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Abstract
In a previous work, we have shown how to generate attractor sets of affine hybrid systems using
a method of state space decomposition. We show here how to adapt the method to polynomial
dynamics systems by approximating them as switched affine systems. We show the practical
interest of the method on standard examples of the literature.
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1 Introduction

The symbolic analysis of nonlinear dynamical systems has recently attracted considerable
attention: the problem of computing the set of reachable states (reachability analysis) has
thus been studied in [1, 3, 4, 5, 2], and the problem of computing polytopic invariants
(invariant synthesis) has been studied in [10, 11, 12]. Here, we study a problem close to
the problem of invariant synthesis: we want not only to generate a polytopic invariant P
included in a given rectangle R, but we also want that all the trajectories starting from R

converge to P . In other words, we want to construct an attractor set P of R, ideally as
small as possible. We show that the state decomposition method given in [7] for computing
attractors of linear systems can be extended to the case of polynomial dynamics, using the
idea of local linearization developed in [1].

The plan of the paper is as follows. In Section 2, we recall the principles of the state
space decomposition method for linear dynamical systems. In Section 3, we explain how to
extend the method to polynomial dynamical systems. In Section 4, we apply the method to
two standard examples of the literature. We conclude in Section 5.

2 Attractors for Linear Dynamics

We suppose that we are given a finite set U = {1, . . . , N} of elements called modes. We
are also given a family of functions {fu}u∈U with fu : Rn → Rn. Given a time step τ ,
a sampled switched system Σ is a dynamical system governed by an equation of the form
x(t + τ) = fσ(x(t)), where σ is a control signal, which selects a mode u ∈ U at each time
step τ , 2τ , . . . .

A k-pattern is a sequence of at most k modes of U . Given a set X ⊂ Rn and a mode
u ∈ U , we define the set of successors of X via u, and denote by Postfu(X), the set
{x′ ∈ Rn | fu(x) = x′ for some x ∈ X}. Given a pattern π of the form (u1 · u2 · · · · ·
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um), the set of successors of X via π, denoted by Postfπ(X), is given by: Postfπ(X) =
Postfum (· · · (Postfu2

(Postfu1
(X))) · · · ).

Suppose that we are given a box R ⊆ Rn (i.e., a cartesian product of closed intervals).
We have given in [7] a general method in order to show the controlled invariance of Σ
in R. By controlled invariance in R, we mean that if the system state is in R at some
time, it will stay forever in R under the control of an appropriate signal σ. The method
constructs a k-decomposition of R, that is, a set ∆ of the form {(Vi, πi)}i∈I , where I is a
finite set of indices, the Vis are sub-boxes of R, and the πis are k-patterns. Furthermore,
this decomposition ∆ is k-invariant in the sense:
1.
⋃
i∈I Vi = R

2. Postfπi (Vi) ⊂ R, for all i ∈ I.
An algorithm of decomposition is given in [7], and is recalled in Appendix A: given a
dynamical system {fu}u∈U and a box R, it returns a k-invariant decomposition ∆ of R.

I Lemma 1. If ∆ = {(Vi, πi)}i∈I is a k-invariant decomposition of R, then:

Post∆(R) ⊂ R,

where the operator Post∆ is defined, for all X ⊂ Rn, by:

Post∆(X) =
⋃
i∈I

Postfπi (X ∩ Vi)

I Lemma 2. Consider a k-invariant decomposition ∆ = {(Vi, πi)}i∈I of R. The sequence
{Rj∆}j≥0 defined by:

R0
∆ = R,

Rj+1
∆ = Post∆(Rj∆)

is a decreasing nested sequence and the set R∗∆ =
⋂
j≥0R

j
∆ is well-defined. Furthermore, R∗∆

is an attractor set of R, i.e.:
1. Post∆(R∗∆) = R∗∆ (invariance)
2. ∀x ∈ R, d(Postj∆(x), R∗∆)→ 0 as j tends to ∞1 (attractivity).
Attractors and limit cycles have been studied in the context of affine dynamics in [6].

3 Nonlinear Dynamics

The decomposition procedure, explained in Section 2, is quite general, and does not suppose
that the functions fu are linear or affine. However, in the case where fu is an affine function,
the computation of the successor sets (via Post operator) can be done in an exact manner.

We now explain how to apply the state space decomposition procedure in the case of
non-affine dynamics. This is done at the price of an over-approximation of the successor
sets. Following [1], we compute (an overapproximation of) the successor sets using local
linearizations of the system, and enlargement of the linear images by addition of error intervals.
We will consider a system governed by a unique equation of the form x(t+τ) = f(x(t)) where
f is a polynomial. The set U is thus reduced to a single element (U = {1}). A pattern πi
associated to a subregion Vi, is now just an integer indicating the number of times the (local
linearization of) f should be applied when the state is in Vi.

1 d is the distance between a point and a subset of Rn
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3.1 Affine systems with uncertainty
As in [1], reachable sets are represented here by zonotopes. They are chosen because linear
transformations and Minkowski sums2 can be computed efficiently, allowing to compute
reachable sets for large scale linear systems in continuous space. A zonotope is defined by a
center c to which linear segments li = β(i) · g(i), −1 ≤ β(i) ≤ 1 are added via Minkowski sum.

I Definition 3. A zonotope is a set

Z = {x ∈ Rn : x = c+ Σpi=1β
(i) · g(i), −1 ≤ β(i) ≤ 1}

with c, g(1), . . . , g(p) ∈ Rn. The vectors g(1), . . . , g(p) are referred to as the generators and c
as the center of the zonotope. It is convenient to represent the set of generator as a matrix G.
The notation is < c,G >, where the first element refers to the center of the zonotope and
the second to the generators.

Zonotopes allow to extend easily the decomposition procedure in order to take into
account small perturbations of the system dynamics (see [8]). Suppose that we the system is
described by an equation of the form

x(t+ τ) = flin(x(t)) + ε

where:
flin is an affine function defined by flin(x) = Ax+ b with A ∈ Rn×b, b ∈ Rn

ε is a disturbance vector belonging to a rectangle region Λ = [−ε1,+ε1]× · · · [−εn,+εn]
of Rn, with εi ≥ 0 for all i.

Since Λ is a product of intervals centered in 0, it can be written as a zonotope

ZΛ =< 0, GΛ > with GΛ =


ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn


I Lemma 4. Consider a zonotope Z =< c,G > with G a square matrix, a box Λ =
[−ε1,+ε1]× · · · [−εn,+εn] of Rn, and a function f defined by:

f(x) = Ax+ b+ ε, with ε ∈ Λ.
We have: Postf (Z) ⊂ < Ac+ b, AG+GΛ >.

3.2 Linearization of nonlinear dynamics
Consider now a system governed by equation x(t + τ) = f(x(t)) where f is a polynomial.
We can write:

f(x) = flin(x) + P (x),

where flin(x) corresponds to the polynomial subpart of order 1, and P to the polynomial of
order greater than or equal to 2. We can then apply the method explained in Section 3.1, by
computing a local over-approximation Λ of P (x).

2 The Minkowski of two sets A, B is defined by A + B = {a + b | a ∈ A, b ∈ B}
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I Lemma 5. Consider a function f defined by: f(x) = flin(x) + P (x), where flin(x) is a
1st-order polynomial of the form b+Ax, and P (x) a 2nd-order polynomial. Given a zonotope
Z :< c,G >, we have:

Postf (Z) ⊂ Postflin(Z) + ZΛ

with:
– Postflin(Z) =< f(c), AG >

– ZΛ =< 0,


ε1(Z) 0 . . . 0

0 ε2(Z) . . . 0
...

...
. . .

...
0 0 . . . εn(Z)

 >

with (1 ≤ i ≤ n): εi(Z) = maxx∈Z(|Pi(x)− Pi(c)|).

Now, in order to apply the decomposition procedure (extended with error), we just have
to find an upper bound for |P (x)−P (c)| componentwise. In the following, we explain on two
standard examples how to compute such upper bounds. Then we apply the decomposition
procedure in order to find a decomposition ∆, and construct an attractor related to R∗∆.

4 Case studies

These examples are taken from [2]. Given a zonotope Z =< c,G >, we explain how to
compute Postflin(Z) and ZΛ appearing in Lemma 5. Experiments have been performed with
the tool MINIMATOR [9] on a machine equipped with an Intel Core2 at 2.93GHz and 2 GB
of RAM memory.

4.1 Van der Pol oscillator
4.1.1 Dynamics
The dynamics of the Van der Pol oscillator are the following:

x(τ) =
(

1 τ

−τ 1 + τ

)
x(0) +

(
0

−x1(0)2x2(0)τ

)
.

When linearized to a point c ∈ R2, this gives:

x(τ) =
(

1 τ

−τ 1 + τ

)
x(0) +

(
0

−c21c2τ

)
.

Thus, we have Postflin(Z) =
(

1 τ

−τ 1 + τ

)
Z +

(
0

−c21c2τ

)
=
(

1 τ

−τ 1 + τ(1− c21)

)
x(0). It

is easy to see that for a box V ⊂ R2 we are making an error of at most 0 on the x axis and |(c21−

(c1 +G1,2 +G2,2)2|τ on the y axis, when Z =< c,G > with c =
(
c1
c2

)
and G =

(
G1,1 G1,2
G2,1 G2,2

)
Thus we need to enlarge any image of a zonotope Z =< c,G > by 0 on the x-axis and τ |(C2

1−

(C1 +G1,2 +G2,2)2| on the y-axis (i.e., ZΛ =< 0,
(

0 0
0 |(C2

1 − (C1 +G1,2 +G2,2)2|τ

)
>).

4.1.2 Attractor Construction
The Decomposition procedure is applied to R = [−3, 3]×[−3, 3] and τ = 0.01 (with parameters
k = 30, d = 7). At boxes located around the center of R, the length of patterns is 1 while in
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Figure 1 Decomposition for the Van der Pol oscillator (left) ; Rj
∆ for j = 30 (right).

the lower left and upper right edges, the length is up to 30. The result of the Decomposition
is depicted in the left part of Figure 1 and the attractor set R∗∆ in the right part. Experiments
took 8 minutes to complete.

4.2 FitzHugh-Nagumo Neuron
4.2.1 Dynamics
The dynamics of the FitzHugh-Nagumo neuron are the following:

x(τ) =
(

1 + τ −τ
0.08τ −0.0064τ + 1

)
x(0) +

(
−x1(0)3τ/3 + 0.875τ

0.056τ

)
When linearized to a point c ∈ R2, this gives:

x(τ) =
(

1 + τ −τ
0.08τ −0.0064τ + 1

)
x(0) +

(
−c31τ/3 + 0.875τ

0.056τ

)
It is easy to see that for a box V ⊂ R2 we are making an error of at most maxx∈V ( |x

3
1−c

3
1|

3 )τ
on the x axis and 0 on the y axis. Thus we need to enlarge any image of a zonotope Z by

maxx∈Z( |x
3
1−c

3
1|

3 )τ on the x-axis and 0 on the y-axis (ZΛ =< 0,
(
maxx∈Z( |x

3
1−c

3
1|

3 )τ 0
0 0

)
>).

4.2.2 Attractor construction
The Decomposition procedure is applied to R = [−2.5, 2.5]× [−0.5, 2.5] and τ = 0.1 (with
parameters k = 30, d = 7). For boxes located around the center of R, the length of patterns
is 1 while in the lower left and upper right corners, the length is up to 22. The result of the
Decomposition is depicted in the left part of Figure 2 and the attractor set R∗∆ in the right
part. Experiments took 5 minutes to complete.

5 Future work

We have explained how to construct attractors of polynomial dynamical systems by extending
a method designed for linear dynamical systems. The method consists in considering the
subpolynomial subpart of order greater than 1 as a perturbation that is over-approximated.

FSFMA’13
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Figure 2 Decomposition for the FitzHugh-Nagumo Neuron (left) ; Rj
∆ for j = 30 (right).

So far, the over-approximation is done in an ad hoc fashion for each specific example. For
future work, we plan to consolidate the method by using the formal technique of linearization
of [1], based on the notion of Lagrange remainder.

A Appendix: Decomposition Algorithm

The Decomposition procedure generates a k-invariant decomposition of R, as follows:
It first calls sub-procedure Find_Pattern in order to get a k-pattern such that R is

R-invariant. If it succeeds, then it is done. Otherwise, it divides R into 2n sub-boxes
V1, . . . , V2n of equal size. If for each Vi, Find_Pattern gets a k-pattern making it R-invariant,
it is done. If, for some Vj , no such pattern exists, the procedure is recursively applied to Vj .
It ends with success when a k-invariant decomposition of R is found, or failure when the
maximal degree d of decomposition is reached.

The algorithmic form of the procedure is given in Algorithms 1 and 2. (For the sake of
simplicity, we consider the case of dimension n = 2, but the extension to n > 2 is straightfor-
ward.) The main procedure Decomposition(W ,R,D,K) is called with R as input value for
W , d for input value for D, and k as input value for K; it returns either 〈{(Vi, πi)}i, T rue〉
with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or 〈_, False〉. Procedure Find_Pattern(W ,R,K)

looks for a K-pattern for which W is R-invariant: it selects all the K-patterns (which are in
finite number) by non-decreasing length order until either it finds such a pattern π (output:
〈π, True〉), or no one exists (output: 〈_, False〉).

The correctness of the procedure is stated as follows.

I Theorem 6. If Decomposition(R,R,d,k) returns 〈∆, T rue〉, then ∆ is a k-invariant de-
composition of R.
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Algorithm 1: Decomposition(W ,R,D,K)
Input: A box W , a box R, a degree D of decomposition, a length K of pattern
Output: 〈{(Vi, πi)}i, T rue〉 with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or 〈_, False〉

1 (π, b) := Find_Pattern(W,R,K)
2 if b = True then
3 return 〈{(W,π)}, T rue〉
4 else
5 if D = 0 then
6 return 〈_, False〉
7 else
8 Divide equally W into (W1,W2,W3,W4) /* (case n = 2) */
9 (∆1, b1) := Decomposition(W1,R,D − 1,K)

10 (∆2, b2) := Decomposition(W2,R,D − 1,K)
11 (∆3, b3) := Decomposition(W3,R,D − 1,K)
12 (∆4, b4) := Decomposition(W4,R,D − 1,K)
13 return (∆1 ∩∆2 ∩∆3 ∩∆4, b1 ∧ b2 ∧ b3 ∧ b4)

Algorithm 2: Find_Pattern(W ,R,K)
Input: A box W , a box R, a length K of pattern
Output: 〈π, True〉 with Postπ(W ) ⊆ R, or 〈_, False〉 when no pattern maps W into

R

1 for i = 1 . . .K do
2 Π := set of patterns of length i
3 while Π is non empty do
4 Select π in Π
5 Π := Π \ {π}
6 if Postπ(W ) ⊆ R then
7 return 〈π, True〉

8 return 〈_, False〉

FSFMA’13
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