using the coefficients with appropriate binomials we
get powers or sums of powers as indicated in the first paragraph.

2.2. Rowsums in terms of vectors

E*V(1) =F(1) =[0! 11, 21 31..]
E*V(-1) =29((2)H =2*[n(0), 2 n(-1), 2° n(-2), 22 n(-3), ...]

2.3. The inverse (of E1)

1 .
-1 1 .
3 -4 1

-23 iz -11 1 .
425 -620 220 -2 1

Obviously the inverse of the Eulerian-triangle allows to compute the binomials from powers or
sum-of-powers — just consider the inverse relations from that above.

2.4. The matrixlog (of E1)

0 .

1 a .

-1 4 0 .
1443 -11 11 a

-19643 wrss -T7 28 0
34e19/15  -1311543 2194 -43% 57 0

2.5. The matrixexponential (of E1)

1 .

1 1 .

3 4 1 .
25843 33 11 1

247 147543 209 2 1 .
exp(1)* 176167430 3965943 6561 1043 57 1

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3. Advanced operations

3.1. Generalization to negative and interpolated rowindexes

We can continue the triangle to negative rowindexes, keeping the same properties valid. Here
is a segment of the extension of the Euler-matrix to negative row-indexes also indicating some
example compositions, which can be found heuristically, but can also be defined by extension
of the range of the binomial-formula for the Eulerian-numbers:

Row . row alternating
. column-entries
index sum rowsum
a1 B3 TIB g ey -
-8 108 : 1728 :
55 049 ¢ 205 ¢ 1
=211 = = — =211 27 nQ2 =
4 036 0 144 )
—1:[1: % % i 1| 2°700 =In(2)
0|1 o L=l0) 2O =1
1|1 1| 2°n(-1) =
2: 1 1 20 | 2°n(=2) =
3: 114 1 3| 2*'p(=3) =-2
4: (1:11: 11 1 4 | 2°n-4) =0

and the composition by binomials and powers:

Row . row alternating
. column-entries
index sum rowsum
301 2+l 3+g+L 4+§+i+i -3 27°1(3) =
: 8 8 27: 8 27 64:
-2:01: 1+l§ 1+l+l§ 1+l+l+i§ =2 27'n(2) =
; 4 4 9: 4 9 16:
1 1: 1 0
-1:]1 = = = 11| 2°7() =In(2
I B T 3 3 | TV 2w =ml)
L0 11420 0120437 1 040%2°—1%3744% = | 01| 2'p(0) =]
o1 =242" 0 1-2%2'4+3":  —0+1%2'=2%3'+4' + | 1| 2°n(-)) =1
2010 =3+427 0 3-3%2°43" 0 —143%2°-3%3 4470 | 2|2p(-2) =0
30|11 —442° 0 6-4%2°4+3 . —4+46%2°-4x3+4° | 31|2'p(-3) =2
4:1:=5+2* 110-5%2*+3"  —10+10%2* —=5*3* +4* = .| 4| 2°n(-4) =0

Note, that the infinite harmonic series at row-index r=—1 is identified with (-1)! or gamma(0)
and analoguously the other infinities of gamma at the other negative rowindexes.

Note also, that for non-natural row-indices the rows have infinitely many nonzero entries.

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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The interpolation to fractional row-indexes is an interesting feature. If we assume, that the
formula for the direct computation of entries can assume fractional binominal coefficients,
then we get still meaningful results:

¢ the rowsums generalize to gagmma( )-values at fractional arguments, and
e the alternating rowsums to n( )—values at fractional negative arguments.

Table: Euler-triangle with entries at fractional row-indexes summing to I() and n()

1 1
1 )|
1 1
1 )|
Eos * V(1) V(1) ] = * ; i
1 1
1 )|
L 1 1
Result Check
Eos*V(1) Eos*V(-1)  [(1+r/2) 2™'n(-r/2)
i 1 . : . J T 1 1 1.00000 1]
1.00000 -0.0857664  -0.0142695 -0.00524613 -0.00258712 0.886268  1.07510 0.886227  1.07510
1 . } . 4 1 1 1.00000  1.00000
1.00000  0.328427 0.0000846105 0.000419502 0.000179704 1.32934  0.671360  1.32934  0.671360
1 1 : . = 2 0 2.00000 0
1.00000 2. 15685 0.164467 0.00163690 0.000268815 332335 -0.993809 3. 32335 -0.993809
1 4 1 . . 6 -2 G.00000  -2.00000
1.00000 6.81371 3.72868  0.0887813 0.000525622 11.6317  -2.17331  11.6317  -2.17331
1 11 11 1 1 L 24 0 24.0000 i)

(Matrixsize for approximation of results: 128 columns; the rowindices are integers, so the gamma- and eta-formula must be

adapted to that indexes)

3.1.1. Eulerian triangle and {()-/ n1( )-zeroes at "complex row-indexes"

Since () and n( )-values coincide at the functional zeros, we can find a powerseries expression
for the n( )-value using the known roots of {()to let the alternating rowsum at the - now com-
plex(!) - index vanish.

We have then, using p, (greek: "rho") for the n'th root of zeta
_C_k1+r AN _oo_c_
e(r,C)—;( 1)( ' )(H(c k) 0—%( De(=p,.¢)

at the complex p,'th row-index .

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3.2. Coefficients for summation of a strongly divergent series®

3.2.1. The approach

Looking at the question how to sum su =0!/— 1!+ 2! —3!... we can try to use the Euler-matrix
as coefficients for a double/multiple sum scheme, where we can then resolve the divergent
computation into some handsome elements by change of order of summation.

Let's restate the problem in terms of limit of a powerseries:

sulx) =01+11x+21x2+31x3+41x*+..
su=lim,_.; su(x)

This series is divergent for all x, or we can say, it has zero radius of convergence. It is a classical

problem to find a meaningful answer for this expression and was first solved by L. Euler.

Now since the rowsums of the Eulerian triangle just provide the factorials we attempt to base
a matrix-summation-method on it.

The above sum in question can be seen as alternating sum of the row-sums of E. Formally
expressed as powerseries in x, where we use later x=-1, using the matrix-notation:

su(x) = V(x)~ * [01,112]..]
Vix)~* (E*V(1))

Now change order of summation (we'll have to make sure whether this is meaningful with the
occuring divergent series):

sulx) = (V(x)~*E) *V(1)
then using x=-1 we come from

V(-1)~* [0,11,2),..]
V-1)~* (E* V(1))

su

to the notation
=(V(-1)~ E)  *V(1))
= (AS~) * V(1))

Thus we compute the alternating columnsums AS of the Eulertriangle first.
However, also these are divergent sums.

But when we look at the composition of the entries of one column, we see, that we can dis-
solve each column-sum into a finite sum of binomially weighted geometric series — precisely:
finite sums of geometric series and their derivatives. For these we have closed forms which
are valid even if the underlying series is divergent.

? For another very nice introduction to this problem see Ed Sandifer's discussion of the article for L.Euler [Sandifer]

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3.2.2. The formulae for columnsums

Given a fixed column ¢, then the entries of E[,c] are
_ - K r+ 1 r
E=3 (" ek
k=0
and if we want to formulate a function f.(x) using the entries along that column we have

f.(x)= i(i(—l)k(rz—l)(c—k +1)’xrj

r=0 \ k=0

We change order of summation and get
_ - k < r+ 1 ror
f.(x)= Z(—l) (Z( k j(c—k +1)"x j
k=0 r=0
For notational convenience we set x, = x*(1+ (c— k) )
c ~(r+1)_ -
f.(0)= z (_1)k(2(rk )xk ]
k=0 r=0

Then we rewrite this to adapt the index of the inner sum:

£.00 =§<—1)k@(/z)xkr_lj
“Sen($0)
_ ,:o (—1)"xkk‘1(2(lg"kr_kj

Here the inner sums are just derivatives of the geometric series of x;, and for those we have
closed forms. We get

[C i o) (. S

x(l+¢c) &= (1—x)

1 < . ((c+1=k))*!
=— -1
x(1+c)+;( ) (1-x(c+1-k))*!

_ 1 S 1) (x(c+1-k)) ‘k
1-x(1+¢) < (1-x(c+1-k))*

-V xe—k) Y
C1-x(1+c) ;( g (1—x(c—k))2(1—x(c—k)j

For instance. at column c=4 this is

1 1(4x]2 1(3x]3 1(%)4 1(1xj5
fix) = N 2 + 2 N 2 + 2
1-5x (4x)"\1-4x Bx)"\1-3x 2x) "\ 2x-1 (Ix)"\1x-1

where the parentheses were a bit rearranged to focus a more compact generation rule.

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3.2.3. The alternating sum of factorials (x=-1)

We use

su(x) =01+ 11 x+21x%+31x3 ...
setting x=-1
su =0/-1!+21-31+...

Example for x=-1:

Using x=—1 means simply to compute the alternating columnsum at a column c and we have

= 1 c—k Y
1HN=—+~——
f=D 2+¢ = (1+(c—k))2(1+(c—k)j

Example for column c=4:

1 (4" 3 22 13j 109

T 129600

R PR T

and in the previous matrix—-formula we can insert formally:

V(-1)~ E = AS™
=[fol-1), fiul-1), fol-1), .. 7

For the first five columnsums c¢=0..4 this is

c=0  fo-1)=1/2 =1/2 —()

c=1  fi(-1)=1/12 =1/3 —(1/2?)

c=2  fo(-1)=1/72 =1/4 —(1/32 + 1/22%(1/2)})

c=3  f5(-1) = 1/1080 =1/5 —(1/4% + 1/3°*(2/3)* + 1/2°*(1/2)? )

c=4  fy(-1) =—-109/129600 =1/6 —(1/5° + 1/4°*(3/4)* + 1/3°*(2/3)? + 1/2°*(1/2)?)

The first few columnsums as real numbers

[1/2, 1/12, 1/72,
0.0009259259259,  -0.000841049383, -0.000623695620,
-0.0002838727132,  -0.000090280207, -0.000009688042,
0.0000140629265,  0.000015479872, 0.000010719082,
0.0000058791663,  0.000002559936, ]

and looking at 128 entries it seems as if

a) the sequence of absolute values of columnsums converges monotonuously to zero
and

b) it appears also to be conventionally summable.

The approximated value is —no surprise— very well near the expected value

su(-1) = AS~* V(1)

=2 c=0..inffc('1)
~0.596347362323194074341078499369... (using 512 terms)

giving 34 correct digits compared to the value as documented in the OEIS [OEIS_A073003].
According to OEIS this value is also known as "Gompertz's constant" and is also su(-1) = -
exp(1)*El(-1)

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3.2.4. Further examples with other values of x

Extending this to other arguments x (for this formal powerseries with the factorials) | get using
the sumalt-procedure in Pari/GP the values in the following table. For crosscheck | inserted
also the x-values into the integral formula

4y o=

inthnum(x) = je— dx (adaption of a version in [Sandifer])
-xyt
Table for su(x) =01+ 11 x+21x%+31x3 +..
Euler-matrix/sumalt intnum()
su(-1) = 0.596347362323 0.596347362323
su(-2) = 0.461455316242 0.461455316242
su(-3) = 0.385602012137 0.385602012137
su(-4) = 0.335221361210 0.335221361208
su(-5) = 0.298669749329 0.298669749386
su(-6) = 0.270633013639 0.270633013429
su(-7) = 0.248281352547 0.248281351295
su(-8) = 0.229947781627 0.229947781662
su(-9) = 0.214577094581 0.214577102695
su(-10) = 0.201464233646 0.201464254471
su(-11) = 0.190117766778 0.190117792894
su(-12) = 0.180183310425 0.180183317779

\\ Euler-matrix: compute one column when taken as powerseries with parameter x
\\ in this implementation x cannot assume 1/2, 1/3,..,1/(c-1)
\p 200 \\ internal float precision used 200 dec digits
{ Ecolsum(x.c)= Tocal(xk.res);
res = 1/(1-x*(1+c)) ;
for(k=2,c+1, \\ each column is a finite sum of geometric series
xk = (c+2-k)*x;
res = res - (-1)*k / (xk)*2 *(xk/(1-xk))"k;
)
return(res); }

su(x) = sumalt(c=0,Ecolsum(x,c))

Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures
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3.3. An alternating sum of n(-k) ,connection to the tanh()-function

It is a nice feature, that the alternating rowsums in E give the according n() —value, such that

E*V(-1) =2*[n(0), 2 n(-1), 22 n(-2), 2> n(-3), ...]
The above list of coefficients (in 3.2.3)
[1/2, 1/12, 1/72,

0.0009259259259,  -0.000841049383, -0.000623695620,
-0.0002838727132, -0.000090280207, -0.000009688042,
0.0000140629265, 0.000015479872, 0.000010719082,
0.0000058791663, 0.000002559936, ]

are the alternating column-sums of the E-matrix, whose total sum we already found to equal
the Gompertz's constant, approximately 0.596347362323194074341... .

Now we expect, that the alternating sum of that columnsums should accordingly give the
alternating sum of n() at nonpositive integer values like

AS=V(-1) *E
AS *V(-1) = 2* 54y ine (-1)  n(~k) * 2% = as,

and indeed we get the value
as, =0.429203673205...

which also agrees with a Nérlund/Voronoi-sum for that divergent alternating sequence of n( )-
values, each scaled by the according power of 2.

The coefficients of the formal (infinite) sum of n( ) — function of consecutive negative parame-
ters k=0, -1, -2,... are also the coefficients of the tanh()-function (see also: [Hirzebruch]):

x =1.125 \\ check identity using an actual value
tanh( x )
sumalt(k=1, x*k/k!*aeta(-k)*2*k)*2
tanh( x ) - % \\' should be asymptotic to zero
%1247 = 0.809301070202
%1248 = 0.809301070202
%1249 = 4.28780487991 E-57

\\ check identity of coefficients
bestappr(sum(k=1,11,x*k/k!*aeta(-k)*2°k)*2),1e6) + 0(x*11)
tanh(x) + 0(x*11)
%1257 = x - 1/3*x*3 + 2/15*%x*5 - 17/315*x*7 + 62/2835*x*9 + 0(x*11)
%1258 = x - 1/3*x*3 + 2/15*x*5 - 17/315*x*7 + 62/2835*x*9 + 0(x*11)
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3.4. Factorially scaling and a variant of summing the geometric series

If we scale the rows of the Eulerian-matrix E by the reciprocal factorials,
fE =9 * E = diag(1/0!,1/11,1/21,...)*E
then by the double-sum-principle
s(x) = V(x)~ * fE * V(1)
we have first
FrE*V()=F*F = V(1)
and then
V)~ V(1) =VIx) *(F*E* V(1))
= (V(x) * %f * E) * V(1)

= [fe(x,0), fe(x,1), fe(x,2),...] * V(1)
= 2c-0.inf fE(X,€)

Like with the non-scaled version E, where we get columnsums which are finitely composed by
geometric series and their derivatives, we get here the columnsums as finitely composed by
exponential-series and their derivatives. Using the columns of fE as coefficients for power-
sieres in x we get the following closed-form formulas for that powerseries:

2 4kt
k!

fe(x,¢) = oM+ | 2 st (— 1)k z
k=1
for programmed version see footnote4
So we get
V(x)~ * fE =Y(x)~ =[fe(x,0), fe(x,1), fe(x,2), ...]
and the second step, which should sum to the value of the geometric-series in its closed form:
Y(x)~ * V(1) =1/(1-x)
Indeed, we get a sequence of values in Y(x) whose sum agree with the geometric series of x.

However, there is an interesting aspect: we can even insert x=1, for which the geometric se-
ries has a singularity. Then the sequence of fe(x,c)=fe(1,c) converges to the constant value 2,
with diminuishing oscillation. The sequence of the deviations from 2 is convergent, its sum
converges very well to give a "residue" of 2/3 (supposedly). | don't know currently what this
might say to us.

The sequence fe(x,0), fe(x,1),... seems itself to form asymptotically a geometric series with a
quotient g (whose relation to x is not simple). The consequence is, that we have by all this just
another representation of the geometric series

1/(1-x) =a *1/(1—q) + res //q=/=1

where g, g and res depend on x. If x=1, we have a=2,g=1 and res = 2/3.

* fe(x,c) = local(m);
sum(k=0,c,i1f(1, \\ if-clause to allow sequel in sum
m = (ct+l-k)*x;
if(k==0, 1,
(- * m*(k-D)*(m + k) /k!
) * exp(m)

)
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Here is a table for different values of x=1 + eps, where eps aproximates zero

x=1+2" a q res a*1/(1-q)+res 1/(1-x)
1-271= 1 0.945666776835 | 0.284668137041 | 0.678002720411 2 2
1-22= | 1.40961009463 0.576834004142 | 0.668895638054 4 4
1-23= | 1.68659712899 0.769993632100 |0.667172024896 8 8
1-2=| 1.83842740033 0.880101616339 | 0.666787456187 16 16
1-2°=1.91795437558 0.938788632410 | 0.666696218458 32 32

1= 2. 1. 0.666666666667 ->inf ->inf
1+27= | 2.08464997945 1.06381576032 0.666695012174 -32 -32
1+27%=(2.17199227979 1.13031866790 0.666777790260 -16 -16
1+23= | 2.35511772204 1.27173094812 0.667094191416 -8 -8
1+22= | 2.75782540401 1.59076137589 0.668256112480 -4 -4
1+271= | 3.73312032168 2.39699882630 0.672242990758 -2 -2
1+2°%= | 6.60612090601 4.,92155363457 0.684567271446 -1 -1

Note: for this table a and q were computed from values of fe(x,n) and fe(x,n+1) at n=64. Increasing n gives only better ap-
proximations to the exact values but the change is not seen in that first few digits.

Here are the columnsums in a more explicite form:

fe(x,0)=e"
fe(x)=e — 1x1.+ Lon
fe(x,2)=¢> —%e“ +_1x +2 (1x)'e"
fe(x3)=e"" - 3x1:r Lors %(%)1 e - B3 2 0
fe(x,4) =€ — 4x1'+ Love s 3sz 2 (Gx) ™ — 23”:3 (2x)2e™ + lx+4 (1x) e
2 k k-1
x(1+c 5 Z + kZ .
fe(x’c) =e (o + z z=(c+1-k)*x (_1)k k! '
k=1 .
The partial sums:
fe(x,O..O) = elx
fe(x,0..1) =¥ —1xe™
2
fe(x0.2)  =e* —2xe 4 (1;") o
2 3
fe(x,0..3) =" —3xe™ + (2)? e — (1;) e
2 3 4
fe(x,0..4) SRR S 20 M S ) ME I L) MR
! 3! 41
c _ k
fe(x,0..c) = """ 2%(—)@"‘ )¢
k=0 .
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3.5. Another variant of the E-matrix

If we use the factorially scaled E-matrix the expression of the exponential terms in the col-
umn-sums is not optimally smooth. If moreover we use a shift of the matrix down one row,
such that in the row r=0 contains [1,1/2,1/3,1/4,...] which is the r=-1 — row in the Euler-matrix,
then the formulae look somehow smoother. Let's call the unrescaled matrix E2.

Here is the top-left edge of the matrix E2:

1 142 143 144 1/5 146
1
1 .
1 1 .
1 4 1
1 11 11 1
and let's call the factorially scaled version fE2
1 1/2 1/3  1/4 _1/5 1/
1
1/2 .
1/6 1/6 .
1/24 /6 1/24
14120 114120 114120 14120
The entries in the colums are now
col0 coll col 2 col 3
1/0! (-0+27/0! ( 0-0*2%+3%)/0! (- 0+ 0*2-0*3"+41)/0!
1/1! (-1+2°)/11 ( 0-1*2°+3%)/11 (- 0+ 0*2°-1*3°+49%)/1!
1/2! (-2+2)/2! ((1-2*2'+3%)/2! (- 0+ 1*2'2*31+4")/2!
1/3! (=3+2%)/3! ( 3-3*2%+3%)/3! (- 1+ 3*2°-3*3%+4%)/3!
1/4! (—4+2%)/41 ( 6-4*23+3%)/31 (- 4+ 6*2°-4*3%+4%)/4l
1/5! (-5+2%)/5! (10-5*2%+3%)/4! (-10+10*23—5*3%+43)/5]

The columnsums are easily recognized as composed from exponential-series and their deriva-

tives.

colsum 0: exp(1)
colsum 1: exp(2)*271 — exp(1)
colsum 2: exp(3)*31 —exp(2) + exp(1)*1/2!

colsum 3: exp(4)*41 — exp(3) + exp(2)*2/2! — exp(1)*1°%/3!
colsum 4: exp(5)*51 — exp(4) + exp(3)*3/2! — exp(2)*2%/3! + exp(1)*13/4!
colsum 5: exp(6)*6™1 — exp(5) + exp(4)*4/2! — exp(3)*3%/3! + exp(2)*23/4! — exp(1)*1%/5!

colsum c = s(c)

s(c) = 2(—1)k exp(c+1-k)

= —ZC: exp(c—(k—1))

(c+1-k)"!

k!

(k=D-o)""
k!
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Using that formula for the entries of

V(1)~ *fE2  =SE~
= [s(0), s(1), s(2), ..]

gives numerically

=[2.7182818..., 0.976246..., 0.66526..., 0.50001..., 0.40001..., ...]

On the other hand we have

E2 *V(-1) =9V(2)* H

=[n(1),2n(0), 2°n(-1), 2> n(-2) , ... ]

where

H= column(n(1), n(0), n(-1), n(-2) , ...)
Then denote the double sum as ds

V(1)~ * fE2 * V(-1) = ds
and ds should be computable by two formulae:

ds =SE~*V(-1)
=V(1)~9F(-1) *9V(2) * H

and indeed, using convergence acceleration with Euler-summing we get for ds both ways

sd =2.12692801104... // sumalt k=0, (-1)**SE[K] )
=2.12692801104... // sumalt (k=0, n(1-k)*2X/k! )

We have another option to compute this. If we look at the diagonals in

colsum 0: exp(1)

colsum 1: exp(2)*271 — exp(1)

colsum 2: exp(3)*31 —exp(2) + exp(1)*1/2!

colsum 3: exp(4)*41 — exp(3) + exp(2)*2/2! — exp(1)*1/3!

colsum 4: exp(5)*51 — exp(4) + exp(3)*3/2! — exp(2)*2%/3! + exp(1)*13/4!

colsum 5: exp(6)*6™1 — exp(5) + exp(4)*4/2! — exp(3)*3%/3! + exp(2)*23/4! — exp(1)*1%/5!

we have a better insight.

Now we just add the columns in the following way with alternating signs:

colsum 0= e
colsum 1= —e2/2*1 —e/1!
colsum 2= e3/3*1 +e2/2%21/11  +e/2!
colsum 3= —e?/4*1 -e3/3*31/11  —e?/2*22/21 —e/3!
colsum 4= e’/5*%1 +e*/4*41/11  +e3/3*3%/21 +e?/2*23/31 +e/4!
colsum5= —eb/6*1 -e°/5*51/11  —e%/4*42/21 —e3/3%33/31 —e?/2*2%/41 —e/5!
alt.sum= =—eb/6*e®  =e°/5%e° =—e/4*e*  =e3/3%3 =—e?/2%e?  =el/1%¢?

using ee=e®* =—ee®/6 =ee’/5 =—ee?/4 = ee’/3 =—ee?/2 = ee
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Each column in the above is convergent because it is an ordinary exponential-series. The sum
of the alternating column-sums gives

ds = e *1+1/11+1/21+...)
—e2/2%(1+2+2%/21+23/31 + ... )
+e3/3%(1+3+3%/21+33/31+...)
—t—..
=(eY)2/1 - (e2)%/2 +(e3)%/3 —.. +...
=(e?) /1 - (e2)?/2 +(e?)3/3 —... +...

writing ee = e?

=eel/1—- ee?/2 +ee’/3 —.. +..
=log(1 + ee)

=2.126928011042972496...

Using PkPowSum (a variant of Euler-summation) with parameter (1.3,1.2) directly at the sum-
formula | get again

ds= 2.126928011043...

which is the same as the log-expression up to the shown digits.
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4.1. HAKMEM: ITEM 121 (Gosper):

Consider the triangular array:

1

11

141
11111 1
1266626 1
15730230257 1

This bears an interesting relationship to Pascal's triangle. The 302 in the 4th southeast di-
agonal and the 3rd southwest one = 4*26 + 3*66. Note that rows then sum to factorials
rather than powers of 2. If the nth row of the triangle is dotted with any n consecutive ele-
ments of (either) n+1st diagonal of Pascal's triangle, we get the nth Bernoulli polynomial: for
n =5, 1(6,i) + 26(6,i+1) + 66(6,i+2) + 26(6,i+3) + 1(6,i+4) = sum of 5th powers of 1 thru i+5,
where (j,i) = BINOMIAL (j+i j).
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5. Appendix: Notation for matrices and vectors

Matrices and vectors are understood with infinite size; the indexes for (row,column) are de-
noted as (r,c) beginning at zero.

A vector is as default understood as column-vector;
the transpose is indicated by the tilde ("~") as in Pari/Gp,
its use as diagonalmatrix is indicated by a small prefix 9.

Some standardvectors are
the Vandermonde-vector V(x). This is a notation for a type of vector:
V(x) = columnvector ._g ;¢ ( X')
So, for example | write
V)™ V(1) = 5 g iny (¥) = 1/(1%)

the factorial vector F(s), often simply used as
diagonalvectors 9F(1) = F and 9F(-1) = f with

F(s) = columnvector ,_q ;c( (r!)*)
the dirichlet-vector Z(s) ; this is a notation for
Z(s) = columnvector _, ;o d1/(r+1)*)
Some standardmatrices are
the lower triangular pascalmatrix P
P =matrix . .o _n¢ ( binomial(r,c) )
the matrix of Stirlingnumbers 2" kind $2:
52 =matrix . g i ( {r.C})
the matrix of Stirlingnumbers 1* kind S1:
S1=matrix . ..o jns( <r,c>)
and few others.

Most of the matrices | deal with have the property, that multiplication with a vandermonde-
vector yields again a vandermonde-vector, so such multiplications can be concatenated and
simplified expressed by a matrixpower, if that is defined. So for instance

P *V(x) = V(x+1) // by binomial-theorem
P*P*P*P * V(x) = P**V(x)
= V(x+4) // by repeated app. of binomial-theorem

| call such matrices "operator"(matrices) "acting on formal powerseries", because the vector-
/matrix manipulations are then short notations for manipulations on the coefficients of formal
powerseries. Often a similarity-transformation of a matrix converts it to an operator, for in-
stance

fS2F =f*S2 * F="F(1)? * 52 *F(1)

where | assign a short memorizable name to the resulting matrix if this becomes a standard-
matrix. Then

V(x)~ * fS2F = V(exp(x)-1) ~

by a well known definition, found for instance in M.Abramowitz/I.Stegun, and the new similar-
ity transformed matrix fS2F is an "operator".
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