
XML Prague 2024
Conference Proceedings

Prague University of Economics and Business
Prague, Czech Republic

June 6–8, 2024

XML Prague 2024 – Conference Proceedings
Copyright © 2024 Jiří Kosek

ISBN 978-80-907787-2-6 (pdf)
ISBN 978-80-907787-3-3 (ePub)

Table of Contents
General Information ... v

Sponsors ... vii

Preface .. ix

Stormy First Draft – Marta Bartnicka .. 1

Navigating and Updating Trees of Maps and Arrays – Michael Kay 13

JSONPath: an IETF Proposed Standard, with comparisons to XPath –
Alan Painter ... 37

Containerizing XML Build Tools to Facilitate CI/CD – C. Edward Porter 53

QTI and InDesign – Mark Dunn .. 63

XMQ/HTMQ - see XML and HTML in a new light – Fredrik Öhrström 85

<custom-element> DCE introduction – Sasha Firsov .. 103

Why Adding Some CSS Isn't Enough – Anne Rudolf ... 113

XML preserved from the past and into the future or? – Karin Bredenberg 123

Transparent Invisible XML – Nico Verwer .. 137

Round-tripping Invisible XML – Steven Pemberton .. 153

Towards RESTful XQuery 2.0 – Adam Retter ... 165

Tutorial Development XML Mashup with XProc – Erik Siegel 199

Modern Benchmarking of XQuery and XML Databases –
Alan Paxton and Adam Retter .. 211

Simple Semantic Data Modeling in XML (SeMoX) –
Renzo Kottmann, Cedric Pauken, and Andreas Schmitz .. 231

GEDCOM to RDF – Robert Walpole ... 251

Bridging XDM types in multiple native type systems –
O'Neil Delpratt and Matt Patterson ... 263

natural-xml-diff: an XML Diffing Library – Martijn Faassen 281

It's Useful After All — VIN Numbers, DITA, and iXML – Ari Nordström 295

iii

iv

General Information

Date

June 6th, 7th and 8th, 2024

Location

Prague University of Economics and Business
W. Churchill Sq. 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, XML Prague, z.s.
Káťa Prouzová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s.
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Petr Cimprich, Wunderman Thompson
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), Prague University of Economics and Business
Ari Nordström, Creative Words
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, SAP SE
John Snelson, Progress Software
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Tovey-Walsh, Saxonica
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, VŠE (http://fis.vse.cz)

v

http://xmlprague.cz/about
http://fis.vse.cz

vi

Sponsors

oXygen (https://www.oxygenxml.com)
Antenna House (https://www.antennahouse.com/)
le-tex publishing services (https://www.le-tex.de/en/)
Saxonica (https://www.saxonica.com/)
Pantopix (https://pantopix.com/)
Evolved Binary (https://evolvedbinary.com/)

vii

https://www.oxygenxml.com
https://www.antennahouse.com/
https://www.le-tex.de/en/
https://www.saxonica.com/
https://pantopix.com/
https://evolvedbinary.com/

viii

Preface

This publication contains papers presented during the XML Prague 2024 confer-
ence.

In its 17th year, XML Prague is a conference on XML for developers, markup
geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big
Data and recent advances in XML technologies. The conference provides an over-
view of successful technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 6–8 June 2024 at the campus of Prague University
of Economics and Business. XML Prague 2024 is jointly organized by the non-
profit organization XML Prague, z.s. and by the Faculty of Informatics and Statis-
tics, Prague University of Economics and Business.

The full program of the conference is broadcasted over the Internet (see
https://xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday run in an un-conference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday is devoted to a
classical single-track format and papers from these days are published in the pro-
ceeedings.

Since 2022 both Markup UK and XML Prague conferences are held in alter-
nate years. We are looking forward to meeting you in May/June 2025 in London
and in June 2026 in Prague.

We hope that you enjoy XML Prague 2024!

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

ix

https://xmlprague.cz

x

Stormy First Draft
Marta Bartnicka

Dolby
<marta.bartnicka@dolby.com>

Abstract

Stormy is a web tool developed to deliver generative AI for our internal
users with two goals:

• enhance baseline AI with company-specific technology information,

• protect the company intellectual property.

This document covers the following key points:

• The genesis of the StormyAI project: the two goals explained

• How we develop the tool: web UI, generative AI models under the hood,
and how we “teach” genAI about our technologies

• How we capture use cases of information developers, support, and engi-
neers: summary of learnings from alpha and beta phases

• Copyright and Licensing considerations for AI-generated content

The presentation will include live demo of Stormy AI - in real time if I can
get into company VPN, or from a back-up recoded demo. A significant part
of the demo will be generating first draft of DITA XML documentation,
working with XSLT and with custom XML.

1. The genesis of the StormyAI project
The project idea and name was inspired by the concept of Shitty First Draft1 and
named “Stormy” because “Project Shitty” might not be received well at the com-
pany. The main purpose of enabling generative AI for our internal users was to
help them create first draft (whatever the specifier) for the writing of any kind
that they need to perform within their job duties.

With that, we had to overcome two limitations of the publicly available genAI
applications:

• Enhance baseline AI with company-specific technology information, because
only a small fraction of our company’s documentation is publicly available
and could be harvested by tools like ChatGPT into their training resources.

1 https://patrikedblad.com/productivity/the-shitty-first-draft/

1

https://patrikedblad.com/productivity/the-shitty-first-draft/
https://patrikedblad.com/productivity/the-shitty-first-draft/

• Protect the company intellectual property, as the company’s business is mainly
about developing and licensing technologies, and thus, we wouldn’t want to
feed the public AI models with our content.

2. How we develop StormyAI

2.1. ML infrastructure
The core infrastructure supporting StormyAI is AWS Bedrock (Amazon) that
offers a choice of foundation models: Anthropic Claude, Meta Llama, Mixtral,
and Stable Diffusion. Our infrastructure allows to explore multiple LLMs with
the same web UI, user authentication, and company content delivered to the AIs.

Stormy First Draft

2

Stormy First Draft

3

2.2. Information storage, retrieval, and security

AI systems are only as good as their data. To make Stormy useful, we need pro-
prietary company content ingested into the system and made available to the
LLMs. This includes gathering and filtering content from our public websites,
from the portal that delivers proprietary content to licensing clients, and from the
corporate style guides. We consider adding more content from the resources like
company Confluence or GitLab repositories, however that will require more
advanced filtering of either draft/obsolete, or classified/confidential content.

Stormy’s web UI allows users to select one or more of the data sources availa-
ble to them. Users can also select how they want the LLM to process the propriet-
ary data:

• Search the company content and return best results without generating any-
thing

• Refine response generation via Retrieval-Augmented Generation2, where the
content that best matches a user prompt is added as additional context

• Generate response from a baseline AI model, without adding any company
content.

Furthermore, we have built features to customise the contextual information
available to the LLMs within individual user conversations, allowing users to
upload files and to remove prompt/response pairs from a conversation.

2 https://aws.amazon.com/what-is/retrieval-augmented-generation/

Stormy First Draft

4

https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://aws.amazon.com/what-is/retrieval-augmented-generation/

The platform leverages existing company authentication infrastructure to
manage internal user permissions and the data sources they can use. We have
built an application that enables users to interact with LLMs with a much greater
level of control than commercially available tools.

2.3. Application layer and AI usability
For StormyAI, we needed to create an accessible and frictionless user experience,
both from application and cultural perspectives. Our user base spans from infor-
mation developers aka technical writers, through support specialists, to IT and
other technology engineers. We hope that our frontend gradually turns the “mini-
mum viable product” prototype into a “minimum lovable product” that encour-
ages users to interact with the platform and to provide early feedback. Based on
the expectations of our alpha users, we chose a conversational interface that
allows users to refine their prompts and to switch LLMs mid-conversation.

As we iterated on the development of the platform, we provided prompt engi-
neering training and built a community of nearly 400 users to learn and share
knowledge about how to effectively use LLMs to create stormy first drafts. The
tool allows to share a conversation or individual prompts, making it easier for
users to exchange useful output and prompting examples.

Stormy First Draft

5

3. How we capture Stormy use cases

3.1. Initial assumptions

When designing StormyAI, we considered the following use cases:

Information Developers Support Specialists Engineers
Create an initial draft of
documentation

More effectively resolve
customer issues

Quickly build documenta-
tion

Identify useful terminol-
ogy

Identify how to improve
products and training

Reuse the existing content

Detect inconsistencies in
their content

Expand technical knowl-
edge and expertise

Integrate genAI into tools

For all our internal users, we also expected the following enhancements:
• Writing in the company style
• Writing in English as a second language.

3.2. Learnings from alpha phase

Alpha user acceptance testing took about 3 months. Our user base grew from 20
to 200. The early adopters team, as planned, consists of Information Developers,

Stormy First Draft

6

Support and Engineers. As our users explored generative AI, they have docu-
mented quite a few use cases that we’d not think about, for example:
• Generate code for a Mermaid diagram
• Migrate legacy code for terminology exports from XSLT to Python
• Provide better versions of a draft UI message (UX writing)
• Convert draft notes from an engineer describing a new technology into a ref-

erence DITA XML topic
• Rewrite a text following certain style rules or provided patterns.
In the alpha phase, our Information Development users have quickly proven that
StormyAI can generate valid DITA XML right out-of-the-box. DITA standard is
public, well documented, and the Internet is full of good DITA examples - there-
fore, generic AI models can generate DITA that, syntax-wise, requires little or no
editing.

The hard part is getting the right information into the DITA or any other type
of content. We identified what we call “safe” and “unsafe” use cases for genera-
tive AI:

A safe use case is when a person prompting the AI knows exactly what the
result should be, so they can fully check the correctness of the output - genAI is
their “stupid digital assistant” that saves tedious, repetitive work. Examples of a
safe use case can be:
• Editing your own content for linguistic correctness, because you know what’s

there factually
• Converting a paragraph to bullet point, because you also know and can check

the accuracy and completeness of the result
• Generating or reworking code, because code either works and does what you

want, or not
• Converting unstructured chapter of text into DITA XML.

Stormy First Draft

7

An unsafe use case is when a person prompts AI for information they don’t have,
or only have a part of it; in this case, they cannot immediately validate the output
for factual correctness. In the unsafe use cases, we strongly recommend our users
to validate the output in another reputable source of information or with an SME.
Examples of an unsafe use case can be:
• Requesting an explanation of a technology that you’re not familiar with,

because the explanation can be hallucinated
• Asking for a few examples of a concept which you only know by its name,

because some of the examples may not be valid (as the last point in the image
below)

• Summarising a large document which you never read, because the summary
may be incomplete or have added some related information that was not in
the original document

• Converting draft notes into DITA XML documents that follow company
standards of structuring content, because generative AI may interpret the
standards incorrectly, even if provided an explanation or examples (moreover,
some information from examples may bleed into the output).

Note that unsafe use cases can still be beneficial to Stormy AI users; the AI
responses bring ideas to check and directions to explore that one would not think
of without a significant research. The key to success is to evaluate.

3.3. Learnings from beta phase
• Using Dolby Sources improves technical quality and factual correctness of

StormyAI outputs, but we still need to check them
• Even users with little programming experience successfully use StormyAI to

generate scripts or rework legacy code (see the XSLT/XML use cases below)

Stormy First Draft

8

• Safe use cases - text reworking - are in high demand from both native and
non-native English users

• StormyAI was tested for summarising Teams meeting transcripts and is pre-
ferred over Microsoft Copilot

• StormyAI is explored by various user groups: technical writers, programmers,
engineers, QA, legal, marketing, support

• Users request more Dolby Sources or capability to have persistent storages of
their own context

• Only 3% users take time to rate StormyAI outputs

3.3.1. GenAI as help with XSLT

Generative AI is useful when we need to enhance complex XSLT code, for exam-
ple:
• Analyse and rework legacy templates (e.g. consistent footnote handling in

custom PDF processing)
• Analyse algorithms from legacy XSLT and rewrite the code in Python for fur-

ther development (e.g. termbase extract parsing).

3.3.2. GenAI as help with other XML processing

Another area where GenAI is of great help is extracting data from XML or build-
ing XML from a specification or an example:
• Extracting terminology from terminology database export and generating

Oxygen Terminology Checker file.

4. Copyright and Licensing considerations
Generally permitted use of copyright protected material and AI are not entirely
clear yet. Issues around using copyright protected materials for AI purposes are
still being worked out. Therefore, we advise our internal users to carefully check
any AI-generated content for potential reuse of 3rd party copyright-protected
resources that could have been absorbed into the training data for one of the
generic AI models, with or without explicit consent of the creators and owners of
those resources.

A lot of documentation and other content produced by our Information
Developers or Engineers will, ultimately, become licensed assets of the company.
Therefore, we advise our users to apply to AI-generated content the same checks
and rules as they apply to human-generated output, Internet search results, or
code from StackOverflow:

Stormy First Draft

9

• Check for factual and linguistic correctness - consult SME, test code, copy edit
documentation, etc.

• Check and attribute accordingly for the 3rd party license, copyright, or other
rights (including open source)

• At some point, we may implement a mechanism for tagging AI-generated
information3 for downstream use - to be determined.

Until further notice, our users must not directly use AI-generated content in the
following cases:

• Building source code
StormyAI is not yet approved for source code. Dolby has not identified a

legal framework for this use case. If generative AI is used to build code, and
that code is actually from open source or code owned by others, then we
might not be able to recognize revenue for that code or we might face chal-
lenges from others.

• Publicly sharing generative AI images in marketing material
Images generated from AI for marketing materials, such as presentations

and documents, could be risky and possibly lead to reputational harm. There
are cases where a third party copyright owner claims that the AI generated
images infringe the third party’s rights.

5. Conclusions
1. Generative AI is more helpful than we expected, and at the same time, more

prone to factual errors (see the “unsafe use case” example above)

2. Dolby is obliged to deliver quality solutions that are technically correct; we
are not yet ready to build a customer-facing genAI solution.

3. In the following months, we focus on improving StormyAI for our internal
users (nearly 400 and counting!)

4. We need to explore the following areas:

• More data sources, custom data sources

• Textual output quality checks where possible

• Legal clearance for AI code generation

• Generating diagrams and images

3 https://artificialintelligenceact.eu/

Stormy First Draft

10

https://artificialintelligenceact.eu/
https://artificialintelligenceact.eu/
https://artificialintelligenceact.eu/

6. Our next steps with StormyAI

6.1. Stormy Agents

Similar to “custom GPTs” by OpenAI, Stormy Agents will be a platform for
Dolby employees to create a curated LLM experience for their specific use cases:

• Upload a set of documents to StormyAI to create a data source

• Specify custom prompt, context or examples

• Pre-select model or temperature.

Stormy Agents will enable more collaboration and sharing of StormyAI in custom
workflows.

6.2. StormyAI Analytics

We start implementing automatic metrics to assess the quality of AI outputs. For
example, we will compare prompts and responses to assess:

• Accuracy - does the response match prompt intent and context?

• Relevance - does the information address the prompt sufficiently?

• Appropriateness - does the tone/style fit the prompt context?

• Length of a conversation per topic - how many prompts resolve around same
subject?

We also started gathering more user feedback to benchmark automatic metrics vs.
user experience - without user feedback, the metrics can only tell when AI out-
puts are useless (for example, not related to prompts), but not whether they are
useful and safe to use.

Stormy First Draft

11

12

Navigating and Updating Trees of Maps
and Arrays

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

This paper describes new features proposed for the 4.0 versions of XSLT,
XPath, and XQuery, designed to make it easier and more efficient to query
and update trees of maps and arrays, such as those typically derived by
parsing JSON.

1. Terminology
Before we start, let's introduce some terminology.
• I'll use the term QT3 to refer to the family of specifications that includes XSLT

3.0, XPath 3.1, and XQuery 3.1 (all published in 2017); and I'll use QT4 to refer
to the proposed 4.0 versions of these specifications which can be found at
https://qt4cg.org/

• I'll use the term JTree to refer to an XDM data structure comprising a tree of
maps and arrays; and I'll refer to the nodes in this tree as JNodes. This termi-
nology isn't in the spec, but I find it convenient. The "J" stands for JSON,
because these trees often originate from JSON data files, but it's important to
remember that the XDM model for maps and arrays is much more liberal than
JSON: for example, keys in a map can be any atomic type, not just strings.

• In XDM, the term "node" means a construct like an element, attribute, or text
node in a tree that represents an XML document; and "tree" means a tree of
such nodes. I won't be talking much about XML in this paper, so when I do, I
will call these things "XML trees" and "XML nodes" to avoid any confusion.

2. What problem are we trying to solve?
One of the major new features in QT3 was support for maps and arrays as new
data types. There were two main motivations for this. One was to extend the
XDM data model with data structures that provided native representation of data
found in JSON files: although we had no ambition to treat XML and JSON as
equal citizens, we recognized that real-life applications had to be able to mix and
match data from different sources. The second motivation was that users were

13

increasingly finding that representing everything (including transient working
data) as XML could be cumbersome and inefficient.

Maps and arrays proved a very successful addition to the QT3 data model,
but experience has shown that they are not yet as well supported by language
features as XML node trees, and a significant part of the QT4 programme is
aimed at filling the gaps.

At the same time, we're trying to come up with language features that exploit
the intrinsic potential of maps and arrays to deliver performance benefits. In
standards and specifications, the emphasis is on defining language features; per-
formance objectives do not feature directly, but of course the design of language
features is informed by the experience of implementors and users.

3. Previous work
Over the years I have written a number of applications that stretched the bounda-
ries of what could be achieved with XSLT, and the challenges these posed are
documented in a number of previous conference papers.

Back in 2007 [2] I experimented with using XSLT to write a query optimizer. I
reckoned that implementing optimization rewrite rules is essentially a rule-based
tree-to-tree transformation task, and in principle is therefore an ideal fit for XSLT.
But my experiments suggested that doing tree rewrites in XSLT would be about
12 times slower than doing them in Java, which made the idea infeasible. But it
set me thinking about why XSLT should be slower, and what could be done to fix
it.

One potential way of avoiding the costs of transforming XML trees in such
applications is to represent internal data using maps and arrays instead. So in
2016 [3] I explored the potential for using the QT3 facilities for transforming
JSON. Although the XSLT 3.0 spec wasn't quite finished yet, development was on
the home run and there wasn't really much scope for making further changes.
That means the analysis in that paper of how to tackle JSON tree transformations
still represents the state of the art; and it's clear that even simple transformations
can be quite difficult. The conclusion of that paper was that there were significant
limitations in the QT3 specifications for manipulating maps and arrays, and that
indeed, the most practical way to implement several apparently-simple use cases
was to convert the data to XML, transform it as XML, and then convert back to
JSON.

At XML Prague in 2018 [4] I wrote about the problem of copying XML trees.
In particular, I explored whether we could make tree copying faster by using a
tree implementation that allowed sharing of subtrees. Node identities and parent
pointers would be created on-the-fly during downwards navigation. The results
were disappointing: while one particular operation (grafting a subtree) was dra-
matically faster, everything else (including all-important navigation operations)

Navigating and Updating Trees of Maps and Arrays

14

slowed down a little, meaning there was no bottom-line benefit. But there's also
an underlying problem: given a typical XSLT recursive-descent transformation,
you can't tell when there's a particular subtree that isn't going to change, and that
can therefore benefit from a fast copy operation. That's particularly true because
even when you think a subtree is being copied unchanged, there's usually some
hidden effect on the in-scope namespaces.

When I presented this paper, someone in the audience pointed out very
politely that I had re-invented a technique well known in functional program-
ming circles: zipper data structures, attributed to Gerard Huet [1].

At Markup UK in 2018 [5] I described the project that motivated some of this
thinking: the task of writing an XSD schema validator using XSLT 3.0. This
project (which was never finished to release quality) in fact made heavy use of
maps and arrays as its internal data structures. (The use of maps here was noth-
ing to do with JSON. It was primarily to enable a single pass over input XML
trees to return multiple results: for example multiple ID values found in the tree,
or multiple validation errors). The experience on this project led to the design of
record types as found in the QT4 drafts, to enable stronger typing of maps used
to hold heterogenous data; it also led to performance improvements in the way
that maps are implemented in Saxon.

The following year, back in Prague [6], John Lumley and I described a project
to implement an XSLT compiler in XSLT. The reason we used XSLT is that we
needed a compiler that would run in the browser, and writing it in Javascript was
too horrible to contemplate; in addition it seemed logical that since compilers are
all about multiphase tree transformations, and that's what XSLT is supposed to be
good at, it ought to be a natural fit. In any case, writing a compiler in its own lan-
guage is always considered to be good for a software engineer's soul. But there
were performance issues to tackle: issues already highlighted in the 2018 paper
on efficient copy operations.

The paper contains a very detailed account of the techiques we used to get the
performance up to a level where it was only three times slower than the existing
Java compiler. Two of the significant factors were the need to represent complex
values (such as data types) as strings so that they could be held in XML attributes,
and the cost of copying XML trees, which turned out to be significantly caused by
the complexity of getting the namespaces right. Unlike some of the previous
projects described, this one did in fact complete, and resulted in the XSLT com-
piler that we use today in the SaxonJS project: though we did end up writing
some critical parts (notably the XPath parser) in Javascript.

Most recently, my paper at Balisage in 2022 [8] covered similar ground to this
paper, but the thinking has evolved since then so I feel that an update is overdue.

A theme that runs through a number of these papers is the dilemma of parent
pointers. Should trees be implemented with parent pointers or not? Closely asso-
ciated with this is the question of whether nodes should have a persistent, perma-

Navigating and Updating Trees of Maps and Arrays

15

nent identity. As far as I'm aware, all tree models for XML have node identity and
parent pointers, and all tree models for JSON don't. There's nothing intrinsic to
XML or JSON that accounts for this difference, but it has become part of the cul-
ture. Without parent pointers and node identity, it's easy to share subtrees, which
means that updates can be very efficient (you only need to copy the parts of the
tree that actually change). With parent pointers, you end up copying the whole
tree every time you want to make a small change. But without the ability to refer-
ence data higher up in the tree, some queries (especially on recursive data struc-
tures) become much harder to express. Perhaps the reason XML trees always
have parent pointers is that XML is primarily designed for text processing, and
textual data structures are intrinsically recursive.

It's worth pointing out that despite the limitations identified in this paper,
maps and arrays in their QT3 form can be extremely useful. They play a key role,
for example, in the Java-to-C# transpiler described in [7], where they are used in a
way that doesn't encounter any of these problems.

4. The QT4 project
The project to create the 4.0 specifications was announced at XML Prague in 2020
[https://archive.xmlprague.cz/2020/files/xmlprague-2020-proceedings.pdf]; it took
a while to build momentum but it is now in full swing, with well-attended Zoom
meetings taking place weekly. To date 640 issues have been tabled, and several
hundred of these have resulted in new features in the specifications. Thousands
of test cases have been written, and both Saxon and BaseX have announced exper-
imental implementations.

The project operates under the auspices of a W3C Community Group. As
such, it receives some lightweight support and endorsement from the W3C
organisation, but is largely free to do what it chooses. There is no requirement,
for example, for specifications to go through milestones such as proposed and
candidate recommendations, or for transitions in status to be approved by a for-
mal vote among the wider W3C membership.

There is a great deal of new functionality in the QT4 specifications, much of it
associated with support for maps and arrays, but in this paper I am going to con-
centrate on three aspects: recursive query, point update, and rule-based transfor-
mation.

The adjective deep here means that we are looking at maps and arrays not just
as individual data structures, but at their use in combination to represent more
complex data sets, typified by the representation of a complete JSON document. I
refer to these as JTrees.

Navigating and Updating Trees of Maps and Arrays

16

5. Overview
In the following sections I'm going to present three areas where the QT4 specifica-
tions offer new language features: deep query, point update, and rule-based
transformation.

What I desrcribe in the paper isn't necessarily identical with the current snap-
shot of the published specifications. In some cases there are proposals to change
the current drafts that the community group is still working on. In some cases
there is a broad consensus on the way forward, in other cases proposals have
been put forward but not yet discussed, in other areas there have been discus-
sions but alternatives are still on the table. So what I present here is a mix of what
the current drafts actually say, and what I hope they will say in due course. It's
very much a personal perspective. And with the best will in the world, the final
specifications will have moved on from the current proposals. The process of
agreeing language specifications may be slow, but it is fairly good and distin-
guishing what works and what doesn't, and at finding incremental improvements
where they are needed.

6. Recursive Query
Let's look first at the question of recursive query.

The QT3 specifications offer the lookup operator ? as a rough equivalent of
the path operator / used for navigation in XML trees. It can be used both for
selection by key within a map, and for selection by subscript within an array.
Here is a simple example. Consider the example document used in the JSONPath
specification, representing four books and a red bicycle:

{
 "store": {
 "book": [
 {
 "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 {
 "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 {
 "category": "fiction",
 "author": "Herman Melville",

Navigating and Updating Trees of Maps and Arrays

17

 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 {
 "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 399
 }
 }
}

It is possible to find the average price of books by Tolkien with the query:
$data ?store ?book ?[?author = "J. R. R. Tolkien"] ?price => avg()

Most of this is QT3 syntax, but there's one new QT4 construct here, namely the
array filter expression ARRAY?[PREDICATE]. The takes an array, and filters it to
retain the array members that match the predicate, in exactly the same way that
XPath filter expressions have always been used to filter sequences.

To achieve the same effect in QT3, it is necessary to convert the array to a
sequence by writing book ? * [?author = "J. R. R. Tolkien"]. This works
fine in this case where all the members of the array are single items (in this case,
single maps), but is not useful in the general case where array members are arbi-
trary sequences: in such cases the QT3 solution is the higher-order array:filter
function.

The limitations of the lookup operator start to become apparent when the data
becomes more complex.

Firstly, QT3 offers no equivalent to the // operator used for searching the
descendant axis of XML trees. The // operator is useful for a number of reasons:
• It's a handy shorthand: it avoids having to spell out long and complex paths

in detail.
• It's useful where the same structure can occur at different places in the tree,

for example when searching the above structure for a price, which might be
the price of a book or of a bicycle. (The sample data here is a joke, but unfortu-
nately that's often also true of data found in the real world.)

• It's invaluable when handling recursive data such as an organisation chart,
where the same structures occur at different levels.

Navigating and Updating Trees of Maps and Arrays

18

Secondly, this path-based syntax can't be used for join queries. That's equally true
of XML-based path expressions using /, and the solution is the same: FLWOR
expressions. Let's suppose that we want to know (somewhat surreally) how many
books there are in the store that cost less than a bicycle. We can write:

let $bicycle-cost := ?store ?bicycle ?price
return count(?store ?book ?[?price lt $bicycle-cost])

This still leaves another usability problem: all selections have to be downwards.
There's no equivalent to the sibling, parent, or ancestor axes used when navigat-
ing XML. Now, it's arguable that these axes are most useful when searching text,
and are less needed for JSON because no sane person would use JSON for repre-
senting text. But even with structured data, they can be very handy, especially
when the data is recursive. A classic query is to find everyone who earns more
than their manager: //person[salary > ../salary]. Similarly, the sibling axes
are useful when data is ordered.

The map:find() function was a late addition to the QT3 specifications which
attempted to provide an equivalent to the // operator, but it has proved almost
entirely useless. The reason is that it only returns the values, it tells you nothing
about the context in which they were found. You can find all the values of first-
name in your entire dataset, but what can you do with the knowledge that the
names that appear are John, Jane, and Mary? Finding all the values of employee
(which are likely to be maps) is a bit more promising, but without the ability to
navigate up the tree to discover context (like the department or location of each
employee) the data is still of very limited value.

So let's look at how lookup paths have been improved in the QT4 specifica-
tions. There are a number of changes, some quite minor, some more signficant.
(In addition, I should emphasize, some of these are a solid part of the QT4 drafts,
while others are proposals that are still being polished and refined.)

The most obvious change is that we've introduced the "deep lookup" variant,
A ?? B. Like //, this recurses down through a JTree of maps and arrays to find its
target. And like // (and like map:find), it returns a flattened sequence of items.

But there's a fundamental difference. When you return a flattened sequence of
XML nodes, those nodes are located at a position within a structure, and you can
get extra information about them: most commonly, you are selecting a sequence
of elements, and from the elements you can get information about their attributes,
their content, their siblings, their parents.

With ??, all you get back are values. If you do ??name, you get back a set of
names. There's no context; no way of finding out any other information beyond
the actual strings. If the values you get back are themselves maps, you can do a
little bit better, you can drill down into the content of those maps. Remember, a
map (unlike an XML element) doesn't even have a name. You might find it via a
name (consider store and bicycle in the example above), but the name isn't part

Navigating and Updating Trees of Maps and Arrays

19

of the map, it's not available as part of the information returned by the ?? opera-
tor.

The fact that maps and arrays (unlike XML elements) have no name, is rather
fundamental. The expression //event/* selects elements that have names, and
the names often serve to distinguish one event from another. The names are a
property of the element. In JSON, names perform a subtly different role: they
don't identify what kind of value you are dealing with, they identify its role in
relation to a parent object, and an expression such as ??event?* selects values
without identifying what kind of object they are.

In JSON structures the best way to identify classes of value is often not by
name, but by structure. If we want to process locations, we probably can't search
for objects named location, we have to search for objects that have longitude
and latitude properties. For that reason we've added type-based selectors to
lookup expressions, so you can do ??type(record(longitude, latitude)) to
find all the maps (objects) having longitude and latitude properties.

The fact that the lookup operators flatten their results brings additional prob-
lems. Suppose you have data like this:

{
 "readings": [
 { "Week":1, "Mo": (12, 16, 18), "Tu": (), "We": ...}
 { "Week":2, "Mo": (4, 8), "Tu": (4, 5), "We": ... }
]
}

Now the result of ??Mo is (12, 16, 18, 4, 8), and the result of ??Tu is (4,5)
which is pretty meaningless - all the internal structure has been lost. We just have
a set of numbers, and no idea where they came from.

So the next change we have made is to introduce modifiers, which enable you
to return something other than the flattened result. For example, the result of ??
entry::Mo is a sequence of key-value pairs:

{"key": "Mo", "value": (12, 16, 18)},
{"key": "Mo", "value": (4, 8)}

This retains a lot more structure - it becomes possible to ask questions like "On
which Monday was the average reading at its highest?".

The syntax allows four modifiers: entry:: returns the key-value pair as in the
above example, key:: returns the key (when selecting into an array, this is the
numeric index), value:: returns the value part, with each value wrapped as an
array so that different values are kept separate, and content:: returns the flat-
tened sequence. For compatibility with QT3, ?x is short for ?content::x.

The biggest change, however, is that the results returned by the ? and ?? oper-
ators are now labeled with their provenance. This means that you can now do
queries like ??entry::*[?value?salary > ?parent()?salary].

Navigating and Updating Trees of Maps and Arrays

20

How does that work?
The maps and arrays in a JTree don't have parent pointers, and we're not

changing that. Parent pointers prevent a subtree being shared by two different
trees, which is the major reason why copying subtrees in the XML model is so
expensive. Instead, though, when we search for data by downwards navigation,
we can remember how we reached the values that we found, and we can make
this information available. This is essentially the idea behind zipper structures [1].

The idea of a zipper structure as that as you navigate into a structure, you
keep a trail of where you have visited, so that you can back out. This effectively
turns a one-way list into a two-way list, or a tree without parent pointers into one
that allows upwards navigation; and it does so without making the structure
mutable, or losing the properties that allow functional modifications (modifica-
tions that create a new list or tree without destroying the old one).

The solution to this in QT4 is taken straight from the zipper model. The result
of a deep search (which can now be done using the deep lookup operator:
$data??person) is a set of labeled values. The expression returns the required
JNodes, but these carry an extra label identifying where they were found. The
label is not part of the persistent data, it is additional information added by the
search process, so the same value found by two different routes can carry differ-
ent labels. We can immediately see how this allows common subtrees to be
shared without the need for physical copying.

What information is available in the labels? We can describe this at two levels:
an internal level that describes the data that is retained, and an external level that
describes how this is exposed to user applications. At the internal level, there are
two degrees of granularity associated with a downwards selection: selecting an
entry with a given key (which in the case of an array means the array member at
a given index), and selecting a specific item within the value part of the entry.

So, when selecting an entry (key-value pair) the information retained in the
label consists of two things: the containing JNode (a map or array), and the key/
index by which the entry was selected within that JNode. Of course the contain-
ing JNode will also have a label identifying its own provenance, so one can follow
a chain of labels all the way to the root JNode of the query.

At the next level of granularity, when we select an individual item within a
value, there is an additional piece of information: the integer position of the item
within the value.

Looking back at the example where the query ??Mo returned the sequence
(12, 16, 18, 4, 8), we can now see that these items carry hidden labels as fol-
lows:
• 12: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),

"We": ...}, key: "Mo", position: 1

Navigating and Updating Trees of Maps and Arrays

21

• 16: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),
"We": ...}, key: "Mo", position: 2

• 18: container: { "Week":1, "Mo": (12, 16, 18), "Tu": (),
"We": ...}, key: "Mo", position: 3

• 4: container: { "Week":2, "Mo": (4, 8), "Tu": (), "We": ...}, key:
"Mo", position: 1

• 8: container: { "Week":2, "Mo": (4, 8), "Tu": (), "We": ...}, key:
"Mo", position: 2

There are two ways this data is currently exposed (this may change):

• Firstly, the function selection-path can be applied to any item. If the item
has a label indicating how it was reached, the function returns a sequence of
records, one for each step in the selection (in innermost-to-outermost order).
The first record in the result, for the value 12 in the example above, is the
record {"key": "Mo", "position": 1, "container": { "Week":1, "Mo":
(12, 16, 18), "Tu": (), "We": ...}} The second and subsequent records
represent the selection path of the container, defined recursively. So if the
selection-path function is called with the labeled value 12 as the argument,
then (for example), selection-path(12)?key will return the sequence ("Mo",
1, "readings"); reversing this sequence gives the sequence of keys needed to
select the item from the root.

• Secondly, when the modifier entry:: is used, the returned entries include
functions that make the same information available, but in more digestible
form. The proposed functions include ancestors(), which returns all the nes-
ted JNodes, innermost first, parent() which returns the same as ancestors()
[1], root() which returns ancestors()[last()], and ancestor-keys()
which returns the sequence of key values used to select the ancestors at each
level.

7. Point Update
In my 2016 paper I presented two use cases for transformation of JSON trees, and
I have continued to use these to test the adequacy of proposed new language fea-
tures.

The first use case is what I call a "point update": increase the price of all products
tagged with the keyword "ice" by 10%. I call it a "point update" because we identify
the places in the tree structure than need to change, and then say how they
should change. That requirement is very easily stated in English, and it's not very
difficult to devise XQuery or XSLT syntax to express the requirement, for exam-
ple in XQuery

Navigating and Updating Trees of Maps and Arrays

22

update $root {
 replace ??product[?tag = "ice"]?price with . * 1.1
}

or in XSLT
<xsl:update root="$root"
 replace="??product[?tag = 'ice']?price"
 with=". * 1.1"/>

In both cases the idea is that the instruction returns a new version of the tree roo-
ted at $root (leaving the original intact) which differs from the original in that the
selected prices have changed.

This is sometimes called in-situ update, but that's misleading, because existing
data is not changed.

This is similar in concept to the kind of updating expressions available in the
XQuery Update Facility (XQUF). However, it has far less complexity. XQUF
essentially has two modes of operation:
• Pending Update Lists, where the updates are deferred until the query has fin-
ished execution, and the query itself has no opportunity to read the updated
data;

• Copy-Modify operations, where the updates are performed on a copy of the
data, leaving the original unchanged. But with XML (because of XML node
identity and parent pointers) copying an XML tree typically takes time and
memory proportional to the size of the tree.

The current proposed specification for this feature describes the semantics in
terms of a recursive-descent rule based transformation, rather as if it were imple-
mented in XSLT. The only complication is how to tell when you are processing a
value selected by the expression ??product[?tag = 'ice']?price. One way to
do this would be to restrict the syntax of this expression to a pattern-like syntax
so you can test each value in the tree when you get to it. But if you turn to the
semantics of patterns in XSLT, the definition depends on being able to navigate
upwards in the tree. Instead, the approach we have adopted is that you can use
any selection expression you like, and the values you select are tagged with a
temporary label, so that you can identify them during the recursive descent tra-
versal, and process them accordingly.

The QT3 data model says:

This version of the XPath Data Model does not specify whether or not maps have
any identity other than their values. No operations currently defined on maps
depend on the notion of map identity. Other specifications, for example,
the XQuery Update Facility, may make identity of maps explicit.

That was a committee compromise. The WG knew that maintenance of identity is
expensive in many ways: not only does create the need to make physical copies of

Navigating and Updating Trees of Maps and Arrays

23

data that is otherwise unchanged during a transformation, it also complicates the
semantics of the language because functions are no longer purely functional (if a
function creates new node each time it is called, then optimizations such as loop
lifting become invalid). But the WG at the time couldn't see how update opera-
tions could be defined without some notion of object identity.

The solution adopted in QT4 is to have a notion of identity, but one that is
transient and exists only while an updating operation is in progress. Conceptu-
ally, the update starts by making a copy of the input in which all JNodes have
identity; it then modifies this copy in-situ, and then strips off the identifiers.

The great thing is, however, that this complexity exists only in the formal
semantics of the operation. As far as users are concerned, its fairly intuitive
what's meant by

update $root {
 replace ??product[?tag = "ice"]?price with . * 1.1
}

Performing this operation in QT3, whether in XQuery or XSLT, is surprisingly dif-
ficult, as I showed in my 2016 paper. I ended up converting the data to an XML
tree, updating the XML tree, and then converting back to maps and arrays.

The implementation of this update expression in Saxon is very different from
the formal semantics1. Rather than doing a top-down traversal of the whole tree
structure (which would take time proportional to the size of the tree), Saxon dives
straight in to the selected nodes and makes the changes locally. Internally, you
have to find the affected nodes in the tree, make local copies of those nodes with
modified properties, and then you have to work your way back up the tree mak-
ing copies of the affected parent nodes so they point to the modified children
rather than to the originals. This needs to take into account that when creating a
modified parent node, you might need to incorporate multiple modified child
nodes. Finally, when you've worked your way back up to creating a modified
copy of the original root node, you can return that as the result of the expression.

So for this use case, we don't need to expose the zipper model to the user; but
it needs to be there in the background; the route to each modified node in the tree
needs to be retained so that the ancestor nodes can be reconstructed.

The second use case in my 2016 paper involved a hierachic inversion. Starting
with a JSON dataset representing courses and the students attending each course,
the requirement is to invert this to create a dataset organised first by student, list-
ing the courses taken by each student. This is more of a tree transformation task
than a point update task, and I tackle it in the next section.

1Saxon has had an implementation of something very similar for some years: see https://www.saxon-
ica.com/documentation12/index.html#!extensions/instructions/deep-update.

Navigating and Updating Trees of Maps and Arrays

24

8. Rule-based Transformation
For earlier thoughts on this subject, see the section "Template-based Transforma-
tion" in my Balisage 2022 paper: [8].

Transformation by applying template rules during the course of a recursive
tree walk is the characteristic processing model of the XSLT language, and there
is no intrinsic reason why it shouldn't work just as well with JTrees as with XML
trees. The main challenge is that it's tricky to define match patterns when the
things we are matching don't have distinguishing names.

There are three parts to the problem: how to break arrays and maps down into
components that can conveniently be matched by template rules; how to define
the corresponding match patterns; and how to construct new arrays and maps
within the body of the corresponding template rules.

There are proposals for how to do this in the current XSLT 4.0 draft specifica-
tion, and further ideas in my 2022 Balisage paper, but the more recent work on
deep query suggests enhancements to these features that are not yet fully worked
out. So what follows is my current proposal for a revision to the draft specifica-
tion.

A good way to approach this is to start by thinking about what the standard
default template rules should do. The desired effect is that we can define a mode
of processing (say with <xsl:mode on-no-match="traversal"/>) which has the
effect that if there are no user-written template rules in the mode, the effect is an
identity transformation. But we want to design it so that it becomes easy to inject
user-written template rules to customize the processing of particular constructs.

So let's start by defining a set of built-in rules for this new processing mode.

8.1. Built-In Rules
For arrays, we want the default rule to process all the members of the array. The
question is, how should the array members be represented? Remember that an
array member is in general a sequence rather than a single item. Although QT4
has generalised the concept of the context item so that it is now a context value
(which can be any sequence), for the time being, XSLT templates are still applied
to individual items, so we need to package up each array member as a single
item.

In my Balisage 2022 paper I proposed representing an array member as a "par-
cel", which was essentially a sequence wrapped up as a single item. That raises
the question, should parcels be a new kind of item in the data model, or should
we reuse some existing kind of item (candidates being an array, a zero-arity func-
tion, or a single-entry map). The problem with introducing a new kind of item is
that extensions to the type system are expensive and disruptive. The problem
with reusing existing kinds of item is that it's harder to define match patterns that
match them nicely.

Navigating and Updating Trees of Maps and Arrays

25

My current proposal is to represent array members as records (that is maps)
with (at least) the following fields:
• array-member: a boolean, always true. This field exists purely for convenience

in writing match patterns: a template rule can use match="record(array-
member, *)" with a high level of confidence that the rule won't accidentally
match something else.

• member: the actual value of the array member, an arbitrary sequence.
• index: the 1-based index position of the array member within the array (just

in case different processing is applied to different members based on their
position).

The template rule for an array member is required to return a new array member;
this must be represented by a record containing a member field, but the other
fields are optional and ignored.

So the default template rule for arrays breaks up the arrays into its members,
applies templates to each of them individually, and then reassembles the result:

<xsl:template match="array(*)">
 <xsl:array use="?member">
 <xsl:apply-templates select="
 for member $m at $index in .
 return {'array-member':true(), 'member':$m, 'index':$index}"
 mode="#current"/>
 </xsl:array>
</xsl:template>

A few observations on this code:
• match="array(*)" is one of a new class of match patterns that match items by

type. In XSLT 3.0 this was written, clumsily, as match=".[. instance of
array(*)].

• xsl:array is a new instruction to construct an array. The contained sequence
constructor delivers one item for each member of the new array. If a use attrib-
ute is present, then it is evaluated once for each of these items, to convert the
supplied item to the required array member. In this case we expect the
applied template rule to return a value of type record(member), and the use
expression extracts the contents of the member field to form the array member.

• for member is a new variant of the for expression (or XQuery FLWOR expres-
sion) that binds the variable $m to each member of the array in turn, as well as
binding $index to its 1-based index position.

• The expression {'x':1, 'y':2} is a map constructor, equivalent to the XPath
3.1 expression map{'x':1, 'y':2}. The map keyword is no longer needed. (It
was required in XPath 3.1 because some members of the design team wanted

Navigating and Updating Trees of Maps and Arrays

26

to reserve "bare brace" syntax with no leading keyword for a different pur-
pose.)

The default processing rule for members of an array is to apply templates to each
item in the value of the member individually: recall that in the general case, an
array member includes zero or more items. The processing returns a new array
member that replaces the original:

<xsl:template match="record(array-member as xs:boolean,
 member as item()*,
 index as xs:integer,
 *)">
 <xsl:apply-templates select="
 for $item at $pos in ?member
 return {'array-member-item': true(),
 'member': $m,
 'index': $index,
 'item': $item,
 'position': $pos}"
 mode="#current"/>
</xsl:template>

Observations:
• It's probably unlikely that many users would want to override processing at

this level; but it provides the option for completeness. A template rule at this
level has access to the entire array member and its index position within the
array, and also to an individual item within the array member and its position
within the array member.

• A template rule at this level is expected to return one or more items, which
will substitute for the original item in the new array member.

The default processing for individual items is then to apply templates to the item:
<xsl:template match="record(array-member-item as xs:boolean,
 member as item()*,
 index as xs:integer,
 item as item(),
 position as xs:integer,
 *)">
 <xsl:apply-templates select="?item" mode="#current"/>
</xsl:template>

And the default processing for items is to move the item to the output
unchanged:

<xsl:template match="item()">
 <xsl:sequence select="."/>
</xsl:template>

Navigating and Updating Trees of Maps and Arrays

27

Note that this just creates a reference to the existing item, it doesn't require mak-
ing a deep copy of the item. This makes a big difference if an array or map con-
tains XML nodes. The transformed JTree will contain the original XML nodes,
rather than copies of these nodes. If copying or transformation of the XML nodes
is required, this can be achieved by overriding the template rule for the individ-
ual XML nodes.

Maps are handled in a similar way to arrays. The top-level default template
rule for maps splits it into its constituent entries (key-value pairs), marking each
one with a map:entry field for ease of matching:

<xsl:template match="map(*)">
 <xsl:map on-duplicates="op(',')">
 <xsl:apply-templates select="
 for entry {$key, $value} in .
 return {'map-entry':true(), 'key': $key, 'value':$m}"
 mode="#current"/>
 </xsl:array>
</xsl:template>

Observations:
• match="map(*)" is another new type-based match pattern, matching any

instance of the specified type.
• The xsl:map instruction exists in XSLT 3.0, but the on-duplicates attribute is

new: it controls what happens when the sequence constructor delivers more
than one map entry with the same key. The value is a function that in general
takes two values having the same key and returns a single value; the expres-
sion op(',') returns an arity-2 function equivalent to the dyadic , (comma)
operator which forms the sequence-concatenation of two values.

• The for entry {$key, $value} construct is a proposed extension to the for
or FLWOR expression syntax for iterating over the entries in a map; it has been
mooted as proposed XPath 4.0 syntax, but is not yet in the draft specification.

The default template rule for processing map entries looks like this:
<xsl:template match="record(map-entry as xs:boolean,
 key as xs:anyAtomicType,
 value as item()*,
 *)">
 <xsl:map-entry key="?key">
 <xsl:apply-templates select="
 for $item at $pos in ?value
 return {'map-entry-item': true(),
 'key': ?key
 'value': ?value,
 'item': $item,
 'position': $pos}"

Navigating and Updating Trees of Maps and Arrays

28

 mode="#current"/>
 </xsl:map-entry>
</xsl:template>

And again, the default processing at this level is to apply templates to the indi-
vidual items directly:

<xsl:template match="record(map-entry-item as xs:boolean,
 key as xs:anyAtomicType,
 value as item()*,
 item as item(),
 position as xs:integer,
 *)">
 <xsl:apply-templates select="?item" mode="#current"/>
</xsl:template>

Once again, it is unlikely that user applications would want to override the pro-
cessing at this level, but the option is there for completeness.

Not stated in the details above is that each of these built-in templates passes
any template parameters through unchanged.

In addition, the code for the built-in templates fails to show explicitly that
each item passed to any of these template rules is labeled with provenance infor-
mation indicating its position within the JTree being navigated. The existence of
this label means that the function selection-path can be applied to the item to
obtain information about the route used to select the item. The result of the func-
tion is a sequence of records, from innermost to outermost order, each containing
some or all of the following fields:
• container: the map or array containing the value.
• key: the key (for an entry in a map) or index (for a member in an array) of the

value within its container.
• position: the index position of an individual item within an array member or

map value, when that value is a sequence of items.
Note that while built-in template rules maintain this information and pass it on to
the template rules they call, user-written template rules may or may not do so,
depending on how they are written. If they use the lookup operators ? and ?? to
make downwards selections, then the provenance of the values they select is
maintained.

8.2. Use Cases
The most common use case is to override processing at the level of an individual
entry in a map. Template rules at this level are expected to return zero or more
map entries, in the format delivered by the xsl:map-entry instruction. Here are
some examples of template rules that do this:

Navigating and Updating Trees of Maps and Arrays

29

<xsl:template match="record(map-entry, *)[?key='note']"/>

 <xsl:template match="record(map-entry, *)[?key='mark']">
 <xsl:map:entry key="'mark'" select="upper-case(?value)"/>
 </xsl:template>

 <xsl:template match="record(map-entry, *)[?key='price']">
 <xsl:next-match/>
 <xsl:map:entry key="'currency'" select="'USD'"/>
 </xsl:template>

The first of these template rules (with [?key='note']) returns no output, so the
matching map entries are deleted.

The second (with [?key='mark']) returns a map entry having the same key,
but with the value converted to upper case.

The third (with [?key='price']) performs the built-in processing for map
entries (by invoking xsl:next-match) and then adds a new map entry, setting
currency to "USD".

The transformation presented earlier (increase the price of all products tagged
with the keyword "ice" by 10%) can be achieved in a number of ways. One way is
to match selected product entries and then to modify the price directly using
map:put:

<xsl:template match="record(map-entry, *)
 [?key='product']
 [?value?tag = 'ice']">
 <xsl:map-entry key="'product'">
 <xsl:sequence select="map:put(?value, 'price', ?value?price *
1.1)"/>
 </xsl:map-entry>
</xsl:template>

8.3. Grouping
While some transformations benefit from the rule-based recursive-descent para-
digm, others involve wholesale reconstruction of a new document. Grouping and
hierarchic inversion tasks often fall into this category.

Consider this use case from my 2016 paper, involving hierarchic inversion.
The aim is to start with a JSON file containing a list of faculties and courses and
the students enrolled on each course, and to invert this to produce a file contain-
ing a list of students, with the courses that each one is taking. Specifically, this is
the input:

[{
 "faculty": "humanities",
 "courses": [

Navigating and Updating Trees of Maps and Arrays

30

 {
 "course": "English",
 "students": [
 {
 "first": "Mary",
 "last": "Smith",
 "email": "mary_smith@gmail.com"
 },
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 }
]
 },
 {
 "course": "History",
 "students": [
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 },
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 }
]
 }
]
},
{
 "faculty": "science",
 "courses": [
 {
 "course": "Physics",
 "students": [
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 },
 {
 "first": "Amisha",
 "last": "Patel",

Navigating and Updating Trees of Maps and Arrays

31

 "email": "amisha_patel@gmail.com"
 }
]
 },
 {
 "course": "Chemistry",
 "students": [
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 },
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 }
]
 }
]
}]

and this is the desired output:

[
 {
 "email": "ann_jones@gmail.com",
 "courses": [
 "English",
 "History"
]
 },
 {
 "email": "amisha_patel@gmail.com",
 "courses": ["Physics"]
 },
 {
 "email": "anil_singh@gmail.com",
 "courses": [
 "Physics",
 "Chemistry"
]
 },
 {
 "email": "mary_smith@gmail.com",
 "courses": ["English"]
 },

Navigating and Updating Trees of Maps and Arrays

32

 {
 "email": "john_taylor@gmail.com",
 "courses": [
 "History",
 "Chemistry"
]
 }
]

In XSLT terms, this is clearly a grouping query. We want to select the students
from the input file, group them by email address, and for each email address,
output the courses attended by that student.

Here's the solution. The critical dependency is the call on ancestors which
enables us to trace back to the JNodes visited during the deep lookup operation
json-doc('courses.json')??email.

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="4.0">

 <xsl:template name="xsl:initial-template">
 <xsl:array>
 <xsl:for-each-group select="json-doc('courses.json')??
entry::email" group-by="?value">
 <xsl:sort select="current-grouping-key()"/>
 <xsl:map>
 <xsl:map-entry key="'email'"
 select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'">
 <xsl:array select="current-group() ? ancestors() ?
course"/>
 </xsl:map-entry>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:array>
 </xsl:template>

</xsl:transform>

Notes on this solution:
• entry::email selects a sequence of map entries or key-value pairs in the form

record(key, value); the record also includes an ancestors field which is a
function providing access to the containing maps and arrays.

The grouping key ?value is the actual email address.
• The expression current-group() ? ancestors() ? course doesn't currently

work. The LHS of a dynamic function call must be a single function, but
current-group() ? ancestors is a sequence of functions. I've raised an issue

Navigating and Updating Trees of Maps and Arrays

33

to fix that. To make it work without this fix, it needs to be written as
(current-group() ! ?ancestors()) ? course

We can also solve this use case using XQuery, taking advantage of the group by
clause in a FLWOR expression. The following should work:

array {
 for $email in json-doc('courses.json'))??entry::email
 order by $email?value
 group by $email?value
 return {
 'email': $email?value,
 'courses': array { for $e in $email
 return $e?ancestors()?course }
 }
}

In the interests of full disclosure, I am using a development version of Saxon that
implements a slightly different version of the syntax from the snapshot presented
in this paper (we are dealing here with rapidly evolving specifications and pro-
posals, and the implementation is often either ahead of the spec or a little behind
it). With this version of Saxon, the XSLT code that actually works is:

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="4.0">

 <xsl:template name="xsl:initial-template">
 <xsl:array>
 <xsl:for-each-group select="pin(json-doc('courses.json'))??
email" group-by=".">
 <xsl:sort select="current-grouping-key()"/>
 <xsl:map>
 <xsl:map-entry key="'email'"
 select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'">
 <xsl:variable name="labels" select="current-group() =!
> label()"/>
 <xsl:variable name="ancestors" select="($labels ! ?
ancestors())[. instance of record(course, students)]"/>
 <xsl:array select="$ancestors?course"/>
 </xsl:map-entry>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:array>
 </xsl:template>

</xsl:transform>

Navigating and Updating Trees of Maps and Arrays

34

And the working XQuery code is:

array {
 for $email in pin(json-doc('courses.json'))??email
 order by $email
 group by $email
 return {
 'email': $email,
 'courses': array { for $e in $email
 return label($e)?ancestors()[. instance of
map(*)]?course }
 }
}

9. Conclusions
A major theme running through the proposals for XSLT 4.0 and XQuery 4.0 is
improved support for manipulation of maps and arrays, both to make the lan-
guages more suitable for processing JSON, and also to improve the usability and
performance of maps and arrays when used for internal working data within an
XML transformation.

My 2016 paper at XML Prague demonstrated the shortcomings of the 3.0/3.1
specifications for achieving some simple use cases in this regard; with that ver-
sion of the language, the best solution for JSON processing has often been to con-
vert the JSON to XML, transform the XML, and then convert back to JSON.

This paper describes how these challenges have been addressed in the propos-
als for XSLT 4.0 and XQuery 4.0. It describes new language features in three main
areas:

• Recursive Query

• Point Update

• Rule-based Transformation

and revisits the 2016 use cases to show how the new features work together to
solve the problem.

References
[1] Gerard Huet. The Zipper. Journal of Functional Programming. 7 (5): 549–554

doi:10.1017/s0956796897002864. S2CID 31179878.
[2] Michael Kay. Writing an XSLT Optimizer in XSLT. Extreme Markup Languages,

Montreal, 2007. Available at http://www.saxonica.com/papers/
Extreme2007/EML2007Kay01.html.

Navigating and Updating Trees of Maps and Arrays

35

http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html

[3] Michael Kay. Transforming JSON using XSLT 3.0. XML Prague 2016. Available
at https://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf and at https://www.saxonica.com/papers/
xmlprague-2016mhk.pdf.

[4] Michael Kay. XML Tree Models for Efficient Copy Operations. XML Prague 2018.
Available at https://archive.xmlprague.cz/2018/files/xmlprague-2018-
proceedings.pdf and at https://www.saxonica.com/papers/
xmlprague-2018mhk.pdf.

[5] Michael Kay. An XSD 1.1 Schema Validator Written in XSLT 3.0. Markup UK
2018. Available at https://markupuk.org/2018/Markup-UK-2018-
proceedings.pdf and at https://www.saxonica.com/papers/
markupuk-2018mhk.pdf.

[6] Michael Kay and John Lumley. An XSLT compiler written in XSLT: can it
perform?. XML Prague 2019. Available at https://archive.xmlprague.cz/
2019/files/xmlprague-2019-proceedings.pdf and at https://
www.saxonica.com/papers/xmlprague-2019mhk.pdf.

[7] Michael Kay. <transpile from="Java" to="C#" via="XML" with="XSLT"/>.
Markup UK 2021. Available at https://markupuk.org/2018/Markup-
UK-2021-proceedings.pdf and at https://www.saxonica.com/papers/
markupuk-2021mhk.pdf.

[8] Michael Kay. XSLT Extensions for JSON Processing. Balisage 2022. Available at
https://www.balisage.net/Proceedings/vol27/html/Kay01/
BalisageVol27-Kay01.html .

Navigating and Updating Trees of Maps and Arrays

36

https://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
https://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf
https://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf
https://www.saxonica.com/papers/xmlprague-2018mhk.pdf
https://www.saxonica.com/papers/xmlprague-2018mhk.pdf
https://markupuk.org/2018/Markup-UK-2018-proceedings.pdf
https://markupuk.org/2018/Markup-UK-2018-proceedings.pdf
https://www.saxonica.com/papers/markupuk-2018mhk.pdf
https://www.saxonica.com/papers/markupuk-2018mhk.pdf
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://www.saxonica.com/papers/xmlprague-2019mhk.pdf
https://www.saxonica.com/papers/xmlprague-2019mhk.pdf
https://markupuk.org/2018/Markup-UK-2021-proceedings.pdf
https://markupuk.org/2018/Markup-UK-2021-proceedings.pdf
https://www.saxonica.com/papers/markupuk-2021mhk.pdf
https://www.saxonica.com/papers/markupuk-2021mhk.pdf
https://www.balisage.net/Proceedings/vol27/html/Kay01/BalisageVol27-Kay01.html
https://www.balisage.net/Proceedings/vol27/html/Kay01/BalisageVol27-Kay01.html

JSONPath: an IETF Proposed Standard,
with comparisons to XPath

Alan Painter
HSBC Continental Europe
<alan.painter@hsbc.fr>

Abstract

The Internet Engineering Task Force (IETF) have recently promoted to the
status of "Proposed Standard" the RFC9535 entitled "JSONPath:
Query Expressions for JSON". [1] This new proposed standard cites in
Section 1.2 that JSONPath is "inspired by XML's XPath". As the XML
community has used different versions of XPath for querying XML for
many years, extended more recently to querying JSON via XPath 3.1, a
comparison of the relatively new JSONPath proposed standard and XPath
can be of some utility.

Keywords: XML, JSON, Query, Standards

1. A newly proposed internet standard for an established query
language
Whereas JSONPath as a standard is quite recent (February 2024), many "JSON-
Path" implementations have been available since at least 2007 when JSONPath
was originally proposed by Stefan Gössner.[4]

A number of commercial and open-source products use JSONPath or similar
queries as part of their frameworks.

• REST-assured, a Java/Kotlin testing framework for REST APIs [5]

• SmartBear™, a testing and monitoring framework for REST and SOAP
APIs[6]

• Kubernetes™, the popular container orchestration engine [7]

• Oracle™ products use JSONPath in a number of offerings, including the Proc-
ess Modelling Framework (PMF), part of the Oracle Financial Services Analyt-
ical Applications Infrastructure (OFS AAI) [8]

• IBM™'s Netezza Performance Server (NPS) data warehouse and analytics
platform [9]

• many other products

37

Because the JSONPath proposed standard is quite new, many of the existing
offerings that predate RFC9535 will not be entirely compatible with the new pro-
posed standard. There is an inventory of nearly fifty (50) JSONPath implementa-
tions in over twenty (20) different programming languages in Christoph
Burgmer's github repository json-path-comparison. [2] This comparison catalogs
the results of more than two hundred (200) different JSONPath queries for each
implementation, giving the "consensus" result as well as the differing results.

One observation of the different query results is that there are many divergen-
ces in results from implementation to implementation. In this respect, RFC9535 is
addressing these divergences by providing a clear standard. Section 1.2 of
RFC9535 mentions that this is one of the motivations for proposing the standard.

2. Key events in the history of XML, JSON, XPath and JSONPath
As a starting point to this comparison of JSONPath and XPath, it can be enlight-
ening to see an cherry-picked list of some the major events in their respective def-
initions.

Table 1. A list of selected key events in the XPath / JSONPath standards history

Date Org Document Author(s) Status References

1998-02 W3C Extensible Markup Language (XML)
1.0

Bray, Paoli, Sperberg-
McQueen

REC [10]

1999-11 W3C XML Path Language (XPath) Version
1.0

Clark, DeRose REC [11]

2006-07 IETF Media Type for JSON D. Crockford INF [12]

2006-08 W3C Extensible Markup Language (XML)
1.1

Bray, Paoli, Sperberg-
McQueen, et al

REC [13]

2007-02 Blog JSONPath - XPath for JSON Gössner [4]

2010-12 W3C XML Path Language (XPath) 2.0 Berglund, Kay, Robie, et al REC [14]

2010-12 W3C XQuery 1.0 and XPath 2.0 Data
Model (XDM)

Berglund, Walsh, et al REC [15]

2013-10 ECMA JSON Data Interchange Format REC [16]

2014-03 IETF JSON Data Interchange Format Bray [17]

2017-03 W3C XML Path Language (XPath) 3.1 Robie, et al REC [18]

2017-03 W3C XQuery and XPath Data Model 3.1 Walsh, Snelson, et al REC [19]

2017-12 IETF JSON Data Interchange Format Bray STD [20]

2024-02 IETF JSONPath: Query Expressions for
JSON

Gössner, Normington, Bor-
mann

REC [1]

Status: REC = Recommendation, INF = Informational, PSTD = Proposed Standard, STD
= Internet Standard

One point of interest is that both the W3C XML recommendations (XML1.0
and XML1.1) and the IETF JSON recommendations (RFC7159 and RFC8259) list
Tim Bray as being either amongst the editors (XML) or the sole editor (JSON).

JSONPath: an IETF Proposed Standard, with comparisons to XPath

38

Furthermore, Tim Bray is one of the co-chairs of the IETF Working Group that
was created for producing the JSONPath standard.[3]

3. The JSONPath standard basics

3.1. Review of the JSON structure

As defined in IETF STD90 / RFC8259 [20], JSON has a minimalist set of values:

Table 2. Table of JSON Values (RFC8259)

Name Examples Category Notes
Object { "a" : 1.00, "b" : "hello", "c" :

true, "d" : null }
Struc-
tured

Unordered

Array [0, 1, true, null, [{ "a" : "A" }],
[]]

Struc-
tured

Ordered

Number 42, 3.14159, 1.45e-9 Primitive No distinct float/integer
types

String "hello", "", "tr\u00e8s bien" Primitive Unicode
Literal

Boolean
true, false Primitive

Literal
null

null Primitive

3.2. Additional data types added in RFC9535 for JSONPath evaluation

RFC9535 describes a few additional Value types that are required to process
JSON via JSONPath:

Table 3. Types defined for JSONPath processing (IETF RFC9535)

Type Instances Notes
Nothing When no JSON Value is selected,

distinct from JSON literal null
Nodelist 5 {} null "hello" true [1, 2, 3] A list of JSON Nodes (really Values)

ValueType JSON Values or Nothing Function extension type
LogicalType LogicalTrue or LogicalFalse Function extension type, distinct

from literal true/false
NodesType Nodelists Another function extension type

JSONPath: an IETF Proposed Standard, with comparisons to XPath

39

The requirement in JSONPath to define a nodelist type seems to be quite similar
to the XPath1.0 [11] requirement to define the node-set type. In both XPath and
JSONPath, the execution of the query yields an intermediate result that cannot be
expressed in XML or JSON directly, hence a new type definition is made.
Whereas the XPath1.0 node-set is described as "an unordered of nodes without
duplicates", the JSONPath nodelist is both ordered and may contain duplicates as
well as primitive values.

JSONPath describes a Nothing type that is distinct from the JSON null literal.
This allows for distinguishing between a null literal from a JSON Value and
selecting no JSON values at all, hence Nothing.

3.3. The Overall Structure of a JSONPath Query

JSONPath describes three major elements of an overall JSONPath evaluation:

Table 4. Elements of a JSONPath evaluation

Name Type Description
Query

Expression
String JSONPath expression to be evaluated against a JSON

Value
Query

Argument
JSON Value The query expression will be evaluated against this

value
Output Val-

ues
Nodelist The list of JSON Values from the Query Argument

selected by the JSONPath Expression
Output

Locations
Part of

Nodelist
RFC9535 defines a JSON node from a nodelist as a "pair
of a value along with its location", where the "location"
is a JSONPath expression that designates the position

of that Value in the Query Argument. More discussion
in the following sections.

RFC9535 Section 2.3.1.3 provides these expression examples and results against
the following JSON Value used as the Query Argument:

JSON Query Argument:

{
 "o" : { "j j" : { "k.k" : 3 } },
 "'" : { "@" : 2 }
}

JSONPath: an IETF Proposed Standard, with comparisons to XPath

40

Table 5. Some examples of JSONPath evaluations

Query Result Values Result Locations
$.o['j j'] { "k.k" : 3 } $['o']['j j']
$.o['j j']['k.k'] 3 $['o']['j j']['k.k']
$.o["j j"]["k.k"] 3 $['o']['j j']['k.k']
$["'"]["@"] 2 $['\'']['@']

3.4. JSONPath Identifiers, Segments and Selectors
A JSONPath expression can be described as a series of Identifiers, Segments and
Selectors

3.4.1. JSONPath Identifiers

There are two identifiers in JSONPath

Table 6. JSONPath Identifiers

Symbol Usage
$ the root identifier, corresponding to the entire query argu-

ment
@ the current node (in the context of a filter selector expres-

sion)

A JSONPath expression must start with a root identifier ($), not even allowing a
space before this initial, obligatory identifier. In effect, this requires that the ini-
tial, singular nodelist evaluated by the JSONPath query is the Query Argument.

The current node identifier (@) is used within a Filter Selector expression as
described below.

3.4.2. JSONPath Segments

For those familiar with XPath, a JSONPath segment, in its canonical form, presents
itself much like an XPath predicate, using square braces ('[' and ']') to delineate
the segment.

Table 7. JSONPath Segments (Canonical Form)

Form Type Usage
[(selectors)] Child Segment its selectors choose 0 or more children of the

nodelist from any preceding segments

JSONPath: an IETF Proposed Standard, with comparisons to XPath

41

Form Type Usage
..[(selectors)] Descendant

Segment
its selectors choose 0 or more descendants of

the nodelist from any preceding segments

The semantics of the JSONPath segment is that it processes the nodelist that is the
result of any preceding JSONPath segments, with the initial segment taking the sin-
gular nodelist consisting of the root identifier ($) as the obligatory initial nodelist.

The essential structure of the JSONPath query with canonical segments is then a
root identifier ($) followed by a (possibly zero-length) series of segments.

$ [(selectors)] [(selectors)] ...
The output of a segment (i.e. the nodelist presented to either the following segment
or as the output of the JSONPath Query, in the case of the final segment) contains
either children or descendants of the JSON values of the incoming nodelist. This
means that, for a series of N child segments in a query, the output of the JSONPath
Query will contain only values that are at depth of N in the Query Argument. For a
series of M segments which include at least one descendant segment, the output of
the JSONPath Query will contain only JSON values at a depth of M or greater in
the Query Argument. (RFC9535 Section 2.5)

Whereas the XPath predicate has a similar form to the canonical JSONPath seg-
ment, the semantics are different. Where XPath predicate will "filter" the input node-
set (XPath 1.0) or sequence (XPath 2.0 and later), producing a subset of the input
values, the JSONPath segment will produce children or descendants of the input
JSON node-list.

3.4.2.1. Multiple selectors in a segment

A JSONPath segment contains at least one JSONPath selector and can contain a
comma-separated (',') list of selectors. Each JSON value in the input nodelist is
presented to the selectors in the segment, in order, for processing. A value from the
input nodelist appears on the output nodelist as many times as it is selected by the
different selectors and in the order of its appearance in the list of selectors.

3.4.2.2. Descendant Segment Traversal Order

In the case of a descendant segment, the child values of the input nodelist and their
descendants are presented to the selectors breadth-first. Arrays elements are visited
in order. The values of object members are visited in any order because JSON
objects are unordered.

3.4.2.3. JSONPath Segment Shorthand

Whereas the canonical form for JSONPath segments is expressed with square bra-
ces ('[' and ']'), there is a shorthand form which, after a fashion, combines the

JSONPath: an IETF Proposed Standard, with comparisons to XPath

42

segment with the selector. These shorthand forms can be converted to canonical
form without changing the semantics of the JSONPath Query. This paper presents
the shorthand forms below, after presenting the selectors.

3.4.3. JSONPath Selectors

The JSONPath segment contains a list of at least one JSONPath selector. JSONPath
includes five different types of selector. A selector can choose values from a JSON
structured value (i.e. object or array) but chooses Nothing from a primitive JSON
value.

Table 8. JSONPath Selectors

Examples Type Selects from
['key'] or .key Name

Selector
a member value from an object

[*] or .* Wildcard
Selector

chooses all elements of an array (in order)
and all member values from an object (no

order)
[2] or [-1] Index

Selector
selects a single element from a array at the 0-
based index. A negative index value is added
to the size of the array to obtain the 0-based
index value. (e.g. -1 chooses the last element

in the array)
[1:5:2] or [::-1] Array

Slice
Selector

chooses N elements of an array according to
the slice definition (start:end:step)

[?@.price < 10] or
[?@.author]

Filter
Selector

chooses N elements of an array or M member
values of an object based upon the results of

the filter expression

The Name, Wildcard and Index selectors are fairly evident without additional
explanation. The Array Slice selector is common to python and javascript pro-
gramming languages.

3.4.3.1. Filter Selectors

The Filter selector is similar to the use of an XPath expression within a predicate in
that it chooses values based upon the result of the expression. It is within the Fil-
ter selector that we can use the following two constructs of JSONPath:
• the current node identifier, '@'

JSONPath: an IETF Proposed Standard, with comparisons to XPath

43

• function extensions (currently five of them, including length(), count(), search(),
match() and value())

3.4.3.2. Types of expressions in Filter selectors

There are two types of expressions inside of Filter selector

Table 9. Types of Filter Selectors

Form Type Usage
$[?@.a=='b',?

@.b=='x']
Comparison choose a node based upon the boolean

outcome of a binary comparison opera-
tion (one of '==', '!=', '<', '>', '<=', '>=')

$[?@.a||@.b] or $[?!
@.a]

Existence choose a node based upon the existence
(or not) of one or more nodes from the

JSONPath expression

3.4.3.3. A few Notes on Filter Selector Expressions

In the following notes, some example JSONPath Queries are given that will act on
this Query Argument modified from RFC9535 (Section 2.3.5.3).

{
 "obj" : { "x" : "y" },
 "arr" : [2, 3],
 "bool" : false,
 "null" : null
}

• A comparison of '==' between two expressions that both resolve to Nothing
(no JSON value) yields true.

Example: $.absent1 == $.absent2 resolves to true
• Array and object comparison is possible.

Example: $.obj == $.obj evaluates to true:
Example: $.arr == $.arr evaluate to true:
Example: $.obj == $.arr evaluates to false

• Compare the boolean literal value in the Query Argument to true in order to
evaluate its value

Example: $.bool == true evaluates to false

• Compare a value to JSON literal null
Example: $.null == null evaluates to true

JSONPath: an IETF Proposed Standard, with comparisons to XPath

44

3.4.3.4. Segment and Selector Shorthands

There are some shorthands available in JSONPath that have identical semantics to
their canonical equivalents.

Table 10. JSONPath Segment / Selector Shorthands

Shorthand Canonical Description
.name ['name'] Child segment with a Name selector
..name ..['name'] Descendant segment with a Name selector

.* [*] Child segment with a Wildcard selector
..* ..[*] Descendant segment with a Wildcard

selector

3.4.3.5. Function Extensions

The Filter selector expressions can use function extensions. These functions can
be used as part of either comparison expressions or existence expressions. There
are five functions listed in RFC9535 with the provision of adding additional func-
tions. No user-defined functions can be created via JSONPath itself.

Table 11. JSONPath Filter Selector Function Extensions

Name Return type Description
length() unsigned integer

or Nothing
returns the number of unicode chars in a
String argument, the number of elements

in an Array argument, the number of
members in an Object argument, Nothing

for any other argument.
count() unsigned integer returns the count of the number of nodes

in the nodelist returned by its query
expression (mostly the same as the XPath

equivalent)
match() LogicalType returns whether or not the string argu-

ment matches a given regular expression
(mostly the same as it's XPath equivalent)

search() LogicalType returns whether or not the string argu-
ment contains a given substring (mostly

the same as it's XPath equivalent)

JSONPath: an IETF Proposed Standard, with comparisons to XPath

45

Name Return type Description
value() a single JSON

nodeNothing
returns the first JSON value in the nodel-

ist, if any (in Xpath, for expression $x,
would be ($x)[1])

The RFC9535 match() function is based upon a subset of the "XML Schema Defi-
nition Language (XSD)" specification for the regular expression syntax and
semantics. [23] [24]

3.5. JSONPath Compliance Testing Suite

A work separate from RFC9535, the "JSONPath Compliance Test Suite" [21], pro-
vides a series of input documents, JSONPath queries and validated results. The
compliance tests are compiled into a single JSON document, with 578 different
tests as of this writing. Some examples are:

 {
 "name": "basic, name shorthand, underscore",
 "selector": "$._",
 "document": {
 "_": "A",
 "_foo": "B"
 },
 "result": [
 "A"
]
 },
 {
 "name": "basic, wildcard shorthand, object data",
 "selector": "$.*",
 "document": {
 "a": "A",
 "b": "B"
 },
 "results": [
 [
 "A",
 "B"
],
 [
 "B",
 "A"
]
]
 },

JSONPath: an IETF Proposed Standard, with comparisons to XPath

46

 {
 "name": "basic, name shorthand, symbol",
 "selector": "$.&",
 "invalid_selector": true
 },

In these three tests, excerpts from the test suite, there are, for all three tests, the
Query Argument (document) and the Query (selector).

In the first test, the Output Values are presented (result) as a Array of JSON
values. The query result, from the standard, is indeed not an Array, but a nodelist
of JSON values, but as nodelist cannot be expressed directly in JSON, the tests are
encapsulating the nodelist results, which are ordered, as an Array.

The second test has a non-deterministic order and hence a different key for the
result values, (results). This indicates that the there is a series of possible order-
ings of the results and all different combinations are valid. The top level of the
Array in results contains the different possible nodelists which, themselves, are
presented in the second level of the array.

The use of the member name result or results is exclusive.
In the case of an error in the query, neither result nor results is provided;

rather, an invalid_selector member name, which always contains the value true
in the tests. The second test in the above list is an example. There is no error code
indicating the reason for the error.

3.6. JSONPath nodelist locations
RFC9535 defines a node in a resulting nodelist is pair of
• a JSON value from the Query Argument
• a location which is a constrained JSONPath expression which indicates the

position of the result within the Query Argument.
The location is expressed as a Normalized Path, which simply means that it is a
JSONPath expression in canonical format consisting of child segments with square
brackets), each segmentwith a single Name or Index selector.

RFC9535 itself gives illustrations of the examples results using locations. Here
is an excerpt from section 2.3.1.4

2.3.1.3. Examples

 JSON:

 {
 "o": {"j j": {"k.k": 3}},
 "'": {"@": 2}
 }

JSONPath: an IETF Proposed Standard, with comparisons to XPath

47

 Queries:

 The examples in Table 5 show the name selector in use by child
 segments.

 +====================+=======+=======================+============+
 | Query |Result | Result Paths | Comment |
 +====================+=======+=======================+============+
 | $.o['j j'] |{"k.k":| $['o']['j j'] | Named |
 | |3} | | value in |
 | | | | a nested |
 | | | | object |

The compliance test suite itself does not provide the result locations.
It's not clear that locations are a strict requirement of output in a conforming

implementation. There is, however, an example of an implementation, the "Json-
path Online Evaluator" [22], that does provide the output paths that correspond
to the locations. That implementation predates by at least two years the publica-
tion of RFC9535.

4. JSONPath Expressions Compared to XPath 3.1 Expressions

4.1. Similar mechanisms in XPath3.1 and JSONPath for selecting JSON
Values
We can compare some of the different expressions available for JSON Values.

Table 12. XPath / JSONPath Expressions on JSON Values

JSONPath XPath 3.1 Comments
$. or current() or $root Root JSON Value, either

as current context item or
in a variable. This can be
any value in XPath: here
suggesting the current
context item or a variable.

@ . The JSONPath identifier
corresponds to the cur-
rent context item within
an Xpath predicate

.key or ['key'] .?key or .('key') or map:get($m,
'key')

JSONPath Child Segment/
Name Selector Shortcut

JSONPath: an IETF Proposed Standard, with comparisons to XPath

48

JSONPath XPath 3.1 Comments
[5] .?5 or .(5) or array:get($a, 5) JSONPath Child Operator

with Arrays
[-1] array:get($a, array:size($a)) Last element in the array
..[3] In XPath 3.1, this will require some

functions, especially passing a higher-
order function to a recursive descent

function

Third element of all
descendants that are
arrays

$store.book[-1] .?store?book?*[last()] In XPath, last() for a
sequence is equivalent to
[-1] for a JSON Array

$.store.book[?
@.isbn]

.?store?book?*[.?isbn] All books with an ISBN
number in the map

$.store.book[0,
2]

.?store?book?*[position() =
(1, 3)]

Books 1 and 3

4.2. Some things that can be done in XPath 3.1 but not in JSONPath

JSONPath is intentionally limited to extractions of values from the Query Argu-
ment. Because of this, at least, there are many things that can be done in XPath 3.1
that are not available in JSONPath.
• cannot obtain the value of an arbitrary expression in the result .. only values

from with the Query Argument are available
• cannot extract a list of member names (keys) from JSON Objects .. only mem-

ber values or entire objects can be extracted (Section 1.1.1)
• cannot construct an arbitrary JSON object or array to use as comparison node
• JSONPath defines no variables that can be used from within its expressions
• XPath has an extensive library for date manipulation, string manipulation,

URI resolution, etc
• XPath allows for user-defined functions, for-declensions, arbitrary map/array

instantiation, higher-order function evaluation, etc

5. Conclusion
JSONPath and XPath have some interlinked history, common origins and even
common participants. XPath is a much older standard, by 25 years for XPath1.0
compared to the RFC9535. JSONPath has benefited from both XPath1.0 and XSD
regular expression definitions (for the match() function).

JSONPath: an IETF Proposed Standard, with comparisons to XPath

49

XPath can be used as a general purpose expression language. It excels at con-
structing and transforming structured data, including the maps and arrays that
make up JSON. In most probability, the advent of RFC9535 will not present an
opportunity for conversion to JSONPath for current users of XPath 3.1.

JSONPath has shown very successful adoption prior to RFC9535, with around
50 different implementations in over 20 host languages. It is used in a large array
of systems, both open-source and commercial, as a means of expressing how
actions are to be performed based upon data that is presented as JSON. Whereas
the majority of these systems predate RFC9535 and are not strictly compliant,
there may be a difficult choice to be made on the part of the implementors and
vendors: maintain backwards compatibility or change to be compliant with
RFC9535.

Bibliography
[1] S. Gössner, G. Normington, and C Bormann. JSONPath: Query Expressions for

JSON. 2024. Internet Engineering Task Force (IETF). https://
datatracker.ietf.org/doc/rfc9535/.

[2] Christoph Burgmer. json-path-comparison. https://cburgmer.github.io/json-path-
comparison.

[3] IETF JSON Path Working Group (closed). https://datatracker.ietf.org/wg/
jsonpath/about/.

[4] JSONPath - XPath for JSON. Stefan Gössner. 2007-02-21. https://goessner.net/
articles/JsonPath.

[5] REST-assured (github). Johan Haleby. https://github.com/rest-assured/rest-
assured/wiki/Usage#json-using-jsonpath.

[6] SmartBear™ ReadAPI: a low-code API testing platform. https://
support.smartbear.com/readyapi/docs/testing/jsonpath-reference.html.

[7] Kubernetes™ Prodution Grade Container Orchestration. https://kubernetes.io/
docs/reference/kubectl/jsonpath/.

[8] Oracle™ Financial Services Analytical Applications Infrastructure Process Modelling
Framework (PMF) Orchestration Guide. https://docs.oracle.com/cd/E60058_01/
PDF/8.0.6.x/8.0.6.2.0/OFSAAI_PMF_Orchestration_Guide_8.0.6.2.0.pdf.

[9] IBM™ Netezza Performance Server (NPS) - an advanced data warehouse and
analytics platform. https://www.ibm.com/docs/en/netezza?topic=ddt-jsonpath.

[10] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. 1998-02-10. W3C. https://www.w3.org/TR/1998/REC-
xml-19980210.

JSONPath: an IETF Proposed Standard, with comparisons to XPath

50

https://datatracker.ietf.org/doc/rfc9535/
https://datatracker.ietf.org/doc/rfc9535/
https://cburgmer.github.io/json-path-comparison
https://cburgmer.github.io/json-path-comparison
https://datatracker.ietf.org/wg/jsonpath/about/
https://datatracker.ietf.org/wg/jsonpath/about/
https://goessner.net/articles/JsonPath
https://goessner.net/articles/JsonPath
https://github.com/rest-assured/rest-assured/wiki/Usage#json-using-jsonpath
https://github.com/rest-assured/rest-assured/wiki/Usage#json-using-jsonpath
https://support.smartbear.com/readyapi/docs/testing/jsonpath-reference.html
https://support.smartbear.com/readyapi/docs/testing/jsonpath-reference.html
https://kubernetes.io/docs/reference/kubectl/jsonpath/
https://kubernetes.io/docs/reference/kubectl/jsonpath/
https://docs.oracle.com/cd/E60058_01/PDF/8.0.6.x/8.0.6.2.0/OFSAAI_PMF_Orchestration_Guide_8.0.6.2.0.pdf
https://docs.oracle.com/cd/E60058_01/PDF/8.0.6.x/8.0.6.2.0/OFSAAI_PMF_Orchestration_Guide_8.0.6.2.0.pdf
https://www.ibm.com/docs/en/netezza?topic=ddt-jsonpath
https://www.w3.org/TR/1998/REC-xml-19980210
https://www.w3.org/TR/1998/REC-xml-19980210

[11] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.
1999-11-16. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xpath-10/.

[12] Douglas Crockford. Media Type for JSON. 2006-07. Internet Engineering Task
Force (IETF). https://datatracker.ietf.org/doc/rfc4627/.

[13] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
and John Cowan. Extensible Markup Language (XML) 1.1. 2006-09-26. World
Wide Web Consortium (W3C). https://www.w3.org/TR/xml11/.

[14] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael
Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0.
2010-12-14. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xpath20/.

[15] Anders Berglund, Mary F. Fernández, Ashok Malhotra, Jonathan Marsh,
Marton Nagy, and Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model
(XDM). 2010-12-14. World Wide Web Consortium (W3C). https://
www.w3.org/TR/2010/REC-xpath-datamodel-20101214/.

[16] The JSON Data Interchange Format. 2013-10. European Computer
Manufacturers Association (ECMA) International. https://ecma-
international.org/wp-content/uploads/
ECMA-404_1st_edition_october_2013.pdf.

[17] Douglas Crockford. Tim Bray. The JavaScript Object Notation (JSON) Data
Interchange Format. 2014-03. Internet Engineering Task Force (IETF). https://
www.rfc-editor.org/rfc/rfc7159.txt.

[18] Jonathan Robie, Michael Dyck, and Josh Spiegel. XML Path Language (XPath)
3.1. 2017-03-21. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xpath-31/.

[19] Norman Walsh, John Snelson, and Andrew Coleman. XQuery and XPath Data
Model 3.1. 2017-03-21. World Wide Web Consortium (W3C). https://
www.w3.org/TR/xpath-datamodel-31/.

[20] Douglas Crockford. Tim Bray. The JavaScript Object Notation (JSON) Data
Interchange Format. 2017-12. Internet Engineering Task Force (IETF). https://
www.rfc-editor.org/rfc/rfc8259.txt.

[21] JSONPath Compliance Test Suite. Glyn Normington. https://github.com/
jsonpath-standard/jsonpath-compliance-test-suite.

[22] JSONPath Online Evaluator. Kazuki Hamasaki. https://github.com/ashphy/
jsonpath-online-evaluator. https://jsonpath.com/.

JSONPath: an IETF Proposed Standard, with comparisons to XPath

51

https://www.w3.org/TR/xpath-10/
https://www.w3.org/TR/xpath-10/
https://datatracker.ietf.org/doc/rfc4627/
https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://www.rfc-editor.org/rfc/rfc7159.txt
https://www.rfc-editor.org/rfc/rfc7159.txt
https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/xpath-datamodel-31/
https://www.rfc-editor.org/rfc/rfc8259.txt
https://www.rfc-editor.org/rfc/rfc8259.txt
https://github.com/jsonpath-standard/jsonpath-compliance-test-suite
https://github.com/jsonpath-standard/jsonpath-compliance-test-suite
https://github.com/ashphy/jsonpath-online-evaluator
https://github.com/ashphy/jsonpath-online-evaluator
https://jsonpath.com/

[23] Tim Bray. I-Regexp: An Interoperable Regular Expression Format. 2023-10.
Internet Engineering Task Force (IETF). https://www.rfc-editor.org/rfc/
rfc9485.txt.

[24] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second
Edition. 2004-10-28. World Wide Web Consortium (W3C). https://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/.

JSONPath: an IETF Proposed Standard, with comparisons to XPath

52

https://www.rfc-editor.org/rfc/rfc9485.txt
https://www.rfc-editor.org/rfc/rfc9485.txt
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Containerizing XML Build Tools to
Facilitate CI/CD

C. Edward Porter
SAS Institute

<edward.porter@sas.com>

1. Introduction
Modern Git-based source management systems are popular stores for XML con-
tent. Each of the most-widely used Git remote repository hosts, e.g., GitHub,
GitLab, and Bitbucket, offer continuous integration/continuous delivery (CI/CD)
solutions to automate everything from validation and testing to builds and arti-
fact delivery. CI/CD facilitates event-driven processes such that well-designed
CI/CD pipelines can offer developers the freedom to push and merge changes
quickly, seamlessly, and with confidence that the automated pipeline will build
tested and deliverable artifacts.

One approach to managing the environments used in CI/CD pipelines is con-
tainerizing build tools. Creating Docker images of build tools ensures that the
build environment and tools used in any instance are consistent and guaranteed
to function as expected. The subject of this article is an exploration of the concepts
and use of containerized build tools with regards to standard XML build tooling
to facilitate XML authoring in a modern software-development "docs-as-code"
manner.

2. Concepts
When prompted, any experienced developer could likely immediately offer a
horror story of spending hours configuring their development environment only
to find that when pushed to their remote repository their work fails to build in
their build pipeline. Since time immemorial, incongruities and incompatibilities
between development and build environments have slowed development and
produced hard-to-diagnose errors. These headaches can be exacerbated in the
new CI/CD paradigm, where pull requests will be rejected until builds finally
compile cleanly, possibly grinding the pipeline to a halt. Just as developers expe-
rience these issues, so does the modern technical writer. Schemas and Schematron
validation can provide guardrails, but the ways a writer may break a doc build
are still myriad.

In the development world, Docker "Dev containers" are becoming increas-
ingly common. Collaborative teams develop a shared Docker image containing
all of the required development tooling and build tools preconfigured. Team

53

members can then use tools, such as Visual Studio Code, to develop within a con-
tainer ???. Similarly, in the past several years, it has become increasingly popular
in the CI/CD world to reduce reliance on a carefully configured build stack on
build machines (e.g., a Jenkins server with several distinct Python installations, a
local Antenna House instance, Saxon, Java, etc.) and instead to utilize Docker
images containing the entire build stack, such that build steps for a given project
are easily portable between different CI/CD servers and services.

An approach similar to the "dev" container/build container for software devel-
opment can prove powerful in standardizing the XML stack to ease documenta-
tion development and builds. Rather than containerizing a development
environment, one can containerize XSL stylesheets and the transformation con-
troller, such that a writer execute transforms locally in the same exact manner as
the documentation will eventually be transformed with in the CI/CD pipeline. In
the following section, we explore a process utilizing containerized XML build
tooling at SAS for processing and delivering content generated from embedded
Doxygen-based software documentation.

3. In Practice
At SAS, containerized tooling permeates the technology stack across the organi-
zation. In the Documentation DevOps group, two examples stand out. The sim-
pler use case facilitates publication of Doyxgen-based documentation embedded
in software source and will be the subject of this paper. On a larger scale, the
forthcoming migration to GitHub for source management is driving the adoption
of containerized build environments for the majority of the company's hundreds
of XML docsets, utilizing lessons learned from our Doxygen work.

3.1. Doxygen to XIS pipeline
SAS software and programming documentation is primarily authored in XML or
LaTeX. Over the last twenty years, SAS has developed a robust custom content
management system (CMS), dubbed XIS (XML Information System), and publish-
ing pipeline for delivering content to the web as HTML, ePub, and PDF as well as
embedded documentation in our software. The system is mature and delivers,
high-volume, high-quality content to end-users. While the majority of SAS docu-
mentation is either authored by technical writers in XML or by advanced analyt-
ics software developers in LaTeX, by tradition or acquisition, we have several
outlier instances of documentation maintained by development groups outside of
either ecosystem. Historically, if these edge cases intend to take advantage of the
standard publishing tools and our documentation portal ???, we have developed
lift-and-shift, one-way transformation tools to convert their documentation to
SAS XIS DTDs, leaving developers to maintain and author new content using XIS
in XML format.

Containerizing XML Build Tools to Facilitate CI/CD

54

Recently, however, the Documentation DevOps team started a unique project
with developers in the Risk Solutions group who must continue to deliver their
documentation bundled with their software to customers for end-user customiza-
tion purposes by necessity while also delivering standardized content to SAS
Help Center. For this project, we developed a containerized tool utilized both by
developers locally to test and preview converted content and also by the CI/CD
builds. In this section, we explore their tooling, and how we facilitate continued
authorship in their existing manner by transforming their output to XML projects
conforming to our tooling needs.

3.1.1. Doxygen

SAS Risk documentation is authored used Doxygen. Doxygen is a popular docu-
mentation tool for generating code documentation directly from source code. It
combines LaTeX and LaTeX-like tagging with markdown support to allow devel-
opers to document source code in line and generate PDF and HTML output ???. It
supports multiple source code formats, and in the case of this project, the Doxy-
gen content documents macros and programs coded in the SAS programming
language. Through the use of common LaTeX-like structural tags (e.g., \brief,
\details, and \param, developers document the function, input/output parame-
ters, and expected output of SAS macros.

3.1.2. Source Project Structure and Pipeline

SAS Risk software packages with Doxygen authored documentation are all struc-
tured similar with a similar pipeline for deliverables. Doxygen source documen-
tation content resides in two places: 1) embedded within source .sas files (SAS
program files) and in 2) stand-alone .txt files within a ../source/doc/ folder. The
(1) embedded documentation contains documentation specific to the SAS pro-
gram in which it is embedded, generally a brief and detailed description of the
program or macro, input/output parameters, and any other pertinent details. The
(2) standalone .txt files are more general documentation files from FAQs to how
to interact with a given package, details regarding implementation, etc.

In addition to the source Doxygen content, these repositories also contain the
complete compiled documentation, all the HTML files, images, and other accom-
panying metadata. This compilation is automated. Whenever a developer pushes
a commit and merges it into the development branch, a series of continuous inte-
gration steps occur, including the "docgen" step that compiles the documentation,
which is then available to be commited back into the repository.

3.1.3. Doxygen to XIS

Given the robust CI/CD pipeline that Risk developers have deployed, the Docu-
mentation DevOps team aimed to identify a way by which the existing pipeline

Containerizing XML Build Tools to Facilitate CI/CD

55

could be leveraged to somehow transform the Doxygen documentation into
something deliverable to Help Center. We briefly explored modifying the Doxy-
gen HTML transformation to produce content Help Center could render, but the
format of its output differed drastically from Help Center expectations and the
level of effort for modifying the Doxygen transform appeared high. Fortunately, it
turns out that Doxygen can generate XML conforming to its own schema ???, so a
plan soon coalesced around generating Doxygen XML and developing a transfor-
mation from Doxygen to XIS XML. With the content converted to XIS XML, the
task of delivering to Help Center becomes trivial.

3.1.4. Designing the Doxygen to XIS Pipeline

Utilizing existing tooling and processes was a guiding principle when developing
the Doxygen to XIS pipeline. Thus, we decided to represent these Doxygen
projects as XIS projects, such that once the XIS XML is generated, it can simply be
checked into its associated XIS project, committed and submitted, and the XIS
pipeline will build and deliver rendered content to Help Center automatically.
This design decision also offered us a phased approach to automating the conver-
sion. As soon as the Doxygen to XIS tooling was containerized and available to
the Risk developers, they could run that tooling locally, generate XIS XML, vali-
date it, and manually commit it to their XIS projects. Then, as the transform and
tooling matured, they could automate on their end, integrating it with the "doc-
gen" step of their GitLab CI/CD pipeline to generate the Doxygen XML, convert
to XIS, and finally deliver to the XIS project.

3.1.5. Containerizing and Automating the Doxygen to XIS Transform

There were several requirements for a Doxygen to XIS conversion tool. First,
there should be little to no manual intervention required for the XIS XML output
from the tool, such that it emerges well-formed and valid against the XIS DTD. It
should be ready to be checked in to the XIS project associated with the SAS prod-
uct without further manipulation. Any changes required to facilitate that should
be achievable in the Doxygen source markup. Thus the second requirement: the
conversion tool should be executable by developers themselves in their develop-
ment environment to aid in revising the Doxygen source tagging prior to commit.
In addition, it should be capable of being added to their existing CI/CD process
with ease. Finally, as with all SAS tooling and infrastructure, security should be a
top priority. For these reasons, we pursued containerization as a pathway to
development and deployment.

3.1.5.1. The Doxygen Transform image

The Doxygen to XIS transformation is comprised of a Java-based Saxon Initializer
to register an extension function that generates valid eid attribute values (an XIS

Containerizing XML Build Tools to Facilitate CI/CD

56

adaptation of UUIDs) and the doxygen.xsl XSL stylesheet. A visualization of the
Docker image appears below. The Java classes, minimal dependencies, and the
XSL are all compiled into a "fat" jar file, such that the resulting transformation can
be run via CLI with no classpath dependencies. Though SAS has a site license for
Saxon, by using Home Edition we avoid the need to package the license file. We
avoided requiring Professional Edition features by packaging the UUID generat-
ing class as an extension. Otherwise, the XSL transformation templates are fairly
straightforward.

Figure 1. Doxygen Transform Docker Image Components

Security is a major concern at SAS; thus, developers are strongly encouraged to
utilize universal base images (UBI) whenever possible. The Doxygen transform
image uses the sas-ubi8-java11 base image. By utilizing that base image, we off-
load the responsibility of making security updates to the Java runtime environ-
ment to the maintainers of the base image. Thus, we are only responsible for the
few dependencies required by our transformation controller and our reliance on
Java 11 itself.

Notably, this Docker image is not a service. It is not intended to be run contin-
uously. Instead, it essentially functions as a containerized CLI executable. The last
file in the image, entrypoint.sh, makes this possible. The ENTRYPOINT for the
Docker image is set to the path for entrypoint.sh shell script. It provides the end
user or the CI tooling a way to configure the container when it is instantiated
with the volumes for input and output and to pass in parameters as necessary to
execute a transformation. It also only accepts a single file at a time for transforma-
tion. The intention is that when multiple files need to be transformed, the CI code
will manage that process. This use of an Docker image follows an implementation

Containerizing XML Build Tools to Facilitate CI/CD

57

model very similar to the one described in GitHub documentation for creating a
"Docker container action" ???.

3.1.5.2. Doxygen Transform Image in Use

Generally, if developers have sufficiently simple documentation, they can simply
write their documentation in Doxygen markup, commit and push their code, and
expect that the transformation from Doxygen XML to XIS will go smoothly. How-
ever, for more troublesome content, by containerizing the Doxygen transforma-
tion, they can run the transforms locally to produce XIS XML locally, open it in
XIS and Oxygen to validate and visualize the results in Author view, modify their
source, and work iteratively to re-tag as necessary to produce satisfactory output.
The Doxygen transformation image relies on the volume mount functionality
provided by Docker to mount input and output directories and several parame-
ters to configure the transformation. By mounting entire directories, the transfor-
mation can pick up any included content in the source directory, and when
writing output, it can produce not only the converted XIS XML file, but also write
an equations to separate, included files, that can be transformed from the source
LaTeX markup to MathML XIS requires. A transformation command might
resemble something like the following:

docker run -v [inputDir]:/input \
-v [outputDir]:/output \
-i --rm -e INPUT=[input-file-name.xml] \
-e OUTPUT=[output-file-name.xml] \
-e ALIAS=[projectAlias] \
registry.unx.sas.com/xis/doxygen-transform:0.0.17

3.1.5.3. Doxygen Transform Image in Continuous Integration

The source code repositories for the SAS projects containing Doxygen documen-
tation are managed in GitLab. GitLab offers continuous integration (CI) function-
ality fairly similar to GitHub. CI functionality is YAML file based in which
"pipelines" are divided into stages comprising of one or more "jobs" ???. These
projects all utilize a robust collection of shared pipelines that contain stages like
smoke tests, regression tests, linting, etc.

The end goal for integrating the Doxygen to XIS transformation into the Risk
CI/CD workflow is visualized in the figure below. The process starts with a devel-
oper making changes to one or more source files containing Doxygen documenta-
tion. When they push to their development branch, numerous CI processes
initiate. One of them is the Doxygen transformation. The changeset is iterated
over, generating XIS XML files for each file containing Doxygen content. These
outputs are copied to an associated XIS project CVS dropzone. An ad-hoc docu-
mentation build preview is kicked off, generating a PDF for review. If the devel-

Containerizing XML Build Tools to Facilitate CI/CD

58

oper is content with the new build, they then manually commit all changed XIS
XML files to the CVS repository, and the XIS CI/CD build process will launch
resulting in a new preproduction build for editorial review and eventual delivery
on release day.

Figure 2. Continuous Integration Workflow

4. Challenges and Lessons Learned

4.1. Content Challenges

The challenges faced by this project were largely not tooling or pipeline related.
The single most challenging aspect has been the content itself and the banal, per-
ennial difficulty in converting from loosely structured content to a rigorously
designed DTD. In all, these Doxygen-based documentation projects represent
thousands of pages of content. While the larger, conceptual documentation is
fairly uniformly structured section and topic-based content, the content embed-
ded in SAS programs and macros varies widely. The Doxygen markdown to XML
transform also relies on whitespace and carriage returns, so seemingly minor var-
iations between formatting in different files produces different output XML. Fur-
ther, the XIS DTD rigorously enforces a rule regarding a limited number of
introductory elements preceding subordinate topics in nested topics, whereas
Doxygen has no such constraint. Thus, without reauthoring and homogenizing
the input, much of the XIS XML output proved to be invalid against the DTD.
Significant time has been spent and continues to be spent triaging validation
errors determining whether they necessitate input tagging changes or changes to
the XSL.

Containerizing XML Build Tools to Facilitate CI/CD

59

4.2. Containerization, Secrets, and Security
Containerizing an XSL transformation simplifies many issues but can also intro-
duce its own. Secret and key management is one such issue. For instance, while
not the only XSL processor on the market, Saxon is surely the dominant one.
While Saxon Home Edition (HE) is free to use, advanced Saxon features require a
professional or enterprise (PE/EE) license. At SAS, we own a site license, but of
course, one needs access to the license file to run the processor. For the purposes
of this project, thus far, we have not required any advanced features and are rely-
ing instead on packaging HE with the Doxygen transform. If and when we iden-
tify a need to use PE/EE features, we will have to identify a way by which to
supply the license file. This would not be problematic in the CI/CD pipeline, as
one can store secrets in GitLab and GitHub, but short of including the license file
within the image itself, providing this license file to individual users would be
more challenging.

Managing the user context within a container is another security issue presen-
ted by containerization. It is good practice to avoid running processes as root
when executing code with input from external sources within a Docker container.
Thus, by SAS policy, one of the last steps in a dockerfile is to set the user to a non-
root account. Since this tool requires that an input directory and output directory
be configured as volume mounts within the Docker container, the entrypoint.sh
and instructions for running the container were such that originally, the user run-
ning the Docker container was expected to mount folders within the container to
a home folder for the user configured to execute the transformation. This worked
well in the CI/CD pipeleine and on Linux machines, but proved unworkable for
users on Windows machines. While Windows machines could mount directories
in the user's home directories as expected, there were permissions issues when-
ever the transform attempted to create or write to subdirectories within mounted
folders, even within the home directory. These issues proved insurmountable,
and in an effort to be cross platform compatible, we eventually set aside the
requirement to execute the transform as a non-root user. When we can identify a
fix or can abandon support for executing the transform from a Windows
machine, we will revisit this decision.

4.3. Decoupling and Developing Generalized Resusable Images
Thus far, the XSL and XSL transformation controller are tightly coupled within
our Docker image. The entire project is based on a Gradle build that builds the
XSL transform controller with its accompanying dependencies and packages
them along with the XSL and other resources in a "fat" jar for Docker to pick up
when building the image. For this project, this model is reasonable, but if similar
projects arise with different XSL requirements, it could prove useful to develop
an internal SAS XSL transform controller image excluding XSL, but including one

Containerizing XML Build Tools to Facilitate CI/CD

60

or more transform extension classes to facilitate the needs of all of our XSL style-
sheets. Then, this new XSL transform base image could be leveraged by docker-
files for myriad transformations.

Ideally, perhaps, there would be an Docker images in the official Docker regis-
try for Saxon CLI. There are a few unmaintained images, but official ones with
uniform entry points and ways by which to provide extensions and mounts could
prove very useful for others developing XSL/XQuery pipelines with CI/CD tool-
ing. The Antenna House Docker image for its CLI would be a good model for this
project ???.

5. Conclusion
The raison d'etre of XSL is transformation. Methods for accomplishing and auto-
mating these transformations have varied and proliferated throughout its exis-
tence, from shell scripts, to Maven, Gradle, XProc and more. With the push for
modular, reconfigurable tooling, at SAS, we are exploring yet another paradigm,
containerized build tooling in CI/CD pipelines. By utilizing containerized build
tooling, we produce platform-agnostic tools that can easily be run both in the
development environment and also run with identical results in the CI/CD pipe-
line configured in the source management system of choice for that project.

The Doxygen to XIS CI/CD pipeline explored in this paper is a simple exam-
ple of the power of containerized build tooling. As SAS migrates its documenta-
tion repositories from CVS to a modern git-based VCS in GitHub, we are
applying the lessons learned in this Doxygen project as we look to exploit more
containerized tooling, like the Antenna House Formatter Docker Image ??? and
containerized Gradle build environments, to migrate from complex Jenkins
builds with specially configured build environments to GitHub workflows run on
generic on-prem build machines. Such is the power of containerizing build tool-
ing for the XML stack. From a simple workflow with a few build steps to complex
pipelines with containerized tooling and versioned declarative build scripts, XML
transformations begin to resemble software builds, making them immediately
more familiar to software developers, more maintainable, and more easily migra-
ted to future tooling. In this article we merely scratched the surface of the flexibil-
ity and power of containerized tooling, but with luck we have provided a solid
introduction to its utility.

Bibliography
[1] Antenna House Formatter Docker Image. https://www.antennahouse.com/
formatter-docker-image. Antenna House. 2024.

Containerizing XML Build Tools to Facilitate CI/CD

61

https://www.antennahouse.com/formatter-docker-image
https://www.antennahouse.com/formatter-docker-image

[2] Creating a Docker container action. https://docs.github.com/en/actions/creating-
actions/creating-a-docker-container-action. GitHub. 2024.

[3] compound.xsd. https://github.com/doxygen/doxygen/blob/master/templates/
xml/compound.xsd. Doxygen. 2024.

[4] doxygen. https://doxygen.nl/. doxygen. 2024.
[5] "Developing inside a container". https://code.visualstudio.com/docs/

devcontainers/containers. Microsoft Corporation. 2024.
[6] "Getting started with GitLab CI/CD". https://docs.gitlab.com/ee/ci/. GitLab. 2024.
[7] "SAS Help Center". https://documentation.sas.com. SAS Institute. 2024.

Containerizing XML Build Tools to Facilitate CI/CD

62

https://docs.github.com/en/actions/creating-actions/creating-a-docker-container-action
https://docs.github.com/en/actions/creating-actions/creating-a-docker-container-action
https://github.com/doxygen/doxygen/blob/master/templates/xml/compound.xsd
https://github.com/doxygen/doxygen/blob/master/templates/xml/compound.xsd
https://doxygen.nl/
https://code.visualstudio.com/docs/devcontainers/containers
https://code.visualstudio.com/docs/devcontainers/containers
https://docs.gitlab.com/ee/ci/

QTI and InDesign
Transformations to produce student worksheets

Mark Dunn
Oxford University Press
<mark.dunn@oup.com>

Abstract

This paper describes a project to automate a process for generating student
worksheets in print and digital formats from a single source. The source
XML format is QTI 2.1. The requirement was to produce from this source
an Adobe InDesign document from which we can export a print PDF suita-
ble for publication. We describe some basic concepts of InDesign and QTI,
and outline the proposed new process, the XSLT transformation design, and
some of the particular challenges that were encountered.

Keywords: QTI, IDML, InDesign, XSLT, XProc

1. Introduction
Oxford University Press produces assessments for students learning English.
These consist of short activities where the student must look at an image, listen to
an audio file, or read a text, and then choose the correct response from multiple
options, fill in a gap to complete a sentence, etc.

Currently each assessment is created twice, once for print and once for digital.
The initial version of the content is made in Microsoft Word and imported into

InDesign.
There is a lengthy process of review and correction, which also takes place in

InDesign. Designers and editors work together to produce a layout ready to print.
The same content is recreated in a digital platform to produce an online, fully

interactive version of the assessment.
If further corrections are needed, they are also done twice, once in InDesign

and again on the digital platform.
This project proposes a novel way of approaching a single-source workflow

for print and interactive English Language Teaching materials. Few large publish-
ers have solved this challenge fully for complex educational content.

The use of QTI as the XML model for assessment content means that produc-
ing the digital output is straightforward. Several learning platforms natively use
QTI for their assessments. This paper focuses on producing the print output, wich
is much more challenging.

63

2. Project requirements
The requirements stem from the desire to reduce duplication of effort by creating
and updating content in one place for both print and digital formats.

We want to automate the import of XML (in the standard QTI format for
assessment content) into InDesign and the application of styles to the text.

The “Import XML” feature of InDesign partly automates this, e.g. XML ele-
ments can be mapped to InDesign styles in the template.

But this is not sufficient for the complex assessment content we are dealing
with. For example, XML attributes cannot be mapped to styles, so features of QTI
that are distinguished by @class attribute values must be styled manually after
import.

A more fully automated process still has to fit around work done by hand in
InDesign to finesse the layout. The print pages are densely populated and
designed to appeal to students. The layout is far from the standard layout you
might find across series of academic titles or journals.

An InDesign document generated by automated transformation from QTI
may end up with numerous styling overrides assigned to its components by a
designer, e.g. to resize or move an image, to arrange part of the text in multiple
columns instead of a single column, etc. This is all part of the process to make the
content attractive to the student and to fit neatly on to a page.

If the text content also needs to be updated or corrected, we want to make this
in the source QTI, so that it only has to be done once for both print and digital
outputs.

Third parties such as government ministries that control curricula have the
ability to request changes late in the production process. By the time the QTI
XML has been updated, the InDesign layout may have had styling overrides
applied to it. When the XML is updated and re-imported, we want to preserve
any styling overrides that have been made, and not reset the content to a default
layout.

3. InDesign basics
Adobe InDesign is an application used for typesetting books, magazines, leaflets,
worksheets, etc.

A common workflow is to import content from Word. Styling in Word can be
mapped automatically to styling in InDesign.

Once imported, text and images etc are laid out in “Spreads”. Further styling
can be applied.

Once the layout is approved, a PDF suitable for printing can be exported.

QTI and InDesign

64

4. InDesign concepts

I will explain a few terms that will be used in this article.

4.1. IDML

IDML is a human-readable packaging format for InDesign.
An IDML file is a zip package of XML files describing design, layout, text con-

tent, etc.

Figure 1. IDML package contents

4.2. Spread

A Spread consists of one or two Pages, and objects of various kinds (Text Frame,
Image, etc) with properties defining their position, size, orientation etc on the
Page.

A Page may inherit properties from a Master Spread
Each Spread and Master Spread is an XML file in the IDML document.
The Spreads are what appear in the print publication.
The Master Spread does not appear, but if a Page on a Spread is linked to a

Master Spread, the content of the Master Spread will appear on that Page in the
print publication. This feature enables a page footer to be created once, as an
object in the Master Spread, and appear on each Page that links to that Master
Spread.

QTI and InDesign

65

Figure 2. IDML Spread outline XML structure

4.3. Text Frame
A Text Frame is an object on a Spread.

It displays text that is physically held in a linked Parent Story.
Text Frames can be chained together if the Parent Story is too long for one Text

Frame. The Story then overflows into the next linked Text Frame.
For example, the text of an entire book can be held in a single Story that is dis-

played across Text Frames chained together across the Pages of the book.
Linked Text Frames can also be used to produce effects such as two-column

layout. (The columns are linked Text Frames.)
We also make use of “anchored” Text Frames, which are objects within a Story

that appear inline with the content of the Story.

4.4. Story
A Story contains a chunk of text that is to be displayed on a Page (or Pages).

Each Story is an XML file in the IDML document.
InDesign has an “Import XML” feature. Importing XML using this feature cre-

ates a “Backing Story”, which is a separate XML file in the IDML document.
A Backing Story is only visible in the structured view in InDesign, until ele-

ments are dragged into Spreads.

QTI and InDesign

66

Figure 3. Structure panel in InDesign

Drag an element from the structured view to a Spread to create a Text Frame with
the content of that node.

(This also snips the XML and creates a new Story as Parent Story for the Text
Frame.)

Paragraph and Character styles can be applied to the text.

QTI and InDesign

67

Figure 4. IDML Story fragment (outline view)

5. QTI basics
QTI1 is an industry standard XML model for assessment content.

The model contains a mixture of presentational elements (XHTML) and func-
tional elements.

Types of interaction include text entry, multiple choice, and ordering.
One or more interactions of the same type may be grouped together as an

“assessment item” (or “activity”).
QTI also contains structures for holding the correct responses and for scoring

the student's own responses against them and providing feedback.

5.1. QTI example: multiple choice interaction
This example shows:
• a variable to hold the student's response, with an indication of the correct

response
• a variable to hold the student's score
• a variable to hold the feedback to be given to the student, depending on their

response

1 https://www.imsglobal.org/activity/qtiapip

QTI and InDesign

68

https://www.imsglobal.org/activity/qtiapip
https://www.imsglobal.org/activity/qtiapip

• an instruction to the student
• a reference to an external file containing the text they must read
• a question
• three options for the answer
• feedback for each option
• a reference to an external file containg the logic for processing the response

and assigning values to the variables

<?xml version="1.0" encoding="UTF-8"?>
<assessmentItem xmlns="http://www.imsglobal.org/xsd/imsqti_v2p1"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.imsglobal.org/xsd/imsqti_v2p1 http://
www.imsglobal.org/xsd/imsqti_v2p1.xsd"
 identifier="mcq-example" title="Multiple choice example" adaptive="false"
timeDependent="false">
 <responseDeclaration identifier="RESPONSE" cardinality="single"
baseType="identifier">
 <correctResponse><value>Choice_C</value></correctResponse>
 </responseDeclaration>
 <outcomeDeclaration identifier="SCORE" cardinality="single" baseType="float">
 <defaultValue><value>0</value></defaultValue>
 </outcomeDeclaration>
 <outcomeDeclaration identifier="FEEDBACK" cardinality="single"
baseType="identifier"/>
 <itemBody>
 <rubricBlock view="candidate"><p>Read the text and choose the correct answer.</
p></rubricBlock>
 <div id="mcq-activity" class="activity-item">
 <xi:include href="rt-mcq-example.xml"/>
 <p>What does the writer like about Blackpool?</p>
 <choiceInteraction responseIdentifier="RESPONSE1" maxChoices="1">
 <simpleChoice identifier="Choice_A">The tower</simpleChoice>
 <simpleChoice identifier="Choice_B">The North Pier</simpleChoice>
 <simpleChoice identifier="Choice_C">The Pleasure Beach</simpleChoice>
 </choiceInteraction>
 <feedbackBlock outcomeIdentifier="FEEDBACK" identifier="Feedback_A">
 <p>The tower is not correct because the writer
says
 "I am afraid of heights and didn't climb the tower".</p>
 </feedbackBlock>
 <feedbackBlock outcomeIdentifier="FEEDBACK" identifier="Feedback_B">
 <p>The North Pier is not correct because

QTI and InDesign

69

 it is closed for renovation.</p>
 </feedbackBlock>
 <feedbackBlock outcomeIdentifier="FEEDBACK" identifier="Feedback_C">
 <p>The Pleasure Beach is correct because the
writer
 says that "I went on the roller coaster at the Pleasure Beach three
times".</p>
 </feedbackBlock>
 </div>
 </itemBody>
 <responseProcessing template="match_correct.xml"/>
</assessmentItem>

Figure 5. QTI multiple choice activity

5.2. QTI example: response processing

This example shows the file for processing the student's response to the multiple-
choice activity shown above.

It contains structures for assigning the student a score of 1 or 0 and specific
feedback, depending on their response.

<?xml version="1.0" encoding="UTF-8"?>
<responseProcessing xmlns="http://www.imsglobal.org/xsd/imsqti_v2p1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.imsglobal.org/xsd/imsqti_v2p1 http://
www.imsglobal.org/xsd/qti/qtiv2p1/imsqti_v2p1.xsd">
 <responseCondition>
 <responseIf>
 <match>
 <variable identifier="RESPONSE"/>
 <correct identifier="RESPONSE"/>
 </match>
 <setOutcomeValue identifier="SCORE">
 <baseValue baseType="float">1</baseValue>
 </setOutcomeValue>
 </responseIf>
 <responseElse>
 <setOutcomeValue identifier="SCORE">
 <baseValue baseType="float">0</baseValue>
 </setOutcomeValue>
 </responseElse>
 </responseCondition>
 <responseCondition>
 <responseIf>

QTI and InDesign

70

 <match>
 <variable identifier="RESPONSE"/>
 <baseValue baseType="identifier">Choice_A</baseValue>
 </match>
 <setOutcomeValue identifier="FEEDBACK">
 <baseValue baseType="float">Feedback_A</baseValue>
 </setOutcomeValue>
 </responseIf>
 </responseCondition>
 <responseCondition>
 <responseIf>
 <match>
 <variable identifier="RESPONSE"/>
 <baseValue baseType="identifier">Choice_B</baseValue>
 </match>
 <setOutcomeValue identifier="FEEDBACK">
 <baseValue baseType="float">Feedback_B</baseValue>
 </setOutcomeValue>
 </responseIf>
 </responseCondition>
 <responseCondition>
 <responseIf>
 <match>
 <variable identifier="RESPONSE"/>
 <baseValue baseType="identifier">Choice_C</baseValue>
 </match>
 <setOutcomeValue identifier="FEEDBACK">
 <baseValue baseType="float">Feedback_C</baseValue>
 </setOutcomeValue>
 </responseIf>
 </responseCondition>
</responseProcessing>

Figure 6. QTI response processing template

5.3. QTI example: text entry interaction

This example shows the <textEntryInteraction> element that indicates where a
student will provide their response.

In print this will be rendered as a write-on line. In a digital format it will be a
text box.

<?xml version="1.0" encoding="UTF-8"?>
<assessmentItem xmlns="http://www.imsglobal.org/xsd/imsqti_v2p1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

QTI and InDesign

71

 xsi:schemaLocation="http://www.imsglobal.org/xsd/imsqti_v2p1
 http://www.imsglobal.org/xsd/qti/qtiv2p1/imsqti_v2p1.xsd"
 identifier="gapfill-example" title="Text entry sample"
 adaptive="false" timeDependent="false">

 <responseDeclaration identifier="RESPONSE" cardinality="single" baseType="string">
 <correctResponse>
 <value>your</value>
 </correctResponse>
 </responseDeclaration>

 <outcomeDeclaration identifier="SCORE" cardinality="single" baseType="float">
 <defaultValue>
 <value>0</value>
 </defaultValue>
 </outcomeDeclaration>

 <itemBody>
 <rubricBlock view="candidate">
 <p>Complete the sentence with the correct form of the word in brackets.</
p>
 </rubricBlock>
 <div id="gapfill301-activity-item-1" class="activity-item">
 <div id="gapfill301-artwork-1" class="artwork-supplementary">

 </div>
 <p>Where is <textEntryInteraction id="gapfill301-textEntryInteraction-1"
 responseIdentifier="RESPONSE"/> hat, Nigel?
 you</p>
 </div>
 </itemBody>

 <responseProcessing template="../rptemplates/match_correct_no_feedback.xml"/>
</assessmentItem>

Figure 7. QTI text entry activity

5.4. QTI package
A QTI “package” contains individual files for activities, tests (groupings of activi-
ties), media assets, response processing, and a manifest.

The manifest contains metadata about each resource in the package.

6. Outline of the new process
The starting point is an IDML “template” containing Master Spreads, styles, and
placeholder Text Frames.

QTI and InDesign

72

We then want to import the content of a QTI package using the following
steps:
• unzip the IDML package
• transform the QTI XML into IDML Stories with appropriately styled content
• update other files in the IDML package
• zip up the new IDML package
I wrote an XProc pipeline (executed by MorganaXProc-IIIse2) to run this process.

7. XSLT transformation design
The source document for the main transformation is the QTI manifest.

The path to the folder containing the unzipped IDML template is passed as a
parameter.

From the manifest, we identify the test and load it as a document. (The “test”
is an XML file containing references to the individual activities, which are sepa-
rate XML files.)

We will be creating new Spreads for the activities, based on the Master
Spread. The Master Spread in the template contains Text Frames for the test head-
ing and content, positioned and sized appropriately, and containing placeholder
content. The new Spreads will contain clones of these Text Frames that point to
new Stories containing the actual test header and content.

The stylesheet creates a global variable which provides details of the new
Spreads, Text Frames, and Stories, mapped to the QTI nodes that provide the
Story content for each Text Frame.

From the IDML folder, we identify the Backing Story.
We transform the Backing Story XML, importing and applying templates to

QTI XML from the test and activities.
This process tries to go with the grain of the manual process by importing

XML into the Backing Story and extracting nodes into new Stories and Text
Frames.

The core part of the transformation is relatively straightforward. An element
in the source QTI XML is transformed to a <XMLElement> element with a
@MarkupTag attribute containing the name of the original element. An attribute in
the source XML becomes a <XMLAttribute> element with @Name and @Value
attributes containing the original attribute's name and value. A text node is
retained, wrapped in a <Content> element.

It is necessary for us to include a representation of the source XML structure,
as it is crucial to supporting the process of updating an InDesign document when
source XML is updated, e.g. with corrections3

2 https://www.xml-project.com/morganaxproc-iiise.html

QTI and InDesign

73

https://www.xml-project.com/morganaxproc-iiise.html
https://www.xml-project.com/morganaxproc-iiise.html

There are several more complex features of the transformation that are needed
to produce the desired output. These are described next.

7.1. Application of styles

When matching a node that has a paragraph or character style, we apply the style
by creating a <ParagraphStyleRange> or <CharacterStyleRange> element.

The mapping of QTI structures to template styles is hard-coded into the XSLT
and accessed via functions getParagraphStyle() and getCharacterStyle().

This XML fragment shows a fragment of a Story representing a write-on line
populated with an example answer.

<XMLElement
 Self="d8e143_textEntryInteraction_default"
 MarkupTag="XMLTag/textEntryInteraction">
 <ParagraphStyleRangeAppliedParagraphStyle="ParagraphStyle/answer-example">
 <CharacterStyleRange
 AppliedCharacterStyle="CharacterStyle/$ID/[No character style]">
 <Content>your</Content>

 </CharacterStyleRange>
 </ParagraphStyleRange>
 <XMLAttribute
 Self="d8e143_XMLAttribute_responseIdentifier"
 Name="responseIdentifier"
 Value="RESPONSE2"/>
</XMLElement>

Figure 8. IDML Story fragment for element with paragraph style

The IDML hierarchy of <ParagraphStyleRange> (for applying block-level styles)
containing <CharacterStyleRange> (for inline styles) containing <Content> (for
text nodes) is straightforward, but the rules for how <XMLElement> elements (rep-
resenting the source XML structure) are interleaved are complex and undocu-
mented. InDesign is highly sensitive to errors in this structure.

A second XSLT transformation on the generated Stories was necessary in
order to impose these rules.

7.2. Creation of new Stories

We have already prepared a global variable identifying the QTI nodes that pro-
vide the content for Text Frames in the output Spreads.

3 #corrections-workflow

QTI and InDesign

74

When matching one of these nodes in the QTI XML, we create a new Story
whose identifier is already provided by the global variable.

By using <xsl:result-document> we move out of the Backing Story and cre-
ate a new file for the Story. We continue the processing of the source QTI XML
from that node but now within the new Story. This mirrors the manual process in
InDesign of dragging a node from the structured view, which creates a new Story.

In some places within the new Story we use the same logic to create additional
new Stories. For example, an activity may include a “write-on line” (gap for the
student to enter their answer). To render this we create an “anchored” Text Frame
within the Story. This TextFrame links to a new Parent Story that we create to
hold the content. This may be empty if the line is blank, or contain the correct
response if the markup indicates that it is a worked example.

Figure 9. Worked example of a text entry activity

7.3. Creation of new Spreads

We then make the new Spreads, containing:

• Page(s) linked to Master Spread

• Text Frames linked to the new Stories, cloned from corresponding placeholder
Text Frames in the Master Spread

(Stories are not visible until we assign them to Text Frames in Spreads. The Story
identifier associated with each Text Frame is provided in the global variable we
created earlier.)

Because a Page in a new Spread is linked to the Master Spread (in order to
inherit its properties from there), Text Frames on the Master Spread will be visi-
ble.

Some of these we want to keep, e.g. a generic page footer.
But we don't want to see the placeholder Text Frames in the final document,

because we have cloned them into the new Spreads and linked them to Stories
containing the test content. So we remove these placeholders from the Master
Spread.

7.4. Update the Design Map

The Design Map is a manifest of the resources in the IDML package. Because the
contents of the package have changed (new Spreads etc) we need to update this.

QTI and InDesign

75

It was simplest to do this as a separate XSLT transform within the XProc pipe-
line.

8. Bear traps
IDML appears to have no official current public documentation, but I did find an
old spec4 (in a public GitHub repository).

But this did not help with a peculiar problem I had.
The process creates a placeholder for an image if the image file is not yet avail-

able. This placeholder is a Text Frame whose content is the “art brief”, i.e. a
description of what the image will contain.

A Text Frame gets content by linking it to a parent Story. The @ParentStory
attribute of the TextFrame element matches the @Self attribute of the Story whose
content we want to appear in the Text Frame.

The Text Frame in my sample was linked correctly to a Story containing the
art brief, but the content was not visible in the output.

This fragment appears in the main Story for the activity. The source QTI is “snip-
ped” at this point: the Story stops at the Text Frame, which points (with the
@ParentStory attribute) to a new Story containing the content beyond this point.

<XMLElement Self="resource-fragment-group2-1_img_default"
 MarkupTag="XMLTag/img"
 XMLContent="resource-fragment-group2-1">
 <TextFrame Self="d11e141_img_TextFrame"
 ParentStory="d11e141"
 ContentType="TextType"
 ItemTransform="1 0 0 1 0 0"
 AppliedObjectStyle="ObjectStyle/WoL-V">
 <Properties>
 <!-- various Text Frame properties -->
 </Properties>
 </TextFrame>
</XMLElement>

Figure 10. Text Frame linked to Story “d11e141”

The new Story contains the art brief, pulled from the QTI manifest metadata
about the image resource.

<idPkg:StoryDOMVersion="18.5"
 xmlns:idPkg="http://ns.adobe.com/AdobeInDesign/idml/1.0/packaging">
 <Story Self="d11e141">

4 https://raw.githubusercontent.com/jorisros/IDMLlib/master/docs/idml-specification.pdf

QTI and InDesign

76

https://raw.githubusercontent.com/jorisros/IDMLlib/master/docs/idml-specification.pdf
https://raw.githubusercontent.com/jorisros/IDMLlib/master/docs/idml-specification.pdf

 <XMLElement
 Self="resource-fragment-group2-19_img_default"
 MarkupTag="XMLTag/img"
 XMLContent="resource-fragment-group2-19">
 <ParagraphStyleRange AppliedParagraphStyle="ParagraphStyle/artwork-ref">
 <CharacterStyleRange AppliedCharacterStyle="CharacterStyle/$ID/[No character
style]"/>
 </ParagraphStyleRange>
 <XMLElement
 Self="d6e449_string_default"
 MarkupTag="XMLTag/string">
 <ParagraphStyleRange AppliedParagraphStyle="ParagraphStyle/artwork-ref">
 <CharacterStyleRange AppliedCharacterStyle="CharacterStyle/$ID/[No
character style]">
 <Content>Photo of Blackpool Tower</Content>

 </CharacterStyleRange>
 </ParagraphStyleRange>
 </XMLElement>
 <!–-
 various XMLAttribute elements
 representing attributes of the source element
 -->
 </XMLElement>
 </Story>
</idPkg:Story>

Figure 11. Story “d11e141”

After lengthy experimentation I discovered that InDesign is sensitive to ordering
of items in the Design Map. This file is part of the IDML package and contains
references to each of the Stories in the package. If one Story contains a Text Frame
that points to another, the Design Map must reference the Story that contains the
Text Frame before the Story that the Text Frame points to.

My code was ordering the references in alphabetical order of file name, which
happened to be wrong for the desired output.

9. Workflow for content corrections
A key requirement of the new process is that corrections and updates to the con-
tent are made in one place for both print and digital formats.

Currently this is an iterative process between Editors and Designers and takes
place in InDesign itself.

InDesign does allow you to create and update XML tagging using the struc-
tured view. So it is possible to make changes in InDesign and export updated QTI
XML from it, which we could then pass on to the digital platform.

QTI and InDesign

77

But InDesign is not an XML editing tool, and does not contain a complete rep-
resentation of the source QTI. Our judgment was that making content corrections
in InDesign would not be a viable solution.

Our proposed workflow is to update the QTI XML and re-import it into InDe-
sign.

But the layout may be updated in InDesign following the initial import, e.g. to
position placeholder images.

The initial InDesign output uses Text Frames from the default Master Spread
for its content layout, and hard-coded default sizes for the image placeholders.

Figure 12. Initial InDesign output for a text entry activity

The designer takes this output and makes adjustments to produce the desired
appearance for this activity:

• The instruction now fills the full width of the page instead of being restricted
to the first column

• The image placeholders have been enlarged and aligned with the text of the
activity items

Resizing the image placeholders has the effect of pushing item 3 into the second
column and creating a symmetrical layout for the activity.

QTI and InDesign

78

Figure 13. InDesign output after layout changes

When we re-import the QTI XML we don't want to reset the layout and force the
designer to re-apply the layout changes. We need to preserve those changes.

To “refresh” the InDesign document with updated source XML, we use the
updated InDesign output as the IDML source instead of the template. The XSLT
identifies that Stories in the new IDML source are already associated with QTI
nodes from the source XML. We can do this because of the <XMLElement> and
<XMLAttribute> tagging within the Stories.

Instead of creating new Spreads, we copy the existing spreads, their Text
Frames, and styling properties applied to them. The XSLT recreates the Stories
from the source XML using the updated QTI XML.

Some styling overrides in the updated InDesign output are encoded in Story
XML, e.g. ParagraphStyleRange/@LeftIndent. Although we are recreating the
Story XML, the XSLT is able to copy these overrides from the source Story by
identifying an association between the styling override and the node in the source
QTI.
Getting the <XMLElement> elements interleaved correctly with the IDML styl-

ing elements was crucial to getting this process working.
The end result is that the text content of the IDML document is completely

refreshed from the source QTI XML but the adjusted styles and layout from the
initial IDML output are preserved.

QTI and InDesign

79

Figure 14. InDesign output refreshed from updated QTI, with layout preserved

10. Importing images
When an image has been supplied, we can update the QTI XML to include a ref-
erence to the image file, including its dimensions.

<img id="resource-fragment-group2-19"
 src="../media/nigel.jpg" width="1300" height="953"
 alt="TBC"/>

Figure 15. QTI (XHTML) markup for image reference

The transformation replaces the placeholder text frame with a Rectangle of the
same shape and position, with the Image placed within it.

The initial output was not promising.

QTI and InDesign

80

Figure 16. First attempt at importing image

To understand and fix the problem I had to analyse the IDML markup for the
Rectangle.

The properties of the <Rectangle> element (replacing the placeholder
<TextFrame> element) illustrate the layout changes made by the designer to the
original IDML output.

(Some IDML markup has been omitted for clarity.)

<TextFrame ItemTransform="1 0 0 1 0 0">
 <Properties>
 <PathGeometry>
 <GeometryPathType PathOpen="false">
 <PathPointArray>
 <PathPointType Anchor="0 -112"/>
 <PathPointType Anchor="0 0"/>
 <PathPointType Anchor="140 0"/>
 <PathPointType Anchor="140 -112"/>
 </PathPointArray>
 </GeometryPathType>
 </PathGeometry>
 </Properties>
</TextFrame>

Figure 17. IDML markup for original placeholder TextFrame

The four <PathPointType> elements give the X and Y coordinates of the corners
of the TextFrame, relative to its anchor point, the top-left corner.

After the Text Frame has been moved and re-sized by the designer, the prop-
erties have changed and are inherited by the replacement Rectangle containing
the imported Image.

QTI and InDesign

81

<Rectangle ItemTransform="1 0 0 1 10.106443481445353 -49.211789047799016">
 <Properties>
 <PathGeometry>
 <GeometryPathType PathOpen="false">
 <PathPointArray>
 <PathPointType Anchor="-10.106443481445353 -112"/>
 <PathPointType Anchor="-10.106443481445353 49.21178904779901"/>
 <PathPointType Anchor="223.75182423518075 49.21178904779901"/>
 <PathPointType Anchor="223.75182423518075 -112"/>
 </PathPointArray>
 </GeometryPathType>
 </PathGeometry>
 </Properties>
 <Image ItemTransform="1 0 0 1 0 0">
 <Link LinkResourceURI="file:/path/to/nigel.jpg"/>
 </Image>
</Rectangle>

Figure 18. IDML markup for Rectangle containing Image

The four <PathPointType> elements give the X and Y coordinates of the corners
of the Rectangle, relative to its original anchor point. The 5th and 6th components
of the Rectangle's @ItemTransform attribute describe the X and Y movement of
the Rectangle away from its original anchor point.

The image was placed at its full size and positioned with its top-left corner at
the original anchor point of the frame.

To rectify this, we needed to update the @ItemTransform attribute of the
image, to place it correctly within the containing Rectangle.

The requirements were to scale the image's width to the width of the Rectan-
gle and to centre it vertically within the Rectangle. The XSLT makes a calculation
based on the image's dimensions, the dimensions of the Rectangle, and also the
height of the original placeholder Text Frame.

The 1st and 4th components of the @ItemTransform attribute are the scaling fac-
tor, the 5th and 6th are the X and Y movement to position the scaled image cor-
rectly within the Rectangle.

<Image ItemTransform="0.17989097516663546 0 0 0.17989097516663546
 -10.106443481445353 -117.1121551430023">
 <Link LinkResourceURI="file:/path/to/nigel.jpg"/>
</Image>

Figure 19. Updated IDML markup for Image

The scaled image is slightly taller than the containing Rectangle, resulting in the
top and bottom edges being cropped.

QTI and InDesign

82

Figure 20. Image positioned correctly

11. Next steps
Much progress has been made, but there is still a lot to do.

There are more types of QTI activity not yet handled by the transformation.
For the content corrections process, the transformation preserves a number of

types of InDesign styling override, but there are more to do.
The process for making corrections to the QTI XML is also not yet confirmed.

If we are not making content corrections in InDesign, we still want a process that
allows us to see the changes in InDesign as quickly as possible.

We could create a transformation from the Word manuscript to QTI, which
would allow corrections to be made in Word (a familiar tool for Editors) and
transformed to QTI and then IDML in a single process.

As an alternative, I have created an authoring framework for QTI in Oxygen
XML Editor5 as a proof of concept.

With the XProc pipeline set up as an External Tool in Oxygen, this would
allow an Editor to update XML in a WYSIWYG environment and immediately
see the results in InDesign.

Embedded Schematron rules (with QuickFix6) can allow us to ensure the Edi-
tor produces valid XML output.

Ultimately we want to produce books as well as worksheets. This is expected
to involve blending QTI with the standard BITS data model for books.

For now this is a successful demonstration of an innovative method of pro-
ducing worksheets for students. It automates many aspects of the process but
leaves scope for a designer to customize the layout for individual assessments.

5 https://www.oxygenxml.com/
6 http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html

QTI and InDesign

83

https://www.oxygenxml.com/
https://www.oxygenxml.com/
http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html
https://www.oxygenxml.com/
http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html

Bibliography
[1] 1EdTech Question & Test Interoperability (QTI) Specification. http://

www.imsglobal.org/question/index.html
[2] Adobe InDesign User Guide. https://helpx.adobe.com/uk/indesign/user-

guide.html
[3] IDML File Format Specification (Version 8.0). https://raw.githubusercontent.com/

jorisros/IDMLlib/master/docs/idml-specification.pdf
[4] MorganaXProc-IIIse. https://www.xml-project.com/morganaxproc-iiise.html
[5] Schematron Quick Fixes Specification. http://schematron-quickfix.github.io/sqf/

spec/SQFSpec.html

QTI and InDesign

84

http://www.imsglobal.org/question/index.html
http://www.imsglobal.org/question/index.html
https://helpx.adobe.com/uk/indesign/user-guide.html
https://helpx.adobe.com/uk/indesign/user-guide.html
https://raw.githubusercontent.com/jorisros/IDMLlib/master/docs/idml-specification.pdf
https://raw.githubusercontent.com/jorisros/IDMLlib/master/docs/idml-specification.pdf
https://www.xml-project.com/morganaxproc-iiise.html
http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html
http://schematron-quickfix.github.io/sqf/spec/SQFSpec.html

XMQ/HTMQ - see XML and HTML in a
new light
Fredrik Öhrström

Viklauverk AB
<fredrik.ohrstrom@viklauverk.com>

Abstract
XMQ is an alternative format for XML/HTML which is easier for humans
to read and write when used for data-oriented use cases, such as configura-
tion files, documents with layout, and generic data storage. For these use
cases the standard format for XML/HTML is not always ideal. For example
there is unnecessary verbosity in using markup tags both for opening and
closing tags and the whitespace rules makes pretty printing hard and some-
times impossible.

XMQ solves these problems by using braces for the hierarchical struc-
ture and it simplifies whitespace handling by requiring all content white-
space to be quoted. Tags with simple content can be presented as key=value
pairs where safe values need not be quoted at all. Quoted content has its
incidental indentation removed which means that it can always be pretty
printed at any indentation. This makes XMQ easier to read and write for
humans and maps well to other key value based languages like JSON while
maintaining full XML compatibility. XMQ can always be printed in a sin-
gle line compact form without newlines, which is useful when writing to
logfiles, and often requires less bytes than the corresponding compact XML/
HTML.

Keywords: XML, HTML, XMQ, HTMQ, JSON

1. Introduction
When XML was first proposed as a subset of SGML in 1996, the focus was on sim-
plicity of parsing (formal and concise, with a minimum of optional features) and
that “terseness is of minimal importance”[1] The anti-terseness goal was probably
a reaction against the configurable concrete syntax of SGML. This configurability
and the ability to drop closing tags added a significant amount of complexity to
the SGML parser. In fact you could redefine start and end tags (and several other
language settings) to suit your environment and personal preferences.[2] Of
course terseness was desirable in the 1980s and 1970s since we edited SGML files
using text editors with a screen size of 80x24 or 80x25 characters[9] and terseness
was even more important for the precursor GML from 1969.

85

When markup was first introduced, as the name implies, it was used to per-
form “semantic markup of textual documents in a manner that permits the sepa-
ration of the underlying content from the formatting instructions”.[6] The distinct
opening and closing tag was therefore well suited to this task. Likewise, the
whitespace that was already present in the text before the tags were added, had
their own intepretation and the added tags had to live with whatever whitespace
convention the underlying text used.

However, over the years XML/HTML has been used more and more as data-
oriented languages, ie the tags are not just markup, they are the content and they
are often in the majority. With this in mind, perhaps it is time to revisit the anti-
terseness goal.

The distinction between data-oriented XML and document-oriented XML has
been discussed before and DuCharme writes that they are not rigid categories.[3]
However many programmers are used to the JSON format for data storage and
prefer to re-implement the XSD/XSLT functionality as JSON schemas [7] rather
than using XML/XSD. The primary driver for JSON adaption is of course the inte-
gration with Javascript, it is after all its own object notation. However JSON is
often used even in other data storage situations (like configuration files) where
Javascript is not strictly involved. You can see this in tools like quicktype which is
used to create JSON mappings for all sorts of programming languages.[8]

Kay lists[5] three reasons for the popularity of JSON versus XML: 1) simpler
grammar 2) better match to data models 3) better support by web applications.
The grammar is indeed simpler, but for 2, in my opinion it only matches a single
data model (Javascript) which lacks object types. We have already mentioned 3
(integration with Javascript) as the primary driver for JSON usage.

To this list, I would like to add and emphasize that the popularity of JSON
comes from it being data-oriented (for data storage), not document-oriented
(markup). The difference is obvious when you compare JSON and XML in your
text editor. When used for data storage, the closing tags in XML are verbose and
visually obscures the content. Kay writes that XML is verbose[4] but not more so
than JSON.[5] If we compare XML with JSON by counting the bytes, then
"car_speed":123 is shorter than <car_speed>123</car_speed>. Interestingly XML
itself uses key="value" pairs for the attributes inside the elements. This is proba-
bly because the attributes were seen as data storage, not markup. Perhaps Kay is
comparing JSON to XML attribute data storage, eg <car speed="123"/> which is
similar in size and not more verbose.

Why do we not use only element attributes for data storage? We could, and
sometimes we do. For example SVG files store most of the data in attributes. But
that is not how the use of XML has evolved over time instead often a key=value is
stored as <key>value</key> not as <data key="value"/>. In pom.xml files we have
<groupId>junit</groupId>, in rss we have <link>http://www.example.com/blog/
post/1</link>, in WIPO standard ST.26 we have <INSDQualifier_value>other

XMQ/HTMQ - see XML and HTML in a new light

86

RNA</INSDQualifier> and in this very docbook we have <abbrev>1996XML</
abbrev>.

But the big difference between JSON and XML when used for data storage is
how whitespace is handled. JSON is much simpler compared to XML in regards
to whitespace since all strings must be quoted. The whitespace complexity in
XML again comes from its markup origins. The markup tags were inserted into
existing text already with whitespace and from this we have all the complicated
whitespace rules that might even prevent us from pretty printing.

FtanML [4] was another alternative format for XML which claimed to solve
the whitespace problem "There's no ambiguity about where whitespace is and is
not significant. It's only significant if it appears in a string, or in rich text." FtanML
also gave an interesting solution for permitting pretty printing to any indentation
by starting each indented line with a backslash. However FtanML did not sup-
port namespaces whereas XMQ does. FtanML reused the < > symbols which in
my opinion made it difficult for a reader to quickly see if it was FtanML or XML.
If FtanML had fully implemented their tool, including automatic pretty printing
(or reformatting as they called it) then they would have achieved almost the same
goals as XMQ.

The Q in XMQ does not have a meaning, it is merely an available triplet of
characters similar to XML that has not been reserved for file formats before.

2. An alternative format
Let us now declare the goals for an alternative data-oriented XML/HTML format:
• Store as key=value pairs when possible. This reduces verbosity and implies

avoiding closing tags.
• Content whitespace must always be quoted and visible. This enables simple

and safe pretty printing.
There are of course many possible formats that fulfill these goals. I will now dem-
onstrate the XMQ format using examples and explanations. We begin with a sim-
ple data storage for a shipping order:

XMQ/HTMQ - see XML and HTML in a new light

87

The hierarchical style with braces should look familiar (introduced for the B pro-
gramming language in 1969[10]) but note:
• XMQ files are always UTF8 encoded and the only permitted separating white-

space between tokens are 32 (space),10 (newline) and 13 (carriage return). This
whitespace is never content whitespace. Like XML a single 10, or a single 13 or
a pair 13/10 is treated as a single 10.

• Safe values after = can be stored as plain text (see 889923 container), no quot-
ing needed!

• Unsafe values (after =) with newlines, whitespace or () { } ' " or leading =
& // /* must be quoted. A quote starts with one or more single quotes (apostro-
phes) and ends with the same number of quotes.

• Two single quotes always mean the empty string (see sailing).
• In multiline quotes, the incidental indentation is removed (see address).
• Quotes containing single quotes (apostrophes) are quoted using n+1 single

quotes (see coord). Note that two single quotes are reserved for the empty
string. You will therefore see a single quote ' or three quotes ''' or more quotes.

• Single line comments use // and multi line comments use /* */.
• Comments containing comments are commented using n+1 slashes (eg ///*

*///).
This means that you can quote any block of text (except for invisible spaces near
newlines) with enough single quotes and you can comment any block of text with
enough slashes.

The automatic incidental indentation removal allows any text block to be
pretty printed into any indentation. The quoted content that remains after inci-
dental indentation has been removed is marked with red below:

The ideas for incidental indentation removal and n+1 quotes originated in the
expert group for Java text blocks and was a collaborative effort led by Jim Laskey
and Brian Goetz. The seed to the idea to separate desired whitespace from inci-
dental(accidental) was planted by Kevin Bourrillion and the idea for n+1 quotes
came from John Rose.[11] The Java text blocks eventually did not use the n+1

XMQ/HTMQ - see XML and HTML in a new light

88

quotes and the exact rules for how the incidental indentation is removed also dif-
fers from the XMQ, but the concept is the same.

The incidental indentation removal solves a major whitespace problem in
XML/HTML. The normal whitespace rule for XML and HTML will collapse the
newline and the indentation beginning the next line. This can be used for pretty
printing of XML/HTML, ie to indent the subsequent lines in the XML
<address>...</address> to the same indentation as "The Vasa Museum". Alas this
is not always possible, for example if the xml node has xml:space="preserve" set
or if it is an HTML <pre></pre> node, or if the CSS for HTML node has been set to
white-space:pre.

A pretty printer could be designed to take all of this into account, but it is
hard. Especially since the pretty printing will depend on the external dependency
to a CSS, that might not yet be available or is ever changing. I consider it a bug in
XML/HTML that an IDE cannot safely pretty print the source code for a web page
or an XSLT transform without risking to introduce/removing significant white-
space.

The XMQ approach is to make the content whitespace explicit. This means
that you can see which whitespace will be part of the XML/HTML (the content
whitespace) and which whitespace is merely separating whitespace between the
XMQ tokens.

The content whitespace (that you now clearly see) will then be subject to the
XML/HTML interpretation rules that are controlled by xml:space="preserve" or
CSS white-space:pre etc. The content whitespace will then be interpreted as sig-
nificant whitespace or insignificant. These interpretations can change, but you
will still be able to pretty print the XMQ, since pretty printing only introduces
separating whitespace, not content whitespace.

3. There is always a compact printing
If we remove as much separating whitespace as possible and change the single
line comment to /* */ and escape the newlines, then we can print any XMQ in a
compact form on a single line. The ability to print a complete JSON document on
a single line has been quite useful in log files (JSONL format), where each log
entry can be added as a single appended line. With XMQ we can do the same
(XMQL format). The linebreaks below are of course only artifacts of the limited
width of the page.

You can see character entities like
 for newlines and compound values like
address=('...'
'...') which normally is a multiline quote but where escaped
newlines are intermingled with quotes to create the compact form. The entities

XMQ/HTMQ - see XML and HTML in a new light

89

must be outside of the quotes, since if they were left inside the quotes they would
no longer be entities, ie the quotes behave like CDATA blocks.

Even multiline comments can be printed as compact XMQ since */* means a
newline. This is not possible with XML/HTML since there is no standardized way
to escape newlines inside html/xml comments.

Note that, for historical reasons, XML/HTML does not permit two or more con-
secutive dashes inside a comment. This is quite a showstopper if you just want to
comment out some large part of your document. As you can see two dashes are
permitted in XMQ-comments and the XMQ tool works around this problem
when converting to XML/HTML by adding a very specific char (U+2410 Symbol
for Data Link Escape) in such a way there are no two consecutive dashes in the
XML. When loading from such xml, the DLE symbol is instead removed to
restore the two dashes.

4. Tool support
The XMQ language is already implemented in a tool that can be downloaded as
prebuilt executables for different platforms, or tested on-line, from https://
libxmq.org or built from source https://github.com/libxmq/xmq The tool can con-
vert between XMQ/HTMQ/XML/HTML/JSON and also apply XSLT/XSLQ trans-
forms along with some other useful functions similar to existing tools like
xmlstarlet.[12]

Render XML/HTML/JSON as colorized and pretty printed XMQ in your
terminal.
xmq pom.xml
cat index.html | xmq
xmq < data.json

XMQ/HTMQ - see XML and HTML in a new light

90

https://libxmq.org
https://libxmq.org
https://github.com/libxmq/xmq

Use the built in pager to scroll up and down.
xmq pom.xml page
xmq pom.xml pa
cat rss.xml | xmq pa
xmq pa < index.html
xmq data.json pa

View the pretty printed and colorized XMQ in your default browser.
xmq pom.xml browse
xmq pom.xml br
xmq br < index.html

View a json file as xmq in a pager or browser
xmq request.json pager
curl -s 'https://dummyjson.com/todos?limit=10' | xmq br

Convert to xml/html/json
xmq data.xmq to-xml > data.xml
xmq page.htmq to-html > page.html
xmq data.xmq to-json > data.json

View a large index.html but delete script and style tags.
xmq index.html delete //script delete //style pager

The same but view using your default browser.
xmq index.html delete //script delete //style br

Apply an xslq transform to some json to generate a html page.
xmq todos.json transform todos.xslq to-html > list.html

Apply an xslq transform to generate plain text.
xmq todos.json transform todosframed.xslq to-text > list.txt

Render content for html/tex typesetting.
 xmq input.xmq render-tex > view_input.tex ; xelatex input_as_tex.tex
 xmq input.xmq render-html > view_input.html

The tool is written in C and licensed under the MIT license. It uses libxml2 and
libxslt since those libraries are available on many platforms already.

5. Rendering HTML as XMQ/HTMQ
We can now visualize HTMQ and HTML. Note that the HTML is manually pretty
printed to simplify the comparison. HTMQ is just XMQ but with a structure that
permits simple conversion to HTML. An element like br in XMQ will convert to

XMQ/HTMQ - see XML and HTML in a new light

91

 in HTML (a self closing element) but convert to
 in XML. Also XMQ
always permits attributes without values br(a) which translates into <br a=""/> for
XML but into <br a> for HTML. We could say that XMQ is a slight superset of
XML and HTML.

• Text that does not immediately follow an equal sign = is called a standalone
quote (see 'Rest here ...' and 'p until ...') and must always be quoted. If you do
not quote them, they will be interpreted as elements (see html body a h1).

• XMQ pretty printing is straightforward whereas the HTML line breaks are
weird to prevent spaces inside the word sleep.

• XMQ entities like ∇ (∇) must be outside of the quotes.

• In the xmq, it is obvious that there is exactly a single space between Say and
the nabla.

If you convert from HTMQ to HTML using the tool: xmq
welcome_traveller.htmq to-html > generated.html Then you will see that
the tool does not pretty print the HTML since it wants to preserve the XMQ con-
tent whitespace exactly as it was written. If you convert the generated HTML
back using: xmq --trim=none generated.html to-xmq > back.htmq then it
should recreate an identical HTMQ file.

By default when loading XML and HTML, then xmq tool will use a heuristic
to remove some whitespace but keep some. This heuristic works most of the time,
but might remove some leading/ending content whitespace. This heuristic can
improve over time. XMQ can preserve all whitespace loaded from an XML/
HTML file. If you load the manually pretty printed HTML file using this com-
mand: xmq --trim=none welcome_traveller.html to-htmq --escape-
non-7bit then you will see the HTML indentation as quoted content whitespace
which is pretty printed as XMQ! This is usually not useful, but it illustrates the
amount of whitespace present in an HTML file that might or might not be signifi-
cant.

XMQ/HTMQ - see XML and HTML in a new light

92

6. Rendering JSON as XMQ
We can use the XMQ tool to convert shiporder to JSON: xmq shiporder.xmq to-
json | jq . You can see that the XML element name is folded as the key
"_":"shiporder" and attributes are folded as children prefixed with underscores.

This is a different mapping between XML and JSON, compared to the standar-
dised XSLT 3.0 mapping. This mapping instead uses the XMQ format which cre-
ates key=value pairs when the content of an element <key> consists only of text
and entity nodes.

For normal JSON this mapping generates a much more readable XMQ than
the XSLT 3.0 mapping. You can download JSON from an REST api and view as
XMQ in your default browser: curl -s 'https:// dummyjson.com/ todos?
skip=4&limit=2' | xmq br or you can view any downloaded json file: xmq
data.json

An interesting observation is that the JSON objects lacks type information.
This is visible as the underlines for element names. The XML element names

XMQ/HTMQ - see XML and HTML in a new light

93

serves both as a key and as a type. When there is only a single element, we can
say that the element name serves as a key. When there are multiple elements, then
we can say that element name serves as the object type.

If you consider this, then JSON is not always a better match for data models (see
reason 2 in the introduction), since the type is not available. In this particular
example it would be obvious to replace the underlines with a Todo element
name, which you can do in XMQ/XML but not in JSON.

There are more details to the XMQ/JSON conversion which are left out from
this article. The conversion is designed so that we can work with and view JSON
using XMQ, not work with and view XML/HTML as JSON. It is possible to con-
vert any XML/HTML document to JSON but it will not be necessarily be conven-
ient to work with.

7. XSLT transforms
The clear distinction between content whitespace and separating whitespace in
XMQ is very useful when working with XSLT. In the example below, we can gen-
erate whitespace exact output and till pretty print the XSLQ transform.

xmq todos.json transform format.xslq to-text > output.txt

XMQ/HTMQ - see XML and HTML in a new light

94

The generated output will be the framed text:

8. DTD and XSD
The inline DTD is the value assigned to the !DOCTYPE. There are no changes the
the DTD language.

Since XSD:s are normal XML they are rendered as XMQ in the same way as other
XML.

9. Corner cases
In XMQ, a key=value is an equivalent syntactic sugar for: key{'value'} Note that
for attributes, you can only write: key=value or key='value' since braces cannot be

XMQ/HTMQ - see XML and HTML in a new light

95

used in attributes. In the example below all values are: 123 If the xmq tool detects
that all children of an element are either text or entities, then it will present the
element as a key value pair.

XMQ is designed with the assumption that we rarely need significant leading/
ending whitespace/quotes. But when this is needed, it can be expressed in differ-
ent ways:

You can see the magenta colored parentheses () after the equal = sign. This is a
compound value which can only consist of quotes and entities. Compound values
are mandatory for the attribute values that need multiple quotes/entities since
braces { } cannot be used inside an attribute value.

10. Comparisons of file sizes
The tool has a built in function for summarizing statistics of documents. We can
use this to compare the size of XML (with no indentation and as few newlines as
possible) with compact XMQ. The first example is a WIPO ST.26 XML file record-
ing RNA sequences. The compact XMQ uses 45% less bytes to store it. The meta
size is the sum of the tag names, the attribute names and the attribute content.
The text size is the sum of the text content. We can see as we predicted in the
beginning of this article, that the ST.26 is used for data storage and not markup

XMQ/HTMQ - see XML and HTML in a new light

96

since the meta data uses significantly more bytes than the text content. Note that
if the opposite is true (text > meta), then this does not necessarily mean that the
file contains markup, it can still be data storage with a lot of data.

You use the following command to generate compact XMQ from the original
XML: xmq st26.xml to-xmq --compact > st26.xmq

You use this command to get the statistics: xmq st26.xml statistics

Table 1. Sizes

Source XML size XMQ size Reduction
%

Meta Text

WIPO ST.26 85721 47337 45% 33878 8846
MAME
software list

5353 4364 18% 2353 259

JLINE3
pom.xml

13700 8906 35% 3632 4080

Homepage
www.dn.se

547156 491377 10% 256275 16450

Article
below
www.dn.se

376961 359244 5% 121688 8101

To get valid meta and text sizes for HTML pages you have to use this command:
xmq page.html delete //style delete //script statistics This is because
modern dynamic HTML pages store style sheets <style> and javascript code
<script> in the page, and these are not content, but count as text, unless we delete
them.

The pom.xml is clearly used for data storage, still the text size is larger than
the meta size. This can of course happen when enough data is stored. On the
other hand, the HTML pages have meta data that is 15 times larger than the
actual text content. They ought to be considered as data storage for document
layout, not markup of text.

The pom.xml uses <key>value</key> for data storage and the HTML mostly
uses attributes key="value" for data storage. (The exceptions being the script and
style elements that we deleted.) With XMQ they are both normalized into
key=value pairs.

Note that it is interesting that the compact XMQ is often smaller than the com-
pact XML, but this is not a goal of the XMQ language. The purpose of XMQ is
help humans to read and write data-oriented content. This is why the ability to
safely and easily pretty print is important. The compact form is useful because it

XMQ/HTMQ - see XML and HTML in a new light

97

is the opposite of pretty printing and this symmetry helped improve the quality
of the XMQ language during the design process.

11. Conclusion
With XMQ the assumed dichotomy between markup languages (like XML) and
key-value data store languages (like JSON) has been removed. We can now use
XML for document-oriented situations and XMQ for data-oriented situations.
They are interchangeable and all the years of effort going into XSLT/XSD and
other tools can still be used with XMQ.

XMQ can always be pretty printed and it is easier to read and edit since we
can see the content whitespace clearly.

The XMQ format has been in development since 2019 and many different syn-
taxes has been evaluated by the author. The current syntax is stable and no
changes are planned.

XMQ/HTMQ - see XML and HTML in a new light

98

A. Grammar & rules

XMQ/HTMQ - see XML and HTML in a new light

99

Bibliography
[1] Tim Bray, C.M. Sperberg-McQueen W3C Working Draft, 14 November 1996.

https://www.w3.org/TR/WD-xml-961114.html

XMQ/HTMQ - see XML and HTML in a new light

100

https://www.w3.org/TR/WD-xml-961114.html

[2] Wayne Wohler SGML Declarations. https://xml.coverpages.org/
wlw11.html

[3] Bob DuCharme Documents vs. Data, Schemas vs. Schemas. https://
www.snee.com/xml/xml2004paper.html

[4] Michael Kay The FtanML Markup Language. https://doi.org/10.4242/
BalisageVol10.Kay01

[5] Michael Kay Transforming JSON using XSLT. https://www.saxonica.com/
papers/xmlprague-2016mhk.pdf

[6] Library of Congress USA Standard Generalized Markup Language (SGML). ISO
8879:1986 https://www.loc.gov/preservation/digital/formats/fdd/
fdd000465.shtml

[7] Sourcemeta A curated list of awesome JSON Schema resources, tutorials, tools, and
more. https://github.com/sourcemeta/awesome-jsonschema

[8] Glide Quicktype generates strongly-typed models and serializers from JSON, JSON
Schema, TypeScript, and GraphQL queries, making it a breeze to work with JSON
type-safely in many programming languages. https://app.quicktype.io/

[9] Ken Shirriff IBM, sonic delay lines, and the history of the 80×24 display. http://
www.righto.com/2019/11/ibm-sonic-delay-lines-and-history-of.html

[10] Ken Thompson B (programming language). https://en.wikipedia.org/
wiki/B_(programming_language)

[11] Brian Goetz Author's email conversation discussing the origins of Java Text Blocks.
[12] Mikhail Grushinskiy XMLStarlet tool. https://xmlstar.sourceforge.net/

XMQ/HTMQ - see XML and HTML in a new light

101

https://xml.coverpages.org/wlw11.html
https://xml.coverpages.org/wlw11.html
https://www.snee.com/xml/xml2004paper.html
https://www.snee.com/xml/xml2004paper.html
https://doi.org/10.4242/BalisageVol10.Kay01
https://doi.org/10.4242/BalisageVol10.Kay01
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000465.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000465.shtml
https://github.com/sourcemeta/awesome-jsonschema
https://app.quicktype.io/
http://www.righto.com/2019/11/ibm-sonic-delay-lines-and-history-of.html
http://www.righto.com/2019/11/ibm-sonic-delay-lines-and-history-of.html
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/B_(programming_language)
https://xmlstar.sourceforge.net/

102

<custom-element> DCE introduction
Sasha Firsov

<sasha@syngrafact.ai>

1. Introduction
Two years ago, the Web Components W3C Working Group asked for volunteers
for Declarative Custom Element, the web components defined declaratively. I
took the challenge and there is a result as the all-mighty XSLT fusion with
HTML5 as the base for a next HTML standard proposal.

Web components have introduced the ability to extend the HTML markup
with custom tags. Currently it is done by "custom element" browser API available
only via JavaScript.

The need for defining the custom elements declaratively led to a series of
Declarative Custom Element (DCE) implementations as JS libraries. These were
presented to Web Components Community Group as POC for DCE as W3C pro-
posal.

<custom-element> is the only DCE implementation which chose the pure
declarative web application as its principle. It allows the creation of fully func-
tional web applications without JS by using exclusively declarative markup. XSLT
1.0 syntax is the only fully functional native in the browser templating stack. It is
used as the template markup by <custom-element> along with XPath and XML
DOM as a data layer.

For now, it is implemented as open-source JS library published on GitHub,
NPM, and CDN.

It is under consideration of being W3C WCCG proposal for DCE.
Implementation of <custom-element> as the browser plugin, mobile and IoT

SDK, and secure browser is the planned evolution towards native platforms.
What <custom-element> can bring to the web as an applications platform?

2. Problem: Composed Web Applications challenges
After web 2.0 given by Dynamic HTML we have been transitioned to the next
level of evolution. IMO the web 3.0 is characterized by syndication of many ven-
dors applications and services on the host web application pages. It would be a
surprise to find any web application which does not include at least few 3 rd party
apps. The site analytics, 3rd party authentication, likes, feedback just to name a
few of most popular ones. The reason is pretty simple: the business specialization
which allows to provide a better and cost-effective service.

103

As of now the most of 3 rd party services are integrated with main web appli-
cations by JavaScript which does not have any safeguards around content and
user interaction.

With the 3rd party apps integration as a general pattern, the web 3.0 apps
become vulnerable and unreliable due to:

• Larger attack surface. The assemblage of applications contributes to a broad-
ened attack surface, with the vulnerabilities of one becoming a risk to all.

• Security as a Common Denominator: security levels are only as strong as the
least secure constituent, often defined by sub-application vulnerabilities.

• No Isolation Between Apps: current models lack effective isolation, with Java-
Script allowing extensive, uncontrolled access across applications.

What if I need to provide the nice UX for login flow and still keep the other services like
feedback, social media, analytics on the same page without compromising the user input?

3. Solution: <custom-element> application runtime

Without JavaScript there is no context sharing, hence the insulation between the
3rd party apps naturally comes from <custom-element> concept:

• Nothing is shared. Instead, strict ownership matches the DCE encapsulation.
Context owner can control the child DCE, but none is leaked upwards.

• The business logic as transformation rule set resides in XSLT. Which results
only in generated content.

• CSS styles are scoped to DCE and do not impact outer content.

4. Value proposition: Reimagining Development with DCE

4.1. Low-Code Principles

HTML-centric development facilitated by DCE eliminates the reliance on special-
ized JS developers, ushering in a new era of no-code principles driven by AI.

4.2. Reduced Development Cost

By shifting to HTML declarative methods, we foresee a transformation in devel-
opment costs, championing efficiency and accessibility.

<custom-element> DCE introduction

104

4.3. Integration Ease
Many companies lack the budget, skills, or knowledge to integrate 3rd-party apps
securely. As the AI angle enables faster development overall and eliminates the
need for coding, the DCE lowers the barrier of creating highly secured apps.

5. DCE overview
Extending the W3C standards as Web Components, DCE would provide a micro-
frontend patterns for embedding 3rd party components into the main web appli-
cation and insulation mechanism.

The key differentiator of <custom-element> among other DCE concepts is a
declarative syntax as for application UI as for the business logic.

The web components and XSLT templating co-exist on same stack without
conflicting with each other. The data layer exposes as attributes as the payload
passed to the instance (where tags actually used).

It also provides the data which can be changed in runtime by the named slice
as result of data extraction in the moment of HTML events. DCE data is always
belonging to own instance and is not exposed not to the container not to children
unless passed though template which guarantee a safe embedding even 3rd party
DCE components.

The rendering cycle is happen during initialization and every time when data
is changed. The rendering is optimized to update the only changed DOM which
allows to keep the HTML state as in HTML elements/web components as in
browser page - like a selection.

5.1. Basic coding principles

5.1.1. Declaration

is done by <custom-element> with XSLT template inside.

<custom-element> DCE introduction

105

The tag attribute defines the custom tag to be used later for rendering the con-
tent.

5.1.2. Preventing the side effects of declaration.

In order to avoid the showing of template content, use the hidden attribute as in
sample above. It would prevent displaying of the content but not the DOM like
styles and injection into page content. To avoid the DCE declaration interfering
with the page, wrap the body into <template>.

The wrapping into template has longer syntax but is safer than hidden attrib-
ute in current browsers.

5.1.3. Templating features: slots

<slot> from HTML standard allows to substitute the template parts marked by
named slot element

<custom-element> DCE introduction

106

5.1.4. Templating with XSLT

{title} is the synonym for <xsl:value-of select="title">. The XPath selector gives as
DCE data access as the full XPath power of XSLT 1.0.

This syntax is working as for HTML text between tags as for attributes:
<img
src="https://unpkg.com/pokeapi-sprites@2.0.2/sprites/pokemon/

other/dream-world/{pokemon-id}.svg" alt="{title} image">

5.1.5. Data layer

Has a DOM structure associated with DCE instance and available though XPath
in the template.

/datadom is a root /attributes have a list of attributes where value matches the
attribute’ one. It is also a default XPath node. /dataset holds data-xxx attributes /
payload is a DOM content of DCE instance on the moment of initialization /slice
is the map of component slice name to its value. The “change” event would trig-
ger its update.

<custom-element> DCE introduction

107

5.1.6. Slice

Provides the mechanism of live data feed from the element with slice=”xxx”
attribute to the /slice/xxx from its value. It is propagated during initialization and
later updated by either change event or by event name defined by slice-update
attribute: <input type="text" value="Type time update" slice="txt" slice-
update="keyup">

The custom elements in order to be DCE-compatible, have to expose its data
over value property and emit proper event(s).

5.1.7. Browser API access

Is done by custom elements via value property and accessed via slice.
Currently URL/location, localStorage, and fetch API implemented as part of

<custom-element> package. See the demo pages 1 for details.

5.2. Modular development
<custom-element> can have the template hosted inside or referenced from the
external URI by src attribute. For relative in the HTML DOM, use the hash URL
to element with ID.

URL also can be a generic link from which the DOM is going to be read. It
means the valid content is HTML, SVG, MathML, or generic XML to be used as
template. In case the URL follows hash #ID, the DOM subtree with this ID is used
as template. That makes HTML file a library, i.e. container for multiple templates.
Example #62.

1 https://unpkg.com/@epa-wg/custom-element/index.html
2 https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/external-template.html

<custom-element> DCE introduction

108

https://unpkg.com/@epa-wg/custom-element/index.html
https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/external-template.html
https://unpkg.com/@epa-wg/custom-element/index.html
https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/external-template.html

From external HTML file: <b id="wave">👋
<svg id="dwc-logo" xmlns=http://www.w3.org/2000/svg 3 …
<math id="sophomores-dream">…

5.3. Styling
By default <custom-element> inherits container CSS. Which means the page
developer can tune up DCE internals. But usually should not be necessary as the
styles defined within DCE would be applied to instances and do not leak to the
page level even if they written with very basic rules. It is safe to write css rules on
“top” level which would be applied for this DCE.

More CSS samples 4

3 http://www.w3.org/2000/svg

<custom-element> DCE introduction

109

http://www.w3.org/2000/svg
https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/scoped-css.html
http://www.w3.org/2000/svg

5.4. Development support
Instructions in README show on how to add IDE support for custom tags cre-
ated by <custom-elements>. It would make the consumer of DCE life easier.

During development of DCE itself, there is a need to see what data is available
and how they would be injected into template. The Chrome/Edge devtool plugin
5 adds the “transformation” panel to DOM explorer next to CSS.

It displays as data set as template in tree-view and as XML string to copy for
debugger in your favorite XSLT IDE. Visual Studio Pro allows to debug XSLT
step-by-step with call stack, breakpoints, and variables inspection.

In-browser step-by-step debugger is not ready yet. But we can work on it. Are
there volunteers in the audience?

6. Target Audience
Who would benefit from <custom-element> adoption?
• High Security Audiences
High-stakes environments like government, finance, and the military demand
robust attack resiliency, making them prime candidates for <custom-element> and
Syngrafact.AI' platform.

4 https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/scoped-css.html
5 https://chromewebstore.google.com/detail/epa-wgcustom-element/hiofgpmmkdembdogjpagmbbb-
mefefhbl

<custom-element> DCE introduction

110

https://chromewebstore.google.com/detail/epa-wgcustom-element/hiofgpmmkdembdogjpagmbbbmefefhbl
https://unpkg.com/@epa-wg/custom-element@0.0.18/demo/scoped-css.html
https://chromewebstore.google.com/detail/epa-wgcustom-element/hiofgpmmkdembdogjpagmbbbmefefhbl
https://chromewebstore.google.com/detail/epa-wgcustom-element/hiofgpmmkdembdogjpagmbbbmefefhbl

• Web Apps on the Rise
Platforms with dense 3rd party integrations, such as CMS, social networks, and
project management suites, stand to benefit profoundly from Syngrafact.AI` solu-
tions.
• CMS/Publishing systems
Google Sites, Adobe Experience Manager, Vercel, Wordpress, Drupal...
• Application portals
LifeRay, IBM WebSphere, Drupal…
• Social network sites/apps
With IoT devices, games, ads, etc. integration the number of 3rd party apps
would burst on another level.
• Project management suites
Jira, Confluence, GitHub,...

7. Conclusion
With <custom-element> the browser acquired a platform for declarative applica-
tions creation and web application owners the ability of safe inclusion of 3rd party
code. With the security barrier replaced by secure platform, the empowering web
applications by external features would become a business decision instead of
security safeguards effort. Which should result in increase of web applications
fusion on the level of magnitude.

Would your business benefit? Please share on
https://fosstodon.org/tags/declarativeCustomElement 6
Or comment your wishes on GitHub by creating an issue or discussion thread.

Anyone is welcome to join the Open-Source project:
https://github.com/EPA-WG/custom-element 7

References
[1] Declarative Syntax for Custom Elements. WICG webcomponents proposal

strawman. 2018 https://github.com/WICG/webcomponents/blob/gh-pages/
proposals/Declarative-Custom-Elements-Strawman.md 8

[2] Web Components CG. WCCG in Declarative custom elements. 2022 https://
github.com/w3c/webcomponents-cg/issues/32 9

6 https://fosstodon.org/tags/declarativeCustomElement
7 https://github.com/EPA-WG/custom-element
8 https://github.com/WICG/webcomponents/blob/gh-pages/proposals/Declarative-Custom-Elements-
Strawman.md

<custom-element> DCE introduction

111

https://fosstodon.org/tags/declarativeCustomElement
https://github.com/EPA-WG/custom-element
https://github.com/WICG/webcomponents/blob/gh-pages/proposals/Declarative-Custom-Elements-Strawman.md
https://github.com/WICG/webcomponents/blob/gh-pages/proposals/Declarative-Custom-Elements-Strawman.md
https://github.com/w3c/webcomponents-cg/issues/32
https://github.com/w3c/webcomponents-cg/issues/32
https://fosstodon.org/tags/declarativeCustomElement
https://github.com/EPA-WG/custom-element
https://github.com/WICG/webcomponents/blob/gh-pages/proposals/Declarative-Custom-Elements-Strawman.md
https://github.com/WICG/webcomponents/blob/gh-pages/proposals/Declarative-Custom-Elements-Strawman.md

[3] Sasha Firsov.custom-element Polyfill and POC for DCE proposal. 2024 https://
github.com/EPA-WG/custom-element 10

9 https://github.com/w3c/webcomponents-cg/issues/32
10 https://github.com/EPA-WG/custom-element

<custom-element> DCE introduction

112

https://github.com/EPA-WG/custom-element
https://github.com/EPA-WG/custom-element
https://github.com/w3c/webcomponents-cg/issues/32
https://github.com/EPA-WG/custom-element

Why Adding Some CSS Isn't Enough
Anne Rudolf

DOCUFY GmbH
<anne.rudolf@docufy.de>

Abstract

CSS is often understood as an easy styling language. But when it comes to
large projects, structure is mandatory. Printed user manuals use various
XML constructs, which are styled differently per customer, document type
or even within the same document. But the more layout requirements there
are for the same semantic construct, the more complex styling becomes.

To manage the amount of CSS for print and web, it seems obvious to
consult concepts from web CSS like OOCSS, BEM or ITCSS. Although
they focus on web interfaces, they point out the use of visual patterns. With
them styling is detached from content and structure, and it becomes scala-
ble.

This talk provides some ideas on how to structure CSS projects based on
safety notices as an example.

1. Introduction
This is going to be the usual problem-solution-story about layout designing with
CSS, how structure ideas from web CSS can be adapted for print and finally how
XSL and XPath might be part of a solution. SCSS and XSL are used for the layout
configuration tool DOCUFY Layouter. Among other things DOCUFY develops
software for technical documentation. To publish user manuals and the like, cus-
tomer XML is transformed into the in-house exchange format DYXML. This is the
input format for the DOCUFY Layouter. In this context it is sufficient to describe
DYXML as a restricted XHTML5, split up into topic files that are referenced by a
main file called tree. As the content structure is HTML and XSL-FO is no longer
developed, CSS was the obvious choice. But XSL was also needed from the start
to generate one linearized XML file for PDF and to add directories, chapter num-
bers, page area content and such. At first DOCUFY Layouter was only able to out-
put layouts for PDF, but later two HTML formats followed. Thanks to CSS this
was easy.

2. Safety Notices as an Example
To illustrate the problem, safety and warning notices give a good example,
because they became highly configurable. For technical writers they are an impor-

113

tant part of user manuals and therefore also very sensible. In DYXML a safety
notice consists of a signal word panel, which has a signal word and a safety alert
symbol. If there is a specific hazard, it might have a symbol panel. And naturally,
there is the message itself and its caption. As the images are part of a certain
safety standard, they are provided by the exchange format.

<div data-role="warning" data-class="safety-iso_7010">
 <div data-role="signalword-panel">
 <img data-role="safety-alert-symbol"
 src="ISO-7010_unspecified.svg" alt="unspecified"/>
 <p data-role="signalword">WARNING</p>
 </div>
 <div data-role="symbol-panel">

 </div>
 <div data-role="message-panel">
 <p data-role="caption">Risk of electrical shock</p>

 </div>
</div>

Figure 1. XML structure for safety notice

Figure 2. Styled output of PI-FAN safety notice (ISO 7010) [5]

The first design of safety notices that DOCUFY Layouter supported corresponded
to the design of the earlier XSL-FO transformation. It is configurable only to a cer-
tain degree and does not use any exchange format for publishing. Nowadays the
simplest way to style this danger notice would be the grid layout.

[data-role = warning] {
 display: grid;
 grid-template-areas: "symbol signalword" "symbol message";

Why Adding Some CSS Isn't Enough

114

 grid-template-columns: 4em 1fr;
 gap: 0.75em;
 padding: 0.75em;
 background-color: lightgrey;
}
[data-role = signalword-panel] {
 grid-area: signalword;
}
[data-role = symbol-panel] {
 grid-area: symbol;
}
[data-role = symbol-panel] img {
 max-width: 100%;
}
[data-role = message-panel] {
 grid-area: message;
}
[data-role = safety-alert-symbol] {
 max-height: 1em;
}
[data-role = signalword] {
 display: inline-block;
 font-weight: bold;
}

Figure 3. Grid layout for safety notice

At the start of a project, CSS selectors consist of one class and sometimes an ele-
ment. Selectors have a specificity of 1-0 or 1-1. But there are other risk levels, and
the symbol panel is optional. So far CSS selectors, with the help of SCSS, are still
organized. SCSS is a precompile language that provides logical structures, mixins
and selector nesting. SCSS files are split by DYXML structures and organized in
common or output specific folders.

However, the number of requirements increases over time. The ANSI safety
standard was implemented. For a multi-column layout, a more compact design
variant was needed. Configurations for colors, borders and fonts were added. The
safety standards do not define a concrete visualization of safety and warning
notices. But because they are a sensible part of the user manual, customers tend to
have many requirements for them. This led to a layout configuration to handle
arrangement variants of safety notices, which were implemented with SCSS, and
some additional wrapper elements generated by XSL. For the safety chapter that
describes general hazards at the start of a manual, a reduced design was neces-
sary for the ISO standard. For the ANSI standard safety notices within safety
chapters and within instructions must not be noticable, meaning that they have

Why Adding Some CSS Isn't Enough

115

another arrangement variant. Without the panel of the signal word an exclama-
tion mark must be displayed, which might be language specific.

In addition to the left-to-right layout the right-to-left layout was implemented
for languages like Arabic. Many CSS declarations might not have a direction, but
some might. Because there are also HTML layouts, the compact and embedded
arrangement variants are needed for the responsive layout on mobile devices.
Due to cross-media there might also be technical differences between the consum-
ers of CSS. For DOCUFY Layouter these are the browsers and the Antenna House
Formatter. The Formatter only supported grid layout recently. Therefore, the
arrangement variants for PDF had to be implemented as tables and floats.

With these requirements it becomes harder to manage selectors. SCSS can gen-
erate all necessary rules, but it cannot solve the problem that specificity is no lon-
ger predictable. With every added requirement, a specificity conflict might occur,
resulting in even higher specificities if possible to implement with CSS. For the
signal word panel alone, there might be more than 10 selectors. Because specific-
ity is implicit for CSS selectors, it is barely scalable. There is no granular prece-
dence as known in XSL.

From the perspective of the CSS cascade, there are no practical alternatives to
specificity and order. The !important flag, inline styles or shadow context pro-
vide no sustainable solutions or are simply not possible in the environment.
Browsers started to support CSS cascade layers 2 years ago, see caniuse.com1.
There seems to be no PDF generator that supports this feature yet. It might allevi-
ate the specificity problem, if you work with stylesheets from various sources [9].
But that is not the use case here.

3. Structure Ideas from Web CSS
CSS originates from the web environment. Despite their differences, web and
print layouts are both user-driven. But since web CSS developed simultaneously
with the web itself, it already faced the question of organizing large projects. As a
first overview I will summarize some developments that proved to be interesting.

Unsurprisingly, managing large CSS projects started with good practices also
known from other languages: Selectors should be as general as possible, be con-
sistent, split up files, comment the code.

As the web evolved there seemed to be the necessity for more structure. Nic-
ole Sullivan introduced an object-oriented concept in 2008 and described those
modules as re-usable visual patterns [8]. Structure should be separated from the
skin [8]. However, she focused more on the concept itself than on its concrete
realization.

1 https://caniuse.com/?search=%40layer

Why Adding Some CSS Isn't Enough

116

https://caniuse.com/?search=%40layer
https://caniuse.com/?search=%40layer

Based on her ideas the naming methodology BEM (Block-Element-Modifier)
by Yandex offered a more concrete idea to keep specificity as low as possible [6].
It adds a class for every visual pattern, which it calls blocks and its descendants.

.block-name, .block-name__element-name { }

.block-name.block-name--modifier { }

.block-name__element-name.block-name__element-name--modifier { }
Figure 4. BEM naming methodology

From 2011 onwards, architectural concepts were created that sort CSS rules into
types or levels. One of the first was SMACSS (Scalable and Modular Architecture
for CSS) [7]. It proposes the rule types ‘base’, ‘layout’, ‘module’, ‘state’ and ‘the-
me’. The base rules are element selectors, the layout rules describe the general
layout of the web page. Modules such as sidebars or search bars are arranged
within the layouts and might have states and different themes.

The SMACSS structure was strongly inspired by websites. It would take effort
to adapt e.g. the ‘state’ rules for print. SCSS partly supersedes the ‘theme’ rules
and separating ‘theme’ and ‘state’ from the ‘module’ might make it harder to
maintain.

Parallel to architecture ideas, there are other developments that abandon the
specificity of selectors [6]. One example is Atomic CSS, with which a class is
added to an element for every CSS declaration, meaning per property and explicit
value. A framework is essential for this approach. Because users can individually
set any border width etc., it is impossible to implement this kind of solution.

ITCSS (Inverted Triangle CSS) by Harry Roberts turns 10 this year and
because its levels are very abstract, I found it the most promising structure to use
for cross-media. Its levels are based solely on CSS, perhaps because CSS nowa-
days does not only style websites but also web applications. The abstract
approach makes it easy to use the concept also for print. Moreover, levels of
ITCSS express a certain specificity range, they include the BEM methodology and
there exists a version that considers SCSS [4] as it became more prominent in the
CSS community.

ITCSS proposes seven levels. The specificity increases per level, which means
that the last levels have the highest specificity and contain the most explicit rules.
1. ‘settings’: global variables and configurations
2. ‘tools’: functions and mixins
3. ‘generics’: general CSS selectors and @-rules
4. ‘elements’: bare HTML element selectors
5. ‘objects’: (if needed) general layout and structure classes
6. ‘components’: re-usable visual parts/patterns (e.g. search bar, directory entry)

Why Adding Some CSS Isn't Enough

117

7. ‘utilities’ /’trumps’: style rules to overwrite preceding levels for specific con-
texts

According to BEM, components in ITCSS may have descendants that depend on
the structure and layout of the component. They or their descendants may also
have varying themes that are represented by an added class value. To differenti-
ate between the levels, class values may have prefixes.

However, all web CSS structures assume that HTML is provided by the layout
and then content is added. The layout may even decide which content is dis-
played. With user manuals the content is first and the layout adapts to it.

4. Content-Driven Visual Patterns
To use ITCSS for the cross-media stylesheets of DOCUFY Layouter, the DYXML
elements must be mapped to visual patterns. With this separation styling
becomes scalable. Safety notices as a semantic construct in DYXML must then be
mapped to their looks, in this case the arrangement variants. Each of these visual
patterns might have visual variants per risk level or reduced styling. The map-
ping can take XML context, layout configurations or output characteristics into
account. Other semantic constructs might have only one visual pattern. Tables
may be styled by element selectors alone. But as soon as there are different styl-
ings for tables, they too have variants.

As XSL is already in use, this leads to a simple XSL template that extends the
XML element by the class values for components, objects or utilities. But it takes

Figure 5. ITCSS levels with (S)CSS examples

Why Adding Some CSS Isn't Enough

118

effort to map every semantic construct that extends the styling of the pure XML
element.

In this way, the strengths of XPath and CSS are utilized. XPath selects the ele-
ments. Unlike CSS selectors, it can select more granular and take the following-
axes into account. Meanwhile, CSS selectors stay simple and predictable even
with multiple requirements. So, CSS rules can provide specificity and styling.

<xsl:template match="dyxml:div[@data-role and contains-token(@data-
class, 'safety-iso_7010')]">
 <xsl:variable name="component" as="xs:string" select="'hint-iso-' ||
$dl-param-hint-iso-variant"/>
 <xsl:variable name="has-symbol" as="xs:string?" select="
 if (descendant::dyxml:div[@data-role='symbol-panel’])
 then ($component || '--has-symbol') else ()"/>
 <xsl:variable name="level" as="xs:string" select="$component || '--'
|| @data-role"/>
 <xsl:variable name="reduced" as="xs:string?" select="
 if (
 ancestor::dyxml:section[contains-token(@data-class, 'safety-
chapter')]
 and $dl-param-hint-safety-chapter-reduced
) then ($component || '--reduced')
 else ()"/>
 <xsl:variable name="mobile" as="xs:string?" select="
 if ($dl-output-responsive) then ($component || '--mobile') else ()"/>
 <xsl:copy>
 <xsl:attribute name="class" select="
 string-join(($component, $has-symbol, $level, $reduced), ' ')"/>
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
</xsl:template>

Figure 6. Linking XML elements to visual patterns

The modularization of visual patterns might make a few selectors obsolete that
simply overwrote others. As the selector for the right-to-left layout is compiled by
the SCSS across the entire stylesheet, this attribute is not queried in the XPath. As
it is a general setup, the specificity of the CSS selectors is still predictable.

Retrospectively and also per element, you can see four states of a CSS layout
that are connected to the number of requirements. DOCUFY Layouter started with
approx. 100 layout configurations and one output. Currently there are more than
1000 configurations, some more complex than others, and three outputs and it is
still growing.

First safety notices could be selected easily via CSS selectors. With increasing
requirements, they could still be selected, but selectors became more specific.

Why Adding Some CSS Isn't Enough

119

Important to notice is that visual patterns were there from the start, even if there
is no organized mapping. But because each is equivalent to a single XML con-
struct it was less obvious.

In the next stages adding attributes or elements per XSL is the only way to
style the element. With increasing requirements even that becomes hard to main-
tain because the number of visual patterns increases, as shown with the example
of safety notices.

Other semantic constructs with less requirements are in one of the preceding
stages. Tables can have variants in the stylesheets of DOCUFY Layouter, but they
do not need more attributes. Inline elements like a term displayed in a user inter-
face are less complex and can still be easily selected with CSS.

For smaller projects, a pure CSS solution is possible to keep organized. SCSS
aids CSS cascade layers perhaps in combination with ITCSS could provide some
structure. But as soon as selectors tend to become more specific, XPath offers
more possibilities to select elements and helps to keep CSS simple.

5. Conclusion
With increasing requirements selectors reflect XML semantics. With higher specif-
icities, CSS projects become less scalable. There is the need for a better and more
modular structure. XPath, if possible in the setup, can handle complex selections
of element subsets far better than CSS selectors and may therefore be used to add
attributes for visual patterns to the XML. One remaining challenge here is the
comprehensible labelling of visual patterns.

For large or growing projects, it is not enough to simply add CSS. Structure is
mandatory. However, it is equally important not to think in semantic categories,
but in visual ones and to consciously differentiate between the two.

6. Bibliography

[4] Ekene, Peter: How To Solve Large-Scale CSS Bottlenecks with ITCSS and BEM, 19
December 2019. https://www.digitalocean.com/community/tutorials/
how-to-solve-large-scale-css-bottlenecks-with-itcss-and-bem

[5] Gruenert, R. - Ziegler, Wolfgang: PI-Fan, 2015. www.pi-fan.de
[6] Pfeiffer, Andrei: The evolution of scalable CSS, 24 January 2022. https://

andreipfeiffer.dev/blog/2022/scalable-css-evolution
[7] Snook, Jonathan: Scalable and Modular Architecture for CSS, 2012. https://

smacss.com/files/smacss-en.zip
[8] Sullivan, Nicole: Object Oriented CSS, 2009. https://fronteers.nl/congres/

2009/sessions/object-oriented-css

Why Adding Some CSS Isn't Enough

120

https://www.digitalocean.com/community/tutorials/how-to-solve-large-scale-css-bottlenecks-with-itcss-and-bem
https://www.digitalocean.com/community/tutorials/how-to-solve-large-scale-css-bottlenecks-with-itcss-and-bem
https://andreipfeiffer.dev/blog/2022/scalable-css-evolution
https://andreipfeiffer.dev/blog/2022/scalable-css-evolution
https://smacss.com/files/smacss-en.zip
https://smacss.com/files/smacss-en.zip
https://fronteers.nl/congres/2009/sessions/object-oriented-css
https://fronteers.nl/congres/2009/sessions/object-oriented-css

[9] Suzanne, Miriam: A Complete Guide to CSS Cascade Layers, 21 February 2022.
https://css-tricks.com/css-cascade-layers/

Why Adding Some CSS Isn't Enough

121

https://css-tricks.com/css-cascade-layers/

122

XML preserved from the past and into
the future or?

Karin Bredenberg
Kommunalförbundet Sydarkivera

<karin.bredenberg@gmail.com>

The story about standards used now and for the future

Some have been saying XML is dead 1 (we know that is not true), and the
use we see for XML most often involves publications, but so much more
relies on XML and XML being a part of the future. You might not know
that the final resting place for a lot of the information (which will be called
data in the rest of the text) created by agencies, municipalities and others is
being saved for the future with the aid of digital preservation by archives
both national and others no matter if it’s a physical artefact or digital data.
The digital data is exported in different ways out of the system on which it
was created to facilitate the saving and reuse of data without requiring the
originating system. The export involves creating some type of itinerary and
transforming the data into formats suitable for moving the data to the
archive or whoever is the receiver. In almost all cases, the itinerary is in the
XML format following a standard, providing an XML schema for describ-
ing a transfer and all of the components required besides the data itself. The
data will come in many different forms such as database dumps, images in
various file formats, PDFs and XML documents.

A thank you to Jaime Kaminski for aiding me with my English language.

1. When preserving data is not really your game
So, how can you end up thinking about a final resting place for the data when
your title and education are not about saving data for the future? Imagine striv-
ing for a bachelor’s degree in computer science focused on programming and
needing to write a paper to achieve that professional title. The paper is about
transferring data in the cultural sector using a standard with an XML schema as
its core to an archive. The standard most often used is METS 2 (Metadata Encod-
ing & Transmission Standard). METS is a standard for describing data and its

1https://web.archive.org/web/20220610095940/https://developpaper.com/is-xml-dead/ is a starting
point for getting more information regarding the statement
2https://www.loc.gov/standards/mets/

123

administrative components to be transferred to another system or a digital
archive. The administrative components (often called provenance) range from the
creator’s description to information about how the data was created. For example,
what software was used or if it was digitised with a scanner, and rights like copy-
right concerning the data are applicable, as well as much more, depending on
what is known. What does all this have to do with XML is most certainly your
question now, well you see the standards being both standards from well-estab-
lished standardisation organs and de-facto standards created from the need of
them that are being used in making sure the past is available in the future is
based upon XML. This is because XML is both human and machine-readable.
Doing this type of evaluation of the standards in this area demands the skillset of
an engineer to be able to discover all the facets and possibilities that can be used.
Furthermore, the facets and possibilities are increasing and include the require-
ments of the EU Digital Single Market 3, now in its next phase EU Digital strategy
where reuse and the ‘once only’ principle uses all types of data.

Figure 1. Illustration of common use and reuse of data by Karin Bredenberg

3https://eufordigital.eu/discover-eu/eu-digital-strategy/

XML preserved from the past and into the future or?

124

There are a lot of standards within this area of transferring and storing data, and
to emphasise what is being used is, in most cases, XML with the support of one or
more XML schema. We need rules to be sure the data is in the expected form and
structure. A setup with XML schemas that, if well designed, makes it possible for
both humans and machines to understand and the data being saved easily. And
yes, there are numerous uses and creations of XML schemas that make it impossi-
ble to understand the data they are supposed to house. So, when thinking about
the future in the past, there are numerous standards based upon XML available.
They still thrive, and behold, we are just now admitting the demise of xlink and
creating our own attributes and elements to create links to files and other resour-
ces. On the other hand, there is also a big need to describe how to use these
standards to facilitate a common understanding. This is, in most cases, made in
specifications. You see, having a standard doesn’t necessarily mean knowing
what you should do is easy. Haven’t we all been there and tried to understand
what an ISO standard is saying we should do?

2. Standards, de facto standards and specifications
To fully understand the complexity of preserving data for the future, a look at
Jenn Riley’s Visualisation of the Metadata Universe 4 is needed. This visualisation
has been around for a while, but it is still the best overview of standards like the
ones from some sort of a standardisation institute like ISO or de-facto standards
like METS and PREMIS, something which has become seen as a standard and
used by many even without it being created and maintained by a standardisation
institute, primarily used in the cultural sector, archives, libraries and museums
for storing and transferring data. The cultural sector is usually responsible for
caring for the past, from all types of analogue artefacts like documents and books
to digital artefacts in many different file formats.

4http://jennriley.com/metadatamap/

Figure 2. The visualisation of the Metadata Universe by Jenn Riley. (The
recommendation is to look on-line)

XML preserved from the past and into the future or?

125

What is lacking in the image is some (many) of the standards that utilise dif-
ferent types of linked open data standards like RDF, which adds to the number of
standards being used. (I assure you; the cultural sector uses RDF nowadays, some
more than others.) In the image, numerous standards are shown, which are dis-
played in the context of their function and where they are used. Almost all stand-
ards on the metadata map created by Jenn Riley have an XML format available
described with a DTD or an XML schema. Both the ISO standard RelaxNG and
W3C XML schema formats are used for the XML schemas. The choice depends
solely on the skills of the schema’s creator. At the same time, it’s also common to
ensure that all types of schemas are available, so transformations from RelaxNG
to XML schema and vice versa are often used to facilitate both available versions.
Yes, some have not left the DTDs. DTDs are still around since old software is still
in use, and they are based upon using a DTD, and the funding for upgrading all
parts to current methods and techniques is not available, so if it still works, it
works. The fact is that many standards used in digital preservation have one or
more interpretations in XML with an XML schema as the rule base. There are also
written specifications explaining how to use the standard since most of them con-
tain many elements and attributes, and all are unnecessary to make something
future proof. Even so, it is important to understand that specifications are created
to ensure that all understand and use the standards in the same way, despite all
the possible ways you can use a standard, so we reach interoperability and reuse
advantages. Several existing standards are currently undergoing revisions to
ensure they are sustainable and fit for purpose.

In many cases, these revisions will not be backwards compatible, meaning
that software and methods will need to be updated, and new specifications will
be required to explain the revised standard. We also see new standards devel-
oped where linked open data is one part of the interpret, the other is still an XML
interpretation. However, in the XML versions, there are accommodations for
reusing values from ontologies and ensuring that it is possible to create relations
between described objects and other objects described elsewhere.

3. Parts needed for storing data for the future
When we talk about digital preservation and the objects stored for the future, sev-
eral different parts are needed. The digital object can be an image, a document, or
a database, let’s do it this way you name the digital object, it most certainly needs
to be preserved for the future and be authentic and possible to show for a future
being. So, we have the digital object itself, which is described together with tech-
nical metadata so the file/files can be catered for in the long run, we need to know
the format, the size, and checksums, for example. We need to know who created
the object to record its provenance and if that gives us some rules for using it. We
also need to know how it came to be and its relation to other digital or physical

XML preserved from the past and into the future or?

126

objects created by the same creator or other creators if that information is known.
There is no end for what needs to be known; new factors, digital objects and
authorisations are coming into play daily. Look at the digital signatures where
they need to be possible to validate for some time and then known to have exis-
ted for the object in the long term; no one will be able to validate a digital signa-
ture in 50 years. And how should we integrate all these AIs and automation?
What information must we preserve to know that AI created or influenced the
information? Will that information be needed? How to ensure we don’t create the
same thing again since no one has made this before….

In short, data with a digital origin is a bit trickier to cater for compared to a
physical document consisting of ink written on parchment. We still need to
ensure that the goal of preservation is reached. It is well described in the preser-
vation pyramid created by Pricilla Caplan for the PREservation Metadata Imple-
mentation Strategies Editorial Board 5 (PREMIS EC) to show the means and goals
of the digital preservation for a digital object. PREMIS EC is the maintainer for
the only standard (de-facto standard) that is available for preservation metadata,
PREservation Metadata Implementation Strategies 6. PREMIS offers a data dic-
tionary, and it is being used worldwide, so you might even be using PREMIS
without knowing it. It provides the option to understand what needs to be recor-
ded regarding the preserved objects, the rights that may need to be taken into
account, the agents that do something with the object, and the events that happen
to the object. All these parts are needed to fulfil the preservation goals.

Figure 3. The preservation pyramid illustration created by Pricilla Caplan used
in PREMIS.

5https://www.loc.gov/standards/premis/premis-editorial-committee.html
6https://www.loc.gov/standards/premis/

XML preserved from the past and into the future or?

127

4. Why bother?
So, what does all this mean, and why does this even matter to all attending XML
Prague? Well, you see, your help is needed to ensure XML is not only something
for creating nice print documents or focusing on creating new XML languages
since we all want something simpler. There is a need to ensure that XML and all
the required parts like XSLT, Schematron and XML schema are, if not updated,
but maintained and at least available for the never-ending future. Achieving that
goal means ensuring that all the data created today can be stored and reused in
the future with well-known standards. We need this sustainability and future
thinking since the nicely printed PDF, which is a common document format, will
not be standing on its own and will not be self-descriptive about its origin in the
future without a lot of accompanying metadata, which gives the creator and the
circumstances that it became to be created and known. You all need to be our
champions in the longevity of XML!

As a champion, you will need to be familiar with several different parts,
which will make this tricky to handle in some cases. The number one thing to
remember is that when it comes to preserving something for the future is, who is
doing the work? Usually, the one doing it is a cultural sector worker and, most
commonly, an archivist. This position requires you, in most cases, to get a univer-
sity degree in the humanities, where you then add classes to become an archivist,
learning how the agencies have been working and how to order things following
a specific national scheme which is specific to each country. This education (yes,
there are a few exceptions) does not take into account the change that has hap-
pened with data; it has moved from analogue to digital, which means the archiv-
ists are a little bit out of their ordinary knowledge zone and are not prone to
understand that when we are talking about digital preservation, it is not a one-
person job, it’s a collaboration between many different skill sets. This means that
people with minimal technical skills are trying to solve problems that are a piece
of cake for another profession. Think about writing transformations in XSLT. Can
everyone really write an export into some form that takes a full data set from a
database describing all the actions done in a company (aka. records manage-
ment), and then an XSLT transformation which turns it into something fit for
importing to another system or preserve it for the future in XML following a spe-
cific XML schema? The question is, should they? The answer is no; you need the
correct knowledge and expertise to do that. Sure, you can learn parts of it, but to
make sure that the result is possible to preserve for the future, everything needed
needs to be part of exports and transformations and follow the standards, de-
facto standards and specifications available. At the same time, there is also the
opposite: that’s XML, that’s programming, that’s IT! This means that some of the
cultural workers just leave the table, and there we are, will anything be preserved

XML preserved from the past and into the future or?

128

for the future? That’s the first part of the ones doing the work. The other part of
this work is the other professions, and they also need to step up their game.

Figure 4. We need to work together! An image from https://
commons.wikimedia.org/wiki/File:Knowledge3_DigitalPreservation.png

We all need to start working together and ensure the data created will last for-
ever. Looking deeper at the second part of workers needed to preserve the data
for the future is the technically skilled professions. A question: how many times
does a programmer validate the export result in XML before setting it into pro-
duction? The answer is that in many cases, this never happens until the data ends
up at the place where it is supposed to be stored forever, and there you have the
expertise in understanding the data and the XML, all the tests are run, and voila
it’s not well-formed or valid. Many things need correction, which could have been
avoided if a validation was made before sending it out as “The export”. Where
does this leave XML as being a part of saving data for the future? Well, the
demands are very often that a system needs to create an export in the form of
XML following a demanded XML schema since, so far, it is what makes it easier
to understand the data without its originating system in a neutral way. What
often is lacking is the knowledge of how to ensure the XML is valid and not just
well-formed. Even not well-formed XML might be the export result… We in the
XML community need to continue to inform about XML and how it needs to be
well-formed and validated, how to use Schematron to create validations and not
only use what XML schema provides regarding the use of the correct attributes

XML preserved from the past and into the future or?

129

elements, we also need to and in the validation of external value lists, element
and attribute dependencies but also of the content to make sure the data is under-
standable for the future user of the data. All this so that when there are expecta-
tions on the software creators to make sure when there are demands on an export
suitable for long-term preservation made by the software users, it is implemented
and is well-formed and validates.

5. About specifications for saving the data
As written earlier, understanding the standards that are being used in the area of
digital preservation specifications is critical. Specifications that are aimed at sup-
porting many, so all use the same interpretation of the standards. This is still not
enough; there is a need for numerous guidance documents ranging from writing
XML to using a specification. And all this since you cannot count on the person
implementing standards, de-facto standards with the aid of the specification and
its validation to have the appropriate background knowledge and all the correct
skills. We are lucky! Within the European world of digital preservation, there are
specifications and guidance documents to aid with all these parts. More work is
needed and will be done; the start is there!

Figure 5. All the parts that constitutes a specification following the eArchiving
specifications. Image by Karin Bredenberg

The story of eArchiving specifications originates with work that started at the
National Archives of Sweden and was enhanced in the E-ARK project 7. The
project delivered seven draft specifications, which were all built upon creating

7https://eark-project.com/

XML preserved from the past and into the future or?

130

profiles of how to use standards and de-facto standards. These can be split into
four specifications describing profiles of the standard METS and then: one for
electronic records management, one for geodata, and finally, one for using the
SIARD8 standards. The project ended, but no one wanted the work to be forgot-
ten and unused, as is so often the case. So, to make sure these specifications did
not stop evolving, the project created the “Digital Information LifeCycle Intero-
perability Standards Board” (DILCIS Board 9). During the project E-ARK4ALL 10

(which was responsible for setting up and maintaining the eArchiving Building
Block), the Board took over the specifications. It brought them to a stabilised
state, published them and then developed more specifications. Work is carried
out together with the experts of specific content, so the experts write the specifica-
tions. This means that if you are an expert on a type of data see that you think
others would benefit from using in a common way, you can contribute by either
creating a new specification or if you have a commonly used schema or specifica-
tion to send in a suggestion of it getting an endorsement. It is also possible for all
that have an interest in the specifications no matter if you are a data producer or
responsible for developing an export or software following the specifications to
give comments and suggestions using issues in GitHub11 for the specification you
want to comment on since all the specifications are maintained there. If GitHub is
not your preferred way of giving comments and suggestions it is also possible to
send an e-mail12 to the DILCIS Board, which will be registered in GitHub so all
comments and suggestions are thoroughly documented. The Board is currently
set up with ten members who handles the specifications. The Board is simultane-
ously the principal producer of and maintainer13 of specifications in the current
eArchiving Initiative 14 through the E-ARK Foundation 15 and the eArchiving
Common Services Platform (E-ARK CSP).

There are two types of specifications, which will be described more in the fol-
lowing sections:

• Description of an information package

• Description of the content

8https://dilcis.eu/content-types/siard
9https://dilcis.eu/
10https://e-ark4all.eu/
11https://github.com/DILCISBoard
12info@dilcis.eu
13As maintainers the DILCIS Board is responsible for keeping the specifications up to date but not just
updating as wanted instead it has been created procedures for the creation and maintenance so it is
following a schema for revisions, https://dilcis.eu/guidelines/procedures
14https://digital-strategy.ec.europa.eu/en/activities/earchiving
15https://www.e-ark-foundation.eu/

XML preserved from the past and into the future or?

131

6. What the specifications for an information package describes
The final resting place for the data is the e-archive, which is in most cases built
upon the ISO standard, Reference Model for an Open Archival Information Sys-
tem (OAIS Reference Model) 16 and its use of information packages, the Submis-
sion Information Package (SIP), the Archival Information Package (AIP) and the
Dissemination Information Package (DIP). More parts are described in the refer-
ence model, but everyone focuses on the information packages.

Figure 6. Image of OAIS reference model. Image courtesy of the DILCIS Board.

The different packages in the OAIS reference model are described, and their
inventory or manifest is stated with METS when you are using the eArchiving
specifications. The manifest in the form of the METS document describes all the
parts of the packages. This way, both machines and humans can understand the
package. METS itself is a rather open standard with only one mandatory element
when you are using version one (as I wrote earlier, many standards are going
through revisions), which is a structural description of the package. The stand-
ards also demand the creation of a profile for the exact use case describing the use
of the standard and its elements and attributes. Others can then reuse the profile
with the same use case or as a starting point for adding requirements.

7. Besides a package we need content specifications
Well, we now have a package described in XML. We need some content such as
images, PDFs or data structured in XML that gives us the data recorded in the
package. This means we might have one or more XML documents to describe the
information and its structure and another XML document to describe the whole
package with all the content but not always the structure of the information itself.
We can even handle a relational database in this way, extracting it in XML format

16https://www.iso.org/standard/57284.html

XML preserved from the past and into the future or?

132

following the standard SIARD and then packaging it in a SIP for transfer to the
archive. Specifications of content are growing steadily. There are lots of different
kinds of information that need to be described. Luckily, there are many standards
for describing information in XML, so there is no need to reinvent the wheel; you
just need to write specifications to explain how you should use them. If there is
no specification available but there is a standards-based format, you can, after
agreeing upon this solution with the receiver of the information, just use the
information package specification for creating the manifest and then transfer the
information.

8. The result
With an information package that has both information about the content and the
data itself, it is now possible to store it in an e-archive or with a more often used
term in a digital preservation system for the future. It might be as file/files as they
are or in a compressed format like a TAR file. There will be a need to ensure that
the data is not altered so its authenticity is not changed, formats don’t become
obsolete and so on. But we leave this for the digital preservation system and uti-
lisation of the de-facto standard PREMIS.

9. Hurdles to pass
What does the use of all this XML mean? Well as noted earlier, it creates demands
on a number of roles involved in the data’s both creation and export possibility
from the systems used as much as on the one receiving the data and taking care
of it for the future. And don’t forget the creators of the standards and XML-
schema who need to be able to make sure what they create is suitable.

The first hurdle is as simple as creating the software and planning the creation
of the export and the resulting XML document, but not understanding how to
connect it to its XML schema, thus not, in some cases, even creating well-formed
and invalid XML.

The second hurdle is the belief that validation is something that happens on
its own without any or some intervention.

The third hurdle is the difficulties that occur when the average user does not
know how to validate the XML in combination with Schematron because of poor
or no knowledge of either XML or Schematron and not having access to some-
body with the requisite knowledge. It has become more common that validation
of an XML schema is aided with a specialised Schematron that adds conditional
validation and other validation rules like externally hosted value lists. We must
not forget that Schematron adds its own complexities when combined with a
non-relaxNG schema. This complexity can be overwhelming when you don’t
know XML or only have a basic understanding of it. Many guidelines and tips are
necessary to validate the data.

XML preserved from the past and into the future or?

133

Some extra hurdles can be added, such as the belief that attributes are for
machines and elements are for people. We also need to fall back to the beginning
of this text; XML is dead, so why are we using that? And add in, why don’t you
create an API so it all becomes automatic? Well, an API where the form and struc-
ture of the information in the originating system are always unknown is not easy
to create. Topping it with, ‘but JSON is so much easier to use, why don’t you pro-
vide this in JSON’?

10. Where does all this leave us?
I get back to the need for champions, champions for XML to prove it is not dead
and that we all need to do digital preservation together no matter what our pro-
fession is! We need to be the knights in shining armour that guides all users to
sustainable use of the standards, de-facto standards, and specifications, and we
need to ensure that data created today will be around in the future and in a form
that can be used and reused.

11. Some final remarks on how to prepare for and thus avoid the
hurdles
Preservation of our data requires us to be champions in many ways besides mak-
ing sure that XML will be around forever. I will here give some further bullet
points about what is required and some benefits, so we don’t run into any hurdles
and thus lose our data.

Remember that all no matter how you are connected to the data are welcome
to give comments on both standards, de-facto standards and specifications when
there are call for comments open or by creating issues in the way the maintainers
want them.

When you are a producer of data:
• Ensure that your system can export the data from the system in a structured

way using one or more XML schemas, preferably adhering to a commonly
agreed-upon specification or standard.

• Make sure that the system creator, whether in-house or a system you buy, sets
up a road map for following specifications and standards, including when a
new version will be implemented and how the cost will be covered.

• When the requirements from specifications and/or standards are common for
the systems an export from one system can be imported into another system
more easily, thus facilitating easier system changes.

• Exporting in a common way, following specifications and/or standards,
ensures that the data are ready for digital preservation in the long term.

When you are a producer of XML from a system that then can be transferred:

XML preserved from the past and into the future or?

134

• Many software store data in a database, which means code needs to be created
to extract data from it and place it in an XML document.

• When writing an export/import adhering to specifications and/or standards
make sure to go through the requirements and see which ones are mandatory
or optional, and ensure that the mandatory ones are implemented.

• Make sure to check that the XML being created is both well-formed and valid.

• Remember that an API that works for all possible database setups is not possi-
ble. The creators of the specifications and standards will only have informa-
tion about their specific part, the specification, and/or the standards and not
about the originating systems.

• The road map for implementation or update will guide the business decisions
needed to be made.

• Make sure that an implementation and/or update follows the version of the
specification and/or standard you say you are adhering to. Mixing versions
without checking the result will not make you adhere.

• When the requirements from specifications and/or standards are common for
the systems, an export from one system can be imported into another system
more easily, thus giving the benefit of making the export/import of data easier.

• Exporting in a common way, following specifications and/or standards,
ensures that the data is ready for digital preservation in the long term.

When you are a user of XML transferred from a system:

• The benefit of getting data that follows a specification and/or standard means
that the data’s requirements are known and explained, making the data easy
to reuse or handle both now and in the future.

When you provide tools or applications with XML capabilities:

• If you implement specifications and/or standards, go through the require-
ments, determining which are mandatory or optional, and making sure that
the mandatory ones are implemented.

• Make sure that you check that XML that is created is both well-formed and
valid.

• If it is possible to add warnings that the XML has not been checked for well-
formedness or validity when an export is made, please do so and make sure
the checks can be performed.

• When tools and applications come ready with specifications and/or standards
implemented for data export/import, the benefit will be that the people
responsible for the tools/applications have full control of the implementation.

XML preserved from the past and into the future or?

135

• Using specifications and/or standards ensures that the data follows a common
understanding and at the same time it is ready for long-term digital preserva-
tion.

XML preserved from the past and into the future or?

136

Transparent Invisible XML
Nico Verwer

<nverwer@rakensi.com>

Abstract

Invisible XML (ixml) is a language for specifying grammars that can be
used to parse plain text and turn it into structured XML. This works when
the input is just plain text with an implicit structure, but not when the
input is already structured XML, to which we want to add more structure.

In this paper, we present a modification to the Markup Blitz ixml parser,
which makes it possible to augment existing XML markup with XML ele-
ments from the parser output. In BaseX, this modification is available as a
slightly altered version of the proposed fn:invisible-xml XQuery 4.0
function. When applying the parsing function to an XML fragment, the
parser only sees the text content of that fragment, hence the name “trans-
parent” invisible XML.

We also propose a modification to ixml itself, allowing existing XML
elements to be recognized as non-terminals. This makes it possible to use
“pre-parsed” input that is generated by another ixml parser, or by another
method like named entity recognition. An ixml grammar can refer to these
“pre-parsed” elements, and make them part of larger recognized structures.

1. Introduction

The motivation for writing this paper, and developing the software described in
it, was the “Link eXtractor” (LX) project. [1] This project analyzes Dutch and
European legal texts, such as laws, treaties, and other regulatory texts, as well as
case law, court rulings, judgments and advisories. It detects references to other
legal texts, resolves the targets of these references, and inserts links in the source
document. The references that the LX detects consist of plain text without any
links. Therefore, the LX uses parsing expression grammars and generates parsers
to recognize the references. The parsers, XSL transformations and other compo-
nents are tied together as pipelines in Apache Cocoon, under Java 8.

Although the LX application has been running successfully for almost 10
years, it is in need of a complete overhaul. Many of its software components have
become obsolete, and we would like to use more modern technologies, such as
XQuery, XSLT 3, Invisible XML, and a modern Java version. This required the
development of the technologies described in this paper, mainly Transparent
Invisible XML.

137

Invisible XML, or ixml is a language for specifying grammars that can be used
to parse plain text and turn it into structured XML. [2] It was designed by Steven
Pemberton, who gave several presentations and tutorials on ixml. [3] [4] Version
1.0 of the ixml specification was published in June 2022. There are several imple-
mentations of ixml, and it has an active community.

An XPath function

fn:invisible-xml($grammar as item()?, $options as map(*)?)
 as function(xs:string) as item()

has been proposed as part of the XPath and XQuery Functions and Operators 4.0
draft. [5] This function takes a grammar and options, and returns a parser in the
form of a function. As the signature indicates, the returned parser function takes
plain text (xs:string) and returns either an XML representation of the parsed
input string, or an error.

Sometimes, the input that we want to parse is not just plain text, but it is text
within an XML document. Parsing enriches this document by adding additional
elements around the recognized text. There may be markup (XML elements)
inside the recognized text, which must be preserved during parsing. The parser
that is generated by fn:invisible-xml only handles plain text, so what can we
do with the additional markup?

It is easy to remove the XML markup, but not so easy to put it back after pars-
ing. Also, the XML elements in the parser’s output must be added to the existing
XML elements. This cannot be done arbitrarily; The result must be well-formed
(and possibly valid) XML. Solving both problems makes the XML elements in the
input transparent to the parser, hence the name “transparent invisible XML”, or
tixml.

As an example, consider this fragment from a report of the Parliamentary
Assembly of the Council of Europe (https://pace.coe.int/en/files/30065/xml):

<Para>
 ...
 immunity under Article 40.<Emphasis Role="italics">a</Emphasis>
 of the Statute of the Council of Europe and
 the General Agreement on Privileges and Immunities of the Council of
Europe
 and its Additional Protocol
 ...
</Para>

A parser for references to legal documents should recognize “Article 40.a of the
Statute of the Council of Europe” and make it possible to put a link to this article
into the document.

Transparent Invisible XML

138

https://pace.coe.int/en/files/30065/xml

A first step could be to make an ixml grammar with a rule for treaty, which
recognizes all the Council of Europe’s treaties. Then a rule like the following
would parse the reference.

reference : (part-type , s , part-id , s , of , s)? , treaty .

The s and of nonterminals are whitespace and connecting words, and will not
appear in the output.

However, there is an <Emphasis> element around the “a”. If we were to use
the serialized XML document as input to the parser, we would have to allow for
XML elements like <Emphasis>. There may be many such elements that possibly
occur at many places, depending on the schema of the document. Incorporating
these (serialized) elements in the grammar is a lot of work, and obfuscates the
grammar to the point that its original intention is lost. Furthermore, serializing
and re-parsing becomes very complicated.

Another option is to throw away the <Emphasis> and other elements, and
parse the text content of the document. The <Emphasis> and other elements must
be put back into the document after parsing, since we want to enrich the docu-
ment with links, not change its original structure. If we can do this, the
<Emphasis> and other elements element transparent to the parser, which is the
purpose of tixml.

For the document fragment given above, the tixml parser output would
include

<reference>
 <part-type>Article</part-type>
 <part-id>40.<Emphasis Role="italics">a</Emphasis></part-id>
 of the <treaty>Statute of the Council of Europe</treaty>
</reference>

The existing markup is still present, and the elements resulting from parsing have
been added.

Accompanying this paper is a modified version of an existing ixml parser gen-
erator, Markup Blitz, that provides a way to transparently parse XML instead of
just plain text. [7] This results in a slightly modified version of the proposed
fn:invisible-xml XQuery 4.0 function.

Instead of ignoring XML elements in the input text when parsing, one might
want to use them, as part of the grammar rules. Some XML elements in the input
to the parser may be the result of “pre-parsing”, and should be taken into account
by the ixml parser. An example is named entity recognition (NER), which recog-
nizes and marks fixed text fragments from a (often very large) list.

In the last section of this paper, we propose an extension to ixml, which makes
it possible to refer to XML elements in the input document. These XML elements
will be treated as non-terminals, without any actual parsing of their text content.

Transparent Invisible XML

139

They can be part of a rule defining a larger non-terminal, so the parser behaves
like it has recognized these “pre-parsed” non-terminals.

2. Separating markup from content
Consider the XML fragment

<r>AB<s><m>CDEF</m><n>GHIJKL</n></s>M<t>N<p>OPQR</p>STU<q>VWX</
q>YZ</t></r>

This represents a hierarchical structure that may be drawn like a tree:

Figure 1. XML DOM tree

This tree is a way to visualize the DOM, which is one of the forms in which XML
documents are represented in XML processing software. Another form is SAX,
where the nodes in the tree are streamed in depth-first left-to-right order.

Neither DOM, nor SAX is convenient for a parser that takes plain text as its
input, like the parser produced by fn:invisible-xml, which expects a
xs:string as its input. We could take the text content of the XML fragment using
the string() function, and give that to the parser. Of course this will throw away
the original structure, which should be preserved, as stated in the introduction.

As an example, consider the previous XML fragment, and an ixml grammar
that has a rule

k : "NOPQR" .
An ixml parser will not recognize k when given the serialized XML as input,
because of the <p> element around "OPQR". When given only the text in the input
(//r/string()), the parser will recognize k, but there is no simple way to get the
markup within the <r> element back.

We could find a way to feed the text() nodes into the parser, and hope to
restore the markup based on the position of the text() nodes (using parent and
sibling relations) in the XML document. However, the ixml parser does require
one xs:string as its input, and concatenating the characters inside text() nodes

Transparent Invisible XML

140

into one string loses the structure. Registering additional information about the
start and end of each text() node leads to the solution that is described next.

In order to make the structure of an XML document “transparent” to the ixml
parser, a representation of the document that separates the markup from the text
content is needed. For the implementation of tixml we use SMAX (Separated
Markup API for XML). [8] [9] SMAX was designed in order to be able to process
the text content of an XML document in a linear way, without intervening
markup. SMAX retains the structure and markup of the document and provides
methods to modify the structure by inserting elements in a way that preserves
well-formedness.

A SMAX document keeps the structure (XML elements) separate from the text
of an XML document, by putting the text in a single string or character stream,
and storing the start and end character position of every element. A visualization
similar to the DOM tree illustrates this idea.

Figure 2. XML representation in SMAX

The thin blue lines represent the start and end character positions that are kept
with each element.

3. Combining SMAX and ixml
The content string from the SMAX representation of an XML fragment can be
given to an ixml parser. The parser then produces new markup in the form of
XML elements, and SMAX merges these generated elements with the original
markup. Thus, the original XML markup becomes transparent to the parser, and
we have tixml.

The process of parsing and inserting new elements is illustrated in the follow-
ing diagram. The ixml parser is used to recognize “NOPQR” as the non-terminal
“k”, and to generate the <k> element. When the <k> element is inserted, the text

Transparent Invisible XML

141

“N” and the element <p> will become its children. The insertion is done with the
SMAX function insertMarkup, and SMAX uses one of the available balancing
strategies to make sure that the document remains well-formed.

Figure 3. Using SMAX to insert elements from the ixml parser

After parsing, the XML fragment would look like

<r>AB<s><m>CDEF</m><n>GHIJKL</n></s>M<t><k>N<p>OPQR</p></k>STU<q>VWX</
q>YZ</t></r>

Notice how the end tag </k> comes after </p>.

Figure 4. SMAX document with insertion

The Markup Blitz parser has been modified to implement tixml as a new XQuery
function:

fn:transparent-invisible-xml($grammar as item()?, $options as map(*)?)
 as function(element()) as item()

Transparent Invisible XML

142

Internally, this function uses SMAX and ixml. At the time of writing, the tixml
parser accepts an element() as input, but we plan to extend this so that
xs:string is also accepted. The new function is made available in BaseX. [6] An
eXist version may be available at the time this paper is published, or shortly
thereafter. The code (still under construction) is available on GitHub. [10]

The tixml software has also added a way to tell the parser to look for text frag-
ments that the parser recognizes, instead of requiring the whole input text to
match. This comes in the form of some new options, as shown in the examples
below. These options will change in the near future, in order to align them with
newer versions of Markup Blitz, which Gunther Rademacher has kindly provided
to allow the new fragment-matching feature.

As an example, consider again the document fragment used in the introduc-
tion. In our modified version of BaseX, this can be parsed with the following
XQuery program.

let $input :=
<Para>
 ... immunity under Article 40.<Emphasis Role="italics">a</Emphasis>
 of the Statute of the Council of Europe and
 the General Agreement on Privileges and Immunities of the Council of
Europe
 and its Additional Protocol ...
</Para>

let $grammar := ``[
 reference : (part-type , s , part-id , s , of , s)? , treaty .
 part-type: ["Aa"] , "rticle" .
 part-id: ["1"-"9"] , ["0"-"9"]* , ("."? , ["a"-"z"])? .
 of : ","
 ; "of" , (s , "the")?
 .
 -s : [Zs; #9; #a; #d]+ .
 treaty: "Statute of the Council of Europe" .
]``

let $parser-options := map{ 'multiple-matches': true(), 'skip-unmatched-
words': true(), 'longest-match': true() }

let $parser := transparent-invisible-xml($grammar, $parser-options)

return $parser($input)

The output is:

<Para>
 ... immunity under <reference><part-type>Article</part-type> <part-

Transparent Invisible XML

143

id>40.<Emphasis Role="italics">a</Emphasis></part-id>
 <of>of the</of> <treaty>Statute of the Council of Europe</treaty></
reference> and
 the General Agreement on Privileges and Immunities of the Council of
Europe
 and its Additional Protocol ...
</Para>

We can add all treaties of the Council of Europe, changing the grammar rule for
treaty:

treaty : "Second Additional Protocol to the Convention on Cybercrime on
enhanced co-operation and disclosure of electronic evidence"
 ; "Protocol amending the Convention for the Protection of
Individuals with regard to Automatic Processing of Personal Data"
 ; "Protocol amending the Additional Protocol to the Convention on
the Transfer of Sentenced Persons"
...
 ; "Convention for the Protection of Human Rights and Fundamental
Freedoms"
 ; "General Agreement on Privileges and Immunities of the Council of
Europe"
 ; "Statute of the Council of Europe"
 .

The whole list contains 226 items, and is not fully shown.
When running the modified XQuery, the output is:

<Para>
 ... immunity under <reference><part-type>Article</part-type> <part-
id>40.<Emphasis Role="italics">a</Emphasis></part-id>
 <of>of the</of> <treaty>Statute of the Council of Europe</treaty></
reference> and
 the <reference><treaty>General Agreement on Privileges and Immunities
of the Council of Europe</treaty></reference>
 and its Additional Protocol ...
</Para>

We see that another treaty has also been recognized.
The new fn:transparent-invisible-xml function has made the markup in

the document transparent to the parser, but retains it in the result, inserting new
markup as inistructed by the parser. No fundamental changes to ixml have been
made, only some new options were introduced to allow the recognition of text
fragments instead of parsing the whold text content of the input document.

Transparent Invisible XML

144

4. Named entity recognition
In the previous example, a rule for 226 treaties was added to the grammar, which
makes the grammar quite long and tedious to read. However, this is small in
comparison with a grammar for the more than 276000 titles in Dutch and Euro-
pean legislation and case law. This is indeed a problem, as we will see shortly.

Another problem is, that parsing a text fragment as a treaty does not indicate
which treaty this is. When a reference is detected, we would like to add a link to
the target document, which requires some identification of the target, usually a
standardized identifier.

To solve both problems, we could make a huge grammar with one non-termi-
nal and an accompanying rule for each legal document. For COE treaties, this
might look like

 treaty-CETS-224 : "Second Additional Protocol to the Convention on
Cybercrime on enhanced co-operation and disclosure of electronic
evidence" .
 treaty-CETS-223 : "Protocol amending the Convention for the Protection
of Individuals with regard to Automatic Processing of Personal Data" .
...
 treaty-ETS-002 : "General Agreement on Privileges and Immunities of
the Council of Europe" .
 treaty-ETS-001 : "Statute of the Council of Europe" .

 treaty : treaty-ETS-001 ; treaty-ETS-002 ;
...
 ; treaty-CETS-223 ; treaty-CETS-224 .

Parsing with this expanded grammar yields the following output.

<Para>
 ... immunity under <reference><part-type>Article</part-type> <part-
id>40.<Emphasis Role="italics">a</Emphasis></part-id>
 <of>of the</of> <treaty><treaty-ETS-001>Statute of the Council of
Europe</treaty-ETS-001></treaty></reference> and
 the <reference><treaty><treaty-ETS-002>General Agreement on Privileges
and Immunities of the Council of Europe</treaty-ETS-002></treaty></
reference>
 and its Additional Protocol ...
</Para>

The next step in the processing pipeline would be to split the type (treaty) from
the identifier (ETS-001 etcetera), and put it as an attribute in the <treaty> ele-
ment.

Unfortunately, for hundreds of thousands of legal documents, the compiled
grammar will become too large to fit in main memory. Even with 10000 entries,

Transparent Invisible XML

145

compiling the grammar resulted in an “Out of Main Memory” error, with 8GB
heap space.

In this case, a ixml parser seems to be the wrong tool for the job. Fortunately,
we can use named entity recognition (NER) to recognize large numbers of fixed
text strings.

One of the functions provided by [10] is

named-entity-recognition($grammar as item(), $options as map(*)?)
 as function(node()) as node()

This function is very similar to the fn:transparent-invisible-xml function,
because it also performs recognition of text fragments, which are defined by a
grammar. However, in this case the grammar is very different. It is a text file with
lines containing an identifier, folowed by <-, followed by a tab-separated list of
text strings that correspond to the identifier.

For the COE treaties, a named entity recognizer is defined by the following
XQuery fragment.

let $ner-grammar := ``[
 CETS-224 <- Second Additional Protocol to the Convention on Cybercrime
on enhanced co-operation and disclosure of electronic evidence
 CETS-223 <- Protocol amending the Convention for the Protection of
Individuals with regard to Automatic Processing of Personal Data
...
 ETS-002 <- General Agreement on Privileges and Immunities of the
Council of Europe
 ETS-001 <- Statute of the Council of Europe
]``

let $ner-options := map
 { 'case-insensitive-min-length': 4, 'fuzzy-min-length': 4
 , 'word-chars': '', 'no-word-before': '-'
 }

let $ner := smax:named-entity-recognition($ner-grammar, <treaty id=""/>,
$ner-options)

return $ner($input)

Named entity recognition is not the main topic of this paper, so we will not dis-
cuss every detail. In this case, every named entity has only one text string. The
second parameter in smax:named-entity-recognition($ner-grammar, <ner
entity-id=""/>, $ner-options) is a template for marking recognized named
entities.

The result of running this XQuery program is

Transparent Invisible XML

146

<Para>
 ... immunity under Article 40.<Emphasis Role="italics">a</Emphasis>
 of the <treaty id="ETS-001">Statute of the Council of Europe</treaty>
and
 the <treaty id="ETS-002">General Agreement on Privileges and
Immunities of the Council of Europe</treaty>
 and its Additional Protocol ...
</Para>

5. Combining NER and tixml
Now we can recognize large numbers of named entities, but we immediately run
into another problem. Our ixml grammar has a rule

reference : (part-type , s , part-id , s , of , s)? , treaty .
What should the grammar rule for treaty be? Treaties are marked by <treaty>
elements, but these will be transparent to the ixml parser.

In the previous version of the Link eXtractor software, this problem was
solved by serializing the XML input, and including grammar rules for <treaty>
elements, so that these would be recognized. This was a very inelegant solution.
Serialization and subsequent re-parsing of the XML introduced unnecessary over-
head. The grammars had to include rules for XML parsing, which is distracting
from what the grammars should express.

A slightly more elegant solution is to put extra markers in the text, signifying
the transparent presence of a <treaty> element. Typically, these markers are
short text strings that should not occur anywhere in the original text. Short mark-
ers have a high chance of running into Wethern’s Law of Suspended Judgment,
but for this example we will use [[[and]]]. The grammar rule for treaty now
becomes

 -treaty: "[[[" , ~[]+ , "]]]" .
Note that this requires the 'shortest-match' option to be true in transparent-
invisible-xml($ixml-grammar, $ixml-options), otherwise the ~[]+ in treaty
will match from the first [[[until the last]]].

Now we can put everything together. A simple XSLT transforms the output of
the NER into

<Para>
 ... immunity under Article 40.<Emphasis Role="italics">a</Emphasis>
 of the <treaty id="ETS-001">[[[Statute of the Council of Europe]]]</
treaty> and
 the <treaty id="ETS-002">[[[General Agreement on Privileges and
Immunities of the Council of Europe]]]</treaty>
 and its Additional Protocol ...
</Para>

Transparent Invisible XML

147

This can be parsed with a tixml parser using the grammar with the modified rule
for treaty. After parsing, the [[[]]] markers can be removed by another XSLT.
If we encapsulate these XSLTs in two locally defined functions called $mark-
treaties and $unmark-treaties, the process of recognizing references can be
coded as

return $input => $ner() => $mark-treaties() => $parser() => $unmark-
treaties()

Inserting and removing special markers works, but it introduces accidental com-
plexity. In the following section, we propose a more elegant solution.

6. Pre-parsed non-terminals
Instead of making XML elements in the input document transparent, one might
actually want to make them part of the grammar. This is the case when an appli-
cation uses different techniques to recognize implicit structure in the text of a
document. An example is named entity recognition (NER), as discussed in the
previous section.

The result of NER is a document with <treaty> elements:
<Para>
 ... immunity under Article 40.<Emphasis Role="italics">a</Emphasis>
 of the <treaty id="ETS-001">Statute of the Council of Europe</treaty>
and
 the <treaty id="ETS-002">General Agreement on Privileges and
Immunities of the Council of Europe</treaty>
 and its Additional Protocol ...
</Para>

The tixml parser ignores the <Emphasis> and <treaty> elements by making them
transparent. In order to use the <treaty> elements as treaties in the grammar,
they were made opaque by surrounding their text contents with special markers
in the previous section. It would be nice if we could skip the mark and unmark
steps, and use the <treaty> elements in the grammar itself.

In order to make this possible, we propose an extension to (t)ixml that recog-
nizes specific XML elements as “pre-parsed” non-terminals. Normally, the tixml
parser inserts a <treaty> element into the document when it has matched a text
fragment that matches the rule for treaty. With pre-parsed non-terminals, the
parser will handle the text within existing <treaty> elements as if this text has
already matched the rule for treaty. The pre-parsed non-terminal treaty corre-
sponds to the existing XML element <treaty>. This works regardless of the con-
tent (text and markup) inside the <treaty> element, which the parser will ignore.

Extending the parser in this way requires a new notation for pre-parsed non-
terminals. An obvious choice is to use angle brackets around the name of the non-
terminal / XML element. As an example, the rule for reference becomes

Transparent Invisible XML

148

reference : (part-type , s , part-id , s , of , s)? , <treaty> .
When the parser is about to match a <treaty>, it shoud check if there is a
<treaty> element beginning at the current position in the input. If there is, the
pre-parsed non-terminal <treaty> is recognized, and the input position is for-
warded to the position where the <treaty> element ends.

The output of the tixml parser then includes

... immunity under
<reference>
 <part-type>Article</part-type>
 <part-id>40.<Emphasis Role="italics">a</Emphasis></part-id>
 of the <treaty id="ETS-001">Statute of the Council of Europe</treaty>
</reference>
and the
<reference>
 <treaty id="ETS-002">General Agreement on Privileges and Immunities of
the Council of Europe</treaty>
</reference>
and its Additional Protocol ...

When the tixml parser genarator has been modified to recognize pre-parsed non-
terminals, the pipeline for recognizing references becomes:

return $input => $ner() => $parser()
Thus, we have removed the accidental complexity that was caused by marking
and unmarking.

The implementation of pre-parsed non-terminals using SMAX and ixml is
quite complicated, because it requires modifications in the core of the parser
code. Schematically, this modification is illustrated in the following diagram.

Figure 5. Pre-parsed non-terminals in ixml + SMAX

Both the SMAX markup and text content are given to the parser. The parser uses
the markup for recognizing pre-parsed non-terminals.

Transparent Invisible XML

149

7. Conclusion
The original Link eXtractor (LX) software consists of several NER, parsing, and
XSLT transformations, some of which can be enabled or disabled by parameters
and configuration. Each parsing transformation is surrounded by serializing and
parsing. Using text markers would be an improvement, but pre-parsed non-ter-
minals will allow us to greatly simplify the whole process. This is one of the aims
of the next stage of the LX project.

We believe that the techniques presented in this paper will also be useful for
other use cases. Enriching both plain text and XML documents by adding
markup is useful in different contexts than the LX.

Transparent ixml as described in the first few sections has been implemented,
and has been published on GitHub. [10] Work on implementing pre-parsed non-
terminals has not commenced yet at the time of writing. When we have a work-
ing version, the software will become available in the same repository. Before
considering using the software, note that tixml and pre-parsed non-terminals are
not part of the ixml standard. Maybe thay will be at a later stage, probably in a
way that differs from the upcoming implementation.

References
[1] M. van Opijnen, N. Verwer and J. Meijer: Beyond the Experiment: The Extendable

Legal Link Extractor. 2015 https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2626521

[2] Steven Pemberton, et. al.: Invisible XML. Invisible XML https://
invisiblexml.org/

[3] Steven Pemberton: Invisible XML (ixml) Tutorial. 2021 https://
homepages.cwi.nl/~steven/ixml/tutorial/

[4] Steven Pemberton: Advanced ixml Hands On. 2022 https://
homepages.cwi.nl/~steven/Talks/2022/11-07-ixml-advanced/

[5] Michael Kay (editor): XPath and XQuery Functions and Operators 4.0. W3C
Editor’s Draft 21 May 2024 https://qt4cg.org/specifications/xpath-
functions-40/Overview.html#ixml-functions

[6] Christian Grün et al.: BaseX, The XML Framework, Lightweight and High-
Performance Data Processing. BaseX, The XML Framework, Lightweight and
High-Performance Data Processing https://basex.org/

[7] Gunther Rademacher: Markup Blitz. Markup Blitz https://github.com/
GuntherRademacher/markup-blitz

Transparent Invisible XML

150

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2626521
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2626521
https://invisiblexml.org/
https://invisiblexml.org/
https://homepages.cwi.nl/~steven/ixml/tutorial/
https://homepages.cwi.nl/~steven/ixml/tutorial/
https://homepages.cwi.nl/~steven/Talks/2022/11-07-ixml-advanced/
https://homepages.cwi.nl/~steven/Talks/2022/11-07-ixml-advanced/
https://qt4cg.org/specifications/xpath-functions-40/Overview.html#ixml-functions
https://qt4cg.org/specifications/xpath-functions-40/Overview.html#ixml-functions
https://basex.org/
https://github.com/GuntherRademacher/markup-blitz
https://github.com/GuntherRademacher/markup-blitz

[8] Nico Verwer: Plain text processing in structured documents. 2020 https://
declarative.amsterdam/article?doi=da.2020.verwer.plain-text-
processing

[9] Nico Verwer: SMAX (Separated Markup API for XML). SMAX (Separated
Markup API for XML) https://github.com/nverwer/SMAX

[10] Nico Verwer: BaseX-SMAX-functions. BaseX-SMAX-functions https://
github.com/structured-data-friends/BaseX-SMAX-functions

Transparent Invisible XML

151

https://declarative.amsterdam/article?doi=da.2020.verwer.plain-text-processing
https://declarative.amsterdam/article?doi=da.2020.verwer.plain-text-processing
https://declarative.amsterdam/article?doi=da.2020.verwer.plain-text-processing
https://github.com/nverwer/SMAX
https://github.com/structured-data-friends/BaseX-SMAX-functions
https://github.com/structured-data-friends/BaseX-SMAX-functions

152

Round-tripping Invisible XML
Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Invisible XML takes textual documents where the structure is implicit and
produces documents with the structure made explicit. This paper addresses
the question of the extent to which it is possible to recreate the original tex-
tual document from its structured version, how it can be done, and what if
any the ramifications are for ixml.

Keywords: ixml, structured data, parsing, XML, round-tripping,
grammar transformation, serialisation

1. Contents
• Introduction
• Round-tripping
• The Problem Space
• Grammar Transformation
• Dealing with Attributes
• Strict and Permissive Grammars
• Syntactic Equivalences
• Loss of Information
• Ambiguity
• Inserted Layout
• Future Work

• Similarities between Serialisation and Transformation
• Possible Additions to ixml

• Conclusion
• References

2. Introduction
Invisible XML [1] is a language and process that takes linear textual input, recog-
nises the implicit structure in the input, and converts it to an equivalent struc-
tured XML output. It does this by parsing the input using a grammar describing
the format of the input document, and serialising the resultant parse-tree as XML,
using extra information in the grammar to drive the serialisation.

153

If that were all it did, then round-tripping the XML back to text would be triv-
ial: it would simply be a case of concatenating the text nodes of the XML, and
you'd be done.

However, there are issues with regards to ixml serialisation:

• input characters may be deleted from the parse-tree on serialisation;
• extra characters that weren't in the input may be inserted;
• some parse-tree nodes may be serialised as attributes rather than elements,

causing a reordering of the input text, since attributes appear before element
content.

As hinted at in earlier papers on ixml [2], [3], round-tripping could be achieved
by having a special-purpose general parser which attempts to recreate a parse-
tree that could have produced the serialisation, and then concatenating the result-
ing text nodes.

This paper takes a different approach: by transforming the input grammar
into a grammar that represents all possible serialisations of the input grammar, it
can use the same parser as used by ixml, with some small additions, to parse the
serialisation back into a parse-tree that would have produced that serialisation.

This raises a number of technical issues similar to the normal ixml process, in
particular what to do with ambiguity, where a serialisation could have been pro-
duced by more than one input.

3. Round-tripping
The term round-tripping is normally considered to be the process of recreating
the original document that produced the output you have [4]. For several reasons
discussed below, except in limited cases, it is not possible to recreate a character-
perfect original document from the ixml output. This is partly under the gram-
mar author's control, which is to say, it is possible to write an ixml grammar that
can be perfectly round-tripped. On the other hand, in the other direction round-
tripping is always possible: it is always possible to construct from the ixml output
an input that would create exactly the same output again.

So for the purposes of this paper, our definition of round-tripping is not "cre-
ate an identical input to the one that created this output", but:

Create an input that would produce the identical output.

As an example, an ixml grammar that reads a program in a programming lan-
guage, deleting comments and spurious whitespace, on round-tripping would of
course no longer contain the comments and extra whitespace: they were deleted
and didn't appear in the structured version. However the round-tripping would
still produce effectively the same program.

Round-tripping Invisible XML

154

4. The Problem Space
Let's take the simplest case. Here is a simple grammar for dates:

date: day, "/", month, "/", year.
day: d, d.
month: d, d.
year: d, d, d, d.
-d: ["0"-"9"].

Given as input
30/06/2024

this will produce as output:
<date>
 <day>30</day>/
 <month>06</month>/
 <year>2024</year>
</date>

As you can see, all characters in the input are preserved in the output, in order.
The only difference is that tags have been placed around the characters to indi-
cate the structure.

So to round-trip this, all that is necessary is to concatenate the text nodes of
the XML, to give the input that created the output:

30/06/2024
This is what is meant above by "it is possible to write an ixml grammar that can
be perfectly round-tripped": if the grammar deletes no characters, and only uses
elements, round-tripping is trivial.

The fact that some tags have been suppressed in the output (namely the <d>
elements, due to the "-" before the rule for d) has no effect, since we are only inter-
ested in characters.

However, ixml has facilities to control the serialisation format. For instance,
the slash characters "/" in the input are there only as punctuation to separate the
different parts, but play no role in the output, and so can be deleted from the seri-
alisation:

date: day, -"/", month, -"/", year.
giving

<date>
 <day>30</day>
 <month>06</month>
 <year>2024</year>
</date>

Round-tripping Invisible XML

155

Now we can no longer just concatenate the text nodes to get back to the input.
Similarly, characters can be inserted into the serialisation. Suppose the input

date format only had two digits for the year, but the output serialisation required
four. You can write this:

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
year: +"20", d, d.
-d: ["0"-"9"].

which for the input 30/06/24 would give:

<date>
 <day>30</day>
 <month>06</month>
 <year>2024</year>
</date>

Finally, elements can be serialised as attributes:
date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
@year: +"20", d, d.
-d: ["0"-"9"].

which gives
<date year='2024'>
 <day>30</day>
 <month>06</month>
</date>

This reorders the input, since attributes are serialised before elements.
These issues need to be addressed in order to enable round-tripping of con-

tent in the general case.

5. Grammar Transformation
As already pointed out, earlier papers have suggested using a special-purpose
parser to deal with round-tripping, but this paper proposes a different approach:
transforming the input ixml grammar into a different ixml grammar that recogni-
ses the output format, and then using the same parser that ixml already uses.

As an example, for the first grammar above
date: day, "/", month, "/", year.
day: d, d.
month: d, d.

Round-tripping Invisible XML

156

year: d, d, d, d.
-d: ["0"-"9"].

a grammar can be generated that recognises the serialisation:

date: -"<date>", day, "/", month, "/", year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -"<year>", d, d, d, d, -"</year>".
-d: ["0"-"9"].

Using this grammar and the regular ixml parser to parse the output XML, gives:

<date>30/06/2024</date>
(We have glossed over the issue of extra inserted whitespace for pretty printing,
which we will discuss later; we will also detail later reasons why the root element
remains).

This leads immediately to the second example. where everything is the same
except the rule:

date: day, -"/", month, -"/", year.
with a transformed equivalent rule:

date: -"<date>", day, +"/", month, +"/", year, -"</date>".
which similarly generates the same output

<date>30/06/2024</date>
And finally (for now), the version with added output characters

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
year: +"20", d, d.
-d: ["0"-"9"].

with transformation:

date: -"<date>", day, +"/", month, +"/", year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -"<year>", -"20", d, d, -"</year>".
-d: ["0"-"9"].

giving as output:

<date>30/06/24</date>
So from these three examples we can see some patterns for the transformations
emerging:

Round-tripping Invisible XML

157

• non-hidden rules except for the root become hidden rules in the transforma-
tion, and start and end with its tags, both marked as deleted;

• hidden rules remain hidden, and no tags are recognised;
• in alternatives:

• nonterminals remain the same;
• regular terminals stay the same;
• deleted terminals become inserted terminals;
• inserted terminals become deleted terminals.

6. Dealing with Attributes
The main problem left arises with attributes, which turn up at a different position
in the serialisation. For instance the grammar

date: day, -"/", month, -"/", year.
day: d, d.
month: d, d.
@year: +"20", d, d.
-d: ["0"-"9"].

which generates the output

<date year='2024'>
 <day>30</day>
 <month>06</month>
</date>

which can be recognised with

date: -"<date", year, -">", day, +"/", month, +"/", -"</date>".
-day: -"<day>", d, d, -"</day>".
-month:-"<month>", d, d, -"</month>".
-year: -" year='", -"20", d, d, -"'".
-d: ["0"-"9"].

but would produce on output

<date>2430/06/</date>
In other words, while it can recognise the attribute, it turns up in the wrong place
for the round-tripping, and so a mechanism is needed for putting it back in the
right place.

In normal ixml processing, when serialising to XML, the ixml grammar identi-
fies the place in the input where the eventual attribute is, and implicitly identifies
the place where the attribute must be serialised on output, namely the nearest
ancestor element that isn't hidden. This is done with a two-pass algorithm: when
serialising an element, children of the element, and of hidden children elements

Round-tripping Invisible XML

158

are traversed first to find rules marked as attributes, which are then serialised
before the element children.

To reverse this process, we must recognise the attribute at its implicit position
in the input, and explicitly identify in the grammar the place where it needs to be
serialised; this will always be later in the output than where the attribute was
found. We can do this by defining two extra marks: one to indicate that the attrib-
ute as parsed should not be serialised at that position, and another to indicate the
position where it should be serialised.

This is comparable to how terminals are inserted and deleted on serialisation:
-"abc" means "parse the string but serialise nothing", while +"abc" means "parse
nothing, but serialise the string". Unfortunately, "-" has already been assigned a dif-
ferent role for nonterminals on serialisation, but "+" is free to use with the same
meaning.

So using the mark "*" to mean "parse the input, but serialise nothing", and "+" to
mean "parse nothing but serialise the node of this name from earlier in the tree marked
with a "*"", we can specify:

date: -"<date", *year, -">", day, +"/", month, +"/", +year, -"</date>".
-day: -"<day>", d, d, -"</day>".
-month: -"<month>", d, d, -"</month>".
-year: -" year='", -"20", d, d -"'".
-d: ["0"-"9"].

This now correctly produces
<date>30/06/24</date>

Note that these are not changes to the ixml language itself, but only internal addi-
tions: the transformations are done on internal representations of the grammar,
and not on external representations (but see the section on future work).

7. Strict and Permissive Grammars
There are two (non-normative) terms used to describe two major applications of
ixml grammars: strict and permissive.

If it is certain that the input being processed with ixml is correct, the grammar
can be laxer in what it accepts. The date grammar is a good example of this. If
dates are only being recognised, and not checked for correctness, then "d, d" is a
perfectly good pattern for recognising the day number. Even though this would
also recognise 32 or 99, since such dates never occur, you don't have to worry
about them. Such grammars are referred to as permissive.

On the other hand if the input might not be correct, then the grammar needs
to be stricter. With dates again, you must then only accept single digits in the
range 1 to 9, and double digits up to 31. Another example is the grammar for ixml
itself, which clearly has to be strict.

Round-tripping Invisible XML

159

For round-tripping we can assume the input is correct, and so the round-trip-
ping grammar can be permissive. For instance, if we take a grammar for a pro-
gramming language, that contains the rule

function-call: name, -"(", parameters, -")".
If parameters can be empty (for instance now()), then the output for that could be
either

<function-call><name>now</name><parameters></parameters></function-call>
or

<function-call><name>now</name><parameters/></function-call>
and we neeed to generate grammar alternatives to recognise both forms.

But if parameters cannot be empty, then we wouldn't need to generate an
alternative for the second case, since it will never occur. However, exactly since it
will never occur, we don't have to worry about it being in the grammar anyway:
since it will never occur, that alternative will never be matched.

Similarly for attributes. If we have a hypothetical grammar that contains
something like:

element: a, b, c, body.
@a: acontent.
@b: bcontent.
@c: ccontent.
acontent: ...
bcontent: ...
ccontent: ...
body: ...

if we were being strict, we might want to generate alternatives that recognise that
a, b, and c could appear in any order:

-element: -"<element", (abc; acb; bac; bca; cab; cba), -">", body, -"</
element>".
abc: a, b, c.
acb: a, c, b.

etc.
However, we can actually produce a permissive rule like:
-element: -"<element", (a; b; c)*, -">", body, -"</element>".
-a: " a='", -acontent, "'".
-b: " b='", -bcontent, "'".
-c: " c='", -ccontent, "'".

since this specifies that the element has three attributes, without requiring them
to be in any particular order. While this grammar also permits <element a="xxx"

Round-tripping Invisible XML

160

a="yyy"> , this is not a problem, since it will never actually occur in the XML we
are required to process.

8. Syntactic Equivalences
ixml adds a number of extensions to its grammar-description language, to make
life easier for the author, and to make grammars more readable, extensions such
as ? for options, *, **, +, and ++ for repetition, and (and) for grouping.

However, while these extensions add expressiveness to the language, they
don't add any recognition power: as pointed out in the ixml specification, they
can all be straightforwardly transformed into grammars without the extensions,
while recognising the same language, and in fact all implementations do this
transformation as a form of code generation when processing the language.

As a consequence, the round-tripping process doesn't have to take the syntac-
tic extensions into account; it can either assume the initial transformations have
alreadt been done, or do them itself; either way it only has to transform simplified
grammar rules that contain none of the extensions.

9. Loss of Information
As pointed out earlier, some information in the source document can be lost
when transforming to XML. If a programming language is being recognised, it
might be decided not to include nodes for comments in the resulting XML. So on
round-tripping, those comments will not reappear in the document. But this is
not a problem, since our aim is just to produce a text document that would result
in the same XML serialisation.

However, there are some constructs where a decision has to be made, princi-
pally because of inclusions and exclusions.

An inclusion is a ixml construct that allows any character from a set of charac-
ters to be matched. We have seen them already in the dates example: ["0"-"9"]
matches any single digit. The transformation of such an inclusion remains the
same: if the input has a single digit, the output will have the same single digit,
and so we recognise it in the same way. The problem comes with deletions. For
strings -"/"becomes +"/" on transformation: a deleted slash on input becomes an
inserted slash on round-tripping. However, with a deleted inclusion, such as -
["0"-"9"], all we know is that a digit was in the input and deleted, but we don't
know which.

There are two options here, both with the same effect. Either transform -
["0"-"9"] by taking a character from the allowable set (for instance the first), and
transform to +"0", or update the serialisation process to allow the construct +
["0"-"9"], though with the same semantic of outputting the first character from
the set.

Round-tripping Invisible XML

161

Either of these still match the requirement that the resulting round-trip would
produce the identical serialisation.

The case for exclusions is slightly harder. A construct such as -~["0"-"9"]
deletes any single character that isn't a digit. In this case a character in the comple-
ment of the set has to be chosen.

10. Ambiguity

In regular ixml processing it can occur that an input document matches the gram-
mar in more than one way. The ixml processor is required to only serialise one of
the possible matches, but must also report that the result is ambiguous: that this
serialisation is only one of the possible interpretations of the input.

In a similar way, round-tripping can also be ambiguous, in this case meaning
"this is only one of the possible strings that can produce the same serialisation". In fact,
many ixml grammars that are not ambiguous will produce ambiguous round-
trips. As a simple example, if symbols on the input may be separated by one or
more spaces, that are then deleted on serialisation:

input: sym**spaces.
spaces: -" "+.

then on round-tripping any number of spaces would be acceptable. This can best
be solved by producing the minimum acceptable on round-tripping: one for "+",
and zero for "*".

In a similar way:

-optional-a: -"a"?.

is ambiguous, because nothing is produced in the output, so we don't know if an
"a" was present or not in the input. In this case, either option is acceptable,
though the shorter case is probably preferable.

Ambiguity is marked in ixml by adding an attribute to the root element. This
is why it is necessary to retain the root element on output of the round-trip: the
output is (flat) XML anyway, and we need somewhere to report ambiguity.

11. Inserted Layout

Some implementations may produce a "pretty printed" serialisation of the XML,
with added newlines and indentation. While this could be added to the grammar
productions in the transformed grammar, it adds a danger of extra ambiguity,
since elements may already have whitespace in them as part of the serialisation.
For that reason it is better to round-trip XML without added whitespace.

Round-tripping Invisible XML

162

12. Future Work

12.1. Similarities between Serialisation and Transformation
It is worth remarking that the code to produce the transformed grammars is very
similar to the code used for serialisation. This should be unsurprising, since both
processes walk the parse-tree, and while one outputs the serialisation, the other
outputs a grammar that recognises that serialisation. Consequently the two pro-
cesses are almost isomorphic.

This raises the question: what happens if you take the transformed grammar,
and transform it again, what does it produce? Well, it round-trips the round-trip: it
produces a serialisation that would have produced the round-tripped text. In
other words, it serialises the input as XML.

This already works in basic cases, for instance, round-tripping twice the origi-
nal example in this paper, you get

<date><day>30</day><month>06</month><year>2024</
year></date>

(The <s are because it is outputting text that represents XML, but not XML
itself. For readability, here is that output with the <s expanded:)

<date><day>30</day><month>06</month><year>2024</year></date>
The corollary of this is that the serialisation part of an ixml processor could be
greatly simplified, only having to output characters, and not having to worry
about elements and attributes. Serialisation could be then done by twice trans-
forming the input grammar, and using that instead.

Transformations are currently only partially isomorphic, since there is no
reverse operation for the * mark, and the proposal mentioned above of allowing
the mark + on inclusions and exclusions would need to be adopted to prevent loss
of information in the grammar on transformation.

A second corollary however is that the ixml processor is now unbound from
XML, and could be used to produce other serialisations in a fairly straightforward
way.

12.2. Possible Additions to ixml
Although the additions to ixml to enable round-tripping were added to the inter-
nal form of ixml, and not the external form, if these facilities were to be made
available to users as well, some marks would be needed to be added to the lan-
guage. These are:
• Parse and don't serialise, notated with * in this paper;
• Parse nothing, and serialise a node from elsewhere, notated with + in this

paper, but probably needing to be more general than presented here;

Round-tripping Invisible XML

163

• Flatten a node: undo the recognised structuring by serialising the node as if it
were the content of an attribute.

13. Conclusion
Contrary to expectations, it is possible to round-trip the ixml process, as long as
you properly define what is understood by round-tripping, and slightly adapt
ixml serialisation. This technique is very simple, and not only that, actually
allows the ixml processor to be simplified, and to some extent generalised. An
added advantage is that, with some work that still has to be done, the process is
entirely reversible.

References
[1] Steven Pemberton. Invisible XML Specification. invisiblexml.org. 2022. https://

invisiblexml.org/1.0/ .
[2] Steven Pemberton. Invisible XML. Proceedings of Balisage: The Markup

Conference 2013 vol. 10. 2013. 10.4242/BalisageVol10.Pemberton01. http://
www.balisage.net/Proceedings/vol10/html/Pemberton01/BalisageVol10-
Pemberton01.html..

[3] Steven Pemberton. A Pilot Implementation of ixml. Proc. XML Prague 2022. 2022.
41-50. 978-80-907787-0-2 (pdf). https://archive.xmlprague.cz/2022/files/
xmlprague-2022-proceedings.pdf#page=51 .

[4] Wikipedia editors. Round-trip format conversion. Wikipedia. 2024. https://
en.wikipedia.org/wiki/Round-trip_format_conversion .

Round-tripping Invisible XML

164

https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
https://en.wikipedia.org/wiki/Round-trip_format_conversion
https://en.wikipedia.org/wiki/Round-trip_format_conversion

Towards RESTful XQuery 2.0
Adam Retter

Evolved Binary
<adam@evolvedbinary.com>

Abstract
In 2012, RESTful XQuery: Standardised XQuery 3.0 Annotations for
REST, proposed a set of standardised annotations and associated machinery
for XQuery 3.0 that could be implemented by an XQuery implementation
running within a Web context to service REST calls by invoking XQuery
User Defined Functions. RESTful XQuery, became colloquially known as
RESTXQ 1.0 and was rapidly implemented within a number of XQuery
products.

Through real-world use of RESTXQ 1.0, it became apparent through
feedback from implementers and users that RESTXQ 1.0 was lacking some
ideally desired capabilities; in some products these perceived holes have been
plugged by non-standard vendor specific extensions. Additionally, JAX-RS
which inspired RESTXQ, and the state-of-the-art for Web communication
protocols, have both advanced since 2012.

Herein we identify and review relevant literature and works since 2012.
We use this knowledge, along with feedback from implementers and users of
RESTXQ, to propose an update to RESTXQ 1.0, namely RESTXQ 2.0.

Keywords: XQuery, REST, RESTXQ, XML Database, JSON, Web,
HTTP

1. Introduction
In the Java programming language ecosystem, JAX-RS 1.0 [40] which had been in
development since 2006 was finalised and published in 2008. The JAX-RS stand-
ard described, amongst other things, how developers could add simple annota-
tions to their Java functions so that those functions, when executed within a
suitable web server context, could process HTTP requests and generate respon-
ses. JAX-RS promoted REST [11] principles, but it did not strictly enforce them
upon the developer. JAX-RS was well received, and its simple approach was, at
the time, considered a paradigm shift from the previous need to write Java Serv-
lets and/or Enterprise Java Beans.

In parallel, the W3C XQuery 3.0 standard [48] was published in 2014; it had
been under development since shortly after the W3C XQuery 1.0 standard [46]
was published in 2007. XQuery 3.0 added a key new language feature in the form
of Annotations.

165

Before the final publication of the XQuery 3.0 standard, the RESTful XQuery
[39] paper and the accompanying RESTXQ 1.0 standard [9] were published in
2012. RESTXQ utilised the newly proposed annotations in XQuery 3.0, to adapt
concepts from JAX-RS 1.1 [41] that were usable in the Java programming lan-
guage, to be similarly usable in the XQuery programming language.

RESTXQ 1.0 can be considered a framework for developing Web Applications
in XQuery. It emphasises simplicity and ease of use, and it offers a “convention
over configuration” approach. Whilst RESTXQ JAX-RS prescribes a RESTful
approach and provides the primitives for building such RESTful API’s, the choice
of how closely to adhere to REST principles remains at the discretion of the devel-
oper. It is in fact possible for the developer to also build HTTP 1.1 API’s with
RESTXQ that are not in fact RESTful at all!

In our Section 2, we put forward our theory and review the current state of the
art in respect to RESTXQ 1.0. Our contributions to this area of research are in sec-
tion 3, where we propose enhancements and additions to the RESTXQ 1.0 stand-
ard that we envisage could lead to a new RESTXQ 2.0 standard. Finally in section
4, we reflect on our work, draw our conclusions and discuss future opportunities
for further endeavour.

2. Theory and Review of Literature
Alongside the RESTful XQuery paper, a RESTXQ 1.0 standard [9] was also pub-
lished in 2012, since then it has received only a few minor non-functional correc-
tions.

In the intervening period, work has progressed in the fields of XQuery stand-
ardisation, web and REST software application frameworks, and web communi-
cation protocols (on which REST often depends). Additionally, feedback on the
experiences of implementers and users of RESTXQ 1.0 has been collated.

We pose the question: Is RESTXQ 1.0 still fit for purpose today?
To answer this question we evaluate the state-of-the art within the domains of

significance to RESTXQ.

2.1. Review of JAX-RS
Herein we review only the developments of JAX-RS that we believe are relevant
or adaptable to RESTXQ, we omit any developments that are solely concerned
with the use of JAX-RS within a Java environment.

After the initial version of JAX-RS in 2008, the subsequent JAX-RS 2.0 [32]
update is probably the largest of all revisions to date, and introduces several new
features:
1. The addition of a ‘qs’ quality parameter to any media type within a Produces

annotation. When multiple media types with the same ‘q quality factor are

Towards RESTful XQuery 2.0

166

acceptable to the client, this allows a Resource Function to indicate a media
type preference.

2. Filters that allow modification of the properties of the incoming request
and/or outgoing response. For example, a Filter could change an incoming
POST request into a PUT request; this occurs before an attempt is made to
match it to a suitable Resource Function.

3. Entity Interceptors can modify the body of the incoming request and/or out-
going response. For example, an Entity Interceptor might transparently imple-
ment GZip decompression of the request, and compression of the response.

4. Validation Constraint Annotations via support for Bean Validation [38]. Cus-
tom validation annotations cause a validation function to be called to validate
the annotated parameter/property. A validation failure implicity results in an
HTTP error response with the status code 400 Bad Request.

5. Asynchronous Processing of requests by a Resource Function. The Resource
Function accepts a callback function as a parameter, spawns a new thread,
and returns control to the caller. Once the new thread completes, it invokes
the callback function to yield the result. If a Resource Function has to either,
utilise significant compute time, or wait on other resources, this can be a use-
ful tool to avoid blocking the caller (i.e. the server).

6. Optional support for JSON. When implemented, handling of request and
response body entities with the media-type application/json for Resource
Functions of JSON and JSON-P must be supported. We can likely discard
JSON-P as, due to security issues, it has largely been superseded by cross-ori-
gin resource sharing.

JAX-RS 2.1 [33] introduces SSE (Server-sent Events) [53]. A Resource Function
with a Produces annotation of the media type text/event-stream can be used to
send events to one or more clients. Server-sent Events are still initiated like any
other HTTP request from the client to the server, however unlike a normal
request that has a single response, the client holds open the connection, and the
server may dispatch many events (responses) over time to the client. As the
Resource Function in JAX-RS may need to be able to generate many responses
before completing, this is implemented with a callback, and has similarities to the
Asynchronous Processing feature added previously in JAX-RS 2.0. SSE can be
used as a more performant alternative to the older HTTP Long Polling technique
[56].

JAX-RS 3.0 [3] adds a single additional constraint annotation for the HTTP
method PATCH [18], which allows for Resource Functions to process partial
updates to resources.

JAX-RS 3.1 [4] adds special handling for consuming a request body with the
multipart/ form-data media type. A Resource Function may simply have a

Towards RESTful XQuery 2.0

167

parameter that receives a list or array of parts, or if the number of parts is known
statically ahead of time by the developer, they may add the correct number of
parameters each annotated as a Form Parameter.

JAX-RS 4.0 [5] adds nothing of relevance for RESTXQ.

2.2. Review of XQuery Standardisation
The latest standard for XQuery, version 3.1 [49], adds support for JSON (Java-
Script Object Notation). JSON emerged in 2001 [2] as a mechanism for serialisa-
tion and deserialisation of objects in the JavaScript programming language. It was
standardised first in 2006 [17] and then again in 2017 [6]. JSON is currently descri-
bed by the ECMA (European Computer Manufacturers Association) as: “a light-
weight, text-based, language-independent syntax for defining data interchange
formats”. JSON has seen rapid and significant adoption, this has likely been
driven by the meteoric rise of JavaScript as the predominant language for build-
ing interactive client-side web pages. The addition of JSON in XQuery 3.1 allows
XQuery to increase its applicability for working with data, and to remain relevant
when working with the web.

Simultaneously to the publication of XQuery 3.1 in 2017, three complimentary
standards were also published:
1. XQuery and XPath Data Model 3.1 [52],
2. XPath and XQuery Functions and Operators 3.1 [50], and
3. XSLT and XQuery Serialization 3.1 [51].
These complimentary standards further strengthened the position of XQuery as a
language for processing JSON. New data types were defined to correspond to
JSON Map and Array types, new standard library Functions were defined for
consuming JSON input, and a new serialisation method for producing JSON out-
put was also defined.

2.3. Review of REST Frameworks
Several HTTP and/or REST frameworks were reviewed in the original RESTful
XQuery paper as part of its literature review. We briefly examine how each of
those have developed since 2012:
1. The eXist-db REST Server [42] received only one small update since 2012 that

is relevant to our research: support for the HTTP PATCH method was added
in 2021.

2. The eXist-db XQuery URL Rewriting framework [43] has received no signifi-
cant updates since 2012, and therefore we need not consider it further. In 2021,
Roaster, a higher-level library [27] to make working with URL Rewriting eas-
ier was presented. This library does not promote or enforce REST principles,

Towards RESTful XQuery 2.0

168

instead it routes incoming HTTP requests to XQuery functions by parsing a
provided OpenAPI 3.0 specification document. To establish a link between an
operation defined in an OpenAPI specification document, and an XQuery
function, the developer adds the name of the target XQuery function to the
operationId parameter of the OpenAPI operation; unfortunately, at this time
prefixed names are used which can lead to ambiguity in function routing.

3. Marklogic HTTP App Server added support for JSON in 2015 [36], and also
added support for GraphQL [24] in 2024 [35]. GraphQL provides a query lan-
guage API for reading, writing, and subscribing to data, and this is all done
over a single HTTP endpoint. This is in direct contrast to REST where multiple
endpoints for each resource are typically defined; this does not however pre-
vent this single endpoint being defined as a REST endpoint.

4. The MarkLogic REST Library [37] for use with Marklogic URL Rewriting has
received no significant updates since 2012. The Corona library [30] also for use
with MarkLogic URL Rewriting has received no updates since 2012 and is
now marked as discontinued. As an alternative to URL Rewriting implemen-
ted in XQuery, MarkLogic has added the facility for a static declarative set of
URL Rewriting rules called Declarative XML Rewriter [34]. This new facility
allows rules to be expressed in XML; the stated advantage of this is improved
performance due to not having to dynamically evaluate code.

5. The EMC xDB product no longer seems to exist in its own right. It appears to
have been integrated into a larger opaque product called Documentum, which
was subsequently acquired by OpenText [55]. Therefore we can discard con-
sideration of the xDB REST API, xDB JAX-RS API, and xDB XML REST
Framework.

6. Neither the EXPath Web Applications standard [7], nor EXPath Servletx [8]
(the only known implementation of the standard), have received any signifi-
cant updates since 2012. As projects, they have received no updates since 2015
and appear to have been abandoned and therefore we need not consider them
further.

Not reviewed in the original RESTful XQuery paper were the frameworks provi-
ded by the BaseX Native XML Database. In 2012, BaseX already provided a REST
Server [14] implementation that had been developed in 2011 as part of BaseX ver-
sion 7.0 to replace its previous JAX-RX [12] approach. BaseX’s REST Server in
terms of API and functionality is very similar to that of eXist-db’s REST Server,
and therefore we need not consider it separately any further here.

In the Java programming language ecosystem, two interesting projects have
appeared since 2012 that are in the relatively new class of microservice frame-
works. These are not JAX-RS implementations, but independently make use of
function annotations to enable the developer to build RESTful applications:

Towards RESTful XQuery 2.0

169

1. Micronaut [29] released in 2018, and
2. Inverno [26] released in 2021.
The REST facilities offered by these frameworks and the annotations that are pro-
vided for that purpose are unremarkable when compared to JAX-RS, in most part
due to their similarity; the strengths of these new frameworks lie elsewhere. As
such we need not consider them further in this context.

Conspicuous by omission from the original RESTful XQuery paper is the
Spring Framework and its Spring REST module. In 2012 Spring REST did not
offer a function annotation based approach and so was not relevant for considera-
tion. Whilst it has since added this facility, it offers no significant advantage or
differentiator over JAX-RS, and therefore we likewise need not consider it further
in this context.

Apart from the BaseX extensions for RESTXQ 1.0 which are covered in Sec-
tion 2.6.2, there has been little, if any, innovation with respect to REST frame-
works in the XQuery programming language ecosystem since 2012.

2.4. Review of Web Communication Protocols
The original RESTful XQuery paper and RESTXQ 1.0 standard published in 2012
were designed to work atop the HTTP 1.1 [23] communications protocol.

Since 2012, the standard for the HTTP/2 communications protocol [21] was
published in 2015, and the standard for the HTTP/3 [22] communications protocol
in 2022.

HTTP/2 and HTTP/3 use the same HTTP semantics (request methods, status
codes, and message fields) as HTTP 1.1. The former focuses on improving per-
formance over TCP, whilst the latter focuses on improving performance by
switching from using TCP to UDP. As the HTTP semantics have remained the
same in the newer HTTP versions, RESTXQ should be compatible with both
HTTP/2 and HTTP/3, and therefore we need not concern ourselves further on this
topic.

The WebSocket Protocol [19] published in 2011 was not discussed in the origi-
nal RESTFul XQuery paper. The reasoning for that is unknown, but is likely due
to the fact that the WebSocket protocol in of itself does not easily align with REST
principles.

The WebSocket Protocol begins from a client sending an HTTP request that
asks the server to upgrade it to the WebSocket protocol. Once upgraded and
established, the client or server is free to send messages at any time to the other
until the connection is closed. WebSockets allow full bi-directional asynchronous
communication between the client and server. Like SSE, WebSockets have an
asynchronous nature, but the implementation requirements are more demanding
due to their bi-directional nature. However, there appears to be little that would
prohibit the initial setup request from the client following a RESTful approach.

Towards RESTful XQuery 2.0

170

The Web Socket Protocol which describes sending messages between client and
server or vice-versa, does not enforce any constraints on the format of those mes-
sages. Therefore in theory, although likely an impedance mismatch, one could
potentially implement REST like operations and representations atop a Web-
Socket by dispatching those as messages. WebSockets have been used as a more
performant alternative to the older HTTP Long Polling technique [56].

Interestingly BaseX provides a set of XQuery functions annotations [15], unre-
lated to RESTXQ, that allow for working with WebSockets from XQuery running
in a web context.

2.5. Review of REST Alternatives

RPC (Remote Procedure Call) is a mechanism for a (client) process to send a
request that causes invocation of a procedure (or function) in a separate (server)
remote process, and then receive back any result generated by the procedure.

XML-RPC [44] which operates over HTTP, describes the request for the proce-
dure invocation and the response containing the result of its invocation in XML.
One stated goal for using XML over HTTP for RPC during the design of the XML-
RPC standard was that of human readability of the protocol. XML-RPC later
informed the design of the SOAP (Simple Object Access Protocol) standard.

JSON-RPC [25] is very similar to XML-RPC, but as the name implies, uses
JSON instead of XML for the format of its request and response. Additionally, it is
also transport agnostic, unlike XML-RPC which is restricted to HTTP.

There are also many competing binary RPC protocols, including the modern:
gRPC [13] which aims for performance and portability and uses a bespoke TCP
protocol, and Cap’n Proto [45] that aims for high performance, but is transport
agnostic.

Compared to REST which uses an endpoint URI for each resource, RPC trans-
ported over HTTP typically uses only a single endpoint URI with the request
body instead describing the procedure to invoke. When comparing XML-RPC or
XML-JSON (over HTTP) with RESTXQ, the difference between them becomes less
pronounced as then both the RPC and REST approaches allow the remote execu-
tion of a function via an XML or JSON request/response; the difference is concep-
tual, with the developer taking either a resource or function centric design
approach.

In theory, although likely an impedance mismatch with much overhead, one
could potentially implement a REST like approach atop RPC by wrapping REST
parameters and entities within parameters to RPC function invocations; a proto-
col within a protocol.

Messaging protocols and systems are a wide ranging domain. We define Mes-
saging as a mechanism for loosely coupled and distributed communication.
Broadly this usually falls into one of two models:

Towards RESTful XQuery 2.0

171

1. Point to Point, or

2. Publish and Subscribe.

Both models usually involve some form of broker middleware that provides
queuing (point to point) or topics (publish and subscribe). The brokers act as the
intermediaries allowing systems to indirectly communicate by exchanging mes-
sages.

There are many competing messaging protocols, including: the AMQP
(Advanced Message Queuing Protocol) standard [1] which is an implementation
agnostic wire protocol, and the MQTT OASIS standard [31] which whilst also an
implementation agnostic wire protocol, has been designed for low-overhead and
strict message delivery guarantees, thus suiting it to use in embedded devices
(e.g. IoT (Internet of Things)). Such messaging protocols, as well as a wire format,
typically define an envelope format for a message (e.g. framing and headers),
whilst leaving the format of the content of the message entirely up to the user.

Unlike REST which uses a Request-Response pattern and is typically a syn-
chronous operation, messaging is always unidirectional and therefore asynchro-
nous. By correlating two opposing unidirectional messages with a common
identifier it is possible to create a Request-Response like pattern known as
Request-Reply [16], unlike the synchronous Request-Response, Request-Reply
remains asynchronous. In theory, one could potentially implement an (asynchro-
nous) REST like approach atop a messaging protocol, queues could be used
instead of URI, and REST parameters could be represented as message headers,
whilst REST entities could be transmitted in the message body itself.

GraphQL (Graph Query Language) [24], was developed as an alternative to
REST with one of its stated goals being that of reducing the number of API calls
that need to be made to obtain the required information. Unlike REST where mul-
tiple endpoints each provide a representation of a specific type of resource,
GraphQL instead opts for a single end-point which may be queried once to return
data of multiple types. This does not however prevent the single GraphQL end-
point potentially being defined as a REST endpoint. One may think of a GraphQL
API as being similar to a database query API but designed for use across the Web.
Both GraphQL and REST typically use HTTP as their transport mechanism, and
both can use XML or JSON as their data transfer format. GraphQL is designed
from a different conceptual standpoint than that of REST, it requires the devel-
oper to identify their data types and model their domain in terms of the queries
they wish to perform across those data types, whereas REST of course simply
requires the developer to model in terms of the resources (the types of “thing”)
that they have in their domain. It is not clear at this time whether a REST like
approach could be developed as a layer above a GraphQL API, however it seems
unlikely that this would offer much benefit as fundamentally GraphQL and REST
each seem suited to solving different problems.

Towards RESTful XQuery 2.0

172

2.6. Review of RESTXQ 1.0 Feedback

Alongside our review of the latest developments in the relevant domains, it has
been 12 years since the RESTful XQuery paper and associated RESTXQ 1.0 stand-
ard were delivered. Over that time period there has been feedback from users and
implementers that we must also consider when determining if RESTXQ 1.0 is still
fit for purpose.

2.6.1. EXQuery Project Feedback on RESTXQ 1.0

The RESTXQ 1.0 standard was originally released under the stewardship of the
EXQuery Project. The EXQuery is a community project that promotes XQuery,
and offers an environment to standardise and publish any extensions to XQuery.

We briefly examine the topics of feedback about the RESTXQ 1.0 standard
received by the EXQuery project:
1. More flexible and advanced URI templates for use within Path Annotations.

One such suggestion that was received, was that it would be helpful to be able
to use Regular Expressions 1 within URI templates23

2. Support for extracting parameters (also known as Matrix Parameters in JAX-
RS) from path components within Path Annotations.

3. A new %rest:PATCH annotation to support the HTTP Patch method, and a
new %rest:method annotation 4 be useful when working with extensions to
HTTP such as WebDAV.

4. The value of Header Parameters should not be tokenized on a comma5. It is
not clear that there was a well defined use-case for this rule in RESTXQ 1.0,
and it has since been observed to cause problems with header values that
require commas in them, such as the If-Modified-Since header.

5. A facility for injecting in, and/or programmatically obtaining, a model of the
entire HTTP Request6. This could be made available as an XDM document
node and/or Map.

6. Functions to programmatically interrogate and access parts of the HTTP
Request7.

7. Support for JSON via parsing request bodies to Map or Array types, and seri-
alisation of Map or Array types via a %output:method("json") annotation.

1https://github.com/exquery/exquery/issues/38
2https://github.com/exquery/exquery/issues/3
3https://github.com/exquery/exquery/issues/8
4https://github.com/exquery/exquery/issues/22
5https://github.com/exquery/exquery/issues/32
6https://github.com/exquery/exquery/issues/20
7https://github.com/exquery/exquery/issues/11

Towards RESTful XQuery 2.0

173

https://github.com/exquery/exquery/issues/38
https://github.com/exquery/exquery/issues/3
https://github.com/exquery/exquery/issues/8
https://github.com/exquery/exquery/issues/22
https://github.com/exquery/exquery/issues/32
https://github.com/exquery/exquery/issues/20
https://github.com/exquery/exquery/issues/11

Potentially also auto-translation by serialisation from XML document-node or
element to JSON, and Map/Array to XML.

8. Support for more easily working with HTTP multipart request and response
bodies8.

9. In-built validation of parameters extracted by RESTXQ from REST requests9.
For example, whilst query parameters are always optional, as they are classed
as Resource Function Parameters, it might be useful to be able to validate if
they are present (and the format of their value) or not.

10. New %rest:error and %rest:error-param annotations10 that may be added
to functions to indicate that they should be called to handle XQuery errors
and provide a suitable response to the client.

11. Automatic generation of WADL (Web Application Description Language) for
RESTXQ functions11.

12. Annotations to explicitly describe security constraints that must be met for a
Resource Function to be executed.

13. The ability to define a catch-all Resource Function that is executed if no other
Resource Functions match the incoming request.

2.6.2. BaseX Extensions to RESTXQ 1.0

A proof-of-concept implementation for RESTXQ was created in 2012 for the eXist-
db Native XML Database. That implementation was designed to closely follow
the RESTXQ 1.0 standard, and as such it has seen no innovation since then.

Conversely, the BaseX Native XML Database rapidly adopted and implemen-
ted RESTXQ 1.0 shortly after the paper and standard were published, but has
continued to extend its implementation based on feedback from its users. As such
BaseX offers a number of interesting vendor specific extensions to RESTXQ 1.0.
We briefly examine the extensions to RESTXQ provided in BaseX:
1. An extension to URI templates that are used in a %rest:Path annotation so

that they may support regular expressions12.
2. An extension to the %rest:POST and %rest:PUT annotations to support the

conversion of Multipart request body entities13 to items (within a sequence)
that are injected into the named function parameter. This also supports the
uploading of files from HTML forms.

8https://github.com/exquery/exquery/issues/3
9https://github.com/exquery/exquery/issues/29
10https://github.com/exquery/exquery/issues/16
11https://github.com/exquery/exquery/issues/15
12https://docs.basex.org/wiki/RESTXQ#Paths
13https://docs.basex.org/wiki/RESTXQ#Multipart_Types

Towards RESTful XQuery 2.0

174

https://github.com/exquery/exquery/issues/3
https://github.com/exquery/exquery/issues/29
https://github.com/exquery/exquery/issues/16
https://github.com/exquery/exquery/issues/15
https://docs.basex.org/wiki/RESTXQ#Paths
https://docs.basex.org/wiki/RESTXQ#Multipart_Types

3. An extension to the %rest:POST and %rest:PUT to support converting request
bodies that contain CSV, JSON, or HTML into appropriate XDM types14

(Maps or Document Nodes) before injecting them into the named function
parameter. This includes a set of %input:* annotations that offer some configu-
ration of the conversion process.

4. A new %rest:method15 annotation to support additional HTTP Methods that
are not defined in the HTTP 1.1 standard.

5. An extension to the %rest:produces annotation to support server-side quality
factors that can influence the selection process when matching the request to a
Resource Function.

6. Consideration of Quality Factors16 from the HTTP request’s Accept Header
when matching the request to a Resource Function.

7. A new rest:wadl()17 function that can generate a WADL (Web Application
Description Language) XML document of all registered Resource Functions.

8. A new %rest:error18 and associated %rest:error-param annotations that may
be added to a function that is responsible for handling errors.

9. A new %rest:single19 annotation that ensures only a single instance of a
function is running concurrently for a specific user session.

10. Automated generation of a response to an HTTP OPTIONS request if there is
no matching Resource Function defined.

11. Automated mapping of HTTP HEAD requests to an equivalent Resource
Function for HTTP GET (if available); note that the response body from the
GET Resource Function will be discarded. This mapping only occurs when
there is no matching Resource Function for the HTTP HEAD request.

12. A new rest:forward20 element that may be returned in the rest:response ele-
ment of a Resource Function. This instructs the RESTXQ implementation to
redirect the request to a different Resource Function.

13. A new output:serialization-parameters21 element that may be returned in
the rest:response element of a Resource Function. This instructs the RESTXQ
implementation to override any serialisation settings with the specified set-
tings.

14https://docs.basex.org/wiki/RESTXQ#Content_Types
15https://docs.basex.org/wiki/RESTXQ#Custom_Methods
16https://docs.basex.org/wiki/RESTXQ#Quality_Factors
17https://docs.basex.org/wiki/RESTXQ_Module#rest:wadl
18https://docs.basex.org/wiki/RESTXQ#Catch_XQuery_Errors
19https://docs.basex.org/wiki/RESTXQ#Query_Execution
20https://docs.basex.org/wiki/RESTXQ#Forwards
21https://docs.basex.org/wiki/RESTXQ#Response_Element

Towards RESTful XQuery 2.0

175

https://docs.basex.org/wiki/RESTXQ#Content_Types
https://docs.basex.org/wiki/RESTXQ#Custom_Methods
https://docs.basex.org/wiki/RESTXQ#Quality_Factors
https://docs.basex.org/wiki/RESTXQ_Module#rest:wadl
https://docs.basex.org/wiki/RESTXQ#Catch_XQuery_Errors
https://docs.basex.org/wiki/RESTXQ#Query_Execution
https://docs.basex.org/wiki/RESTXQ#Forwards
https://docs.basex.org/wiki/RESTXQ#Response_Element

3. Proposal for RESTXQ 2.0
Our review has shown that whilst new protocols and facilities have been devel-
oped, REST as a protocol has not been rendered obsolete by a newer develop-
ment. Likewise, the feedback on RESTXQ 1.0 demonstrates that it is being utilised
and that users and implementers are requesting additional features.

In response to our earlier posed question, “Is RESTXQ 1.0 still fit for purpose
today?”, we believe that in general the principles and design of RESTXQ have
stood the test of time and remain sound, but that it would benefit from some
refinement and the addition of new features. Therefore we herein set out a pro-
posal for enhancing RESTXQ 1.0, with the presupposition that these may inform
a RESTXQ 2.0 standard.

3.1. Backwards Compatibility

We should likely consider how a newer RESTXQ version 2.0 standard may, or
may not, be compatible with the previous version of RESTXQ 1.0, and what that
means in practice for users of RESTXQ.

Our literature review highlights that RESTXQ 1.0 has achieved some success
through adoption, therefore it is our position that RESTXQ 2.0 should be an itera-
tion that builds upon RESTXQ 1.0.

If we were to only add new features to RESTXQ 2.0, without changing any of
the existing features inherited from RESTXQ 1.0, we should be able to ensure for-
wards compatibility between 1.0 and 2.0, i.e. code written for RESTXQ 1.0 should
run fine on a RESTXQ 2.0 implementation. However, if a user were to write code
for RESTXQ 2.0 and try to run it on a REST 1.0 implementation, the outcome is
unknowable. The RESTXQ 1.0 standard offers no facility for describing that the
code has been written against it for that version. Furthermore, there may be limi-
tations in RESTXQ 1.0 that are desirable to further tighten or relax in order to
deliver a good experience for the developer in RESTXQ 2.0.

There is no perfect solution to this, as RESTXQ 1.0 is already widely deployed
in the wild.

To try and improve the situation by enabling it to be detected eagerly in future
we propose that a new Option Declaration should be defined for use in the
XQuery Prolog: declare option rest:version “1.0”; in addition the follow-
ing rules should be added to the RESTXQ 2.0 standard for this feature:

1. If the rest:version option is not explicitly defined, then an implementation
MUST default to the value 1.0.

2. The value for the option SHOULD be: 1.0 or 2.0.

3. Vendors MAY add implementation defined additions to the options value by
appending a string starting with the + character, e.g. 1.0+BaseX.

Towards RESTful XQuery 2.0

176

4. If a newer or older RESTXQ feature is used that is not defined in the indicated
version, and this is detectable by the implementation, preferably statically or
dynamically, then the implementation MUST throw an appropriate error.

5. A rest:version option only applies to the Resource Functions within the
XQuery Library Module in which it is defined; it MUST NOT propagate to
imported Library Modules.

3.2. Support for the HTTP Patch Method
Informed by review of JAX-RS 3.0, eXist-db, and the EXQuery Project, we pro-
pose adding an additional HTTP Method Annotation for the HTTP Patch
Method: %rest:PATCH. This annotation has the same requirements as the existing
%rest:POST and %rest:PUT annotations in RESTXQ 1.0, i.e.: “it may take an
optional string literal which maps the HTTP request body to a named function
parameter”.

Our proposal for the HTTP Patch Method is not backwards compatible with
RESTXQ 1.0, but is forwards compatible with any later version.

3.3. Support for any HTTP Method
Informed by review of the EXQuery Project, and BaseX, we propose adding an
additional HTTP Method Annotation as a catch-all for any HTTP Method for
which there is not an existing corresponding annotation: %rest:method. In addi-
tion the following rules should be added to the RESTXQ 2.0 standard for this fea-
ture:
1. It MUST take a string literal as its first parameter that identifies the name of

the HTTP Method.
2. It MUST take a string literal as its second parameter which maps the HTTP

request body to a named function parameter; this is similar to %rest:POST,
%rest:PUT, or %rest:PATCH.

Our proposal for improved URI Templates is not backwards compatible with
RESTXQ 1.0, but is forwards compatible with any later version.

3.4. Improved URI Templates in Path Annotations
RESTXQ 1.0 Path Annotations have the concept of URI Templates, whereby one
URI Template extracts and maps the value of one path segment from the URI
path to a Resource Function Parameter.

The URI Templates defined in RESTXQ 1.0 should not be confused with the
IETF URI Template standard [20]. Whilst URI Templates in RESTXQ 1.0 appear
very similar to Level 1 of the IETF URI Template standard, they can be differenti-
ated by the fact that RESTXQ 1.0 URI Templates must start with a $ character.

Towards RESTful XQuery 2.0

177

Informed by review of the EXQuery Project, and BaseX, we believe that there
is a clear demand for enhanced URI Templates in RESTXQ so that they afford the
user greater expressivity when describing a path segment that they wish to
match.

We have considered the adoption of IETF URI Template in RESTXQ 2.0, how-
ever we believe it is a poor for two reasons:
1. Whilst RESTXQ 1.0 URI Templates are used to extract values from URI path

segments, the IETF URI Template was instead designed to inject values into
URI, and therefore operates in the opposite direction. This impedance mis-
match is even discussed at the end of the IETF URI Template standard:

Some URI Templates can be used in reverse for the purpose of variable match-
ing: comparing the template to a fully formed URI in order to extract the vari-
able parts from that URI and assign them to the named variables. Variable
matching only works well if the template expressions are delimited by the
beginning or end of the URI or by characters that cannot be part of the expan-
sion, such as reserved characters surrounding a simple string expression. In
general, regular expression languages are better suited for variable matching.

2. IETF URI Template is focused on the entirety of the URI after the scheme and
host (including query strings, fragment identifiers, etc), whilst RESTXQ 1.0
URI Template are used within Path Annotations and so necessarily focus on
just segments within the URI path.

We propose that instead of adopting IETF URI Templates, we instead adopt an
approach using Regular Expressions; similar to that already in use in BaseX’s
RESTXQ extensions.

Previously in RESTXQ 1.0 the rules for URI templates22 within Path Annota-
tions are defined as:

The path string MAY contain zero or more URI templates which denote path seg-
ments that MUST map to named function parameters. Parameters addressed by
templates in the URI path must meet the following constraints:
1. The cardinality MUST allow for an atomic value, otherwise an error should be

raised by the implementation, i.e., it must not be of type empty-sequence().
2. The type MUST inherit from xs:anyAtomicType, otherwise, an error should be

raised by the implementation.
Conversion from the URI segment string to the required type is performed at run-
time, and an error MUST be raised if conversion is impossible.”

To support regular expressions and more flexible path matching, we propose
revising this to:

22https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html# path-
annotation

Towards RESTful XQuery 2.0

178

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#path-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#path-annotation

The path string MAY contain zero or more URI Templates which capture zero or
more path segments. Each of these URI Templates MUST map to a named func-
tion parameter of the Resource Function. Regular Expressions may also be used
within a URI Template. Matching a URI against a URI Template requires one of
three strategies:
1. Simple Matching when no regular expression is used, or
2. Basic Regular Expression Matching when a regular expression without cap-

turing groups is used, or
3. Capturing Regular Expression Matching when a regular expression with one

or more capture groups is used.
Additionally explicit typing information may be optionally added to a named
function parameter within a URI Template. Any function parameter addressed by
a URI Template within the URI path must meet the following constraints:
1. Where a URI Template requires a Simple Match strategy:

a. The cardinality MUST allow for an atomic value, otherwise an error
should be raised by the implementation, i.e., it must not be of type empty-
sequence().

b. The type MUST inherit from xs:anyAtomicType, otherwise, an error
should be raised by the implementation.

c. If the URI template indicates an explicit typing, then the type MUST be
either xs:anyAtomicType or the type indicated in the URI template.

2. Where a URI Template requires a Basic Regular Expression Matching strat-
egy:
a. The cardinality MUST allow for zero or one, or zero or more atomic value,

otherwise an error should be raised by the implementation, i.e., it must not
be of type empty-sequence(), and subtypes of xs:anyAtomicType?, or
xs:anyAtomicType* are allowed. The type MUST inherit from xs:anyAto-
micType, otherwise, an error should be raised by the implementation.

b. The type MUST inherit from xs:anyAtomicType, otherwise, an error
should be raised by the implementation.

c. If the URI template indicates an explicit typing, then the type MUST be
either xs:anyAtomicType or the type indicated in the URI template.

3. Where a URI Template requires a Capturing Regular Expression Matching
strategy:
a. The cardinality MUST allow for an array value, otherwise an error should

be raised by the implementation, i.e., it must not be of type empty-
sequence().

Towards RESTful XQuery 2.0

179

b. The type MUST inherit from array(xs:anyAtomicType), otherwise, an
error should be raised by the implementation.

c. The cardinality of the inner array type MUST be compatible with the wid-
est bound of all capturing groups used. For example, an optional capturing
group would require the array type of the parameter to have an inner car-
dinality of zero-or-one (?). Whilst, for example, if an optional capturing
group and an optional repeating capturing group were used, this would
require the array type of the parameter to have an inner cardinality of zero-
or-more (*).

d. If the URI template indicates an explicit typing, then the inner array type
MUST be either xs:anyAtomicType or the type indicated in the URI tem-
plate.

e. If the URI template indicates more than one explicit typing of different
types, then the inner array type MUST be xs:anyAtomicType.

4. Conversion from the URI path substring matching the URI Template to the
required type is performed at run-time, and the conversion must adhere to the
rules defined in section N. An error MUST be raised if conversion is impossi-
ble.

Example 1. Valid RESTXQ 1.0 URI Template Examples

declare
 %rest:path("/stock/widget/{$wid}")
function local:widget($wid)

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid, $pid)

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid as xs:int, $pid as xs:int)

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid as xs:int?, $pid as xs:int?)

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid as xs:int?, $pid as xs:int?)

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid as xs:int*, $pid as xs:int*)

Towards RESTful XQuery 2.0

180

declare
 %rest:path("/stock/widget/{$wid}/part/{$pid}")
function local:widget($wid as xs:int+, $pid as xs:int+)

Example 2. Proposed RESTXQ 2.0 URI Template Examples

(: Support for explicit conversion types to
 : indicate the type for a parameter
 :)
declare
 %rest:path("/stock/widget/{$wid(xs:int)}")
function local:widget($wid)

(: Support for a Basic Regular Expression Matching :)
declare
 %rest:path("/stock/widget/{$wid=[0-9]+}")
function local:widget($wid)

(: Support for Basic Regular Expression Matching,
 : and an explicit conversion type
 :)
declare
 %rest:path("/stock/widget/{$wid(xs:int)=[0-9]+}")
function local:widget($wid)

(: Support for a Basic Regular Expression Matching
 : that captures more than one path segment.
 :)
declare
 %rest:path("/stock/widget/{$path=.+}")
function local:widget($path)

(: Support for multiple Basic Regular Expression Matching
 : within a single path segment.
 : Note that multiple URI templates not utilising regular
 : expressions within a single path segment are invalid
 : and MUST raise an error.
 :)
declare
 %rest:path("/stock/widget/{$type=[A-Z]{3}}{$code=[0-9]+}")
function local:widget($type, $code)

(: Support for multiple Basic Regular Expression Matching
 : within a single path segment with explicit conversion
 : types.
 : Note that multiple URI templates not utilising regular

Towards RESTful XQuery 2.0

181

 : expressions within a single path segment are invalid
 : and MUST raise an error.
 :)
declare
 %rest:path("/stock/widget/{$type(xs:string)=[A-Z]{3}}
{$code(xs:int)=[0-9]+}")
function local:widget($type, $code)

(: Support for Capturing Regular Expression Matching :)
declare
 %rest:path("/stock/widget/{$wid=([A-Z]{3})([0-9]+)")
function local:widget($wid)
declare
 %rest:path("/stock/widget/{$wid=([A-Z]{3})([0-9]+)")
function local:widget($gid as array(xs:anyAtomicType))

declare
 %rest:path("/stock/gadget/{$gid=(?:([A-Z]{3})-)+([0-9]+)")
function local:gadget($gid as array(xs:anyAtomicType+))

declare
 %rest:path("/stock/gadget/{$gid=(?:([A-Z]{3})-)+([0-9]+)?")
function local:gadget($gid as array(xs:anyAtomicType*))

(: Support for Capturing Regular Expression Matching
 : with explicit conversion types.
 :)
declare
 %rest:path("/stock/gadget/{$gid(xs:string, xs:int)=(?:([A-Z]{3})-)
+([0-9]+)?")
function local:gadget($gid as array(xs:anyAtomicType*))
(: Support for Capturing Regular Expression Matching
 : where the entire match is also appended to the array
 : parameter as an `xs:string`; caused by the `==`
 : instead of the usual `=`.
 : Note that using `==` is only allowed for Capturing
 : Regular Expression Matching, using it for Basic
 : Regular Expression Matching is invalid and MUST
 : raise an error.
 :)
declare
 %rest:path("/stock/gadget/{$uid==([0-9]+)-([0-9]+)")
function local:gadget($gid as array(xs:anyAtomicType))

Our proposal for improved URI Templates is not backwards compatible with
RESTXQ 1.0, but is forwards compatible with any later version.

Towards RESTful XQuery 2.0

182

3.5. Improved HTTP Header Parsing

In RESTXQ 1.0, if the value of an HTTP Header parameter contained one or more
comma characters then the value would be tokenized on the comma character.
This served to work well for some headers, but caused issues with headers such
as If-Modified-Since where the value must be formatted as a date as defined by
either: RFC 1123, RFC 850, or ANSI-C’s asctime() function. As the date format of
RFC 1123 and RFC850 both include a comma character, this made it impossible to
inject the header value easily via the %rest:header-param annotation.

Informed by review of the EXQuery Project, we propose to add additional
options to control the parsing of HTTP Header Parameters.

In RESTXQ 1.0, the arguments for the %rest:header-param are:

1. The first argument is the name of the HTTP Header to parse.

2. The second argument is the name for the Resource Function parameter to
inject the header value into.

3. The third (and any subsequent) arguments are the default values to inject into
the named Resource Function parameter if the HTTP Header is not present in
the HTTP request.

We propose modifying the format of the second argument to allow control over
the parsing of the HTTP Header value. At present the second argument must be
of the format: {$fn-param-name}. We propose instead to allow additional argu-
ments after the Resource Function Parameter name like: $fn-name-
name(tokenize=’pattern’). In addition, the following rules should be added to
the RESTXQ 2.0 standard for this feature:

1. If a tokenize option is provided, and the value of the option is not the literal
string false, an implementation MUST tokenize the value from the header on
the provided pattern by following the rules of the fn:tokenize function
before injecting it into the named resource function parameter.

2. If a tokenize option is provided, and the value of the option is the literal string
false’, tokenization MUST not be performed on the value from the header
before injecting it into the named resource function parameter.

3. If a tokenize option is not provided, and a header value contains comma sepa-
rated values, an implementation MUST extract each value from the comma
separated list into an item in the sequence provided to the function parameter.

Our proposal for improved HTTP Header Parsing is not backwards compatible
with RESTXQ 1.0, but is forwards compatible with any later version.

Towards RESTful XQuery 2.0

183

3.6. Support for Server Side Quality Factors

Informed by review of JAX-RS 2.2, and BaseX, we propose modifying the media
type argument(s) used within %rest:produces annotations to allow for an addi-
tional server-side quality factor argument.

In RESTXQ 1.0, if an HTTP request from a client indicates that it accepts a
response adhering to more than one media-type with the same quality factor, and
if there is one or more resource functions that match more than one of those
media-types, it is currently ambiguous as to which media-type should be
returned to the client. We propose adding a qs” argument that takes a quality fac-
tor that is used to resolve the ambiguity in such situations. The qs argument is
the server-side equivalent to the q” argument that may be used in the HTTP
Accept header within an HTTP request from the client.

Example 3. Example of Server Side Quality Factors

declare function
 %rest:GET
 %rest:path("/README")
 %rest:produces("text/plain;qs=0.5")
 %output:method("text")
local:text-readme()

declare function
 %rest:GET
 %rest:path("/README")
 %rest:produces("text/markdown;qs=1.0")
 %output:method("text")
 local:text-markdown()

Our proposal for Server Side Quality Factors is not backwards compatible with
RESTXQ 1.0, but is forwards compatible with any later version.

3.7. Inclusion of Quality Factors in Matching Resource Functions

The HTTP Mechanics section of RESTXQ 1.0 describes the mechanism for selec-
tion of a Resource Function based on media-types23 which is fed by the
%rest:consumes and %rest:produces annotations. This section includes no
explicit consideration of quality factors. We propose that this section should be
expanded to include an explicit and detailed explanation of how client-side q”

23https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#media-
type-preference

Towards RESTful XQuery 2.0

184

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#media-type-preference
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#media-type-preference

quality factors, and server-side qs” (see Section 3.6) should be considered when
matching HTTP requests to Resource Functions.

3.8. Support for JSON

XQuery 3.0 did not have any in-built support for JSON, and as this was the target
for RESTXQ 1.0, it likewise had no in-built support for JSON.

XQuery 3.1 and its associated standards added a number of key features for
working with JSON. Whilst it is possible to use RESTXQ 1.0 in XQuery 3.1, the
user is left to manually parse and serialise JSON requests and responses.

Informed by review of JAX-RS 2.0, XQuery 3.1, MarkLogic’s HTTP App
Server, the EXQuery Project, and BaseX, we propose adding new features and
mechanisms to support more easily working with JSON in RESTXQ. Just as the
changes to XQuery 3.1 to support JSON were pervasive (data model, operators,
parsing and serialisation), the necessary changes required to support this in
RESTXQ would also be extensive.

Our proposals for JSON support are not backwards compatible with RESTXQ
1.0, but are forwards compatible with any later version.

3.8.1. Support for JSON Request Bodies

We propose that the REST method annotations that may extract a request body
and inject it into a Resource Function parameter (%rest:POST, %rest:PUT,
%rest:PATCH, and %rest:method) need to be updated to also be able to process a
request body containing JSON.

Previously in RESTXQ 1.0 the rules for resource functions that were to receive
a request body24 are defined as:

The function parameter for the request body must meet the following constraints:
1. The cardinality MUST allow for one or more of the typed item(s).
2. The type MUST be compatible with the request body. The type of the request

body is determined by the HTTP Content-Type header and may be constrained
by means of the %rest:consumes annotation. The interpretation of the request
body is similar to that of the EXPath HTTP Client:
a. If the Media Type indicated by the Content-Type header matches text/*

(excluding text/xml), the function parameter type will be xs:string.
b. If the Media Type indicated by the Content-Type header is of an XML

type, the request body is parsed as XML and the function parameter type
will be document-node(). At least the Media Types application/xml

24https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html#
method-annotation

Towards RESTful XQuery 2.0

185

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#method-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#method-annotation

and text/xml MUST be interpreted as XML types, although implementa-
tions MAY support additional XML types.

c. Otherwise, a binary media type is assumed, and the function parameter
type will be xs:base64Binary.

d. An implementation MAY provide support for other input type mappings
such as HTML or JSON.”

To support JSON, we propose inserting an additional rule between 2.2 and 2.3
and revising rule 4:

2.3 If the Media Type indicated by the Content-Type header is of a JSON type,
the request body is parsed (following the rules of the fn:parse-json function) as
JSON and the function parameter type will be either map(*) or array(*). At least
the Media Type application/ json MUST be interpreted as a JSON type,
although implementations MAY support additional JSON Media Types.

2.4 Otherwise, a binary media type is assumed, and the function parameter
type will be xs:base64Binary.

2.5 An implementation MAY provide support for other input type mappings
such as HTML or CSV.

We further propose to allow additional arguments to the resource function
parameter name that allow the user to configure options for parsing of the
request body, for JSON these should follow the options set out in the fn:parse-
json function (except for the fallback function), for example:

Example 4. JSON Parsing of HTTP Request Body in Method Annotation

%rest:PUT(“{$request-body(liberal=true,duplicates=reject,escape=true)}

3.8.2. Support for JSON Response Bodies

We propose that the version of the W3C XSLT and XQuery Serialization used by
RESTXQ25 be updated from 3.0 (as used in RESTXQ 1.0) to 3.1; this also would
allow support for serialisation of Maps and Arrays to JSON.

3.9. Support for Multipart

Informed by review of JAX-RS 3.1, the EXQuery Project, and BaseX, we propose
adding support for the parsing and serialisation of HTTP Multipart requests and
responses.

Our proposals for Multipart support are not backwards compatible with
RESTXQ 1.0, but are forwards compatible with any later version.

25https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html#
serialization

Towards RESTful XQuery 2.0

186

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#serialization
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#serialization

3.9.1. Support for Multipart Form Data Requests

We propose that the Form Parameter Annotation (%rest:form-param) in RESTXQ
1.0 be extended to support Multipart Form Data [47] as identified by the media
type multipart/form-data. In RESTXQ 1.0, the rules26 for converting the value
of the form field to a Resource Function parameter are:

1. The cardinality MUST allow for zero or many atomic values in the case of
Query27, Form28, or Header29 parameters, or zero or one atomic value in the
case of Cookie30 parameters, otherwise an error MUST be raised by the imple-
mentation.

2. The type MUST inherit from xs:anyAtomicType, otherwise, an error MUST
be raised by the implementation.

We propose revising this to:
1. The cardinality MUST allow for zero or many atomic values in the case of

Query31, Form32, or Header33 parameters, or zero or one atomic value in the
case of Cookie34 parameters, otherwise an error MUST be raised by the imple-
mentation.

2. The type MUST inherit from xs:anyAtomicTyp or be an map(*) type, other-
wise, an error MUST be raised by the implementation.

3. When an xs:anyAtomicType (or subtype) is indicated:
a. When the request Media Type is application/ x-www-form-urlencoded

the parameter is injected with the converted value of the form field.
b. When the request Media Type is application/form-data the parameter is

injected with the body of the multipart part (i.e. a converted value for tex-
tual form fields, or an xs:base64Binary for file fields.

26https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html#
resource-function-parameters
27 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-
param-annotation
28 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-
param-annotation
29 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-
param-annotation
30 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-
param-annotation
31 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-
param-annotation
32 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-
param-annotation
33 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-
param-annotation
34 https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-
param-annotation

Towards RESTful XQuery 2.0

187

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#resource-function-parameters
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#resource-function-parameters
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#query-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#form-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#header-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#cookie-param-annotation

4. When a map(*) type is indicated:
a. When the request Media Type is application/ x-www-form-urlencoded

the parameter is injected with a map with a single body property contain-
ing the converted value of the form field.

b. When the request Media Type is application/form-data the parameter is
injected with a map of the format:

 {
 parameters: [
 {"name": "filename", "value": "filename if file"},
 {"name:" "filename*", "value": "non-ascii filename if file"}
],
 headers: [
 {name: "my-header-name", value: "my-header-value"}
],
 "body": "either converted value or xs:base64binary"
 }

3.9.2. Support for multipart/* Requests

We propose that the REST POST Method annotation should be updated so that it
may handle parsing of a multipart request body and inject it into a Resource
Function parameter.

Previously in RESTXQ 1.0 the rules for processing the request body for the
POST Method annotation 35 are defined as:

The function parameter for the request body must meet the following constraints:
1. The cardinality MUST allow for one or more of the typed item(s).
2. The type MUST be compatible with the request body. The type of the request

body is determined by the HTTP Content-Type header and may be con-
strained by means of the %rest:consumes annotation. The interpretation of
the request body is similar to that of the EXPath HTTP Client:
a. If the Media Type indicated by the Content-Type header matches text/*

(excluding text/xml), the function parameter type will be xs:string.
b. If the Media Type indicated by the Content-Type header is of an XML

type, the request body is parsed as XML and the function parameter type
will be document-node(). At least the Media Types application/xml
and text/xml MUST be interpreted as XML types, although implementa-
tions MAY support additional XML types.

35https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html#
method-annotation

Towards RESTful XQuery 2.0

188

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#method-annotation
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#method-annotation

c. Otherwise, a binary media type is assumed, and the function parameter
type will be xs:base64Binary.

d. An implementation MAY provide support for other input type mappings
such as HTML or JSON.

To support Multipart requests, we propose inserting an additional rule between
2.2 and 2.3:

2.3 If the Media Type indicated by the Content-Type header is of a Multipart
type, the request body is parsed and the parts extracted. The body of each part
MUST be parsed as described previously. Note that this may be a recursive proc-
ess as a multipart part may itself have a multipart body. The function parameter
type will be map(*). At least the Media Types multipart/ mixed, multipart/
related, and multipart/alternative MUST be interpreted as Multipart types,
although implementations MAY support additional Multipart Media Types. The
map has the format:

{
 parameters: [
 {"name": "filename", "value": "filename if file"},
 {"name:" "filename*", "value": "non-ascii filename if file"}
],
 headers: [
 {name: "my-header-name", value: "my-header-value"}
],
 "body": "either converted value or xs:base64binary"
}

3.9.3. Support for Multipart Responses

We propose adding a new serialisation type for Multipart that will work with the
existing serialisation mechanism of RESTXQ. The new serialisation type could be
called rest:multipart, and can be used like:
%output:method("rest:multipart").

This new serialisation would take as input a sequence of Maps (multipart
parts) in the format of:

{
 "rest:response" {
 "output:serialization-parameters": {
 "output:method": "xml"
 }
 },
 parameters: [
 {"name": "filename", "value": "filename if file"},
 {"name:" "filename*", "value": "non-ascii filename if file"},

Towards RESTful XQuery 2.0

189

],
 headers: [
 {name: "my-header-name", value: "my-header-value"}
],
 "body": "either converted value or xs:base64binary"
}

Each body within the map can be serialised according to the existing rules, or
its serialisation method overridden with an optional output:method parameter.

3.10. Support for Serialization within the Response

Informed by review of BaseX, we propose adding an additional
output:serialization-parameters element to the rest:response element; this
element is defined in the W3C XSLT and XQuery Serialization 3.1 standard. This
element would allow the developer to dynamically determine the serialisation
parameters of a Resource Function during processing of the function. It would
complement, but override, any corresponding %output prefixed function annota-
tions.

3.11. Support for Handling XQuery Errors

Informed by review of BaseX, we propose adding an additional Error Handling
Annotation: %rest:error. The annotation may take one or more name tests for
XQuery error codes. These name tests have the same syntax as that defined for
Try/Catch Expressions in the W3C XQuery 3.1 standard.

When executing a Resource Function, if an XQuery error is raised, and if a
function with a matching %rest:error annotation is present, this function MUST
be executed. This function MUST return any of the types that any other Resource
Function may return. If two functions are annotated with the same name test, an
implementation MUST raise an error. If an error occurs during the processing of a
function annotated with the %rest:error annotation, processing SHOULD cease
and the implementation MUST NOT call any further functions annotated with
%rest:error.

In addition, we also propose adding an additional Error Parameter Annota-
tion: %rest:error-param. This annotation MUST take two string literal parame-
ters. The first parameter is the qualified name of an error parameter, for example:
err:code, err:description, err:value, err:module, err:line-number,
err:column-number, err:additional, or any other implementation defined
name. The second parameter is the name of the XQuery function parameter into
which the value must be injected, the format of this name follows that of the other
RESTXQ parameter annotations.

Towards RESTful XQuery 2.0

190

3.12. Non Sequitur

There are a number of features or facilities that we have discovered during our
literature review that we consider to be out of scope or inappropriate for
RESTXQ:
1. Filters and Entity Interceptors as described in JAX-RS allow a great deal of
flexibility, but it remains unclear how these would be implementable in
RESTXQ.

2. Validation Constraint Annotations as described in JAX-RS and requested in
feedback to the EXQuery Project and based on the Java Bean Validation stand-
ard would be a welcome addition. These are implemented in Java as a set of
annotations that may be applied to function annotations. Unfortunately,
XQuery does not yet permit annotations to be added to function parameters.

3. The ability to define a catch-all Resource Function that is executed if no other
Resource Functions match the incoming request. This was requested in feed-
back to the EXQuery Project however we believe that such a feature would be
poorly aligned with the declarative approach of RESTXQ.

4. A new %rest:single annotation that ensures only a single instance of a func-
tion is running concurrently for a specific user session. This has been imple-
mented in BaseX. However, we believe that this should not be included in
RESTXQ and should remain a vendor extension, otherwise it would force all
implementers to track session state; REST works very hard to avoid server-
side state.

5. Automated generation of a response to an HTTP OPTIONS request if there is
no matching Resource Function defined. This has been implemented in BaseX.
However, we believe that this should not be included in RESTXQ as it produ-
ces a response that the developer had not indicated that they intend to pro-
duce.

6. Automated mapping of HTTP HEAD requests to an equivalent Resource
Function for HTTP GET (if available); note that the response body from the
GET Resource Function will be discarded. This mapping only occurs when
there is no matching Resource Function for the HTTP HEAD request. This has
been implemented in BaseX. However, we believe that this should not be
included in RESTXQ as it produces a response that the developer had not
indicated that they intend to produce.

7. A new rest:forward element that may be returned in the rest:response ele-
ment of a Resource Function. This instructs the implementation to perform a
server-side redirect of the request to a different Resource Function. This has
been implemented in BaseX. However, we believe that this should not be
included in RESTXQ as it makes the handling of requests more opaque, and

Towards RESTful XQuery 2.0

191

equivalent functionality can already be obtained through an XQuery function
call to the desired code instead.

8. A new rest:wadl() function that can generate a WADL (Web Application
Description Language) XML document of all registered Resource Functions.
This has been implemented in BaseX. However, we believe that this should
not be included in RESTXQ and should remain a vendor extension, otherwise
it would force all implementers to provide support for WADL.

9. We believe that GraphQL, RPC, and Messaging protocols are best left as alter-
natives to REST, and therefore should not be integrated into RESTXQ.

4. Conclusion
In 2012 when the RESTful XQuery paper was published, REST was already a well
defined and established architectural approach to designing Web APIs. It is there-
fore perhaps not unsurprising that since then the improvements to REST frame-
works and implementations that we have identified and discussed have been few
and of an incremental rather than foundational nature.

REST remains relevant today, and it is the de-facto standard for building Web
API. We have argued that RESTXQ 1.0 whilst still relevant, could benefit from
some refinement and additional features. Furthermore, we have identified 11
such enhancements that could be added to RESTXQ 1.0 to create a RESTXQ 2.0
standard. Finally, we have discussed a number of features and vendor extensions
that we believe at this time should remain out-of-scope for RESTXQ.

4.1. Future Work

1. It may be desirable to add further support to URI Template used within Path
Annotations to assist the user in extracting URI Matrix Parameters [54] from
URI paths such as: / user/ ;id=3,4,5;type=p or / user/
;id=3;id=4;id=5;type=p.

2. It may be desirable to also allow a Map representation of the REST Response
document36 (rest:response).

3. It may be desirable to support parsing of additional types of request bodies
such as CSV or HTML for Method Annotations. Ideally a generic mechanism
should be identified for this that allows any mediatype to be supported
through a user defined parsing function.

4. Establishing if there is a need to programmatically access all or parts of the
HTTP Request. The EXQuery Project has prototyped this in their HTTP

36https:// exquery.github.io/ exquery/ exquery-restxq-specification/ restxq-1.0-specification.html#
response-format

Towards RESTful XQuery 2.0

192

https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#response-format
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html#response-format

Request Module [10]. It appears however at an impedance mismatch with the
declarative nature of RESTXQ. We can only speculate that perhaps it was
designed in lieu of alternative facilities that could be available in a newer ver-
sion of RESTXQ as set out in this paper.

5. It remains unclear as to how Asynchronous Processing, as described in JAX-
RS 2.0 and then built upon in JAX-RS 2.1 for SSE, could be implemented in
RESTXQ. Investigation into adapting different processing models in XQuery
[28] for use in RESTXQ needs to be undertaken.

6. Consideration should be given to whether WebSockets could be implemented
using a similar approach to that of the Asynchronous Processing used by SEE
in JAX-RS 2.1. At which point, whether Websockets belong in a future
RESTXQ standard, or whether they should be defined separately needs to be
discussed.

7. Consideration should be given to establishing a separate set of Security Anno-
tations to describe security constraints that must be met for a function to be
executed. Such an approach has already been demonstrated by BaseX.
RESTXQ may need some further work to have it describe how it interacts with
such annotations, for example, should authentication and authorisation fail-
ures be mapped directly to HTTP 401 Unauthorized and HTTP 403 Forbidden
response codes.

8. The OpenAPI standard lends itself well to the production of code generation
tools. Several such tools have already been developed for a variety of other
programming languages. Development of a tool for generating a skeleton
XQuery Library Module from an OpenAPI standard could be an interesting
project.

9. Development and publication of a clear and complete standard for RESTXQ
2.0

References
[1] AMQP v1. 2011. AMQP Working Group. http://www.amqp.org/sites/

amqp.org/files/amqp.pdf .
[2] The JSON Saga. 2001. Douglass Crockford. http://crockford.com/pp/

jsonsaga.ppt .
[3] Jakarta RESTful Web Services, version 3.0. 2020. Eclipse Foundation. https://

jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf .
[4] Jakarta RESTful Web Services, version 3.1. 2022. Eclipse Foundation. https://

jakarta.ee/specifications/restful-ws/3.1/jakarta-restful-ws-spec-3.1.pdf .

Towards RESTful XQuery 2.0

193

http://www.amqp.org/sites/amqp.org/files/amqp.pdf
http://www.amqp.org/sites/amqp.org/files/amqp.pdf
http://crockford.com/pp/jsonsaga.ppt
http://crockford.com/pp/jsonsaga.ppt
https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf
https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf
https://jakarta.ee/specifications/restful-ws/3.1/jakarta-restful-ws-spec-3.1.pdf
https://jakarta.ee/specifications/restful-ws/3.1/jakarta-restful-ws-spec-3.1.pdf

[5] Jakarta RESTful Web Services, version 4.0. 2024. Eclipse Foundation. https://
jakarta.ee/specifications/restful-ws/4.0/jakarta-restful-ws-spec-4.0.pdf .

[6] The JSON Data Interchange Syntax. 2017. European Computer Manufacturers
Association. https://ecma-international.org/wp-content/uploads/
ECMA-404_2nd_edition_december_2017.pdf .

[7] Web Applications. 2013. EXPath Community Group. https://expath.org/spec/
webapp .

[8] Servlex. 2015. EXPath Community Group. https://servlex.net/doc .
[9] RESTXQ 1.0. 2012. 2012. https://exquery.github.io/exquery/exquery-restxq-
specification/restxq-1.0-specification.html .

[10] HTTP Request Module 1.0. 2013. The EXQuery Project. https://
exquery.github.io/expath-specs-playground/request-module-1.0-
specification.html .

[11] Architectural Styles and the Design of Network-based Software Architectures. 2000.
Roy Fielding. https://ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf .

[12] JAX-RX:Unified REST Access to XML Resources. 2010. Sebastian Graf, Lukas
Lewandowski, and Christian Grün. https://kops.uni-konstanz.de/server/api/
core/bitstreams/f1ca6230-9540-4cc4-b5de-5af0fabcf11d/content .

[13] gRPC - A high performance, open source universal RPC framework. 2024. gRPC
Authors. https://grpc.io/ .

[14] BaseX - REST. 2011. , . Christian Grün. https://docs.basex.org/wiki/REST .
[15] BaseX - WebSockets. 2018. Christian Grün. https://docs.basex.org/wiki/

WebSockets .
[16] Request-Reply - Enterprise Integration Patterns. 2003. Addison Wesley. Gregor

Hophe and Bobby Woolf. https://www.enterpriseintegrationpatterns.com/
patterns/messaging/RequestReply.html .

[17] The application/json Media Type for JavaScript Object Notation (JSON). 2006.
Internet Engineering Task Force. https://www.rfc-editor.org/info/rfc4627 .

[18] PATCH Method for HTTP. 2010. Internet Engineering Task Force. https://
www.rfc-editor.org/info/rfc5789 .

[19] The WebSocket Protocol. 2011. Internet Engineering Task Force. https://
www.rfc-editor.org/info/rfc6455 .

[20] URI Template. 2012. Internet Engineering Task Force. https://
datatracker.ietf.org/doc/html/rfc6570 .

Towards RESTful XQuery 2.0

194

https://jakarta.ee/specifications/restful-ws/4.0/jakarta-restful-ws-spec-4.0.pdf
https://jakarta.ee/specifications/restful-ws/4.0/jakarta-restful-ws-spec-4.0.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://expath.org/spec/webapp
https://expath.org/spec/webapp
https://servlex.net/doc
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
https://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
https://exquery.github.io/expath-specs-playground/request-module-1.0-specification.html
https://exquery.github.io/expath-specs-playground/request-module-1.0-specification.html
https://exquery.github.io/expath-specs-playground/request-module-1.0-specification.html
https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://kops.uni-konstanz.de/server/api/core/bitstreams/f1ca6230-9540-4cc4-b5de-5af0fabcf11d/content
https://kops.uni-konstanz.de/server/api/core/bitstreams/f1ca6230-9540-4cc4-b5de-5af0fabcf11d/content
https://grpc.io/
https://docs.basex.org/wiki/REST
https://docs.basex.org/wiki/WebSockets
https://docs.basex.org/wiki/WebSockets
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.rfc-editor.org/info/rfc4627
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570

[21] Hypertext Transfer Protocol Version 2 (HTTP/2). 2015. Internet Engineering Task
Force. https://www.rfc-editor.org/info/rfc7540 .

[22] HTTP/3. 2022. Internet Engineering Task Force. https://www.rfc-editor.org/
info/rfc9114 .

[23] Hypertext Transfer Protocol - HTTP/1.1. 1997. Internet Engineering Task Force.
https://www.rfc-editor.org/info/rfc2068 .

[24] Information technology - Database languages - GQL, ISO/IEC 39075:2024. 2024.
International Standards Organization. https://www.iso.org/standard/
76120.html .

[25] JSON-RPC 2.0 Specification. 2013. JSON-RPC Working Group. https://
www.jsonrpc.org/specification .

[26] The Inverno Framework - Using a module. 2012. Jeremy Kuhn. https://inverno.io/
docs/release/reference/html/index.html#using-a-module .

[27] Roaster - declarative routing for eXist-db. 2021. Juri Leino. https://
declarative.amsterdam/presentations/presentations/da.2021.leino.declarative-
routing-for-existdb .

[28] Task Abstraction for XPath Derived Languages. 2019. Debbie Lockett and Adam
Retter. https://www.adamretter.org.uk/papers/task-abstraction-for-
xpdls_february-2019.pdf .

[29] Micronaut Framework - Creating a Server Application. 2024. Micronaut
Foundation. https://docs.micronaut.io/4.4.8/guide/#creatingServer .

[30] Corona - A REST interface to MarkLogic. 2012. 2012. https://github.com/
marklogic-community/Corona .

[31] MQTT Version 5.0. 2019. OASIS. https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html .

[32] JAX-RS: Java API for RESTful Web Services, version 2.0. 2013. Oracle
Corporation. https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/
jsr339-jaxrs-2.0-final-spec.pdf .

[33] JAX-RS: Java API for RESTful Web Services, version 2.1. 2017. Oracle
Corporation. https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-
spec/jaxrs-2_1-final-spec.pdf .

[34] Creating a Declarative XML Rewriter to Support REST Web Services. 2024.
Progress Software Corporation. https://docs.marklogic.com/guide/app-dev/
XMLrewriter .

Towards RESTful XQuery 2.0

195

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc2068
https://www.iso.org/standard/76120.html
https://www.iso.org/standard/76120.html
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://inverno.io/docs/release/reference/html/index.html#using-a-module
https://inverno.io/docs/release/reference/html/index.html#using-a-module
https://declarative.amsterdam/presentations/presentations/da.2021.leino.declarative-routing-for-existdb
https://declarative.amsterdam/presentations/presentations/da.2021.leino.declarative-routing-for-existdb
https://declarative.amsterdam/presentations/presentations/da.2021.leino.declarative-routing-for-existdb
https://www.adamretter.org.uk/papers/task-abstraction-for-xpdls_february-2019.pdf
https://www.adamretter.org.uk/papers/task-abstraction-for-xpdls_february-2019.pdf
https://docs.micronaut.io/4.4.8/guide/#creatingServer
https://github.com/marklogic-community/Corona
https://github.com/marklogic-community/Corona
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://docs.marklogic.com/guide/app-dev/XMLrewriter
https://docs.marklogic.com/guide/app-dev/XMLrewriter

[35] MarkLogic 11 Release Notes - New Features - GraphQL. 2024. Progress Software
Corporation. https://docs.marklogic.com/11.0/guide/release-notes/en/new-
features-in-marklogic-11/graphql.html .

[36] MarkLogic Knowledge Base - JSON in versions 6, 7, and 8. 2015. Progress
Software Corporation. https://help.marklogic.com/Knowledgebase/Article/
View/218/0 .

[37] Creating an Interpretive XQuery Rewriter to Support REST Web Services. 2024.
Progress Software Corporation. https://docs.marklogic.com/guide/app-dev/
rest#id_45642 .

[38] JSR 303: Bean Validation. 2009. Red Hat. https://download.oracle.com/otn-pub/
jcp/bean_validation-1.0-fr-oth-JSpec/bean_validation-1_0-final-spec.pdf .

[39] RESTful XQuery. 2012. Adam Retter. https://www.adamretter.org.uk/papers/
restful-xquery_january-2012.pdf .

[40] JAX-RS: Java API for RESTful Web Services, Version 1.0. 2008. Sun
Microsystems. https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-
JSpec/jaxrs-1.0-final-spec.pdf37 .

[41] JAX-RS: Java API for RESTful Web Services, Version 1. 2009. Sun Microsystems.
https://download.oracle.com/otn-pub/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/
jax_rs-1_1-mrel-spec.pdf .

[42] REST-Style Web API. 2019. The eXist-db Authors. https://www.exist-db.org/
exist/apps/doc/devguide_rest .

[43] URL Rewriting. 2019. The eXist-db Authors. https://www.exist-db.org/exist/
apps/doc/urlrewrite .

[44] XML-RPC Specification. 2003. UserLand Software. https://xmlrpc.com/
spec.md .

[45] Cap’n Proto - Introduction. 2013. Kenton Varda. https://capnproto.org/ .
[46] XQuery 1.0: An XML Query Language. 2007. World Wide Web Consortium.
https://www.w3.org/TR/xquery/ .

[47] HTML 5 - Multipart form data. 2014. W3C. https://www.w3.org/TR/2014/REC-
html5-20141028/forms.html#multipart-form-data .

[48] XQuery 3.0: An XML Query Language. 2014. World Wide Web Consortium.
https://www.w3.org/TR/xquery-30/ .

[49] XQuery 3.1: An XML Query Language. 2017. World Wide Web Consortium.
https://www.w3.org/TR/xquery-31/ .

37 https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?

Towards RESTful XQuery 2.0

196

https://docs.marklogic.com/11.0/guide/release-notes/en/new-features-in-marklogic-11/graphql.html
https://docs.marklogic.com/11.0/guide/release-notes/en/new-features-in-marklogic-11/graphql.html
https://help.marklogic.com/Knowledgebase/Article/View/218/0
https://help.marklogic.com/Knowledgebase/Article/View/218/0
https://docs.marklogic.com/guide/app-dev/rest#id_45642
https://docs.marklogic.com/guide/app-dev/rest#id_45642
https://download.oracle.com/otn-pub/jcp/bean_validation-1.0-fr-oth-JSpec/bean_validation-1_0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/bean_validation-1.0-fr-oth-JSpec/bean_validation-1_0-final-spec.pdf
https://www.adamretter.org.uk/papers/restful-xquery_january-2012.pdf
https://www.adamretter.org.uk/papers/restful-xquery_january-2012.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?
https://download.oracle.com/otn-pub/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/jax_rs-1_1-mrel-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/jax_rs-1_1-mrel-spec.pdf
https://www.exist-db.org/exist/apps/doc/devguide_rest
https://www.exist-db.org/exist/apps/doc/devguide_rest
https://www.exist-db.org/exist/apps/doc/urlrewrite
https://www.exist-db.org/exist/apps/doc/urlrewrite
https://xmlrpc.com/spec.md
https://xmlrpc.com/spec.md
https://capnproto.org/
https://www.w3.org/TR/xquery/
https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#multipart-form-data
https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#multipart-form-data
https://www.w3.org/TR/xquery-30/
https://www.w3.org/TR/xquery-31/
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?

[50] XPath and XQuery Functions and Operators 3.1. 2017. World Wide Web
Consortium. https://www.w3.org/TR/xpath-functions-31/ .

[51] XSLT and XQuery Serialization 3.1. 2017. World Wide Web Consortium.
https://www.w3.org/TR/xslt-xquery-serialization-31/ .

[52] XQuery and XPath Data Model 3.1. 2017. World Wide Web Consortium. https://
www.w3.org/TR/xpath-datamodel-31/ .

[53] HTML, 9.2 Server-sent Events, living standard - Last Updated 24 May 2024. 2024.
World Wide Web Consortium. https://html.spec.whatwg.org/multipage/
server-sent-events.html .

[54] Matrix URIs - Ideas about Web Architecture. 1996. World Wide Web
Consortium. https://www.w3.org/DesignIssues/MatrixURIs.html .

[55] Documentum. 2024. Wikipedia. https://en.wikipedia.org/wiki/Documentum .
[56] Push technology - Long polling. 2024. Wikipedia. https://en.wikipedia.org/wiki/

Push_technology#Long_polling .

Towards RESTful XQuery 2.0

197

https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/xpath-datamodel-31/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://www.w3.org/DesignIssues/MatrixURIs.html
https://en.wikipedia.org/wiki/Documentum
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://en.wikipedia.org/wiki/Push_technology#Long_polling

198

Tutorial Development XML Mashup
with XProc

Erik Siegel
<erik@xatapult.nl>

Abstract

When you create a tutorial, training or course, you have to maintain a lot of
information: slides, exercises, instructions, etc. Numbering and referencing
must be correct. There is usually duplication: documents are used in multi-
ple exercises and sometimes also shown on slides.

It’s rather a chore to keep everything consistent during development and
maintenance. This presentation describes an attempt to make this easier
using specific XML markup, and processing software built from XProc 3.0
components.

Keywords: XML, XProc

1. A day in the life of a tutorial developer
So how do you develop a tutorial? Me, I start with a presentation, trying to find
ways to divide the material into sections and add exercises to these.

Developing exercises means (for XML courses), adding input files, stylesheets,
schemas, etc. This must be accompanied by some kind of instruction: what is the
participant supposed to do. I also like to add a solution, so participants who don't
understand it can see how to solve it. Sometimes that is quite a lot of files for one
exercise. Files that are sometimes reused in a few other exercises or shown on
slides.

I often use oXygen6 during a tutorial to make life as easy as possible for the
participants. This means developing an oXygen project with, among others, pre-
defined validation and transformation scenarios. The result is that for, for
instance, an XSLT tutorial, participants can open a template XSLT file, write their
code and press transform, without having to bother with setting up things. No
distractions, keep the focus on what is being taught.

Now all these files, or at least the directories they’re in, are numbered, and
these numbers tie in with what’s shown in the presentation.

And then the nightmare begins: You want insert another exercise and the
numbering changes. This means changing things in file/directory names, instruc-
tions, oXygen project and the presentation. It’s all too easy to forget it somewhere.

6 https://www.oxygenxml.com/

199

https://www.oxygenxml.com/
https://www.oxygenxml.com/

Or you change something in the contents of a file. But this file might be shown in
the presentation or was reused a couple of times (in different exercises, so with
different file/directory names).

Again, all too easy to do this inconsistently. Again and again I found myself
doing boring, repetitive and error-prone tasks that had to be carried out very
carefully. I noticed it, psychologically, stopped me from enhancing tutorials with,
for instance, an extra exercise, because it was too much too boring work.

There was obviously something wrong, what could I do about it?

2. What are the requirements?
For an XML hacker like me, the start of answer was, of course, obvious: create
some kind of markup, an XML based language, that represents the tutorial. But to
do that properly, we need to know what the requirements are. So I took the “heli-
copter” and looked down on the way I organized and carried out my training.

First of all, what are (for me) the building blocks of a training?
• I always use a presentation as guideline. It supports me explaining the theory

and points the participants to exercises they must do.
Sometimes the contents of files that are used in the exercises are also

present in the presentation. For instance, when discussing a solution to one of
the problems.

I often use tricks like appearing/disappearing text and objects, balloons
and call-outs on the slides. I think this definitely helps explaining the hard
parts. Therefore, the ability to use a presentation design tool, like Microsoft
Powerpoint, is a requirement.

• Every tutorial contains exercises. An exercise consists of:
• An exercise contains instruction about what to do. This is formatted text in

a PDF.
• Template files: files that the participants can use as a starting point for their

solution. For instance a skeleton XSLT document.
• Input files: Files that are needed for the exercise. For instance an input

document to transform.
• Solution files: I always provide a solution to the exercise, so people can

have a look when they’re stuck or are just curious how I solved it. Some-
times there’s also a PDF explaining the solution.

Files are usually XML documents but can be text also (for instance XQuery or
JSON).

• Provide some kind of tool/environment support. To keep the participants eyes
on the ball, it works best to use a tool/environment that helps them filling in
the exercises and run their solutions: make it as easy as possible, learning

Tutorial Development XML Mashup with XProc

200

something new is already hard enough. Most of the times I use oXygen for
this, so I prepare an oXygen project that provides easy access to the exercises
and enables running the solutions (for instance XLST scripts) with the click of
a button.

• Sometimes there are additional learning materials, usually in the form of PDF
or ZIP files.

A solution must support creating and maintaining these building blocks. What
are the additional requirements?

• Everything must have a single source. So no duplication of, for instance, a file
in an exercise and presented on a slide. The environment must take care of
that.

• Directories and files for the exercises must be consistently named. So, for
instance, an input file is always called input.xml, a template template.xml,
etc.

• Generate the numbering for, for instance, sections and exercises. Make it easy to
insert one, re-order things, etc.

• Make writing texts for instructions etc. easy. Usually paragraphs and bulleted
lists are sufficient.

• When a text references an exercise (“please do exercise 02”), or shows the con-
tents of a file, this must be kept consistent automatically.

• It must support using a presentation design tool (like Powerpoint).

• It must support using a tool/environment for doing the exercises (like oXygen).

• Participants get a package with the prepared exercises, additional PDFs, etc.
Create a ZIP file for easy distribution.

The following figure illustrates what I mean with keeping a presentation auto-
matically consistent:

Tutorial Development XML Mashup with XProc

201

Figure 1. Requirements for automatically keeping a presentation consistent

And here is an example of a prepared oXygen project. The project view provides
easy access to the exercises. Transformation scenarios are pre-defined, so people
only have to click “transform” to make things happen.

Figure 2. Example of the use of an oXygen project for a tutorial

3. Implementation using XML technology

An implementation, that uses XML technologies, looks like this:

Tutorial Development XML Mashup with XProc

202

Figure 3. XML tutorial single sourcing/solution outline

• We need some kind of “course/tutorial description markup”. Something that ties
all the separate components together.

• This markup will reference/use lots of external documents (exercise files,
PDFs, presentation, etc.).

• We’re going to need some machine that takes this markup, processes it, and
produces the required outputs:
• A ZIP file with all the exercise files, usually the presentation in PDF, any

additional documents, etc.
• For the presenter a presentation where all the references to exercises and

documents are filled in.

3.1. The course markup
Let’s have a look at a simplified version of the course/tutorial description markup
for this:

<xcourse xmlns="http://www.xtpxlib.nl/ns/xcourse">

 <!-- Prologue (omitted): title, author, settings, etc. -->

 <section>
 <title>Matching templates in XSLT</title>

 <exercise id="matching-first-match">
 <title>Your first match template</title>

 <input-document id="input" href="exercise-match/in.xml"/>
 <template-document id="template" href="generic/empty.xml"/>
 <input-document id="solution" href="exercise-match/
solution.xml"/>

Tutorial Development XML Mashup with XProc

203

 <instructions>
 Please open @input@:

 [[[input]]]

 Open @template and write a match template that ...
 </instructions>

 <oxygen-scenarios>
 <transform source-idref="input" stylesheet-idref="template"
 output-filename="build/results.xml"/>
 <transform source-idref="input" stylesheet-idref="solution"
 output-filename="build/results-solution.xml"/>
 </oxygen-scenarios>

 </exercise>

 <!-- More exercises… -->

 </section>

 <!-- More sections… -->

</xcourse>

• I called it “xcourse”, so the root element is <xcourse> (in the http://
www.xtpxlib.nl/ns/xcourse namespace).

• Then there is a prologue, which was omitted here to keep things simple. It
contains information about the title, author, etc. It also contains a number of
settings, like, for instance, how should exercises be numbered.

• Courses are made up of sections (<section> elements).

• Sections contain exercises (<exercise> elements).

• An exercise consists of:

• A sequence of documents (inputs, templates and solutions) that belong to
the exercise. Whatever the source filename, they get a consistent filename
in the output. These files also have an (optional) identifier.

• Exercises can contain texts. For instance, in the example above, an instruc-
tion for the exercise (<instruction> element). This one is written using
(simple) Markdown. For more complicated texts you can use DocBook (5)
also. Texts are converted to PDFs.

In these texts there are some references to the files in the exercise:

Tutorial Development XML Mashup with XProc

204

• An identifier between @ characters (for instance @input@) is replaced
with the actual filename of the file in the exercise directory, for instance
input-01.xml.

• A paragraph that contains an identifier between [[[and]]] (for
instance [[[input]]]) will be replace by a program-listing of the refer-
enced file.

By the way: the syntax for representing the references was a, more or less,
random choice. Other representations would also have been possible.

3.2. The processing engine

The processing engine was built using XProc 3.0. This programming language is
very suitable for this application:

• XProc 3.0 is a language for document pipeline processing: in XProc you write
steps (aka pipelines).

• It has a large number of standard steps as building blocks (XSLT processing,
validation, XInclude, XSL-FO processing, etc.).

• It can handle (of course) XML documents, but also other kinds of files, like
JSON or ZIP.

• It can do the necessary “housekeeping” surrounding an application, like
deleting, creating and copying of files and directories.

• It’s (very) easy to re-use steps that you've written.

Everything runs on the MorganaXProc-III7 XProc processor.
I also had already a number of steps that came in handy implementing this:

• Markdown to DocBook

• DocBook to PDF

• Working with ZIP files

All these steps (and more) are available as open source components8.

3.2.1. Aside: Re-using steps in XProc

Once you’ve written an XProc step/pipeline, it’s easy to re-use it in some encom-
passing other step/pipeline, as is illustrated in the following figure:

7 https://www.xml-project.com
8 https://www.xtpxlib.org/

Tutorial Development XML Mashup with XProc

205

https://www.xml-project.com
https://www.xtpxlib.org/
https://www.xml-project.com
https://www.xtpxlib.org/

Figure 4. Re-using an XProc step

In code it looks like this:

Figure 5. Re-using an XProc step, code

3.3. Processing the markup
The following figure illustrates the different steps in processing the course
markup:

Tutorial Development XML Mashup with XProc

206

Figure 6. Processing the course markup

• The first thing that happens is run the course markup through XProc’s XIn-
clude step (<p:xinclude>). This de-references all <xi:include "href=…">
elements (recursively). Using XInclude enables segmenting the course markup
in smaller documents (that can potentially be re-used in other courses). XProc
makes doing XInclude very easy…

• Then the resulting document is validated against the course markup Schema
and some additional rules using Schematron. AGain, this is easy because
XProc has standard steps for it.

• The next step is a very important one. Using XSLT, all kinds of values are com-
puted: section and exercise numbers, directory and filenames, etc. This infor-
mation is recorded in the course markup in additional attributes.

• Then the texts are processed. The Markdown is converted into DocBook. Ref-
erences (like @input@ or [[[input]]]) are resolved. Converting from Mark-
down to DocBook to PDF is rather complex stuff, but the necessary XProc
steps for this were already available, so I simply re-used them.

• Then the processing engine creates an output structure and copies all the files.
The DocBook parts are written as PDF, again with already available XProc
steps.

• The oXygen project is created.
oXygen’s project files (.xpr) are XML documents in some proprietary for-

mat. You can inspect them and, with some trial and error, create something
that defines your project structure and the necessary transformation/valida-
tion scenarios. A potential problem is that the document format is, AFAIK, not
documented nor publicly defined. Just hope they will not change it anytime
soon…

• The presentation is processed (see Section 3.3.1).
• And finally everything is zipped so it’s easy to transport.

Tutorial Development XML Mashup with XProc

207

3.3.1. Processing the Powerpoint presentation

Microsoft Powerpoint stores its presentations in .pptx file. A .pptx file actually is
a ZIP file with lots of heavily interrelated XML documents inside. Microsoft uses
“Office Open XML” for this, a well-documented but complicated standard.

It’s a very complicated standard. Generating a Microsoft Office file from
scratch (using some specification markup) is almost impossible, but modifying an
existing one, just tweaking bits and pieces here and there, is very doable. Espe-
cially since, knowing it’s XML inside a ZIP, you can inspect what's there easily.

Using a syntax as introduced before for text documents (@…@ and [[[…]]]),
the following became possible:

Figure 7. Powerpoint slide adaptations

This all can be done with an XProc step/pipeline (outside view):

Figure 8. Powerpoint slide adaptations, pipeline (outside view)

Tutorial Development XML Mashup with XProc

208

Let’s see how this is implemented here:

Figure 9. Powerpoint slide adaptations, pipeline (inside view)

• The .pptx file (which is a ZIP file), is turned into what I call “container” for-
mat (more details below).

• In a container, all XML from inside the ZIP is there, so we can now write XSLT
to change the XML in anyway we want.

• COntainers are designed for round-tripping, so after the changes we can put
the .pptx ZIP file back together again. Everything we didn’t touch (which is a
lot) is still there, unchanged.

Working with the container format (using XProc 3.0) is open source code9.
There are of course more ways to do this. Handling ZIP files and changing

parts of their contents is something XProc can easily handle. See for instance the
following conference recording (Markup UK 2020): Dealing with ZIP Documents
in XProc 3.010.

3.4. Real world experiences, wrap-up and conclusions
Recently I had to teach some courses for which I already had materials that nee-
ded updating: the perfect use-case for all of this. Turning everything into the
newfangled markup format was a bit of work. However, once that was done, the
following things became apparent:
• For the tutorial developer:

• Simple Markdown for instruction texts etc. is very easy to write and usu-
ally sufficient. Using Markdown lowers the psychological barrier for creat-
ing this kind of content.

9 https://container.xtpxlib.org/
10 https://www.youtube.com/watch?v=6yvO4GOue6k

Tutorial Development XML Mashup with XProc

209

https://container.xtpxlib.org/
https://www.youtube.com/watch?v=6yvO4GOue6k
https://www.youtube.com/watch?v=6yvO4GOue6k
https://container.xtpxlib.org/
https://www.youtube.com/watch?v=6yvO4GOue6k

• Small mistakes (in exercise documents and texts) are still easily made, the
devil is in the details. But rectifying these, consistently, everywhere, has
become much easier.

• After a fix it’s just a push of a button and a new distribution ZIP is created.
No hassle, no fuzz.

• I can use my favourite presentation design tool (Powerpoint) and keep ref-
erences and numbering consistent.

• For the participants/students:
• All training modules have become nicely consistent in how to interpret

and use, naming conventions, etc. People appreciate this because they can
keep their focus on what’s being taught.

• The generated oXygen project is much appreciated, for the same reason.
So, as general conclusions and wrap-up:
• Yes, this approach helps, really well. Both for the tutorial developer and the

participants/students.
• Single sourcing is always a good idea, proven once and again.
• XProc seems the almost ideal "mash-up language" for XML processing. If you

design your steps carefully it’s very easy to re-use them in another context.
The implementation I used was a first version and it left me with a long list of
ideas. The second version is currently work in progress. Once done I’m planning
to open-source it.

Tutorial Development XML Mashup with XProc

210

Modern Benchmarking of XQuery and
XML Databases

Alan Paxton
Evolved Binary

<alan@evolvedbinary.com>
Adam Retter

Evolved Binary
<adam@evolvedbinary.com>

Keywords: Benchmark, Performance, XML Database, XQuery,
NoSQL

1. Abstract
The performance of XML Databases and associated XQuery implementations is
dependent on many factors, not least:
• The structure of the document(s)
• The number and size of documents (a large number of small documents vs a

few large documents)
• The distribution of data between documents
• The queries (workload) under use.

Previous work in XML benchmarking has focused on generating realistic syn-
thetic XML data, and testing that data with an appropriately tailored set of quer-
ies.

XML Databases can be viewed as a very specific kind of NoSQL database.
Recent advances in large distributed NoSQL databases have demanded and pro-
duced strong general-purpose benchmarking frameworks, including tools for
generating and using “virtual data sets”.

Here we review previous approaches to benchmarking XQuery and XML
Databases, and examine current approaches to NoSQL Database benchmarking.
We show how ideas from the broader NoSQL world can be used to replicate, gen-
eralise and improve upon existing XML benchmarking, and we assess the tools
and techniques we develop.

2. Introduction
XML storage systems can store XML documents as plain old files, catalogue them
through some kind of third-party system (e.g. a relational database, or text

211

index), or store them in a native XML database which breaks them down into
basic components of the structured document and organises these for efficient
access and update [1]. In any case, the standard is to access the contents using
XQuery (XML Query language) [2].

Information may be modelled in XML and distributed across one or many
documents. The distribution choice can affect performance, but perhaps more
importantly all aspects of the structure (deep vs shallow, child element fanout,
element content size) and the variability within the structure can have profound
effects on the ultimate performance of an application.

Previous work in XML benchmarking has dealt with this performance varia-
bility issue by positing a document or set of documents which are implied to be
adequate to exercise the whole range of performance of an XML storage system.
This is generally achieved either by using a range of pre-existing real document
corpuses, or more commonly by generating a synthetic document or documents
which contain a variety of fragments which are claimed to be realistic in both
scale and structure. An XML benchmark typically consists of:
1. Data input. Most frequently this is generated by a tool, parameterised in a

limited number of dimensions. Sometimes the data input is simply a fixed
document corpus.

2. A set of prescribed queries, in XQuery, to be issued against the document
store.
More recently, there has been a significant upsurge of interest in NoSQL data-

bases, which have grown up in response to the difficulties encountered applying
traditional relational databases to less rigidly structured, and often very large,
data sets. Additionally, NoSQL databases have been promoted as having superior
performance in a range of workloads. As these databases have been adopted
broadly, at scale, and often in very distributed installations, the NoSQL commun-
ity has found a pressing need for testing and performance frameworks which can
exercise and validate the features and performance of their databases.

These requirements have yielded very powerful and general purpose “plug-
gable” benchmarking frameworks that can be used to flexibly generate workloads
and drive highly concurrent benchmarks over multiple different products.

In Section 3 we first review the previous approaches to benchmarking XML
Databases and XQuery implementations. Then we move on in Section 3.3 to
examine the current approaches to NoSQL database benchmarking. We discover
in NoSQLBench a flexible framework for driving the execution of localised and
distributed testing of databases. We therefore propose an XML database adapter
for NoSQLBench; the framework is built with a number of existing adapters and
it is natural to extend this to XML. This gives us a powerful tool to co-ordinate
general NoSQL-style benchmarks over XML databases via XQueries encapsula-
ted in NoSQL benchmarking scripts.

Modern Benchmarking of XQuery and XML Databases

212

Further, we find that the “virtual data generation” facilities in some NoSQL
benchmarking frameworks are highly adaptable, and we borrow them to rebuild
existing synthetic XML data in a structured manner. This opens the possibility of
generating more and different synthetic datasets targeted to the detailed meas-
urement and analysis of specific XML database features.

3. Related Work

3.1. XML Benchmarking
XML Benchmarking has existed for almost as long as the XML standard itself has
existed. X007 [6] was an initial pragmatic attempt to translate the 007 benchmark
to a number of nascent XML databases (or information retrieval systems).

XML benchmarks, like database benchmarks in general, are often broken
down into application-level benchmarks and micro-benchmarks. Application-
level benchmarks are intended to provide a broad characterisation of perform-
ance over a realistic workload, by analysing the performance of a range of queries
over a range of documents. Microbenchmarks focus on specific performance
aspects of a system, and may rely on very specific (though not necessarily small)
documents/data and individual queries targeted at these parts of data to target
performance measurement of isolated components of the database system.

The application-level XML Benchmark Project [3] [4], XMark for short, took a
systematic approach to generating test data for XML databases and to measuring
database performance with a prescribed set of queries. Its XML document genera-
tor, xmlgen, builds an XML file (or optionally a set of files) which describe an
online auction. The files contain several different structures with different charac-
teristics (nesting depth, text size, indexing and cross-referencing) which along
with the queries exercise a broad range of XML database characteristics.
Although released in 2002, xmlgen, which is written in portable C89 (ANSI C) is
still buildable and runnable today, and the range of structures it can generate has
had a strong influence on what constitutes a realistic set of XML data for bench-
marking.

XBench [7] is another application-level benchmark. It outlines a diverse set of
XML benchmarking requirements and emphasises the importance of update per-
formance in realistic workloads. It characterises workloads as document-centric
or text-centric, and distinguishes between multiple-document and single-docu-
ment data sets. It then applies a broad range of queries to the database, so that an
understanding of which areas are strengths and which are weaknesses can be
acquired. Having defined its workloads along these axes, schemas are derived for
the ToXGene tool ??? which is used to generate concrete test documents.

The Michigan Benchmark [8] is a micro-benchmark intended for drilling into
detailed performance aspects of XML databases. It takes the interesting approach

Modern Benchmarking of XQuery and XML Databases

213

of generating only a single dataset for this, but structured in a way where differ-
ent levels have different numbers of nodes and/or different fanouts. For example,
in the base case of the Michigan document:
• Level 7 has 2704 nodes, with fanout 13 (each node has 13 children)
• Each node is given an appropriate level attribute.
• A query which selects for level=7 can be compared for one which selects for

level=9 and any difference can be attributed to fanout.
The structure of the test data therefore allows the effect of a single characteristic
(fanout, node count) to be isolated. While such a data set is not characteristic of a
typical application workload, it serves the precise purpose of microbenchmark-
ing, by isolating individual characteristics which shed light on details of a data
store implementation.

The Michigan Benchmark proposed a number of queries focused on:
• Approximate matching
• Order sensitivity
• Structural selection
• Traditional (SQL-esque) joins
• Aggregation
• Update (in 7 different forms)
• Document construction
The Michigan Benchmark was used to measure 3 different databases:
• Timber (an XML Database under development at Michigan)
• An anonymous commercial XML DB
• An anonymous commercial OR-DBMS (Object Relational Database Manage-

ment System)
It was able to measure and demonstrate that the 3 XML database systems under
test had very different profiles for the different query types, and identified
detailed areas for immediate performance improvement in the Timber XML data-
base [9] under development at that time at The University of Michigan.

XQBench [16] the useful and interesting perspective of building out a standar-
dised environment for the execution of XML benchmarks, allowing an objective
comparison of XML Systems/Databases within the parameters of the chosen sys-
tem.

The subject of XSLT processing and its performance is worth mentioning.
XSLT is a powerful XML-based specification for transforming documents based
on stylesheets. There is crossover between the use of XSLT and XQuery, and work
on XSLT performance with the XT-Speedo benchmark therefore has some bearing
on the understanding of XML performance [17]

Modern Benchmarking of XQuery and XML Databases

214

3.2. Automated XML Data Generation
A constant strand running through XML benchmarking is the problem of acquir-
ing or generating sufficient input data with the right structure to perform realistic
benchmarking with.

The xmlgen tool which is part of XMark [3] is designed to efficiently generate a
single, well-defined XML hierarchy, either within one single XML file or distrib-
uted across multiple files; the latter case was originally envisaged for systems
where loading or processing a single very large file is difficult, but also can be
revealing about parallel/concurrent document access performance. The xmlgen
output consists of an online auction site, and catalogues the major components of
such a site as subtrees of:
• Items (available for sale)
• Categories (to which items belong)
• People (participants in the auctions)
• Open (in progress) auctions of particular items
• Closed (completed) auctions of items
The subtree elements intentionally differ between classes, so that some (catego-
ries) are simple and shallow, but hold significant text elements, while others
(items, open auctions) are more structurally deep and complex. The sum of them
approximates a full spectrum of XML document features. Elements are also cross-
referenced, for example open auctions refer to the items being auctioned and to
the people involved (as sellers or bidders).

xmlgen data generation can be scaled when the generator is invoked; the
default (scale 1) output file is 116MB in size, and it is easy and (fairly) quick to
generate a file of any scale (e.g. 10 or 100 times large). The program is written to
include its own custom random number/distribution generation, and the output
is entirely reproducible in all environments in which the program (written in C89
(ANSI C) for high portability) can be run.

xmlgen has been very successful in the context of the XMark benchmark,
where it supports easily running the benchmark on any platform through the re-
creation of the auction XML files.

The obvious significant restriction on data produced by xmlgen is that only a
single Auction dataset can be constructed. While this dataset is designed to be all
things, it is still an obvious restriction. Later projects have attempted to address
this shortcoming in a number of ways.

The ToXGene [5] XML generation tool is designed to flexibly generate XML of
the size, structure, and content required. The required data is specified within an
extension to XML Schema, and generation will take account of schema attributes
such as minOccurs and maxOccurs to specify the number of elements (or range of
elements) to be generated. There are also control structures in the ToXGene ele-

Modern Benchmarking of XQuery and XML Databases

215

ment specifications which allow some generation of irregular and/or random
structure. The authors used ToXGene to generate a copy of the XMark auction
dataset, and demonstrated that the resulting data was extremely similar in terms
of results and performance when benchmarked with the XMark queries. They
also simulated the generation of data for the TPC-H benchmark [19]

While ToXGene can be used to generate fairly sophisticated documents, the
XBeGene project [11] reduces the learning curve by instead basing its generation
on example documents. Given appropriate example input document(s), much
larger documents exhibiting the same structures can be generated. XBeGene per-
forms feature extraction on input documents to identify element path occurrence
frequencies and content (of element or attribute) distribution frequencies. It then
builds output documents by regenerating paths and values pseudo-randomly to
approach the frequencies displayed by the input documents. The authors con-
firmed the correctness of their approach through a similarity analysis which cate-
gorised test documents into clusters generated from original documents;
XBeGene generated documents were clustered very accurately with the input
documents from which they were generated. From our perspective, however, it
would have been illuminating to learn whether XBeGene documents could be
used in (for instance) the XMark benchmark, if generated from small instances of
XMark data.

3.3. NoSQL Benchmarking in the Large

OLTP-Bench [10] provides a well-argued analysis of the need for a comprehen-
sive benchmarking testbed for relational databases. The authors argue that such a
testbed needs to control the data set and workload for testing, to automate the
extraction of metrics from test runs, and to ensure these runs are repeatable.

The principles put forward by OLTP-Bench are the same as those that should
be applied to NoSQL database benchmarking, and therefore also to XML data-
base benchmarking. Within the domain of NoSQL databases, the YCSB project
[15] built a flexible framework for benchmarking cloud databases with a defined
(but easily configurable and extensible) set of workloads. The more recent
NoSQLBench [12] aims to provide a comprehensive testbed for NoSQL. As the
project's own README file describes it:

• You can run common testing workloads directly from the command line. You
can start doing this within 5 minutes of reading this.

• You can generate virtual data sets of arbitrary size, with deterministic data
and statistically shaped values.

• You can design custom workloads that emulate your application, contained in
a single file, based on statement templates - no IDE or coding required.

Modern Benchmarking of XQuery and XML Databases

216

As with OLTP-Bench and YCSB, the architecture of NoSQLBench is pluggable;
while it was designed initially for testing Apache Cassandra [14], and therefore
supports a CQL (Cassandra Query Language) interface, the database interface
element (the adapter) is pluggable, and a number of other adapters have already
been developed and made available.

Further, the VDS (Virtual Data Set) feature of NoSQLBench is very powerful.
Within a workload configuration, one may simply declare which of a broad set of
VDS functions and their compositions to use to generate values which will be
substituted into various operations as they are executed; NoSQLBench takes care
of making the VDS value generation and substitution maximally pre-computed
and efficient, so that each operation is performed with minimal overhead from
the benchmark framework.

As a “battle tested” [13] , NoSQLBench takes care of the coordination and dis-
patch of operations within workloads, selected at the desired ratio from the speci-
fied range of operations and initiated over a defined number of threads.

4. XML Generation and Testing in the NoSQLBench Framework
We have seen how benchmarking of SQL and NoSQL has benefitted from the
development of overarching benchmark frameworks which deal with:
1. Test data generation/loading
2. Benchmark setup, query ramp-up, run and teardown
3. Metric collection
We want to bring these benefits into the XML benchmark domain, and it would
appear that the most natural way to achieve this is to adapt an existing bench-
mark framework so that it can work effectively with XML data stores.

4.1. A Testbed for XML Database Testing - NoSQLBench XML:DB API
Adapter

The first part of our solution was to develop a NoSQLBench adapter for the
XML:DB API [24] XML:DB API is database agnostic, and may be used to access
any XML database that supports it. As a proof-of-concept we have built an
XML:DB adapter that is compatible with [20], [21] and [22]

The XML:DB API adapter implementation is straightforward. Both NoSQL-
Bench and its adapters are written in the Java programming language. The cur-
rent NoSQLBench release (5.17) requires Java 17, and the current development
branch for the forthcoming (5.21) release requires Java 21. We implemented our
adapter as a new Maven module within the NoSQLBench codebase. There are
several compulsory classes to create/load an adapter and have it build and exe-
cute operations that NoSQLBench requires. Our fork of NoSQLBench with our

Modern Benchmarking of XQuery and XML Databases

217

new XML:DB API adapter is at https:// github.com/ evolvedbinary/
nosqlbench. The adapter supports compulsory parameters defining how to con-
nect to the XML database endpoint:
• URL
It also supports optional parameters (with standard defaults) for:
• username
• password
• collection
Given these, the adapter can be used to run an example NoSQLBench YAML
demo script which implements a schema phase and a write phase; the schema
phase deletes and re-creates the database collection(s) and generates and inserts
data. The script is https:// github.com/ evolvedbinary/ nosqlbench/ blob/
exist-driver/ adapter-existdb/ src/ main/ resources/ activities/
existdb_crud_basic.yaml and it is run by executing

java -jar ./nb5/target/nb5.jar ./adapter-existdb/target/classes/
activities/existdb_crud_basic.yaml

. This runs the demo script with the default configuration valuesthat connects to
an XML database instance running on the local host. The schema and write oper-
ations of our NoSQLBench XML:DB script:

scenarios:
 default:
 #
 schema: run driver=existdb tags==block:"schema.*" threads==1
 cycles==UNDEF
 endpoint=xmldb:exist://localhost:8080/exist/xmlrpc

 # different ops in the "write" schema occur on intervals, at the
ratios declared by the ops
 write: run driver=existdb tags==block:"write.*"
 cycles===TEMPLATE(write-cycles,TEMPLATE(docscount,1000))
seq=interval threads=auto errors=timer,warn
 endpoint=xmldb:exist://localhost:8080/exist/xmlrpc

The default NoSQLBench scenario in this script runs 2 blocks; the schema block
and the write block. The schema is used to re-initialise the database (the schema)
before writing. Its cycle count is undefined, so that it runs only once, carrying out
one-off deletion and (re)creation of the collection used for the benchmark:

Modern Benchmarking of XQuery and XML Databases

218

blocks:
 schema:
 ops:
 drop-collection:
 xquery version "3.1";

 import module namespace xmldb="http://exist-db.org/xquery/xmldb";

 let $clean := if (fn:contains(xmldb:get-child-collections("/
{collection}"), "testnb"))
 then
 xmldb:remove("/{collection}/testnb")
 else
 ()
 return $clean

The sample above shows the deletion part. Within the script, we can see that the
binding for collection is substituted into text of the query which will be sent to the
adapter.

The write block contains 2 write operation templates. Both carry out similar
functions; they just write slightly different elements at different rates to illustrate
the process within NoSQLBench. This write block

xquery version "3.1";

import module namespace xmldb="http://exist-db.org/xquery/xmldb";

declare namespace ppl = "https://evolvedbinary.co.uk/people/";

let $record :=
 <person id="{user_id}" seq="{seq_key}" creation="{created_on}">
 <name>{full_name}</name>
 <family>
 <gender>{gender}</gender>
 <married>{married}</married>
 </family>
 <address>
 <city>{city}</city>
 <country>{country_code}</country>
 <location lat="{lat}" lng="{lng}"/>
 </address>
 <text>{text}</text>
 </person>

Modern Benchmarking of XQuery and XML Databases

219

return xmldb:store("/{collection}/testnb/alpha", "{random_key}",
$record)

creates a people record in its own file. In particular note that it substitutes a num-
ber of NoSQLBench bindings ({city}, {full_name}, {text} etc) into the operation.
Because the bindings are a function of the cycle (roughly, cycle=n, for the n-th
operation being generated), each element created has different element and
attribute values at places containing bindings. Thus we can perform as many
instances of the operation as we choose, and all will have different parameter
instances. Looking at the generated XML, we can see that we have created the
files

<person id="0d0d165a-9978-4a04-94e2-459c729cea8d" seq="905"
creation="1294444148">
 <name>Terra Barile</name>
 <family>
 <gender>M</gender>
 <married>false</married>
 </family>
 <address>
 <city>Powderly</city>
 <country>BA</country>
 <location lat="-143.33042469046987" lng="-129.56662632758295"/>
 </address>
 <text>"What?" asked the commander.</text>
</person>

and

<person id="0d53d1e5-39f2-40e9-a0ee-16b33e3d5f13" seq="900"
creation="1295124573">
 <name>Sydney Hruby</name>
 <family>
 <gender>M</gender>
 <married>true</married>
 </family>
 <address>
 <city>Clarksville</city>
 <country>BB</country>
 <location lat="-142.55411040458398" lng="157.01567078043186"/>
 </address>
 <text>Dólokhov slowly straightened his bent knee, looking straight
with his
clear, insolent eyes in the general's face.</text>

Modern Benchmarking of XQuery and XML Databases

220

</person>

from the same write-node-alpha operation.
As for performance, in a run of this script on an Apple MacBook Pro with an

M1 Max CPU and 64MB RAM, write cycle service times (the most relevant metric
reported by NoSQLBench) have a mean of 38ms (standard deviation 32ms), with
100 concurrent threads running. This is a number which we would like to drill
into further, but our strong suspicion is that a large part of this is the cost of seri-
alising/deserialising data over the network (of the host) using XML-RPC via the
XML:DB API, and repeated parsing of queries. There are lots of potential solu-
tions to this; the easiest first step would be to switch to an embedded implemen-
tation of the XML:DB API, whereby the XML database and NoSQLBench run
within the same JVM (Java Virtual Machine). However, we would first like to drill
into whether we can use our driver to distinguish the time spent performing data
storage operations within the database, rather than the time spent serialising/
deserialising requests. It may be possible to start internal timers and return their
values via XML:DB which we can then return in other metrics. In any event, non-
query costs may be less important when we come to test complex and slow quer-
ies, serialisation/deserialisation overhead may then be only a small fraction of
total time.

Where the performance under the test framework is problematic, though, is if
we wish to use it to generate XML test data. We considered the idea of populating
a database by generating NoSQLBench operations to build the entire data set
under test; this idea can be seen to live in the example we have used to demon-
strate our adapter. But some experimentation showed that the performance here
would mean that it took many minutes or hours to populate a database of a real-
istic size for testing. The overhead cost of substituting each of millions of inser-
tion query instances and passing them through the XML:DB API is probably the
reason. Even were we to create an embedded implementation of the XML:DBAPI
and use that for each entry generated, we still doubt that this would perform
optimally.

Therefore we looked at whether we could find another way to exploit the
power of VDS within the testbed, so that we could use it to generate XML test
data more efficiently. We describe our solution in Section Section 4.2

4.2. XML Data Generation in a Benchmark Framework - using
NoSQLBench Virtual Data Sets
We have discussed several previous projects which have created tools to generate
XML data. Our hypothesis is that the VDS (virtual data set) functionality, which is
part of NoSQLBench, is powerful enough that we can define scenarios for gener-
ating realistic synthetic XML test data with it. To test our hypothesis we attemp-

Modern Benchmarking of XQuery and XML Databases

221

ted to generate a close approximation of the xmlgen auction site that is generated
by XMark [3].

Our first attempt at generation involved working entirely within the NoSQL-
Bench scripting framework. The YAML scripting format contains and supports
JSON, so it is possible to write operations using JSON containing binding substi-
tutions which are parsed by the framework; if we write an “xmlgen adapter” for
NoSQLBench, then running the framework targeting this adapter will result in it
being called with parsed and substituted structures of maps and arrays which
can then readily be serialised to an XML format. This takes the following form for
one of the simpler parts of the auction site, the generation of categories. Catego-
ries just require a single binding:

bindings:
 category_name: Add(100); ListSizedHashed(Zipf(100,1.4),
CountryNames()); Join(' ')

Notice how we move the base for this binding generation by 100 so that it does
not work in step with any other bindings used for the same operation. Then the
VDS function for the category name

• creates a list which is usually (but not always) short

• generates the country name from the hash value for each item in the list

• concatenates them together to produce a simulated name like “Spain Andorra
Marshall Islands” for the category.

Our operation defined for categories looks like this:

genauctioncategories:
ops:
 generate-category:
 file: "{xml_file_id}"
 path: ["categories", "category"]
 __attrs: {
 id: "category{{Identity()}}"
 }
 __children: {
 name: "{category_name}",
 description: {
 text: "{{MobyDick()}}"
 }
 }
 op: >2
 "generate category op - required by the system - we don't use

Modern Benchmarking of XQuery and XML Databases

222

it"

This makes use of the VDS functions Identity() and MobyDick() directly with the
op, as well as the more complex binding category_name which we have just
described. There are several other points, mostly that our xmlgen driver makes a
special case of certain JSON map keys:
• file - we concurrently send XML data to multiple output files.
• __attrs - we use this at any level to indicate that the following map contains

(key, value)-pairs that should be used as attributes rather than sub-elements.
• __children - for consistency, we are explicit about using a map as the children

to create. This is however the implicit default; (key,value)-pairs go into the
children map implicitly.

For the simplest case in the auction site, that of the <category> elements, the
extensions we have provided are sufficient to allow us to generate elements
which have the same form and distribution as those generated by the original
xmlgen program from XMark.

However, problems begin to appear when we set out to generate more com-
plex elements of the auction site, specifically <item> and <person> elements.
These contain groups of sub-elements with dependencies on the synthetic values.
This leads us to add another special map key:
• __foreach - - introduces a parameter which takes a value from a VDS list, and

substitutes it into a map, adding a little bit of substitution syntax.

watches: {
 # a list of <watch>, each with an open_auction attribute
 watch: {
 __foreach: [auction_val, "{auction_ref}"],
 __attrs: {
 open_auction: "open_auction[auction_val]"
 }
 }
 }

which generates an element like this

<watches>
 <watch open_auction="open_auction2888"/>
 <watch open_auction="open_auction7264"/>
 <watch open_auction="open_auction2980"/>
 <watch open_auction="open_auction4928"/>

Modern Benchmarking of XQuery and XML Databases

223

 </watches>

This is already becoming complex, and next we encounter the <open_auction>

element which contains sub-elements representing each bid in the auction. These
have numerous complex relationships; the bids have dates which must be in
order, and the bids record increments on the previous bid which must add up to
the current bid value, which is another field of the <open_auction>. When we
tried to address this complexity, we again found that we would need to add fur-
ther special-case constructs to the JSON content beyond those (__children, __attrs,
__foreach) which we had already added. We require specifically to generate a
<current> bid field which contains the arithmetic sum of each of a sequence of
<bid> fields. The amount of work that would be required to achieve this appears
prohibitive, and the natural solution to the complexity of the needed extensions
was to switch from the YAML scripting language to a full-fledged programming
language; better allowing us to control the flow and relationships between the
parts of XML being generated and their values.

4.2.1. A Standalone XML Generation Tool using VDS

Recall that the NoSQLBench framework is written in Java. In fact, the VDS serv-
ices within it were once a standalone package of their own, and while they have
been rolled into the greater NoSQLBench, they still present a clean, general, and
very powerful functional library for efficient data generation.

The step we needed to take, then, was to use VDS as a Java library directly
and to supplement that with support (and syntactic sugar) around XML output
so that while we would be writing programs for XML generation rather than
scripts, the programs would still be easily comprehensible and modifiable.

We have prototyped a Java tool which uses the VDS libraries and generates
XML elements, attributes and text. This tool allows us to perform XML generation
of the auction site in a straightforward manner. Our tool could be re-integrated
into NoSQLBench as a step in a workload scenario, however it does not take the
same form as an adapter (as defined by NoSQLBench).

As an example of how the tool appears, to generate the <people> elements of
an online auction we write a function like:

protected void person(final long i) {
 seed(
 attribute("id", "person" + i);
 attribute("city", citie
 element("name", fullNames);
 element("emailaddress", email);
 element("phone", phone_num);
 element("homepage", homepage);

Modern Benchmarking of XQuery and XML Databases

224

 element("creditcard", cc_num);
 element("address", this::address);
 if (next(optionalProfile) > 0) {
 element("profile", this::profile);

 var auctionRefs = next(auctionRef);
 if (!auctionRefs.isEmpty()) element("watches", () -> {
 for (var auctionRef : auctionRefs) {
 element("watch", () -> attribute("open_auction",
"open_auction" + auctionRef));
 }
 });
}

The person method is declared in a PersonBuilder subclass of ElementBuilder, and
that class declares a suite of builder methods by which nodes are added to the
XML tree in construction.

The core is the element() method calls, these generate an element with a value
generated by a VDS function (element("name", fullNames)) or “open” an element
by passing a lambda which generates the subnodes of the element (ele-
ment("watch", () -> attribute("open_auction", "open_auction" + auctionRef));). The
VDS elements used by the builder methods are declared as class variables of Per-
sonBuilder. A next() method is provided which applies the VDS generator func-
tion at the current cycle index, and returns the result. The element() method can
apply this implicitly in most cases.

Builders can cooperate by sharing a BuildContext, which holds the stack of ele-
ments being processed. In this way, the PeopleBuilder can use a PeopleBuilder
which in turn uses a TextBuilder, which knows how to build the <text> element of
recursively marked up text used across the elements of the auction site.

The ElementBuilder contains a BuildContext interface. We have written an
implementation of BuildContext, using XMLStreamWriter, as a convenient way to
stream low-level XML elements, attributes, and text nodes to a string format.

The code for the standalone XML generator is currently under development
and is available on GitHub: https://github.com/evolvedbinary/xmlgen2.git.

4.3. Project Status

4.3.1. XML:DB Adapter
The adapter is functionally complete and has been used to run NoSQLBench
scripts against FusionDB, Elemental, and eXist-db; it should be possible with lit-
tle, if any, changes to do so against other systems that support the XML:DB API.

The key issue we face at present is the absence of realistic test data; while we
can successfully use xmlgen from the original XMark project, we have chosen to

Modern Benchmarking of XQuery and XML Databases

225

complete our own XML generation tooling first, as we believe it can be much
more flexible in allowing us to run tests other than the XMark queries.

We are confident that the metrics available in NoSQLBench will allow us to
effectively measure and drill into the performance of specific XML queries and
benchmarks.

4.3.2. Standalone XML Generation Status

We consider our new Java XML generation tool (xmlgen2) to be functionally com-
plete; we have used it to generate all of the elements in the XMark auction site,
and we are able to simulate the distribution of elements with varying number and
sizes of attributes, sub-elements, and text nodes as accurately as necessary (by
inspection).

With the current state of our xmlgen2, we have compared its performance
against the original xmlgen using various scales of the data set. The following
results were obtained on an Apple MacBook Pro with an M1 Max CPU and 64MB
RAM: For the current state of implementation of the new generator, performance
has been compared against the original xmlgen-program using various scales of
database. We see the following on our 64MB M1 Max Macbook Pro:

Table 1. XML generation performance

Scale 100 xmlgen (C89) xmlgen 2 (Java 21)
creation 221s 420s
size 11758MB 13235MB

The size of files created is consistent; our new generator creates text elements as
random paragraphs from a book in the Gutenberg Project, and the text parts turn
out a little larger than those from the existing xmlgen

Performance of creation is adequate; first of all, note that we are working with
scale 100 of the database, which is probably much more than adequate for many
tests. Second, note that the current application is a single thread. We anticipate
Java performance optimization, particularly exploiting multi-threading on mod-
ern hardware, or even utilising Graal [23] compile to native code, will bring the
performance deficit down significantly.

The output of the auction site generated by our new xmlgen2 tool will not be
identical to that generated by the original xmlgen tool. However the creation of a
generated dataset is of course repeatable which is important so that others can
replicate benchmarking results . We prefer to rely on query test performance from
the XMark suite to confirm that queries against the database built from ingestion
of each of the versions performs equivalently.

Modern Benchmarking of XQuery and XML Databases

226

4.3.3. Future Work

We have reviewed the landscape of XML database and XQuery benchmarking,
and outlined our strategy for enabling easier and more comprehensive bench-
marking. Our aim is to achieve this by adopting and adapting the NoSQLBench
framework to an XML context. We will do this with an XML:DB API NoSQL-
Bench adapter and a tool for flexibly generating synthetic XML data sets using
the VDS features of NoSQLBench.

The direction of future work is already partly determined by our choice of
framework, and our identification of the XMark online auction data set as the
exemplary data set for the purposes of data set generation.

We aim to reach the point where we can completely validate that XMark test-
ing can be accurately replicated with our system. We plan to:

• Integrate generation and load of test data into a NoSQLBench round trip; per-
haps as a new NoSQLBench adapter with a single operation which configures
and runs the generation tool / code.

• Add a facility for loading an existing static XML corpus into a database as a
phase of a NoSQLBench workflow, to enable tests which use existing static
corpora as the basis of their operations.

• Validate our initial intuition that the xmlgen2 generated data sets are effec-
tively equivalent to xmlgen generated data sets, through application of test
queries from the XMark benchmark.

• Make implementation improvements to the XML data set generation tool:
Separate the auction site from the framework Build other XML examples for
completeness.

• Target the testbed at other aspects of XML databases, including concurrent
querying, contention, update-heavy testing. We have several reports of per-
formance problems that XML database users have experienced with eXist-db;
we would like to take these reports and turn them into testbed scripts.

• Investigate the loading of data into XML databases; if we modify our frame-
work to generate multiple small files rather than one large one, much as
xmlgen does, we can use the built in concurrency of NoSQLBench to measure
how well databases can ingest files concurrently.

5. Conclusion
We have reviewed the state-of-the-art in XML Database and XQuery testing. We
found that the relative scarcity of sufficiently large and complex corpora, and the
demand for complex test data has spurred the development of synthetic data set
generation using tools such as xmlgen, ToXGene, and XBeGene.

Modern Benchmarking of XQuery and XML Databases

227

Advances in database testing frameworks in the SQL and NoSQL domains
have shown a path forward for XML Database and XQuery testing. Such frame-
works offer a vision of easier, more comprehensive, and automated testing.

We have built a NoSQLBench adapter for the XML:DB API to integrate XML
testing into a framework ecosystem. We have completed a modernised and gen-
eral rebuild of xmlgen using NoSQLBench's VDS services, and we have shown
that we can replicate and generalise xmlgen within the NoSQLBench framework.

Under NoSQLBench we now have a more complete XML performance test-
bed, which we hope to apply to a broad range of XML databases and XML pro-
cessing performance analysis.

Bibliography
[1] A Brief History of XML. Chris Collins. 2008. https://ccollins.wordpress.com/
2008/03/03/a-brief-history-of-xml/ .

[2] XQuery 3.1: An XML Query Language. 2017. https://www.w3.org/TR/
xquery-31/ . Jonathan Robie, Michael Dyck, and Josh Spiegel.

[3] XMark: A benchmark for XML data management. Elsevier. 974--985. 2002.
VLDB'02: Proceedings of the 28th International Conference on Very Large
Databases. Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse.

[4] A look back on the XML Benchmark project. Springer. 263--278. 2003. Intelligent
Search on XML Data: Applications, Languages, Models, Implementations, and
Benchmarks. Albrecht Schmidt, Florian Waas, Martin Kersten, and Stefan
Manegold.

[5] ToXgene: a template-based data generator for XML. ACM. 2002. 616--616.
Proceedings of the 2002 ACM SIGMOD international conference on
Management of data. Denilson Barbosa, Alberto Mendelzon, John
Keenleyside, and Kelly Lyons.

[6] XOO7: applying OO7 benchmark to XML query processing tool. 2001. 167--174.
Proceedings of the tenth international conference on Information and
knowledge management. Ying Guang Li, Stéphane Bressan, Gillian Dobbie,
Zoé Lacroix, Mong Li Lee, Ullas Nambiar, and Bimlesh Wadhwa.

[7] Xbench-a family of benchmarks for xml dbmss. 2002. 162--164. Springer. Workshop
on Data Integration over the Web. Benjamin B. Yao, M Tamer Özsu, and John
Keenleyside.

[8] The Michigan benchmark: towards XML query performance diagnostics. 2006.
Elsevier. 73--97. Information Systems. 31. 2. Kanda Runapongsa, Jignesh M.
Patel, H.V. Jagadish, Yun Chen, and Shurug Al-Khalifa.

Modern Benchmarking of XQuery and XML Databases

228

[9] Timber: A native xml database. The VLDB journal. 11. 2002. Springer. 274--291.
Hosagrahar V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V.S.
Lakshmanan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh
Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and .

[10] Oltp-bench: An extensible testbed for benchmarking relational databases. VLDB
Endowment. 2013. 277--288. Proceedings of the VLDB Endowment. 7. 4.
Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux.

[11] XBeGene: scalable XML documents generator by example based on real data.
Springer. 2013. 449--460. Recent Progress in Data Engineering and Internet
Technology. 1. Manami Harazaki, Joe Tekli, Shohei Yokoyama, Naoki Fukuta,
Richard Chbeir, and Hiroshi Ishikawa.

[12] NoSQLBench - An open source, pluggable, NoSQL benchmarking suite. Jonathan
Shook. 2020. https://www.datastax.com/blog/nosqlbench .

[13] NoSQLBench v5. NoSQLBench. 2024. https://docs.nosqlbench.io/
introduction/ .

[14] Apache Cassandra Open Source NoSQL Database. 2024. https://
cassandra.apache.org/_/index.html .

[15] Benchmarking cloud serving systems with YCSB. 2010. 143--154. Proceedings of
the 1st ACM symposium on Cloud computing. 1. Brian F. Cooper, Adam
Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

[16] XQBench-A XQuery Benchmarking Service. Peter M. Fischer. 341--355. XML
Prague - Conference Proceedings. 2010.

[17] Benchmarking XSLT performance. 2014. XML LONDON 2014. https://
www.saxonica.com/papers/xmllondon-2014mhk.pdf. Michael Kay and Debbie
Lockett.

[18] Projection and Streaming: Compared, Contrasted, and Synthesized. 73--99. XML
Prague - Conference Proceedings. Michael Kay. 2017.

[19] TPC-H Version 2 and 3. https://www.tpc.org/tpch/.
[20] FUSIONDB Multi-model database. https://fusiondb.com/.
[21] Elemental. https://elemental.xyz/.
[22] eXist-db. http://exist-db.org/exist/apps/homepage/index.html.
[23] Graal VM. https://www.graalvm.org/.
[24] XML:DB Initiative for XML Databases. https://github.com/xmldb-org/xmldb-

api.

Modern Benchmarking of XQuery and XML Databases

229

https://www.saxonica.com/papers/xmllondon-2014mhk.pdf
https://www.saxonica.com/papers/xmllondon-2014mhk.pdf
https://www.tpc.org/tpch/
https://fusiondb.com/
https://elemental.xyz/
http://exist-db.org/exist/apps/homepage/index.html
https://www.graalvm.org/
https://github.com/xmldb-org/xmldb-api
https://github.com/xmldb-org/xmldb-api

230

Simple Semantic Data Modeling in XML
(SeMoX)

Renzo Kottmann
Coordination Office for IT-Standards

<renzo.kottmann@finanzen.bremen.de>
Cedric Pauken

Research Group E-Government, University Koblenz
<cpauken@uni-koblenz.de>

Andreas Schmitz
Research Group E-Government, University Koblenz

<andreasschmitz@uni-koblenz.de>

Abstract

The aim of Simple Semantic Data Modeling in XML (SeMoX) is to provide
non-technical domain experts a simple model and additional tooling for cap-
turing semantics of data with a technology-neutral approach. It is foremost
designed for modeling data exchange standards between heterogeneous sys-
tems. SeMoX is simple because all it needs are five basic concepts: Terms,
Semantic Datatypes, Rules, Structures and Syntax Bindings. The core arti-
fact of SeMoX is semo.xsd1. This XML Schema defines a concise and linear
unfolding XML structure for users to create own SeMoX based semantic
data modeling projects. In contrast to many UML based model-driven
approaches in standardization, SeMoX is able to leverage the entirety of the
fully interoperable XML technology stack. SeMoX is set as the modeling
approach of the whole German XEinkauf and already proved to be valuable
in production for the development and maintenance of procurement stand-
ards such as eForms-DE and XRechnung. SeMoX is open source under a
permissive MIT Licence and invites usage and participation.

For further details see homepagehttps://semo-xml.org 2 and project repo-
sitory https://projekte.kosit.org/semox/semox-model.

Keywords: XML, schema, semantic, modeling, standardization

1 https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/xsd/semo.xsd
2 https://semo-xml.org

231

https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/xsd/semo.xsd
https://semo-xml.org
https://projekte.kosit.org/semox/semox-model
https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/xsd/semo.xsd
https://semo-xml.org

1. Introduction
SeMoX provides domain experts a simple model and additional tooling for cap-
turing the semantics of data with a technology-neutral approach. It is foremost
specific to data standardization within certain knowledge domains and mainly
focuses on the interoperable aspects of data exchange between heterogeneous
systems. Hence, SeMoX defines a simple Domain-Specific Language in concise
XML to structure semantics of data from and for domain experts. It is designed to
separate domain knowledge and intent from technical implementations while
keeping clear and close connections.

Therefore, SeMoX is not an ontology that models concepts of knowledge, but
rather a semantic framework that supports the capturing and structuring of data
semantics using a simple domain-specific language defined in an XML-Schema.

SeMoX can be seen as an amalgamation of years of experience in data stand-
ardization. The initial idea behind SeMoX came up based on the necessity to inte-
grate existing international standards for public procurement such as the
European Committee for Standardization (CEN) [11] or Peppol [9] into the Ger-
man XSE-Standards (XStandards Einkauf). The declared goal of XSE is to summa-
rize, harmonize and make interoperable all IT-Standards in German public
procurement including the domains of ordering, delivery and payment [8]. As
such, XSE needs to adopt and maintain several international standards from dif-
ferent standardization bodies in its own format with certain specific national fea-
tures. SeMoX was designed to support this adoption and maintenance. It is very
much informed by the approach of CEN EN16931 norm [5] while avoiding com-
mon challenges present in standardization approaches.

It aims to fulfill the following general goals:

1. Create a shareable and validatable model for the definition of specification
and standards

2. Facilitate accessibility for domain experts without XML knowledge

3. Bridge the gap between individuals with differing business, technical and
legal expertises

4. Promote and facilitate collaboration and consistency between different stand-
ards and standardization organizations

Furthermore, SeMoX must accommodate various simple and complex stand-
ardization usage scenarios:

• Writing simple specifications (see SeMoX itself model)

• Composing top-down standards (see XRechnung)

• Composing downstream standards as differential expression to upstream
standards (see eForms-DE)

Simple Semantic Data Modeling in XML (SeMoX)

232

2. Basic concepts of SeMoX
SeMoX leverages several basic concepts for creating simple semantic data models
in XML. In order to describe these basic concepts, the following continuous exam-
ple is the XML representation of SeMoX concepts by SeMoX-itself. Utilizing the
dogfooding principle allows fully focusing on SeMoX and avoids discussing
SeMoX concepts in parallel to other concepts of another data model.

For clarity, we denote a concept by its name written in capitalization, e.g.,
Rule, XML representation by its tag names, e.g., rule and other names or values
are in quotes if it is necessary to differentiate them from concept and tag names,
e.g., an id with the value "rule".

2.1. Term

At the heart of SeMoX is the Term concept (a.k.a. Business Term (BT)). A Term is a
word or a phrase that describes a concept that is used in a particular knowledge
or business domain. Whatever concept a Term expresses, domain experts have to
name and describe it. Hence, the basic XML representation of a Term is the fol-
lowing:

<term id="term">
 <name>Term</name>
 <description>A Term to be defined by domain experts</description>
</term>

This XML instance of a Term is used to define the semantics of a Term.
An excerpt from the SeMoX-itself model illustrates the definition of a list of

terms:

<definitions>
 <term id="model" datatype="group">
 <name>Model</name>
 <description>The model describing and capturing the semantics
 of data using Semantic Datatypes, Terms, Codelists etc..
 </description>
 </term>
 <term id="term" datatype="string">
 <name>Term</name>
 <description>A Term to be defined by
 domain experts</description>
 </term>
 <term id="identifier" datatype="internal-id">
 <name>Identifier</name>
 <description>An identifier</description>
 </term>
 <term id="name" datatype="string">

Simple Semantic Data Modeling in XML (SeMoX)

233

 <name>A Name of something</name>
 <description>Term for giving something a name
 (sometimes in the sense of a label)</description>
 </term>
 <term id="description" datatype="string">
 <name>Description</name>
 <description>Human readable explanation</description>
 </term>
 <term id="definitions" datatype="group">
 <name>Definitions</name>
 <description>A list of <term>term</term>s.
 </description>
 </term>
</definitions>

This list of terms is flat and each term has to have a unique identifier with the
XML representation of an id attribute.

A SeMoX model with only a list of Terms can be regarded as a glossary.

2.2. Semantic Datatype

Because datatypes are fundamental to software and programming languages in
general, SeMoX establishes the Semantic Datatype concept.

Whatever the semantic or intent of a datatype is, domain experts have to
name and describe it.

Hence, the basic XML representation of a Semantic Datatype is as follows:
<datatype id="string">
 <name>String</name>
 <description>Sequence of characters</description>
</datatype>
This XML instance of a Semantic Datatype is used to define the semantics of

the String concept.
Overall, Semantic Datatypes are nothing more than high-level declarations of

computer representations of data. But already, as such, they give valuable infor-
mation for technical implementations.

Therefore, each definition of a term includes a declaration of a datatype.
<term id="description" datatype="string">
 <name>Description</name>
 <description>Human readable explanation.</description>
</term>

In this example, the term with id "description" expresses the Description concept
and is declared to have the Semantic Datatype with name "String" herewith refer-
red to by id of value "string".

Simple Semantic Data Modeling in XML (SeMoX)

234

Some more Semantic Datatypes are defined in the SeMoX-itself model:
<semantic-datatypes>
 <datatype id="any" minOccurs="1" maxOccurs="1">
 <name>Any</name>
 <description>The ur-type, basically no restriction
 on data values.</description>
 </datatype>
 <datatype id="group" minOccurs="1" maxOccurs="1">
 <name>Group</name>
 <description>Group of <term>term</term>s.
 </description>
 </datatype>
 <datatype id="string" minOccurs="1" maxOccurs="1">
 <name>String</name>
 <description>Sequence of characters</description>
 </datatype>
 <datatype id="internal-id" minOccurs="1" maxOccurs="1"
 restricts="string">
 <name>Internal Identifier</name>
 <description>An id which is unique within a
 single structure</description>
 </datatype>
</semantic-datatypes>

Which and how many semantic datatypes are to be defined in a SeMoX model is
a design choice.

The SeMoX-itself model defines the semantic datatype "Any" which can be
used as a placeholder in term definitions where name and definition are already
defined, but a decision on the datatype is missing.

The sole purpose of the Semantic Datatype group is to indicate that a term of
this datatype is a composition of other terms.

For example, the term"model" includes the terms term, semantic datatype
and several other terms.

<term id="model" datatype="group">
 <name>Model</name>
 <description>The model describing and capturing the semantics
 of data using a composition of Semantic Datatypes,
 Terms, Codelists etc..</description>
</term>

2.3. Structure
Terms can be aggregated to form a Semantic Structure in order to express which
Term belongs to which group of Terms. Such Structures can be defined according
to the intents and needs of the domain as defined by experts. This is independent

Simple Semantic Data Modeling in XML (SeMoX)

235

of concrete implementations. A Structure also defines the cardinalities for all
Terms and groups of Terms. The default cardinality is being optional, the two
other cardinalities are mandatory or forbidden. Additionally, a Term or group of
Terms can occur repeatably. While one Semantic Structure may specify the car-
dinality of a certain Term as mandatory, another structure may choose to define it
as optional or forbidden - depending on the business context.

The following XML representation shows a partial semantic Structure of the
SeMoX-itself model.

<structures>
 <structure id="semox">
 <name>Logic Structure</name>
 <type/>
 <description/>
 <message>
 <group ref="model">
 <group ref="metadata">
 <term ref="shortname"/>
 </group>
 <group ref="definitions">
 <group ref="term">
 <term ref="identifier"/>
 <term ref="name"/>
 <term ref="description"/>
 <term ref="name"/>
 </group>
 </group>
 <group ref="rules">
 <group ref="rule" maxOccurs="unbounded">
 <term ref="identifier"/>
 <term ref="name" minOccurs="0" maxOccurs="unbounded"/>
 <term ref="description" maxOccurs="unbounded"/>
 <group ref="rule-implementations" minOccurs="0">
 <term ref="schematron" minOccurs="0"/>
 </group>
 </group>
 </group>
 </group>
 </message>
 </structure>
</structures>

2.4. Syntax Binding
Parsing of data is a necessary operation for data exchange. Therefore, SeMoX has
the concept of Syntax Binding. The explanation follows the example:

Simple Semantic Data Modeling in XML (SeMoX)

236

<syntax-bindings>
 <binding>
 <structure>semox</structure>
 <syntax id="model-syntax">
 <name>SeMoX Model</name>
 <type>xml</type>
 <query-language>xpath</query-language>
 </syntax>
 <term ref="model" path="/model"/>
 </binding>
</syntax-bindings>

This binds the "semox" Structure as previously defined (see Section Structure) to
XML instances named "SeMoX Model". Therefore, the Term "model" can be found
i.e. queried with the XPath expression / model in all such instances. In other
words, the actual data with the semantics as defined by the term with the refer-
enced id "model" are to be found in XML instances with the root element also
named model.

2.5. Rule
Data Rules are means of further imposing restrictions, assertions and constraints
on the use of terms and structures. On principle, these can be of any kind.
Although Rules can be defined in a variety of ways, they are most useful when
they can be tested via a simple yes or no answer. In SeMoX, rules should there-
fore be developed from a business perspective and be validatable, as business
rules set the expectation levels against which the technical implementation must
be measured against.

Additionally, Rule-Groups can be defined. A set of Rules may belong to sev-
eral Rule-Groups. Each Rule-Group needs an id, a name and a description,
whereas each rule only needs an id and a description. Ideally, Rules should
specify a list of terms on which they apply to and provide references regarding
implementations. The implementation and validation of rules works via schema-
tron.

Provided below is another simple XML example from the SeMoX itself model.
As discussed earlier, each structure contains terms and groups. A Rule may now
enforce that, e.g., each structure must begin with a root group. To do this, a rule-
group that contains rules about the use of datatypes must be defined first. Subse-
quently, a rule that mandates structures to begin with a root-group can now be
specified. In practice, when building the model, this rule can easily be tested via a
simple yes or no answer.

<rules>
 <rule-group id="datatype-rules">
 <name>Datatype Rules</name>

Simple Semantic Data Modeling in XML (SeMoX)

237

 <description>Rules about datatype use</description>
 </rule-group>
 <rule id="root-group" groups="datatype-rules">
 <description>Any message in a structure must begin with a
 term of the datatype "group"</description>
 </rule>
</rules>

3. Schema design of SeMoX
The previous section followed the dogfooding principle and explained the basic
concepts for semantic modeling of data in XML by using XML for modeling the
data and capturing the semantics of SeMoX-itself. Accordingly, an XML Schema
(XSD) [6] was developed in order to describe and validate all kinds of SeMoX
based data models (semo.xsd).

This XSD makes some more notable features of SeMoX models possible:
1. Model Metadata: Each model can have metadata for author attribution, lifecycle

management (version, status) etc.

Example 1. Metadata section of the current eForms-DE model.

<m:meta>
 <m:shortName>eForms-DE</m:shortName>
 <m:name>eForms-DE Standard</m:name>
 <m:id>eforms-de</m:id>
 <m:extends version="1.10.1" id="eforms-eu">
 <m:name>eforms-eu</m:name>
 </m:extends>
 <m:version>1.2.0</m:version>
 <m:status>active</m:status>
 <m:date>2024-02-02</m:date>
 <m:abstract>Deutsche Anpassung und Erweiterung der
 "DURCHFÜHRUNGSVERORDNUNG (EU) 2022/2303 DER KOMMISSION
 vom 24. November 2022 […].
</m:abstract>
</m:meta>

2. Multilingual support: Every basic concept has a name and a description, each
of which can be repeated in different languages denoted by the standard
xml:lang attribute

<m:term id="t1" datatype="sdt-1">
 <m:name>Nonsense term 1</m:name>
 <m:name xml:lang="de">Nonsense in Deutsch</m:name>
 <m:description>A term using a semantic datatype.</m:description>
 <m:description xml:lang="de">Eine deutsche Beschreibung.</

Simple Semantic Data Modeling in XML (SeMoX)

238

m:description>
</m:term>

3. Extensible: Each element allows attributes from different namespaces. Almost
all elements with a complex content model may have additional sub-elements
from different namespaces.

4. Usage scenarios in practice
In order to showcase some aspects of SeMoX's versatility and utility, some real
world usage scenarios of SeMoX are discussed. Common to all scenarios is the
requirement to have a book publication made available in PDF format which
serves as the standard publication. Each standard has varying requirements on
content, style and layout in terms of cover page design, additional chapters, and
other aspects. Therefore, a custom publishing pipeline was developed. It is based
on Docbook and the Ant build tool. The primary source of content (in publishing
lingo) is the SeMoX model, whereas Docbook fragments and markdown files
serve as secondary input.

The results are publicly available open standards like eForms-DE (specifica-
tion3 and model4) and XRechnung (specification5).

4.1. SeMoX-itself
The actual design of the SeMoX-itself model instance serves two purposes. First,
during development, it illustrates how to best represent the SeMoX concepts in
XML. The XSD is manually developed in parallel to the development of the XML
representation of SeMoX concepts. This separate design process forces clear sepa-
ration of what is semantically important and needs description in the model as
well as what are technical necessities, trivialities and specifics of XSD. This paral-
lel process as exercised with SeMoX-itself includes iterations and considerations
going back and forth between a semantic description and design of actual XML
representation. This is and will be common to all data standard developments
from scratch. Second, it also demonstrates the two common standard artifacts of
SeMoX as a result of writing a specification a validation artifact: Here, having a
validatable specification in a SeMoX model instance and an XSD for validation.

3 https://xeinkauf.de/app/uploads/2024/02/specification-eforms-de-v1.2.0.pdf
4 https://projekte.kosit.org/eforms/eforms-de-specification/-/blob/master/src/main/model/eforms-de-
model.xml
5 https://xeinkauf.de/app/uploads/2023/09/301-XRechnung-2023-09-22.pdf

Simple Semantic Data Modeling in XML (SeMoX)

239

https://xeinkauf.de/app/uploads/2024/02/specification-eforms-de-v1.2.0.pdf
https://xeinkauf.de/app/uploads/2024/02/specification-eforms-de-v1.2.0.pdf
https://projekte.kosit.org/eforms/eforms-de-specification/-/blob/master/src/main/model/eforms-de-model.xml
https://xeinkauf.de/app/uploads/2023/09/301-XRechnung-2023-09-22.pdf
https://xeinkauf.de/app/uploads/2024/02/specification-eforms-de-v1.2.0.pdf
https://projekte.kosit.org/eforms/eforms-de-specification/-/blob/master/src/main/model/eforms-de-model.xml
https://projekte.kosit.org/eforms/eforms-de-specification/-/blob/master/src/main/model/eforms-de-model.xml
https://xeinkauf.de/app/uploads/2023/09/301-XRechnung-2023-09-22.pdf

4.2. XRechnung

The key characteristics of the development of the XRechnung standard are that
XRechnung is a top-down standard and has one semantic data model which has
to be bound to two vastly different XML syntaxes.

Here, top-down standard means practically that there is the European Norm
CEN 16931 for B2G (Business-to-Government) electronic invoicing published by
CEN which includes several specifications in PDF format of which the CEN
16931-1 document is normative. This norm is on top because all European mem-
ber states are required to adhere to the norm by law. However, because there are
too many nationally specific requirements on electronic invoices, the norm allows
"down"stream standards to deviate from the norm by certain normative rules.
Hence, XRechnung is the German downstream standard with some additional
requirements on electronic invoices in the German market compliant to the CEN
Norm. At the heart of the CEN Norm is a single and explicit semantic model of a
core invoice. This core model is then bound to the XML invoice representation as
defined by the Universal Business Language (UBL) and also Cross Industrie
Invoice (CII) by UN/CEFACT. Therefore, the major achievement of CEN
EN-16931 is to semantically integrate UBL and CII in a way that both syntaxes
can practically be used for invoicing while ensuring semantic interoperability.

In the following the Term designated "BG-30" is used to show how this seman-
tic integration is declared in the XRechnung SeMoX model:

<m:group ref="BG-30">
 <m:term ref="BT-151" />
 <m:term ref="BT-152" minOccurs="0" />
</m:group>
then the Syntax Binding with UBL for the above Terms is as follows:
<m:term ref="BG-30"
 path="/Invoice/cac:InvoiceLine/cac:Item/
cac:ClassifiedTaxCategory"/>
<m:term ref="BT-151"
 path="/Invoice/cac:InvoiceLine/cac:Item/
cac:ClassifiedTaxCategory/cbc:ID"/>
<m:term ref="BT-152"
 path="/Invoice/cac:InvoiceLine/cac:Item/
cac:ClassifiedTaxCategory/cbc:Percent"/>
and the Syntax Binding with CII for the above Terms is as follows:
<m:term ref="BG-30"
 path="/rsm:CrossIndustryInvoice/rsm:SupplyChainTradeTransaction/
ram:IncludedSupplyChainTradeLineItem/ram:SpecifiedLineTradeSettlement/
ram:ApplicableTradeTax">

Simple Semantic Data Modeling in XML (SeMoX)

240

<m:term ref="BT-151"
 path="/rsm:CrossIndustryInvoice/rsm:SupplyChainTradeTransaction/
ram:IncludedSupplyChainTradeLineItem/ram:SpecifiedLineTradeSettlement/
ram:ApplicableTradeTax/ram:CategoryCode"/>

<m:term ref="BT-151"
 path="/rsm:CrossIndustryInvoice/rsm:SupplyChainTradeTransaction/
ram:IncludedSupplyChainTradeLineItem/ram:SpecifiedLineTradeSettlement/
ram:ApplicableTradeTax/ram:TypeCode"/>

<m:term ref="BT-152"
path="/rsm:CrossIndustryInvoice/rsm:SupplyChainTradeTransaction/
ram:IncludedSupplyChainTradeLineItem/ram:SpecifiedLineTradeSettlement/
ram:ApplicableTradeTax/ram:RateApplicablePercent"/>

The Syntax Binding of CII includes to different XPath for "BT-151" which is
ambiguous and might be of disadvantage in certain situations. But, here it shows
that SeMoX allows to declaratively make explicit the ambiguity of certain bind-
ings. Moreover, it is conceivably simple to use a SeMoX for semantic integration
of different data format standards such as UBL and CII.

4.3. eForms-DE

Currently, the Coordination Office for IT-Standards in Germany (CoSIT) develops
and maintains the German downstream standard eForms-DE of the upstream EU
eForms regulation (“Commission Implementing Regulation (EU) establishing
standard forms for the publication of notices in the field of public procurement
and repealing Implementing Regulation (EU) 2015/1986 (“eForms”)”6) . Similar to
the above XRechnung setting, this regulation also allows national deviations from
the EU regulation in order to allow member states to implement national specific
requirements. The EU requirements and interoperability with national require-
ments on notices in the domain of public procurement are rather complex. There-
fore, the regulation defines several hundreds of Terms for more than 40 different
notices (Structures in SeMoX) and 3 different syntaxes where each Term has dif-
ferent cardinality requirements and sometimes slightly different semantics. Cur-
rently, the upstream definition and technical implementations change on a bi-
monthly basis.

Hence, the CoSIT implemented a "tailoring process" based on SeMoX. The
idea is to upstream create a SeMoX model of each new version of "eForms-EU"
and then to downstream always re-create a national SeMoX eForms-DE model.
For this, SeMoX was extended to declare only the semantically specified devia-
tions from - or in other words, tailoring of the eForms-EU model. The creation of

6 https://ec.europa.eu/docsroom/documents/43488

Simple Semantic Data Modeling in XML (SeMoX)

241

https://ec.europa.eu/docsroom/documents/43488
https://ec.europa.eu/docsroom/documents/43488
https://ec.europa.eu/docsroom/documents/43488
https://ec.europa.eu/docsroom/documents/43488

the eForms-EU SeMoX model is a complex integration of several sources of infor-
mation and hence an own converter was developed and is available at https://
projekte.kosit.org/eforms/eforms-converter.

In order to explain the actual tailoring step in the process an excerpt of the
Model Tailoring is shown here:

<m:model-tailoring version="0.4.0" xml:lang="de" xmlns:m="semantic-model"
 xmlns:e="eforms">
 <m:meta>
 <m:shortName>eForms-DE</m:shortName>
 <m:name>eForms-DE Standard</m:name>
 <m:id>eforms-de</m:id>
 <m:extends version="1.10.1" id="eforms-eu">
 <m:name>eforms-eu</m:name>
 </m:extends>
 <m:specification />
 <m:version>1.2.0</m:version>
 <!–- … for brevity -->
 </m:meta>

 <m:change-datatypes>
 <m:datatype tailor="code">
 <m:name mode="add" xml:lang="de">Code</m:name>
 <m:description mode="add" xml:lang="de"
 >Werte aus einer definierten Codeliste.</m:description>
 </m:datatype>
 <!–- … for brevity -->
 </m:change-datatypes>
<!–- … for brevity -->
 <m:change-terms>
 <m:term tailor="BG-7141">
 <m:description xml:lang="de" e:eg="3"
 >Einzelheiten zu den Fahrzeugen im
Anwendungsbereich des Saubere-Fahrzeuge-Beschaffungs-
Gesetzes zur Umsetzung der Richtlinie 2009/33/EG.
 </m:description>
 </m:term>
 <!–- … for brevity -->
 </m:change-terms>
 <m:rules>
 <m:rule id="BR-DE-20" on-terms="BT-06 BT-775 BT-776" e:eg="prea-6">
 <m:description>Wenn BT-06 (Strategische Beschaffung) einen Wert
 ungleich "entfällt" enthält, ist mindestens eines der Felder BT-774
 (Grüne Beschaffung BT-775 (Soziale Beschaffung) oder BT-776
(Beschaffung von Innovation) zu füllen.</m:description>
 </m:rule>

Simple Semantic Data Modeling in XML (SeMoX)

242

https://projekte.kosit.org/eforms/eforms-converter
https://projekte.kosit.org/eforms/eforms-converter

 <!–- … for brevity -->
 </m:rules>
<m:model-tailoring>
The XML representation of the Model Tailoring follows the structure of a nor-

mal modelbut named model-tailoringto distinguish the purpose. The tags
change-datatypes and change-termsto declare the changes to be made w.r.t. the
upstream model. The nested elements are of same structure as in a normal model
except that each element has a tailor attribute instead of an own id attribute
which identifies the respective element in the upstream model:

<m:datatype tailor="code">
 <m:name mode="add" xml:lang="de">Code</m:name>
 <m:description mode="add" xml:lang="de"
 >Werte aus einer definierten Codeliste.</m:description>
</m:datatype>
here tailor="code" states that the Semantic Dataype "code" is to be changed

with the nested information. The attribute mode="add" of the name element tells a
processor that first the element name is not to be expected to exist in the upstream
model and second to add it in the downstream model. Currently, a simple XSLT
script exists which has an upstream model and a model-tailoring instance as
input and generates the "tailored" model.

Overall this allows maintaining a stable semantic definition of specific Ger-
man changes to eForms-EU with an own independent life cycle of the upstream
changes and rate of changes. This approach to semantic data modeling in a com-
plex and highly changing setting proves to be very useful in many ways. First, by
creating an upstream SeMoX model from different sources and then validating
this model made possible to find several mistakes and inconsistencies in the
upstream standard. Second, being able to define German deviations and re-apply
them allowed a German expert group - involving dozens of people from many
different institutions and ministries - to work on its own pace with its own qual-
ity control, and procedures independent from the rate of changes. Practically,
Germany does skip several upstream versions while maintaining own "model-tai-
loring" versions and only re-apply model-tailoring at own defined time points.
Extensive automatic validating and testing throughout this process also ensures
full interoperability to upstream eForms-EU.

The current status of eForms-DE is available: eForms Model7

5. Conclusion and future work
The way SeMoX is conceptualized and technically implemented proved to be via-
ble in different real world usage scenarios.

7 https://projekte.kosit.org/eforms/eforms-ts/-/blob/master/eforms-model.xml

Simple Semantic Data Modeling in XML (SeMoX)

243

https://projekte.kosit.org/eforms/eforms-ts/-/blob/master/eforms-model.xml
https://projekte.kosit.org/eforms/eforms-ts/-/blob/master/eforms-model.xml

The SeMoX-itself usage scenario exemplifies writing specifications in XML for
XML instance validation.

The domain knowledge is captured in a model instance separated from the
technical implementation. The model instance is shareable (see semox-itself-
model.xml8). The model is validatable using the semo.xsd implementation of
SeMoX.

The XRechnung usage scenario demonstrates that the separation allows for
the binding of common and harmonized semantics to two different XML Syn-
taxes which already existed and have completely different XML Schemas.

Last, the eForms scenario demonstrates that the extensible design of the
SeMoX implementation makes it possible to only capture the semantic difference
of a downstream standard and create a full SeMoX instance as a tailored version
of the upstream standard. This makes it possible to accommodate any rate of
change of an upstream standard.

Overall, this demonstrates the versatility and utility of SeMoX in even rather
complex standardization scenarios which are modeling data exchange standards
between heterogeneous systems. By no means it attempts to provide a general
approach to semantic data modeling. Capturing and making explicit semantics of
data is a long-term research topic. A plethora of discussions of what semantics
actually is, including capturing and modeling approaches and solutions, have
been held, published and deployed. Among which are Resource Description
Framework ([15]), Simple Knowledge Organisation System ([16]) and Topic Maps
([17]). Whereas RDF has a very broad scope and a generalized "subject-predicate-
object" graph model for describing resources in general, the scope of Topic Maps
and SKOS is on modeling and capturing real world knowledge. A full and
detailed discussion of commonalities and differences between the aforemen-
tioned approaches and SeMoX is beyond the limits of this paper. However, the
differentiation is mainly driven by the narrow scope of modeling data for intero-
perable data exchange scenarios between heterogeneous systems. SeMoX´ scope
is neither on general descriptions of resources nor on knowledge and concepts
and relations between these. Hence, the concept Term only includes a name and
description. And consequently, the concept of Structure is not meant to express
semantic relations between knowledge concepts, it just only groups Terms in
order to describe that a group of data elements together represent a more com-
plex data description such as an address that consists of a street name and a city
name. Therefore, SeMoX is dubbed simple.

As demonstrated SeMoX is capable of achieving its outlined goals. It is in pro-
ductive use and a core component of XEinkauf (XSE). However, the further facili-
tation of data standardization and interoperability between different standards

8 https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/model/semox-itself-model.xml

Simple Semantic Data Modeling in XML (SeMoX)

244

https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/model/semox-itself-model.xml
https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/model/semox-itself-model.xml
https://projekte.kosit.org/semox/semox-model/-/blob/master/src/main/model/semox-itself-model.xml

will be the focus of SeMoX's ongoing development and is discussed in the follow-
ing.

5.1. Facilitate more effective data standardization
Many XML based data standards already exist today. Most of which have specifi-
cation documents and validation artifacts of various sorts. The content and com-
prehensibility vary for non-technical domain experts, whereas SeMoX based
standards have a clear focus on only including semantics and related business
intent in specifications. Thus, technical implications which can be solved and
implemented in validation artifacts and related tools are left out. This makes
SeMoX based standard developments more amenable to non-technical domain
experts and therefore facilitates more effective data standardization w.r.t. correct-
ness and accuracy of a knowledge domain's semantics. To illustrate this: In a
group of experts, it only needs one person who can encode the results of expert
discussions in a SeMoX model and generate a specification document. All others
only need to know the knowledge domain and can verify the correctness based
on the specification. Or, the other way around: SeMoX allows limited options to
"dilute" the model with technicalities and gives full freedom to technical imple-
mentations.

Moreover, every data standard based on SeMoX can validate its SeMoX model
instance with semo.xsd. Consequently, many aspects of semantic consistency (e.g.
does every term use a defined datatype? Are all terms used in a certain struc-
ture?) can be validated. For example, to ensure consistency in eForms-DE, the
project includes dozens of additional Schematron rules which are specific to the
context of this domain and standard.

Although, SeMoX models are not validation artifacts by themselves, the mod-
els can be used as input data for tests which check consistency between semantic
model and validation artifacts during standard development. A very simple con-
sistency check can be implemented if a SeMoX rule has the same id as a Sche-
matron rule or assertion which implements the corresponding SeMoX rule.

A SeMoX model instance with syntax-bindings and hence having informa-
tion on an xpath for any given term can be used to generate simple occurrence/
existence constraints. It is also conceivable to generate simple XSDs from models
based on the information of semantic datatypes and structures including occur-
rences.

Taken together, SeMoX already facilitates more quality controlled and effec-
tive data standardization. Further design and tooling will seek to increase effec-
tiveness.

Simple Semantic Data Modeling in XML (SeMoX)

245

5.2. Enhancing interoperability between different standards and
standard organisations
Other standardization approaches such as Peppol and CEN encounter common
challenges that hinder their effectiveness and interoperability. One such challenge
is their tendency to prioritize either technical or business perspectives, creating
difficulties for editors from the opposing viewpoint to participate effectively. This
imbalance can lead to misunderstandings, inefficiencies, and barriers to collabo-
ration, especially when onboarding new people. Additionally, these approaches
necessitate vastly different production environments with external dependencies.
For instance, Peppol relies on a rigidly defined project and file structure based on
different XML and YAML technologies. While such requirements may ensure
consistency within each standard, they pose significant hurdles for individuals
with varying backgrounds and skill sets. Furthermore, changes in these depend-
encies can lead to delays and complications, disrupting implementation efforts
and hindering progress. Moreover, the lack of interoperability between standards
further amplifies these challenges. Without seamless integration and compatibil-
ity between different standardization approaches, organizations face difficulties
in mapping between data and standards across diverse standardization environ-
ments. This limitation stifles innovation and hampers the potential benefits of
standardization efforts. Addressing these challenges requires a concerted effort to
bridge the gap between technical and business perspectives, harmonize produc-
tion environments, and enhance interoperability between standards.

SeMoX is addressing these gaps by providing an interoperable methodology
for standard definition, acting as a bridge between various different actors, organ-
izations or processes that need to collaborate. First, SeMoX endeavors to bridge
the gap between individuals with technical and business/legal expertise that often
have challenges in communicating on the same level. By accommodating both
perspectives, it promotes understanding and cooperation among diverse stake-
holder groups. Second, SeMoX seeks to bridge the gap between maintenance sys-
tems associated with different standards. By adopting a technology-neutral
approach, it enables integration and collaboration across various systems, ensur-
ing adaptability and compatibility with evolving external technologies. Finally,
SeMoX aims to bridge the gap between the technical formats of different stand-
ards, enhancing interoperability between different standardization approaches.
By offering a common foundation for standard definition, it promotes consistency
and facilitates collaboration between different standardization organizations.

One way to further foster collaboration would be to integrate the concept of
transactions into SeMoX. European Peppol [10] and CEN [12] standards com-
monly use transactions to standardize the XML-message-flow between a contract-
ing body and an economic operator in different phases of the procurement
process. Most notably, transactions are used in the pre-award phase of the pro-

Simple Semantic Data Modeling in XML (SeMoX)

246

curement process to express the concept of a request and a response between a
contracting body and an economic operator. Within a pre-award process, one
actor might need to request information from another actor via a standardized
request-transaction. The other actor can then fill out the required information
from the request-transaction and transmit a standardized response-transaction
back to the requester. Integrating the concept of transactions into SeMoX would
lead to full interoperability between SeMoX-standards and European
Peppol/CEN standards in the domain of public procurement. Therefore, SeMoX
aims to develop fully EU-interoperable procurement standards in the future by
adjusting the current framework to include transactions. In practice, this may
work by allowing for the definition of several transactions within a single SeMoX-
instance (similar to structures).

Additionally, more practical research focused on the interoperability between
SeMoX and other standardization methodologies is planned.

First, conceptional mappings between SeMoX and Peppol / CEN should be
created. Based on these mappings, transformations from Peppol / CEN to SeMoX
can be created and tested. A first step may be an XSL transformation from Peppol
to SeMoX. More such technical studies can provide further insights into how
SeMoX can act as a bridge between standardization methodologies.

5.3. Further research

Overall, this paper demonstrates how SeMoX can be utilized to provide a seman-
tic standardization model. Many current issues in the domain of standardization
can be specifically addressed by SeMoX. This research provides an introduction
to the concepts and benefits of SeMoX and is supposed to be the foundation for
further research. Literature shows a clear need for methodologies and frame-
works in the domains of standardization and public procurement in particular,
that SeMoX can address [14]. Further SeMoX should also be considered as a part
for more holistic frameworks regarding interoperability, for example as an exten-
sion of the Framework for Interoperable Service Architecture Development [13].
Besides the technical additions to SeMoX discussed above in detail, further
generic research needs on SeMoX include:

1. Comprehensive classification of SeMoX in the status quo of scientific literature
to ensure rigor

2. Empirical verification of SeMoX's applicability in practice by conducting a
structured evaluation of its effectiveness across a wide range of different use-
cases

3. Development of methodological frameworks for best-practice applications of
SeMoX

Simple Semantic Data Modeling in XML (SeMoX)

247

Bibliography
[1] Kay, Michael: XSLT 2.0 and XPath 2.0. Wiley Publishing, 2008.
[2] Gao, Shudi– Sperberg-McQueen, C.M. – Thompson, Henry S.: W3C XML

Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C
Recommendation, 5 April 2012. https://www.w3.org/TR/xmlschema11-1/

[3] Jelliffe, Rick. Schematron, 1999. Retrieved from http://xml.ascc.net/
schematron

[4] XRechnung. Retrieved from https://www.xoev.de/de/xrechnung
[5] Electronic invoicing - Part 1: Semantic data model of the core elements of an electronic

invoice; German version EN 16931-1:2017. Retrieved from https://
www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-
beuth:din21:274990963

[6] Validation artefacts for the European eInvoicing standard EN 16931. Retrieved from
https://github.com/ConnectingEurope/eInvoicing-EN16931

[7] Universal Business Language Version 2.1.. 04 November 2013. OASIS Standard.
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html

[8] XStandards Einkauf - Die Standardfamilie des öffentlichen Einkaufs. https://
xeinkauf.de/

[9] Peppol (Pan-European Public Procurement OnLine). https://peppol.org/
[10] Peppol Pre-Award Profiles Overview. Retrieved from https://

docs.peppol.eu/pracc/
[11] About the European Committee for Standardization (CEN). https://

www.cencenelec.eu/about-cen/
[12] CEN/TC 440 ‘Electronic Public Procurement’. https://www.cencenelec.eu/

areas-of-work/cen-cenelec-topics/public-procurement/cen-tc-440-
electronic-public-procurement/

[13] Framework for interoperable service architecture development. https://
www.sciencedirect.com/science/article/abs/pii/S0740624X23000692

[14] Closing the gap: Leveraging data for seamless integration between pre-award and
post-award in public procurement. https://scholarspace.manoa.hawaii.edu/
items/be322fe7-6932-4132-baea-af702e6081a5

[15] RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

[16] SKOS Simple Knowledge Organization System Reference. https://www.w3.org/
TR/skos-reference/

Simple Semantic Data Modeling in XML (SeMoX)

248

https://www.w3.org/TR/xmlschema11-1/
http://xml.ascc.net/schematron
http://xml.ascc.net/schematron
https://www.xoev.de/de/xrechnung
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://github.com/ConnectingEurope/eInvoicing-EN16931
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html
https://xeinkauf.de/
https://xeinkauf.de/
https://peppol.org/
https://docs.peppol.eu/pracc/
https://docs.peppol.eu/pracc/
https://www.cencenelec.eu/about-cen/
https://www.cencenelec.eu/about-cen/
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/public-procurement/cen-tc-440-electronic-public-procurement/
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/public-procurement/cen-tc-440-electronic-public-procurement/
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/public-procurement/cen-tc-440-electronic-public-procurement/
https://www.sciencedirect.com/science/article/abs/pii/S0740624X23000692
https://www.sciencedirect.com/science/article/abs/pii/S0740624X23000692
https://scholarspace.manoa.hawaii.edu/items/be322fe7-6932-4132-baea-af702e6081a5
https://scholarspace.manoa.hawaii.edu/items/be322fe7-6932-4132-baea-af702e6081a5
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/skos-reference/

[17] The TAO of Topic Maps. https://www.ontopia.net/topicmaps/materials/
tao.html

Simple Semantic Data Modeling in XML (SeMoX)

249

https://www.ontopia.net/topicmaps/materials/tao.html
https://www.ontopia.net/topicmaps/materials/tao.html

250

GEDCOM to RDF
Transforming Genealogical Data for use

in a Personal Knowledge Graph
Robert Walpole
Devexe Limited

<rob.walpole@devexe.co.uk>

Abstract

This paper describes a process for converting genealogical data in GED-
COM format to RDF suitable for loading into a Personal Knowledge Graph
(PKG)[1]. As part of this process, we aim to retain as much metadata about
individuals and their relationships as possible. Once loaded into the PKG,
this dataset will provide an excellent base for further enrichment of the PKG
following the principle of the Open World Assumption. New individuals
and additional information about existing individuals can be added to the
PKG over time.

It should be noted that the PKG being created is intended purely for per-
sonal or household activities under the terms of GDPR and is not intended
for use in a public space.

Keywords: RDF, XML, GDECOM, RML, YARRRML, Linked Data

1. Background
The background to this piece of work is an ongoing project to build a secure,
linked data personal diary system, backed by a Personal Knowledge Graph
(PKG)[1] which permits the linking of words and phrases in the text to resources
within the PKG, as well as to public resources, such as those in DBpedia or Wiki-
data. The purpose of this linking is to make clear what is meant by the words and
phrases within the text of the diary. For example, if someone writes “my grandfa-
ther” which grandfather do they mean?

Why would we want to do this? After all, diaries are normally private and the
writer will normally know exactly what they mean. That may be so, but most
people keep a diary as an aid to memory and if someone keeps a diary for many
years it can be incredibly difficult to find specific pieces of information about an
event or person, unless you know exactly when something happened. If the diary
is kept in a digital format, it should be possible to search the text for key phrases,
but this will likely produce a lot of noise. By linking the text to a PKG it would be
possible to find every mention of a particular individual in the text and also
access additional information about the person that the writer is referring to. In

251

our grandfather example, this could be easily achieved by linking the text at the
time of writing to the grandfather resource stored in a PKG.

Furthermore, the act of linking text in a diary to representative resources in a
knowledge graph is one way to learn more about yourself and the people around
you. For example, when talking about a cousin it may be difficult to recall exactly
how this cousin is related to you, whether they are 1st or 2nd cousins and how
many times they are removed. Linking the mention of a cousin to a PKG would
allow you to quickly see the relationship at any time.

There are other benefits to having a PKG-backed diary as well. Future genera-
tions coming across your diary - or perhaps your biographers, should you
become famous (or infamous) - will be able to understand exactly who or what
you were talking about straight away.

Finally, creating and maintaining a PKG has benefits beyond diarying. In
future, it will be possible to have an AI-based personal assistant, which can be
given access to your PKG and thereby provide you with personal insights and
information which may otherwise not be immediately apparent to you. For exam-
ple, let’s imagine that the aforementioned grandfather once lived in Istanbul and
this was recorded in your PKG. You might make a visit to Istanbul and your
PKG-backed personal assistant could remind you of this fact about your grandfa-
ther, and perhaps even guide you to the house he used to live in.

2. Creating a Personal Knowledge Graph
Creating a Personal Knowledge Graph from scratch is potentially a long and tedi-
ous process. If you come from a large family then adding information about
everyone in it could be particularly tiresome. One solution is to look around at
existing data sources to see if they could be used to populate the PKG.

One potential source of information is genealogical data. Many people are
interested in family history these days and there are some excellent tools out
there for creating family trees in an easy and enjoyable way. Ancestry.com is one
example of a commercial website which allows you to build family trees using a
friendly GUI. Furthermore, once you have created a family tree you can down-
load it in GEDCOM[1] file format. This GEDCOM file can contain not only names
and relationships, but also a lot of other metadata that would be useful in a PKG,
such as dates of birth, marriage dates, children's names, and relationships
between otherwise slightly obscure cousins. It seems like a good place for us to
start to see if we can convert this genealogical data into an RDF format, which
could then form the start of a PKG.

3. GEDCOM
GEDCOM or FamilySearch GEDCOM, to give it its full name, is a proprietary
and de facto open plain text file format specification used for the exchange of

GEDCOM to RDF

252

genealogical data. It was developed by the Church of Jesus Christ of Latter-Day
Saints as an aid to genealogical research and is maintained today by the non-
profit FamilySearch organisation. As well as Ancestry.com, it is supported by
other online genealogical services such as FindMyPast.co.uk and MyHerit-
age.com. There are a number of different versions of GEDCOM in circulation,
however GEDCOM 5.5 which was first published in 1996 is widely supported by
genealogical software suppliers. The latest version is GEDCOM 7.0.

There are a number of existing open source tools which offer to convert GED-
COM files to RDF, including a Java-based tool called gedcom2sem[2] and a PHP-
based tool called GedcomRDF[3]. However, both of these projects have been
neglected for a number of years and a fresh approach to the challenge now seems
appropriate. There may be other chargeable tools available but this was not inves-
tigated.

For demonstration purposes we have created a family tree in Ancestry for the
fictional Walton family, as portrayed in the 1970’s America TV show “The Wal-
tons”. Character information for this tree was obtained from The Waltons Wiki[4].
This tree will be downloaded in GEDCOM 5.5 format.

4. GEDCOM X
In 2012, FamilySearch launched a new genealogical standards project called GED-
COM X[5]. GEDCOM X is not a newer version of GEDCOM but rather an alterna-
tive representation which includes specifications for an open data model and
open serialisation format. It has a key advantage over standard GEDCOM in that
it can be serialised to a JSON or XML format. FamilySearch has also made availa-
ble libraries for converting GEDCOM 5.5 to GEDCOM X. Converting our GED-
COM file to an XML format would be a key first step in converting it to RDF.

5. GEDCOM to GEDCOM X conversion
The gedcom5-conversion[6] command line tool can be used to convert a GED-
COM 5.5 file to GEDCOM X. Following the instructions provided in the tool
README we can convert our Waltons GEDCOM file to GEDCOM X using a com-
mand similar to the following:

java -jar /tmp/gedcom5-conversion-full.jar -i /tmp/WaltonFamilyTree.ged -
o /tmp/WaltonFamilyTree.gedx

The output file /tmp/WaltonFamilyTree.gedx is based on the ZIP format so it
can be unpacked as follows:

unzip -d /tmp/Waltons /tmp/WaltonsFamilyTree.gedx
Examining the /tmp/Waltons directory we will now find a tree.json file con-
taining our family tree for the Waltons in GEDCOM X JSON format. Unfortu-

GEDCOM to RDF

253

nately the conversion utility does not currently allow us to choose whether to
output JSON or XML format so a further step is required to convert the file to
XML.

6. GEDCOM X JSON to XML conversion
FamilySearch has created a number of open source libraries which are suitable for
reading and writing GEDCOM X, including gedcomx-java[7]. As part of this
project, a command line wrapper has been created around the Java API library
which is available from gedcom-transformer[8]. Following the instructions provi-
ded in the README of this project we can convert the original WaltonsFamily-
Tree.gedx file to XML using a command similar to the following:

java -jar /tmp/gedcom-transformer-full.jar -i /tmp/WaltonFamilyTree.gedx
-o /tmp/WaltonXmlTree.gedx

As before, the output file / tmp/ WaltonFamilyTreeXml.gedx can be unpacked
using the unzip command:

unzip -d /tmp/WaltonsXml /tmp/WaltonFamilyTreeXml.gedx

Now, within the / tmp/ WaltonsXml directory specified in the command above,
you will find our GEDCOM X file in XML format named as tree.xml. You can
open this file in your favourite XML editor to examine it in more detail.

The first thing you will notice is that the XML is in the http://gedcomx.org/
v1/ namespace and the root element is gedcomx. Within the root there are multi-
ple person elements, which contain the details we have for each individual
within the tree. For example John (John-Boy) Walton would appear as follows:

<person id="I112573407540">
 <gender type="http://gedcomx.org/Male"/>
 <name>
 <preferred>true</preferred>
 <nameForm>
 <fullText>John Walton</fullText>
 <part type="http://gedcomx.org/Given" value="John"/>
 <part type="http://gedcomx.org/Surname" value="Walton"/>
 </nameForm>
 </name>
 <fact type="http://gedcomx.org/Birth">
 <date>
 <original>1916</original>
 </date>
 <place>
 <original>Virginia, USA</original>
 </place>

GEDCOM to RDF

254

 </fact>
</person>

There are also a number of relationship elements which are either type http://
gedcomx.org/ParentChild or type http://gedcomx.org/Couple. Within each of
these elements there is a person1 and person2. Each person element has a
resource attribute which identifies the person concerned by the identifier. For
example, the following snippet links John-Boy Walton’s parents, his father John
Walton Senior and his mother Olivia:

<relationship type="http://gedcomx.org/Couple" id="F7-I112573407541-
I112573407611">
 <person1 resource="#I112573407541"/>
 <person2 resource="#I112573407611"/>
</relationship>

In the case of couples, the relationships are symmetrical whereas in the case of
parent-child relationships the parent appears as person1 and the child as
person2. In the following snippet John-Boy Walton is identified as person2 and
his mother as person1:

<relationship type="http://gedcomx.org/ParentChild" id="F7-I112573407611-
I112573407540">
 <person1 resource="#I112573407611"/>
 <person2 resource="#I112573407540"/>
</relationship>

This will be important later when we come to convert the XML to RDF.

7. RML
The RDF Mapping Language (RML)[9] is currently a draft specification for a
mapping language based on and extending the RDB to RDF Mapping Language
(R2RML)[10] which is an existing W3C recommendation. While R2RML is targe-
ted at mapping relational databases to RDF, RML is intended to be more generic
and allows conversion of other formats to RDF, including XML.

8. YARRRML
YARRRML[11] is another draft specification for a more human-readable text-
based representation of RML rules. It is a subset of YAML and in our case can be
used to express the mapping from XML elements to the RDF subjects, predicates
and objects that we want to apply when converting our GEDCOM X XML file to
RDF.

For the Walton’s example, we will name our YARRRML file gedcomx-rules-
waltons.yml, and the first part of the file which includes the prefixes and map-
pings declaration will also specify the mappings we have chosen for people:

GEDCOM to RDF

255

prefixes:
 dbo: http://dbpedia.org/ontology/
 wexp: http://waltons.example.org/person/
 grel: http://users.ugent.be/~bjdmeest/function/grel.ttl#
mappings:
 people:
 sources:
 - ['WaltonsXml/tree.xml~xpath','/gedcomx/person']
 subjects: wexp:$(@id)
 predicateobjects:
 - [a, dbo:Person]
 - [a, foaf:Person]
 - [foaf:givenName, "$(name/nameForm/part[@type='http://gedcomx.org/
Given']/@value)"]
 - [foaf:surname, "$(name/nameForm/part[@type='http://gedcomx.org/
Surname']/@value)"]
 - [foaf:gender, "$(gender/@type)"]
 - [dbo:birthDate, "$(fact[@type='http://gedcomx.org/Birth']/date/
original)"]
 - [dbo:birthPlace, "$(fact[@type='http://gedcomx.org/Birth']/place/
original)"]
 - [dbo:deathDate, "$(fact[@type='http://gedcomx.org/Death']/date/
original)"]
 - [dbo:deathPlace, "$(fact[@type='http://gedcomx.org/Death']/place/
original)"]

The set of prefixes we wish to use in our RDF output are defined at the start of
the file. In line with the Linked Data Best Practice principle using standardised
vocabularies as far as possible, we have chosen to map our GEDCOM X XML ele-
ment and attribute values to existing vocabularies whenever possible. The grel
prefix is used to attach the GREL functions[16] which we will make use of shortly.

The prefixes are followed by the mappings. The first mapping we see in the
file is for people. The sources of people is given as follows:

- ['WaltonsXml/tree.xml~xpath','/gedcomx/person']
This statement includes our GEDCOM X XML file path suffixed with ~xpath.
This means that we are going to use XPath[12] to process the file. The next state-
ment provides the XPath statement to locate people within the XML file. The
subjects key defines the subjects IRI in the RDF triple we are going to generate.
In this case we use the wexp prefix and append the value of the person id attrib-
ute. This means that the IRI for our John-Boy resource would be as follows:

http://waltons.example.org/person/I112573407540
Next we see a predicateobjects section. This defines the predicates and objects
for each subject resource defined previously. For example, we see given above:

GEDCOM to RDF

256

- [foaf:givenName, "$(name/nameForm/part[@type='http://gedcomx.org/
Given']/@value)"]

This means that the predicate will be foaf:givenName and the object will be
derived from the relative XPath statement:

name/nameForm/part[@type='http://gedcomx.org/Given']/@value]
In the case of our Walton’s example we would expect this to result in a triple as
follows for John-Boy:

<http://waltons.example.org/person/I112573407540> foaf:givenName "John" .
The next part of the YARRRML file deals with the mappings for relationships.
Firstly couples where person1 is connected to person2 via the dbo:spouse predi-
cate:

couples1to2:
 sources:
 - ['WaltonsTreeXml/tree.xml~xpath',"/gedcomx/
relationship[@type='http://gedcomx.org/Couple']"]
 subjects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person1/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 predicateobjects:
 - predicates: dbo:spouse
 objects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person2/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 type: iri

And then the inverse where person2 is connected to person1 in the same way:
couples2to1:
 sources:
 - ['WaltonsXml/tree.xml~xpath',"/gedcomx/
relationship[@type='http://gedcomx.org/Couple']"]
 subjects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person2/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 predicateobjects:

GEDCOM to RDF

257

 - predicates: dbo:spouse
 objects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person1/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 type: iri

In this case both the subjects have a function applied. This is a GREL string
replacement function to remove a hash which is added to the person identifier
value of the resources attribute of the relationship element in the GEDCOM
XML.

Next we look for parent-child relationships from the point of view of the
parent. In other words to find an individual's children. In this case dbo:child is
used as the predicate:

children:
 sources:
 - ['WaltonsXml/tree.xml~xpath',"/gedcomx/
relationship[@type='http://gedcomx.org/ParentChild']"]
 subjects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person1/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 predicateobjects:
 - predicates: dbo:child
 objects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person2/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 type: iri

Next we look for parent-child relationships from the point of view of the child. In
other words, to find an individual's parents. In this case dbo:parent is used for
the predicate:

parents:
 sources:
 - ['WaltonsXml/tree.xml~xpath',"/gedcomx/
relationship[@type='http://gedcomx.org/ParentChild']"]
 subjects:
 - function: grel:string_replace

GEDCOM to RDF

258

 parameters:
 - [grel:valueParameter, wexp:$(person2/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 predicateobjects:
 - predicates: dbo:parent
 objects:
 - function: grel:string_replace
 parameters:
 - [grel:valueParameter, wexp:$(person1/@resource)]
 - [grel:p_string_find, '#']
 - [grel:p_string_replace, '']
 type: iri

9. YARRRML Parser
The yarrrml-parser[13] is a parser library and command line interface written in
JavaScript which is used to generate an RML rules file in Turtle[14] format from
our more human-readable YARRRML file. After following the installation
instructions in the README, we can run the parser, giving the YARRRML file
described above as the input parameter and an output filename for the result:

yarrrml-parser -i /tmp/gedcomx-rules-waltons.yml -o /tmp/gedcomx-rules-
waltons.rml.ttl

10. RML Mapper
The rmlmapper-java[15] is a Java command line tool for generating Linked Data
from RML rules. By downloading the latest release version from https://
github.com/RMLio/rmlmapper-java/releases and following the usage instructions
shown in the project README, we can use the tool to generate our knowledge
graph of the Walton family:

java -jar rmlmapper-all.jar -m /tmp/gedcomx-rules-waltons.rml.ttl -
o /tmp/Waltons.ttl

The resulting Waltons.ttl file contains all of the members of the Walton’s family,
their relationships and other available metadata in RDF Turtle format. The fol-
lowing is a snippet of the file, showing the relationship between John-Boy Wal-
ton, his father John and mother Olivia. Other relationships have been trimmed
from the example for the sake of brevity:

@prefix wexp: <http://waltons.example.org/person/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

GEDCOM to RDF

259

https://github.com/RMLio/rmlmapper-java/releases
https://github.com/RMLio/rmlmapper-java/releases

wexp:I112573407540 rdf:type dbo:Person , foaf:Person ;
 dbo:birthDate "1916" ;
 dbo:birthPlace "Virginia, USA" ;
 dbo:parent wexp:I112573407541 ;
 dbo:parent wexp:I112573407611 ;
 foaf:gender "http://gedcomx.org/Male" ;
 foaf:givenName "John" ;
 foaf:surname "Walton" .

wexp:I112573407541 rdf:type dbo:Person , foaf:Person ;
 dbo:birthDate "1896" ;
 dbo:child wexp:I112573407540 ;
 dbo:spouse wexp:I112573407611 ;
 foaf:gender "http://gedcomx.org/Male" ;
 foaf:givenName "John" ;
 foaf:surname "Walton" .

wexp:I112573407611 dbo:birthDate "1899" ;
 dbo:child wexp:I112573407540 ;
 dbo:spouse wexp:I112573407541 ;
 rdf:type dbo:Person ;
 rdf:type foaf:Person ;
 foaf:gender "http://gedcomx.org/Female" ;
 foaf:givenName "Olivia" .

11. Conclusion and future work

This piece of work has been extremely successful in establishing a toolset for
being able to repeatedly generate Linked Data from genealogical records held in
GEDCOM format. When run across a more realistic family tree it has generated
over 5000 RDF triples, something that would take a great deal of time to do by
hand. Furthermore there is opportunity to extract more data from the GEDCOM
files such as residence and employment information. It is also foreseen that the
steps described in this paper will in future be orchestrated into a workflow which
can be run at the click of a button, removing the need for issuing any shell com-
mands. A framework such as Apache Hop would be an ideal candidate for such a
platform.

As mentioned this work forms part of a larger ongoing project around creat-
ing and persisting Personal Knowledge Graphs. It is anticipated these PKGs will
be stored in Solid Pods[17], enabling the owner to provide controlled access to the
resources within. This could be particularly useful for sharing genealogical infor-
mation with family members, saving them the requirement to generate their own
records for the same family members and also allowing the data to be supple-
mented with information from other users.

GEDCOM to RDF

260

Bibliography
[1] Ivo Velitchkov, George Anadiotis: Personal Knowledge Graphs. 2023. https://

personalknowledgegraphs.com/
[2] FamilySearch: GEDCOM: The Genealogical Data Standard. 2019. https://

www.gedcom.org/index.html
[3] Jo Pol: gedcom2sem. 2019-11-06. GitHub https://github.com/jo-pol/

gedcom2sem
[4] Bruce Wheaton: GedcomRDF. 2013-06-03. GitHub https://github.com/

BruceMWhealton/Gedcom-RDF
[5] Zmario: The Waltons Wiki. 2015-11-08. https://thewaltons.fandom.com/

wiki/The_Waltons_Wiki
[6] FamilySearch: GEDCOM X. 2023. http://gedcomx.org/

Specifications.html
[7] FamilySearch: GEDCOM 5.5 to GEDCOM X Converter. 2024-04-01. GitHub

https://github.com/FamilySearch/gedcom5-conversion
[8] FamilySearch: gedcomx-java. 2024. GitHub https://github.com/

FamilySearch/gedcomx-java
[9] HyperDiary: GEDCOM Transformer. 2024. GitHub https://github.com/

hyperdiary/gedcom-transformer
[10] Ben De Meester, Thomas Delva, Pieter Heyvaert: RDF Mapping Language

(RML). 2022-11-16. https://rml.io/specs/rml/
[11] Souripriya Das, Seema Sundara, Richard Cyganiak: R2RML: RDB to RDF

Mapping Language. 2012-09-17. https://www.w3.org/TR/r2rml/
[12] Dylan Van Assche, Ben De Meester, Pieter Heyvaert, Anastasia Dimou:

YARRRML. 2023-01-26. https://rml.io/yarrrml/spec/
[13] Jonathan Robie, Michael Dyck, Josh Spiegel: XML Path Language (XPath) 3.1.

2017-03-21. https://www.w3.org/TR/xpath/
[14] RDF Mapping Language (RML): YARRRML Parser. 2024. GitHub https://

github.com/RMLio/yarrrml-parser
[15] David Beckett, Tim Berners-Lee, Eric Prud'hommeaux, Gavin Carothers: RDF

1.1 Turtle. 2014-02-15. https://www.w3.org/TR/turtle/
[16] RDF Mapping Language (RML): RMLMapper. 2023-12-06. GitHub https://

github.com/RMLio/rmlmapper-java

GEDCOM to RDF

261

https://personalknowledgegraphs.com/
https://personalknowledgegraphs.com/
https://www.gedcom.org/index.html
https://www.gedcom.org/index.html
https://github.com/jo-pol/gedcom2sem
https://github.com/jo-pol/gedcom2sem
https://github.com/BruceMWhealton/Gedcom-RDF
https://github.com/BruceMWhealton/Gedcom-RDF
https://thewaltons.fandom.com/wiki/The_Waltons_Wiki
https://thewaltons.fandom.com/wiki/The_Waltons_Wiki
http://gedcomx.org/Specifications.html
http://gedcomx.org/Specifications.html
https://github.com/FamilySearch/gedcom5-conversion
https://github.com/FamilySearch/gedcomx-java
https://github.com/FamilySearch/gedcomx-java
https://github.com/hyperdiary/gedcom-transformer
https://github.com/hyperdiary/gedcom-transformer
https://rml.io/specs/rml/
https://www.w3.org/TR/r2rml/
https://rml.io/yarrrml/spec/
https://www.w3.org/TR/xpath/
https://github.com/RMLio/yarrrml-parser
https://github.com/RMLio/yarrrml-parser
https://www.w3.org/TR/turtle/
https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlmapper-java

[17] OpenRefine: GREL Functions. 2024-01–12. https://openrefine.org/docs/
manual/grelfunctions

[18] The Solid Project: Solid. 2024. https://solidproject.org/about

GEDCOM to RDF

262

https://openrefine.org/docs/manual/grelfunctions
https://openrefine.org/docs/manual/grelfunctions
https://solidproject.org/about

Bridging XDM types in multiple native
type systems

O'Neil Delpratt
Saxonica

<oneil@saxonica.com>
Matt Patterson

Saxonica
<matt@saxonica.com>

Abstract

We explore the relationship of XDM types and the native types in the host
language of an XML processing system. In multi-tier language systems
such as SaxonC we find that there is not always that one size fits all
approach to representing data of a native type to what we require in the
XDM type system. Secondly, we look at the complexities of handling num-
bers and strings; it seems simple to represent them across languages and
within the XDM system, but this we found can get cumbersome and com-
plicated. Thirdly, we consider the more complex XDM Map, and how issues
of implicit and explicit type conversion meet issues of XDM and local
idiom. Lastly, we dive into the use case of handling XDM Node objects such
as traversing, cross language memory management (i.e. from Java to C++
and vice versa). On top of that we discuss how we add further complexity in
layering C++ extension to support APIs in Python and PHP which operate
in a managed code environment again.

Keywords: XML, XSLT, XQuery, XPath, C++, Python, PHP, GraalVM,
XDM

1. Introduction

The XML processing languages XPath, XSLT and XQuery have in common and at
their core the XQuery and XPath Data Model (XDM). Over the years, the XDM
has been through several iterations, with increased complexity along the way.
Firstly, we had the XPath data model 1.0, which primarily focused on the tree
structure of the XML document. The data model was composed of seven types of
nodes (root, element, text and attribute). Strings were determined from the type
of the node. At the same time we had XSLT 1.0, which was based on this data
model with additional features.

263

Secondly, we have the XQuery 1.0 and XPath 2.0 Data Model given as a speci-
fication. Here the 1.0 and the XSLT 1.0 data models were combined with addi-
tional data types to support more than just trees. These come from the XML
schema simple types and what we call atomic values, primitive types such as
xs:string, xs:boolean, xs:integer, and xs:date. We also have the notion of a
sequence which is a collection of zero or more items. These items can be nodes,
atomic values or a combination of both.

Thirdly, we have the XQuery and XPath Data Model 3.1 which is based on the
2.0 specification. What is new in this specification is the addition of array and
map types, which are derived from the function type, which is also derived from
an item. At the time of writing, the XQuery and XPath Data Model version 4.0
specification is currently at draft status.

In this paper, we look at the challenges of providing multiple language APIs
to Saxon, in terms of both type system and API design constraints, and some of
the lower-level concerns necessitated by the ways GraalVM manages bridging of
managed Java objects with the unmanaged world of C/C++ and beyond.

As a background, it is important to mention here the building blocks of Sax-
onC. We use GraalVM, a JVM implementation that provides the ability to compile
Java down to native code ahead-of-time, and allows that code to be distributed as
a shared library. Effectively a tiny VM implementation runs in a thread in the
library and allows your native code to call into it. We create a native library using
GraalVM’s native-image technology, which we call SaxonC. This is compiled from
Saxon-J (a pure java implementation) so that we can make calls from other lan-
guages such as C/C++ to the Java code which is now native. The binary library
comes packed with all the compiled JDK libraries, and a VM, required to run the
Saxon-J image for execution. Creating a native image has the benefits of having
faster startup time, low resource usage, flexibility in extending the application
with other languages, and being easier to package.

2. Exploring the gap between XPath and native types
APIs that permit working directly with XDM data – that is, objects within the
XDM type system – outside an XQuery/XPath processor require bridging XDM
and native types. XDM has a different approach to data at a fundamental level
from most of the languages that Saxon runs on, the languages you will use to
bridge into XDM. This makes things hard. Apple's AppleScript programming
language was designed to be easy to understand for non programmers, and leant
heavily into an english-like syntax. One consequence of this was that although it
was easy to read, in many ways that made it very hard to write. Author Matt
Neuberg called this the ‘English-likeness monster’ [4]. XDM’s pervasive use of
Sequences is one of the main points of disconnect between the XDM type system
and most native type systems. I call this the ‘Sequence-likeness monster’.

Bridging XDM types in multiple native type systems

264

2.1. The Sequence-likeness monster

The introduction of Sequences with the introduction of the XPath Data Model
and XPath 2.0 is extremely important. Extending the XPath 1.0 Nodeset concept
to things that weren’t XML Nodes gives XPath much of its power, but also intro-
duces the biggest gap in native and XPath type systems. Let’s look quickly at a
diagram showing XDM Values, Items, and Atomic Values:

Figure 1. The XDM supertypes

A Sequence is a Value, an XML Node is an Item, and a primitive type, like a
String, is an Atomic Value. But, Atomic Values are also Items, which are, in turn,
also Values. This is a kind of inversion of more traditional object and type hierar-
chies, where a primitive type may be a kind of Object, but is certainly not a kind
of meta-collection type (like Value):

Figure 2. A ‘Traditional’ Object-based type system

Because of this type hierarchy all primitive types are also a kind of Value – a
Sequence – even if they can only ever contain 1 item (themselves). Thought about
in terms of the type system of a dynamic language like Python, all Integers in
XDM are also a kind of List-ish thing containing a single member. In fact, every-
thing in XDM is also a kind of List-ish thing, in addition to whatever else it is. In

Bridging XDM types in multiple native type systems

265

some ways Sequences are the simplest XDM type, since, unlike a String, they
don’t have a concrete value, they’re just a collection.

For obviously alien objects like XML Nodes, there is, perhaps, less dissonance
when dealing with these objects in a non-XPath language. They are obviously
unlike a String, or other native primitive type, and so it’s more obvious that inter-
acting with, and manipulating, them is unlike working with a core native type.

Dealing with creating Atomic Values (such as parameters required by an
XSLT), or processing Atomic Values returned by an XPath evaluation, XQuery, or
XSLT invocation is much more slippery. Unless you can guarantee what return
type, perhaps from the type signature of an XPath function or XSLT template, you
have to figure it out at runtime. More critically for this paper, the implementer of
the native bindings for the XDM processor, have to figure it out as well, and then
they need to provide meaningful mappings between XDM Atomic Values and
native types.

XPath 1.0 had a significantly simpler data model, but even then this was a
complex issue. JAXP’s XPath evaluation methods return String or Object, and the
user needs to know in advance what kind of thing their XPath will return (a node,
a sequence, a primitive value) and pass it to the evaluation method as an addi-
tional argument.

Purely from the point of view of the user, XPath 3’s richer data model, and
increased dynamism (higher order functions and fn:transform, for instance)
make it hard for implementers to expect users to know the return types of XPath
expressions they might need to execute in advance, and, from the implementer’s
point of view, those same issues make it impossible to avoid dealing with the
complexity of dynamic return types, whether the host language is dynamically or
statically typed.

2.2. Dynamic and Static typing

XPath is a dynamically typed language. It’s possible to specify strong require-
ments for parameter and return types, but it’s not required in all situations. Many
host languages, such as Java or C++, are statically typed. A situation where code
in the host language is used to invoke an XSLT that is specified at runtime, and
whose parameters (and their types) are therefore also not known until runtime is
not an unusual one. Neither is a situation where an XSLT’s return value differs in
type based on the content it’s processing unusual.

With a dynamically typed language there’s an expectation of, and language
support for, returning multiple possible types from any given function or
method. A user is likely to be comfortable with the idea that they’ll have to deter-
mine exactly what they got back at runtime, and process accordingly.

With a statically typed language, that’s much more difficult. Without knowing
the type in advance, a user must use a native type that represents an XDM super-

Bridging XDM types in multiple native type systems

266

type like Value, and an implementer, like Saxon, can only return more specific
types if they add extra type-specific invocation methods.

2.2.1. Creating XDM objects

The primary need for users of an XML processing system to create XDM objects is
to hand them to the processor for processing, usually as parameters, as when
invoking an XSLT transformation. Of course, parsing an XML document itself
into an XDM Node is also an example of this, but we’re concerned here primarily
with XDM objects other than document trees.

There are two ways to create an XDM object from a native object. The XDM
type can be inferred from the native type, implicit conversion. At it’s simplest,
this could mean converting a native String to an Atomic Value of type xs:string.
A complex example is converting a JavaScript object to an XDM Map. Here’s an
example using SaxonJ’s implicit conversion:

import net.sf.s9api.XdmAtomicValue;
new XdmAtomicValue("string"); // => An xs:string
int v = 1; new XdmAtomicValue(v); // An xs:int
double v = 42.0; new XdmAtomicValue(v); // An xs:double
new XdmAtomicValue(LocalDate.now()); // An xs:date

And using Saxon JS:

SaxonJS.atom(42.0); // An xs:double
SaxonJS.atom(true); // An xs:boolean
SaxonJS.atom("string"); // An xs:string

The other approach is explicit conversion, where the XDM type is specified
along with the native value to be converted or a function that generates a specific
type is called. Here’s an example using SaxonC:

#include "XdmAtomicValue.h"
double d = 42;
XdmAtomicValue *value = XdmAtomicValue::makeDoubleValue(d);

And using SaxonC Python:

from saxonche import PySaxonProcessor
proc = PySaxonProcessor()
value = proc.make_double_value(42.0) # as xs:double
value = proc.make_atomic_value("date", "2024-06-08") # an xs:date

The last example above illustrates a variant of explicit conversion whereby the
type is specified and the value is given using its XML Schema lexical string repre-
sentation (like XML element or attribute content that was typed using an XML
Schema).

Bridging XDM types in multiple native type systems

267

2.2.2. Converting XDM object into native objects

Converting XDM objects into native objects is where the differences between
static and dynamic typing are more apparent. Given an XPath evaluation that
returns an XDM Value that we know will return a single Item, but the exact
return type of the Item is not known, what can be done to convert that into a
native object of an appropriate type?

With a statically typed language, about the best we can do is to provide meth-
ods on the various Value and Item objects / subclasses that report what kind of
thing they are, along with methods to produce a specific native type, like a long
or boolean. Then, we can use those methods in combination with branching logic
to get values with correct native types out:

SaxonProcessor *processor = new SaxonProcessor(false);
XPathProcessor *xpathProc = processor->newXPathProcessor();
xpathProc->setLanguageVersion("3.1");
xpathProc->setContextItem((XdmValue*) input);
XdmItem *result = xPathProc->evaluateSingle(".[last()]");
if (result.isAtomic()) {
 switch(result.getPrimitiveTypeName()) {
 case "Q{http://www.w3.org/2001/XMLSchema}int":
 long num = result.getLongValue();
 }
}
This is complex and verbose. With a dynamically typed language there’s more

scope for API convenience for the user. Saxon JS is designed for very close inte-
gration in a JavaScript runtime, so calls to SaxonJS.XPath.evaluate and
SaxonJS.transform will return results where the XDM objects are converted into
JavaScript values, following the rules set out in its documentation (see [1]). These
rules are complex, and neatly illustrate the trade off between convenience for the
user and complexity for the implementer.

Object.is(SaxonJS.XPath.evaluate("true()"), true) // => true
SaxonJS.XPath.evaluate("map { 'a': 1 }") // => {a: 1}
SaxonJS.XPath.evaluate("map { 'a': 1 }")['a'] // => 1

2.3. Numbers
We’ve talked about the issues of moving between native types in a Saxon API
host language, and native XDM types in terms of differences in the type systems,
but the other issue is simply the different ways most programming languages
and XDM think about how their primitive types work, and what shape they are.
It’s worth looking in more depth at the conversion of numeric types. Numeric
types are (perhaps surprisingly) complex to deal with. XDM’s numeric types owe
a lot to C and Java’s numeric types. As a result there are a lot of different numeric

Bridging XDM types in multiple native type systems

268

types. The following two tables shows XDM’s numeric types, and the types for
Java, C++, Python, and JavaScript.

Table 1. XDM numeric types

xs:float
xs:double
xs:decimal
 xs:integer
 xs:nonPositiveInteger
 xs:negativeInteger
 xs:long
 xs:int
 xs:short
 xs:byte
 xs:nonNegativeInteger
 xs:unsignedLong
 xs:unsignedInt
 xs:unsignedShort
 xs:unsignedByte
 xs:positiveInteger

Bridging XDM types in multiple native type systems

269

Table 2. Other languages

Java C++ Python JavaScript
NumericType bool int Number
 IntegralType char float
 byte signed char complex
 short unsigned char fraction.Fraction
 int wchar_t decimal.Decimal
 long short
 char int
 FloatingPointType long
 float long long
 double unsigned short
 unsigned
 unsigned long
 unsigned long

long

 float
 double
 long double

The main thing that sticks out is that while there’s some overlap between the type
systems, the XDM numeric types are more numerous even than the C++ types, if
you take into account the four C++ types that are integers representing characters,
and comically more numerous than JavaScript’s single Number type. There’s no
simple, 100% reliable type conversion possible. Distinctions like
xs:nonNegativeInteger and xs:positiveInteger are effectively impossible to
capture in any other type system, and, of course, what could you do if the num-
ber you need to pass into a processor is a Python complex number?

Converting between numeric types of different bit length is called widening,
when converting from a smaller to a larger type (short to long, for example), and
narrowing when converting from a larger to a smaller type, or from a floating
point to an integer type (long to short, float to long). Widening doesn’t lose
information, but narrowing can. Java specifies how these kinds of conversions
should work (see [2]), and C++’s Core Guidelines have a section on avoiding nar-
rowing conversions (see [3]). The XQuery and XPath Data Model ([5]) and XML
Schema Part 2: Datatypes ([6]) specifications don’t really talk about these conver-
sions at all. Casting from one type to another numeric type is covered briefly in

Bridging XDM types in multiple native type systems

270

([7]), but these are largely implementation dependent questions. (Casting to
xs:integer is mentioned, but not xs:short or xs:byte.)

Many conversions would require runtime checking of values to ensure that a
given non-XDM numeric object’s value fits within the allowed range of, say, an
xs:positiveInteger, or an xs:byte when converting from a Python integer or
JavaScript number. If the values are not checked then strange behaviours in the
XPath / XQuery code could happen if there are dramatic silent truncations of
input values, and implementations should raise exceptions if lossy narrowings
occur.

2.4. How long is a (piece of) String?

Let’s continue to look at the different ways XDM and other type systems shape
their primitive values. Take the example of XDM’s xs:string Atomic Value.
Strings are interesting in this case because they are a data type that has intrinsic
length (the number of characters they contain).

In the XDM type system, the following statements are all true:
• The length of the XDM Atomic Value representing the string "Hello World"

is 11.
• The length of the XDM Atomic Value representing the string "Hello World"

is 1.
• The length of the XDM Atomic Value representing a string containing 2^10

characters is 1.
On its face, this seems ridiculous, but it shows up one of the ways XDM dif-

fers in the way it views the shape of data. In XDM, all Atomic Values are a kind of
Item, but all Items are also Values, which are collections – Sequences. An Atomic
Value is an XDM Value containing a single Item, a sequence of length 1, in other
words. So, the Atomic Value is both a Sequence containing a single item, and a
primitive value containing a number of codepoints.

In XPath this isn’t a particular problem - to get the length of a string in XPath
you use fn:string-length(), and fn:count() to get the length of a sequence. In
host languages which are more traditionally object-oriented, you would expect to
query the Atomic Value itself to find out that information.

In Python, for example, the length of a string is simply the number of code-
points it contains. There is no sense that this primitive type could also be thought
of as a container collection of itself.

XDM strings are Unicode strings, which is not true in C and C++ (and used to
not be true in Python). Wanting to pass an XDM string into a processor and want-
ing to get a non-unicode string (perhaps just the string’s representation as UTF-8
encoded bytes) makes working with XDM string objects trickier and the design of
an API for wrapped XDM objects which supports making use of the them as

Bridging XDM types in multiple native type systems

271

XDM objects (iteration over sequences, perhaps) and as containers of native or
native-like objects (wanting to get substrings or string lengths) needs implement-
ers to consider the idioms of both XDM and the host language carefully.

2.5. How do you get a value from an XDM Map in Python?
Maps in XDM are also Atomic Values, and Maps are widely used in other lan-
guages. Wanting to expose an XDM Map in a host language involves making
choices about what idioms to use, and which to discard. XDM Maps are immuta-
ble, unlike maps in most languages, which introduces API friction when creating
an XDM map, especially in languages where creating a map all-at-once with a lit-
eral syntax is either not especially idiomatic, or just plain impossible.

When fetching a value, we need a key. What is the key? In the most trivial
case, paralleling a JSON Object, the key is an XDM Atomic Value with type
xs:string. Next, how do we construct that Atomic Value? Can we allow a
Python user to call a method on the Map and pass in a Python string? Do we
need to require explicit construction of an xs:string Atomic Value? If we allow
native Python primitives, do we require separate API methods for getting values
using Python types versus using XDM Atomic Values?

As we can see, even in this trivial example there are a host of questions which
need answering, none of which are themselves trivial.

If we allow Python primitive values to be used in place of XDM Atomic Val-
ues in the Python API equivalent of map:get(), how do we convert them?

The end goal is to have Saxon construct an Atomic Value – a string – whose
contents match the Python string we started with. We need to extract the bytes of
the Python string, pass that C-level byte array into the Java internals using the
GraalVM C API, and construct an Atomic Value from that Java string.

Once we have an Atomic Value, we can call the get() method of the XDM
Map with the key as its argument, and hand back the resulting value.

But what is that value? When invoking an XSLT via the API it’s very easy to
overlook this question: the result of the transformation is written to a file, or per-
haps serialized to a string, neither of which require dealing with an XDM Value.
When retrieving a value from an XDM Map, the result is an XDM Value. Should
this be converted to an equivalent primitive type in Python, so that an xs:string
value becomes a Python string? What about more exotic XDM Value types? What
do you do with an XDM Function Item?

If we consider Pythonic idioms, we would expect the map to respond to the []
operator to return values, as with value = xdm_map[key]. Of course, considered
as a sequence, we would expect the map to respond to the [] operator to return
items from its 1-item sequence: itself in other words.

xdm_map is xdm_map[0] # => true
This is a problem for the API designer.

Bridging XDM types in multiple native type systems

272

XPath 1.0 had a significantly simpler data model, but even then this was a
complex issue. JAXP’s XPath evaluation methods return String or Object, and the
user needs to know in advance what kind of thing their XPath will return (a node,
a sequence, a primitive value) and pass it to the evaluation method as an addi-
tional argument. XPath 3’s richer data model, and increased dynamism (higher
order functions and fn:transform, for instance) make it harder to get away with
requiring the user to have to know the return types of their expressions in
advance.

2.6. Unicode strings

It’s also worth looking at the issue of Unicode strings more closely. In Python and
XDM we can simply say that a string is a sequence of Unicode codepoints. (This
wasn’t always true in Python, but with Python 3 it is). How bytes get translated
into Unicode codepoints is a matter of encoding. Conceptually at least, passing
strings from Python into Saxon should be straightforward.

As we mentioned above, SaxonC is implemented using GraalVM’s native-
image feature. One of the things that means is that to pass data between our API
host language (Python in this case) and the Saxon internals we have to use
GraalVM’s C API. We are used to thinking of strings purely in terms of Unicode,
and the encoding of those strings into bytes is an internal concern of the XML
processor, or of Python, but here we are forced to deal with it: C byte arrays have
no intrinsic encoding, just bytes, and while you can get lucky most of the time by
assuming that the byte arrays you’re passing around contain UTF-8-encoded
strings, this isn’t always the case, and some library functions in Java vary the
encoding they use based on OS or other locale settings, and of course Unicode
representations in C are heavily dependent on locate settings or environment var-
iables.

What does that mean for the case where Python strings (Unicode) need to be
passed across the GraalVM API to construct XDM strings (also Unicode)?
Effectively every C-based call needs to pass the byte array and the name of the

encoding used, or the GraalVM Java API functions that reconstruct Java Strings
from byte arrays passed in will assume UTF-8, even if it isn’t. The main SaxonC
API provides XDM wrappers as C++ classes, but even there you need to specify
as the GraalVM API is C, not C++.

The intrinsic Unicode-awareness of all strings within Saxon internals (simply
as a side-effect of being implemented in Java) means that even strings you might
not think twice about, like filenames, that need to be passed through the
GraalVM C API must have their encoding specified explicitly to avoid bugs
where problems appear, but only in certain circumstances, like on one OS, or
with environment variables set to certain values. These can be a nightmare to deal
with because they can be so hard to reproduce for debugging purposes. Likewise,

Bridging XDM types in multiple native type systems

273

any Saxon APIs provided in another host language, like the Python API, need to
make sure they supply encoding with string data when calling across GraalVM
into Saxon proper.

3. Traversing XDM Nodes via the API
The navigation of XML trees in XPath is fundamental to most things we do with
XML languages like XQuery and XSLT. The non-XML syntax in XPath is both
powerful and succinct, but at the same time the XPath expressions for many tasks
are simple to use for navigation. For example, traversing forward in XPath can be
done as follows: /doc, //person, /doc/person[2]/firstname. Likewise back-
ward traversal can be done as follows: /expr/../.., where the expr is a valid
XPath expression.

Navigation of XML trees via an API to do the same simple task as an XPath
expression is verbose and error prone, but is very powerful and useful because it
provides a way to integrate into other multi-tier systems, extensions for program-
ming languages and simply the flexibility to support user requirement where per-
formance is a criteria. Often what we are dealing with is accessing the vendor’s
XPath implementation API at some lower level. There are a lot of comparisons
and relationships that can be drawn with when navigating XML tree between the
XPath languages and APIs. See below a C++ code snippet to access the child
nodes and get the string represented at that node from a parent node object. Note
that in this implementation it is the users requirement to delete the associated
memory when finished.

int childCountA = node->getChildCount();
XdmNode **childrenA = node->getChildren();
XdmNode *child = childrenA[0];
XdmNode **children = child->axisNodes(EnumXdmAxis::CHILD);
int childCount = child->axisNodeCount();
for (int i = 0; i < childCount; i++) {
 const char *childStr = children[i]->toString();
 cout << "child node:" << (childStr) << endl;
 operator delete((char *)childStr);
}
for (int i = 0; i < childCount; i++) {
 delete children[i];
}
delete[] childrenA;
delete node;

There are more elegant ways to traverse XML trees in APIs even in C++, but these
features are often restricted or best suited to certain programming languages,
such as Python, Java and C#. For example, in Java we have functional interfaces

Bridging XDM types in multiple native type systems

274

like the following streams-based APIs (similar techniques we can find in Python
APIs and Linq in C#):

for (XdmNode pack : testInput.select(
 child("package").where(
 attributeEq("role", "secondary"))).asListOfNodes() {
 ...
}

In SaxonC on Python such a query we can write as follows:
packs = (pack for pack in testInput.children
 if (pack.name == 'package' and
 pack.get_attribute_value('role') == 'primary'))

This is equivalent to iterating over the result of XPath expression
package[@role='secondary'], but it saves the cost of compiling the expression,
which is often much greater than the execution cost. When writing XPath expres-
sions the focus is the XML data we are querying, providing valid expression and
its efficiency, but there is a lot happening under the hood by the implementation
without the user needing to care much about how its done. For APIs your focus is
not just on the XML data, but also efficiency in coding, memory management of
the XML node objects created and how you represent the data as discussed in the
previous sections on handling strings. This is in addition to the XPath and host
language syntax and the actual data and paths you are navigating itself.

We now look at how we implement support for XML tree navigation in a C++
API. We chose C++ as the programming language here because its the path we
have chosen for providing the basis for extension APIs in languages such as PHP
and Python. The C++ API also sits on top of a Java API compiled to native using
GraalVM. A traversal of an XDM Node as in a SaxonC application is in the con-
text of XPath, XQuery and XSLT processing.

For something as simple as traversing node objects it becomes difficult to sup-
port when implemented in multi-tier languages. Multi-tier languages means
interfacing with an application written in one programming language and its
environment from another language. There is often further interfacing of lan-
guages. For example, in SaxonC, the porting of the application written in Java to
C++ is achieved using GraalVM. PHP and Python APIs are built on top of the C++
API. We have some important questions that need answering: how do we make
callbacks between the C++ and Java environments? and how do we hold on to
objects in C++ that have been created in the Java space? Also, how could we pre-
vent Java’s garbage collection getting in the way when a Java object is still in use
in C++?

The first question we will discuss with an example of getting a node and its
child nodes. The second and third question we will discuss later as we explore
the GraalVM’s APIs, specifically the ObjectHandle and ObjectHandles.

Bridging XDM types in multiple native type systems

275

3.1. Get a node, get its children

In the SaxonC C++ API, XdmNode objects are created by either parsing from some
XML string, file or as a result of firing an XPath, XQuery or XSLT execution. As
mentioned above we are calling back to the Saxon Java internals to create an in-
memory representation of the XML document, which is a Java XdmNode object.
This Java object is not directly returned to C++. Instead we use GraalVM’s
ObjectHandle API to return to C++. We will come back to talk about
ObjectHandle, but for now, keeping things simple, we have a reference in C++,
which allows us to get to the underlying Java object when we need to do some
processing in the Java world. This we use to make callbacks to get child nodes in
the following ways:
• getChild(ith) - Gets the ith child node from a current node
• getChildren() - Get all the child nodes from the current parent node
• axisNodes(axis) - Get the array of nodes reachable from this node via a

given an XPath axis.
In the C++ code, for each case above we call back to Java, for example, to get the
child node getChild(ith) we get the Java XdmNode child object from its parent
node. Then we return a representation of that object to the C++ code (i.e. an
ObjectHandle object from GraalVM). We have wrapper classes in C++ containing
the ObjectHandle reference to the Java XdmNode object. At this stage, note that it
does not matter how we represent the Java object in the C++ code, just realise that
it can be complex. There are many other techniques for passing objects between
languages. Some more efficient than others. For example, the Java native interface
(JNI) is a common option to access the C API, but it can be slow and error prone.
Another method is via native COM components, also web services via HTTP
requests and other methods which are more complicated. If languages involved
are in the same runtime (i.e. .NET, JVM), then it is possible to pass objects from
one language to the other. For sure, implementers who are interfacing with an
XPath implementations in multi-tier languages have to make the choice between
these different methods.

3.2. GraalVM’s ObjectHandle and ObjectHandles pool

GraalVM compiles a Java application into a native application that has its own
executable. It also has the capability to create a native library which can be called
from other programming languages, for example, directly using C/C++, or using
the Truffle API for other programming languages such as Python, etc. For C/C++,
GraalVM supports callbacks into the Java code using two different interface
mechanisms. The first one is the Java native interface (JNI), which is a standard
JDK API and secondly, directly through GraalVM’s Native Image C API [9]. For

Bridging XDM types in multiple native type systems

276

the latter, GraalVM exposes Java methods by marking the method with
EntryPoint annotations which GraalVM interprets and creates C like interfaces
to the methods. These methods are now available as export methods from the
native library which can be used by C/C++ code. We make callbacks on the wrap-
ped Java objects in the C/C++ API layer using the entry points, which we consider
as being more efficient than using JNI.

We can easily make callback to the Java object from C++ and work with primi-
tive Java/C++ types. But to manage Java objects from C++ is not so easy and pre-
venting objects getting garbage collected (GC) by the Java JVM ahead of time
before the object use is finished in the unmanaged C++ code is an issue. Java
objects are held as references in an intermediate C++ interface. To achieve this we
use GraalVM’s ObjectHandle API. A ObjectHandle is a an opaque representation
of a handle to a Java object which is given out to unmanaged code (i.e. C/C++).
We also use GraalVM’s ObjectHandles API as a pool of ObjectHandle, which is a
managed set of ObjectHandles to keep alive the Java objects in memory and pre-
vent them from being garbage collected.

Given our node traversal example: We get a child node in Java, create an
ObjectHandle for it, add it to the ObjectHandles pool, and then return the
ObjectHandle reference to C++ which will then get wrapped in a C++ XdmNode
object. Another layer of wrapping will take place if we are in a Python or PHP
application. This child node object will stay alive until we remove it from via
ObjectHandles set.

3.3. Telling GraalVM you are not using an object

When working with XDM node objects in processors such as XSLT, XQuery,
XPath and Schema Validator from C++/Python/PHP languages it is not always
obvious when the object is no longer needed. This is because references can be
held as external variables or structures, internally in the processors or a combina-
tion of both. As mentioned before the ObjectHandles API prevents the GC delet-
ing the object.

We must make sure that deallocating the C++ XdmNode object which wraps an
ObjectHandle cascades down to remove the associated Java object held in the
ObjectHandles pool, else we have memory leaks with objects that never get
deleted. Removing an object from the ObjectHandles pool will make the object
available for GC. Languages such as Python and PHP have their own GC. These
also need to inform the internal program when objects are to be freed.

3.4. How do you know when you’re not using an object?

Processors hold and then release XDM objects that were used in execution, for
example, used as a parameter or context item. In the C++ environment it is mostly

Bridging XDM types in multiple native type systems

277

the users responsibility to deallocate the memory associated with objects they no
longer need. To solves this we add internal hooks (i.e. reference counting) on
objects if they are still indirectly required by processor. We then hand over the
deallocation responsibility to the internals of the processor object.

In the PHP and Python world it is somewhat more complicated because we
are in a managed code environment which has its own GC. Here we have to add
our own reference counting techniques to ensure that PHP or Python’s GC
doesn’t cause GraalVM’s GC to either be called too early, or not to be called at all.
Likewise, if for example an XDM node object is no longer used in the Python
script the reference count for that object at that point should be zero. Therefore
we can safely delete that object. At the same time we expect that child nodes
which have been created exist independent of the parent node and therefore are
relinquished to the Python GC, which will have its own reference counting
checks.

4. Memory Management
Managed code, in simple terms, is code that is managed at execution time. In
Java’s JVM the code is translated into an intermediate language which is interpre-
ted and executed. The entire memory management is taken care of by the runtime
using the garbage collection feature.

Unmanaged code is when the code is compiled to native code or machine
code and executed by the operating system. The whole memory management of
the program is unmanaged; therefore it is the user’s responsibility to handle the
memory allocated by the program throughout its span, and delete it when no lon-
ger needed and when the program is terminated. Correct memory management
is important to avoid errors and memory access violations such as segmentation
faults.

The management of memory in C++ is fundamental. There are two aspects we
would like to talk about here: Firstly, how we keep alive objects such as XDM
Node objects in main memory. And secondly, how we create and return strings
from the internal Java code which needs to be returned in C++. For example, seri-
alising nodes, returning the XSLT transform as a string and executing an query to
string.

In SaxonC, for XDM node objects we have our own memory management
where we keep a reference counter in the objects for where the object is used. We
use this to prevent the object from being deleted too early. This is particularly
important in extension languages like Python and PHP which have their own GC.
If the XDM object is internally referenced by processors and variables then we
keep alive these XDM node objects using the reference counter, until they are no
longer referenced.

Bridging XDM types in multiple native type systems

278

For the textual data that we create in the Java code and which needs to be
returned to the C++ API we create this data directly in the C++ memory space. In
essence, we are allocating the C++ memory space from managed code (i.e. Java).
This we found to be the more efficient because we are not having to make unnec-
essary copies of the data. The pointer to the string is returned to the user with the
responsibility to deallocate the associated memory when finished with the data.

5. Conclusion
Providing meaningful API access to XML processing with Saxon requires that
API users can construct and make use of XDM Values. In host languages other
than Java or JavaScript, this means directly or indirectly using SaxonC, with its
GraalVM-C-API-based bridge between Java and C/C++.

The XDM view of the world is very different to the way that most host lan-
guages structure data. XDM wrappers that bridge between the worlds need to be
a first-class part of any API, otherwise it’s extremely difficult, or impossible, to do
anything other than simply invoking a transform or query. Passing parameters or
arguments in to a transform or XPath evaluation as lexical XPath strings, as in the
XPath 1.0 days, is no longer viable.

Providing first-class XDM wrappers to API clients in other languages for
Saxon through SaxonC requires wrangling the expectations of managed code in
the core Java runtime, and the managed code in the host language runtime
through the unmanaged layer of GraalVM’s C API and SaxonC’s own C++ classes.
Correctly managed, this allows, for example, a Python user to make use of XSLT
3.0, and XPath/XQuery 3.1 in a way that feels idiomatically Pythonic, and more
generally expands the base of developers who can make use of modern XML
technologies. We still have a lot of room to improve, and we hope that this survey
of some of the higher-level challenges and lower-level engineering will be useful
to other implentors and users, as well as ourselves.

Bibliography
[1] Saxonica: Type Conversion between JavaScript and XDM, https://
www.saxonica.com/saxon-js/documentation2/index.html#!xdm/conversions

[2] James Gosling, Bill Joy, et al. The Java Language Specification, Chapter 5.
Conversions and Contexts, https://docs.oracle.com/javase/specs/jls/se22/html/
jls-5.html

[3] Bjarne Stroustrup and Herb Sutter, editors C++ Core Guidelines, ES.46 Avoid
lossy (narrowing, truncating) arithmetic conversions, https://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines#es46-avoid-lossy-narrowing-
truncating-arithmetic-conversions

Bridging XDM types in multiple native type systems

279

https://docs.oracle.com/javase/specs/jls/se22/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se22/html/jls-5.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es46-avoid-lossy-narrowing-truncating-arithmetic-conversions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es46-avoid-lossy-narrowing-truncating-arithmetic-conversions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es46-avoid-lossy-narrowing-truncating-arithmetic-conversions

[4] Matt Neuberg Applescript: The Definitive Guide 2nd edition, https://
www.oreilly.com/library/view/applescript-the-definitive/0596102119/
ch04s03.html

[5] Norman Walsh, John Snelson, and Andrew Coleman, editors XQuery and
XPath Data Model 3.1, https://www.w3.org/TR/xpath-datamodel-31/

[6] Paul V. Biron and Ashok Malhotra, editors XML Schema Part 2: Datatypes
Second Edition, https://www.w3.org/TR/xmlschema-2/

[7] Michael Kay, editor XPath and XQuery Functions and Operators 3.1 § 19.1.2
Casting to numeric types, https://www.w3.org/TR/xpath-functions/#casting-to-
numerics

[8] GraalVM, https://www.Graalvm.org/
[9] Kevin Menard: Embedding Truffle Languages, on May 9, 2022 https://
nirvdrum.com/2022/05/09/truffle-language-embedding.html

[10] Abel Braaksma (Exselt): Writing more robust XSLT stylesheets by understanding
and leveraging the XDM data model. XMLPrague 2019, Prague, 7-9 February
2019 https://archive.xmlprague.cz/2019/files/xmlprague-2019-
proceedings.pdf https://youtu.be/Y2sRDh-ymBU?si=jgLeE269SwxbYd97

[11] Rennau, Hans-Jürgen, and David A. Lee. XDML - an extensible markup
language and processor for XDM. Presented at Balisage: The Markup Conference
2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The
Markup Conference 2011. Balisage Series on Markup Technologies, vol. 7
(2011). https://doi.org/10.4242/BalisageVol7.Rennau01

Bridging XDM types in multiple native type systems

280

https://www.oreilly.com/library/view/applescript-the-definitive/0596102119/ch04s03.html
https://www.oreilly.com/library/view/applescript-the-definitive/0596102119/ch04s03.html
https://www.oreilly.com/library/view/applescript-the-definitive/0596102119/ch04s03.html
https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath-functions/#casting-to-numerics
https://www.w3.org/TR/xpath-functions/#casting-to-numerics
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://youtu.be/Y2sRDh-ymBU?si=jgLeE269SwxbYd97
https://doi.org/10.4242/BalisageVol7.Rennau01

natural-xml-diff: an XML Diffing Library
Martijn Faassen

Paligo
<faassen@startifact.com>

Abstract

natural-xml-diff is a software library written in the Rust programming lan-
guage that produces a structure-aware difference between two XML docu-
ments. The diff is aimed to be human-readable and is produced efficiently for
typical document-style content. natural-xml-diff creates a document
describing the difference, not just a sequence of edits, and this diff document
is post-processed to further improve the human readability of the diff.

1. Introduction
natural-xml-diff is a software library written in the Rust programming lan-
guage that produces a structure-aware difference between two XML documents.
The diff is aimed to be human-readable and is produced efficiently for typical
document-style content. Here is a simple example:

We have a source document:

<doc>
 <a/>

</doc>

And a target document:

<doc>
 <a/>

 <c/>
</doc>

As we can see, the c element has been inserted compared to the source document.
natural-xml-diff expresses the difference as follows:

<doc xmlns:diff="http://paligo.net/nxd">
 <a/>

 <c diff:insert=""/>
</doc>

281

The target document can be constructed from this diff document by applying the
insertion (simply removing the diff:insert attribute). The source document can
also be constructed by removing the element with the diff:insert attribute.

natural-xml-diff supports all types of XML content, elements, text and
attributes, and also comments and processing instructions. Information about
cdata sections and custom entity references is not retained: these are normalized
to normal text nodes during parsing.

natural-xml-diff reuses the JNDiff algorithm as its core algorithm, but
improves on it in various ways. natural-xml-diff has a well-tested, robust
implementation.

2. Goals
The goal of natural-xml-diff project was to create a production-ready library
that supports high-quality human-readable diffs for document-style XML, in par-
ticular Docbook, though natural-xml-diff's implementation is XML format
agnostic.

The diffing algorithm should perform well for reasonably-sized documents,
and not crash given correct XML input. It should produce correct output.

Not all correct diffs are equal. It is easy to create a correct diff between docu-
ment A and B by deleting all the content of A and then inserting the complete
content of B, but this is not very practical or semantically useful. What human
authors and editors want is a diff that is useful at a human level. This means the
diff should be similar to how a human author would express it, like “I inserted a
word after this word” or “I deleted this paragraph”. Diffs should also be minimal,
but not at the cost of semantic usefulness: inserting and removing of entire words
can for instance be easier to understand than more compact character-level diffs.

3. Diffing Annotations
Diffing operations are represented inline in an XML diff document. Both the
source document as well as the target document can be reconstructed from this
XML diff document. These reconstructions have the same normalized XML con-
tent, though they may differ in details of serialization. All annotations are in the
diff namespace http://paligo.net/nxd and take the form of elements and
attributes. What follows should give an impression of what natural-xml-diff
supports.

3.1. diff:same
Attribute (with empty value) added to the document element if the documents
contain no differences at all.

natural-xml-diff: an XML Diffing Library

282

<doc diff:same="">...</doc>

3.2. diff:insert and diff:delete
Attributes (with empty value) added to an element if it is either inserted into
source, or deleted from source.

<doc><p>One</p><p diff:delete="">two</p><p>three</p></doc>

3.3. diff:text-insert and diff:text-delete
Marks insertions and deletions of text. Their text content is the inserted or deleted
text from the source compared to the target. It can be configured whether this is a
character-level or word-level diff.

<section>
 <p>This is a paragraph with <diff:text-insert>new text</diff:text-
insert> and
 <diff:text-delete>deleted text</diff:text-delete>.</p>
</section>

3.4. diff:wrap and diff:unwrap
If enabled during diffing, diffing is marked up with inserted elements to wrap an
existing element. For instance:

<p>Hello <b diff:wrap="">world!</p>

means that a new b tag was inserted around the text “world”. diff:unwrap is the
inverse operation, where an element is removed.

<p>Hello <b diff:unwrap="">world!</p>

If this feature is turned off, wraps and unwraps are represented as delete/insert
combinations.

3.5. diff:attributes, diff:attr-update, diff:attr-insert,
diff:attr-delete
diff:attributes is an element that represents inserts, updates and deletes of
attributes in its parent element.

Here is an example of an update, where the element marked with attr-
update has the name of the attribute that was updated, and its content is the

natural-xml-diff: an XML Diffing Library

283

value of the attribute before the update. The attribute itself contains the updated
value:

<section a="A!" b="B">
 <diff:attributes>
 <a diff:attr-update="">A
 </diff:attributes>
 <p>Txt</p>
</section>

3.6. diff:pi-insert, diff:pi-delete, diff:comment-insert,
diff:comment-delete
These are custom diff elements that let you express a deleted or added comment
or processing instructions:

<diff:pi-insert><?my pi?></diff:pi-insert>

3.7. diffing a diff document
You can diff the output of natural-xml-diff. If a document is detected to be a
natural-xml-diff document, a new diff-meta namespace prefix is used for the
diffing annotations, with the http://paligo.net/diff-meta namespace. If you
diff a diff of a diff (read that carefully!), the prefix metametadiffand the URI
http://paligo.net/diff-meta-meta is used, and so on.

4. Prior Art
How to implement semantically useful diffing for structured documents is not
obvious. When we set out to create natural-xml-diff we wanted to learn about
the best approaches to implement this algorithm.

We had previously examined xmldiff1, a Python project that can produce diffs
between XML documents. Unfortunately we had identified a number of cases
where it produced correct but far from human-readable diffs. We also found that
its performance degraded significantly with even moderate document size.

The xmldiff project has an interesting history - while it has been in existence
since 2004, it had been completely rewritten in 2018. Both original and reimple-
mentation are based on Chawathe et al. (1996) , a paper written before the emer-
gence of XML. This paper describes a diffing algorithm for hierarchical
information. It does not aim for human-readable diffs or document-style content,
and the focus is on the performance characteristics of the algorithm itself and the

1 https://pypi.org/project/xmldiff/

natural-xml-diff: an XML Diffing Library

284

https://pypi.org/project/xmldiff/
https://pypi.org/project/xmldiff/

minimality of the produced diff Barabucci et al. (2016) . Minimality is only one
aspect of a useful diff, and the easiest one to measure, but does not indicate much
about usefulness to human authors.

We then discovered the overview paper Cuculovic et al. (2020) . The authors
performed a comparison study of 12 different XML diff implementations that
were state of the art in 2020, with a focus on semantically useful diffs. This was
exactly the kind of survey we needed. A previous comparison study Cobena,
Abdessalem and Hinnach (2002) was less useful, as its quality comparison
focused on minimality, remarking that the semantic value cannot be easily cap-
tured.

From the Cuculovic et al. (2020) , it became clear that the JNDiff2 algorithm,
described by Ciancarini et al. (2016) and Di Iorio et al. (2009) , was the most prom-
ising candidate for further evaluation. The same group produced several studies
into a qualitative analysis of diff algorithms, Barabucci et al. (2013) , Barabucci et
al. (2014) , and Barabucci et al. (2016).

A more recent implementation, jats-diff3, is described by Cuculovic et al.
(2022). This implementation is based on the original Java source code of JNDiff
(including comments in Italian) and adds a new layer for further refinement and
cleanup of the diff.

5. Implementation Considerations
JNDiff's implementation status was not conductive to adoption for production
use: the source was last updated close to 10 years ago at the time of writing, it has
comments and API documentation in Italian, a language we do not speak. In
addition, later on in the project we discovered some XML structures for which
JNDiff produced the wrong output, as we will discuss later.

The far more recent jats-diff tool at first glance looked more promising, but
unfortunately in our testing this algorithm failed to complete in a reasonable time
on some tests inputs, and thus did not appear to have the performance character-
istics we required. The maintainability status of the jats-diff software is also in
question given its reliance on the original JNDiff source code, including Italian
comments. The fact that jats-diff extends JNDiff with additional semantically rich
operations such as a move operation is interesting, but representing these
advanced operations in a user interface provides significant challenges. We deci-
ded therefore to focus on the smaller subset of operations as described previously.

The JNDiff algorithm as described by Ciancarini et al. (2016) as well as the
JNDiff Java source code still provided the best starting point for our efforts. In
order to make this algorithm useful for production, we decided to modernize and
improve the JNDiff algorithm by reimplementing it from the ground up in the

2 https://sourceforge.net/projects/jndiff/
3 https://github.com/milos-cuculovic/jats-diff

natural-xml-diff: an XML Diffing Library

285

https://sourceforge.net/projects/jndiff/
https://github.com/milos-cuculovic/jats-diff
https://sourceforge.net/projects/jndiff/
https://github.com/milos-cuculovic/jats-diff

Rust programming language. We chose Rust because the algorithm is computa-
tionally intensive, and Rust lends itself well to performant software that is robust.
We found the Java implementation difficult to follow due to a reliance on class
inheritance. In our Rust implementation we have implemented it in a more proce-
dural fashion, which we believe is easier to understand and maintain. The reim-
plementation is extensively documented.

6. JNDiff Algorithm
We give a sketch of the JNDiff algorithm here, but for more details see Ciancarini
et al. (2016).

The key insight of JNDiff is that long subsequences of identical content can be
used to construct semantically useful diffs. Given an XML document linearized in
document order, JNDiff finds the longest subsequence of XML nodes that are the
same in both the source and target documents, and then partitions the document
in two halves, one before the common sequence, and one after. It then recursively
applies this algorithm to the two halves. In the end, a number of partitions are
found where the two documents are identical, favoring the longer stretches of
identical text.

Between these partitions there are sequences of nodes that are not identical,
but may still be considered updates of each other. JNDiff assumes that a gap in
the source and a gap in the target both placed between the same common subse-
quences are likely to contain updates. The motivation is that updates are likely to
remain in the same relative location in an XML document, so that updates can
best be found between ranges of equal nodes.

An update pair of nodes is found by going through all text nodes in the gap in
the source, and then looking for the best match in the gap in the target by looking
at the levenshtein dinstance of the text nodes, a common text similarity algo-
rithm. After update pairs are found, the update range is partitioned once again in
two halves, and the update algorithm is applied recursively.

We now have obtained a collection of equal and update node pairs between
the source and the target document. We propagate this information upwards in
the tree to ancestor nodes - if two nodes have equal or updated children, we con-
sider the parent nodes as equivalent. Nodes with more text (“weight”) are
favored over nodes with less text, so it’s more likely equivalent nodes are
matched up.

Any remaining nodes are considered different. If a different node exists in the
source, it is taken as deleted. If a different node exists in the target, it is taken as
inserted.

natural-xml-diff: an XML Diffing Library

286

7. natural-xml-diff Improvements

7.1. JNDiff Problems

As previously mentioned, we found a fundamental problem in the JNDiff algo-
rithm that we needed to resolve.

Given these two documents, with source document:

<doc>
 <a>
 AB

</doc>

and target document:

<doc>
 <a>A
 B
</doc>

the JNDiff algorithm considers these to be identical, even though there is a clear
structural difference, where the b element was deleted in a and inserted inside of
doc, because the values (text and element nodes) are the same, and appear in the
same order.

Because the values are the same, the JNDiff algorithm propagates this infor-
mation upwards to the parent node, doc, and this is considered to be the equiva-
lent node as a result - it is not inserted or deleted. As a result no differences are
left between the two documents and thus source and target are considered to be
identical!

natural-xml-diff detects such structural differences by looking at parent
consistency: if a node in the source document is considered equivalent to a node
in the target document, but those nodes do not have the same parent as deter-
mined by the algorithm, this is detected and the node is reconsidered to be differ-
ent after all.

7.2. Ignorable whitespace

Whitespace changes to an XML document are common. Often, whitespace
changes happen to make the XML document easier to read, but is not part of the
semantic content of the document. Other whitespace changes are significant, such
as that which occurs in mixed XML content. natural-xml-diff can be configured
to ignore insigificant whitespace, and therefore can produce easier to understand
diffs.

natural-xml-diff: an XML Diffing Library

287

7.3. Creating a Diff Document
While JNDiff has an optional feature to create the equivalent of the natural-xml-
diff diff document through its JNMerge tool, the JNDiff algorithm stops once it
has created a sequence of edits to produce the target from the source. natural-
xml-diff also produces this sequence of edits, applies them to produce the diff
document, and then proceeds to do further post-processing on the produced diff
document to improve its semantic quality. This post-processing can produce sig-
nificantly better diffs.

7.4. Element Wraps and Unwraps
The JNDiff algorithm has a way to detect wraps or unwraps, but natural-xml-
diff employs different strategies to detect them. Here we discuss a strategy
focused on detecting structural wraps and unwraps. This is supplemented by a
strategy to detect style wraps and unwraps, described later.
• If an element in the source document is set to be different (and thus does not

exist in the target), and all its children in the target document are the parent of
this element, and have an equivalent node in the source, the element is consid-
ered to be an unwrap element.

• Similarly if the element only exists in the target document, and all its children
also exist in the source document and their parent is the parent of the element
in the target, the element is considered to be a wrap element. At least one of
the children must also exist in the source.

The asymmetry between wrap and unwrap is that unwrap requires all children to
be equivalent, while wrap only requires a single equivalent child to consider all
children a wrap. This difference exists because reconstructing the sibling order
for unwrap is very difficult - it is unclear where the unwrap starts and where an
element was simply inserted or removed.

Note that the wrapping algorithm is not perfect: in cases multiple candidates
for the wrapping node exist, and the algorithm has to decide between them. It has
a bias towards elements that are higher up in the tree, closer to the root node. It
can also miss some wrapping opportunities the context of mixed text, which are
later found during text cleanup.

7.5. Delete/insert Pair Merging
If an element is deleted, and then an element with the same name is inserted
immediately after it in the diff document, we can consolidate this element into a
single element that is not inserted or deleted, but contains attribute changes and
child node updates.

Example:

natural-xml-diff: an XML Diffing Library

288

<section>
 <p diff:delete="">Hello</p>
 <p diff:insert="" a="A">Hello world</p>
</section>

can be merged into:
<section>
 <p a="A">
 <diff:attributes>
 <a diff:insert=""/>
 </diff:attributes>
 <diff:text-delete>Hello</diff:text-delete>
 <diff:text-insert>Hello world</diff:text-insert>
 </p>
</section>

Before we merge delete/insert pairs, we first reorder nodes to make more merges
possible.

A key insight is that a sequence of node deletes mixed with node inserts may
be safely reordered, as long as deletes keep their relative ordering, as well as
inserts keep their relative ordering. For example:

<section>
 <p diff:insert="">A</p>
 <p diff:delete="">B</p>
 <p diff:insert="">C</p>
 <p diff:delete="">D</p>
</section>

This diff, when applied to produce the target document, produces this:
<section>
 <p>A</p>
 <p>C</p>
</section>

which may be reordered to:
<section>
 <p diff:delete="">B</p>
 <p diff:insert="">A</p>
 <p diff:delete="">D</p>
 <p diff:insert="">C</p>
</section>

This produces the same target document - it does not matter where the deletes
are placed relative to the inserts.

The reordered diff document can then be simplified by merging delete/insert
pairs:

natural-xml-diff: an XML Diffing Library

289

<section>
 <p><diff:text-delete>B</diff:text-delete><diff:text-insert>A</
diff:text-insert></p>
 <p><diff:text-delete>D</diff:text-delete><diff:text-insert>C</
diff:text-insert></p>
</section>

This again, when applied, produces the same target document.
The process of delete/insert reordering and merging produces more candi-

dates for the text cleanup procedure, described later.

7.6. Text cleanup
The diffing algorithm only creates update relationships between individual text
nodes. In the case of document-style XML, text nodes often are part of mixed con-
tent, where there are non-text children as well, such as in this case:

<p>Hello <i>world</i>!</p>
For mixed content we can find a more human-readable diff by considering mixed
content as plain text content, and applying a text diffing algorithm. Text diffing
algorithms are already geared to produce human readable diffs, and if we can use
them for mixed content, we can benefit from this quality.

In general, for any content which has a text insert or delete, we may be able to
produce a better diff by reapplying a text diffing algorithm.

We find all elements that have a text insert, or text delete child, and have at
least an element child, or have a text delete/insert pair in them. These are candi-
dates for text cleanup.

An example of mixed content in a diff document:
<p>The <diff:text-delete>pink</diff:text-delete><i diff:delete=""> big</
i><diff:text-insert> pink</diff:text-insert> elephant</p>

Text cleanup then reconstructs the mixed element and its descendants in the
source document:

<p>The pink<i> big</i> elephant</p>
as well as the target document:

<p>The pink elephant</p>
To ensure we have plain text so that we can apply the text diff algorithm, it repla-
ces any non-text child node of the mixed element with a special text placeholder.
For the source document the text becomes:

The pink{placeholder} elephant
And for the target document, the text becomes:

The pink elephant

natural-xml-diff: an XML Diffing Library

290

The placeholder consists of unicode characters from unicode supplementary pri-
vate use area A, where unicode explicitly does not define characters so that they
may be used for custom algorithms. The placeholder is deliberately constructed
out of multiple repeating characters, as a single character is rather too likely to be
moved by a text diffing algorithm.

We were inspired to implement this placeholder strategy by a study of the
source code of the Python xmldiff implementation, where the XMLFormatter uses
a similar strategy.

We now have two text strings (perhaps with placeholders): one for the mixed
content of the source element, and one for the mixed content of the target ele-
ment.

We then produce a text difference using a text diffing algorithm. We now get a
text diff described by text inserts, deletes and equal parts. This algorithm could
decide that the best diff is by deleting the text represented by placeholder.

The pink{placeholder} elephant.
We reconstruct the mixed content from this again, replacing text diff items with
the regular natural-xml-diff diff:text-insert and diff:text-delete. Place-
holders are treated especially - if they are found within a text insert, they are
inserted as an element, and if they are found within a text delete, they are deleted
as an element. If they are in the equal part, they are left in place.

So in this case we get the following:
The pink<i diff:delete=""> big</i> elephant.

which is a nicer diff than we had before, replacing an insert and a delete with a
single deletion.

7.7. Text Cleanup Wrap/Unwrap detection
We previously described an algorithm that detects some element wrap and
unwrap operations within the document. In mixed content, wrap and unwrap is
commonly used to add or remove “style” elements, like em or strong, known as
an inline style edit.

Let's consider the following source document:
<p>hello world!</p>

and this target document:
<p>hello world!</p>

We can consider the edit operation as a wrap: the em element wraps the world text:
<p>hello <em diff:wrap="">world</diff:wrap>!</p>

During text post-processing we can detect wrap/unwrap of elements within
mixed content.

natural-xml-diff: an XML Diffing Library

291

Let’s consider the wrap example above. Without wrap, we can describe the
diff XML as follows (indented for ease of reading):

<p>
 hello
 <diff:text-delete>world</diff:text-delete>
 <em diff:insert="">world
 !
</p>

We can detect this situation: if the text content of a newly inserted element is
deleted just before it, we can transform it into a wrap:

<p>
 hello
 <em diff:wrap="">world
 !
</p>

The inverse situation produces this diff:

<p>
 hello
 <em diff:delete="">world
 <diff:text-insert>world</diff:text-insert>
 !
</p>

In this inverse situation, an element is deleted and its text content is inserted just
after it. We can transform this into an unwrap:

<p>
 hello
 <em diff:unwrap="">world
 !
</p>

7.8. Cumulative Effect of Post-Processing

Combining mixed content text diffs with delete/insert merges creates a cumula-
tive effect. This is especially noticable in edits where the target contains a transla-
ted version of the source document. In a translated document the structure is
often very similar, but the text content is quite different. By merging delete and
insert pairs, translated mixed content can be represented as a fine-grained text
difference as opposed to more course grained element-level deletions and inser-
tions. This makes the diff significantly more easy to comprehend.

natural-xml-diff: an XML Diffing Library

292

8. Testing strategy
To produce robust software it is important to engage in extensive testing. Testing
should be automated if possible to assure that the diffs are correct, and to prevent
regressions, but manual testing was also important to verify that the diffs pro-
duced are human-readable.

In order to test that our implementation behaves correctly, we incrementally
created many test cases where we compare two small documents, and record the
expected correct result. When we worked on a new feature we would create test
cases for it, including for important edge cases. During development we re-run
these test cases repeatedly to verify that we have not introduced any regressions.

We also automatically verify upon each test run that for each produced diff
document we can successfully reconstruct both the source document as well as
the target document.

We then added property testing4, where we verify that the diff can be applied
correctly for two randomly generated XML documents.

To further validate natural-xml-diff we implemented a bulk testing tool
where can verify diffs for a large amount of real-world data. We applied this bulk
check to the public testing corpus5 published to github by the authors of the diff
comparison paper Cuculovic et al. (2020), as well as a collection of over 2000
documents we used in production.

To verify that a diff is not only correct but also readable, we implemented a
visualization tool which creates a HTML representation of the diff document,
pretty printed, with differences marked with green for insertions, red for dele-
tions.

In order to measure the creation of minimal diffs, we created a weight meas-
urement tool, where we created an estimate of the size (weight) of a diff by check-
ing how much text is inside all the inserts and deletes, combined. We could then
determine whether tweaks to the algorithm would produce smaller total differen-
ces given our corpus of test data.

9. Conclusion
We believe natural-xml-diff provides a significant practical improvement over
existing XML diff algorithms for comparing structured documents. It produces
high quality diffs and does so robustly over a wide selection of documents.

Many XML diff algorithms stop when they have produced a sequence of edits.
A sequence of edits is less useful for the practical use case where a user interface
presents the differences to a human author. It is important to produce a diff docu-
ment, as that is far more human-readable. This has an additonal benefit: we

4 https://en.wikipedia.org/wiki/Property_testing
5 https://github.com/milos-cuculovic/XMLDiffAnalyzer

natural-xml-diff: an XML Diffing Library

293

https://en.wikipedia.org/wiki/Property_testing
https://github.com/milos-cuculovic/XMLDiffAnalyzer
https://en.wikipedia.org/wiki/Property_testing
https://github.com/milos-cuculovic/XMLDiffAnalyzer

found that taking the diff document as a basis provided many opportunities for
further refinements of the diff that are much more difficult to implement on a
sequence of edits.

Bibliography
[1] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and

Jennifer Widom. Change detection in hierarchically structured information. 1996.
[2] G. Cobena, T. Abdessalem, and Yassine Hinnach. A comparative study for XML

change detection. 2002.
[3] Angelo Di Iorio, Michele Schirinzi, Fabio Vitali, and Carlo Marchetti. A Natural

and Multi-layered Approach to Detect Changes in Tree-Based Textual Documents.
2009.

[4] G. Barabucci, Paolo Ciancarini, Angelo Di Iorio, and Fabio Vitali. Towards a
qualitative analysis of diff algorithms. 2013.

[5] Gioele Barabucci, P. Ciancarini, A. Iorio, and F. Vitali. Measuring the domain-
oriented quality of diff algorithms. 2014.

[6] Gioele Barabucci, Paolo Ciancarini, Angelo Di Iorio, and Fabio Vitali.
Measuring the quality of diff algorithms: a formalization. 2016.

[7] Paolo Ciancarini, Angelo Di Iorio, Carlo Marchetti, Michele Schirinzi, and
Fabio Vitali. Bridging the gap between tracking and detecting changes in XML.
2016.

[8] Milos Cuculovic, Frederic Fondement, Maxime Devanne, Jonathan Weber, and
Michel Hassenforder. Change Detection on JATS Academic Articles: An XML Diff
Comparison Study. 2020.

[9] Milos Cuculovic, Frederic Fondement, Maxime Devanne, Jonathan Weber, and
Michel Hassenforder. Semantics to the rescue of document-based XML diff: A JATS
case study. 2022.

natural-xml-diff: an XML Diffing Library

294

It's Useful After All — VIN Numbers,
DITA, and iXML

Ari Nordström
Creative Words

<ari.nordstrom@gmail.com>

Abstract

Vehicle Identifier Numbers (VIN) are a way to uniquely identify not only a
vehicle configuration — model year, engine, type of vehicle, etc — but also
the individual. VIN numbers tend to be stamped on engine blocks and are
very useful when identifying the configuration at hand when a vehicle
arrives in a repair shop, helping plan a service in advance, with the right
spare parts, tools, diagnostic procedures, etc.

DITA is a topic-based information standard, expressed as an XML
vocabulary. It is designed to completely describe a given product and its
variants in small building blocks (“topics”) that can be “profiled” to iden-
tify variant-specific information. A variant topic might use attributes to
define a topic's applicability by stating that the topic applies to product A
and variant B for audience C, which by convention means that any topic
describing product D for audience E would be excluded.

VIN numbers and DITA profiles, then, are two ways to describe applica-
bility, but in very different ways.

Invisible XML (iXML) is a way to express implicit structures as gram-
mars, allowing an instance of any given structure following the grammar to
be serialised as XML. It turns out that expressing VIN semantics in an
iXML grammar is exactly what we need to marry VIN numbers and DITA
profiles.

Keywords: Invisible XML (iXML), Vehicle Identifier Number (VIN),
DITA, Content profiling

1. Intro

1.1. VIN Numbers
Cars today are identified using so-called Vehicle Identifier Numbers (VINs for
short). These are usually alphanumeric strings between 11 and 17 characters and
are capable of identifying the vehicle's configuration as sold - model year, engine,
body - but also the vehicle as an individual. The VIN has a variety of uses, from

295

identifying compatible accessories to vehicle ranges affected by a technical bulle-
tin, and so on. For repair shops, then, the use cases are obvious - it becomes easy
to plan a service, from understanding what needs to be serviced and when to
acquiring spare parts and consumables in time for the service occasion.

1.2. Service Documentation

But the VIN can also help locate the service documentation applicable to the vehi-
cle if the documentation is marked up accordingly.

Most car manufacturers today have been around for a long time, which means
an ever-growing variety of available models, variants, and configurations, much
of it changing from one year to the next and thus requiring a growing set of
spares, tools and consumables. Similarly, the required service documentation
grows in size as the applicable service procedures and parts lists change or are
replaced for each passing model year.

2. DITA
Much of today's service documentation is authored in XML format, allowing for
the reuse of shared procedures while also identifying model- and variant-specific
tasks. This is done by “profiling” the XML - using markup to state what a specific
element applies to. For example, a car model may come in petrol and diesel
engine variants, meaning that the service information specific to the engines need
to be marked up accordingly but much of the other documentation is shared
between the variants.

The DITA specification uses a topic-based approach where each topic is meant
to cover a single set of information such as a description of a component, a disas-
sembly of that component, or a parts list applicable to that component. The idea
then is that topics are authored for all components that are required to fully build
a product. The topics are assembled to full "books" using DITA maps, essentially
a method to assemble the topics into the required chapters and sections to pro-
vide, say, a complete illustrated parts catalogue.

2.1. Profiling in DITA

But importantly, DITA topics - and their individual elements - can be profiled
using profiling attributes available for every DITA structure. The specification
includes properties such as "product", "platform", and "audience" but can also be
extended to, say "model year" or "engine type". We can identify specific topics as
applying only to a whitespace-separated list of engine variants, model years, or
markets. Or something else, including a combination of profiles. And of course, if
a topic is not profiled, it applies to everything.

It's Useful After All — VIN Numbers, DITA, and iXML

296

Technical documentation that is profiled using model and variant information
also identifiable using a VIN can then be made to match a VIN that expresses a
specific configuration. For example, a disassembly task might have this root ele-
ment:

<task
 modelYear="2022"
 engineType="petrol-EU6"
 drive="LHD"
 platform="commercial"
 product="station-wagon">
 ...
</task>

This matches a commercial vehicle, a MY 2022, left-hand drive station wagon
with a petrol engine for EU. The matching VIN number is a 17-character string
that looks something like this: AB1GN1BA?NF123456.

3. Profiling and VINs
Comparing the VIN - AB1GN1BA?NF123456, for example - with a DITA profile is
where it gets interesting.

3.1. The VIN As A Grammar
The VIN string is position-driven, with the various positions encoding vehicle
information:

It's Useful After All — VIN Numbers, DITA, and iXML

297

Figure 1. VIN Decoder

The allowed values are specified for each group and can be expressed as a gram-
mar. EBNF notation, for example, has been used by manufacturers in the past,
even though most of them default to an Excel spreadsheet or an ERP system.

3.2. iXML
For pointy-bracket professionals, however, there is Invisible XML1, iXML for
short:

Invisible XML is a language for describing the implicit structure of data, and a set
of technologies for making that structure explicit as XML markup.

iXML allows us to write grammars for those various implicit structures and then
use an iXML implementation to serialise an instance of that grammar in XML for-
mat.

vin: manufacturer-id, vehicleType, platform, engineType, drive, check-
digit, modelYear, plant, sequence-number .
-question-mark: "?" .
-zero-or-many: "*" .
manufacturer-id: "AB1" .
commercial-vehicle: "GN" .
private-vehicle: "GM" .
vehicleType: commercial-vehicle; private-vehicle; question-mark,

1 https://invisiblexml.org/

It's Useful After All — VIN Numbers, DITA, and iXML

298

https://invisiblexml.org/
https://invisiblexml.org/

question-mark .
sv: "1" .
uv: "2" .
pu: "3" .
cc: "4" .
platform: sv; uv; pu; cc; question-mark .
petrol: ["A"-"C"] .
diesel: ["D"-"E"] .
avf: "F" .
engineType: petrol; diesel; avf; question-mark .
lhd: "A" .
rhd: "B" .
drive: lhd; rhd; question-mark .
check-digit: "?" .
y22: "N" .
y23: "P" .
y24: "R" .
y25: "S" .
modelYear: y22; y23; y24; y25; question-mark .
plant: "F"; question-mark .
-number: ["0"-"9"] .
-seq1: "00000", ["1"-"9"] .
-seq2: "0000", ["1"-"9"], number .
-seq3: "000", ["1"-"9"], number, number .
-seq4: "00", ["1"-"9"], number, number, number .
-seq5: "0", ["1"-"9"], number, number, number, number .
-seq6: ["1"-"9"], number, number, number, number, number .
sequence-number: seq1; seq2; seq3; seq4; seq5; seq6; zero-or-many; () .

Thus, the VIN string as defined for a specific manufacturer can be expressed as an
iXML grammar, meaning that a string such as AB1GN1BA?NF123456 can be output
in XML:

<vin>
 <manufacturer-id>AB1</manufacturer-id>
 <vehicleType>
 <commercial-vehicle>GN</commercial-vehicle>
 </vehicleType>
 <platform>
 <sv>1</sv>
 </platform>
 <engineType>
 <petrol>B</petrol>
 </engineType>
 <drive>
 <lhd>A</lhd>
 </drive>

It's Useful After All — VIN Numbers, DITA, and iXML

299

 <check-digit>?</check-digit>
 <modelYear>
 <y22>N</y22>
 </modelYear>
 <plant>F</plant>
 <sequence-number>123456</sequence-number>
</vin>

The XML is still little more than an XML version of the VIN, but already much
more usable.

4. Publishing
But let's briefly go back to that technical documentation. The days of publishing
the documentation on paper are long gone. Instead, the documentation is com-
monly published electronically in a portal application and made accessible to
potentially any repair shop, as long as they have an internet connection and a
browser.

4.1. Online Portal
The author has designed and helped implement one such portal application for
an automotive manufacturer. The vehicle service documentation is authored in
DITA and exported as-is to an XML database, eXist-db. A portal application built
on top of eXist-db lists the available documentation, provides search and filtering,
and allows for on-the-fly publishing of the DITA content. Importantly, the topics
are listed and filtered as XML, unchanged, providing direct access to the DITA
profiling information.

4.2. Listing Topics
The user interface for listing and filtering the DITA is done in XForms, with the
raw file listings in XML format like so:

<collection
 name="/db/test/content"
 created="2023-01-03T10:19:57.112+01:00"
 owner="admin"
 group="dba"
 permissions="rwxr-xr-x"
 uri="/db/test/content">

 ...

 <file
 selected=""

It's Useful After All — VIN Numbers, DITA, and iXML

300

 type="topic"
 uri="/db/test/content/dita-examples/01/second_portal_topic.dita"
 name="second_portal_topic.dita"
 created="2023-01-03T10:20:13.072+01:00"
 last-modified="2023-01-03T10:20:13.072+01:00"
 id="my_second_portal_topic"
 outputclass=""
 dita-content-type="content"
 product="A B"
 audience="D E"
 root-profiles="product(A B) audience(D E)"
 include="true"
 include-profiles="product(B)">
 <title>Topic 2</title>
 </file>

 <file
 selected=""
 type="topic"
 uri="/db/test/content/dita-examples/02/topic_3.dita"
 name="topic_3.dita"
 created="2023-01-03T10:20:12.595+01:00"
 last-modified="2023-01-03T10:20:12.595+01:00"
 id="topic_3"
 outputclass=""
 dita-content-type="content"
 product="A"
 audience="novice"
 root-profiles="product(A) audience(novice)"
 include="false"
 exclude-profiles="product"
 include-profiles="">
 <title>Topic 3</title>
 </file>

 ...

 <profiles>
 <product>
 <value>B</value>
 </product>
 <platform/>
 <audience/>
 </profiles>
</collection>

It's Useful After All — VIN Numbers, DITA, and iXML

301

This lists two topics (the file element is exactly one listed topic). If you look care-
fully, you'll note that the first one includes the attribute product="A B". This says
that the topic represented by the file element and referenced in uri="/db/test/
content/dita-examples/01/second_portal_topic.dita" applies to products A
and B.

The second file identifies a topic (uri="/db/test/content/dita-examples/
02/topic_3.dita") that applies to product A only, as stated in product="A".

The UI that presents the file list looks like this:

Figure 2. File Browser UI

This is simply an XForm representation. Let's have a look at the filtering capabili-
ties on the left-hand side.

4.3. Filtering the List
The above file listing XML fragment concludes with a profiles structure:

<profiles>
 <product>
 <value>B</value>
 </product>
 <platform/>

It's Useful After All — VIN Numbers, DITA, and iXML

302

 <audience/>
</profiles>

This is an XML fragment that is the result of a filter selected elsewhere in the
XForm and then applied to the file listing. It essentially says "show only the topics
applicable to product B" and if you now check the first of the two file elements,
you'll spot the attribute include="true". The second file has include="false".
These are both inserted as a result of applying the profiles filter.

The XForm has a standard way of entering filtering values to the profiles
structure. The profile attributes actually in use in the database are generated as a
list and presented to the user in a dropdown list. Selecting a profiling attribute
from the list then provides its available values:

Figure 3. Profiling Values

Here, the profiling attribute Audience is used to list market regions.

It's Useful After All — VIN Numbers, DITA, and iXML

303

4.4. Filtering with a VIN
Now, that filter - the profiles was created using an XForm dropdown list, but
can easily be created by other means. For example, given a VIN string, we can
serialise that string as XML using an iXML grammar and an iXML engine, and
then convert the XML to the profiles format above and apply that to the file list-
ing.

Figure 4. VIN Entry Field with Resolved VIN

Above, Figure 4 shows the VIN field with a resolved VIN number (the entries are
matching DITA profiling attributes and their values). The VIN number was serial-
ised as XML and then converted to the profiles XML format used for filtering.

4.5. Granularity
The above filters the file listing, meaning that we limit the list of DITA topics (and
maps; they are not shown above but part of the XML format, too) to only those

It's Useful After All — VIN Numbers, DITA, and iXML

304

topics that match the filter. DITA, however, can be profiled on any element, allow-
ing us to mark up fragments of the topic. For example, we might identify a step
as only applicable to a specific engine type. If the topic was then published using
that profile, the step would be included. If a conflicting profile was used, the step
would be excluded.

4.6. DITAVAL Publishing

DITA defines an XML-based filtering format known as "DITAVAL", used by
including the filter alongside the topic when publishing. When publishing a lis-
ted topic, the portal application converts the profiles XML to the DITAVAL for-
mat and provides the DITAVAL filter to the DITA publishing process alongside
the topic.

Similarly, we can convert the XML-serialised VIN iXML to DITAVAL format
and bypass the file listing and filtering functionality.

5. Additional Features
And finally, we can go in the "other direction" - we can use portal functionality to
create a DITA filter, a set of profiles, and convert that set to a series of matching
VIN strings. This is useful when wanting to know what VIN ranges match vehi-
cles with specific variants, model years, and so on.

A somewhat contrived example is when service bulletins are issued, for exam-
ple, for a service recall. Let's say that the manual gear boxes for the large diesel
engine for non-EU MY 2022 vehicles all require servicing because of a problem
with the oil used. We can then enter the relevant profiling filters and generate the
matching VIN ranges, which can then be looked up in an ERP system so mail is
only sent to customers who are actually affected.

But we can also use the profiling data to quickly look up the relevant work-
shop manual instructions and parts data, as well as inject the data to diagnostic
software, simplifying the shop floor procedures and thus the time required to
service the vehicle.

6. In Conclusion
The functionality described in this paper is live in a production setting and works
beautifully. Surprisingly, though, the underlying DITA is currently limiting the
usefulness of the portal because the content is not yet rich enough. Simply put,
profiles are not used to the extent they can (and should) be. This is an obvious
future improvement.

Technically, there's certainly more to do with the portal itself, but that's a topic
for another paper.

It's Useful After All — VIN Numbers, DITA, and iXML

305

For the iXML solution specifically, the next step is very likely going to be to
expand the VIN grammar to include more data. For exaple, another manufactur-
ing plant will open, requiring identification, and other vehicle models with addi-
tional capabilities will be introduced. These will all require tweaks to the
processing of the serialised XML.

In closing, iXML has proved to be surprisingly robust and easy to work with,
and I have other iXML projects lined up.

Bibliography
[1] “Invisible XML Specification” [online, fetched on 4 April] https://

invisiblexml.org/1.0/
[2] “Invisible XML” [online, fetched on 4 April 2024] https://invisiblexml.org/
[3] “jωiXML processor” [online, fetched on 4 April 2024] https://

johnlumley.github.io/jwiXML.xhtml

It's Useful After All — VIN Numbers, DITA, and iXML

306

https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/
https://johnlumley.github.io/jwiXML.xhtml
https://johnlumley.github.io/jwiXML.xhtml

Jiří Kosek (ed.)

XML Prague 2024
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2024

ISBN 978-80-907787-2-6 (pdf)
ISBN 978-80-907787-3-3 (ePub)

	XML Prague 2024
	Table of Contents
	General Information
	Sponsors
	Preface
	Stormy First Draft
	1. The genesis of the StormyAI project
	2. How we develop StormyAI
	2.1. ML infrastructure
	2.2. Information storage, retrieval, and security
	2.3. Application layer and AI usability

	3. How we capture Stormy use cases
	3.1. Initial assumptions
	3.2. Learnings from alpha phase
	3.3. Learnings from beta phase
	3.3.1. GenAI as help with XSLT
	3.3.2. GenAI as help with other XML processing

	4. Copyright and Licensing considerations
	5. Conclusions
	6. Our next steps with StormyAI
	6.1. Stormy Agents
	6.2. StormyAI Analytics

	Navigating and Updating Trees of Maps and Arrays
	1. Terminology
	2. What problem are we trying to solve?
	3. Previous work
	4. The QT4 project
	5. Overview
	6. Recursive Query
	7. Point Update
	8. Rule-based Transformation
	8.1. Built-In Rules
	8.2. Use Cases
	8.3. Grouping

	9. Conclusions
	References

	JSONPath: an IETF Proposed Standard, with comparisons to XPath
	1. A newly proposed internet standard for an established query language
	2. Key events in the history of XML, JSON, XPath and JSONPath
	3. The JSONPath standard basics
	3.1. Review of the JSON structure
	3.2. Additional data types added in RFC9535 for JSONPath evaluation
	3.3. The Overall Structure of a JSONPath Query
	3.4. JSONPath Identifiers, Segments and Selectors
	3.4.1. JSONPath Identifiers
	3.4.2. JSONPath Segments
	3.4.2.1. Multiple selectors in a segment
	3.4.2.2. Descendant Segment Traversal Order
	3.4.2.3. JSONPath Segment Shorthand

	3.4.3. JSONPath Selectors
	3.4.3.1. Filter Selectors
	3.4.3.2. Types of expressions in Filter selectors
	3.4.3.3. A few Notes on Filter Selector Expressions
	3.4.3.4. Segment and Selector Shorthands
	3.4.3.5. Function Extensions

	3.5. JSONPath Compliance Testing Suite
	3.6. JSONPath nodelist locations

	4. JSONPath Expressions Compared to XPath 3.1 Expressions
	4.1. Similar mechanisms in XPath3.1 and JSONPath for selecting JSON Values
	4.2. Some things that can be done in XPath 3.1 but not in JSONPath

	5. Conclusion
	Bibliography

	Containerizing XML Build Tools to Facilitate CI/CD
	1. Introduction
	2. Concepts
	3. In Practice
	3.1. Doxygen to XIS pipeline
	3.1.1. Doxygen
	3.1.2. Source Project Structure and Pipeline
	3.1.3. Doxygen to XIS
	3.1.4. Designing the Doxygen to XIS Pipeline
	3.1.5. Containerizing and Automating the Doxygen to XIS Transform
	3.1.5.1. The Doxygen Transform image
	3.1.5.2. Doxygen Transform Image in Use
	3.1.5.3. Doxygen Transform Image in Continuous Integration

	4. Challenges and Lessons Learned
	4.1. Content Challenges
	4.2. Containerization, Secrets, and Security
	4.3. Decoupling and Developing Generalized Resusable Images

	5. Conclusion
	Bibliography

	QTI and InDesign
	1. Introduction
	2. Project requirements
	3. InDesign basics
	4. InDesign concepts
	4.1. IDML
	4.2. Spread
	4.3. Text Frame
	4.4. Story

	5. QTI basics
	5.1. QTI example: multiple choice interaction
	5.2. QTI example: response processing
	5.3. QTI example: text entry interaction
	5.4. QTI package

	6. Outline of the new process
	7. XSLT transformation design
	7.1. Application of styles
	7.2. Creation of new Stories
	7.3. Creation of new Spreads
	7.4. Update the Design Map

	8. Bear traps
	9. Workflow for content corrections
	10. Importing images
	11. Next steps
	Bibliography

	XMQ/HTMQ - see XML and HTML in a new light
	1. Introduction
	2. An alternative format
	3. There is always a compact printing
	4. Tool support
	5. Rendering HTML as XMQ/HTMQ
	6. Rendering JSON as XMQ
	7. XSLT transforms
	8. DTD and XSD
	9. Corner cases
	10. Comparisons of file sizes
	11. Conclusion
	A. Grammar & rules
	Bibliography

	<custom-element> DCE introduction
	1. Introduction
	2. Problem: Composed Web Applications challenges
	3. Solution: <custom-element> application runtime
	4. Value proposition: Reimagining Development with DCE
	4.1. Low-Code Principles
	4.2. Reduced Development Cost
	4.3. Integration Ease

	5. DCE overview
	5.1. Basic coding principles
	5.1.1. Declaration
	5.1.2. Preventing the side effects of declaration.
	5.1.3. Templating features: slots
	5.1.4. Templating with XSLT
	5.1.5. Data layer
	5.1.6. Slice
	5.1.7. Browser API access

	5.2. Modular development
	5.3. Styling
	5.4. Development support

	6. Target Audience
	7. Conclusion
	References

	Why Adding Some CSS Isn't Enough
	1. Introduction
	2. Safety Notices as an Example
	3. Structure Ideas from Web CSS
	4. Content-Driven Visual Patterns
	5. Conclusion
	6. Bibliography

	XML preserved from the past and into the future or?
	1. When preserving data is not really your game
	2. Standards, de facto standards and specifications
	3. Parts needed for storing data for the future
	4. Why bother?
	5. About specifications for saving the data
	6. What the specifications for an information package describes
	7. Besides a package we need content specifications
	8. The result
	9. Hurdles to pass
	10. Where does all this leave us?
	11. Some final remarks on how to prepare for and thus avoid the hurdles

	Transparent Invisible XML
	1. Introduction
	2. Separating markup from content
	3. Combining SMAX and ixml
	4. Named entity recognition
	5. Combining NER and tixml
	6. Pre-parsed non-terminals
	7. Conclusion
	References

	Round-tripping Invisible XML
	1. Contents
	2. Introduction
	3. Round-tripping
	4. The Problem Space
	5. Grammar Transformation
	6. Dealing with Attributes
	7. Strict and Permissive Grammars
	8. Syntactic Equivalences
	9. Loss of Information
	10. Ambiguity
	11. Inserted Layout
	12. Future Work
	12.1. Similarities between Serialisation and Transformation
	12.2. Possible Additions to ixml

	13. Conclusion
	References

	Towards RESTful XQuery 2.0
	1. Introduction
	2. Theory and Review of Literature
	2.1. Review of JAX-RS
	2.2. Review of XQuery Standardisation
	2.3. Review of REST Frameworks
	2.4. Review of Web Communication Protocols
	2.5. Review of REST Alternatives
	2.6. Review of RESTXQ 1.0 Feedback
	2.6.1. EXQuery Project Feedback on RESTXQ 1.0
	2.6.2. BaseX Extensions to RESTXQ 1.0

	3. Proposal for RESTXQ 2.0
	3.1. Backwards Compatibility
	3.2. Support for the HTTP Patch Method
	3.3. Support for any HTTP Method
	3.4. Improved URI Templates in Path Annotations
	3.5. Improved HTTP Header Parsing
	3.6. Support for Server Side Quality Factors
	3.7. Inclusion of Quality Factors in Matching Resource Functions
	3.8. Support for JSON
	3.8.1. Support for JSON Request Bodies
	3.8.2. Support for JSON Response Bodies

	3.9. Support for Multipart
	3.9.1. Support for Multipart Form Data Requests
	3.9.2. Support for multipart/* Requests
	3.9.3. Support for Multipart Responses

	3.10. Support for Serialization within the Response
	3.11. Support for Handling XQuery Errors
	3.12. Non Sequitur

	4. Conclusion
	4.1. Future Work

	References

	Tutorial Development XML Mashup with XProc
	1. A day in the life of a tutorial developer
	2. What are the requirements?
	3. Implementation using XML technology
	3.1. The course markup
	3.2. The processing engine
	3.2.1. Aside: Re-using steps in XProc

	3.3. Processing the markup
	3.3.1. Processing the Powerpoint presentation

	3.4. Real world experiences, wrap-up and conclusions

	Modern Benchmarking of XQuery and XML Databases
	1. Abstract
	2. Introduction
	3. Related Work
	3.1. XML Benchmarking
	3.2. Automated XML Data Generation
	3.3. NoSQL Benchmarking in the Large

	4. XML Generation and Testing in the NoSQLBench Framework
	4.1. A Testbed for XML Database Testing - NoSQLBench XML:DB API Adapter
	4.2. XML Data Generation in a Benchmark Framework - using NoSQLBench Virtual Data Sets
	4.2.1. A Standalone XML Generation Tool using VDS

	4.3. Project Status
	4.3.1. XML:DB Adapter
	4.3.2. Standalone XML Generation Status
	4.3.3. Future Work

	5. Conclusion
	Bibliography

	Simple Semantic Data Modeling in XML (SeMoX)
	1. Introduction
	2. Basic concepts of SeMoX
	2.1. Term
	2.2. Semantic Datatype
	2.3. Structure
	2.4. Syntax Binding
	2.5. Rule

	3. Schema design of SeMoX
	4. Usage scenarios in practice
	4.1. SeMoX-itself
	4.2. XRechnung
	4.3. eForms-DE

	5. Conclusion and future work
	5.1. Facilitate more effective data standardization
	5.2. Enhancing interoperability between different standards and standard organisations
	5.3. Further research

	Bibliography

	GEDCOM to RDF
	1. Background
	2. Creating a Personal Knowledge Graph
	3. GEDCOM
	4. GEDCOM X
	5. GEDCOM to GEDCOM X conversion
	6. GEDCOM X JSON to XML conversion
	7. RML
	8. YARRRML
	9. YARRRML Parser
	10. RML Mapper
	11. Conclusion and future work
	Bibliography

	Bridging XDM types in multiple native type systems
	1. Introduction
	2. Exploring the gap between XPath and native types
	2.1. The Sequence-likeness monster
	2.2. Dynamic and Static typing
	2.2.1. Creating XDM objects
	2.2.2. Converting XDM object into native objects

	2.3. Numbers
	2.4. How long is a (piece of) String?
	2.5. How do you get a value from an XDM Map in Python?
	2.6. Unicode strings

	3. Traversing XDM Nodes via the API
	3.1. Get a node, get its children
	3.2. GraalVM’s ObjectHandle and ObjectHandles pool
	3.3. Telling GraalVM you are not using an object
	3.4. How do you know when you’re not using an object?

	4. Memory Management
	5. Conclusion
	Bibliography

	natural-xml-diff: an XML Diffing Library
	1. Introduction
	2. Goals
	3. Diffing Annotations
	3.1. diff:same
	3.2. diff:insert and diff:delete
	3.3. diff:text-insert and diff:text-delete
	3.4. diff:wrap and diff:unwrap
	3.5. diff:attributes, diff:attr-update, diff:attr-insert, diff:attr-delete
	3.6. diff:pi-insert, diff:pi-delete, diff:comment-insert, diff:comment-delete
	3.7. diffing a diff document

	4. Prior Art
	5. Implementation Considerations
	6. JNDiff Algorithm
	7. natural-xml-diff Improvements
	7.1. JNDiff Problems
	7.2. Ignorable whitespace
	7.3. Creating a Diff Document
	7.4. Element Wraps and Unwraps
	7.5. Delete/insert Pair Merging
	7.6. Text cleanup
	7.7. Text Cleanup Wrap/Unwrap detection
	7.8. Cumulative Effect of Post-Processing

	8. Testing strategy
	9. Conclusion
	Bibliography

	It's Useful After All — VIN Numbers, DITA, and iXML
	1. Intro
	1.1. VIN Numbers
	1.2. Service Documentation

	2. DITA
	2.1. Profiling in DITA

	3. Profiling and VINs
	3.1. The VIN As A Grammar
	3.2. iXML

	4. Publishing
	4.1. Online Portal
	4.2. Listing Topics
	4.3. Filtering the List
	4.4. Filtering with a VIN
	4.5. Granularity
	4.6. DITAVAL Publishing

	5. Additional Features
	6. In Conclusion
	Bibliography

