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—— Abstract

We study an extension of tree automata on infinite trees with global equality and disequality
constraints. These constraints can enforce that all subtrees for which in the accepting run a state ¢
is reached (at the root of that subtree) are identical, or that these trees differ from the subtrees
at which a state ¢’ is reached. We consider the closure properties of this model and its decision
problems. While the emptiness problem for the general model remains open, we show the decidability
of the emptiness problem for the case that the given automaton only uses equality constraints.
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1 Introduction

In this paper, we start the investigation of a model of finite automata on infinite trees with
global equality and disequality constraints. These constraints are specified over the state
space of the tree automaton: an equality constraint is of the form ¢; ~ ¢ for states ¢; and
g2 of the automaton, and a run satisfies the constraint if the subtrees at all nodes at which
q1 and g2 appear in the run are equal. Similarly, a disequaltiy constraint q; % g2 requires
that the subtrees at ¢;-positions in the run are all different from the subtrees at gs-positions.

Originally, such a model with global constraints has been defined in [7] over finite trees
for analysing a logic called TQL for querying semi-structured data [6]. The model (referred
to as TAGED, tree automata with global equality and disequality constraints) has then
been further investigated in [8, 9] because it turned out to be a useful tool for deciding
logics whose expressive power goes beyond that of monadic second-order logic (MSO), the
latter being equivalent to standard finite tree automata [21] (see also [23]). In [8, 9] closure
properties of TAGED are studied, and decidability results for emptiness on restricted classes
of TAGED have been obtained. These results have then been further generalised in [2] to the
full class of TAGED (even enriched with arithmetic constraints). Besides the use of TAGED
for the logic TQL, there are variants of monadic second-order logic (MSQO) with equality and
disequality tests that characterise the class of TAGED, and the algorithmic results lead to
decision procedures for these versions of MSO [9, 2].

As mentioned above, we want to extend this theory to infinite trees. Automata on infinite
trees were originally introduced for solving decision problems for MSO over infinite trees
[18]. Since then, many algorithms and decision procedures based on these automata have
been developed for solving problems in verification, synthesis, language equations, and set
constraints (see [3, 14, 11, 1] for some examples).
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While there are many extensions of finite automata over finite trees, e.g., automata with
global (dis)equality constraints as described above, automata with (dis)equality constraints
between siblings [4], automata over infinite alphabets [12, 25], or automata with counting
constraints [13, 20], there is not much work on extended models for infinite trees. One reason
for this is that extended automaton models over finite trees are motivated by problems
coming from term rewriting or from XML document processing, and thus an extension to
infinite trees does not seem to be useful. However, we believe that (dis)equality constraints
over infinite trees can be used to express some interesting properties. For example, tree
automata over infinite trees can represent sets word functions of the form f : X7 — 3y (for
alphabets ¥1,%3). Such a function corresponds to a tree of branching degree |3;| with nodes
labeled by Y5 (a node u in the tree can be identified with the directions one has to take
from the root to reach this node, and thus corresponds to a word in 37j; its label is then
the function value f(u)). This correspondence is used in algorithms for the synthesis of
such functions from logical specifications [19, 17, 14]. In this setting, one can use equality
constraints to model, for example, resets of synthesized functions (if w € ¥* corresponds to
an input string that models a reset, then the function should behave the same as from the
root of the tree, which can be expressed by a global equality constraint in a tree automaton).

A first step for developing a theory of automata on infinite trees with (dis)equality
constraints (we only use the term constraints in the following to refer to (dis)equality
constraints) was made in [5], where automata on infinite trees with local constraints are
analyzed. It is shown that parity tree automata with constraints for direct subtrees of a
node have a decidable emptiness problem and the languages recognized by these automata
form a Boolean algebra. In [15] it is shown that these automata with a Biichi condition are
closed under projection, and that they can be used to decide satisfiability of MSO formulas
enriched with a predicate for testing (dis)equality of direct subtrees of a node.

We continue this line of research and analyze automata on infinite trees with global con-
straints. We show that (similar to the case of finite trees) the class of languages recognizable
by this model is closed under union and intersection, but not under complement. We compare
different acceptance conditions and prove - among other results - that the equivalence in
expressive power between parity- and Muller-acceptance (see [23]) extends to automata with
global constraints. We also consider a few decision problems. To be precise, we show the
undecidability of the universality- and the regularity-problem for tree automata with global
constraints. (Again, analogous results for finite trees have been shown in [9, 2].)

The main result of this paper is the decidability of the emptiness problem if we restrict the
automaton to only use equality constraints. It relies on a construction of a parity automaton
that only uses reflexive equality constraints of the form ¢ =~ ¢. This construction is the
core of the decidability result because the game-based emptiness algorithm for parity tree
automata (see [26] or [23]) also solves the emptiness problem in the case of reflexive equality
constraints (using memoryless determinacy of parity games).

For the whole class of tree automata with global constraints on infinite trees, the
decidability of the emptiness problem is still an open question. The approaches that have
been developed for finite trees do not work on infinite trees. For example, in infinite trees it
is possible that a tree is equal to one of its subtrees, which is impossible in finite trees.

This paper is structured as follows: In Section 2, we introduce basic notations and
formally define the automaton model. Then in Section 3, we discuss closure properties of the
classes of languages recognizable by tree automata with global constraints, and we analyze
the expressive power of different restricted models (with regard to acceptance condition and
the form of the constraints). In Section 4, we first present undecidability results for the
universality and regularity problem (which easily generalize from finite trees). We then show
that the emptiness problem for parity tree automata with only global equality constraints, is
decidable. We give some concluding remarks in Section 5.
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2 Preliminaries

2.1 Trees, Languages and Tree Automata

An alphabet is a finite set X of letters, X* denotes the set of all finite words over ¥, whereas
> is the set of infinite words over X. The empty word is notated by e.

Let ¥ be some finite alphabet. An infinite 3X-labelled (binary) tree is a mapping t :
{0,1}* — X. The elements of {0,1}* are called nodes and the node ¢ is called the root. We
sometimes write dom; instead of {0,1}*. For any node u the node u0 is called the left child
of w and wul is the right child of u. A branch is an infinite word in {0,1}*. The set of all
infinite ¥-labelled trees is denoted by T3 .

Let ¢ be a o-labelled tree. And let u € {0,1}* be a node then ¢, denotes the subtree of ¢
rooted at u. That is t|,(v) := t(uv) for all v € {0,1}*.

A (non-deterministic) tree automaton for infinite trees over the alphabet ¥ is a tuple
A=(Q,3, A, qo, Acc) where @ is a finite set of states, ¥ is a finite alphabet, A C QxEXxQxQ

is the transition relation, go € @ is the initial state and Acc C Q% is the acceptance condition.

Let t be an infinite X-labelled tree. A run of A on t is a @-labelled tree p such that
p(e) = qo and for every node u € {0,1}*, (p(u), t(u), p(u0), p(ul)) € A. A run p is accepting
if for every branch ajas ... € {0,1}*, the sequence of states p(e)p(a1)p(aiaz) ... forms an

infinite word in Acc. A tree t is accepted by A if there exists an accepting run p of A on t.

The language recognized by A is defined as L(A) := {t € T¥ | A accepts t}.
Several forms of acceptance conditions appear in the literature. In this paper we mainly
focus on so called safety-, Biichi-, parity- and Muller-acceptance:
If the tree automaton has a safety acceptance condition, it holds Acc = Q“. That is
every run is accepting.
For a Biichi acceptance condition a subset F' C @ of states is given and an infinite
sequence of states q1gaq3z... € Q¥ is in Acc if and only if there are infinitely many
positions ¢ € N with ¢; € F.
In the case of a parity acceptance condition a mapping p :  — N from states to natural
numbers is given and an infinite sequence of states q1¢2¢qs ... € Q“ is in Acc if and only
if the highest number p(g;) that appears infinitely often for that sequence is even.
A Muller acceptance condition is given by a set F C 2% and an infinite sequence of states
q192Gs - .- € Q¥ is in Acc if and only if the set of states that appear infinitely often in
that sequence is an element of F.
A language L C Ty is called regular if it can be accepted by a parity tree automaton. As a
shortened notation, if A is an automaton, we write Q 4 to denote the set of states of A and
A4 to denote the transition relation of A.
Even though we present our results only for binary trees, the statements in this paper
also hold true for ranked trees with higher branching degree.

2.2 Tree Automata with Global Equality Constraints

A tree automaton with global constraints (TAGC) is a tuple A = (Q, X, A, qo, Acc, C), such
that (Q, X, A, qo, Acc) is a tree automaton, denoted by ta(.A), and C is a Boolean combination
of atomic constraints of the form g =~ ¢’ or q % ¢, where ¢q,¢' € Q.

A run p of the TAGC A on a tree t € T¥ is a run of ta(A) such that p satisfies C 4
(denoted by (t,p) = C4 or p = C4 if t is clear from the context), where the satisfiability of
constraints is defined as follows: For atomic constraints p = ¢ & ¢’ holds (resp. p = q % ¢’
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holds), if and only if for all nodes u,u’ € dom; with u # v/, p(u) = ¢ and p(u’) = ¢/, it
holds t|, = t|. (or t|,, # t|w resp.). This notion of satisfiability is extended to Boolean
combinations as usual. In particular, a run satisfies a negated atomic constraint —(q ~ ¢’) if
there exist two nodes u,u’ with p(u) = ¢, p(v') = ¢/, and t|, = t|,. So it is important to
note that the semantics of (¢ % ¢’) is different from —(gq = ¢’) because of the quantifier over
the tree nodes.

A run p is accepting if it is accepting for ta(.A). As usual, the language recognized by
A is the set L(A) of trees t € Ty for which there exists a accepting run of A on ¢. Two
automata A and A’ are equivalent if they recognize the same language.

Before we give some examples, we define some classes of TAGC with restricted forms of
constraints that are used in the later sections. We follow the terminology for TAGC on finite
trees as presented in [2] (the model called TAGED in [9] has a slightly different definition, and
the notion of 'positive’ in [9] differs from the one in [2]). A TAGC is called positive (PTAGC)
if C' is a positive Boolean combination (i.e. it does not use the negation symbol — in the
Boolean combination of atomic constraints). Note that atomic constraints of the form (g % ¢')
can be used in PTAGC because they do not use the negation symbol. In a conjunctive TAGC,
the constraint is a single conjunction of possibly negated atomic constraints. Accordingly, a
conjunctive PTAGC has only one conjunction of atomic constraints. A PTAGC is called
rigid if it is conjunctive and uses only reflexive equality constraints, that is, C' is just a single
conjunction of atomic constraints, and for each atomic constraint of the form ¢ ~ ¢’, we
have ¢ = ¢’ (the term rigid comes from [10]). For some constructions it is helpful if the
initial state does not appear in any of the constraints. We call a TAGC that satisfies this
restriction simplified.

» Example 1. Let ¥ = {a,b}, then the set {t € T¥ | t|p = t|1} is a tree language,
which is well known not to be regular. However it is recognized by the safety-PTAGC
A= ({90,01,9}, 2, 2,90, q1 = q1), where A := {(qo,z,q1,q01) | z € 2} U{(q,2,0,0) | q €
{(1,0},z € £}

In example 1 the automaton did not make use of the “globality” of the constraints.
Therefore we present an additional example.

» Example 2. The language of all trees ¢t € Ty that do not contain themselves as a proper
subtree is recognized by the Biichi-PTAGC A := ({qo,q1}, %, A, q0,{q1}, 90 # q1) where
A= {(anaqlath) ‘ qe {%ﬂl}ax € Z}

In both examples we presented PTAGC. The following example uses a negated constraint
and also illustrates an interesting interplay between constraints and acceptance conditions:

» Example 3. Consider the constraint formula —(go = ¢1 A o % ¢1) and note that this
formula is not a tautology. If for example the state g; does not appear in a run, then both
qo =~ q1 as well as qg % ¢ are satisfied. Thus to satisfy the whole formula, both gy and ¢;
have to appear in the run. We now use this constraint formula in an automaton:

"4 = ({qovqla ©}7 {avba C}a Aa%?ﬁ(QO ~q1 A 4o 76é Q1)) ) where

A ::{(QO7$7qu ©)7 (quxa ©aq0)7 (QO7x7Q1a ©)7 (QO,LE, ©aq1)7 (©7xa ©a ©) | RS {a7ba C}}U
{(Q1,a,©7©)}.

This safety TAGC starts in qg, guesses a position at which ¢; appears and checks whether
the label at that position is an a. Thus A accepts precisely those trees over the alphabet
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{a,b,c}, that contain a position labelled with a. This regular language cannot be recognized
by a standard safety tree automaton, thus showing that negated constraints actually can
introduce stronger acceptance conditions even inside the class of regular languages.

The following examples show some possible applications of TAGC:

» Example 4. As explained in the introduction, infinite trees can be used to model functions
of the form f : ¥7 — ¥y for alphabets 3, 39, referred to as input and output alphabets,
respectively. We can apply f to infinite input words o = ajas - -+ obtaining f(a) = boby - - -
with b; = f(ay---a;) (with the special case by = f(¢€)). In the synthesis problem for such
functions, we are given a relation S C (X; x ¥9)%, called the specification. A function f
satisfies the specification if («, f(«)) € S for all input words . The task is to automatically
synthesize a function satisfying S from a definition of S by a logical formula or an automaton.

Note that for X1 = {0, 1}, the function f has exactly the same shape as an infinite binary
tree (for larger alphabets X1, one can use trees of higher branching degree). Thus, we can
identify trees with the functions described above.

As shown in [19, 17] (see also [14]), a specification S defined in MSO logic or linear
temporal logic (LTL) over infinite words, can be translated into a tree automaton Ag
accepting precisely those trees that satisfy the specification. The emptiness test for tree
automata then yields a tree (and thus a function) satisfying the specification.

Using TAGC, we can model additional properties of such functions. Assume, for example,
that we are given a regular language R C X7 of finite words over the input alphabet that
model a reset of the system. The requirement for the function to be synthesized could be that
it satisfies the specification S, and whenever the input string processed so far corresponds to
a reset in R, then the function should behave in the same way (it moves to a specific reset
state and forgets about the past). We can express this property by taking the product of the
tree automaton Ag with a DFA Dg for the reset words, and impose equality constraints for
all product states (g, p) such that p is a final state of Dr. A tree accepted by this product
automaton corresponds to a function with the desired reset behavior, and can by synthesized
by the methods presented in Section 4.

» Example 5. Let L be a language of infinite words over the alphabet ¥ = {aq,...,a,}. We
say L is an w-power if L = U* for a regular language U of finite words. It is a deterministic
w-power if U is prefix-free (i.e. for all u € U and v strict prefix of u, v & U). Here the
term ‘deterministic’ is appropriate, because if U is prefix-free then every word in L has a
unique factorization into its U-factors. In general, regular w-languages can be characterized
in terms of concatenations and w-powers of regular languages of finite words (see [22]).
Similarly, deterministic w-powers can be used to characterize the subclass of deterministic
Biichi languages, and are used in [16] to characterize certain regular liveness properties.

We can construct for a given w-regular language L a PTAGC, whose recognized language
is non-empty if and only if L is a deterministic w-power. We consider n-ary infinite {0,1}-
labelled trees, where the directions correspond to the n letters of 3. The constructed
parity-PTAGC A then verifies two conditions on such an input-tree:

the branches on which infinitely many 1 appear are precisely the words in L.

The whole tree is equal to all subtrees rooted at positions at which a 1 appears.
If L = U%, then the tree ty is accepted by A, where ty(u) = 1 iff w € U*. If on the other
hand A accepts a tree, then it also accepts a regular tree ¢ (see Corollary 23 in Section 4).
Define U to be the set of all minimal (wrt. prefix order) words u with ¢(u) = 1. Then L = U¥
since t is accepted by A. As a consequence, the problem whether a given regular w-language
is a deterministic w-power, is decidable (using Theorem 22).
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3 Properties

In this Section we first present some general properties of TAGC and then discuss their
closure properties.

3.1 Expressive Power of different Acceptance Conditions

We start by comparing the expressive power of TAGC with different acceptance conditions.
The following lemma is useful to convert between different acceptance conditions. The
construction is a straightforward adaption of the one for tree automata without constraints
commonly found in the literature.

» Lemma 6. For a TAGC A and a deterministic w-word automaton B, one can construct
an automaton AxB that accepts all trees t € Ty for which there is a run p of A ont such
that for each branch, the sequence of states along that branch in p are accepted by B. The
type of acceptance condition of AxB (Bichi, parity, Muller) is the one of B.

Since all regular w-languages can be accepted by deterministic parity automata (see, e.g.,
[23, 24]), we obtain the equivalence of TAGC with parity and Muller conditions.

» Corollary 7. A language is recognizable by a parity-TAGC if and only if it is recognizable by
a Muller-TAGC. And from a given parity/Muller Automaton one can construct an equivalent
automaton with the other acceptance condition.

3.2 Restricted Constraints

We now consider constructions for simplifying the shape of the constraints. Remember that
we call a (P)TAGC conjunctive if its constraint formula is a conjunction of (possibly negated)
atomic constraints. And we call a (P)TAGC simplified if its initial state does not appear in
its constraint formula. Our goal in this section is to show the following lemma:

» Lemma 8. For every Biichi- or parity-TAGC one can construct an equivalent conjunctive
and simplified Biichi- or parity-PTAGC (respectively).

Proof. Let A be a TAGC. We separate A into a set of conjunctive TAGC. Wlog. the
constraint formula C 4 is a disjunction of conjunctions C1, ..., Cy of possibly negated atomic
constraints. Then L(A) = L(A;) U...U L(Ag) where A; is obtained from A by replacing
the constraint formula with C;. Now all A; are conjunctive. In the following we show in
Lemma 9 how to obtain from a given conjunctive TAGC a set of conjunctive PTAGC. After
that we show in Lemma 10 how to construct from a given conjunctive PTAGC a conjunctive
and simplified PTAGC. Finally, according to Lemma 11 in Section 3.3, which states effective
closure under union, we obtain the desired automaton. <

» Lemma 9. For every conjunctive Biichi- or parity-TAGC A one can construct conjunctive
Biichi- or parity-PTAGC By, ..., B, (respectively), such that L(A) = L(B1) U...U L(B,).

Proof sketch. The proof follows a similar idea to [2], where an analogous statement was
proven for finite trees. The elimination of negated atomic constraints is based on the following
idea. If we want the automaton to check a negated constraint —(q ~ ¢’), we can use copies §,
¢’ of the states that the automaton can use in exactly one position of the run in place of ¢ and
¢'. With this modification, the constraint —(¢q & ¢’) can be rewritten as (§ 5 ¢'). The general
construction is a bit more technical because the automaton has to guess which negated
constraints are checked, and then apply the above idea to these constraints in parallel. <
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One can show, that the language of example 3, that is the language of all trees containing
a node labelled with a, is not recognizable by safety-PTAGC. Therefore, the statement in
Lemma 9 does not hold for safety automata.

» Lemma 10. For every conjunctive safety-, Biichi- or parity-PTAGC A one can construct
an equivalent conjunctive and simplified safety-, Biichi- or parity-PTAGC B (respectively).

Proof sketch. The basic idea is to delay the constraints that compare a subtree with the
full tree by one step. To be more precise, for a constraint gy ~ ¢’ involving the initial state
of A, the automaton B verifies that at each position u € dom; at which ¢’ appears, the label
t(u) is identical to t(¢), and it also verifies that the right subtree t|,o is equal to t|g as well
as that the left subtree t|,; is equal to t|; (similarly for disequality constraints). <

3.3 Closure Properties

We now analyze the closure properties of tree automata with global constraints for infinite
trees. As it turns out, the closure properties with regard to Boolean operations are identical
to the case of finite trees ([2]). But the proofs sometimes require a few extra steps, since we
use a model with a single initial state.

» Lemma 11. The class of languages recognizable by conjunctive and simplified PTAGC is
effectively closed under union.

Proof. Let A; and A be conjunctive and simplified parity-PTAGC. Wlog. Q4, N Q4, =
. Define the automaton Ay := (Q, %, gstart, A, p, C), where Q = {qstart} U Q4, U Q4,,
A=A UA A, U{(gstars, @, ¢ q") | (q(;‘l,a,q’,q”) € Ay, \/(q()“z,a,q’,q”) € Ay, }. For each
q € Qa,, p(q) := pa,(q) and for each ¢ € Q4,, p(q) = pa,(q). (P(gstart) can be defined
arbitrarily.), and C' := Cy, A C4,.

Note that Ay is indeed conjunctive and simplified and it holds that L(Ay) = L(A;)UL(A2)
(since if A; is positive, C 4, is satisfied if no state form @ 4, appears in the run). Also note
that if A; and As are safety- or Biichi-PTAGC, then so is Ag. <

» Theorem 12. The classes of languages recognizable by Biichi- and parity-TAGC are
effectively closed under union and intersection, but they are not closed under complement.

Proof sketch. The closure under union follows from Lemma 8 and Lemma 11. The closure
under intersection can be shown by a standard product construction. For showing the
non-closure under complement, we can closely follow the ideas from [9] for the corresponding
result on finite trees. The idea is to take a language, for which the automaton would have
to verify infinitely many independent equalities. On the other hand, to check membership
for the complement language it suffices to guess only a single disequality. Concretely, we
can show that for ¥ = {a,b}, the language L := {t € T¥ | Vi € N : t|gi;0 = t|gi11} is not
recognizable by a TAGC but its complement can be accepted by a Biichi-TAGC. <

Since Lemma 9 does not hold for safety automata, we have to prove closure properties in
a different way in this case.

» Theorem 13. The class of languages recognizable by safety-TAGC as well as the class
of languages recognizable by safety-PTAGC is closed under union and intersection, but not
under complement.

Proof sketch. The proof in the case of PTAGC follows exactly the proof of Theorem 12. In
the case of TAGC the we make use of the trick from example 3 (describing a reachability
condition with the constraint formula). <
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4 Decision Problems

In this section, we first present some undecidability results, and then show the decidability
of the emptiness problem for PTAGC, which only use equality constraints.

4.1 Undecidability Results

The universality problem is to decide, given a TAGC A over ¥ whether L(A) = T¥.

The universality problem for tree automata with constraints on finite trees was shown
to be undecidable in [8]. Therefore the following theorem is not surprising. In principle,
we could give a reduction from the case of finite trees, using the results from [8] and [10].
However, one can also easily provide a direct proof by a reduction from the halting problem
of two-register machines.

» Theorem 14. The universality problem for Bilichi-TAGC is undecidable, even for Biichi-
PTAGC without disequality constraints.

The regularity problem is to decide, given an automaton .4, whether L(A) is regular.
Barguné et. al. have shown the undecidability of the regularity problem on finite trees.

» Theorem 15 ([2]). The regularity problem is undecidable for tree automata with global
equality constraints for finite trees.

» Corollary 16. The reqularity problem for Biichi-TAGC is undecidable.

Proof Sketch. From a given tree automaton A with global equality constraints on finite
trees (for a formal definition see eg. [8]) over the alphabet ¥ construct a Biichi-TAGC A’ over
Y U{L} where L is a new symbol, such that A" accepts precisely those trees t’ € Ty | (L} for
which there exists a tree t € L(A) with ¢/(u) = ¢(u) for all u € dom; and ¢'(u) = L for all
u & domy. Then L(A) is regular if and only if L(.A) is regular. <

4.2 Emptiness Problem

We now discuss the decidability of the emptiness problem for TAGC. To be precise, we prove
that the emptiness problem for parity-PTAGC without %-constraints is decidable. We do
this by a reduction to rigid equality constraints (recall that rigid PTAGC have only reflexive
As-constraints).

We first note in Lemma 17 that for rigid parity-TAGC without #%-constraints, the
emptiness reduces to the case without constraints, which is known to be decidable (see,
e.g., [23, 24]). In Lemma 20 we then present a construction to obtain a rigid automaton
(this construction also works in the presence of non-reflexive disequality constraints, while
Lemma 17 only works without disequality constraints). The construction in Lemma 20 relies
on the existence of memoryless runs for conjunctive parity-PTAGC (to be defined below),
which we prove in Lemma 18.

» Lemma 17. For each rigid parity-TAGC A without %-constraints, L(A) = 0 if and only
if L(ta(A)) = 0.

Proof. It trivially holds that L(A) C L(ta(.A)). Thus we only have to show that L(ta(A)) # 0
implies L(A) # (). Now let L(ta(A)) # 0. Then the standard emptiness game (see [23, 24])
for parity tree automata gives us a tree t € L(ta(A)) with accepting run p such that for all
u,u’ € domy, p(u) = p(u') implies t|,, = t|,. Therefore p is an accepting run of A as well,
which implies L(A) # 0. <
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Let A be a parity-PTAGC and t € Ty be a tree. Let p be a run of A on t. We say p
is memoryless if for all nodes u,u’ € dom; we have that p(u) = p(v') and t|, = ¢|,» implies
plu = pluw- That is, if p is in the same state at two nodes with identical subtrees, then p is
the same on these two subtrees.

» Lemma 18. Let A be a parity-PTAGC and let t € L(A) be a tree accepted by A. Then
there exists a memoryless run of A on t.

Proof sketch. A corresponding result is known for standard parity tree automata (see [26,
end of Section 7]). The idea is to modify the membership game for an automaton A and a
tree t (called coloring game in [26], Automaton-Pathfinder-Game in [24], and referred to as
T 4. in [23]) by quotienting the game graph w.r.t. equal subtrees. A memoryless (also called
positional) winning strategy for the player called “Automaton” in this new game then yields
a run of the desired form. In the presence of constraints, we additionally need to start from
an accepting run of A, and restrict the game to the positions corresponding to the run. <«

» Example 19. Lemma 18 requires the automaton A to be positive. This requirement is
indeed neccessary, since there exists a TAGC that recognizes a non-empty language, but
does not have a memoryless run: Define the safety-TAGC A := ({qo,q1, 92}, {a}, q0, A, C)
by setting A := {(qo,a,q1, ), (90, @, g2, 90), (q1,a, 0, 90), (42, @, 0, q0)} and C := —(qo #
q1) A —(qo % q2). For C to be satisfied on the only tree ¢ over the alphabet {a}, both states
g1 and ¢o have to appear. But there is no memoryless run of A in which both states appear.

» Lemma 20. For each conjunctive and simplified parity-PTAGC A without reflexive %-
constraints, one can construct an equivalent rigid and simplified parity-PTAGC A’.

Proof. Let A be the given conjunctive and simplified parity-PTAGC. The automaton A’
that we construct basically guesses a memoryless run of A on the input tree and verifies
that it is indeed an accepting run. The difficulty is that A’ can only use reflexive equality
constraints in order to verify the equality constraints imposed by the guessed run of A.
Assume, for example, that g = ¢’ is a constraint of A, and that ¢ and ¢’ appear in the run
p of A that is guessed by A’. In order to check equality of the subtrees at the positions in
which ¢ and ¢’ occur in p, A’ needs to go into the same state at all these positions. Thus, A’
cannot distinguish anymore between positions with ¢ and ¢’. However, at the same time, A’
has to check that the parity condition is satisfied along all the branches of the guessed run
p. For this purpose, we use the existence of memoryless runs, as guaranteed by Lemma 18.
Since all subtrees at ¢ positions in the run are the same, in a memoryless run, all subruns at
q positions are also the same. We can speak of the run from ¢. Intuitively, the automaton
A’ guesses how these subruns from the constrained states are connected. That is, if in the
run from ¢ there is path that leads to ¢’, and k is the maximal priority on this path, then A’
stores this information. If, furthermore, in the run from ¢’ there is a path to ¢ with maximal
priority k', then the maximum of k, k¥’ has to be even (otherwise, the underlying run of A
would contain a rejecting path, and A’ has to guess an accepting run of A).

Obviously, the problems and ideas described above are not restricted to pairs of states: If
there is an additional constraint of the form ¢’ ~ ¢”, and q, ¢, q" all occur in the run, then
the states q,¢’,q"” are in the same class. Formally, for a given subset X of the states, the
equality constraints of A naturally define a relation over X. We take the symmetric and
transitive closure of this relation. The class of a state ¢ (in the set X) consists of all states
that are related with ¢ in this closure. Note that the class of ¢ is empty if and only if ¢ is not
related to any other state from X by an equality constraint. We say that ¢ is a constrained
state (again w.r.t. X) if its class is nonempty.
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The automaton A" guesses the set X of states occurring in the run of A, for each class
a set S C X of states that can occur at a subtree corresponding to that class, and for all
(S,q) and (S',¢") with ¢ € S and ¢’ € S/, how these states are connected in the subruns on
the subtrees. The information about the connections is stored in a graph G. This is a fixed
information (X, G) that is guessed at the beginning of the run and does not change anymore.

Then A’ starts in the initial state of A and guesses a run of 4. When the guessed run
enters a constrained state ¢, then A’ goes to a state that starts simulating runs from all the
states that can occur at the root of the subtree of ¢. Whenever one of the simulated runs
enters a constrained state, then this is only possible if the other simulated runs agree with
the information on the connection of subruns stored in G. In this case, the simulation is
restarted from the set of the new constrained state.

Formally, let A = (Q,%, A, qo,p,C) be a conjunctive and simplified parity-PTAGC. We
start by defining the graphs that where informally explained above. G4 is defined as the set
of vertex- and edge-labelled directed graphs G = (Viz, Eg, Vg, ta) with
1A. vertex labels vg : Vg — {(S,q) € 29 x Q | ¢ € S} (as explained above, a set S

corresponds to the set of states that appear at the root of some subtree that is constrained

by an equality constraint in the run of A).
1B. Each two vertices have different labels, and for each vertex with label (.5, ¢) and each

¢’ € S there is a vertex labelled (S, ¢).
1C. For each ¢ =~ ¢’ € C, whenever labels (5,q) and (S’,¢') appear, then S = S’ (each

class is contained in a unique set). And for each vertex labelled (.5, q) there are states

q,q" € S with ¢’ = ¢" € C (each set contains at least one class).
1D. For each ¢ % ¢’ € C with g # ¢/, there is no vertex labelled (5, ¢) with ¢’ € S (states

with a disequality constraint cannot appear at the root of the same subtree).
2A. edge labels ug : Eg — (2P(@\ (). (Intuitively, an edge label for an edge (S, q) — (S’,¢’)

encodes the allowed maximal priorities on the paths from ¢ to ¢’ in the run of A.)
2B. for every cycle ejes ... e, with e; € Eg, and all x1,x9,...,z € p(Q) with z; € pg(e;),

we have max{z; | 1 <14 <k} is even (concatenating the paths encoded in the edges of G

leads to an accepting path in the run of A4).

Note that properties 1A. and 1B. imply that G4 is finite. These graphs are used to define
“allowed transitions” such that the underlying guessed run of A satisfies the parity condition.

» Example 21. We give an example for such a graph G. Let A := (Q, X, A, go,p, C) be the
parity-PTAGC with

Q = {quqlvqllan7QQ7q3aq4}
A= {(%733’(]17(13)» (Q1a$aQ17Q4)7 (qllaxaq47Q2)7 (qQamaq37Q3)7

(g3,2,05,45), (45,2,q3,03) (44, 7,94, q4) | @ € 2}

p(a0) = p(a1) = p(aq1) = p(qa) = 0 and p(q2) = p(¢3) = 1 and p(gs) = 2

Ci= (=q)Ne2=q)
One possible graph in G 4 is depicted in Figure 1. The constructed automaton A’ then can
guess X = () as the set of states that are allowed to appear in the run. And it can guess the
graph from Figure 1 to remember allowed transitions.

For the formal construction of A’, we use the following notation. For each S C Q we
enumerate the states as S = {qls,...,ql“%l}, where qf < qu for all j < |S| and < is an
arbitrary but fixed total order on Q.

Now define A" := (Q', %, A’, gy, Acc’, C") where
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(S1,q1) {oy (S2,q2)
(1,2}
(Sl7q/1) {2} =e (SQaqé)

(Sl7q4) o> {0} {0} (SQa Q4)

Figure 1 One possible graph from G4 where A is the parity-PTAGC from example 21. Here
Sy is the set {q1,q},qs} and S» is the set {g2,q5,q4}. Note that every circle can produce only a
maximum priority which is even.

Q" :={ar} U (Qstate X Qsix), Where

Qstate g 2Q X U (Q X p(Q))k and Qﬁx g QQ X GA
k<|Q|

such that ((S,w), (X,G)) € (Qstate X Qsx) if and only if the following properties are
satisfied (the intuition of the components is explained below):

Either S = {qo} or S C @ such that there is a vertex labelled (5,¢) in G for some

(and therefore all) ¢ € S.

W € (X x p(X))IS.

For each vertex labelled (57, ¢") in G, we have ¢’ € X (and thus also S’ C X).
Informally, Qstate contains two kinds of information: The set for the most recently visited
class, and a vector which contains for each element of that set a state and the highest
priority visited up to now. This information is updated in every step. As explained
earlier, Qgx contains information that is guessed once at the very beginning and then
remains unchanged for the remainder of the run.

9% = qr

A’ = Apig U Agrans, where Ajyj contains the transitions that are applicable at the
initial state, and Agans contains all other transitions. We first define Agpans: Let
((S,w),(X,G)) € Q be a state and let a € ¥ be a letter. The automaton chooses for
each entry w; = (g;,p;) in W = (wy,...,wg|) a transition (g;, a,q?7qj1) € A, such that
g5 € X for both i € {0,1}, and one of the following holds:

Either {¢} | j < [S|}N{g € X | 3¢ € X : ¢~ ¢’ € C} = 0. That is, none of the guessed

successor states in direction ¢ is a constrained state in X. In this case, the i-successor

is ((S, @), (X, Q)), where W' := ((qi, max(pl,p(q{))), e (q‘is‘,max(p|s‘,p(q‘is‘)))).

Or there is a constrained state q;'- and a vertex label (57, q;) of G, such that

S = {qo} (the run enters a class for the first time), or

S # {qo}, and for each j < |S|, the edge label p(e;) of the edge from (S, ¢;) to
(s, q;) contains the priority p; (the path segments of the simulated runs are encoded
in G).

In these cases, let wgr = ((qlsl,p(qf/)), . (q%,l,p(qu,‘))), and the i-successor be

the state ((S’,wgr), (X,G)). (The simulation of the runs is reset to the states in S’.)
This fully defines Ayans. We conclude the definition of A’ by setting

A = { (ar, 0. ', P") | ((({ao}. (a0, p(a0)))). (X. G)),a, P, P")
S Atransa (Xa G) € Qﬁx}-

STACS 2019
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Let P C Q' be the set of states ((S,ws),(X,G)) with ws = ((¢7,p(q})),...,
(q‘ss‘7p(q‘ss‘))), which are used when a class is entered (see the second case in the
definition of A¢ans). By a slight abuse of notation, we say for ¢ € Q and P € Q' that
q € Pif P=((S,w),(X,G)) and W = ((q1,p1),-- - (qs):p)s])) With ¢ € {q1,...,qs}-
Then define C" := Apcp P~ P N Appregrgnqecaepqger P # P

Acc’ should verify, that each branch is accepting. For each branch in a run, there are
two possibilities: Either there are infinitely many states in P or not. If there are, then
the allowed transitions in G verify that each branch of the run of A that is simulated in
this branch of the run of A’ was accepting. In the case that there are only finitely many
states from PP, the acceptance condition has to verify that in each of the branches of the
run of A that are simulated along this branch of the run of A’, the maximum priority
visited infinitely often is even.

Instead of directly defining Acc’, we use an approach similar to Lemma 6. Here we have
to be very careful to not reintroduce new irreflexive constraints. First note that it is
possible to construct a deterministic parity word automaton, that reads the states along
the branches in a run of A’, and verifies that (assuming no additional states from P are
read) all described paths of A satisfy the acceptance condition of A. This can easily be
seen if one constructs a nondeterministic automaton for the complement language, i.e.
guess an index j € 1,...,|Q|, and check whether the highest priority along this branch is
odd. This automaton then can be determinized and complemented (see [23]). Let this
deterministic word automaton be B = (5, @, so,d, pg). Define the deterministic parity
word automaton B’ := (S U {5}, Q, so, s/, pg’) where

S ifqgeP
0p(8,q) := X s ifggPand s=35,
0(s,q) ifggPands+#5

max(p(S)) if max(p(S)) is even

pp(s) :=pp(s) for all s € S and pp(8) := {max(p(s)) +1 if max(p(S)) is odd.

That is, B’ behaves like B on states in @ \ P, and whenever a state from P is read, it
transitions into §. Thus this automaton accepts precisely those sequences of states that
satisfy the acceptance condition Acc’. We then construct the automaton A’xB’ according
to Lemma 6. A closer look at the construction of A’ x B’ reveals, that this did introduce
non-reflexive ~-constraints of the form (g, s) ~ (¢, ') for ¢ € P and s € SU{5}. But by
the definition of B', dp/(s,q) = § for all ¢ € P, s € SU{3}, and therefore states (¢, s) with
g € P and s # § are unreachable. Removing these states from A’ x B’ does not change
the recognized language, but eliminates all non-reflexive az-constraints. |

It turns out that Lemma 20 does not hold, if we allow reflexive %-constraints. One can
show, that the language {t € T¥ | t|o = t|1 and t|p:i # t|os for all ¢ # j} is not recognizable
by a PTAGC with reflexive ~-constraints.

Lemma 8, Lemma 20 and Lemma 17 combined with the fact that the emptiness problem
for parity tree automata without constraints is decidable, imply the following theorem:

» Theorem 22. The emptiness problem for parity-PTAGC without %-constraints is decidable.

In order to compute a concrete witness for the non-empiness, the following result is important.
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Table 1 Summary of our closure and decidability results.

safety- Biichi- parity = Muller
PTAGC TAGC PTAGC = TAGC PTAGC = TAGC
Union (U) v v v v
Intersection (N) v v v v
Complement (—) X X X X
Emptiness (= (07) V' without % ? vV PTAGC without # | vPTAGC without %
Universality (= T%7) ? X X
Regularity ? X X

» Corollary 23. Each nonempty language recognizable by a parity-PTAGC without disequality
constraints contains a reqular tree.!

Proof. This Corollary follows from the proof of Lemma 17, since the regular tree obtained
from the membership game of standard tree automata (see [23, 24]) is also contained in the
language of the parity-PTAGC. |

5 Conclusion

We have made a first step in extending the theory of TAGC from finite to infinite trees. The
conversion of acceptance conditions works in the same way as for tree automata without
constraints. Our results on closure and decidability properties of TAGC are summarized
in Table 1. As shown in the table, the models of TAGC and PTAGC have the same
expressive power for Biichi- and parity conditions. Safety conditions are not preserved by
our construction of PTAGC. In particular, we conjecture that Lemma 9 does not hold for
safety-TAGC. In Example 3 we present a language that is recognizable by a safety-TAGC
that makes use of Boolean negation in its constraint formula. We are convinced that this
language is not recognizable by safety-PTAGC, but currently we only have a proof in the
case that we disallow reflexive s-constraints. Showing that this language is not recognizable
by safety-PTAGC would also show that safety-PTAGC are not closed under complement.

The main open problem that remains, is the emptiness problem in the presence of
disequality constraints. The pumping arguments that are used in the case of finite trees [2],
do not (directly) generalize to infinite trees because an infinite tree can be equal to one of
its subtrees. So it seems that one needs to develop new methods to deal with disequality
constraints on infinite trees.
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