
XML Prague 2017
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 9–11, 2017

XML Prague 2017 – Conference Proceedings
Copyright © 2017 Jiří Kosek

ISBN 978-80-906259-2-1 (pdf)
ISBN 978-80-906259-3-8 (ePub)

Table of Contents
General Information ... vii

Sponsors .. ix

Preface .. xi

XPath 3.1 in the Browser – John Lumley, Debbie Lockett, and Michael Kay 1

Soft validation in an editor environment – Martin Middel 19

Improving text quality with automatic majority editions – Liam Quin 33

Checking documents for DTP with the free online service data2check –
Mehrshad Zaeri Esfahani, Hauke Brandes, and Manuel Montero Pineda 47

W3C ITS 2.0 in OASIS XLIFF 2.1 – David Filip .. 55

Projection and Streaming: Compared, Contrasted, and Synthesized –
Michael Kay ... 73

The HTML 5.1 DTD – Marcus Reichardt ... 101

The X-definition 3.1 – Jiří Kamenický, Jindřich Kocman, and Václav Trojan 119

Relational and Semantic Views over Documents – John Snelson 133

On the Descriptions of Data – Steven Pemberton ... 143

FOXpath navigation of physical, virtual and literal file systems –
Hans-Jürgen Rennau ... 161

DHW: An online introductory toolset for XML encoding – Alejandro Bia 181

A Text Structure “Epischema” for TEI – Gerrit Imsieke .. 195

CSS for Print via XSL-FO – George Bina and Dan Caprioara 211

v

vi

General Information

Date

February 9th, 10th and 11th, 2017

Location

University of Economics, Prague (UEP)
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, Xyleme & XML Prague, z.s.
Káťa Kabrhelová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s. & University of Economics, Prague
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Robin Berjon, science.ai
Petr Cimprich, Xyleme
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Ari Nordström, SGMLGuru.org
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Andrew Sales Digital Publishing
Felix Sasaki, DFKI / W3C Fellow
John Snelson, MarkLogic
Jeni Tennison, Open Data Institute
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)

vii

http://xmlprague.cz/about
http://fis.vse.cz

viii

Sponsors

oXygen (http://www.oxygenxml.com)
le-tex publishing services (http://www.le-tex.de/en/)
Antenna House (http://www.antennahouse.com/)
Saxonica (http://www.saxonica.com/)
speedata (http://www.speedata.de/)
Xeditor (http://www.xeditor.com/)

ix

http://www.oxygenxml.com
http://www.le-tex.de/en/
http://www.antennahouse.com/
http://www.saxonica.com/
http://www.speedata.de/
http://www.xeditor.com/

x

Preface

This publication contains papers presented during the XML Prague 2017 confer-
ence.

In its twelfth year, XML Prague is a conference on XML for developers,
markup geeks, information managers, and students. XML Prague focuses on
markup and semantic on the Web, publishing and digital books, XML technolo-
gies for Big Data and recent advances in XML technologies. The conference pro-
vides an overview of successful technologies, with a focus on real world
application versus theoretical exposition.

The conference takes place 9–11 February 2017 at the campus of University of
Economics in Prague. XML Prague 2017 is jointly organized by the non-profit
organization XML Prague, z.s. and by the Faculty of Informatics and Statistics,
University of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday runs in an unconference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday are devoted to
classical single-track format and papers from these days are published in the pro-
ceeedings. Additionally, we coordinate, support and provide space for W3C XSLT
and XProc working group meetings collocated with XML Prague.

We hope that you enjoy XML Prague 2017.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

XPath 3.1 in the Browser
John Lumley

jwL Research, Saxonica
<john@jwlresearch.com>

Debbie Lockett
Saxonica

<debbie@saxonica.com>
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper discusses the implementation of an XPath3.1 processor with high
levels of standards compliance that runs entirely within current modern
browsers. The runtime engine Saxon-JS, written in JavaScript and devel-
oped by Saxonica, used to run pre-compiled XSLT3.0 stylesheets, is exten-
ded with a dynamic XPath parser and converter to the Saxon-JS
compilation format. This is used to support both XSLT's xsl:evaluate
instruction and a JavaScript API XPath.evaluate() which supports
XPath outside an XSLT context.

1. Introduction
XSLT1.0 was originally developed primarily as a client-side processing technol-
ogy, to increase data-adaptability and presentational flexibility with a declarative
model supported in the browser. By 2006 all the major desktop browsers suppor-
ted it, but the rise in importance of mobile client platforms and their code foot-
print pressures then sounded the death-knell. However, remnants of support for
the XPath 1.0 component of XSLT can be found in most, but not all, of the current
desktop browsers.

In the meantime, spurred mostly by unexpected takeup of XSLT and XQuery
in server-side XML-based architectures, the technologies have progressed
through the “2.0” stage (temporary variables, type model and declarations,
grouping, canonical treatment of sequences, extensive function suites...) to the
current candidate recommendation standards for 3.0/3.1 in XSLT, XQuery and
XPath. At this stage support for maps, arrays and higher-order functions join let
constructs, increased standard function libraries and others to provide a core set
of common functionality based on XPath. XQuery uses this with its own (superset

1

of XPath) syntax to support query-based operation and reporting. XSLT adds a
template-based push model, within an XML syntax, which is designed to be able
to support streaming processing in suitable use cases.

These developments are sufficiently robust and powerful that, other circum-
stances permitting, exploiting XPath 3.1 to process over XML data is highly attrac-
tive. But at present this can only be performed in server-side situations – no
browser developers could contemplate either the development effort or the neces-
sary memory footprints needed for the “2.0” level compilers for what they con-
sider niche (i.e. non-mobile) applications, let alone that required for 3.0+.

What has been developed extensively in browsers are JavaScript processors,
both internal compilers, JIT runtimes and development libraries, such that very
significant programmes can be executed in-browser1. And in general the level of
conformance of and interoperability between implementations in different brows-
ers is reasonable.

Exploiting this JavaScript option for supporting XSLT/XPath /XQuery has
been explored in a number of cases:
• Saxon-CE[1] cross-compiled a stripped-down XSLT2.0 Saxon compiler from

Java into JavaScript using Google's GWT technology. This worked, but the loa-
ded code was large, very difficult to test and debug and very exposed to
GWT's cross-browser capabilities.

• There are a small number of developers working on open-source implementa-
tions in native JavaScript for XPath 2.0 (e.g.Ilinsky[2]) and XQuery (XQIB2),
though it is very unclear their level of standards conformance. Other Java-
Script-based implementations for XPath 1.0 include Wicked good XPath3, sup-
porting the DOM Level 3 subset and XPath-js4 which supports the full XPath
1.0 standard.

• During 2016 Saxonica developed Saxon-JS [3], a runtime environment for
XSLT 3.0, implemented in JavaScript. This engine interprets compiled execu-
tion plans, presented as instruction trees describing the execution elements of
an XSLT3.0 stylesheet. The execution plan is generated by an independent
compiler, which performs all necessary parsing, optimisation, checking and
code generation. Consequently the runtime footprint is modest (~ 200kB in
minimised form) and programme execution incurs no compilation overhead.

1.1. Saxon-JS Runtime – dynamic evaluation
The Saxon-JS runtime environment is written entirely in JavaScript and is inten-
ded to interpret and evaluate XSLT program execution plans and write results

1In the process pushing client-based Java towards oblivion too.
2 http://www.xqib.org/index.php
3 https://github.com/google/wicked-good-xpath
4 https://github.com/andrejpavlovic/xpathjs

XPath 3.1 in the Browser

2

http://www.xqib.org/index.php
https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs
http://www.xqib.org/index.php
https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs

into the containing web page. These execution plans are presented as instruction
trees describing the execution elements of an XSLT3.0 stylesheet in terms of sets
of templates and their associated match patterns, global variables and functions,
sequence constructors consisting of mixtures of XSLT instructions and XPath
expression resolution programs and other static elements such as output format
declarations.

XSLT programs for Saxon-JS are compiled specifically for this target environ-
ment, using Saxon-EE to generate an XML tree as a Stylesheet Export File (SEF)5.
This tree is loaded by a SaxonJS.transform() within a web page, which then
executes the given stylesheet, with a possible XML document as source and other
aspects of dynamic context, writing results to various sections of the web page via
xsl:result-document directives. The engine supports specialist XSLT modes
(e.g. ixsl:on-click) to trigger interactive responses, based on a model originally
developed for Saxon-CE.

Saxon-JS supports a very large proportion of XSLT3.0 and XPath3.1 function-
ality. As all the static processing (parsing, static type checking, adding runtime
checks.…) of the presented XSLT stylesheet is performed by Saxon-EE during its
compilation operation, programs running in Saxon-JS should benefit from the
very high levels of standards compliance that the standard Saxon product ach-
ieves. At runtime Saxon-JS only has to check for dynamic errors and often these
are programmed in the execution plan as specific check instructions. The conse-
quences are that
• The Saxon-JS code footprint is very much smaller, consisting only of a runtime

interpreter.
• Execution starts immediately after loading the instruction tree – there is no

compilation phase
• But Saxon-JS assumes the code is correct, as all static errors have been removed

and necessary dynamic checks have been added.
• As there is no runtime compiler, or XPath parser, there is no implicit support

for dynamic evaluation of XPath expressions (through the xsl:evaluate
instruction), nor indeed runtime definition and evaluation of functions.

Within some related work on streamability analysis, one of the authors had been
working on parsing XPath expressions using XSLT code to generate reduced
parse trees and manipulating and analysing their properties. One of the possibili-
ties was to recast this work to run entirely in Saxon-JS. But it also opened the pos-
sibility of extending Saxon-JS to both parse the XPath and generate equivalent
execution plans (i.e. Stylesheet Export File) and hence support dynamic evaluation.

5Apart from some additional Saxon-JS attributes, the tree is identical to that used for linking sepa-
rately-compiled packages for execution by a Java-based server-side Saxon engine – hence it shares the
same degree of compilation “correctness” as any other Saxon-processed stylesheet.

XPath 3.1 in the Browser

3

This paper describes the design, construction and testing of such an extension.

2. Overall design
The route from XPath expression to evaluated result involves threee major steps.
Firstly the expression string must be parsed against an XPath grammar to check
that i) it is correct and ii) what XPath instructions are present. This means that
matched grammar productions and variable tokens must be identified and grou-
ped. This is most smoothly reported as a tree. Secondly this representation of the
XPath expression must be converted into a set of suitable instructions for the the
Saxon-JS, which will be cast as an XML tree. Finally the instruction tree needs to
be interpreted by the Saxon-JS runtime, to produce the given result.

The main facility is written as an additional JavaScript object XPathJS added
to the SaxonJS runtime6. There are three significant phases as shown in the figure

Figure 1. Processing phases

• parse(xpath) produces a (reduced) parse tree of the XPath expression, or an
error if appropriate. This has similarities with Pemberton's Invisible XML,

6It has been arranged that the code for these features (which has a memory footprint as large as
Saxon-JS itself) is loaded dynamically when first needed. Thus no additional overhead is incurred if a
stylesheet does not use these features.

XPath 3.1 in the Browser

4

retaining only productions of interest, and decorating them with suitable
properties (such as the op of a MultiplicativeExpr). It also converts sections
defined gramatically as repeats such as X op X (op X)* (e.g. let ….) into
nested trees of constant arity such that later phases only deal with strictly can-
onical forms.

• compile(parseTree,staticContext) generates a suitable SEF tree7. The
parse tree is recursively converted to elements and attributes of the resulting
SEF and static type checking is performed. More details below.

• evaluate(SEF,contextItem,params) interprets the execution plan with an
optional context item, and given parameter value bindings. This uses the
Saxon-JS evaluation engine. The result is then converted or wrapped to an
appropriate final type, such as an iterator around XDM types for use in
xsl:evalute or plain or arrayed Javascript types for a Javascript invocation.

2.1. Parsing the expression
XPath expressions are parsed by a two-step process: firstly the expression is
checked for correctness and a full parse tree generated; secondly this parse tree is
reduced to the essential details and converted to a canonical form.

A parser built from the XPath 3.1 EBNF grammar by Gunther Rademacher's
REx parser-generator [5] is used. This is coded in JavaScript, using callback func-
tions for starting and ending non-terminal productions, detected whitespace and
terminal character phrases, which are indexed into the original input string.
These callbacks are currently used to generate a DOM tree, which can be very
large. For example the simple XPath 1 to 10 generates the following tree (which
is up to 27 levels deep), some of whose closing tags have been elided:

<XPath>
 <Expr>
 <ExprSingle>
 <OrExpr>
 <AndExpr>
 <ComparisonExpr>
 <StringConcatExpr>
 <RangeExpr>
 <AdditiveExpr>
 <MultiplicativeExpr>
 <UnionExpr>
 <IntersectExceptExpr>
 <InstanceofExpr>
 <TreatExpr>
 <CastableExpr>

7In this case the tree is retained in memory and not serialized and written as an external file.

XPath 3.1 in the Browser

5

 <CastExpr>
 <ArrowExpr>
 <UnaryExpr>
 <ValueExpr>
 <SimpleMapExpr>
 <PathExpr>
 <RelativePathExpr>
 <StepExpr>
 <PostfixExpr>
 <PrimaryExpr>
 <Literal>
 <NumericLiteral>
 <IntegerLiteral>1</IntegerLiteral>
 </NumericLiteral>
 …
 </AdditiveExpr>
 <TOKEN>to</TOKEN>
 <AdditiveExpr>
 <the same…>
 <NumericLiteral>
 <IntegerLiteral>10</IntegerLiteral>
 </NumericLiteral>
 …
 </AdditiveExpr>
 </RangeExpr>
 </StringConcatExpr>
 </ComparisonExpr>
 </AndExpr>
 </OrExpr>
 </ExprSingle>
 </Expr>
 <EOF/>
</XPath>

As Pemberton[4] has pointed out, such trees, while correct, aren't very efficient,
so the second phase reduces them to only the minimal essential elements. This is
written as a recursive function reduce() which generally switches on the node
name, with the following strategies:
• Literals have their value written as an attribute on the production.
• By default an element that has only one element child is reduced to the reduc-

tion of that child, e.g.

<AdditiveExpr>
 … <NumericLiteral>
 <IntegerLiteral>1</IntegerLiteral>…
→ <IntegerLiteral value="1"/>

XPath 3.1 in the Browser

6

• Tokens that convey variation meaning are added as suitable attributes to the
main element. Non-essential tokens (which are constant for the given produc-
tion) are deleted, e.g.

1 * 4 to ceiling(10.1)→
… <RangeExpr>
 …<MultiplicativeExpr>
 … <IntegerLiteral>1</IntegerLiteral> …
 <TOKEN>*</TOKEN>
 … <IntegerLiteral>4</IntegerLiteral> …
 </MultiplicativeExpr>...
 <TOKEN>to</TOKEN>
 … <FunctionCall>
 <FunctionEQName>
 <FunctionName>
 <QName>ceiling</QName>
 </FunctionName>
 </FunctionEQName>
 <ArgumentList>
 <TOKEN>(</TOKEN>
 <Argument>
 … <DecimalLiteral>10.1</DecimalLiteral> …
 </Argument>
 <TOKEN>)</TOKEN>
 </ArgumentList>
 </FunctionCall> …
 </RangeExpr>
…
→ <RangeExpr>
 <MultiplicativeExpr op="*">
 <IntegerLiteral value="1"/>
 <IntegerLiteral value="4"/>
 </MultiplicativeExpr>
 <FunctionCall name="ceiling">
 <DecimalLiteral value="10.1"/>
 </FunctionCall>
 </RangeExpr>

• Constructs that can have indefinite repetitions of subsections, such as let
$a:=1, $b:=2 return $a+$b are regularised into nested trees (that can be
either left or right associative) with constant arity, so that subsequent phases
are presented with a canonical form, e.g.

<LetExpr>
 <SimpleLetBinding var="a">
 <IntegerLiteral value="1"/>
 </SimpleLetBinding>

XPath 3.1 in the Browser

7

 <LetExpr>
 <SimpleLetBinding var="b">
 <IntegerLiteral value="2"/>
 </SimpleLetBinding>
 <AdditiveExpr op="+">
 <VarRef name="a"/>
 <VarRef name="b"/>
 </AdditiveExpr>
 </LetExpr>
</LetExpr>

A few other sections of specialist code conversion are carried out at this stage,
including replacing path shortcuts (//, .. and @name) with equivalent full forms.
With this reduced tree, code generation can then start8.

2.2. Generating the execution plan

Many of the SEF instructions are in close correspondence with the XPath gram-
mar productions and their “arguments” correspond to the results of evaluating
their child subtrees, so the (unoptimised) code generation problem is basically to
map the parse tree into a generally similar SEF tree, checking for static errors and
adding runtime instructions to check for dynamic errors. This code generator is
written entirely in JavaScript9.

The bulk of the recursive compiling converter (prepare(node,context)) is a
switch based on the XPath expression production types, e.g. RangeExpr for the x
to y range generator. The context argument contains the static context, such as
namespace prefix mappings, decimal formats and so forth, as well as semi-static
information, such as the inferred type of the context item and the names, alloca-
ted storage slots and (declared or inferred?) types of the external parameters and
local variables that are in-scope for the expression node being processed. (As
usual name scoping follows the following-sibling::*/ descendant-or-
self::* compound axis.)

For many of the productions the conversion is generally to produce an equiva-
lent SEF instruction element (in this case to) with its two children (which could of
course be anything from an IntegerLiteral to a full-blown computation tree)
being processed recursively to produce their value-generating instruction trees.

For example the XPath 1 to 2 * 10 has a reduced parse tree of:

8It should be possible to perform some of this reduction during the original creation of the parse tree
using smarter and language-sensitive callback functions. The authors haven't yet had an opportunity
to explore this.
9It could have been written entirely XSLT and cross-compiled to produce an additional SEF tree that
was used as a programme to generate another SEF tree for the XPath expression. The first author feels
he learned more doing it “the hard way” and a rewrite in XSLT to support a more portable position is
attractive, but it certainly won't be as fast as the native JavaScript version.

XPath 3.1 in the Browser

8

<RangeExpr>
 <IntegerLiteral value="1"/>
 <MultiplicativeExpr op="*">
 <IntegerLiteral value="2"/>
 <IntegerLiteral value="10"/>
 </MultiplicativeExpr>
</RangeExpr>

which is converted to an instruction tree:

<to type="xs:integer*">
 <int val="1" type="xs:integer"/>
 <arith op="*" calc="i*i" type="xs:integer">
 <int val="2" type="xs:integer"/>
 <int val="10" type="xs:integer"/>
 </arith>
</to>

where the type of arithmetic to be performed on the two inner values (integer
times integer) is encoded in the @calc attribute – the runtime calculator is direc-
ted by this. (The @type annotations help show the determined type of the result
during the compilation process – see below. They are not interpreted by Saxon-
JS.)

In some cases, such as LetExpr and ForExpr, the context has to be altered to
add a suitable variable binding and slot allocation to hold its value. In path
expressions such as RelativePathExpr and AxisStep, the mapping is rather
more complex and also involves the generation of specific JavaScript code,
attached to the instruction element, to recognise candidate nodes in execution of
the step.

The FunctionCall production can be used for many cases, apart from calls to
core functions. Casting constructors for the xs:atomic types (e.g.
xs:double('NaN')) are detected and converted to suitable cast instructions.
Some function calls, such as true() are converted into direct instructions. For
calls to the more regular core functions, the function signature is retrieved from a
table and the arity of the call can be checked.

2.3. Static analysis and typechecking

Much of the power of XPath/XSLT comes from the ability to analyse the static
context of sections of the expression and either determine errors (e.g. 1 + 'foo'),
find optimisations (e.g. @foo/ bar will always yield the empty sequence ()) or
determine whether dynamic checks will be required (e.g. string(foo) will
require the child::foo step to be checked for returning a result with a cardinal-
ity of zero or one.)

XPath 3.1 in the Browser

9

To do this requires a complete system to perform principally static type check-
ing, and with the associated issues of type inference in operations such as arith-
metic and determining when atomisation is needed, constitutes the hardest part
of the development.

A static context is passed down through the recursive compilation, and all
results have a type/cardinality computed for them. (The computed types are
added as a JavaScript property to the elements – additionally writing their string
values as @type attributes during development helps debugging as they appear in
serializations of the instruction tree, but these are ignored by Saxon-JS.) Some
instructions will need to refer to the type of the current context item; others may
alter what the current context item is (e.g. forEach) and consequently alter its
type for some of the children. Functions have definitive signatures which apply
type constraints on their arguments and provide types for their result.

All these point to a requirement for a generic static type check mechanism
which, given an instruction node and the required type from its parent context,
either returns the construct if considered “type-safe”10 or returns it surrounded
with a suitable cast instruction if such is needed and permitted or detects and
reports irreconcilable errors or wraps potentially errant instruction subtrees with
suitable runtime check directives. This was achieved by transcribing the Java-
based typechecker used in Saxon-HE11 to a JavaScript equivalent, which uses
many of the constants and tags in exactly the same form – this reduced transcrip-
tion errors considerably.

Saxon-JS itself requires a type hierarchy model for runtime to satisfy instance
of queries. This principally involves the built-in atomic types (xs:NCName,
xs:dayTimeDuration…) and is defined alongside Javascript objects
Atomic.typeName which acts as wrappers around suitable XDM implementa-
tions.

For static analysis however, more detail is required, particularly adding car-
dinality, so a compound Type object is used (wrapping a pointer to the singleton
base type and a cardinality object). This is then used to generate an ensemble of
type objects dynamically, such that many of the assertions and checks can be
made using identity tests. For example t = makeType("xs:string?") produces a
Type object such that t.baseType == BuiltinAtomicType.STRING and t.card
== StaticProperty.ALLOWS_ZERO_OR_ONE. With this mechanism we can com-
pute type assertions and checks quite smoothly.

2.4. Evaluation
With the execution plan now constructed as an SEF tree, then the expression can
be evaluated, just like any other XPath subtree found within an XSLT stylesheet.

10Some operations effectively operate polymorphically.
11Perhaps one of the most critical sections of that product in terms of standards comformance.

XPath 3.1 in the Browser

10

The dynamic context must first be initialised. This involves setting the initial con-
text item (if any) and setting up the values of the supplied parameters into their
appropriate value storage slots. (When run under xsl:evaluate generating
instructions for these are present as named subtree children.) Then the internal
SaxonJS.Expr.evaluate(SEF,context) process is called. This will return an iter-
ator over the results (or throw an error!), which will be treated as the result of
xsl:evaluate and futher processed in the normal way.

3. Pure JavaScript XPath evaluation
The bulk of the work above was geared to supporting dynamic evaluation of
XPath expressions within XSLT stylesheets run under Saxon-JS, through the
xsl:evaluate instruction. But in the process we have constructed all the machi-
nery to support evaluation from JavaScript itself, effectively through the com-
pound:

evaluate(compile(parse(xpath),staticContext),contextItem,params)
This has been implemented as a function

XPath.evaluate(xpath,contextItem?,options?)
which will carry out the evaluation of the given XPath expression, with an

optional binding to the initial context item, and a set of options which describe
aspects both of the static (e.g. xpathDefaultNamespace) and the dynamic (e.g.
params: {conference : "XMLPrague", year: 2017}) context, as well as con-
trolling the result format12.

This then means that with the Saxon-JS runtime loaded, but no XSLT style-
sheet, it will be possible to evaluate XPath3.1 expressions. As an example here is a
webpage on Figure 2 which sets the time on a number of contained clocks, both
digital and analogue.

This is the JavaScript within that web page:
var thisDoc = window.document;

var timezones = {
 "London": "PT0H",
 "New York": "-PT5H",
 "San Francisco" : "-PT8H",
 "Delhi" : "PT5H30M",
 "Tokyo" : "PT9H"
};

function setClocks() {

12How a sequence of result items is presented - consistently as an array, “smart” (null, singleton or
array) or as a (potentially lazy) iterator.

XPath 3.1 in the Browser

11

 var clocks = SaxonJS.XPath.evaluate(
 ".//*[tokenize(@class)='clock']",thisDoc,{resultForm:"array"});
 for(var i =0; i < clocks.length; i++) {
 setClock(clocks[i]);
 }
}

function setClock(clock) {
 var findTime = "let $loc := normalize-space(.//*[@name='city']), "+
 "$t := if($loc = ('Local Time','')) then current-time() " +
 "else adjust-time-to-timezone(current-
time(),xs:dayTimeDuration(map:get($timezones,$loc)))" +
 "return map{'hour':hours-from-time($t), 'minute' : minutes-from-
time($t)," +
 " 'second' : floor(seconds-from-time($t))}";
 var time = SaxonJS.XPath.evaluate(findTime, clock,
 {params: {"timezones": timezones}});

 var findIndicators = "map:merge(for $class
 in ('hour','minute','second') " +
 "return map:entry($class, array {.//*[@class=$class]}))";

Figure 2. Clocks set by XPath

XPath 3.1 in the Browser

12

 var timeIndicators = SaxonJS.XPath.evaluate(findIndicators,clock);

 var computeAngles = "let $m := .?minute " +
 "return map{'hour':(.?hour mod 12) * 30 + $m div 2,
 'minute' : $m * 6,
 'second' : .?second * 6}";
 var angles = SaxonJS.XPath.evaluate(computeAngles, time);

 for(var part in timeIndicators) {
 var nodes = timeIndicators[part];
 for(var i = 0; i < nodes.length; i++) {
 var node = nodes[i];
 if(clock.namespaceURI == "http://www.w3.org/2000/svg" &&
 !(node.localName == "tspan" || node.localName == "text")) {
 node.setAttribute("transform","rotate("+ angles[part] + ")");
 } else {
 var t = time[part];
 node.textContent = t < 10 ? "0"+t : t;
 }
 }
 }
}

Each of the clocks (both HTML and SVG forms) are identified as being in class
clock and each may contain an element with an attribute name="city". For each
clock the possible timezone offset is found from the name of that city (assumed
the text content of the naming element) and the appropriate adjusted current time
computed as separate hour, minute and second components. Then the indicators
within that clock are found through an XPath returning a map of discovered
nodes (which might be multiple and have @class either hour, minute or second)
with suitable component label keys. Finally the time for each indicator is set: SVG
non-text items are rotated by the appropriate angle using a transform attribute;
all others have their text content set to the given number.

4. Testing
Very early work merely took an XPath expression and generated the candidate
SEF, which was serialized and compared against what Saxon-EE would produce
for the same expression. This was a very effective development method used
throughout the work on the reasonable assumption that Saxon produces very
highly compliant execution and that the Saxon-JS runtime had been tested by
running with a server-side JavaScript interpreter such as Nashorn.

But there are many many aspects to XPath3.1, for which the dynamic compiler
would have to be checked, so some (semi-)automated approach was attractive, or
more likely essential. Obviously the QT3 testsuite has a large number of tests for

XPath 3.1 in the Browser

13

XPath and XQuery (more than 18,000 for XPath alone). Could we build a suitable
test harness that ran some of these entirely within the browser? Yes we could and it
proved to be highly effective, both in testing the parse/compile process and also
in exercising and debugging the Saxon-JS runtime within the browser over more
of the obscure facets of the QT3 test suite.

4.1. QT3 testing in the browser
This was the stimulus for getting some implementation of xsl:evaluate going
very early in the project. It enabled an XSLT stylesheet to be written that pro-
cessed the QT3 testsuite, passing each required test to xsl:evaluate and check-
ing the result assertions and reporting the results entirely within a webpage.
Development then became a question of running appropriate test sets by loading
the web page, which loaded up the repertoire of QT3 test sets, clicking on those
(groups) to be run and examining the results (assuming the JavaScript hadn't
crashed!) In the case of failure of a specific test we can also display a serialisation
of the compiled code to aid debugging.

Figure 3. Testing the math: functions

This approach was used for almost all the development of the dynamic evalua-
tion. As of writing some 18,000+ of the tests are passed with only between 110
and 190 failures, depending upon the browser used13. (These cover even tests for
recent features such as arrays, maps, lookup operators, arrow application opera-
tors and so forth.) Here is an example of processing the math: function tests.

13There are some 4,000+ additional tests that are excluded because their dependencies include either
XQuery or other features (such as higher-order functions or UCA collation) not supported by Saxon-JS

XPath 3.1 in the Browser

14

4.2. Comparing browser coverage
One of the advantages of running the QT3 tests entirely within a browser-borne
setting is that performance can be checked for a variety of browsers, merely by
loading the web page into the browser to be tested, clicking a few buttons and
waiting for the result reports to be displayed. If we then arrange to save the final
web page (Save As...)14 then we have a machine-readable record of the results.
By writing an XSLT stylesheet that reads in these pages15 a comparison in cover-
age between the browsers can be generated. Here is the top-level comparison in
terms of total errors16:

Figure 4. Comparing browser results

at present. A smaller number of tests (perhaps <100) are excluded specifically because they impose
unrealistic demands (e.g. a map with 500,000 entries, which crashes Safari, but interestingly not the
other main browsers) or are subject to some dispute (particularly so in case of statically inferred errors
that dynamically will not occur)
14For the Edge and Internet Explorer browsers, the menu save is only the original source XHTML: to
save for these browsers involves an “Inspect Element ” action and a copy-and-paste of the whole
active webpage DOM.
15Safari excluded, these are well-formed XML, so doc() suffices. Safari uses a binary .webarchive for-
mat, which can be read and decoded using EXPath File and Binary extension functions and parse-
xml() on the resulting string.
16Green denotes successful tests, red failures, orange expected failures but with the wrong error code.
Strike through are the number of tests not run, either by specific exception or excluded by unsuppor-
ted features. Red italics indicate a failure where the XPath expression used the xs:float type – this is
coerced to a JavaScript Double in Saxon-JS so results are computed to higher precision than anticipa-
ted or permitted and exact equality comparisons in the test assertions can fail.

XPath 3.1 in the Browser

15

Detailed comparison on failing tests by browser is also reported, as shown here,
where different successes for tests of unparsed-text-lines() are revealed. (The
last column lists tests that were not run deliberately and the reason why: in this
case the test assertion of error is a pessimistic static assumption.)

Figure 5. Detailed error comparison

4.3. Testing the JavaScript API
Testing the JavaScript API required a slightly different approach. If we assume
the QT3 tests run through xsl:evaluate mechanism has proved both the
XPath→SEF and SEF(args)→result paths are correct, we just need to test the call-
ing options for SaxonJS.XPath.evaluate(). This is most conveniently carried
out by constructing a web page with tabular entries containing argument compo-
nents of XPath expression, context item and options, with a simple JavaScript that
iterates across table rows, accumulating these components from textual values of
cells, then calling the dynamic evaluator and writing the results (possibly serial-
ized) into another result-holding cell.

5. Performance
There are two aspects of performance to consider. The first is accuracy of execu-
tion and the degree of conformance to standards. As has been indicated in the
previous section, we've managed to achieve a very high degree of such as meas-
ured by the QT3 test suite, failing ~0.5% of the tests. Some errors are inevitable
(e.g. the use of Double for xs:float), others are in very obscure cases (uncaught
errors that actually can never be triggered), a few are just wrong and will eventu-
ally get corrected. In practice we consider the product has high enough conform-
ance for production use.

The second of course is execution speed. This we have not measured directly
yet, but the best indicator we have so far is the execution of sections of the QT3
test suite. As an example, on a high-end (2016) Windows laptop, the 3446 tests for
the operators (op-except, op-numeric-add etc) are processed completely in 27

XPath 3.1 in the Browser

16

seconds under Firefox and 15 seconds under Opera, from original “click” to fin-
ished results, including execution of all the surrounding XSLT test harness17. As
for each of the tests i) it needs to be compiled and executed and ii) its result asser-
tions tested (some of which contain XPath expressions that must be evaluated,
thus needing additional compilation), there are >3446 XPath evaluations required.
This suggests that each evaluation takes somewhere in the 2-5 ms region. As we
anticipate most use of these dynamic features will involve small numbers of
XPath expressions, with “a human in the loop”, we do not forsee significant prob-
lems with compilation/execution performance.

6. Future Developments & Conclusions
Like the Stylesheet Export File, we use XML trees (in this case in-browser DOM
trees) to represent the intermediate parse results and generated code. But the
manipulation of these trees involved is not complex, mostly concerned with test-
ing node name, child and/or attribute existence and iterating over children. It has
been suggested (in [3]) that the export format might also have a JSON-based alter-
nate. If this was the case then much of the compiliation code described here could
be recast relatively easily to use a JSON representation as the main data type e.g.

1 to 2 * 10 →
{ name : "RangeExpr",
 children : [
 { name: "IntegerLiteral", value: 1 },
 { name: "MultiplicativeExpr", op: "*",
 children: [
 { name: "IntegerLiteral", value: 2 },
 { name: "IntegerLiteral", value: 10 }
] }
]
}

We've suggested earlier that the reduction phase of the initial parse might be
improved by a smarter use of callbacks within the parse-tree former. Obviously
during the compilation process there will be many more opportunities to opti-
mise the resulting code. The easiest would be the complete evaluation of literal
subexpressions, i.e. those for which there is no dependency on execution context
within the subtree. In such cases the compiled subtree can be evaluated and its
sequence result projected as a sequence of suitable instructions, based on the lit-
eral forms. Whether it is worth doing this however is a moot point, as, unless the
same (dynamic) XPath is going to be executed repeatedly, little extra would be

17Most browsers show similar performance within perhaps a factor of 2, with the noteable exception
of Internet Explorer which seems to be consistently about 5x slower than the rest.

XPath 3.1 in the Browser

17

gained and indeed additional time would be taken up in determining whether an
evaluation could be performed.

This leads on to the issue of whether an intermediate compiled output is
desirable. Earlier versions of Saxon (within a Java environment) used a pair of
functions saxon:expression() and saxon:eval(), with the former producing a
stored expression that the latter would use to evaluate against a given dynamic
context. A similar partitioning within JavaScript could be provided easily.

6.1. Conclusion

This paper has shown that when an XPath “instruction execution engine” is avail-
able within a browser context, it is possible to add a dynamic XPath evaluation
facility provided that i) an accurate and efficient XPath parser is also available
and ii) very accurate code for static type checking, coercion and casting is devel-
oped. Development of such a feature is aided considerably by the existence both
of an external “oracle” to demonstrate what a correct “execution plan” should be
for a given XPath expression (in this case using Saxon-EE and examining gener-
ated SEF) and the early construction of a test harness to exercise the QT3 test suite
(in this case as an XSLT stylesheet invoking via the xsl:evaluate instruction.)

In the case of Saxon-JS and the XPath.js additional module we have devel-
oped an implementation with very high levels of conformance to the XPath 3.1
specification, demonstrated by rapid running of the the QT3 test suite entirely
within the browser. We have also been able to demonstrate and record the (small)
differences in conformance between the half-dozen major browsers.

References
[1] O'Neil Delpratt and Michael Kay. Multi-user interaction using client-side XSLT..

2013. http://archive.xmlprague.cz/2013/files/xmlprague-2013-
proceedings.pdf

[2] Sergey Ilinsky. XPath 2.0 implementation in JavaScript . 2016. https://
www.openhub.net/p/xpath-js

[3] Debbie Lockett and Michael Kay. Saxon-JS: XSLT 3.0 in the Browser.. 2016.
http://www.balisage.net/Proceedings/vol17/html/Lockett01/
BalisageVol17-Lockett01.html

[4] Steven Pemberton. Invisible XML.. 2013. http://www.balisage.net/
Proceedings/vol10/html/Pemberton01/BalisageVol10-Pemberton01.html

[5] Gunther Rademacher. REx Parser Generator. 2016. http://
www.bottlecaps.de/rex/

[6] XQuery in the Browser. 2016. http://www.xqib.org/index.php

XPath 3.1 in the Browser

18

Soft validation in an editor environment
Schematron for non-technical users

Martin Middel
FontoXML

<martin.middel@fontoxml.com>

Abstract

To allow the use of Schematron[1] in a quickly changing environment like
an editor, understandability is crucial. An author may not be an XML
expert, so they must be guided in resolving the messages generated by Sche-
matron.

A good understandability rests on two pillars: performance and user
interface. An author needs constant feedback on the current state of the soft
validation. The author must know which places in the document need atten-
tion, and how to resolve them. The report must then update as soon as possi-
ble to enable the author to see the result of a modification they just made.

To ensure good performance, a number of technical problems have been
solved, this includes a novel dependency tracking system.

1. Introduction
FontoXML is an editor for XML content, used by non-technical authors. At this
moment, FontoXML offers a standard editor for DITA 1.31 and can be configured
to support any schema including TEI2, JATS3, Office Open XML4 and a number of
DITA specializations.

Since non-technical authors have no knowledge of XML or the schema, they
will not understand nor be able to fix invalid documents. Therefore we guide the
author to prevent them from creating invalid documents; we ensure loaded docu-
ments remain valid at all times. Valid in this context means both well-formed (no
unclosed tags), but also schema-valid (titles can not contain list items).

However, some restrictions should not always be enforced. Constraining the
length of a title will destroy usability, because typing text in it will suddenly be
disabled. Additionally, schema restrictions may need to be relaxed in various use
cases. For these reasons, we have implemented soft validation in the editor, which
essentially are recommendations instead of requirements.

1 http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
2 http://www.tei-c.org/index.xml
3 https://jats.nlm.nih.gov/index.html
4 http://www.ecma-international.org/publications/standards/Ecma-376.htm

19

http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
http://www.tei-c.org/index.xml
https://jats.nlm.nih.gov/index.html
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
http://www.tei-c.org/index.xml
https://jats.nlm.nih.gov/index.html
http://www.ecma-international.org/publications/standards/Ecma-376.htm

2. The case for soft validation
In our experience adapting the FontoXML editor for various clients, we have seen
two major cases for soft-validation:
1. Adapting content from a permissive schema used for editing to a strict

schema used for publishing content.
One of our clients (automatically) imports content from a word processor.

They can not automatically tag most elements, apart from distinct paragraphs,
so this enrichment is a manual process. After the enriching phase of the work-
flow, all elements must be tagged: title paragraphs must be title paragraphs,
abstract paragraphs must be abstract etc. Using the stricter schema as soft vali-
dation on top of the permissive schema provides valuable feedback during the
enrichment process.

2. Schema with varying publication-specific constraints.
Another client maintains a very high number of different schemas, each

fitting their unique purpose. A schema for writing a book for teaching a lan-
guage is different from an exercises book for learning math.

To allow the same XML pipeline to be used for all of these schemas, the
actual schemas are the same. Different soft-validation rules are enforced over
them, in order to tailor to specific publication needs. This also allows for easy
upgrades from one version of the (overlaying) schema to the next: the docu-
ment is always schema-valid.

Soft-validation can also be used to guide an author into adhering to a style guide,
such as writing short titles or paragraphs. These rules can often be expressed as
textual constraints on certain elements (such as maximum character count or min-
imum word count).

Soft validation in an editor environment

20

3. Schematron
Schematron is a widely used standard for performing 'soft-validation': describing
certain structures in XML which are technically valid, but deemed undesired.

In short, Schematron is a declarative format that works like this:
• Define “rules”, selecting nodes which should be validated.
• Per rule, define reports and asserts testing these nodes.
• Both rules and tests are XSLT patterns, which are very similar to and can be

transformed to standard XPath queries without problems.
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:title>An example schema</sch:title>
 <sch:rule context="p">
 <sch:assert test="@class">A paragraph must have a class</sch:assert>
 </sch:rule>
</sch:schema>

The rule context and test expressions can be transformed to a single XPath[2]
query which can identify nodes that would trigger the assertion or report. For
performance, it does not make much sense to split these queries: an assert for a
body asserting a title node is present somewhere in the document still introduces
a full-document-scan.

The Schematron reference implementation is based on XSLT. As FontoXML is
implemented in pure JavaScript and aims to have as few server-side components

Soft validation in an editor environment

21

as possible, there are not many usable XSLT processors around. Also, because
FontoXML is an editor, we expect many, generally very localized changes to hap-
pen very frequently. We do not want to fully process a large document multiple
times per second. In order to provide a fluid user experience, we need the editor
to update with a rate of 60 frames per second, just like a video game. This leaves
us with a budget of roughly 16ms (1000ms / 60) per frame. Within this frame
budget we need to do all the JavaScript updates and still allow time for the
browser to do its layout and paint work. Another concern is the size of both docu-
ments and schemas: one of our clients loads documents up to 2MB in size,
another client uses up to 3500 (automatically generated) Schematron rules. Fully
processing these documents and their rules simply won't scale.

Because of these concerns, we have decided to roll our own implementation,
optimized specifically for evaluating Schematron rules in an editor environment.

4. Implementation

4.1. Requirements
We decided to build our own optimized Schematron engine with the following
concerns:
• Must be client-side, fully written in JavaScript
• Must be real-time (reactive to changes in the document)
• Must have quick-fix functionality (understandable by non-XML experts)
• Must not hold the UI thread hostage (remember: Javascript is single threaded)

We aim to only work continuously for 16ms. Any more than this will make
the browser framerate drop to below 60FPS.

4.2. Written in JavaScript, running client-side
The Schematron engine should run client-side so that it can provide feedback as
fast as possible and does not introduce a server-side dependency. The editor
should be able to run off-line: network latency and enterprise firewalls are largely
not in our control. Besides this, the battery cost of a GSM or WiFi modem on
mobile devices has to be taken into account.

The best XSLT processor in JavaScript at the time or writing is Saxon-JS5. For
us, using this approach is not an option because of scalability. The naive XSLT-
based approach would require the entire document to be processed after every
change. As some of our clients work with XML documents ranging in the mega-
bytes, this approach becomes infeasible due to performance constraints. The

5 http://www.saxonica.com/saxon-js/index.xml

Soft validation in an editor environment

22

http://www.saxonica.com/saxon-js/index.xml
http://www.saxonica.com/saxon-js/index.xml

XSLT is not in our control, and we can not say anything about it. Ideally, we'd
want to regard it as a black box.

A Schematron engine works using XSLT expressions, which are an extension
of XPath queries. There are a few JavaScript XPath implementations available:

• Google’s wicked-good-xpath6, which is an XPath 1.0 implementation.

• XPath-JS7, also an XPath 1.0 implementation.

• XPath.js8, an XPath 2.0 implementation.

We also had the choice of building our own XPath engine, which would allow for
anything we'd ever want. Because of our requirements stated earlier, we want to
have tight control over the performance characteristics of the XPath implementa-
tion. We also wanted to use the same XPath implementation in other parts of the
FontoXML editor and related products. We therefore decided to invest the time
and build our own. This ensures we get the control we want, and also enables us
to more easily implement any further optimizations or extensions in the future.
For this implementation, we decided to implement an XPath 3.1[5] engine. This is
the latest iteration of the XPath standard, which is currently in the candidate rec-
ommendation phase.

4.3. Real-time updates

Any change to the XML document could cause any of the Schematron rules to
have different results. Because the size of the document is variable and could be
very large, re-evaluating every rule on the entire document after every change
would take too much time. We need a way to reduce the amount of Schematron
rules that need to be to re-evaluated after each edit.

Let's take the XPath query @someAttribute eq 'value'. Given the element
<element someAttribute="value"/>, we can see it will evaluate to true().

If we change the value of this attribute to <element someAttribute="some
other value"/>, we can see it will evaluate to false().

If, instead, we change the node by adding an attribute to create <element
someOtherAttribute="meep" someAttribute="value"/>, we can see the XPath
will not change its' original value: true().

We could say that the result of an XPath query is determined by the parts of
the DOM it ‘looks at’. These are its dependencies. These dependencies can be
invalidated by changes on nodes. For instance, to be able to determine the result
of the ancestor axis, the parent relation of all ancestors will be evaluated, this will
introduce a dependency on the parent-child relation of these nodes.

6 https://github.com/google/wicked-good-xpath
7 https://github.com/andrejpavlovic/xpathjs
8 https://github.com/ilinsky/xpath.js

Soft validation in an editor environment

23

https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs
https://github.com/ilinsky/xpath.js
https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs
https://github.com/ilinsky/xpath.js

The DOM standard defines the MutationObserver interface to allow a con-
suming API to react to changes in the DOM. It does this by recording each muta-
tion as an object, called a MutationRecord[3], and exposing these objects for
further processing after the mutation completes:

{
 type: 'childList' | 'attribute' | 'characterData',
 target: Node,
 addedNodes: Node[],
 removedNodes: Node[],
 nextSibling: Node?,
 previousSibling: Node?,
 attributeName: String?,
 oldValue: String?
}

The same interface is implemented by our editor to track changes made in an
XML document. These records are used throughout the editor, for instance, for
implementing the undo/redo functionality.

By tracking the dependencies of queries and using MutationRecords, we can
make it so that for any given edit, only the affected Schematron rules (i.e. XPath
queries) has to be re-evaluated, instead of all of them. For example, any rules on
the presence of certain elements do not have to be evaluated if we're only work-
ing on an attribute. This removes the bulk of the processing needed to keep the
Schematron results up to date.

We store the dependencies for our XPath queries in a two-level Map data
structure:

node -> type -> query[]
This way, given a MutationRecord, we can look up the possibly affected queries
in constant time (O(1)).

We update this data structure whenever we run an XPath query. First, we
transform the XPath string to an abstract syntax tree using a parser generated
with the wonderful peg.js parser generator9. We then compile this syntax tree to a
set of DOM traversals.

By using a facade for accessing all DOM relations, we can record the traversed
relations as dependencies of a specific operation such as the evaluation of an
XPath query. As a bonus, this facade makes the engine independent of the inter-
face of any specific DOM implementation, as it can be used as a translation layer.

The facade simply consists of functions such as the following:

class DependencyTrackingDomFacade {
 getChildNodes (node) {

9 https://pegjs.org/

Soft validation in an editor environment

24

https://pegjs.org/
https://pegjs.org/

 registerDependency(
 this._dependenciesByNodeIdAndKind,
 node,
 'childList');
 return this._dom.getChildNodes(node);
 }
 getParentNode (node) {
 var parentNode = this._dom.getParentNode(node);
 if (parentNode) {
 registerDependency(
 this._dependenciesByNodeIdAndKind,
 parentNode,
 'childList');
 }
 return parentNode;
 }
 getAttribute (node, attributeName) {
 registerDependency(
 this._dependenciesByNodeIdAndKind,
 node,
 'attribute');
 return this._dom.getAttribute(node, attributeName);
 }
 getData (node) {
 registerDependency(
 this._dependenciesByNodeIdAndKind,
 node,
 'characterData');
 return this._dom.getData(node);
 }
}

This dynamic analysis of an XPath query allows us to regard the XPath as a black
box. We do not impose any additional requirements to the structure of XPath
expressions, determining for instance streamability. It also does not block further
improvements such as static analysis [4]. This approach for dynamic analysis is
simple to implement. Although it does not make hard XPath queries easier to
evaluate, it does provide a base for memoization10. In the future, we will want to
use static analysis to provide partial queries, indices or query simplification.

4.4. Putting everything together

Given the following Schematron snippet:

10Memoization is a technique used to reuse the result of a function if its' parameters are the same as a
previous execution.

Soft validation in an editor environment

25

<sch:rule context="/html/body/div/p">
 <sch:assert test="not(@class) or @class=('title', 'intro')">
 A paragraph should have either no class or the title or intro class.
 </sch:assert>
</sch:rule/>

Combining the context and test will result in the following query for reportable
nodes:

/html/body/div/p[not(not(@class) or @class=("title", "intro"))]
Running this query will make the XPath engine 'look at' a number of properties of
DOM nodes. This gives us the following dependencies:
• html -> ‘childList’
• body -> ‘childList’
• Every div in the body -> ‘childList’
• Every p in these divs -> ‘attribute’
This query will be triggered for re-evaluation by some of the following changes in
the DOM:
• Adding a new body to the html element

This changes the childList of the html element, and can possibly introduce
new div elements with new p elements.

• Adding or removing divs
• Adding or removing paragraphs in these div elements
• Changing the class attribute on the paragraphs
This query will not be affected by changes like editing the contents of a para-
graph or adding a title element in the head element of the html element.

Note that if the dependencies of a query have changed, it does not mean the
result of the query has changed: @someAttribute => string() => starts-
with('abc') can evaluate to true for many different values of @someAttribute:
'abc', 'abcd', 'abcX', etc.

This causes a number of false positives. In the example given above, the fol-
lowing changes will also trigger a re-evaluation:
• Adding a head element to the html element (the childList of html changes)
• Moving around div elements in the body (the childList of body changes)
These will never change the result of this query, causing a needless re-evaluation.
However, as these actions do not happen as frequently as typing text in a para-
graph, the impact on performance of this limitation is minimal. The dependency
tracking approach prevents re-evaluation of most queries, most of the time. This
is sufficient to provide acceptable performance for our requirements. In the future
we plan to investigate memoizing intermediate results in order to prevent full re-

Soft validation in an editor environment

26

evaluations, stopping evaluation if a part of the query resolves to the same result
as before.

This also works in a subtly different way: the set of dependencies of a query
may change, while the result remains the same. For example, take a query con-
taining the conditional expression: @A or @B. Because the or expression may
never evaluate @B if attribute A is present, removing this attribute forces it to also
look at the other. The end result may remain the same, but the DOM has been
traversed in a different way, causing a different set of dependencies.

4.5. Quick fix
Now that we can generate reports, and re-evaluate them quickly, we can move on
to enabling users to fix any issues that have been detected.

The FontoXML editor uses the concept of 'operations', small units of function-
ality describing things like opening a modal, setting an attribute, wrapping a
range of text, inserting a new element or any combination thereof.

These operations can be used to encode the mutations required to fix content
issues, and can be mixed into the Schematron XML notation as follows:

<sch:rule context="//span">
 <sch:assert test="@class = ('strong', 'italic')">
 <fonto:message>
 A
 <sch:value select="fonto:friendly-name(.)"/>
 must have the class 'strong' or 'italic'. It has the class
 <sch:value select="if (@class) then @class else 'No class'"/>
 . This is wrong.
 </fonto:message>
 <fonto:fix name="set-attribute" value="strong"
 label="Convert to Strong">
 <fonto:fix name="set-attribute" value="italic"
 label="Convert to Italic">
 <fonto:fix name="unwrap-node" label="Unwrap this">
 </sch:assert>
</sch:rule>

To make the report easier to parse, we have placed the message in an additional
element.

4.6. UI
The soft-validation reports can be used as a list of tasks that an author should
process. As our authors are not all XML-experts, it is important to visualize as
much context as possible. To do this, we did the following:
1. The reports are visualized as cards in a side panel, allowing them to be visible

alongside the editor.

Soft validation in an editor environment

27

2. Clicking on a report highlights the element causing the report and brings it
into view in the editor.

3. All reports having one or more quick-fix operations available display a ‘solve’
button, which opens the quick-fix menu.

Soft validation in an editor environment

28

4. After resolving the error (using either the quick-fix menu or any other action),
the card shows a brief animation and is removed.

5. When all issues have been resolved, the editor reports this fact to the author.

Soft validation in an editor environment

29

5. Future work

5.1. Performance
At the moment, performance is highly dependent on the way the Schematron
rules and tests are written. A constraint such as preventing referencing unknown
ids can be written as this:

<rule context="@id-ref">
 <let name="idref" value="."/>
 <assert test="//*[@id=$idref]/>
</rule>

This rule will be rewritten to this XPath: boolean(// *[@id-ref][let
$idref := . return //*[@id = $idref]]).

The XPath will cause us to evaluate the comparison O(N2) times: we will scan
the whole document for id attributes once for every idref. Also, this query will
introduce childList dependencies on all of the elements in the document. Build-
ing and maintaining a lookup table for all nodes with an id attribute can speed up
these queries significantly.

5.2. Preventing worsening the document
In the current implementation, soft-validation rules never prevent any editing
operation. However, we might want to influence a number of actions (like copy/
paste or inserting new nodes) to prevent the document from getting less valid

Soft validation in an editor environment

30

according to these rules. An operation could be blocked if it ends up making the
document fail more soft-validation tests. This needs to be thoroughly user-tested
to identify the conditions where it would be useful to temporarily make the docu-
ment less valid (such as when pasting content from somewhere else, or when
splitting an ‘invalid’ paragraph using the enter key in order to convert the indi-
vidual parts to a valid structure).

5.3. Using Schematron quickfix

A small schema has been whipped up to provide references to quick fix opera-
tions. In the future, these quick fix descriptions should be described using the
Schematron Quickfix schema[6].

5.4. Open sourcing

We are looking into making the XPath engine open source, possibly including the
dependency tracking mechanism. We expect it will have many applications out-
side of Schematron, like writing modern JavaScript apps that manipulate XML
documents, or any other data representing a DOM.

6. Conclusions

The requirements of a soft-validation engine operating in a dynamic environment
such as an editor are different from one reasoning over static documents.

Because changes in an editor are usually localized, we should not need to re-
process a full document every single keystroke. Using mutation records and
dynamic dependency tracking as a way to mark queries on the DOM as dirty, we
can use the edits to determine a smaller set of possibly affected queries.

Soft validation is a great help in guiding authors in writing “good” content.
By considering the soft-validation report as a “to do list”, an author can keep

track of their progress. By providing quick-fixes, the author always knows what
to do and can efficiently resolve most content issues.

Bibliography
[1] Information technology — Document Schema Definition Languages (DSDL)

— Part 3: Rule-based validation, Schematron, International Standard ISO/IEC
19757-3, Geneva, Switzerland : ISO

[2] XML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.
Ed. James Clark and Steve DeRose https://www.w3.org/TR/xpath/

Soft validation in an editor environment

31

https://www.w3.org/TR/xpath/

[3] DOM living standard, 19 Januari 2017 on MutationRecord. https://
dom.spec.whatwg.org/#interface-mutationrecord

[4] XSLT and XPath Optimization, March 2001, Ed. Michael Kay. http://
www.saxonica.com/papers/xslt_xpath.pdf

[5] XML Path Language (XPath) 3.1. W3C Candidate Recommendation, 16
December 2016. Ed. Jonathan Robie, Michael Dyck, and Josh Spiegel. https://
www.w3.org/TR/xpath-31/

[6] Schematron quickfix. Ed. Nico Kutscherauer. http://www.schematron-
quickfix.com/

Soft validation in an editor environment

32

https://dom.spec.whatwg.org/#interface-mutationrecord
https://dom.spec.whatwg.org/#interface-mutationrecord
http://www.saxonica.com/papers/xslt_xpath.pdf
http://www.saxonica.com/papers/xslt_xpath.pdf
https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-31/
http://www.schematron-quickfix.com/
http://www.schematron-quickfix.com/

Improving text quality with automatic
majority editions

How shall I count the ways?
Liam Quin

W3C
<liam@w3.org>

Abstract

This paper describes a method to improve accuracy of OCR-scanned text
documents prior to conversion to XML. The paper also describes approaches
to conversion of such documents to XML and consideration of the point in
the conversion process at which it makes the most sense to start using XML
tools.

Keywords: XML, DocBook, authoring

1. Introduction
The public domain texts on the Internet Archive (often scanned by Google Books)
have made a considerable corpus of writing available. Unfortunately the texts
often contain errors from the optical character recognition processes employed,
greatly limiting their usefulness.

It turns out that the distributed nature of large-scale scanning of entire library
shelves has meant that there are many duplicate volumes, the same edition hav-
ing been scanned and processed multiple times at different institutions.

This paper describes a simple technique to harness that multiplicity and
thereby produce texts containing fewer errors with relatively little human inter-
vention compared to manual methods.

In addition, scripts to convert the texts to XML are described, mostly to illus-
trate techniques and possibilities.

The software is freely available for download.

2. The Problem
For many years the quality of easily-available public-domain texts has been low.
In some cases this has been because of missing metadata: Project Gutenberg, one
of the more widely-known projects making documents available, does not appear
to take care to make edition information consistently available, greatly limiting
the applicability of their work to research. Other projects often have too low a

33

quality to be of much use, with many transcription errors occurring within even a
single paragraph.

The collaboration between Google, the Internet Archive and the academic
library community has resulted in large numbers of books being scanned with
very careful metadata. Unfortunately these texts turn out to contain many errors.
An actual sample is shown in Figure 1.

He died of an
autumnal fever, . which was brought on by an intemperate
eating of melous, in the 70th year of his age, and (as is
believed) soon itfter his settlement in Rome ; but the time
of his death is uncertain, yet it must have be^n after 1478^

. because he survived Theodorus Gaza, who died in. that
year.

Figure 1. Sample OCR output

Our task, then, is to produce improved texts of sufficient quality that it seems
worth-while to process them into XML documents and to be able to use them for
research or redistribution.

3. Mitigating the Problem
The author of this paper has observed three mitigating factors to the otherwise
uselessly low quality of the texts shown in the first tow figures. The first is that
the Internet Archive provides the data files for the (usually proprietary) OCR pro-
gram used, which one could load and use to improve the texts by hand. The
author's experience is that this process takes several minutes per page so that, if
one has not had the foresight to enslave enough graduate students, it is uneco-
nomical except for the most important of texts.

The second mitigating factor, however, is that the Internet Archive often car-
ries the result of scanning the same edition of the same book multiple times, pre-
sumably most often from multiple institutions. Figure 2 shows a different version
of the sample text already shown, scanned at a different institution.

He died of an
autumnal fever, which was brought on by an intemperate
eating of melons, in the 70th year of his age, and (as is
believed) soon after his settlement in Rome ; but the time
of his death is uncertain, yet it must have been after 1478,
because he survived Theodorus Gaza, who died in tiiat
year.

Figure 2. Other versions contain different errors

Improving text quality with automatic majority editions

34

It may be worth noting that the author tried scanning this same book using the
same software and obtained a considerably lower error rate, with only a few
errors per page. However, for that experiment, greyscale images were used rather
than black and white, and at a higher resolution. This slows down scanning and
increases the burden of image storing, but at any rate will not help with books
that have already been scanned.

The third mitigating factor, essential to the approach to be described, is to
observe that some of the versions are of markedly higher quality than others. Fig-
ure 3 shows yet another version of the same text and it is clearly of better quality.
A check against the printed page also shows that the numbers are correct and
that the zero in “70” is in fact a digit and not (as is common) a letter.

He died of an
autumnal fever, which was brought on by an intemperate
eating of melons, in the 70th year of his age, and (as is
believed) soon after his settlement in Rome ; but the time
of his death is uncertain, yet it must have been after 1478,
because he survived Theodorus Gaza, who died in tiiat
year.

Figure 3. A third version has fewer errors.

We could do much worse than simply choosing the best version whenever there
are multiple copies of a text. But, as we hope to show, we can do much better.

4. A Majority Proposal
The first example includes approximately ten errors in seven lines of text, but if
we apply a simple preprocessor to it we can reduce that to six errors. We simply
delete spaces before semicolons, full-stops and spaces at the starts of lines, and
spurious fullstops where they are obviously inappropriate. After doing that we
arrive at a version of the text in which three of the lines appear in exactly the
same form in at least two other versions of the text.

It ought, then, to be possible to examine each line of text, one by one, in each
version of our text, and to take the version of the line that occurs the most often. If
we try this we run into a snag: in the lower quality texts there are systemic errors,
so that sometimes the majority is not always best. How can we avoid this diffi-
culty?

5. The Algorithm
Instead of making a pure majority text, we choose by inspection the most promis-
ing version. We then process this text, along with all of the other versions, and
produce a set of change instructions (actually a Unix “patch” file) that will mark

Improving text quality with automatic majority editions

35

only places where the majority of other versions deviate from the best edition. The
algorithm can be tweaked to require a replacement line to appear in all of the
other versions before selecting it. The method is as follows:
1. Minimally pre-process each version of the text to remove trailing spaces, mis-

placed punctuation and spaces before colons or semi-colons. This step must
not damage, for example, a comma after an abbreviation, and should there-
fore be cautious.

2. Choose version that appears most promising at this stage, by inspection.
3. Run the Majority Edition creation tool on all of the versions, with the most

promising listed first.
4. The result is a patch file; both graphical and text-based tools to select patches

are widely available and are also included in open source and libre text edit-
ing tools (even editors such as vim and emacs), and generally show the context
for each change. The author has found that there are typically anywhere from
a few hundred to a couple of thousand changes in a densely-printed 500-page
reference work.

This sequence begs the important question of producing the majority edition. The
present version is written in a subset of Perl and uses the String::Similarity
module to give a similarity metric between two strings of zero (totally different),
one (identical) or, more often, some intermediate value representing the calcula-
ted edit distance. The algorithm used is given as a reference in the Perl module as
that of [2] and [3].

The script proceeds as follows:
1. Opens all input files, converting to Unicode UTF-8 as needed;
2. Uses a sliding window for each file to match up corresponding non-blank

lines of text, first searching ahead as needed for identical lines and then falling
back to “similar” lines;

3. If for a given line all files have identical characters, choose that;
4. If all but one file have the same text, use that (optional step);
5. If the primary version is sufficiently outnumbered, use the majority version.
A somewhat reduced version of the production script is given in an appendix to
this paper. In addition to the operations already described, the version given here
also rejects lines that contain too much improbable punctuation, such as less-than
signs or curly braces or the caret by itself, that are commonly introduced by OCR
recognition problems and only rarely, if ever, occur in historical texts. When curly
braces do occur the OCR programs usually fail to recognize them as such.
Another common problem is recognition of a semicolon as a lower-case “j” usu-
ally as a word by itself because of the so-called French spacing used in many

Improving text quality with automatic majority editions

36

nineteenth-century books. The script therefore rejects a suggested change if it
would eliminate semicolons. French spacing

6. A Variation: Word-at-a-time Mode
The imaginative reader might be wondering, why stop at lines? Why not process
individual words or even characters? The script can in fact do a word-based
majority edition but experience shows that with particularly poor text this can
result in a lot of incorrect changes. The reason is that the OCR process often runs
words together or adds spurious spaces, and the resulting word fragments are in
that situation usually too short to be paired reliably with corresponding words in
other files. This is, however, a possible area for future work.

It should also be noted that the script has a facility for recognising explicit
page breaks as a mechanism to limit the scope of any problems. An input line
starting with an @-sign is treated as an explicit page break and is assumed to con-
tain any running header or foliation. The conversion scripts check that page num-
bers increase monotonically and that none are skipped, after allowing for
unnumbered pages; this is especially useful when dealing with OCR output that
might occasionally miss a page.

7. Converting to XML
The archive.org text files are often marked up very lightly in HTML, with a tag at
the start and end of an entire book and plain text between, using blank lines for
paragraph breaks. The author wrote additional scripts to handle recognition of
sections or chapters, dictionary entries (where appropriate), page breaks, foot-
notes, footnote references, cross references and other corndoodles. The process
has been to create the majority texts once and then edit them by hand (for exam-
ple, to correct OCR errors) and then re-run the conversion scripts as needed using
the Make program; keeping the majority edition scripts under some form of revi-
sion control is highly recommended in this case. The actual makefile the author
uses for one project with these scripts is included as an appendix to this paper.

Since footnotes are asynchronous to the document structure it turns out to be
simplest to identify them before converting to XML fully. A common idiom,
invented by this author and independently (and probably earlier) by many oth-
ers, is to convert unwanted XML tags into a text marker such as ##381## for the
three hundred and eighty-first tag in the document,, then to process the
unmarked text, process the footnotes, then restore the hidden tags. This allows
footnotes to be marked up explicitly with <fn> elements by hand in the output of
the majority edition texts, where the scripts fail to detect them. Another possible
area of future work would be to improve footnote detection. Where footnotes had
two columns in the printed book the OCR has sometimes made a single long thin

Improving text quality with automatic majority editions

37

column, which is easy to process automatically, and sometimes made long lines
by joining adjacent lines of text from the two columns, which must for the most
part be separated by hand. But what software hath joined, no human should have
to cast asunder.

By the end of pre-XML-tool processing, disparate parts of hyphenated words
have been reunited; footnotes have been marked up, including the insertion of
links to sources; other text features may have been marked, such as dates or titles
of cited works; each step in the process improves the markup or removes errors
inserted from earlier steps. The resulting XML document is then available for
analysis. For Web purposes, an XSLT transformation might generate dozens or
even tens of thousands of separate HTML documents, one per dictionary entry or
chapter, and a separate process then adds cross-document site-wide links to those
individual files.

8. Evaluation and Further Work
There is no question that the resulting text files will (and do) contain many fewer
errors as a result of this process. The result is far from perfect and for a single
short book it might be better to proof-read in a more traditional manner. For
works such as a 32-volume Dictionary of Biography manual proof-reading is not
an option and algorithmic improvements such as the process described here are
required.

Future planned work is to make use of the XML markup, once generated, to
improve error correction as well as to enhance the overall usefulness of the texts.
An example of markup-specific correction already in use is that footnotes, once
detected, are processed specially: proper names in them are usually citations and
can be linked to the appropriate text automatically in many cases; because the
text of footnotes was printed with a smaller typeface there are different punctua-
tion errors, some of which can be corrected automatically.

The author is hoping to apply contextual stochastic analysis to identify errors
in texts and to locate related texts: for example, a paragraph that mentions the
name of an Oxford college is more likely to be referring to the City of Oxford than
to the town of Orford even if the word “Oxford” does not otherwise appear.

9. Conclusion
Documents in XML have to get into XML somehow; that can be by creating them
in XML or it can be through conversion. This paper has discussed a technique to
improve the quality of XML documents acquired through OCR, and has also
shown more of a context in which the technique can be used effectively.

Although none of the techniques in this paper are particularly new (most go
back to the 1960s), what is new is the application of these techniques in combina-

Improving text quality with automatic majority editions

38

tion to texts that have been scanned multiple times and that have sufficient meta-
data to identify the exact edition used with precision.

A. Majority Edition Script
The script that generates the majority edition is actually fairly simple. It's written
in Perl to make use of the String::Similarity module, although it could equally
well be written in another language. Performance was adequate on a reasonable
system even several years ago, taking only a minute or two to run on a five-hun-
dred-page book with half a dozen versions. The version given here works but the
production version has some improvements and additional checks that were
omitted to save space. See http:// words.fromoldbooks.org/ xml/ for the full
version.

#! /usr/bin/perl -w
use strict;
use String::Similarity;
binmode STDOUT, ":utf8"; # allow Unicode output

my $minmax = 3; # must be 3 texts the same to use a change

my %files;
my %furthestlinereached;
my $nfiles = 0;

{
 local $/; # "slurp" mode, read whole file at once
 # inside a {...} block so it doesn't affect the rest of the code

 foreach (@ARGV) {
 open(IN, $_) or die "can't open $_: $!";
 binmode IN, ":utf8"; # so we can read Unicode
 my $text = <IN>; # slurp mode: $text is the whole file
 close IN;
 # make an array of lines in the input file:
 @{$files{$nfiles}} = split('\n', $text);
 $furthestlinereached{$nfiles} = -1;
 ++$nfiles;
 }
}

sub latesttext($)
{
 my ($n) = @_;
 return ${$files{$n}}[$furthestlinereached{$n}]

Improving text quality with automatic majority editions

39

}

sub quality($)
{
 # returns 0 for unacceptable, 1 for good, 0.5 for OK...

 # internally, use 100 for bad
 my ($line) = @_;
 my $result = 0;

 while ($line =~ m/[\{\}\\~%]/g) {
 # really bad if it has these characters before 1900
 $result += 70; # add 70 for each occurrence
 }
 if ($result >= 100) {
 return 0;
 }

 while ($line =~ m/[&](lt|gt|amp)\;/g) {
 $result += 50; # 50 for each < > or &-sign
 }
 if ($result >= 100) {
 return 0;
 }

 while ($line =~ m/ii/g) { # suggests bad OCR (or Latin)
 $result += 10;
 }

 while ($line =~ m/,,/g) {
 $result += 4;
 }

 while ($line =~ m/*/g) {
 $result += 7;
 }

 while ($line =~ m/ j /g) {
 $result += 5; # should be a semicolon
 }

 if ($result >= 100) {
 return 0;
 }

 if ($result == 0) {

Improving text quality with automatic majority editions

40

 return 1; # OK
 }

 return 1 - ($result / 100);
}

sub countchar($$)
{
 my ($string, $pattern) = @_;
 my $result = 0;

 while ($string =~ m/$pattern/g) {
 ++$result;
 }
 return $result;
}

sub improves($$)
{
 my ($original, $suggestion) = @_;

 if ($original eq $suggestion) {
 return 1; # it's no worse!
 }

 if (countchar($suggestion, ";") < countchar($original, ";")) {
 return 0; # lost one or more semicolons
 }

 if (countchar($suggestion, "\\^") > countchar($original, "\\^")) {
 return 0; # gained ^ (common OCR error)
 }

 return 1;
}

the main processing loop:
foreach my $i (0 .. $#{$files{0}}) { # for each line in file 0
 $furthestlinereached{0} = $i;
 my $line = ${$files{0}}[$i];

 # blank lines are to be treated specially:
 if ($line =~ m/^\s*$/) {
 print "\n";
 next;
 }

Improving text quality with automatic majority editions

41

 # explicit page breaks marked with @ at the start of a line
 if ($line =~ m/^[@]/) {
 print ${$files{0}}[$i] . "\n";
 next;
 }

 my %foundlines = ();
 push @{$foundlines{latesttext(0)}}, 0;

 my $nfound = 1; # we found the line in the first file!
 my $nclose = 0; # number of similar lines found
 foreach my $f (1 .. $nfiles - 1) {
 foreach my $j ($furthestlinereached{$f} + 1 .. $#{$files{$f}}) {
 # If we get more than 200 lines out of sync, disregard
 # the out-of-sync version until we catch up.
 last if ($j - $furthestlinereached{$f} > 200);

 my $other = ${$files{$f}}[$j];
 my $similarity = 1;
 if ($line eq $other) { # found it in this version
 $furthestlinereached{$f} = $j;
 push @{$foundlines{latesttext($f)}}, $f;
 ++$nfound;
 last; # quit looking in this file
 } elsif ($other !~ m/^\s*$/) { # skip blank lines
 # use editing distance as a measure of similarity:
 $similarity = similarity($line, ${$files{$f}}[$j]);
 if (defined $similarity && $similarity > 0.9) {
 $furthestlinereached{$f} = $j;
 if (quality(latesttext($f)) < 0.8) {
 last; # Do not want this version
 }
 $nclose++;
 push @{$foundlines{latesttext($f)}}, $f;
 last; # found it, quit looking in this file
 }
 }
 }
 } # foreach file

 if ($nfound == $nfiles) { # this line the same in all versions
 print ${$files{0}}[$i] . "\n";
 } else { # our line was only found to be OK in some files...
 my $max = 0; my $which = 0;
 foreach my $version (keys %foundlines) {

Improving text quality with automatic majority editions

42

 if (@{$foundlines{$version}} > $max) {
 $max = @{$foundlines{$version}};
 $which = ${$foundlines{$version}}[0]; # the file number
 }
 }

 # only accept the replacement if it is an improvement
 if ($max >= $minmax && improves(latesttext(0), ►
latesttext($which))) {
 print ${$files{$which}}[$furthestlinereached{$which}] . "\n";
 } else { # keep the original:
 print latesttext(0) . "\n";
 }
 }
} # foreach line

B. Project Makefile
The makefile given here is for the Chalmers Dictionary project. When the author
runs the make program, the entire conversion is run but not published onto the
live Web site, to give an opportunity for error checking first.

An advantage of using make rather than a procedural shell script is that make
is lazy, and if intermediate generated files are up-to-date it knows it doesn't need
to rebuild them, potentially saving a lot of time.

If you use make in your own projects, be warned that the file format is fussy
and considered spaces and tabs to be different, so you must use a text editor that
behaves itself.

Makefile for Chalmers Dictionary

The filenames script returns a list of matching filenames, or all
if no pattern is given:
FILES := $(shell ./filenames)

The default target, "done", depends on the final XML and on the CSS ►
that's
produced by Saxon. It doesn't publish to the live site autoamtically.
done: all.xml fixed.xml fn.xml with-sources.xml out/entries.css
 @echo now run ./addlinks.pl and ./publish

(1) First, identify page breaks
paginated.ok: $(FILES)
 bin/identify-page-breaks.pl $(FILES)
 touch paginated.ok

(2) pre-process and then identify footnotes

Improving text quality with automatic majority editions

43

all.xml: paginated.ok bin/prepare bin/fnpfix.pl
 -cp entries e1
 bin/prepare paginated/* 2> prepare.log | bin/fnpfix.pl > all.xml
 -wc -l errors.txt
 xmllint --noout all.xml

(3) correct some common OCR errors
fixed.xml fixed.log: all.xml bin/fixup
 time bin/fixup > tmpfixed.xml 2> fixed.log
 xmllint --noout tmpfixed.xml
 mv tmpfixed.xml fixed.xml

(4) connect footnotes to their references
fn.xml fn.log: fixed.xml bin/fixfootnotes.pl
 bin/fixfootnotes.pl < fixed.xml > fn.xml 2> fn.log
 ls -l fn.log
 xmllint --noout fn.xml || exit 1

(5) Step (2) already dealt with hyphens, but added soft hyphens;
This step removes those SHY chars and builds a hyphenation dictionary
hy.xml: fn.xml bin/hyphenate
 bin/hyphenate > hytmp.xml < fn.xml
 xmllint --noout hytmp.xml || exit 1
 mv hytmp.xml hy.xml

(6) Make bibliographic references be links where possible
This builds "with-sources.xml", the final XML file
with-sources.xml: hy.xml bin/sources.pl bin/addvocations.pl
 bin/sources.pl < hy.xml | bin/addvocations.pl > with-sources.xml
 xmllint --noout with-sources.xml || exit 1

(7) make an HTML version of with-sources suitable for the Web site,
using the fabulous incomparably wonderful Saxon program
out/entries.css: with-sources.xml fixed.xml split.xslt
 xmllint --noout links.xml
 rm -rf out
 time saxonsa-latest with-sources.xml split.xslt 2> xslt.log
 wc -l e1
 wc -l entries
 ls -l xslt.log
 touch done

Any file listed as a dependency can get removed if Make is interrupted,
so that you don't end up in an inconsistent state. Make won't delete
files that are marked as previous:

Improving text quality with automatic majority editions

44

.PRECIOUS: bin/sources.pl bin/fixfootnotes.pl bin/prepare bin/fixup \
 split.xslt Makefile filenames

Bibliography
[1] Chalmers, Alexander, F.S.A. (Ed.), The General Biographical Dictionary,

Containing an historical and critical account of the lives and writings of the
most eminent persons in every nation; particularly the British and Irish; from
the earliest accounts to the present time, London, 1812–1817. http://
words.fromoldbooks.org/Chalmers-Biography/

[2] Myers, Eugene, An O(ND) Difference Algorithm and its Variations,
Algorithmica Vol 1 issue 2, 1986, pp. 251-266.

[3] Ukkonen, E., Algorithms for Approximate String Matching, Information and
Control Vol. 64, 1985, pp. 100-118.

Improving text quality with automatic majority editions

45

http://words.fromoldbooks.org/Chalmers-Biography/
http://words.fromoldbooks.org/Chalmers-Biography/

46

Checking documents for DTP with the
free online service data2check

Mehrshad Zaeri Esfahani
parsQube GmbH

<Mehrschad.Zaeri@parsQube.de>
Hauke Brandes
parsQube GmbH

<hauke.brandes@parsqube.de>
Manuel Montero Pineda

data2type GmbH
<montero@data2type.de>

1. What is data2check?
With the help of the free service "data2check1", Word, InDesign and EPUB files
can be checked for correctness.

Word documents are checked for compliance with the styles used (paragraph
and character styles). In this way, important copy-editing guidelines of a publish-
ing house or a company can be controlled. Furthermore, a document can be
examined for Word-specific components making further processing much more
difficult (e.g. text boxes, pictures, charts, etc.). InDesign documents can be
checked for created paragraph and character styles but also for constructs making
the export from InDesign to the EPUB format impossible.

After completion of a check, any errors found can be tracked with the help of
comments in the output document. In Addition, the uploaded data is stored as
XML files in a database, where they are available at any time.

2. Why do we need such checks?
When we focus on Word, the following initial situation occurs: publishing houses
or companies need structured data in XML. However, authors are often not will-
ing or able to create and provide these documents in an XML editor. There is a
range of possible solutions for the publishing companies, though all of these are
problematic.

One possible workflow is based on the usage of Word documents. The advant-
age of this method lies simply in the high acceptance among the authors. The big
disadvantage is that authors often provide data being not well structured.

1 http://www.data2check.de

47

http://www.data2check.de
http://www.data2check.de

These Word documents have to be expensively prepared in a copy-editing
process which is performed either before or after a conversion into XML. In the
end, this work has to be paid by the publishing house or the author and it delays
the publishing process.

3. What is the technical difficulty to connect DTP and XML?
Normally, document formats for DTP programmes are flat and only contain a few
structures. These include first and foremost paragraphs and tables.

The reason for this is that it shall be easily possible to cut out content and to
re-insert it elsewhere, without any error messages. Almost all content is dis-
played in the form of paragraphs which, without any restrictions, may appear in
a different order. Also headings, lists, pictures and so on are displayed in para-
graphs. From the XML perspective, the only reasonably implemented structures
are tables and footnotes.

These flat structures make a conversion into XML formats, such as DocBook,
TEI or DITA, difficult since important parts of the semantics lie in the applied
styles, which in turn can be used freely in the DTP programmes.

3.1. WordML is also XML, or not?
In technical terms, Word and InDesign are also XML formats. However, the pur-
pose of these formats is to represent everything that was used, for example, in a
Word document. In case the WordML file is valid, one can assume that Word is
able to open the file and represent its content. But the format says nothing about
whether it can be transformed into a publication structure such as DocBook.

As a consequence, when checking a document two layers have to be taken
into account. On the one hand, for example, the WordML file must be valid, and
on the other hand, the styles must be used in a further abstraction layer in such a
way that they can be converted into another structure, as for example DocBook.

From a visual point of view, the following Word example is correct. Nonethe-
less, a transformation would not be possible here since the heading containing the
author name is tagged as heading level 2 and then the book title follows.

 <w:body>
 <w:p w:rsidR="009145BB" w:rsidRDefault="009145BB" w:rsidP="009145BB">
 <w:pPr>
 <w:pStyle w:val="Heading2"/>
 <w:rPr>
 <w:rFonts w:eastAsia="Times New Roman"/>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 </w:pPr>
 <w:proofErr w:type="spellStart"/>

Checking documents for DTP with the free online service data2check

48

 <w:r>
 <w:rPr>
 <w:rFonts w:eastAsia="Times New Roman"/>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>Author</w:t>
 </w:r>
 <w:proofErr w:type="spellEnd"/>
 <w:r>
 <w:rPr>
 <w:rFonts w:eastAsia="Times New Roman"/>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>: Franz Kafka</w:t>
 </w:r>
 </w:p>
 <w:p w:rsidR="009145BB" w:rsidRPr="009145BB" ►
w:rsidRDefault="009145BB"
 w:rsidP="009145BB">
 <w:pPr>
 <w:pStyle w:val="Title"/>

Figure 1. Excerpt from the example Word document

Checking documents for DTP with the free online service data2check

49

 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 </w:pPr>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t xml:space="preserve">The </w:t>
 </w:r>
 <w:proofErr w:type="spellStart"/>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>Metamor</w:t>
 </w:r>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>phosis</w:t>
 </w:r>
 <w:proofErr w:type="spellEnd"/>
 </w:p>

As you can see in the above code snippet, there are several challenges. On the one
hand the reference to the actual name of the style is put in a ID-RefID relation.
The w:val attribute contains the RefID to an ID in another file which, in turn, con-
tains the name of the style: <w:pStyle w:val="Heading2"/>.

This aspect alone shows that Word was not designed to validate content via
styles. In this context, there is a series of further problems. Some of these are lis-
ted in the following:

1. Often, the inline content is fragmented:

<w:p w:rsidR="009145BB" w:rsidRPr="009145BB" w:rsidRDefault="009145BB"
 w:rsidP="009145BB">
 <w:pPr>
 <w:pStyle w:val="Title"/>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 </w:pPr>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>

Checking documents for DTP with the free online service data2check

50

 </w:rPr>
 <w:t xml:space="preserve">The </w:t>
 </w:r>
 <w:proofErr w:type="spellStart"/>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>Metamor</w:t>
 </w:r>
 <w:r>
 <w:rPr>
 <w:lang w:eastAsia="de-DE"/>
 </w:rPr>
 <w:t>phosis</w:t>
 </w:r>
 <w:proofErr w:type="spellEnd"/>
 </w:p>

Without a reason, the word Metamorphosis is split here. This would be the
same as if the word is tagged in DocBook as follows:

<para><emphasis role="bold">Meta</emphasis>
<emphasis role="bold">morpho</emphasis><emphasis
role="bold">si</emphasis><emphasis role="bold">s</emphasis></para>

2. Lists and headings are paragraphs. Indeed, this is very convenient for Word
but often very difficult for a transformation.

3. Without using styles, the user can format the Word document wildly, so that it
looks like as if it were correct.

4. Tables are often used for indentations, etc.
5. Text boxes can optically indicate content elsewhere as embedded in the

WordML file.

4. Which check mechanisms are implemented in data2check?
For the check of the abovementioned second layer, a set of mechanisms is used
which aims to enable a later XML export into a document structure. Technically,
this layer is implemented by a Schematron process.

Therefore, the following checks are possible on the documents:
1. that they only consist of a fixed set of styles.
2. that the structure, e.g. of the hierarchy of headings, is respected.
3. that texts can be revised automatically via regular expressions.
4. that a start style can be specified.

Checking documents for DTP with the free online service data2check

51

5. that paragraph styles shall contain only certain character styles.

6. that on one style only a set of certain styles shall follow.

In order to ensure that also non-programmers are able to configure such
checks, much time and effort was invested in a GUI which enables these configu-
rations and excludes incorrect operation as far as possible.

The following screenshot shows how a configuration for checking a document
can be edited. In the shown tab the settings for the styles used are made.

Figure 2. Excerpt from the data2check GUI - Rules for the Document Structure

In the following screenshot you can see which rules can be set up for a paragraph
style.

The combination of these simple rules allows a convergence to valid struc-
tures in the target format. In practice, these checking processes can be applied in
order to:

1. support the copy-editing procedures of publishing companies or service pro-
viders.

2. automatically check the CIs of companies.

3. support companies in the technical documentation which are working with
Word and want to migrate their data to DITA or DocBook in the future.

In this session, we want to demonstrate the mentioned check mechanisms by
means of example documents. Afterwards, we would be pleased to discuss with
the audience possible further check routines for data2check.

Checking documents for DTP with the free online service data2check

52

Figure 3. Possible settings for a paragraph style

Checking documents for DTP with the free online service data2check

53

54

W3C ITS 2.0 in OASIS XLIFF 2.1
Managing metadata throughout

the multilingual content lifecycle
David Filip

ADAPT Centre at Trinity College Dublin
<david.filip@adaptcentre.ie>

Abstract

XLIFF is the XML Localization Interchange File Format. The current
OASIS Standard version is XLIFF Version 2.0 [10]. XLIFF Version 2.1 ???
concluded the 1st public review period on 25th November 2016. The major
new features added to [12] compared to ??? are the native [6] support and
the Advanced Validation feature via NVDL and Schematron. The Advanced
Validation feature for XLIFF 2 was first introduced at FEISGILTT 2014 [1]
and covered extensively at XML London 2016 [2]. In this paper and presen-
tation, we want to look in detail at the [6] native support feature.

In this paper and XML Prague presentation we will explain in detail
about W3C ??? metadata categories support in [12] and which ITS data in
XLIFF 2.1 are accessible or not to generic ITS Processors despite the use of
the W3C namespace.

Keywords: W3C ITS, XLIFF, Internationalization, I18n, Localization,
L10n, metadata, namespaces, mapping, roundtrip, lifecycle, multilin-
gual content

This research was conducted at the ADAPT Research Centre, Trinity College
Dublin, Ireland.

The ADAPT Centre is funded under the SFI (Science Foundation Ireland)
Research Centres Programme (Grant 13/RC/2106) and is co-funded under the
European Regional Development Fund.

1. Introduction
This paper is about managing Internationalization metadata throughout the multi-
lingual content lifecycle. Even though corporations and governments routinely
need to present the same, equivalent, or comparable content in various lan-
guages, multilingual content is usually not consumed in more than one language at
the same time by the same end user. Typically the target audience consumes the
content in their preferred language and if everything works well they don't even

55

need to be aware that the monolingual content they consume is part of a multilin-
gual content repository or a result of a Translation, Localization, or cultural adapta-
tion process.

Thus Multilingualism is transparent to the end user if implemented properly.
To achieve end user transparency the corporations, governments, inter- or extra-
national agencies need to develop and employ Internationalization, Localization,
and Translation capabilities. While Internationalization is primarily done on a mon-
olingual content or product, Localization, and Translation when done at a certain
level of maturity - as a repeatable process possibly aspiring to efficiencies of scale
and automation - requires a persistent Bitext format.

This paper describes an open, standard, and transparent way of managing
Internationalization metadata in multilingual repositories from seeding them in
monolingual source or pivot content through extraction to an open Bitext format,
manipulating or injecting relevant metadata categories during the Bitext Round-
trip, to keeping, archiving or throwing away the metadata that arrived processed
in the target content.

2. Lay of the land
The foundational Internationalization Standard is of course [8] along with some
related Unicode Annexes. But in this paper we are taking the Unicode support for
granted and will be looking at the domain standards W3C ITS and OASIS XLIFF
that are the open standards relevant for covering the industry process areas out-
lined in the Introduction.

For a long time, XML has been another unchallenged foundation of the multi-
lingual content interoperability and hence practically all Localization and Interna-
tionalization standards started as or became at some point XML vocabularies.
Paramount industry wisdom is stored in data models that had been developed
over decades as XML vocabularies at OASIS, W3C, LISA (RIP) and elsewhere.
Although ITS is based on abstract metadata categories, [5] had only provided spe-
cific implementable recommendation for XML. The simple yet ingenious idea of
ITS is to provide a reusable namespace that can be injected into existing formats.
Although the notion of a namespace is not confined to XML, again ITS 1.0 was
only specifically injectable into XML vocabularies.

[6] provides local and global methods for metadata storage not only in XML
but also in HTML 5, it also looked at mapping into non-XML formats such as [4],
albeit in a non-normative way. Because native HTML does not support the notion
of namespaces, ITS 2.0 has to use attributes that are prefixed with the string its-
for the purpose of being recognized as an HTML 5 module. [6] also introduced
many new metadata categories compared with [5]. ITS 1.0 only looked at meta-
data in source content that would somehow help inform the Internationalization
and Localization processes down the line. ITS 2.0 brought brand new and some-

W3C ITS 2.0 in OASIS XLIFF 2.1

56

times complex metadata categories that contain information produced during the
localization processes or during the language service transformations that are
necessary to produce target content and are typically facilitated by Bitext. This
naturally led to a non-normative mapping of [6] to ??? and to [10]. Thus ITS 2.0
became a very useful extension to XLIFF. One of the main reasons why [10] is not
backwards compatible with [9] is that the OASIS XLIFF TC and the wider stake-
holder community wanted to create XLIFF 2 with a modularized data model. [10]
has a small non-negotiable core but at the same time it brings 8 namespace based
modules for advanced functionality. The modular and extensible design aims at
easy production of "dot" revisions or releases of the standard. XLIFF 2.0 was
intended as the first in the future family of backwards compatible XLIFF 2 stand-
ards that will share the maximally interoperable core (as well as successful mod-
ules surviving from 2.0). XLIFF 2 makes a distinction between modules and
extensions. While module features are optional, Conformant XLIFF Agents are
bound by an absolute prohibition to delete module based metadata, whereas
deletion of extension based data is discouraged but not prohibited. The ITS Mod-
ule is the biggest feature that was requested by the industry community and
approved by the TC for specification as part of ???.

The easiest metadata category to explain the idea of ITS is Translate; this is
simply a boolean flag that can be used to indicate Translatability or not in source
content.

Example 1. Translate expressed locally in HTML
<!DOCTYPE html>
<html>
 <head>
 <meta charset=utf-8>
 <title>Translate flag test: Default</title>
 </head>
 <body>
 <p>The World Wide Web Consortium is
 making the World Wide Web worldwide!</p>
 </body>
</html>

Example 2. Translate expressed locally in XML
<messages its:version="2.0" xmlns:its="http://www.w3.org/2005/11/its">
 <msg num="123">Click Resume Button on Status Display or
 <panelmsg its:translate="no"
 >CONTINUE</panelmsg> Button on printer panel</msg>
</messages>

Since it is not always practically possible to create local annotations, or the given
source format or XML vocabulary has elements or attributes with clear semantics

W3C ITS 2.0 in OASIS XLIFF 2.1

57

with regards to some Internationalization data categories such as Translate, in
most cases, ITS 2.0 also defines a way to express a given data category globally.

Example 3. Translate expressed globally in XML

<its:rules version="2.0" xmlns:its="http://www.w3.org/2005/11/its">
 <its:translateRule translate="no" selector="//code"/>
</its:rules>

In the above the global its:translateRule indicates that the content of <code>
elements is not to be translated.

XLIFF 2 Core has its own native local method how to express Translatability, it
uses the xlf:translate attribute. Here and henceforth the prefix xlf: indicates
this OASIS namespace urn:oasis:names:tc:xliff:document:2.0. Because
XLIFF is the Bitext format that is used to manage the content structure during the
service roundtrip in a source format agnostic way, XLIFF needs to make a hard
distinction between the structural and the inline data. We know the structural vs
inline distinction from many XML vocabularies and HTML. Some typical struc-
tural elements are Docbook <section> or <para> as well as HTML <p>. This is
how XLIFF 2 will encode non-Translatability of a structural element:

Example 4. XLIFF Core @translate on a structural leaf element

 <unit id='1' translate="yes">
 <segment>
 <source>Translatable text</source>
 </segment>
 </unit>
 <unit id='2' translate="no">
 <segment>
 <source>Non-translatable text</source>
 </segment>
 </unit>

The above could be an Extraction of the following HTML snippet:
 <p translate='yes'>Translatable text</p>
 <p translate='no'>Non-translatable text</p>

The same snipped could be also represented like this:

Example 5. XLIFF representing ITS Translate by Extraction behavior w/o
explicit metadata

 <unit id='1'>
 <segment>
 <source>Translatable text</source>

W3C ITS 2.0 in OASIS XLIFF 2.1

58

 </segment>
 </unit>

However, it is quite likely that the non-translatable structural elements could pro-
vide the translators with some critical context information. Hence the non-extrac-
tion behavior can only be recommended if the Extracting Agent human or
machine can make the call if there is or isn't some sort of contextual or linguistic
relationship.

In case of the Translate metadata category being expressed inline, XLIFF has
to use its Translate Annotation:

Example 6. XLIFF Core @translate used inline

<unit id='1'>
 <segment>
 <source>Text
 <pc id='1'/><mrk id='m1' translate='no'>Code</mrk></pc></source>
 </segment>
</unit>

The above could be an Extraction of the following HTML snippet:
 <p>Text <code translate='no'>Code</code></p>

Also inline, there is an option to "hide" the non-translatable content like this:

Example 7. XLIFF representing ITS Translate by Extraction behavior w/o
explicit metadata

 <unit id='1'>
 <segment>
 <source>Text <ph id='1'/></source>
 </segment>
 </unit>

Again not displaying of the non-translatable content can be detrimental to the
process, as both human and machine translation agents would produce unsuita-
ble translations in case there is some linguistic relationship between the displayed
translatable text and the content hidden by the placeholder code.

Because XLIFF has its own native method of expressing translatability, generic
ITS decorators could not succeed. ITS processors can however access the translat-
ability information within XLIFF using the following global rule:

Example 8. ITS global rule to detect translatability in XLIFF

 <its:rules version="2.0" queryLanguage="xpath">
 <!-- Rules for Translate -->

W3C ITS 2.0 in OASIS XLIFF 2.1

59

 <its:translateRule selector="//xlf:*[@translate='no']"
 translate='no'/>
 <its:translateRule selector="//xlf:*[@translate='yes']"
 translate='yes'/>
 </its:rules>

In the section The nitty gritty we will explain why this rule will sometimes fail
and how to address the fail cases.

3. ITS metadata categories and their purpose
In this section we will first have a look at the 19 [6] metadata categories from the
functional point of view and later on from the XLIFF representation point of view.

3.1. Source metadata that inform Extraction behavior
Translate1, Locale Filter2, External Resource3, and Elements Within Text4 are
actually all methods to inform Extraction behavior. As such, these are quite
important for creation of Bitext management formats such as XLIFF but don't
need to be necessarily explicitly expressed within those formats. See the detailed
discussion of Translate above in Lay of the land and also below From the XLIFF
point of view for the other Extraction informing datacats.

Locale Filter5 is a method that can make content conditional based on a target
locale. This can be used on source as well as target content. For instance, legal
content will be different for the locales fr-FR and fr-CA.

External Resource6 indicates an external usually non-text part of content that
also needs to be changed in order to produce fully adapted target content. Typi-
cally this points to external graphics, scripts or binaries.

Many formats don't contain all the localizable text in a linear structure. Ele-
ments Within Text7 helps extractors properly handle and not lose context for text
placed in footnotes, endnotes, alt, or contextual hint text etc; on the other hand it
can place externally located text within a linear sequence that makes sense for
human consumers, but where it does not appear in the native environment.

1 http://www.w3.org/TR/its20/#trans-datacat
2 http://www.w3.org/TR/its20/#LocaleFilter
3 http://www.w3.org/TR/its20/#externalresource
4 http://www.w3.org/TR/its20/#elements-within-text
5 http://www.w3.org/TR/its20/#LocaleFilter
6 http://www.w3.org/TR/its20/#externalresource
7 http://www.w3.org/TR/its20/#elements-within-text

W3C ITS 2.0 in OASIS XLIFF 2.1

60

http://www.w3.org/TR/its20/#trans-datacat
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#trans-datacat
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#elements-within-text

3.2. Other metadata that inform localization behavior
Language Information8 uses the [3] data model via xml:lang to indicate the natu-
ral language of content. This is obviously very useful in case you want to source
translations or even just render the content with proper locale specifics.

Target Pointer9 is used to lessen the pain when working with multilingual
documents. In a document to become multilingual such as packaging desktop
publishing file, certain areas are designated to hold translations in target lan-
guages. It is very bad idea to try and use multilingual documents or spreadsheets
to actually manage versions of multilingual content. Such formats should be only
used when all target content has been produced via some sort of a Bitext manage-
ment roundtrip.

Localization Note10 is basically a free text field with a human readable locali-
zation instruction/warning or advice. Although a Localization Note can contain
any type of localization information it is not advisable to use it to prescribe
Extraction behavior, except perhaps as a preliminary step before using one of the
interoperable datacats that inform Extraction.

Directionality11 has quite a profound Internationalization impact, it let's ren-
derers decide at the protocol level (as opposed to the plain text or script level)
whether the content is to be displayed left to right (LTR - Latin script default) or
right to left (RTL - Arabic or Hebrew script default). But the Unicode Bidirec-
tional Algorithm [7]as well as directionality provisions in HTML and many XML
vocabularies changed since 2012/2013, so the ITS 2.0 specification text is actually
not very helpful here. This obviously doesn't affect the importance of the abstract
data category and of having proper display behavior for bidirectional content.

Preserve Space12 indicates via xml:space whether or not whitespace charac-
ters are significant. If whitespace is significant in source content it is usually sig-
nificant also in the target content, this is more often then not an internal property
of the content format, but it's important to keep this characteristics through trans-
formation pipelines. The danger that this category is trying to prevent is the loss
of significant whitespace characters that could not be recovered.

ID Value13 indicates via xml:id a globally unique identifier that should be
preserved during translation and localization transformations mainly for the pur-
poses of reimport of target content to all the right places in the native environ-
ment.

8 http://www.w3.org/TR/its20/#language-information
9 http://www.w3.org/TR/its20/#target-pointer
10 http://www.w3.org/TR/its20/#locNote-datacat
11 http://www.w3.org/TR/its20/#directionality
12 http://www.w3.org/TR/its20/#preservespace
13 http://www.w3.org/TR/its20/#idvalue

W3C ITS 2.0 in OASIS XLIFF 2.1

61

http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#target-pointer
http://www.w3.org/TR/its20/#locNote-datacat
http://www.w3.org/TR/its20/#directionality
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#target-pointer
http://www.w3.org/TR/its20/#locNote-datacat
http://www.w3.org/TR/its20/#directionality
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#idvalue

Allowed Characters14 and Storage Size15 are basically a way how to inform
the Localization providers about certain system limitations that happen to apply
to the source but are also expected to be fulfilled by the target. Often this is used
to avoid issues from using localized content in insufficiently internationalized
environments, be it by sticking to the rule or by manual post-processing if the
source limitation cannot be possibly fulfilled by the target in certain locales. For
instance a legacy system is ASCII only and all Localizations are required to keep
to this restriction (which is impossible for non-Latin script based languages and
isn't great for most Latin script based languages except for English). Localizations
might need to be held in certain database fields that happen to impose a Storage
Size restriction.

3.3. Subject Matter related datacats
Terminology16 can simply indicate words or multi-word expressions as terms or
non-terms. This is how the category worked in ITS 1.0. In ITS 2.0, Terminology
can be more useful by pointing to definitions or indicating a confidence score,
which is especially useful in cases the Terminology entry was seeded automati-
cally. Terminology doesn't belong exclusively here. Together with Text Analysis it
can be actually injected into the content during any stage of the lifecycle and is
not limited to source. However, it is very important for the localization process,
human or machine driven, to have Terminology annotated be it even only the
simple Boolean flag.

Text Analysis17 is a sister category to Terminology that is new in ITS 2.0. It is
intended to hold mostly automatically sourced (possibly semi-supervised) entity
disambiguation information. This can be useful for translators and reviewers but
can also enrich reading experience in purely monolingual settings.

Domain18 can be used to indicate content topic, specialization or subject mat-
ter focus that is required to produce certain translations. This can be for instance
used to select a suitably specialized MT engine, such as one trained on an auto-
motive bilingual corpus in case an automotive domain is indicated or. In another
use case, a language service provider will use a sworn translator and require in
country legal subject matter review in case the domain was indicated as legal.
Although ITS data categories are defined independently and don't have imple-
mentation dependencies, Domain information is well suited for usage together
with the Terminology and Text Analysis datacats.

14 http://www.w3.org/TR/its20/#allowedchars
15 http://www.w3.org/TR/its20/#storagesize
16 http://www.w3.org/TR/its20/#terminology
17 http://www.w3.org/TR/its20/#textanalysis
18

W3C ITS 2.0 in OASIS XLIFF 2.1

62

http://www.w3.org/TR/its20/#allowedchars
http://www.w3.org/TR/its20/#storagesize
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#textanalysis
http://www.w3.org/TR/its20/#allowedchars
http://www.w3.org/TR/its20/#storagesize
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#textanalysis

3.4. Metadata that are produced during or by localization
transformations of content
It might seem that this type of metadata is completely new in ???, since [5] con-
centrated almost exclusively on source metadata. However, as mentioned above,
Terminology - that was present in already in ITS 1.0 - can be injected at any point
and is not confined to source. Also Directionality is a characteristics of source as
well as target and has profound importance during the roundtrip. This was how-
ever not the focus in ITS 1.0.

MT Confidence19, Localization Quality Issue20, Localization Quality Rating21,
and Provenance22 - all new categories in ITS 2.0 - can be only produced during
Localization transformations; specifically, during Machine Translation, during a
review or quality assurance process, during or immediately after a manual or
automated translation or revision.

MT Confidence23 gives a simple score between 0 and 1 that encodes the auto-
mated translation system's internal confidence that the produced translation is
correct. This score isn't interoperable but can be used in single engine scenarios
for instance to color code the translations for readers or post-editors. It can also be
used for storing the data for several engines and running comparative studies to
make the score interoperable first in specific environments and later on maybe
generally.

Localization Quality Issue24 contains a taxonomy of possible Translation and
Localization errors that can be applied in annotations of arbitrary content spans.
The taxonomy ensures that this information can be exchanged among various
Localization roundtrip agents. Although this mark up is typically introduced in a
Bitext environment on target spans, marking up source isn't exclude and can be
very practical, especially when implementing the feedback or even reporting a
source issue. Importantly, the issues and their descriptions can be Extracted into
target content and consumed by monolingual reviewers in the native environ-
ment.

Localization Quality Rating25 is again a simple score that gives a percentage
indicating the quality of any portion of content. This score is obviously only inter-
operable within an indicated Localization Quality Rating system or metrics. Typi-
cally flawless quality is considered 100 % and various issue rates per translated

19 http://www.w3.org/TR/its20/#mtconfidence
20 http://www.w3.org/TR/its20/#lqissue
21 http://www.w3.org/TR/its20/#lqrating
22 http://www.w3.org/TR/its20/#provenance
23 http://www.w3.org/TR/its20/#mtconfidence
24 http://www.w3.org/TR/its20/#lqissue
25 http://www.w3.org/TR/its20/#lqrating

W3C ITS 2.0 in OASIS XLIFF 2.1

63

http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating

volume would strike down percentages, possibly dropping under an acceptance
threshold that can be also specified.

Provenance26 in ITS is strictly specialized to indicate only translation and revi-
sion agents. Agents can be organizations, people or tools or described by combi-
nations of those. For instance, Provenance can indicate that the Reviser John Doe
from ACME Language Quality Assurance Inc. produced a content revision with
the Perfect Cloud Revision Tool.

3.5. ITS metadata categories from the XLIFF representation point of
view
When ITS is becoming an XLIFF module, the most important point of view is
whether or not any of the data categories already exist or are partially present in
XLIFF. Fully overlapping categories need to be mapped. Fully absent categories
are simply implemented from scratch using the ITS provisions. Most challenging
are the cases of partial overlap. Several datacats were not implemented for vari-
ous reasons explained below.

3.5.1. Already in

The ITS data categories that already were available in [10] are Preserve Space27,
Translate28, and External Resource29.

We've already covered how Translate is represented in XLIFF 2 back in Lay of
the land.

Both ITS and XLIFF do use the xml:space to represent the Preserve Space30

behavior. However, XLIFF 2 prohibits setting of xml:space lower than on the
<unit> element. The reason being that xml:space set lower would not evaluate
properly on XLIFF inline pseud-spans. Thus XLIFF cannot explicitly express
mixed Preserve space behavior inline. It can however normalize all inline content
spans that had xml:space="default" and set xml:space="preserve" on the
ancestor <unit>. Thus, XLIFF 2 can express the same Preserve Space behavior as
ITS, despite the pseudo-spans complication.

External Resource31 can be extracted into XLIFF 2 using the [10] Resource
Data Module32, which is actually more expressive and requires the indication of
the media type for each external resource. XLIFF Extractors have the extra onus to
check and set the media type when extracting the External Resource information.

26 http://www.w3.org/TR/its20/#provenance
27 http://www.w3.org/TR/its20/#preservespace
28 http://www.w3.org/TR/its20/#trans-datacat
29 http://www.w3.org/TR/its20/#externalresource
30 http://www.w3.org/TR/its20/#preservespace
31 http://www.w3.org/TR/its20/#externalresource
32 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#resourceData_module

W3C ITS 2.0 in OASIS XLIFF 2.1

64

http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#trans-datacat
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#externalresource
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#resourceData_module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#resourceData_module
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#trans-datacat
http://www.w3.org/TR/its20/#externalresource
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#externalresource
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#resourceData_module

While ITS Processors can be pointed to the external resources, they don't need to
care for the extra media type info that is not required by the ITS datacat.

Localization Note33 was listed in ??? as another data category that is fully
available through XLIFF. However, it transpired based on the issue #534 raised by
Yves Savourel that there are some subtle differences in scope between the ITS
Localization Note and the XLIFF Core <note. Although it is possible to roundtrip
Localization Note data in XLIFF 2, it is strictly speaking not accessible by ITS Pro-
cessors in the exactly same way as by XLIFF Agents. The culprit here is inheri-
tance. Inheritance is one of the basic principles of ITS data categories and so the
ITS Localization Note information actually applies to all children of the node
where it was specified. XLIFF Notes can apply to high level immutable structural
elements <file>, <group>, and <unit> and from the business point of view the
Notes do apply to their whole content, nevertheless the Notes content is isolated
in a wrapper that is a sibling to the structural payload children and no defaults or
inheritance are defined for the structural descendants of the structural host. Sim-
ply speaking if a Docbook <section> elements hosts a Localization Note, the
information will be retrieved by ITS Processors from all of its descendants, while
the <group> element based Note that will be created during extraction via the
mapping will not be imposed on the <group> element's descendants. Although
from the business point of view, the information does apply to all of the nested
content, the Note information actually does not get inherited in the strict XML
sense.

Thus, the Localization Note will move to the Partial overlap data categories in
all upcoming [12] publications.

3.5.2. Implemented from scratch

Allowed Characters35, Domain36, Locale Filter37, Localization Quality Issue38,
Localization Quality Rating39, Text Analysis40 are fully defined within the [12] ITS
Module.

Each of the above defines it's own custom annotation to be applicable on
XLIFF Inline Content. Application on structural levels is straightforward.

Localization Quality Issue41 and Localization Quality Rating42 are injected
during the XLIFF roundtrip and can be Extracted to the target content in the
native environment if supported by the Merger (with full Extractor knowledge).

33
34 https://issues.oasis-open.org/browse/XLIFF-5
35 http://www.w3.org/TR/its20/#allowedchars
36
37 http://www.w3.org/TR/its20/#LocaleFilter
38 http://www.w3.org/TR/its20/#lqissue
39 http://www.w3.org/TR/its20/#lqrating
40 http://www.w3.org/TR/its20/#textanalysis

W3C ITS 2.0 in OASIS XLIFF 2.1

65

https://issues.oasis-open.org/browse/XLIFF-5
http://www.w3.org/TR/its20/#allowedchars
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#textanalysis
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
https://issues.oasis-open.org/browse/XLIFF-5
http://www.w3.org/TR/its20/#allowedchars
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#textanalysis

Locale Filter43 is also listed under Not represented. It shouldn't be used within
XLIFF Documents that already have specified the target language. xlf:trgLang is
optional if there are no <xlf:target> elements in the XLIFF Document. Corpo-
rate content owners participating in XLIFF 2 development expressed the require-
ment to be able to produce preliminary XLIFF Documents with only source
content and the Locale Filter metadata that can be further processed by Localiza-
tion Service Providers to create multiple XLIFF Documents with the target lan-
guage set and the Locale Filter metadata fully consumed (no longer present) by
inclusion of only the relevant source content.

The remaining datacats work just smoothly as intended in [6] and don't pose
any specific implementation challenges.

3.5.3. Partial overlap
Language Information44, MT Confidence45, Provenance46, Terminology47, and
Storage Size48 have partial overlap with XLIFF 2.0 features.

Language Information49 used on structural elements is fully supported by
XLIFF Core xlf:srcLang and xlf:trgLang attributes. The culprit is in usage of
foreign language spans inline within another source or target language. XLIFF
didn't have provisions to handle this use case because the xml namespace (and
hence xml:lang) is prohibited within the XLIFF inline data model. This is because
xml:lang could not properly interact with XLIFF Core pseudo-spans. itsm:lang
was defined in [11] but this is now gone since [12] now operates with the W3C
its namespace that doesn't have its own language information attribute and
reuses xml:lang.

MT Confidence50 has an overlap with the XLIFF 2.0 Translation Candidates
Module51. Explicit usage of ITS based MT Confidence on XLIFF Core is problem-
atic as it only makes sense to be used on unmodified MT suggestions and this
cannot be reliably discerned within XLIFF Core. MT Enrichers can be mandated
to only use MT Confidence with unmodified MT suggestions. However, Core
only Modifiers cannot be mandated to delete module based data after a human
intervention. ITS Processors unfortunately cannot access the MT Confidence
information contained in mtc:matchQuality (mtc: inicates

41 http://www.w3.org/TR/its20/#lqissue
42 http://www.w3.org/TR/its20/#lqrating
43 http://www.w3.org/TR/its20/#LocaleFilter
44 http://www.w3.org/TR/its20/#language-information
45 http://www.w3.org/TR/its20/#mtconfidence
46 http://www.w3.org/TR/its20/#provenance
47 http://www.w3.org/TR/its20/#terminology
48 http://www.w3.org/TR/its20/#storagesize
49 http://www.w3.org/TR/its20/#language-information
50 http://www.w3.org/TR/its20/#mtconfidence
51 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#candidates

W3C ITS 2.0 in OASIS XLIFF 2.1

66

http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#storagesize
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#mtconfidence
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#candidates
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#storagesize
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#mtconfidence
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#candidates

urn:oasis:names:tc:xliff:matches:2.0 which is the Translation Candidates
module namespace) because ITS does not specify a gloal pointer for MT Confi-
dence. This is where ITS is still in need of change or at least an extension.

Provenance52 has an overlap with the Change Tracking Module. Here the sit-
uation is particularly convoluted since XLIFF 2.1 deprecates the
urn:oasis:names:tc:xliff:changetracking:2.0 namespace and replaces it
with the urn:oasis:names:tc:xliff:changetracking:2.1 because of signifi-
cant changes in this module since XLIFF 2.0. In XLIFF Core, Provenance works
fine as if from scratch; however, in the Change Tracking Module, Provenance
metadata needs to interact in an interoperable way with some of its native attrib-
utes.

Terminology53 overlaps with XLIFF Core Term Annotation54. This was rela-
tively the easiest case of partial overlap, since the Core Annotation could be com-
plemented with an additional ITS Annotation to cover additional ITS based parts
of the Terminology information. ITS Terminology and XLIFF Term also nicely
interacts with the XLIFF 2.0 Glossary Module55 which easily maps to and from
TBX Basic.

Storage Size56 has been listed as a case of partial overlap, since this data cate-
gory can be expressed as an extension of the XLIFF 2.0 Size and Length Restric-
tion Module57 (SLR). The specifics of the extension have not been given due to
lack of industry interest. Nevertheless, ??? states that Storage Size has to be
implemented (if at all) using the Size and Length Restriction Module, which is a
readily extensible framework for giving all sorts of "fitting somewhere" restric-
tions; not only size and length, but also for instance custom display areas filled by
letters in specific fonts and sizes, even volume or weight when needed. ITS Stor-
age Size is simply a special case of a SLR based storage restriction.

3.5.4. Not represented
Directionality58, Elements Within Text59, ID Value60, Locale Filter61, Target
Pointer62 are listed as not represented datacats in [12].

Elements Within Text63 is fully consumed by Extractor behavior. Properly
extracted information will either result in formation of XLIFF Core Sub-flows64 or

52 http://www.w3.org/TR/its20/#provenance
53 http://www.w3.org/TR/its20/#terminology
54 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#termAnnotation
55 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#glossary-module
56 http://www.w3.org/TR/its20/#storagesize
57 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#size_restriction_module
58 http://www.w3.org/TR/its20/#directionality
59 http://www.w3.org/TR/its20/#elements-within-text
60 http://www.w3.org/TR/its20/#idvalue
61 http://www.w3.org/TR/its20/#LocaleFilter
62 http://www.w3.org/TR/its20/#target-pointer

W3C ITS 2.0 in OASIS XLIFF 2.1

67

http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#terminology
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#termAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#glossary-module
http://www.w3.org/TR/its20/#storagesize
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#size_restriction_module
http://www.w3.org/TR/its20/#directionality
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#target-pointer
http://www.w3.org/TR/its20/#target-pointer
http://www.w3.org/TR/its20/#elements-within-text
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#subflowsdesc
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#terminology
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#termAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#glossary-module
http://www.w3.org/TR/its20/#storagesize
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#size_restriction_module
http://www.w3.org/TR/its20/#directionality
http://www.w3.org/TR/its20/#elements-within-text
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#target-pointer

a standard linear order of XLIFF Core segments and units. The metadata will be
however not represented in XLIFF Documents and the correct target creation
behavior will be only accessible to a Merger that has full Extractor knowledge65.

It is preferable that Locale Filter66 is fully consumed by Extraction and the
metadata doesn't need to be represented within XLIFF Documents. See however,
Implemented from scratch67 for an exception.

Target Pointer68 information can form a part of the Extractor / Merger knowl-
edge that is required to populate the native multilingual document, there are
however no provisions to represent this in XLIFF Documents. On the other hand
XLIFF as a Bitext format is a kind of multilingual document and there is a fairly
simple ITS rule (within the ITS Module Schematron schema69) that lets generic
ITS processors to parse XLIFF 2 for target content.

XLIFF Core doesn't use xml:id, all XLIFF ids are of the type xs:NMTOKEN and
uniqueness scopes are defined at several separate levels. Thus the ID Value70

information is fully consumed by the Extraction / Merge behavior.
XLIFF Core has it's own fully fledged Directionality71 capability. So in a sense

the abstract datacat should count as "already in", nevertheless the XLIFF Core
Directionality72 doesn't need mapped to the specific ITS 2.0 Directionality provi-
sions, as explained in Other metadata that inform localization behavior73.

4. The nitty gritty
In the discussion so far, we have seen that there is a fairly good semantic match
between ITS and XLIFF. However, there is a couple of principal challenges that
are not at all easy to address properly. The solutions adopted during the resolu-
tion of the 1st Public Review Comments [11], especially the issue #974, were
driven by the intention to achieve maximum possible interoperability and mak-
ing most of the XLIFF-encoded ITS metadata accessible to generic ITS processors
without the need to implement specific XLIFF Agent conformance requirements.

The ITS Module namespace that was originally used to encode new ITS meta-
data within XLIFF was urn:oasis:names:tc:xliff:itsm:2.1. This has been
replaced by the original W3C namespace https://www.w3.org/2005/11/its/ for

63 http://www.w3.org/TR/its20/#elements-within-text
64 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#subflowsdesc
65 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e333
66 http://www.w3.org/TR/its20/#LocaleFilter
67 #fromscratch
68 http://www.w3.org/TR/its20/#target-pointer
69 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch
70 http://www.w3.org/TR/its20/#idvalue
71 http://www.w3.org/TR/its20/#directionality
72 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e9515
73 #otherlocbehcats
74 https://issues.oasis-open.org/browse/XLIFF-9

W3C ITS 2.0 in OASIS XLIFF 2.1

68

http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e333
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#target-pointer
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#directionality
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e9515
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e9515
https://issues.oasis-open.org/browse/XLIFF-9
http://www.w3.org/TR/its20/#elements-within-text
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#subflowsdesc
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e333
http://www.w3.org/TR/its20/#LocaleFilter
http://www.w3.org/TR/its20/#target-pointer
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#directionality
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#d0e9515
https://issues.oasis-open.org/browse/XLIFF-9

the 2nd Public Review Draft primarily to make more ITS categories directly
accessible by generic ITS Processors. The principal cause that forced the OASIS
XLIFF TC to reuse the W3C namespace was that ITS processors could not be
directed by ITS global rules (within the ITS Module Schematron schema75) even
to some data categories that were implemented in XLIFF from scratch. This was
impossible due to the lack of global pointers for those categories within the [6]
specification. While the theoretically proper action would have been to keep the
distinct OASIS ITS Module namespace and add the needed global pointers to ITS
(a new dot release), this would not be practically achievable. In W3C, Working
Groups (WG) are only mandated to work on specific work items and are disban-
ded after the intended Recommendations are published, hence a new WG would
need to be assembled and mandated to produce a new version of ITS.

In spite of [12] now using the W3C namespace for the ITS Module, there is a
systematic scope mismatch between the XLIFF defined ITS attributes and the ITS
defined XML attributes. Because ITS 2.0 has no provision to parse pseudo-spans,
it will necessarily fail to identify spans formed by XLIFF Core <sm/> and
markers.

In XLIFF, Modifiers can always transform <mrk id="1">span of text</mrk>
into <sm id="1"/>span of text<em startRef="1"/>, which is fundamentally
inaccessible by ITS Processors without extended provisions. Unmodified or unex-
tended ITS Rules will find the <sm/> nodes, if those nodes do hold the W3C ITS
namespace based attributes or native XLIFF attributes that can be globally poin-
ted to by ITS rules, yet they will fail to identify the pseudo-spans and will con-
sider the <sm/> nodes empty, ultimately failing to identify the proper scope of the
correctly identified datacat. XLIFF implementers who want to make their XLIFF
Stores maximally accessible to ITS processors are encouraged to avoid forming of
<sm/> based spans, it is however often not possible. Had it been possible, XLIFF
would have not needed to define <sm/> and delimited pseudo-spans in the
first place.

Principal reasons to form pseudospans include the following requirements: 1)
capability to represent non-XML content, 2) need for overlapping annotations, 3)
capability to represent annotations overlapping with formatting spans as well as
4) annotations broken by segmentation (which has to be represented as well
formed structural albeit transient nodes).

5. Impact and what's next

[12] gives guidance how to roundtrip each of the 19 ITS 2.0 datacats. All of the ITS
module's based metadata is accessible by ITS Processors, except for the pseudo-
span issue described above. ITS Procesors can easily implement an additional

75 http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch

W3C ITS 2.0 in OASIS XLIFF 2.1

69

http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/schemas/itsm.sch

capability to detect spans like this one <sm id="1"/ >span of text<em
startRef="1"/> without going into any more XLIFF specific features. Existing
and overlapping features are not accessible in cases, where ITS 2.0 lacks global
pointers. It is again relatively easy and straightforward to introduce these as
extensions via the W3C ITS Interest Group (IG). This IG does not have the man-
date to produce normative additions to ITS 2.0 or a new version, yet it can intro-
duce new useful extensions and keep track of features needed for a potential new
major version.

The release of a technically stable public review draft of [12] constitutes
another important step in harmonization of Internationalization and Localization
standards based at OASIS, W3C, Unicode Consortium and elsewhere. Early
adopters of XLIFF 2.1 should subscribe to the XLIFF TC Comment List76 to be
notified on further progress of the review drafts towards the official publication
as an OASIS Standard, hopefully in summer 2017. Importantly, XLIFF 2.1 con-
tains the media type registration template which will result in a definitive regis-
tration of the extension xlf for the XLIFF 2 family of standards.

The abstract object model for XLIFF77 as well as non-XML serializations of
that model (such as JLIFF78) are being developed at the OASIS XLIFF OMOS
TC79. This TC also looks into mappings to and from other Internationalization
and Localization standards, as well as Localization service APIs and reference
architectures. XLIFF proper - the original XML serialization of XLIFF 2 - contin-
ues being developed at the OASIS XLIFF TC80.

Bibliography
[1] S. Saadatfar and D. Filip: Advanced Validation Techniques for XLIFF 2.

Localisation Focus, vol. 14, no. 1, pp. 43-50, April 2015. http://
www.localisation.ie/locfocus/issues/14/1

[2] S. Saadatfar and D. Filip: Best Practice for DSDL-based Validation. XML
London 2016 Conference Proceedings, May 2016.

[3] M. Davis, Ed. Tags for Identifying Languages, http://tools.ietf.org/html/bcp47
IETF (Internet Engineering Task Force).

[4] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer: Integrating NLP using
Linked Data. 12th International Semantic Web Conference, Sydney, Australia,
2013. http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf

76 https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xliff
77 https://github.com/oasis-tcs/xliff-omos-om
78 https://github.com/oasis-tcs/xliff-omos-jliff
79 https://www.oasis-open.org/committees/xliff-omos/
80

W3C ITS 2.0 in OASIS XLIFF 2.1

70

https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xliff
https://github.com/oasis-tcs/xliff-omos-om
https://github.com/oasis-tcs/xliff-omos-jliff
https://www.oasis-open.org/committees/xliff-omos/
https://www.oasis-open.org/committees/xliff-omos/
http://www.localisation.ie/locfocus/issues/14/1
http://www.localisation.ie/locfocus/issues/14/1
http://tools.ietf.org/html/bcp47
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=xliff
https://github.com/oasis-tcs/xliff-omos-om
https://github.com/oasis-tcs/xliff-omos-jliff
https://www.oasis-open.org/committees/xliff-omos/

[5] C. Lieske and F. Sasaki, Eds.: Internationalization Tag Set (ITS) Version 1.0.
W3C Recommendation, 03 April 2007. W3C. https://www.w3.org/TR/its/

[6] D. Filip, S. McCance, D. Lewis, C. Lieske, A. Lommel, J. Kosek, F. Sasaki, Y.
Savourel, Eds.: Internationalization Tag Set (ITS) Version 2.0. W3C
Recommendation, 29 October 2013. W3C. http://www.w3.org/TR/its20/

[7] M. Davis, A. Lanin, and A. Glass, Eds.: UAX #9: Unicode Bidirectional
Algorithm.. Version: Unicode 9.0.0, Revision 35, 18 May 2016. Unicode
Consortium. http://www.unicode.org/reports/tr9/tr9-35.html

[8] K. Whistler et al., Eds.: The Unicode Standard. Version 9.0 - Core Specification,
July 2016. Unicode Consortium. http://www.unicode.org/versions/
Unicode9.0.0/UnicodeStandard-9.0.pdf

[9] Y. Savourel, J. Reid, T. Jewtushenko, and R. M. Raya, Eds.: XLIFF Version 1.2,
OASIS Standard. OASIS, 2008. Y. Savourel, D. Filip, R. M. Raya, and Y.
Savourel, Eds.: XLIFF Version 1.2. OASIS Standard, 01 February 2008. OASIS.
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html

[10] T. Comerford, D. Filip, R. M. Raya, and Y. Savourel, Eds.: XLIFF Version 2.0.
OASIS Standard, 05 August 2014. OASIS. http://docs.oasis-open.org/xliff/xliff-
core/v2.0/os/xliff-core-v2.0-os.html

[11] D. Filip, T. Comerford, S. Saadatfar, F. Sasaki, and Y. Savourel, Eds.: XLIFF
Version 2.1. Public Review Draft 01, 14 October 2016. OASIS http://docs.oasis-
open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html

[12] D. Filip, T. Comerford, S. Saadatfar, F. Sasaki, and Y. Savourel, Eds.: XLIFF
Version 2.1. Public Review Draft 02, February 2017. OASIS http://docs.oasis-
open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html

W3C ITS 2.0 in OASIS XLIFF 2.1

71

https://www.w3.org/TR/its/
http://www.w3.org/TR/its20/
http://www.unicode.org/reports/tr9/tr9-35.html
http://www.unicode.org/versions/Unicode9.0.0/UnicodeStandard-9.0.pdf
http://www.unicode.org/versions/Unicode9.0.0/UnicodeStandard-9.0.pdf
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html

72

Projection and Streaming: Compared,
Contrasted, and Synthesized

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

This paper describes, compares, and contrasts two techniques designed to
enable an XML document to be processed without building an entire tree
representation of the document in memory. Document projection analyses a
query to determine which parts of the document are relevant to the query,
and discards everything else during source document parsing. Streaming
attempts to execute a stylesheet "on the fly" while the source document is
being read.

For both techniques, the paper describes the way that they are implemen-
ted in the Saxon XSLT and XQuery engine.

Performance results are given that apply to both techniques, in relation
to the queries in the XMark benchmark applied to a 118Mb source docu-
ment.

The paper concludes with a discussion of ideas for combining the bene-
fits of both techniques and getting more synergy between them.

1. Overview
Document projection is a technique introduced by [1] designed to address the
problem that some XML documents are too large to fit as a tree in main memory
and therefore cannot be queried by XQuery processors that build a complete tree
in memory.1The idea is to perform static analysis on the query to determine
which parts of the source document are actually needed by the query, and then to
build a tree in memory that omits the parts of the document that the query never
visits.

Streaming, as we use the term in this paper, is a mechanism defined in the
XSLT 3.0 specification [8] that allows a subset of the XSLT language to be pro-
cessed in streaming mode. It attempts to identify those constructs in the language
that can be processed in "constant memory", that is, whose memory requirement

1Memories were smaller in those days: Marian and Siméon report a maximum document size of 50Mb
for Saxon, and as little as 7Mb for QuiP. But the fact that the limits are higher today does not mean the
problem has disappeared. Indeed we are now starting to see the 2Gb boundary imposed by 32-bit
addressing becoming a potential problem.

73

is independent of document size. Provided that the stylesheet conforms to these
static constraints on the use of language constructs, a streaming XSLT processor is
then expected to be able to handle documents of arbitrary size (with a few cav-
eats, which are well documented).

So projection and streaming are addressing essentially the same problem, and
there are similarities (but also significant differences) in the way they tackle it.
Both mechanisms are implemented in Saxon [6], essentially independently of
each other. Part of the motivation for this paper is to examine whether there are
synergies to be obtained by integrating the two mechanisms more closely, for
example by using common algorithms for the static analysis, or common data
structures for the result of the static analysis, or by using ideas from one of the
subsystems to improve the effectiveness of the other.

The paper starts with an overview of the two techniques of projection and
streaming, in each case presenting first the published specifications, and then
details of the implementation in Saxon. This is followed with an analysis section
which attempts to draw out the similarities and differences, and the strengths and
weaknesses of the two approaches. The final section presents ideas for how the
two mechanisms could be made to work more effectively in tandem, hopefully
giving a unified capability with the strengths of both and the weaknesses of nei-
ther.

2. Document Projection

2.1. Overview of the Marian/Siméon Technique
The essence of the Marian/Siméon document projection technique is as follows:
1. The query is analyzed (statically) to determine the paths to all elements and
attributes that are needed to evaluate the query.

2. This set of paths is used to create a projection filter. The filter is applied to
parsing events issued by a (typically) SAX-based parser to that some events
are passed on to a tree builder, while others are discarded. This has the effect
that only a subset of the elements and attributes in the original source docu-
ment are retained in the tree (for example, a DOM tree) that is built in mem-
ory.

3. If the filter is constructed correctly, then running the query against the
reduced (projected) tree produces the same result as running the same query
against a full tree containing all elements and attributes in the original docu-
ment.

Marian and Siméon illustrated this idea using query Q1 from the XMark bench-
mark [4], specifically:

for $b in /site/people/person[@id="person0"] return $b/name

Projection and Streaming: Compared, Contrasted, and Synthesized

74

For convenience, the XMark queries are listed in an appendix at the end of this
paper. Many people would write Q1 using the simpler XPath expression:

/site/people/person[@id="person0"]/name
But the authors of XMark came from a SQL background and like many users
from that tradition, their instinct was to write every query as a FLWOR expres-
sion. And document projection tries to handle the query in whatever form the
users chose to write it.

We'll make an assumption here which Marian and Siméon never state explic-
itly, namely that the authors of such a query expect the result to be delivered
either in serialized form (as lexical XML), or as a set of parentless element nodes,
specifically the name element and its descendants (in the XMark data, this will be
a single text node, but the analysis does not depend on any schema knowledge).
In particular, document projection won't work if the client application expects to
be able to do arbitrary navigation from the returned elements (for example, navi-
gating from the name up to its containing person).

The set of paths needed to evaluate this query is:

/site/people/person/@id
/site/people/person/name #

where the # symbol can be read as meaning "together with the subtree rooted at
this node".

In the case where the query was originally expressed as a FLWOR expression
using the range variable $b, the path analysis needs to associate a set of paths
with the variable binding, and then to expand these paths for all references to the
variable.

The filter operation essentially takes these paths and retains a node if (a) the
node matches one of these paths, or a prefix of one of these paths (for example /
site/people), or (b) it is a descendant (or an attribute of a descendant) of one of
the paths labelled #.

In a refinement of the technique, called optimized projection, the analysis con-
siders not only which nodes are reachable, but how they are used by the query.
For example, given the query if (@discounted) then price else price -
discount, the query tests for the existence of the attribute @discounted; it is capa-
ble of returning the price element; but on the else branch, the price and
discount elements are always atomized (though Marian and Siméon do not use
quite this terminology).

Clearly the analysis becomes increasingly complex as additional XQuery fea-
tures are used. Handling additional axes such as preceding and following sibling
axes is one example; use of user-written functions is another. Marian and Siméon
address these complications in part by reducing the XQuery language to a small
core language which is more amenable to analysis. Despite this, they don't

Projection and Streaming: Compared, Contrasted, and Synthesized

75

present the full analysis in their main VLDB paper, but refer to internal technical
reports for some of the detail.

With the kind of queries used in the XMark benchmark, document projection
will often dramatically reduce the size of the tree that needs to be built. With one
exception, all the queries in the benchmark can be executed on a document occu-
pying only 5% of the memory of the full tree. As well as a big saving in memory,
the technique gives a (smaller) improvement in execution time, because less time
is spent building and searching unnecessary parts of the tree.

The main limitations of document projection, of course, are (a) that it is only
effective in cases where the source document is parsed, and a source tree built, for
the purpose of executing a single query, and (b) that it is only useful in cases
where the query requires a small amount of information from the document.
Nevertheless, these conditions apply sufficiently often in real life that the techni-
que should probably be far more widely known and used than it is, especially as
it is available in a number of popular XQuery processors.

2.2. Document Projection in Saxon: XMark Performance
Document projection has been implemented in Saxon's XQuery processor for
many years, though there is little evidence that it is widely used.2When running a
query from the command line, it can be activated simply by use of the -
projection command line option. Statistics on its effectiveness are displayed
when the -t option is on3. From the Java API it is possible to separate the two
steps of analyzing a query to create a projection filter, and applying the filter to
create a projected document. (This makes it possible, if you really want, to write a
query whose sole purpose is to define a document projection, and then to run a
variety of queries or transformations on the projected document. In this case, of
course, you lose the guarantee that the results will be the same as on the full
document. More realistically, you may well want to run the same query repeat-
edly, against the same projected source document, but with different query
parameters.)

The benefits obtained by document projection in Saxon, when running the
XMark benchmark queries, are very much in line with the results reported by
Marian and Siméon.

For XMark Q1, against a 119Mb source document, the metrics with document
projection off are:

2This is perhaps an understatement. In preparing examples for this paper, I found and corrected sev-
eral bugs in the implementation. Since no bugs have been reported by users over several years, this
leads one to suspect that the feature is essentially unused.
3Some of the metrics given in this paper were obtained using internal instrumentation that is not
available via any public API.

Projection and Streaming: Compared, Contrasted, and Synthesized

76

Analysis time: 375.619 ms
Tree built in 1405.714 ms
Tree size: 4787932 nodes, 79425460 characters, 381878 attributes
Memory used: 368,331,992 [bytes]
Average execution time [across 20 runs]: 0.233 ms

Switching projection on changes this to:

Analysis time: 373.619 milliseconds
Document projection: Input nodes 5072525; output nodes 102002; reduction ►
= 98%
Tree built in 1032.552 ms)
Tree size: 78822 nodes, 364998 characters, 25500 attributes
Memory used: 74,333,216 [bytes]
Average execution time: 0.228 ms

So we're seeing a reduction in the size of text nodes alone from 79M characters to
364K characters, together with a 98% reduction in the number of element nodes,
leading overall to a reduction in the total memory requirement for the query from
368Mb to 74Mb4. There's negligible impact on the time for static query analysis,
and a useful 40% speed-up in tree building time (useful because this is the domi-
nant cost). The query execution time is negligible compared with the tree build-
ing time, so the fact that the query runs a little faster on the projected document is
of no practical importance.

For the full range of XMark queries we see the following size reductions. The
first figure is the reduction in the number of nodes, the second is the reduction in
the number of characters in text nodes:

Q1 97.99% 99.95%
Q2 96.24% 99.67%
Q3 96.24% 99.67%
Q4 96.01% 99.96%
Q5 99.42% 99.94%
Q6 99.57% 100.00%
Q7 98.69% 100.00%
Q8 97.91% 99.55%
Q9 96.62% 99.42%
Q10 91.97% 97.40%
Q11 97.28% 99.47%
Q12 97.28% 99.47%
Q13 98.79% 96.40%
Q14 88.27% 65.51%
Q15 98.90% 99.99%
Q16 98.52% 99.99%

4Figures for memory usage are not very accurate or reliable, because garbage collection happens
unpredictably.

Projection and Streaming: Compared, Contrasted, and Synthesized

77

Q17 97.99% 99.09%
Q18 99.53% 99.96%
Q19 97.86% 99.20%
Q20 98.99% 100.00%

I have used slightly different metrics from those used by Marian and Siméon
(they reported on the size of the document in memory and on disc, rather than
the total number of nodes and the size of the text nodes) so the figures are not
directly comparable; however, there is a strong correlation. Marian and Siméon
reported:

The projected document is less than 5% of the size of the document for most of the
queries. On Query 19, Projection only reduces the size of the document by 40%,
and it has no effects for Queries 6, 7, and 14. In contrast, Optimized Projection
results in projected documents of at most 5% of the document for all queries but
Query 14 (33%). The reason for this difference is that Queries 6, 7, 14 and 19
evaluate descendant-or-self() (//) path expressions for which projection
without optimization performs poorly. Query 14 is a special case since it selects a
large fragment of the original auction document. Obviously projection cannot per-
form as well for this kind of query.

Saxon is therefore achieving very similar results to their Optimized Projection
results, reducing the number of nodes to 4% or less for all queries except Q14.
The problem with Q14 is that the query accesses the string value of description
elements, which account for 70% of all the text content of the source document.

2.3. Implementation of Document Projection in Saxon
Saxon performs the analysis needed to implement document projection by exam-
ining the expression tree after all query parsing, type checking, and optimization
is complete.

The first stage of analysis builds a data structure called the path map, which is
essentially a graph representation of all the navigation paths performed by the
query expression. Some of these navigation paths are explicit in the form of an
axis step in the query; others are implicit in the use of constructs like a call to
fn:id (which effectively searches all elements in the document). The roots (entry
points) to this data structure represent the global (externally-supplied) context
item, and calls on functions that return new documents such as fn:doc and
fn:collection. Each node in the path map represents a set of XDM nodes that is
visited by the expression, and the arcs emanating from this node represent the
axis steps used to navigate away from these nodes to other nodes. The initial
analysis represents all axes explicitly (including, for example parent and preced-
ing-sibling axes).

Nodes in the path map are labelled at this stage with three boolean properties:
returnable which indicates whether the relevant nodes can be returned from the

Projection and Streaming: Compared, Contrasted, and Synthesized

78

query (rather than being merely visited en route); atomized which indicates that
the expression atomizes the nodes reached via this path; and hasUnknownDepen-
dencies which is discussed below.

When an expression is bound to a variable, the set of paths reachable by the
initializer of the variable is noted, and when a path expression is used that starts
with a reference to this variable, the relevant navigation steps are added to the
graph starting at these nodes, effectively concatenating the navigation path used
to evaluate the variable with the navigation paths starting at the variable's value.

Saxon does not attempt to analyze calls to user-defined functions (nor, in
XQuery 3.0, dynamic function calls): it is assumed that when a node is passed to a
function call (other than a known system-defined function) with no atomization,
then the function can perform arbitrary navigation starting from that node, and
this is indicated by setting the property hasUnknownDependencies on the path map
node. (In some cases, however, the optimizer will have inlined function calls, in
which case path analysis is still possible.5)

The second stage of analysis is to reduce the path map so that it contains
downwards navigation steps only. It's easiest to explain how this is done with
some examples:
• If the query contains the path /books//book/preceding::item, we replace

this with the two paths /books/descendant::book and /descendant::item.
The logic here is that these are the elements we need to retain in the projected
document: the presence of the path /descendant::item will ensure that all
elements named item are retained, wherever they appear. Because the relative
position of nodes is retained by the document projection process, we can be
confident that the axis step preceding::item will return the correct item ele-
ments.

• If the query contains the path / books/ book/ title[contains(., ../
author)], the original analysis will produce the two paths / books/ book/
title# and / books/ book/ title/ parent::node()/ author. Reduction to
downwards selection then changes the second path to /books/book/author,
because the analysis is able to determine that the pair of steps (child::title/
parent::node()) is a null navigation and can therefore be eliminated.

• If the query contains the path / books/ book/ title/ following-
sibling::author, the analysis will produce the two paths / books/ book/
title and /books/book/author. Again the analysis is able to determine that
navigating down to a title element and then across to a sibling author ele-
ment will always select an author that is a child of the book element.

The third and final step is the actual process of document projection. This is
implemented as a filter (an instance of the Saxon class ProxyReceiver) on the

5The only XMark query to use a user-defined function is Q18, and this function is trivially inlineable.

Projection and Streaming: Compared, Contrasted, and Synthesized

79

push-based event pipeline between the SAX XML parser and the tree builder. The
filter maintains a stack of currently opened-but-not-yet closed elements; on this
stack is a reference to the path in the path map by which the nearest retained
ancestor node was reached. An element is retained if (a) its parent is retained, and
(b) there is an arc on the path map that selects this element from its parent or
ancestor. Elements are also retained (c) if some ancestor node was marked with
the returnable or atomized properties indicating that the entire subtree of the
element is required. (Atomization actually only requires the descendant text
nodes: descendants of other kinds could be discarded. But when elements are
atomized, they almost invariably have a single text node child, so this additional
optimization would deliver very little benefit.)

3. Document Streaming

3.1. Overview of Streaming in XSLT 3.0
Many constructs in XPath and XSLT (and XQuery, for that matter) do not lend
themselves well to streamed evaluation: the semantics of the language are
defined in terms of a tree that can be freely navigated in all directions (including,
importantly, upwards). In principle one could identify a subset of stylesheets that
only use streamable constructs, and implement these using streaming algorithms
that avoid building the entire tree in memory. However, it is likely that very few
real-life stylesheets would fall into this category. One particular reason for this is
that XSLT, unlike XQuery, relies heavily on dynamic despatch of template rules,
which makes it effectively impossible to perform static analysis of the stylesheet
as a whole.

In addressing the requirement for streaming to process large documents, the
XSL Working Group therefore adopted a different approach:
• Users would be required to indicate an intent that particular parts of the style-

sheet (for example, template rules) should be streamable, and the XSLT pro-
cessor would be required to analyze those parts for streamability.

• It should be possible within a single stylesheet to mix streamed and
unstreamed processing; for example, it should be possible during streamed
processing of a large document to build an in-memory representation of a
small subtree of this document, and then process this subtree using the full
power of the language unconstrained by streaming restrictions.

• New constructs should be added to the language to make it easier to write
streamable stylesheet code. Examples of such constructs are the xsl:merge
instruction (which allows multiple documents to be merged in a streamed
operation), the xsl:accumulator declaration (which allows multiple aggrega-
tion functions, such as totalling and averaging, maxima and minima, to be be

Projection and Streaming: Compared, Contrasted, and Synthesized

80

computed during a single streaming pass of the document), and the xsl:on-
empty and xsl:on-non-empty which make it possible to specify declaratively
what should happen when required input data is absent.

XQuery is designed in the tradition of database query languages, whose develop-
ers typically aspire to the principle that optimization is entirely the responsibility
of the language processor, not the user. XSLT comes more from the tradition of
programming languages, where performance and selection of algorithms are the
responsibility of the programmer. It is therefore to be expected that the two lan-
guages would take a different approach to streaming.

The static analysis determining whether particular XSLT constructs are
streamable is complex. The rules are prescribed in the language specification, so
that stylesheet authors can be confident that code designed to be streamable with
one implementation will also be streamable with other implementations.

The analysis assumes the existence of an expression tree representing the
results of parsing the stylesheet and the XPath expressions embedded within it.
Each node in this tree represents an instruction or expression (generically, a con-
struct). The analysis computes three properties for every construct:
• A static type (to which the result of evaluating the construct will always con-

form). The static type analysis is fairly simplistic and does not attempt to be
over-precise. It is used mainly to distinguish expressions that return childless
nodes (such as text nodes and attributes) from those that can return nodes
with children (documents and elements), because this can make a difference
to streamability.

• The sweep of the construct. Constructs are classified as motionless, consuming or
free-ranging. This concept relies on the notion that when processing a docu-
ment in streaming mode, there is a current position in the document repre-
senting the moving cursor that separates tags that have already been read,
from tags that have not yet been read. A motionless construct is one that can be
evaluated without moving this cursor: an example of such a construct might
be exists(@foo) (because the processing model assumes that when the cur-
sor is positioned on an element start tag, all the attributes of that element are
available). A consuming construct is one that can be evaluated by moving the
cursor from a start tag to the corresponding end tag, that is, by reading the
descendants of the current element. An example of such a construct is . =
"foo" (if the context item is an element, comparing its typed value to a given
string requires atomizing the element, which involves reading its descend-
ants). The third category, free-ranging, represents everything else: constructs
like following-sibling::x which require navigation outside the boundaries
of the current element. If the context item is a node in a streamed document
(an important caveat), then a free-ranging construct leads to the stylesheet
being deemed non-streamable.

Projection and Streaming: Compared, Contrasted, and Synthesized

81

• The posture of the construct. This concept is rather abstract and difficult to
explain in simple terms; it characterizes the relationship of nodes selected by
the evaluation of the expression to the position of the moving cursor. It also
constrains what further navigation is allowed starting from the result of this
expression.

Streamed processing produces three possible postures. A crawling posture
represents the result of a consuming expression that is processing all the
descendants of an element, in the course of moving the cursor from the start
tag to the end tag of that element. A striding posture is very similar, except
that the expression is only processing descendant elements at a fixed depth
(for example, children or grandchildren, but not a mixture of both). A climbing
expression is one that navigates to ancestors of the element at the cursor posi-
tion, or to attributes of these ancestors (the streaming model assumes that a
stack of ancestor nodes and their attributes is available at all times). The key
difference between these three postures is what kind of onwards navigation is
permitted. When a node was reached in climbing posture (that is, by follow-
ing the ancestor axis), no downward navigation is permitted, because in gen-
eral this would need to access parts of the document that have already been
read and discarded, or that have not yet been read. In striding posture, further
downward navigation is allowed. It crawling posture, downward navigation
is not allowed in the general case, because when two nodes A and B are
reached in crawling posture, and A comes before B in document order, it is
not necessarily the case that all descendants of A appear in document order
before all descendants of B: for an example, consider the element:

<root>
 <section id="A">
 <section id="B">
 <footer/>
 </section>
 <footer/>
 </section>
</root>

where the footer child of section A appears in document order after the
footer child of section B. If downward selection were permitted from the
results of a crawling expression such as descendant::section, it would not
be possible to achieve this by processing one section at a time without buffer-
ing.

The other two values for posture are grounded and roaming. Grounded pos-
ture applies to an expression whose result will never contain streamed nodes:
for example, expressions whose value is an atomic value or a map, or a node
in an unstreamed document. There are no streaming restrictions on the pro-
cessing that can be applied to the result of a grounded expression. Roaming

Projection and Streaming: Compared, Contrasted, and Synthesized

82

posture, by contrast, represents the case where streamability analysis has
essentially failed: it applies to an expression such as preceding::item, which
cannot be evaluated in streamed mode.

Although the XSLT 3.0 specification is very prescriptive about the analysis used
to determine whether constructs are deemed streamable or not, it has very little to
say about how streamed evaluation of those constructs deemed to be streamable
should actually work. That is left entirely to the implementation.

3.2. Streaming in Saxon: XMark Performance

Although streaming is specified by W3C only for XSLT 3.0, Saxon also offers the
capability of streamed XQuery execution. If a query is run from the command
line using the -stream option, Saxon will analyze the query for streamability
using rules that are essentially equivalent to those of the xsl:stream instruction
in XSLT 3.0, and if it is streamable, will execute it in streamed mode. Since we
have been studying the set of XMark benchmark queries to examine the impact of
document projection, it is instructive to look at the same queries from a streama-
bility perspective.

It turns out that none of the XMark queries is streamable (in Saxon) as origi-
nally written, but many of them can easily be rewritten to make them streamable.
The main changes required are described below:

• Most of the queries are written as FLWOR expressions, which are typically not
streamable (a) because they use non-XPath syntax which is therefore outside
the scope of the streamability rules in the XSLT specification, and (b) because
they bind variables to streamed nodes. In most cases the rewrite is very sim-
ple. For example Q2 is originally written:

for $b in /site/open_auctions/open_auction return <increase> { $b/►
bidder[1]/increase } </increase>

which can be rewritten like this6 to make it streamable:

<xsl:for-each select="/site/open_auctions/open_auction">
 <increase>
 <xsl:sequence select="bidder[1]/increase"/>
 </increase>
</xsl:for-each>

• Some of the queries require more extensive rewriting to avoid multiple down-
ward selections. For example Q5 is originally:

6This rewrite preserves the bug in the original query whereby the output contains two levels of nested
<increase> elements.

Projection and Streaming: Compared, Contrasted, and Synthesized

83

count(for $i in /site/closed_auctions/closed_auction
 where $i/price >= 40
 return $i/price)

which (knowing that a closed_auction has only one price) can be made
streamable by rewriting as:

count(/site/closed_auctions/closed_auction/price/number()[. >= 40])
Similarly, Q7 reads

for $p in /site
return count($p//description) + count($p//annotation) + count($p//►
email)

which can be replaced by the streamable equivalent:
count(site//description | site//annotation | site//email)

• A few queries require limited buffering of the input. An example is Q4:
for $b in /site/open_auctions/open_auction
where $b/bidder/personref[@person="person18829"] <<
 $b/bidder/personref[@person="person10487"]
return <history>{ $b/reserve }</history>

where the processing can be done by building each open_auction in turn as a
tree in memory, which can then be discarded to process the next
open_auction (sometimes called "burst-mode streaming"). This can be ach-
ieved with the rewrite:

/site/open_auctions/open_auction/copy-of(.)
 [bidder/personref[@person="person18829"] << bidder/►
personref[@person="person10487"]]
 ! <history>{ reserve }</history>

The queries that remain stubbornly unstreamable are those that involve joins (Q8,
Q9, Q10, Q11, Q12) or sorting (Q19).

The performance of streamed versus unstreamed versions of the same query
(for those queries where streaming is possible) is very consistent:
• For unstreamed execution, there is a one-off cost of building the document

tree of around 1400ms, and the cost of evaluating the query is then between
2ms and 50ms.

• For streamed execution, the cost of query execution is in each case between
930ms and 1100ms.

• For comparison, we noted earlier that unstreamed execution against a projec-
ted document tree typically reduces the tree-building time from 1400ms to
1000ms, with a very small (and therefore negligible) improvement in query
execution time.

Projection and Streaming: Compared, Contrasted, and Synthesized

84

We can see that both streaming and document projection (where applicable) give
a modest improvement in execution time and a very substantial saving in mem-
ory usage, at the cost of having to parse the source document to run a single
query: and it is the parsing cost that dominates. It's also worth noting that the
query compilation cost, at 375ms, exceeds the document building cost for docu-
ments smaller than around 40Mb, even with these very simple queries.

3.3. Streaming in Saxon: Implementation
Saxon, in its latest incarnation (the current public release is 9.7 but this section
applies more strictly to the planned 9.8 release), follows the streamability analysis
rules in the specification very literally. It has to, because the Working Group has
insisted on a clause that says that a processor that wants to claim conformance to
the streaming feature must be prepared to report whether a stylesheet is streama-
ble according to the W3C rules or not — no extensions allowed.

A difficulty here is that the streamability properties computed during the
analysis are actually required in order to devise a streamed execution strategy,
and they must therefore be computed for the final expression tree produced after
all optimization rewrites have been completed. But some of the optimization
rewrites (for example, function inlining) may convert a non-streamable construct
into a streamable one, and would therefore cause Saxon's streamability verdict to
differ from the W3C verdict. At user request, there is therefore an option to run
the streamability analysis twice: the first run is done before all optimizations to
deliver a W3C-conformant streamability assessment, and the second run is done
after optimization to produce input to the execution plan.

The formalisms used in the W3C streamability analysis have inspired some
changes to the design of Saxon's expression tree. Most notably, every expression
now delivers information about its subexpressions (called operands) in a consis-
tent way. The relationship between a parent expression and its children is now
represented by an operand object which contains properties closely based on
properties used in the W3C streamability model: for example every operand has
a usage which explains how the parent expression makes use of the result of eval-
uating the child expression: this is one of inspection (the properties of the returned
value are examined, for example using an instance of operator), absorption (the
entire subtree of any nodes in the returned value is used, typically by means of
atomization), transmission (the parent expression includes the result of the child
expression directly in its own result value), or navigation (the parent expression
performs arbitrary navigation from the nodes in the child expression's result to
other nodes in the same tree).

Saxon has started to use these formalisms in other aspects of its static analysis
unrelated to streaming (for example, in the analysis done to construct the path
map for document projection) but there is much potential for increased reuse in
this area.

Projection and Streaming: Compared, Contrasted, and Synthesized

85

The most complex aspect of streaming in Saxon, however, has nothing to do
with the static analysis of streamability according to W3C rules, but rather with
creating a streamable representation of the execution plan for the stylesheet, and
with the actual execution of that plan.

As discussed in [3] and [5], streaming in Saxon operates in push mode. Push
here means that the control flow is in the same direction as the data flow. This is
the reverse of the usual interpreter design pattern. Instead of a parent expression
requesting (pulling) data obtained from the evaluation of its subexpressions, the
arrival of data from the XML parser triggers the evaluation of subexpressions
dependent on that data, which in turn triggers the evaluation of parent expres-
sions dependent on the results of those subexpressions. That is to say, the control
flow is inverted: and in fact, the process of generating a push-mode representa-
tion of the stylesheet code corresponds to the process of program inversion as
described many years ago in Jackson Structured Programming [2].7

The streaming code in Saxon essentially works in three parts:

1. The first part is the static streamability analysis. As already mentioned, this
follows the rules in the XSLT 3.0 specification very closely. Every kind of
expression node in the expression tree (representing different kinds of XSLT
and XPath construct in the source code) has logic to compute properties such
as the posture and sweep of the expression. Once computed, these are
retained as cached properties on the expression tree. The logic for many
expressions is delegated to the general streamability rules, which are driven
by information about the operands of the expression and their usage; all
expressions deliver their operands (including properties such as the operand
usage, whether the focus changes, and suchlike) using a common interface.

2. The second part is the logic for expression inversion. Where a template or
other construct is declared to be streamable, and where analysis reveals that it
is actually streamable, the process of inversion constructs a representation of
the construct suitable for streamed push-mode evaluation. In general (with
some exceptions such as xsl:choose, xsl:fork, and xsl:map) a consuming
expression will have exactly one consuming operand. It is therefore possible
to identify a route through the expression tree that contains these consuming
expressions. For the lowest-level such expression, we allocate a Watch which is
triggered when the parser encounters a node that matches a particular
(motionless) pattern. For each consuming ancestor expression, we allocate a
Feed which evaluates a particular construct in push (event-driven) mode.

3. The third part comprises the push-mode implementations of every kind of
instruction, expression, or system function. For example, the Feed for a call on

7This is no coincidence, because JSP was greatly concerned with the problems of managing hierarchic
data in a streamed representation too large to fit in available memory, in this case using magnetic tape.

Projection and Streaming: Compared, Contrasted, and Synthesized

86

the fn:sum might look like this (ignoring subtleties in the actual specification
of this function):

 private double sum = 0;

 public processItem(Item item) {
 sum += item.toDouble();
 }

 public void close() {
 getParentFeed().processItem(new DoubleValue(sum));
 }

In this particular example, the implementation does not pass anything on to
the Feed for its parent expression until the input sequence is exhausted. In
other cases, for example the Feed for the fn:distinct-values function, val-
ues can be passed on as soon as they are known. Here is a simplified version
of the Feed for fn:distinct-values:

 private Set<AtomicValue> values = new HashSet<AtomicValue>();

 public processItem(Item item) {
 if (values.add((AtomicValue)item)) {
 getParentFeed().processItem(item);
 }
 }

When the processing of an input sequence is initialized, this code creates a
new data structure holding the set of distinct values (which is initially empty).
Each time a new value is received, it is added to this set (which is a no-op if it
was already present in the set); and if it was not already present in the set, it is
passed on to the feed for the parent expression.

These push-mode implementations need to be provided for every kind of
construct that can take a sequence as input. For expressions that operate on
singletons (for example, arithmetic expressions) a generic Feed that accepts a
single item and invokes the ordinary non-streaming implementation suffices.
For a few constructs it is necessary to provide more than one push-mode
implementation, because the logic depends on which operand is the stream-
ing operand: a notable example is the LetExpression (used not only to imple-
ment XPath let expressions, but also local variables declared in XSLT: the
code for let $x := distinct-values(// foo) return count($x) is quite
different from the code for let $x := data(@id) return index-of(.//foo,
$x), because in the first case the streamed operand is the expression used to
initialize the variable, and in the second case the streamed operand is the
expression that makes use of the variable.

Projection and Streaming: Compared, Contrasted, and Synthesized

87

It's worth remarking in passing that because the control flow is inverted,
we can't do dynamic error handling using the normal Java machinery of
throwing and catching exceptions. When evaluation of an expression fails, this
must cause execution of the parent expression to fail, so the failure is pushed
up the pipeline in the same way as success results.

4. Projection and Streaming: a Comparison
The major similarities between the two technologies are:
• They share the objective of using static analysis of a query or stylesheet to

establish an execution strategy that reduces the amount of memory needed for
the tree representation of large documents.

• There are many similarities in the details of the analysis that is carried out,
although it is presented in rather different terms.

• In both cases, the technique is only effective if the source document is being
parsed only for the purpose of executing a single query or stylesheet against
it. Document projection has a bit more flexibility in that it allows the same
query to be executed repeatedly with different parameters (for this use case,
streaming requires the document to be re-parsed each time, document projec-
tion does not). If the workflow requires multiple queries or stylesheets to be
executed against the same source document, neither streaming nor document
projection is well suited to the task.

Some significant differences between the two approaches are:
• Document projection is defined for use with XQuery, streaming for use with

XSLT. This difference is not entirely superficial, because the nature of the rule-
based template processing characteristic of XSLT means that the potential for
static analysis is very different from the XQuery case.

• Document projection can be applied to any query. It may be more effective for
some queries than others (for some queries the memory requirement might be
reduced by 5%, for others by 95%), but the mechanism is designed to work
with any query. By contrast the streamability analysis in XSLT makes a binary
classification of stylesheets as being either streamable or not streamable, and a
stylesheet in the latter category achieves no benefit.

• Document projection typically achieves a linear reduction in the amount of
memory needed (for example, to 20% of the original memory requirement),
whereas streaming is designed to run in constant memory completely inde-
pendently of document size. This means that streaming can even be applied to
infinite documents, such as a continuous stream of telemetry data.

• Document projection is designed to happen entirely behind-the-scenes, with-
out the knowledge or involvement of the query author, whereas XSLT stream-

Projection and Streaming: Compared, Contrasted, and Synthesized

88

ing provides explicit constructs for the invocation of streaming, and
alternative ways of writing code when streaming is required, including brand-
new mechanisms such as accumulators. This in turn reflects a philosophical
difference between XQuery and XSLT, or between query languages and pro-
gramming languages in general, where the intellectual focus in query lan-
guage theory has always been automated optimization, while the focus for
programming languages has been enabling the programmer to achieve the
desired performance metrics as well as correct execution.

5. Seeking Synergy
In this section we'll start looking for ways in which the benefits and of streaming
and document projection can be combined, and in which the weaknesses of both
can be reduced. We'll start with an example to illustrate the challenges.

5.1. A Simple Example
Consider the following query, which computes the average value of the transac-
tions in a transaction file:

[R1] avg(//transaction/(price * quantity))
As we've seen, many XQuery users, especially those trained in SQL, will write
this by preference as:

[R2] avg(for $t in //transaction return $t/price * $t/quantity)
Document projection will analyze either of these queries and establish that the
only nodes that need to be retained when building the source document tree are
the document node, the transaction element nodes, and the price and
quantity elements together with their text node descendants (or their typed
value, if the processing is schema-aware). This may be a very substantial reduc-
tion on the size of the source tree that would otherwise be built, but it is still pro-
portional to the number of transaction elements in the file, so it will run out of
memory eventually.

Streamability analysis in XSLT 3.0 will reject both these queries as non-stream-
able. The second query (R2) is rejected because it binds variables to streamed
nodes, and the streamability analysis in the XSLT specification gives up at this
point. The first query (R1) is rejected because there is an expression (price *
quantity) that makes two downward selections in the tree. In the language of
the specification, it has two operands whose sweep is consuming. In implementa-
tion terms, the difficulty is that in the general case, an expression with multiple
downward selections cannot be evaluated without buffering data in memory, and
the amount of buffering cannot be predicted, and therefore the query cannot exe-
cute in constant memory so it cannot be said to be full streamable. Of course, you

Projection and Streaming: Compared, Contrasted, and Synthesized

89

and I can see that in this case the amount of buffering needed is trivial – but that
is only because we know instinctively what kind of values we expect to find in
elements named price and quantity.

There's another more subtle difficulty with streaming of this expression:
because the transaction elements are selected using the shorthand notation //
transaction, the processor has to be prepared to handle nested transactions: the
query has a well-defined outcome for a pathological input such as:

<transaction>
 <price>8.25</price>
 <transaction>
 <price>13.50</price>
 <quantity>4</quantity>
 </transaction>
 </quantity>13</quantity>
</transaction>

The XSLT 3.0 solution to this is to ask the programmer to rewrite the query in a
way that makes the buffering explicit, reflecting the fact that the programmer
understands the data much better than any optimizer. Typically it will be rewrit-
ten as:

[R3] avg(/*/transaction/copy-of(.)/(price * quantity))

The injected copy-of(.) step explicitly makes an in-memory copy of the transac-
tion element and its subtree (unless, of course, the optimizer finds a smarter way
of doing things), and the navigation to the price and quantity elements is then
conventional (unstreamed) navigation within an in-memory tree.

We can see that neither the projection approach nor the streaming approach is
perfect here. Document projection uses more memory than it needs, because it
fails to recognize that the avg() function only needs access to one transaction at a
time (the only memory it needs is, at most, a running total and a running count).
Streaming requires programmer intervention to copy the transaction nodes; and
these subtrees are bigger than they need to be because we copy the whole subtree
rather than merely the price and quantity elements. (In some transaction files the
transaction element might be very large, for example it might contain an entire
history of contract negotiations leading up to an eventual purchase.)

It seems evident that there's room for improvement in how we execute this
query. We should be able to get the streaming benefits of only holding one trans-
action in memory at a time. We should be able (in some mode of operation) to
automate the copy-of() operation, and we should be able to use a projection-like
technique to ensure that this copy contains only the required elements (price and
quantity) rather than the full transaction element.

The following sections examine these opportunities in more detail.

Projection and Streaming: Compared, Contrasted, and Synthesized

90

5.2. Tolerating Local Variables

The static analysis performed for document projection can handle the existence of
local variable bindings within the expression, whereas the streamability analysis
in XSLT 3.0 fails as soon as a streamed node is bound to a local variable (with one
exception, the case where the variable is a reference to the first argument of a
streamable stylesheet function). As we've seen, local variables are used liberally
in practical queries, and it would be nice to handle them if we can.

An earlier draft [7] of the XSLT 3.0 specification did in fact attempt this (and
indeed, it worked in terms of a path map that was explicitly inspired by Marian
and Siméon).

The most obvious way in Saxon to make queries such as

for $b in /site/people/person[@id="person0"] return $b/name
streamable is to rewrite the query during the optimization phase to eliminate the
local variable, relying instead on binding the context item. Saxon already does
this for let expressions, in cases where the variable is only used once. Saxon also
turns where clauses into predicates when possible, so for example

for $e in /*/employee where $e/salary > 10000 return $e/name
is rewritten as

for $e in /*/employee[salary > 10000] return $e/name
Rewriting it as

/*/employee[salary > 10000] ! name
is no more difficult. (I've used the "!" operator here as the direct equivalent of the
original semantics, because there is no de-duplication or sorting into document
order. However, the expressions X!Y and X/Y are equivalent in the case where
both X and Y have striding posture, as is the case here.)

The basic condition for doing such a replacement is that the focus for evaluat-
ing the variable reference is the same as the focus for evaluating its declaration.

5.3. Tolerating Multiple Consuming Operands

We have seen that an expression such as

avg(/*/transaction/(price * quantity))
fails the streamability rules because it makes two downward selections (or in the
language of the spec, it contains two consuming operands). But it can be made
streamable by rewriting it as:

avg(/*/transaction/copy-of(.)/(price * quantity))

Projection and Streaming: Compared, Contrasted, and Synthesized

91

Two questions arise: (a) can this rewrite be automated, and (b) can we do better,
by only copying the price and quantity elements, and not the whole
transaction?

The danger in automating this rewrite is that in the worst case, it could gener-
ate a copy of the entire streamed document, thus effectively masking the fact that
the query is not really streamable.

Rather than generating an implicit copy, another approach to making this
streamable is to generate an implicit xsl:fork instruction. The xsl:fork instruc-
tion allows multiple consuming sub-expressions to be computed during a single
pass of the input document, buffering the results of each sub-expression and
combining them when the relevant subtree of the input document has been com-
pletely consumed.

Map constructors also allow multiple consuming operands, so as an alterna-
tive to copy-of() or xsl:fork, it is possible to make this streamable by writing:

avg(/*/transaction/map{"price":data(price), "qty":data(quantity)}!(?
price * ?qty)

(Note the need to explicitly atomize the streamed elements by calling data(),
because streamed nodes cannot be stored in a map.)

Generating a projection of the input subtree can be seen as a further possibil-
ity.

So there is a range of possible ways foward that could make it easier to write
streamable applications that require multiple downward selections. The main
challenge, in fact, is to distinguish those cases that can be done with minimal buf-
fering, like this one, from those where buffering data would essentially mean that
the data was not being streamed at all. So it comes down to static analysis. We
can see that this case works because the operator with multiple consuming oper-
ands (that is, the multiplication operator) requires those operands to be singleton
atomic values. Perhaps this is the case to tackle first. This would mean relaxing
the general streamability rules in the XSLT 3.0 specification so that the rule start-
ing "If more than one operand is potentially consuming..." has an additional
clause:

If each of the potentially consuming operands has operand usage absorption and
has a required type with item type atomic and cardinality zero or one, then [the
expression is] grounded and consuming.

Implementing streaming for this case would not be difficult; the logic would
essentially be the same as for map constructors.

5.4. Document Projection in XSLT
One reason that document projection has been relatively little used is that it only
works in XQuery. Apart from the context of XML databases (where streaming

Projection and Streaming: Compared, Contrasted, and Synthesized

92

and document projection are not relevant), XSLT is far more widely used than
XQuery. So we need to ask the question whether document projection could be
implemented in an XSLT context.

The traditional difficulty here has been that XSLT does not permit the kind of
static analysis necessary, because of the dynamic nature of template rules. How-
ever, this was also a problem for streamability analysis, and in that case the prob-
lem has been successfully overcome. The way it was overcome was to allow a
mode to be declared as streamable, and to require all template rules in a streama-
ble mode to conform to a number of statically-checkable constraints: chiefly, the
match pattern must be motionless, the body of the template rule must be either
motionless or consuming, and the body must be grounded (that is, the template
must not return streamed nodes).

There's another potential objection to doing document projection in XSLT,
which is that many transformations use almost all the data in the source tree
when constructing the result tree. (Or to put it another way, XSLT is used for
transformation rather than for query.) However, the fact that the technique isn't
appropriate to all uses cases doesn't mean that it isn't appropriate to any, and it's
easy enough to find examples of stylesheets that extract a small part of the input
document.

The obvious place to start document projection in XSLT 3.0 is with the new
xsl:source-document instruction. This could be given an attribute
projection="yes" to be used when the stylesheet author thinks that use of docu-
ment projection would be beneficial.

The main challenge in implementing this is the need to define the analysis
rules determining how all XSLT instructions affect the path map. Some of these
instructions like xsl:number are quite complex. The rules also need revisiting to
consider new constructs that have appeared in XPath 3.0, notably dynamic func-
tion calls. However, this challenge also presents an opportunity: many of the con-
cepts introduced for the sake of streamability analysis are probably reusable to
create general rules for projection analysis. For example:
• The concept of operand usage distinguishes four kinds of processing that may

be applied to the nodes returned by an expression: inspection reads properties
of the node and performs no further navigation; absorption reads the subtree
rooted at a node; transmission includes the nodes returned by a sub-expression
in the result of the parent expression; and navigation permits arbitrary naviga-
tion from a node to anywhere else in the tree. These concepts are just as appli-
cable to projection analysis as to streaming analysis, and the fact that all
constructs already classify their operands according to these categories means
that it should be possible to eliminate many ad-hoc rules that currently appear
in the projection analysis.

Projection and Streaming: Compared, Contrasted, and Synthesized

93

• The concept of a focus-setting container with controlling and controlled operands
is used by the streamability analysis to trace paths where there is a depend-
ency on the context item. Again, Saxon already performs this analysis for
streamability purposes, and this could be used to eliminate many ad-hoc rules
in the projection analysis.

• In the opposite direction, some of the concepts used for path analysis could be
exploited to improve streamability analysis. For example, code that uses the
following-sibling axis is currently non-streamable; but one can envisage
cases where path analysis could be used to identify cases where streaming of
this axis is possible.

Performing data-flow analysis across calls of functions and templates remains
challenging. The current document projection code in Saxon does not attempt it
even for static function calls, let alone dynamic function calls or xsl:apply-
templates. The new packaging facilities in XSLT 3.0, which allow a function to be
overridden in another separately-compiled package, complicate this even further.
The approach used for streamability analysis, which relies on modes and func-
tions being manually annotated to describe the scope of their navigation, might
be one way forward: realistically, however, only a very small minority of users
will understand such features well enough to gain benefit from them. In addition,
document projection works best for simple queries, so it might be best to concen-
trate on doing the best possible job in simple cases.

5.5. Automatic Streaming and Projection
The fact that document projection has been so little used should remind us of an
awkward truth: any feature that delivers performance benefits, but needs to be
actively enabled by users, will be ignored by the vast majority of the user popula-
tion. Users are too busy to research all the tools available. If a job is run every day,
they will tolerate the fact that it takes two minutes to run rather than investigat-
ing ways of reducing the run time to ten seconds.

By contrast, a feature that delivers improved performance "out of the box" will
give more users an improved experience and will enhance the reputation of the
product in the marketplace.

So we should ask the question whether there are situations where document
projection (and indeed streaming) can be enabled automatically, by default.

In some cases we know that a query or stylesheet is only being executed once,
and that a source document is being built in memory to be processed once. The
main example of this is when the query or transformation is run from the com-
mand line. Unfortunately other cases, such as running within Ant, are harder to
detect, because products like Ant use a general-purpose compile-build-transform
API where the stages are invoked independently of each other. However, provid-
ing a "single-shot" API could achieve the twin benefits of (a) providing a much

Projection and Streaming: Compared, Contrasted, and Synthesized

94

simpler-to-use interface for applications, and (b) enabling the query or transfor-
mation processor to know that there are no hidden complexities.

That then raises the question of whether it is feasible and cost-effective to
examine a query or stylesheet to decide whether document projection should be
used. Or indeed, whether it would do any harm to use it unconditionally. The
worst that can happen is that a slight extra cost is incurred during query analysis,
and a slight extra cost during document building, in those cases where there is no
benefit.

We could start with the following experiment: when running XQuery from
the command line, if the query contains no user-defined functions that take nodes
as arguments, then enable document projection by default.

If nothing else, this would at least ensure that any bugs in the projection code
are quickly discovered.

References
[1] Amélie Marian Jérôme Siméon Projecting XML Documents Proc VLDB 29,

Berlin, Germany, 2009 https://www.cs.rutgers.edu/~amelie/papers/2003/
xmlprojection.pdf

[2] M. A. Jackson: Principles of program design. academic press, London, 1975.
[3] Michael Kay You Pull, I’ll Push: on the Polarity of Pipelines Presented at

Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14,
2009. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series
on Markup Technologies, vol. 3 (2009). DOI: 10.4242/BalisageVol3.Kay01.
Available at https://www.balisage.net/Proceedings/vol3/html/Kay01/
BalisageVol3-Kay01.html

[4] XMark http://www.xml-benchmark.org
[5] Michael Kay Streaming in the Saxon XSLT Processor Presented at XML Prague

2014. Available at http://archive.xmlprague.cz/2014/files/xmlprague-2014-
proceedings.pdf

[6] Saxon http://www.saxonica.com/
[7] XSL Transformations (XSLT) Version 2.1. W3C Working Draft (superseded), 11

May 2010. Ed. Michael Kay. http://www.w3.org/TR/2010/WD-
xslt-21-20100511/

[8] XSL Transformations (XSLT) Version 3.0. W3C Candidate Recommendation,
expected to be published 7 February 2017. Ed. Michael Kay. http://
www.w3.org/TR/xslt-30

Projection and Streaming: Compared, Contrasted, and Synthesized

95

https://www.cs.rutgers.edu/~amelie/papers/2003/xmlprojection.pdf
https://www.cs.rutgers.edu/~amelie/papers/2003/xmlprojection.pdf
https://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
https://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.xml-benchmark.org
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://www.saxonica.com/
http://www.w3.org/TR/2010/WD-xslt-21-20100511/
http://www.w3.org/TR/2010/WD-xslt-21-20100511/
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xslt-30

A. Appendix: XMark Queries
This appendix lists the XMark queries in the form they were run for the docu-
ment projection tests.

They differ from the queries published at http://www.xml-benchmark.org in
taking input from the context document rather than using the doc() function: this
was done for convenience, allowing the same query to be used with different-
sized input files.

Table A.1. XMark Queries

Name Query
Q1 for $b in /site/people/person[@id="person0"]

return $b/name
Q2 for $b in /site/open_auctions/open_auction

return <increase> {$b/bidder[1]/increase } </increase>
Q3 for $b in /site/open_auctions/open_auction

where $b/bidder[1]/increase *2 <= $b/bidder[last()]/increase
return <increase first="{$b/bidder[1]/increase}"
 last="{$b/bidder[last()]/increase}"/>

Q4 for $b in /site/open_auctions/open_auction
where $b/bidder/personref[@person="person18829"] <<
 $b/bidder/personref[@person="person10487"]
return <history>{ $b/reserve }</history>

Q5 count(for $i in /site/closed_auctions/closed_auction
 where $i/price >= 40
 return $i/price)

Q6 for $b in /site/regions/*
return count ($b//item)

Q7 for $p in /site
return count($p//description) + count($p//annotation) + count($p//email)

Q8 let $a := for $t in /site/closed_auctions/closed_auction
 where $t/buyer/@person = $p/@id
 return $t
return <item person="{$p/name}"> {count ($a)} </item>

Projection and Streaming: Compared, Contrasted, and Synthesized

96

Name Query
Q9 let $auction := (/) return

let $ca := $auction/site/closed_auctions/closed_auction return
let
 $ei := $auction/site/regions/europe/item
for $p in $auction/site/people/person
let $a :=
 for $t in $ca
 where $p/@id = $t/buyer/@person
 return
 let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2
 return <item>{$n/name/text()}</item>
return <person name="{$p/name/text()}">{$a}</person>

Q10 declare boundary-space strip;
for $i in distinct-values(
 /site/people/person/profile/interest/@category)
let $p := for $t in /site/people/person
 where $t/profile/interest/@category = $i
 return <personne>
 <statistiques>
 <sexe>{ $t/profile/gender }</sexe>
 <age>{ $t/profile/age }</age>
 <education>{ $t/profile/education}</education>
 <revenu>{ $t/profile/@income } </revenu>
 </statistiques>
 <coordonnees>
 <nom>{ $t/name }</nom>,
 <rue>{ $t/address/street }</rue>
 <ville>{ $t/address/city }</ville>
 <pays>{ $t/address/country }</pays>
 <reseau>
 <courrier>{ $t/emailaddress }</courrier>
 <pagePerso>{ $t/homepage }</pagePerso>
 </reseau>
 </coordonnees>
 <cartePaiement>{ $t/creditcard }</cartePaiement>
 </personne>
return <categorie>
 <id>{ $i }</id>
 { $p }
 </categorie>

Q11 for $p in /site/people/person
let $l := for $i in /site/open_auctions/open_auction/initial
 where $p/profile/@income > (5000 * $i)
 return $i
return <items name="{$p/name}">{ count ($l) }</items>

Projection and Streaming: Compared, Contrasted, and Synthesized

97

Name Query
Q12 for $p in /site/people/person

let $l := for $i in /site/open_auctions/open_auction/initial
 where $p/profile/@income > (5000 * $i)
 return $i
where $p/profile/@income > 50000
return <items person="{$p/name}">{ count ($l) }</items>

Q13 for $i in /site/regions/australia/item
return <item name="{$i/name}">{ $i/description }</item>

Q14 for $i in /site//item
where contains ($i/description,"gold")
return ($i/name, $i/description)

Q15 for $a in /site/closed_auctions/closed_auction/annotation/
 description/parlist/listitem/parlist/listitem/text/emph/keyword
return <text>{ $a }</text>

Q16 for $a in /site/closed_auctions/closed_auction
where exists ($a/annotation/description/parlist/listitem/parlist/
 listitem/text/emph/keyword/text())
return <person id="{$a/seller/@person}" />

Q17 for $p in /site/people/person
where empty($p/homepage/text())
return <person>{$p/name}</person>

Q18 declare namespace f="http://f/";
declare function f:convert ($v)
{
 2.20371 * $v (: convert Dfl to Euro :)
};

for $i in /site/open_auctions/open_auction
return f:convert($i/reserve)

Q19 for $b in /site/regions//item
let $k := $b/name
order by $k
return <item name="{$k}">{ $b/location } </item>

Projection and Streaming: Compared, Contrasted, and Synthesized

98

Name Query
Q20 <result>

 <preferred>
 {count (/site/people/person/profile[@income >= 100000])}
 </preferred>
 <standard>
 {count (/site/people/person/profile[@income < 100000
 and @income >= 30000])}
 </standard>
 <challenge>
 {count (/site/people/person/profile[@income < 30000])}
 </challenge>
 <na>
 {count (for $p in /site/people/person
 where empty($p/profile/@income)
 return $p)}
 </na>
</result>

Projection and Streaming: Compared, Contrasted, and Synthesized

99

100

The HTML 5.1 DTD
Marcus Reichardt

<u123724@gmail.com>

Abstract

Based on W3C's HTML5.1 specification, a new SGML DTD for HTML5.1
with broad applicability for validation and normalization is developed.

A formal grammar for HTML is as useful as ever in any HTML-centric
workflow, such as content authoring, preservation of web content and digi-
tal heritage, establishing a baseline for defining contractual obligations of
web authors, agencies, and other content providers delivering web content,
archival of legal documents in web-mediated business or administrative
transactions.

The DTD presented here is biased towards security and forward-engi-
neering tasks in that it dispenses with legacy practices such as uppercase
HTML markup support and unsafe handling of script data. Due to SGML's
flexibility, with only very minor changes to the DTDs and accompanying
SGML declaration, the DTD can also be employed for parsing legacy web
content for applications such as crawlers, extracting web content for further
processing, web scraping, etc.

Moreover, DTD customization can also be used for emerging web
markup practices such as HTML custom elements, and Google's AMP pro-
file of HTML. A formal and well understood, rather than ad-hoc process of
making web content available to robust XML back-end processing pipelines
is also valuable for the XML community.

While SGML has largely been treated as a legacy technique by the web
community for years now, this work also shows that not only is SGML
capable of describing and parsing HTML5 precisely and elegantly, it's the
only game in town being able to tackle formal processing of web content
based on an international standard.

The DTD developed here, as well as additional material not included in
the proceedings due to space reasons, is available at [4], including coverage
of SGML declaration details such as the lexical space for HTML element
names and other identifiers, predefined entities, coverage of custom ele-
ments/attributes, and contributions to a future revision of ISO/IEC 8879

Keywords: SGML, HTML, XML

101

1. Introduction
W3C has recently published its HTML5.1 specification ([1]) based on work by
WHATWG. HTML5.1 is the first published HTML specification after the initial
HTML5 specification two years earlier. Informed by feedback of a large commun-
ity of practitioners, HTML5.1 can be considered the first published HTML specifi-
cation with broad applicability since the HTML4 specification in 1999.

W3C's HTML5.1 specification text is addressed at both browser implementers
and web authors, hence contains redundancies, and possibly even contradictory
rules, insofar as the HTML markup language is specified twice: once as what can
be considered the nominal grammar productions for HTML ([1], chapter 4), and a
second time as a partial procedural specification for parsing HTML aimed at
implementers of HTML user agents.

In this paper, the focus is on the HTML markup language as expressed by the
nominal HTML grammar presented in chapter 4 of the specification. The proce-
dural specification for parsing HTML, having recovery rules for parsing almost
anything as HTML, isn't considered in this work; it's role within the specification
framework is that of avoiding unspecified and potentially malicious behaviour,
and hence is considered strictly addressed at browser implementers rather than
the larger web community.

In reformulating HTML5's parsing rules as DTD grammar, fundamental rules
about HTML's grammatical construction known to the developers of earlier
HTML DTDs, but lost in HTML5's grammar presentation are recovered, instilling
confidence in the transcription process, and also aspiring to a more conclusive,
but in any case more succinct expression of the HTML markup language.

A new formulation of HTML in a formal framework also benefits further
HTML specification work. For example, the analysis of HTML5.1's parsing rules,
afforded by reformulation as SGML DTD, has uncovered the following apparent
flaws in the definition of HTML parsing rules:

• parts of the the table parsing rules are ambiguous, and not enforceable using
W3C's validation software ([3]); also, the specification text contains invalid
markup with respect to table data

• the definition of the the datalist element puts HTML parsing (the HTML
membership decision problem) into a higher computational complexity class
than without, which is believed unintended.

The DTD developed here is a straightforward translation of the specification text
for HTML's content model and tag omission rules into DTD grammar rules. In
the DTD, specification text is included as SGML comment along with the transla-
ted DTD rule for reference; where HTML content model rules are represented
incompletely, a note is included in the SGML comment for the declaration as well.

The HTML 5.1 DTD

102

In the next section, the most important HTML markup features and their
mapping to SGML DTD rules are discussed.

2. The HTML5.1 DTD
The HTML5 specification document states that

XML DTDs cannot express all the conformance requirements of this specification.
Therefore, a validating XML processor and a DTD cannot constitute a conform-
ance checker. Also, since neither of the two authoring formats defined in this speci-
fication are applications of SGML, a validating SGML system cannot constitute a
conformance checker either ([2])

but doesn't provide examples where SGML can't specifically be used for checking.
For XML DTDs and other XML-based schema languages it's easy enough to con-
clude these can't describe HTML for their lack of a way to express empty ele-
ments, omitted tags, omitted attribute names, and unquoted attributes, among
other things.

For SGML, on the other hand, it's less obvious, hence this text discusses pars-
ing and validation issues of modern HTML using SGML in depth.

2.1. Flow and phrasing content

The HTML5.1 specification text introduces the elements of HTML using a taxo-
nomic approach and presents a classification and accompanying Venn diagram
depicting inclusion relationships between HTML element categories derived
from definitions contained in earlier HTML DTDs.

It is felt that the fundamental grammatical construction of the HTML vocabu-
lary as inline content wrapped in an optional layer of block-level content isn't
quite apparent in this definition. Earlier HTML DTDs included the following def-
inition for flow capturing this in a rather straightforward way:

<!ENTITY % flow "%block; | %inline;">
While HTML5 lacks it, a definition for block content rises again by subtracting
those elements from the flow content category that aren't also in the phrasing con-
tent (inline) category.

Nesting of phrasing into flow elements is about the most basic property of the
HTML grammar. In SGML, the flow/phrasing hierarchy is expressed by declaring
the content model of flow elements as allowing %phrasing;, where %phrasing;,
like in earlier HTML DTDs, is substituted into a string such as a|abbr|... con-
taining all phrasing elements as a name group.

For example, the element declaration for the p element is as follows:
<!ELEMENT p - O (#PCDATA|%phrasing;)* -(%flow_only;)>

The HTML 5.1 DTD

103

meaning that
• the content of p elements can be any sequence of text content (#PCDATA) and

phrasing elements, and
• flow content isn't just forbidden in direct child content of p (via admitting

%phrasing; elements only), but also isn't admitted anywhere in descendant
content of p, as expressed by the -(%flow_only;) SGML exclusion exception,
and

• the end-element, but not the start-element tag of p can be omitted, as declared
in ps tag omission indicator - O (see Tag Omission)

where the flow_only parameter entity contains block-level elements as described
above, ie. flow elements that aren't also phrasing elements.

2.2. Tag omission

The HTML5 specification lists tag omission rules for each applicable element (or
element combination) individually. For example, the specification text for the p
element reads

A p element's end tag may be omitted if the p element is immediately followed by
an address, article, aside, blockquote, details, div, dl, fieldset, figcaption, figure,
footer, form, h1, h2, h3, h4, h5, h6, header, hr, main, menu, nav, ol, p, pre, section,
table, or ul, element, or if there is no more content in the parent element and the
parent element is an HTML element that is not an a, audio, del, ins, map,
noscript, or video element.

For this HTML5 DTD, the text description is transcribed into SGML tag omission
indicators in the most straightforward way, based on whether start-element tag,
end-element tag, or both start- and end-element tag omission is allowed at all,
avoiding verbose enumeration of specific elements.

For example, the tag omission rules for p are represented using this simple
SGML element declaration:

<!ELEMENT p - O (#PCDATA|%phrasing;)*>
where the - (hyphen/minus, meaning not omissible) and the O (letter O, meaning
omissible) prescribes ps start-element and end-element tag omission behaviour,
respectively, and %phrasing; expands to the string a|abbr|... containing
HTML's phrasing elements.

This element declaration will make an SGML parser end a paragraph element
if encountering any element not in the phrasing category, or an end-element tag
which isn't balanced within p's content, thereby capturing HTML's parsing rules.

As presented in the HTML5 specification, the choice of explicitly enumerated
elements that cause the paragraph element to be terminated may seem arbitrary,

The HTML 5.1 DTD

104

but is in fact (up to potential minor omissions considered errors) the set of HTML
elements that are in the "flow" category, without also being in the "phrasing" cate-
gory. This isn't surprising, since HTML parsing rules were originally specified
using SGML grammars such as the above. By recovering HTML's original parsing
rules from HTML5's specification text, we conclude that HTML5's parsing rules
are represented adequately, and more succinctly, since avoiding redundantly
specifying p-terminating elements.

This interpretation is also supported by the fact that for the HTML5.1 specifi-
cation update (vs. HTML5), the new details, figcaption, figure and menu ele-
ments (which are flow-only elements) but not the new picture element (which
can also be used in phrasing content) have been added to the set of p-terminating
elements.

2.2.1. End-element tag omission

End-element tag omission is commonly used in HTML in the following situations
• on list items when directly followed by other list items or when followed by

ul or ol end-element tags
• on definition list terms or definitions, when followed by other terms or defini-
tions, or when followed by a dl end-element tag

• on paragraphs, when followed by other paragraphs or by a parent element's
end-element tag

• in head content, upon encountering an element that can't be placed into head
element content

• at the end of a document. for html, body, and other elements (these elements
also allow start-tag omission)

All of these uses are parsed/validated by this HTML5 DTD in the expected way
and in the same way as W3C's HTML5 validation software (as far as can be told).

2.2.2. Start-element tag omission

Start-element tag omission (other than in table content), is only allowed on the
html, head, and body elements, which is trivially supported by this HTML5.1
DTD in the expected way.

2.2.3. Start- and end-element tag omission in table content

Tag omission in table content deserves a closer examination.
The relevant specification text reads as follows:

Content: In this order: optionally a caption element, followed by zero or more
colgroup elements, followed optionally by a thead element, followed by either zero

The HTML 5.1 DTD

105

or more tbody elements or one or more tr elements, followed optionally by a tfoot
element, optionally intermixed with one or more script-supporting elements.

Tag omission: Neither tag is omissible.

Content: Zero or more tr and script-supporting elements
Tag omission: A thead element's end tag may be omitted if the thead element is

immediately followed by a tbody or tfoot element.

Content: Zero or more tr and script-supporting elements
Tag omission: A or element's end tag may be omitted if the tbody element is

immediately followed by a tbody element.

Content: Zero or more tr and script-supporting elements.
Tag omission: A tbody element's start tag may be omitted if the first thing

inside the tbody element is a tr element, and if the element is not immediately pre-
ceded by a tbody, thead, or tfoot element whose end tag has been omitted. (It can't
be omitted if the element is empty.). A tbody element's end tag may be omitted if
the tbody element is immediately followed by a tbody or tfoot element, or if there is
no more content in the parent element.

By the specification text, the following HTML fragment (representing typical use
of tag omission in table content) is allowed and accepted by both this HTML5
DTD, as well as by W3C's HTML5 validation software:

<table>
 <thead>
 <tr>ONE
 <tr>TWO
 <tr>THREE
 <tbody>
 <tr>One...
 <tr>Two...
 <tr>Three...
</table>

However, the specification text for tbody also admits omission of a tbody start-
element tag if the first thing inside the tbody element is a tr element, and if the element
is not immediately preceded by a tbody, thead, or tfoot element whose end tag has been
omitted.

The relevant part of the content model for tbody's parent element, table,
admits either zero or more tbody elements, or one or more tr elements.

Hence, table content such as the following

<table>
 <thead>
 <tr>ONE
 <tr>TWO

The HTML 5.1 DTD

106

 <tr>THREE
 </thead>
 <tr>One...
 <tr>Two...
 <tr>Three...
</table>

is valid according to at least two rules in the HTML specification: the tr elements
following thead can be parsed by HTML5's parsing rules either as tr elements
being placed directly into table content, or as an instance of a tbody element
with omitted start- and end-element tags.

This HTML5 DTD (as does W3C's s validator and web browsers) interprets
such content as an instance of the former case, and requires that a tbody start-ele-
ment is present in content to force the latter interpretation. The ambiguous pro-
duction rule for tbody, as stated in the HTML5.1 specification, can never apply in
the absence of start-element tags for tbody.

Presumably, ambiguousness of tag omission rules for table content is inadver-
tent; even the specification text (chapter 6.7.6) itself seems to use tag omission in
table models incorrectly. The W3C HTML5.1 specification contains this fragment
(the leading paragraph is included for locating the text place in the document):

<p>The element <var>host element</var> to create for the media
is the element given in the table below in the second cell of
the row whose first cell describes the media. The appropriate
attribute to set is the one given by the third cell in that same row.</p>
<table>
 <thead>
 <tr>
 <th> Type of media
 <th> Element for the media
 <th> Appropriate attribute
 <tr>
 <td> Image
 <td> <code>img</code>
 <td> <code>src</code>
 <tr>
 <td> Video
 <td> <code>video</code>
 <td> <code>src</code>
 <tr>
 <td> Audio
 <td> <code>audio</code>
 <td> <code>src</code>
</table>

The HTML 5.1 DTD

107

Note this table doesn't contain a body which however isn't the point here. Going
by how the table is rendered and by analogy with other text places containing
table use which do have a tbody elements specified, it can be concluded what is
probably intended here is that the first tr element should be treated as major
table heading row, while subsequent rows should be treated as table body rows.

The rule for tag omission of the thead element reads A thead element's end tag
may be omitted if the thead element is immediately followed by a tbody or tfoot element
(in both the W3C HTML5.1, and the current WHATWG specification text), hence
we expect the above fragment to be rejected since the rule does not say that a
thead end-element tag can be omitted if followed by a table end-element tag
(when other parsing rules for end-element omission state this kind of condition
explicitly).

However, the fragment is happily accepted by W3C's validation software, and
hence slipped into the published specification text; the HTML5 DTD follows
W3C's validator here and accepts it as well.

In an attempt to interpret HTML5's syntax rules, we note that a sentence such
as A thead element's end tag may be omitted if the thead element is immediately fol-
lowed by a tbody or tfoot element is inherently self-referential since the thead ele-
ment's end isn't yet established while assessing it's end-element omission status,
hence whatever follows it in content isn't either (the definition of tbodys start-ele-
ment tag omission stated earlier has a similar problem).

Obviously, standard co-inductive/well-founded semantics for grammars can't
be applied here without further qualification. Given quite obvious flaws in table
content models on a cursory look already, and mildly surprising results when
using the reference validation software, further discussion of HTML5's nominal
table parsing rules seems hopeless, and isn't expected to contribute to the defini-
tion of an inter-operable table content model.

Hence, while the HTML5 DTD behaves the same as the reference validation
software, authors are advised to not rely on tag omission in table content beyond
basic idiomatic usage as described.

2.2.4. Tag omission in body content

In older HTML DTDs, formally only block-level elements can appear directly in a
HTML document body; phrasing content had to be wrapped into at least a para-
graph (or generic block-level div) container element.

However, browsers never inferred block-level elements when they where
missing in content (or made their presence visible in the DOM). Essentially, this
constraint was never enforced.

The HTML5.1 grammar follows actual browser behaviour, in that any flow
content, including phrasing content, is formally accepted as direct child of the
body element.

The HTML 5.1 DTD

108

2.3. The datalist element
The datalist element's content definition has changed from previous releases. It's
specification text now reads

Content: Either: phrasing content. Or: Zero or more option and script-supporting
elements.

and the mapping into an element declaration is as follows:
<!ELEMENT datalist - - ((#PCDATA|%phrasing;)*|(option|script)*)>

Note that only the script element, rather than any script-supporting element is
supported. The script-supporting elements in HTML5.1 includes the template
element. However, the template element is also phrasing content. When using
%scripting; (which includes both the script and the template element, and is
used as parameter entity reference elsewhere in the HTML5.1 DTD), the grammar
for datalist will become 1-ambiguous] ([5]). This means that upon encountering
a template element in a datalist parent element, the parser cannot decide
which of the two branches declared in the choice submodels of datalists gram-
mar rule is to be selected for subsequent parsing. This is not permitted in SGML,
and either disallowed or undesirable in other markup languages as well.

Semantically, it doesn't make sense to use template elements in datalist
child content, hence the allowance of template is considered accidental (or a con-
sequence of HTML5's grammar presentation which doesn't facilitate basic auto-
mated grammar checks).

2.4. Boolean Attributes
HTML5 lists the following as Boolean attributes ([6]): reversed, ismap,
typemustmatch, default, autoplay, muted, checked, readonly, required,
multiple, disabled, selected, readonly, required, reversed, disabled,
autofocus, autoplay, novalidate, formnovalidate, hidden, lang, async, defer,
and the truespeed attribute on the deprecated marquee element.

Note the paused attribute isn't a boolean attribute.
HTML5's boolean attributes are modeled as SGML attribute declarations hav-

ing a singleton name group as declared attribute value, ie. an enumerated value
where the name group contains only a single value.

For example, the selected (and disabled) attribute on HTML5's option ele-
ment, according to the HTML5 specification, must be specified as <option
selected>, and the HTML5 DOM API is supposed to treat the selected attribute
as either true or false. If a false value is desired, the selected attribute must
be omitted in an attribute specification.

In SGML, this is modeled as
<!ATTLIST option selected (selected) #IMPLIED>

The HTML 5.1 DTD

109

meaning the attribute name can be omitted.
According to the declaration, specifying
<option selected>

is equivalent to specifying
<option selected=selected>

or
<option selected="selected">.

Note that, formally, WebSGML (ISO 8879 Annex K) allows use of the same name
token as enumerated value for multiple attribute declarations. In prior versions of
SGML, the following wasn't valid:

<!ATTLIST x a (true|false) #IMPLIED>
<!ATTLIST y a (true|false) #IMPLIED>

because the name tokens true and false could only be used in a single attribute
declaration; one had to declare:

<!ATTLIST (x|y) a (true|false) #IMPLIED>
At the same time, pre-Annex K SGML only allowed a single attribute list declara-
tion for a given element.

WebSGML relaxes this constraint by allowing
• declared attributes to be assembled from multiple ATTLIST declarations for

the same element(s), and
• enumerated attributes (token name groups) to contain the same token in dif-

ferent attribute declarations (including on the same element); note that if a
token is declared on multiple elements, it cannot be used with omitted attrib-
ute name

However, (Open)SP doesn't seem to implement Annex K in this respect, and will
reject multiple ATTLIST declarations on the same element and also multiple decla-
rations for the same name token.

While sgmljs.net SGML doesn't have this restriction, for interoperability, the
HTML 5 DTD generator outputs the boolean attributes inline along with other
attributes on an element.

2.5. The contenteditable and spellcheck attributes

The contenteditable and spellcheck attributes are handled special; these can
have their values omitted in HTML5 but cannot be modeled in SGML analo-
gously to boolean attributes, because they both use true/false as enumerated val-
ues, and thus can't be handled via SGML MINIMIZE ATTRIB OMITNAME (which
requires that name tokens be unique among those declared for all attributes in a

The HTML 5.1 DTD

110

DTD, not just those declared on a given element, in order to make use of
OMITNAME).

2.6. Void elements
The HTML5 specification lists area, base, br, col, embed, hr, img, input, keygen,
link, meta, param, source, track, and wbr as void elements.

Note that the HTML5 specification suggests that the (legacy) elements
basefont, bgsound, and frame should also be treated as void, but these don't
have declared content EMPTY in this HTML 5 DTD.

HTML5's void elements happen to coincide with those labeled as having the
Empty content model in the section on individual elements in the specification
text.

Void elements are expected to neither have child content nor an end-element
tag, and are adequately modeled as SGML elements with declared content EMPTY.

In the HTML5 specification text, void elements are described as having "No
end tag" (in addition to having "Nothing" as content); however, an element
declared EMPTY in SGML usually isn't qualified with an end-tag omission indica-
tor, since having declared content EMPTY isn't considered a tag minimization fea-
ture in SGML.

2.7. Self-closing elements
"Self-closing" elements are uses of HTML void elements which have a slash
before the > (U+003E GREATER THAN SIGN) character (eg. the STAGC delimiter in
SGML) in the start-element tag, such that void elements appear as XML-style
empty elements.

For example, in:
<link href="..." rel="stylesheet" type="text/css" />

the / (U+002F SOLIDUS) character is bogus.
This syntax was used in the past to make HTML processable using XML pars-

ers, and its use is generally discouraged.
While tolerated (ignored) by HTML5 on void elements, in the HTML5 SGML

DTD, self-closing elements are subject to the EMPTYNRM YES and other settings in
the SGML declaration for HTML5 ([7]) which synthesize HTML's parsing rules in
this respect.

2.8. RAWTEXT and RCDATA
The child content of the style element is modeled as SGML CDATA declared con-
tent, meaning that any markup delimiters are ignored (up to the sequence of ter-
minating characters as discussed in Script data).

The HTML 5.1 DTD

111

Note that legacy HTML also might assume CDATA semantics with xmp,
noembed, and noframes content.

The child content of the textarea element is modeled as RCDATA declared con-
tent, which behaves same as CDATA, except delimiters for entity references
(SGML's ERO and ERE delimiters, ie. the U+0026 AMPERSAND and the U+003B
SEMICOLON characters in the SGML reference concrete syntax, respectively) are
recognized, and entity references formed by those are substituted by replacement
text.

2.9. Script data

Dispensing with earlier DTDs for HTML declaring the content of the script ele-
ment CDATA, in this DTD for HTML5.1, child content of the script element is
modeled as (#PCDATA) content model for security reasons.

HTMLs script element and it's historic use has been known to be a problem
since at least as early as 1996 (cf. Joe English's posts in [8].

According to the HTML5.1 specification,
1. after transitioning from script data less-than sign state ([9]) (which is the state

reached in script element child data after having encountered an unescaped
< (U+003C LESS THAN) character),

2. '/' (U+002F SOLIDUS) transitions the parsing state to the script data end tag open
state ([10]), which in turn will be sent to the

3. script data end tag name state ([11]) over any ASCII character
4. In the script data end tag name state an HTML5 parser is supposed to check the

longest sequence of ASCII characters for a case-insensitive match of script
(and finish the script element if this is the case).

For SGML, on the other hand, expected behaviour is to end CDATA or RCDATA on a
"delimiter-in-context" ie. < (U+003C LESS-THAN SIGN), followed by / (U+002F
SOLIDUS) followed by a name start character (ignoring other irrelevant delim-
iter-in-context cases here), irrespective of whether the generic identifier started by the
name start character is actually script (or, more generally, the same that started
CDATA/RCDATA), whereas HTML5 is supposed to treat character data looking like
an end-element tag but not actually representing a </script> tag as part of the
character content of script.

For example, the following HTML fragment
<script>
 document.innerHTML =
 "<html><head><title>Oops</title><body>Pwnd</body></html>"
</script>

will be parsed by HTML as a single script element with child content, but, pro-
vided the script element has been declared

The HTML 5.1 DTD

112

<!ELEMENT script CDATA>

will be parsed by SGML as

• the <script> start-element tag,
• the text document.innerHTML = "<html><head><title>Oops,
• the </title> end-element tag,
• the <body> start-element tag,
• the text Pwnd,
• the </body> end-element tag,
• the </html> end-element tag, and
• the </script> end-element tag.

While a DTD using either CDATA or (#PCDATA) for the script element will reject
this particular sequence of markup events (because script can't have it's end-tag
omitted), in general, this behaviour is undesired since it could be used to mount
script injection attacks.

As explained in the HTML 5 specification ([13]), there's an additional, rather
unnecesary, twist in HTML5's dealing with script data, in that what looks like
starting an SGML comment (ie. the character sequence <!--) within script data
will make the parser enter script data escaped dash dash state ([12]) which is only
exited on a subsequent --> character sequence, potentially parsing well beyond
what looks like the regular end of the script element.

That is, SGML's <!-- and --> character sequences are recognized as Java-
Script comment start- and end- sequences, respectively; presumably, this was an
(ill-conceived) attempt in early JavasScript revisions to present uniform comment-
ing syntax across HTML and JavaScript.

It is problematic since it is completely invisible to SGML. Needless to say, this
style of script comments is an avoidable XSS attack vector in web pages.

SGML has never recognized comments in CDATA or RCDATA at all, hence
this cannot be handled by SGML other than by using a regular (#PCDATA) content
model.

Treating script content as (#PCDATA) can be inconvenient, since it requires
that verbatim occurrences of the < (U+003C LESS-THAN SIGN) character might
have to be specified using the < entity, or that all or parts of the child content
is put into CDATA or RCDATA marked sections.

If this turns out to be a problem, the declaration for script can easily be
changed to CDATA to re-establish former behaviour.

2.10. Attribute defaults

This HTML5.1 DTD doesn't declare attribute defaults. Instead, it always declares
#IMPLIED as default value.

The HTML 5.1 DTD

113

Generally speaking, making subtle distinctions with respect to whether attrib-
ute (and other) defaults are specified with their default values in content explic-
itly as opposed to left unspecified is considered a bad practice, since whether an
attribute is specified or implied isn't adequately represented in eg. DOM and sim-
ilar APIs lacking attribute defaults and other type-related metadata. About the
only applications in need of access to this kind of information are HTML author-
ing and developer tools.

However, the HTML5.1 specification recommends (specifically, for the ARIA
attributes) to not specify their default values explicitly (ie. unless their actual
value differs from the default).

2.11. Transparent content

Arguably, the most characteristic element of HTML is the anchor (a) element for
hyperlinking. Apart from hyperlinks, the core HTML content models are merely
variants of paragraph, flow, table, and other content models that were already in
wide use for marking up documents for printing in the pre-WWW era.

In HTML5, the content model of the a element (and that of map, ins, and del)
is specified as transparent, which means that a "inherits" (for lack of a better word)
its parent content model: permitted child content is determined by the parent ele-
ment's permitted child content (which can inherit its permitted content from its
parent element, in turn, and so on).

HTML5's transparent content model concept is an artifact of adding the ability
to annotate any piece of flow content as hyperlink, rather than just phrasing con-
tent as in previous HTML specifications. In practice, it is commonly used when
eg. an image or icon and some belonging text (and possibly some background) is
hyperlinked to a common target using a single a element, rather than having to
wrap the image, the text, and boilerplate content into a elements individually.
Note an extension for using href and other attributes of anchors on any HTML
element (with the expectation that this makes those elements behave like hyper-
links, thereby effectively making the anchor element redundant), was proposed
([14]) already around 2008. Arguably, had this been further pursued, the HTML
vocabulary could have been made much simpler and more orthogonal, but it was
rejected at the time on the grounds that browser vendors already had implemen-
ted the ability to place anchor tags around most HTML elements.

As applied in the HTML specification, transparent content just means that eg.
an a element accepts either just phrasing or also flow content as child content,
depending on whether it appears in a flow or phrasing context, respectively (and
similarly with map, ins, a del). The concept of transparent content, however,
doesn't extend to arbitrary elements, because it trivially conflicts with the content
model descriptions of those elements into which elements having transparent
content can be placed. Specifically, for any element which accepts an element hav-

The HTML 5.1 DTD

114

ing transparent content, it needs to be stated whether, and how, elements wrap-
ped into transparent content-allowing child elements should contribute to the
parent's content model.

Another formulation for the constraints imposed by the a element's transpar-
ent content restriction is that an HTML document can be validated by removing
all a start-element and end-element tags (but keeping child content of a ele-
ments), and validating the result document against a tight HTML5 grammar lack-
ing an a element. In sgmljs.net SGML, this notion can be directly expressed using
SGML LINK, ie. by declaring an explicit link process projecting a permissive var-
iant of HTML as source markup into a restrictive HTML variant as result markup,
and by declaring a link rule that maps all source elements to the same-named tar-
get elements, respectively, except for a and other HTML elements with transpar-
ent content.

From a practical point of view, though, to facilitate HTML validation using
mainstream SGML parsers (which don't support SGML LINK and/or don't per-
form validation and tag inference on result markup events of link processes), it
might be desirable to express the effective content model restrictions imposed by
transparent content using DTD declarations.

Fortunately, it can be easily shown that HTML's a element (and also HTML's
other elements having transparent content) behave in a tame and modular way
that doesn't interact with the content model into which an a element is placed:
• Since a is member of the flow and phrasing element categories, and the con-

tent model declarations of HTML only ever use a elements as part of flow or
phrasing content, rather than as a element in isolation, and the flow content
and phrasing content productions are interpreted as "any sequence of the
respective elements, or the empty sequence", a can only be used as an optional
content token, hence can't be put into a content position in such a way that it
changes the interpretation of content model tokens with respect to validation
and tag inference.

• Since the flow and phrasing categories (with the exception of the p element
which is covered below) only contain elements which have either void content
(ie. have declared content EMPTY in SGML parlance), or don't admit tag omis-
sion, flow and phrasing content (up to p elements) is always fully-tagged
markup without omitted tags. Hence, markup wrapped into a elements can't
alter the interpretation of neighbouring content (and the effect of omitting a p
end-element tag within an a element, even if it were allowed, can't interact
with neighbouring content either, since the a element doesn't admit tag omis-
sion).

• The p element is the only element in flow content that admits end-tag omis-
sion, and hence could be seen to interact with the placement of an a element in
a non-modular fashion. The HTML5 specification addresses this problem spe-

The HTML 5.1 DTD

115

cifically in the content model description for the p element (by disallowing p
end-tag omission in child content of a).

The transparent content constraint is inherent in the fundamental construction of
the HTML vocabulary as phrasing (in-line) content wrapped in flow (block-level)
content, and already sufficiently represented in this HTML5 DTD via exclusion
exceptions as discussed above.

3. Limitations
As discussed in the full paper, the following SGML limitations impede full HTML
5.1 parsing support:

• the set of permissible characters for ID values and value references cannot be
modeled tightly without being overly permissive with respect to other name
tokens such as element and attributes at the same time

• HTML5.1 admits transparent element content only in descendant elements of
a single content model token, rather than as descendant content of any ele-
ment in the respective parent content model, exceeding the expressiveness of
SGML exclusion/inclusion exceptions

• as already mentioned in the introduction, HTML script data parsing cannot be
implemented in the exact same (historic and arguably broken) way as HTML.

While the second issue is considered insignificant, the first and third issues have
been addressed by formulating a proposal for a future revision of ISO/IEC 8879.

4. Conclusion
The HTML5.1 DTD developed here can demonstrate fitness for its intended pur-
pose by being able to parse HTML in the same way as W3C's validation software
on test cases for tag omission and other HTML syntax features discussed in the
text. Moreover, the large HTML5.1 specification text itself can be parsed using the
HTML5.1 DTD, with only minor modifications.

The DTD has been tested with both (Open)SP and sgmljs.net SGML.
This also demonstrates that, while nominally not based on SGML, owing to

HTML requiring legacy compatibility, HTML5 hasn't striven far from its SGML
roots, containing numerous characteristics traceable to SGML idiosyncrasies. In
those cases where it has, such as in its definition of ID values and custom data
attributes (as explained in the extended version of this paper) HTML5 has intro-
duced accidental inconsistencies of its own making, though WHATWG's newer
custom elements specification shows a saner approach as far as the definition of
the basic lexical properties of custom element names are concerned.

The HTML 5.1 DTD

116

This initial HTML5.1 DTD is published in the hope those who continue to see
value in a formal grammar for the world's most used markup vocabulary will
contribute to its further development.

In future work, it's intended to put this DTD to work for parsing larger exist-
ing web content corpora and gaining practical experiences in its application, start-
ing with the web platform test suite maintained by W3C (as well as various other
test case repositories maintained by W3C, WHATWG, Mozilla, and others on
github). However, its alignment with the HTML 5.1 specification, with the W3C
validation software, and its status and endorsement by browser vendors is
unclear to the author.

The author thanks the XML Prague 2017 reviewers for valuable feedback.

Bibliography
[1] S. Faulkner et. al. (ed.) HTML 5.1 W3C Recommendation, 1 November 2016
https://www.w3.org/TR/html51/

[2] I. Hickson et. al. (ed.) HTML 5 conformance classes https://www.w3.org/TR/
html5/single-page.html

[3] Nu Html Checker https://validator.w3.org/nu/
[4] M. Reichardt HTML5.1 DTD Reference http://smgljs.net/docs/w3c-html51-
dtd.html

[5] A. Brueggemann-Klein, D. Wood One-Unambiguous Regular Languages
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3440

[6] I. Hickson et. al. (ed.) HTML5 Boolean attributes https://www.w3.org/TR/
html5/single-page.html#boolean-attribute

[7] M. Reichardt SGML declaration for HTML5.1 http://sgmljs.net/docs/w3c-
html51-sgmldecl.html

[8] J. English Cougar DTD: Do not use CDATA declared content for SCRIPT (on
the www-html mailing list, July 1996) http://xml.coverpages.org/
rcdataCTS1.html

[9] I. Hickson et. al. (ed.) HTML5 Tokenization - Script data less-than sign state
https://www.w3.org/TR/html5/single-page.html#script-data-less-than-sign-
state

[10] I. Hickson et. al. (ed.) HTML5 Tokenization - Script data end tag open state
https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-open-
state

The HTML 5.1 DTD

117

https://www.w3.org/TR/html51/
https://www.w3.org/TR/html5/single-page.html
https://www.w3.org/TR/html5/single-page.html
https://validator.w3.org/nu/
http://smgljs.net/docs/w3c-html51-dtd.html
http://smgljs.net/docs/w3c-html51-dtd.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3440
https://www.w3.org/TR/html5/single-page.html#boolean-attribute
https://www.w3.org/TR/html5/single-page.html#boolean-attribute
http://sgmljs.net/docs/w3c-html51-sgmldecl.html
http://sgmljs.net/docs/w3c-html51-sgmldecl.html
http://xml.coverpages.org/rcdataCTS1.html
http://xml.coverpages.org/rcdataCTS1.html
https://www.w3.org/TR/html5/single-page.html#script-data-less-than-sign-state
https://www.w3.org/TR/html5/single-page.html#script-data-less-than-sign-state
https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-open-state
https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-open-state

[11] I. Hickson et. al. (ed.) HTML5 Tokenization - Script data end tag name state
https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-name-
state

[12] I. Hickson et. al. (ed.) HTML5 Tokenization - Script data escaped dash dash
state https://www.w3.org/TR/html5/single-page.html#script-data-escaped-
dash-dash-state

[13] I. Hickson et. al. (ed.) HTML5 - Restrictions for contents of script elements
https://www.w3.org/TR/html5/single-page.html#script-content-restrictions

[14] E. Meyer Any-Element Linking Demo http://meyerweb.com/eric/thoughts/
2008/07/23/any-element-linking-demo

The HTML 5.1 DTD

118

https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-name-state
https://www.w3.org/TR/html5/single-page.html#script-data-end-tag-name-state
https://www.w3.org/TR/html5/single-page.html#script-data-escaped-dash-dash-state
https://www.w3.org/TR/html5/single-page.html#script-data-escaped-dash-dash-state
https://www.w3.org/TR/html5/single-page.html#script-content-restrictions
http://meyerweb.com/eric/thoughts/2008/07/23/any-element-linking-demo
http://meyerweb.com/eric/thoughts/2008/07/23/any-element-linking-demo

The X-definition 3.1
Jiří Kamenický

Syntea software group a.s.
<jkamen@syntea.cz>

Jindřich Kocman
Syntea software group a.s.
<kocman@syntea.cz>

Václav Trojan
Syntea software group a.s.
<trojan@syntea.cz>

1. Preamble: What is The X-definition?
The X-definition is a programming language designed for description of the
structure of an XML document, its validation, processing and even construction.
The X-definition itself is an XML document. The content of the X-definition is
composed of models of elements. As it has been already several years since our
last presentation let us recollect in few words what the X-definition is.

1.1. Model of element

The design of a model of an element in the X-definition is derived from the struc-
ture of the XML element data to be described. The text values of attributes or text
nodes are replaced by the X-definition "script". The occurrence of elements in the
model is described by the script in auxiliary attribute xd:script (xd is the prefix
of namespace of the X-definitions). Let‘s illustrate it on the following example.
Let’s have the XML data:

<books date="2017-01-21">;
 <book isbn="123456789" published="2017">
 <title>The X-definitions 3.1</title>
 <author>Jiří Kamenický</author>
 <author>Jindřich Kocman</author
 <author>Václav Trojan</author>
 </book>
 <book isbn="987654321">
 <title>The Bible</title>
 </book>
</books>

The model of element "books" looks like:

119

<books date="date()">0
 <book xd:script="+"
 Isbn =" int()"
 published="? gYear">
 <title>string()</title>
 <author xd:script="*">string()</author>
 </book>
</books>

The X-definition complete is an envelope which contains one or more models:

<xd:def xmlns:xd="http://www.syntea.cz/xdef/3.1"
 xd:root="books" xd:name="Bookstore">
 <books date="dateTime()" ... see model above
</xd:def>

Note the script contains information about occurrence of items and specifies a
method used for validation of input data. This is a "validation" section of the
script. However, the script may contain other sections with the code invoked on
different events during the processing. Since the result of the validation may be
true or false you can specify what to do in such situation eg. in the section onTrue
or onFalse. An important feature of the X-definition is that the code may refer to
a method connected to X-definition from external Java environment. This allows
to provide the validation check in a database etc.

2. Processing of large data
If you have a large number of books and you have not got enough memory you
can do several things.

1. To ignore all irrelevant items in the process by specifying that they should be
ignored:

<book xd:script="+; "
isbn="int()" published="ignore gYear()" >
 <title>string()</title>
 <author xd:script="ignore">string()</author>
</book>

The result will be a XML document containing only attribute "isbn" and the
element "title" from each book. the items specified as ignore are simply to be
ignored and they do not appear in the final document.

2. To release any book from the memory after it was processed by specifying the
action forget to the script of the book:

<book xd:script="+; forget"
isbn="int">

The X-definition 3.1

120

All books will be removed from the result document after being processed.
However, the "forgotten" items are processed before they are removed from
the memory (i.e. we still have information about errors etc.).

3. Sometimes it might be useful to ignore all items you do not need. You simply
omit description of those objects you do not need if you specify the option
ignoreOther in the script of the model of an element:

<books date="dateTime()">
 <book xd:script="+; option ignoreOther">
 <title>string()</title>
 <author xd:script="*">string()</author>
 </book>
</books>

In this case the result will contain only the data described in the model. Other
data from the source XML will simply be ignored.

3. The stream mode
If you need to keep large processed data, you still have the possibility to store the
data to an output stream before you release it from the memory. The result docu-
ment will contain only such elements, which are not "forgotten". However, the
output stream will contain the full processed data (of course, not those ignored
items). The data is written to the output stream before it is released.

The output stream is assigned externally when the X-definition is invoked:
<books date="dateTime()">
 <book xd:script="+; forget"...,
...

In the real project you usually know which data you can "forget" after it was pro-
cessed or even ignore it. The description in the X-definition is very transparent
and simple.

4. Processing of JSON data
The main problem of processing JSON data in the X-definition is to provide fully
reversible conversion of JSON data to XML and vice versa. There are following
problems:
1. Conversion of the named items in the JSON map to XML names. Since the

name of the mapped item is any kind of string (even the empty one), A con-
vertor was designed which replaces the character of JSON name which is not
acceptable in Java name to the sequence "_uX_" where "X" is a hexadecimal
representation of such a character in the UTF character set. The empty string
is represented by the sequence "_u0_".

The X-definition 3.1

121

2. Simple JSON values can be a number, string, "true", "false" or "null". The con-
vertor respects the idea of readability and simplicity: if the string doesn’t start
with numbe , boolean or "null" and if it doesn’t contain whitespaces r quota-
tion marks, it is converted to the character sequence without quotation marks,
otherwise the quotation marks are added. There are implemented special vali-
dation methods for description of JSON format of values.

3. Each named item can be converted to an attribute or element. In order to mini-
mize XML structure and to improve its readability, it is preferred to create an
attribute rather than an XML element. If the element is generated, it is inserted
to an auxiliary element "MapExtension" with the namespace of JSON.

4. JSON array is converted to an auxiliary element "js:Array". However, since the
sequence of an XML element can be considered as an array, the element
"Array" is generated only when it must be generated (e.g. array in array).

Let’s have data from the example above in a JSON format:
{ "books": [
 {"book": {
 "isbn": 123456789,
 "title": "X-definition 3.1",
 "edited\": 2017,
 "author": ["Jiří Kamenický", "Jindřich Kocman",
 "Václav Trojan"

 }
 },
 {"book": {
 "isbn": 987654321,
 "title": "The Bible"
 }
 }
]
}

In the first step the X-definition model is generated from the JSON data:
<books
xmlns:js="http://www.syntea.cz/json/1.0">
 <js:array>
 <book edited="jnumber()"
 isbn ="jnumber()"
 title ="jstring()">
 <js:array>
 <author xd:script="+"> jstring() </author>
 </js:array>
 </book>
 <book isbn="jnumber()" title="string()"/>

The X-definition 3.1

122

 </js:array>
</books>

Now we can optimize the above X-definition by adding occurrences of items a by
deleting the redundant ones. The result will be:

<books>
 <book xd:script="+"
 edited="? jnumber()"
 isbn =" jnumber()"
 title =" jstring()">
 <author xd:script="*"> jstring() </author>
 </book>
</books>

Note the algorithm prefers to generate for a unique named value an attribute
rather than an element with a text value. Note also, that they were removed from
model the items "js:array".

We here described the idea of XML/JSON processing. The tool is still in the
development stage. We have now the experimental "alpha" version and we are
opened to discuss it.

5. Processing of errors
1. The result of the methods used for parsing of text values of attributes or text

nodes is an object containing the parsed value or an error report. The instruc-
tion of what to do when an error was detected can be added to the script of an
attribute or a text node.

2. The processor of the X-definition is storing error messages to MessageRe-
porter. Each message is an object containing the type of message (e.g. error),
the message identifier, the template text and the parameter list (used to mod-
ify the template text). The reporter contains information counters of the repor-
ted message types. In the script of the X-definition you can get the number of
error messages reported during the model processing. This enables to process
messages reported during processing of any model and to invoke a method
associated to an error.

<book xd:script="+; finally
if (errCount() > 0) {...}" ...

3. The method used for parsing of text values may be invoked in an external Java
environment. So it is possible to check if the value is in a database or a code
list. The external method can be declared in the heading of the X-definition.

<xd:def ...
 xd:methods="XDParedResult project.books.checkISBN(XXData);
 void project.books.errorISBN(XXData);">

The X-definition 3.1

123

...
<book isbn="checkISBN()"; onFalse errorISBN(); ...

In the applications designed in Syntea company most of the errors are processed
in the external Java methods.

6. Connection to database
The X-definition provides a connection to different kinds of databases. Therefore
three kinds of objects are implemented there:
1. Service. The Service assures the connection to a database. The database engine

may be a relational database or XML database. In a relational databases it is
java.sql.Connection (in a XML database eg. in the eXist project see
org.xmldb.api.modules.XQueryService). Since Service provides access to
the database according to the rights assigned to a user, the service object is
recommended to be passed to the X-definition processor from an external
environment as an external variable.

2. Statement. The Statement contains a prepared database statement. The pro-
cessor of the X-definitions executes a database statement via this object. You
can get the Statement object when you invoke the method prepareStatement
on the object Service. The object Statement has the method execute which
provides required database instruction and returns the result in the object
ResultSet. Also there are available methods prepareStatement, query or
queryItem etc..

3. Resultset. This object behaves as an iterator and returns the rows from the
table which was returned as a list of rows. In relational database each row of
the table is interpreted as an element containing attributes with the names of
table columns and its values. In the case of XML database it may be a
sequence containing more complex structures created by the statement execu-
tion.

Let us remember that the X-definition can be executed in two modes. So far we
have described the mode we call "processing" mode. In this mode the X-definition
parses input data, and returns the processed data as a result. In this mode we can
use the database for checking process data (eg. to check if a value is in the data-
base or to store it to a database etc.). The second mode that we call "construction"
mode works in inverse way: it creates the result according to the X-definition. In
the X-definition we can describe how to cconstruct the result. We simply add to
the script the section create. In the processing mode this section is ignored.
However, in the cconstruction mode this section is executed. Let s show it in the
example of the model:

<date> dateTime(); create now();
</date>

The X-definition 3.1

124

In the processing mode it is checked if the element date contains the text value
with the valid date and time value. On the contrary in the construction mode the
text value is created from the string generated by implemented value now.

We can create data from an outside source. Eg. let’s create a li t of titles of
books we have in XML data from our example above and we pass it to the X-defi-
nition from an outside environment as the XML element. The mehod xpath
returns a list of nodes which is in the X-definition as an iterator. The items of such
iterator are used as the context data from which the relevant items of the required
result will be created:

<xd:def xmlns:xd="http://www.syntea.cz/xdef/3.1"
 xd:name="inventory">
 <xd:declaration>
 external Element source;
 </xd:declaration>

 <Inventory>
 <Book xd:script="*; create xpath('//Book', source)"
 isbn="int()">
 <Title>string();</Title>
 </Book>
 </Inventory>
</xd:def>

If we have the database with books we can create the a of titles of books with the
database query statement (the password is passed on to the X-definition from an
outside environment):

<xd:def xmlns:xd="http://www.syntea.cz/xdef/3.1"
 xd:name="inventory" >
 <xd:declaration>
 String database = "jdbc";
 String url = "jdbc:derby://localhost:1527/sample;";
 String user = "app";
 external String password;
 Service service = new Service(database, url, user, password);
 Statement statement = service.prepareStatement(
 "SELECT TITLE,ISBN FROM MYTEST.TITLE ORDER BY TITLE ASC");
 </xd:declaration>
 <Inventory xd:script="">
 <Book xd:script="occurs *; create statement.query()" isbn="int()">
 <Title> string();</Title>
 </Book>
 </Inventory>
</xd:def>

The X-definition 3.1

125

Note that the items "isbn" and "Title" are created from columns "ISBN" and
"TITLE" from the database table. The names of the columns are processed as case
insensitive.

The complete example is available on http://xdef.sy ntea.cz/tutorial/en/user-
doc/DBExample.pdf1

7. X-components
X-components are an extension of the X-definition for simplification of Marshal-
ling/Unmarshalling without the need any external library. The X-component is a
standard java class implementing interface cz.syntea.xc.XComponent with a
structure that corresponds to the one element in the X-definition. Every element
in the X-definition has one X-component as an image and its attributes are
expressed as class fields. The value of attributes, elements and text values are
accessible by getName() and setName() where Name is the one of the attribute or
the element in the X-definition.

Example:

<xd:def xmlns:xd="http://www.syntea.cz/xdef/3.1"
 xd:root = "Insurer"
 xd:name = "Insurer">
 <Insurer
 Company = "required string()">
 <Contract xd:script="*"
 ContractID = "required int()"
 ValidFrom = "required datetime('yyyyMMdd')">
 <AdditionalInformation xd:script="?">
 string()
 </AdditionalInformation>
 </Contract>
 </Insurer>
</xd:def>

Corresponding X-components

package
cz.syntea.xmlprague.example;
public class Insurer implements cz.syntea.xc.XComponent{
 public String getCompany() {return _Company;}
 public java.util.List<Insurer.Contract> listOfContract() {
 return _Contract;
 }

 public void setCompany(String x) {_Company = x;}

1 http://xdef.syntea.cz/tutorial/en/userdoc/DBExample.pdf

The X-definition 3.1

126

http://xdef.syntea.cz/tutorial/en/userdoc/DBExample.pdf
http://xdef.syntea.cz/tutorial/en/userdoc/DBExample.pdf
http://xdef.syntea.cz/tutorial/en/userdoc/DBExample.pdf

 public void addContract(Insurer.Contract x) {
 if (x!=null) _Contract.add(x);
 }

 private String _Company;
 // Constructors and implementation of cz.syntea.xc.XComponent

 public static class Contract implements cz.syntea.xc.XComponent{
 public Long getContractID() {return _ContractID;}
 public cz.syntea.common.sys.SDatetime getValidFrom() {return
_ValidFrom;}
 public
cz.syntea.xmlprague.example.Insurer.Contract.AdditionalInformation
 getAdditionalInformation() {return _AdditionalInformation;}

 public void setContractID(Long x) {_ContractID = x;}
 public void setValidFrom(cz.syntea.common.sys.SDatetime x) {
 _ValidFrom = x;
 }
 public void setValidFrom(java.util.Date x) {
 _ValidFrom=x==null ? null : new cz.syntea.common.sys.SDatetime(x);
 }
 public void setValidFrom(java.sql.Timestamp x) {
 _ValidFrom=x==null ? null : new cz.syntea.common.sys.SDatetime(x);
 }
 public void setValidFrom(java.util.Calendar x) {
 _ValidFrom=x==null ? null : new cz.syntea.common.sys.SDatetime(x);
 }
 public void setAdditionalInformation(
 cz.syntea.xmlprague.example.Insurer.Contract.AdditionalInformation ►
x)
{
 _AdditionalInformation = x;
 }

 private Long _ContractID;
 private cz.syntea.common.sys.SDatetime _ValidFrom;
 private
cz.syntea.xmlprague.example.Insurer.Contract.AdditionalInformation
 _AdditionalInformation;

 // Constructors and implementation of cz.syntea.xc.XComponent

 public static class AdditionalInformation implements
 cz.syntea.xc.XComponent{
 public String get$value() {return _$value;}

The X-definition 3.1

127

 public void set$value(String x) {_$value = x;}
 private String _$value;

 // Constructors and implementation of cz.syntea.xc.XComponent

 }
 }
}

The interface X-component contains a method for conversion to and from XML.
When parsing XML instances of X-components are created and filled data. Every
element and attribute has its XPath to the source XML it was created from. The X-
component has a method toXML() for conversion the whole subtree to
org.w3c.dom.Element. With non-parametric constructor the instance can be cre-
ated by hand filled data programmatically (using this method the source XPath is
null).

7.1. Generating X-componets

X-components are generated automatically from the X-definition. Commands for
creating X-components are written in the section <xd:component> as a part of the
source X-definition. The most important command is %class which creates the X-
component itself. This command contains a fully-qualified name of the resulting
object and XPath to the source X-definition pointing to the element it should be
created from. Every nested element is created as an inner class of the generated X-
component unless it has its own %class command. The %class command for the
above example looks like:

<xd:component>
 %class cz.syntea.xmlprague.example.Insurer %link Insurer#Insurer;
</xd:component>

Using this command it is also possible to pass information about interfaces and
superclass generated class should implement and extend.

Sometimes is necessary to use getter and setter from superclass and do not to
generate it. For this case it exists a command %bind which suppresses creation of
getters and setters used by another method. The name of the method can be arbi-
trary. Using this command you can also use a different name in the X-definition
and in the X-component.

8. The X-definition and the X-components in real-world project
The X-definition technology is used in large systems in the insurance industry in
the Czech Republic and the Slovak Republic. Due to usage of the X-definition all
interfaces are defined, validated and processed with external entities, which have

The X-definition 3.1

128

the form of web services or the form of a file. The X-definition and X-components
are also used for all internal communication of program modules. The number of
different types of messages used in the application is nearly 300. The total num-
ber of external messages processed by these systems are hundreds of millions per
year.The X-definition is also used in these systems for validating and processing
of metadata that describe the internal properties of program modules. An exam-
ple of such a X-definition for the module layer of web services is:

<xd:def xmlns:xd="http://www.syntea.cz/xdef/3.1"
 impl-version ="1.0.1_3"
 impl-date="29.9.2016"
 xd:name ="DefModul_VVR"
 xd:root ="DefModul_VVR" >

 <xd:declaration>
 type Activity string(1,30);
 type Bool list('Y','N');
 type ChannelType string(1,20);
 type ChannelTypeVersion string(1,30);
 :
 type Variant list('SYN','ASY');
 type Version string(1,10);

 uniqueSet subsystemSet {subsystem: Subsystem()};
 uniqueSet channelTypeSet {channelType: ChannelType()};
 uniqueSet versionSet {channelType: ChannelType();
 version: Version()
 };
 uniqueSet msgNameSet {channelType: ChannelType();
 version: Version();
 msgName: MsgName()
 };
 uniqueSet partnerTypeSet {partnerType: PartnerType()};
 :
 </xd:declaration>

 <DefSystem SystemCode =" SystemCode()"
 SystemLocation =" SystemLocation()"
 Version =" Version()"
 LastVersionMin =" Version()"
 LastVersionMax =" Version()"
 ImplTime =" ImplTime()"
 Description ="? Description()"
 Mode =" Mode()"
 PartnerCode =" PartnerCode()">
 <DefSubsystems xd:script="1; ref DefSubsystems"/>

The X-definition 3.1

129

 <DefChannelTypes xd:script="1; ref DefChannelTypes"/>
 <DefPartnerTypes xd:script="1; ref DefPartnerTypes"/>
 <DefPartnerChannels xd:script="1; ref DefPartnerChannels"/>
 <DefPartners xd:script="1; ref DefPartners"/>
 <DefChannels xd:script="1; ref DefChannels"/>
 <DefPrograms xd:script="1; ref DefPrograms"/>
 <DefPoints xd:script="1; ref DefPoints"/>
 <DefActivities xd:script="1; ref DefActivities"/>
 <DefFlows xd:script="1; ref DefFlows"/>
 </DefSystem>

 <!-- Definition of subsystems -->
 <DefSubsystems>
 <DefSubsystem xd:script = "0.."
 Subsystem =" subsystemSet.subsystem.ID()"
 Description ="? Description()"
 Status ="? Status()"
 />
 </DefSubsystems>

 <!-- Definition of Channel types -->
 <DefChannelTypes>
 <DefChannelType xd:script="0.."
 ChannelType =" channelTypeSet.channelType.ID
 (versionSet.channelType(
 msgNameSet.channelType()));"
 Direction =" Direction()"
 HasCertificate =" Bool()"
 Description ="? Description()"
 Status ="? Status()">
 <DefVersion xd:script="1..; ref DefVersion"/>
 </DefChannelType>
 </DefChannelTypes>

 <DefVersion
 Version ="
versionSet.version.ID(msgNameSet.version());"
 ImplTime =" ImplTime()"
 Disable ="? DisableStatus()">
 <DefMsg xd:script="0.."
 MsgName =" msgNameSet.msgName.ID()"
 Method =" MsgMethod()"
 ProcessLog =" ProcessLog()"
 InputLog =" Bool()"
 OutputLog =" Bool()"
 TimeLimit =" TimeLimit()"

The X-definition 3.1

130

 Description ="? Description()"
 />
 </DefVersion>

 <!-- Definition of Partner types -->
 <DefPartnerTypes>
 <DefPartnerType xd:script="0.."
 PartnerType =" partnerTypeSet.partnerType.ID()"
 Description ="? Description()"
 Status ="? Status()"
 />
 </DefPartnerTypes>
 :
</xd:def>

The X-definition 3.1

131

132

Relational and Semantic Views over
Documents

Normalization Considered Abnormal
John Snelson

MarkLogic Corporation
<john.snelson@marklogic.com>

Abstract

SQL is the norm. The relational model has had 45 years of dominance in
database users hearts and minds, and has seeded a vast database tools, BI,
and ETL market. Whatever your thoughts on the database market, it's hard
to escape the ubiquity of SQL and the relational model.

However increasingly developers are learning to embrace the benefits of
document databases, and understand the advantages of hierarchical and
ordered data models. Returning to more natural data modelling concepts
like entities and relationships, they are rightly beginning to view third nor-
mal form as distinctly abnormal.

But if my logical entity is represented by a document, how do I use it
from SQL? I may wish to use BI tools on my data, or allow colleagues with-
out a document database background access to it. I may find the uniformity
and strong mathematical foundation of querying using relational algebra
compelling. Similarly, I may wish to expose some of my data as RDF for use
in data integration or Semantic Web projects.

The solution can be found in a declarative live transformation into the
target data model (relational or RDF), which is always kept up-to-date -
where the data is kept in a logical document model, and exposed through
views as more query, domain, or user friendly structures.

1. Introduction
This paper discusses different data modelling techinques, designed with different
purposes in mind, and with different strengths and weaknesses. It demonstrates a
simple technique for combining the use of these data models, as well as discus-
sing why you might want to do that. Although the techinique is simple, its ramifi-
cations for how data can be modelled and used are far-reaching, allowing multi-
model and document databases to step into the wider context of DBMSs more
effectively.

133

2. Data Model Overviews

2.1. The Entity-Relationship Model

An entity is defined as a thing that can have independent existence and can be
uniquely identified. With this definition, the concepts of entities and relationships
between those entities can be used to build information models that are very sim-
ilar to the way that humans think about information. Entity-relationship models
are often used as the first step towards reaching a relational data model. Instances
of these natural organisational methods can be seen in many places where data
has been modelled.

2.1.1. Hypertext: Documents and Links

The internet became what it is today because at its heart it consists of a way to
organise, present, and navigate information that is very natural. The document is
an intuitive way of creating knowledge for humans, and the links allow discovery
of more depth and related topics as and when that becomes interesting. In many
cases this maps well to an entity-relationship view of data modelling.

2.1.2. RDF Enhancement

"Resource Description Framework" was created to describe just the kind of docu-
ments or entities that exist on the internet. Adding RDF to web pages enhances
them from just being human readable documents to being machine readable as
well, exposing the data inside those documents. RDF also creates more value
from the links in documents, by allowing those links to be described and classi-
fied, so that their semantics are understood.

2.2. The Relational Model

The relational model is a well-used alternate model for describing information,
with closer ties to the mathematical concepts of first order predicate logic. Data is
represented as tuples (rows), which are themselves grouped into relations
(tables).

Although it has a strong mathematical foundation, the relational model is
often less natural for expressing information. A lack of sequence or set support
makes it unlikely that most entities can be expressed as a single row, forcing the
data modeller to introduce new entity boundaries where natural entities do not
exist. Heirachy inside entities is particularly hard to describe using a relational
data model.

Relational and Semantic Views over Documents

134

2.2.1. Normalization

Normalization has arisen as a technique to codify how to express more complex
entities in the relational model. The techniques of database normalization
describe how to avoid multi-valued attrbutes (sequences and sets), and duplica-
ted information. However normalization creates fragmentation, where the infor-
mation for a single conceptual entity is split over many separate rows in different
tables. This can produce a rather unintuituve (even ab-normal) data model,
where re-constituting conceptual entities requires costly query-time joins.

2.2.2. Extract, Transform, and Load

Relational modelling can often require the use of ETL tools to perform the shred-
ding of the entity information into the correct tables. This transform process will
often result in the loss of data - both because the data has not been modelled in
the relational schema, and because the original context of the data is not directly
stored.

2.3. The RDF Data Model

The RDF data model breaks all information down into very simple triples, with a
subject, predicate, and object. As well as modelling intra-entity relationships, this
can also be used to describe attributes of entities using literal values in the object
position, or more complex heirachical information using blank nodes and further
sub-trees.

RDF does not contain a good way to model sequences, resorting to a linked
list design that is inefficient and hard to query. The way that RDF is almost super-
normalized in the process of breaking information down into very small "facts" or
triples means that queries to reconstitute an entity can involve even more joins,
and be even less efficient than the relational data model.

2.4. The Document Model

The document model is a short hand for expressing information in a heirachical,
ordered format - usually XML or JSON. Although there are significant differences
between the expressivity and capabilities of XML and JSON, they are more like
each other than they are like a relational data model or RDF data model.

Documents are often written first for humans, and as a by-product usually
create a data model that is more comprehensible. They are also often more suita-
ble for displaying to the end user of an information application built on the data,
as the entity boundaries are often chosen for exactly that purpose - making this
kind of "human first information modelling" a useful way to design entities for
the entity-relationship model. However both XML and JSON lack a native way to

Relational and Semantic Views over Documents

135

model relationships or document links, falling short of fulfilling the entire entity
relationship model.

3. Reaching Data Model Nirvana
Since databases based on an entity-relationship model don't exist, it would be
good to see how to get closer to this more natural way of modelling data using a
document database like MarkLogic - which is already very flexible and human
oriented in the way it can store data.

3.1. Document First Data Modelling
Entities map to documents well, which allow heirachy and sequences present in
the properties of real world complex entities. They also allow the schema variabil-
ity necessary to evolve many applications, and continue to on-board new types of
data. Many entities exist in document form already, and a document database
allows you to maintain the original knowledge organization. For these reasons,
starting with a "document-first" data model gives a good foundation to build out
a database capable of more closely approximating the entity-relationship model.

3.2. Document Links
However document databases often don't support document links directly, which
is a barrier to utilizing the full entity-relationship data model. In a database like
MarkLogic that also supports RDF storage, this best-of-breed relationship model-
ling can be used on top of the documents.

3.3. Business Intelligence and Analysts
There exist a good many reasons why organizations are reticent or unable to
move away from their incumbant relational data modelling. A major factor are
the Business Analysts employed in large numbers, who are well versed in using
SQL to query company data. In addition the vaste majority of Business Intelli-
gence tools (such as Tableau and Qlik) work best or exclusively by talking SQL
over ODBC to the company's databases.

4. Template Driven Extraction: A Simple Solution
MarkLogic 9 will introduce a feature called "Template Driven Extraction", which
allows simple templates to be defined that declaratively describe how to convert
a document into rows for tables, or into triples. This process happens at docu-
ment indexing time, so that the tables and triples are populated as soon as the
document is committed to the database, in a transactional fashion. In addition,

Relational and Semantic Views over Documents

136

the rows and triples are treated like any other index - ie: they are removed when
the base document is removed, updated when it is updates, etc.

The templates are deliberately kept very simple, as potentially hundreds of
templates might exist and need to be considered during document insertion. This
is not an XSLT replacement! Indeed they are inspired quite heavily by XSLT, and
use XPath as a pattern and query language.

4.1. Relational Lens

A simple template to define a relational view or "lens" over a type of document
consists of a context path followed by one of more column definitions. For every
instance of a node matching the context path, one or more rows will be created.

<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/match</context>
 <rows>
 <row>
 ...
 </row>
 </rows>
</template>
Rows are specified with the schema and view (table) name it belongs to, along

with one or more column definitions.

<row>
 <schema-name>soccer</schema-name>
 <view-name>matches</view-name>
 <columns>
 <column>
 ...
 </column>
 </columns>
</row>
A column has a name and a fixed type. The XPath expression in the "val" ele-

ment uses the node matched by the template's context expression as its XPath
context item. The result of the expression is automatically cast to the correct type
if possible. If the expression raises an error or the cast fails, then the whole row is
not added to the table. Columns can also be specified as nullable - nullable col-
umns are left blank in the event of an error, rather than excluding the entire row
from the table.

<column>

Relational and Semantic Views over Documents

137

 <name>id</name>
 <scalar-type>long</scalar-type>
 <val>id</val>
</column>
...

Templates are inserted into the "Schemas" database. The tde:template-
insert() function performs validation of the template before inserting it into the
"Schemas" database, as well as adding it to the TDE collection which makes the
template available to the indexer.

tde:template-insert(
 "/test/my-first-TDE.xml" ,
 $my-first-TDE)

All templates are automatically discovered and used to index the documents in
the content database. Existing documents will be reindexed if a new template is
inserted that applies to them.

A template implicitly declares the definition of the view (table) it populates.
This definition can be seen using the tde:get-view() function.

tde:get-view ("soccer", "matches")
->
{
 "view":{
 "id":"8206293418083457271",
 "name":"matches",
 "schema":"soccer",
 "viewLayout":"identical",
 "columns":[
 {
 "column":{
 "id":"1695951276079343631",
 "name":"id",
 "scalarType":"long",
 "nullable":false
 }
 },
 ...
]
 }
}

More than one template can contribute to the same view. In this case, the column
definitions for the two templates have to be compatible.

Relational and Semantic Views over Documents

138

Templates also support sub rows - a definition of a row that is dependent on
the outer row. This is useful, for instance, for dealing with repeating structure
inside an entity - where that repeating structure might populate one or more
rows in a dependent table.

4.2. Triples Lens

Templates can also be used to extract RDF statements or triples from documents.
In this case the template will still start with a context path that needs to be
matched for the triples to be produced.

<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/match</context>
 <vars>
 <var>
 <name>EX</name>
 <val>"http://example.org/ex#"</val>
 </var>
 </vars>
 <triples>
 <triple>
 ...
 </triple>
 </triple>
</template>

Templates can also contain definitions for variables which can be accessed from
inner XPath expressions. The "name" element specifies the name of the variable,
and the "val" element specifies an XPath expresion which is evaluated to get the
value for the variable.

The definition of a triple to create specifies XPath expressions to return the
subject, predicate, and object for the triple. In some cases these can be literal val-
ues, whilst in other cases they can depend on information from the indexed docu-
ment such as the document URI - which is a useful way to link documents into
the RDF graph.

<triple>
 <subject>
 <val>sem:iri(xdmp:node-uri(.))</val>
 </subject>
 <predicate>
 <val>sem:iri($EX || "hasID")</val>
 </predicate>
 <object>

Relational and Semantic Views over Documents

139

 <val>xs:integer(id)</val>
 </object>
</triple>
...

5. Discussion of Benefits

5.1. Updating
One benefit of using templates is that although the same information can appear
in a document, multiple tables, and a triple, only the document needs to be upda-
ted to change that information - and those changes happen transactionally. Com-
pared to an alternative strategy of using distinct document, relational, and triple
databases, this significantly simplifies interactions with your data.

5.2. Heterogenous Documents, Homogenous Tables or Triples
MarkLogic users often find they are solving problems by bringing together multi-
ple sources of data. The data may be about the same kinds of entities, but it is
almost always in different formats. Templates can be used to aid data integration
in this scenario - to integrate a new source of data into an existing application, all
that is needed is to write a new template for the new type of data - adding it into
common tables or using common RDF predicates that the applications can
already understand.

5.3. NoETL
By removing the need for extraction and transformation before loading, the origi-
nal data can kept rather than thrown away. This brings the possibilities of pro-
gressive enhancement of the relational or RDF data model at future stages, by
simply adding new template rules for further parts of the original data that there
is now a need for in the dependent data model. This enables a lossless modelling
of the data - not because the relational or RDF model is rich enough to express
everything from the original - but because you still have the original!

Additionally, tracking the provenance of data is particularly important in
some use cases, and so keeping the original information artifact is a big step
towards maintaining knowledge of your data lineage.

5.4. Silo-Busting
Working with many types of data model often means working with multiple
types of database. This introduces a host of problems, including loss of transac-
tional consistency accross your data, loss of a consistent backup, and multiple

Relational and Semantic Views over Documents

140

databases to host, configure and replicate. It also creates silos where some but not
all data is available in different places, and so inhibits the use that the data can be
put to.

A database that supports multiple data models, and that can perform transac-
tional declarative transformations between those data models removes all of
these problems.

5.5. Data in Context
Maintaining the original document context of relational or RDF data brings many
benefits. Queries can be performed that pre-filter the relational or RDF view
based on criteria in those documents - or queries can fetch the original documents
to retrieve additional information.

For instance the provence of a given RDF statement can be seemlessly traced
back to the article it came from in order to check the validity of its source, or
attach a confidence to that statement.

As another example, rather than adding temporal validity information (start
and end date-times) to every row that constitutes part of the information for a
given entity, the temporal information can be added to the source document, and
temporal queries against the source document can be used to pre-filter the rela-
tional views accessed. This gives a very simple way to provide temporal (or bi-
temporal) queries over a relational view with no relational schema changes or
repeated date entries necessary.

Furthermore, it becomes simple to provide entity based access-control. In
MarkLogic the original permissions of the document are applied to all relational
or RDF views - so security is bulletproof, and ETL does not result in leaky infor-
mation.

6. Conclusion
The "Template Driven Extraction" techniques described in this paper bring Mark-
Logic closer to an entity-relationship data modeling paradigm, while uniting
some important features of relational and RDF data models and query capabili-
ties. In addition, this technique enables further important benefits.

Relational and Semantic Views over Documents

141

142

On the Descriptions of Data
The Usability of Notations

Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Usability describes the ease with which you can use something: how long it
takes to achieve your aims, how correctly, and whether it is enjoyable in the
process.

While this is normally applied to interactions with processes, such as
computer programs, or machines, it is also applicable to notations: how
easily can you achieve what you are trying to do, does the notation aid you
in avoiding errors, and, indeed, is it enjoyable to do? However, surprisingly
little attention is paid to designing notations for usability.

Invisible XML (ixml) is a technique for treating any parsable format as
if it were XML, and thus allowing any parsable object to be injected into an
XML pipeline. It uses a notation for describing data formats that are to be
parsed.

Earlier papers on ixml discuss the design of the notation based on func-
tional requirements of the language. This paper discusses changes to the
design following experience with using it, giving examples of its use to
develop data descriptions, and in passing, suggests other output formats.

Keywords: XML, parsing, notation design, data representation, usa-
bility

1. Usability
The study of usability is typically carried out in the field of human-computer
interaction [10]. Although there are a small number of definitions of what usabil-
ity is, all agree on three basic points [7], the degree to which you have:

• Efficiency: the time needed to achieve a purpose

• Effectiveness: being able to achieve the purpose without error

• Enjoyability: being able to enjoy achieving the putrpose.

Some definitions add learnability to this, and some add a related concept, memora-
bility, which is the ability to return after some time and start using it with less
effort than initially; however, others argue that these are orthogonal concepts,

143

and that something that is inherently hard to learn can still be usable despite the
steep learning curve.

2. Notations
That notations can affect what is achievable with them is long known. An obvious
example is the notation for numbers: the Roman notation CXXVIII is reasonably
good for representing the number 128, and is just about acceptable for addition,
since with a few simple rules it is possible to add two numbers represented with
Roman numerals together, but it is close to impossible to do multiplication in any
general way using the numerals alone.

On the other hand, the indo-arabic system that we now use is good for repre-
senting numbers, and makes it easy to both add and multiply.

3. Invisible XML
Invisible XML [4], [5], [6] is a methodology for treating heterogenous data repre-
sentations so that they can be processed as XML: as long as the external data rep-
resentation is parsable, it is possible to create an internal representation of the
data that can further be treated as if it originated from an XML representation, or
that can be serialised so that it really is XML, for input to other tools.

4. Data Descriptions
Ixml works by using context-free grammars [1] to describe the format of docu-
ments to be converted. A general parsing algorithm, such as Earley [3], is then
used to create a parse-tree for the parsed document. This parse tree is then
pruned, and the result can be treated as an internal representation of an XML
instance, for processing or serialisation.

Using a general-purpose parsing algorithm means that users don't have to be
aware of the special rules for languages that are dictated by some types of parsing
algorithm, and additionally widens the class of languages that can be described.

In the initial design of ixml [4], focus was put on the functional requirements
of the data description language: it was necessary to be able to specify the input
format, and describe how to prune the resulting parse-tree to only deliver the
useful parts for extracting the enclosed data.

There are two parts to a grammar: the non-terminal symbols, roughly speaking
describing the semantic concepts represented in a language, and the terminal sym-
bols used to express the language.

Terminal symbols can have intrinsic role, an extrinsic role, or a structural role.
For instance, to represent "the sum of a and b", you might write (a+b). The char-
acters "a" and "b" are intrinsic, change them and you change the meaning; "+" is

On the Descriptions of Data

144

extrinsic, since it only identifies that addition is involved; indeed if you change it
to "×" the meaning changes, but in a different way; finally the brackets add noth-
ing essential to the meaning, and are only used as punctuation and to disambigu-
ate similar forms.

Nonterminals also have three roles. Intrinsic, where they represent a semantic
concept in a language, such as "statement" in a programming language; structural,
where they are used for disambiguation and structuring, such as "factor" in an
expression, and finally refining, where a name is given largely for convenience to
a syntactic structure than can occur in different places in a language.

In the original design, since terminal symbols were almost never intrinsic, it
was decided to exclude them by default from the parse-tree, and required specific
marking to include a symbol. On the other hand since nonterminals were the sine
qua non of a parse tree, they were included by default, and required specific
marking to exclude them.

Exclusions were always marked at the use of a symbol rather than its defini-
tion, since that meant that symbols generally were more useful in their use in the
descriptions, and since inclusions were by definition only possible at the point of
use (since terminal symbols are only used, and have no further definition).

However, while this produced a technically sufficient notation, it turned out
in use that nonterminals need to be excluded very often, making for descriptions
that were not easy to read. So in the original paper it was described how all sym-
bols were excluded by default from the parse tree, and any symbol had to be
explicitely marked for inclusion.

5. User Testing
Part of usability-based design is user testing. As Nielsen points out [9], user test-
ing with only a small number of users can reveal large amounts of data about a
design.

What we learned after experience of ixml in use was:
1. It is easier to design the data description by starting from the full parse tree,

and incrementally pruning the parts that are not needed.
2. Very many non-terminals are refinements or extrinsic, and it is more sensible

to prune these at the definition rather than the use-point.
3. Occasionally you want to prune all uses of a nonterminal but one, so it is use-

ful to be able to mark a definition as deleted, but mark it as inserted at a use-
point.

4. There are occasions where you need to say "any character except this small list
is acceptable at this position" (this had as consequence that a notation for char-
acter sets was necessary, something that was rejected in the initial design).

5. It is useful to have an explicit notation for something that is optional.

On the Descriptions of Data

145

6. It is useful to be able to use Unicode character classes.

6. An Example
To show the process of interatively building an ixml grammar, let's take an exam-
ple. In order to keep the example manageable we will look at the grammar for
small expressions, such as pi×(10+b).

The raw grammar for expressions could look like this:

expr: term; sum.
sum: expr, "+", term.
term: factor; prod.
prod: term, "×", factor.
factor: id; number; "(", expr, ")".
id: letter+.
number: digit+.
letter: ["a"-"z"].
digit: ["0"-"9"].

The parse of the string "pi×(10+b)" using this grammar and then serialised as
XML looks like this:

<expr>
 <term>
 <prod>
 <term>
 <factor>
 <id>
 <letter>p</letter>
 <letter>i</letter>
 </id>
 </factor>
 </term>×
 <factor>(
 <expr>
 <sum>
 <expr>
 <term>
 <factor>
 <number>
 <digit>1</digit>
 <digit>0</digit>
 </number>
 </factor>
 </term>
 </expr>+
 <term>

On the Descriptions of Data

146

 <factor>
 <id>
 <letter>b</letter>
 </id>
 </factor>
 </term>
 </sum>
 </expr>)
 </factor>
 </prod>
 </term>
</expr>
<expr>
 <term>
 <prod>
 <term>
 <factor>
 <id>
 <letter>p</letter>
 <letter>i</letter>
 </id>
 </factor>
 </term>×
 <factor>(
 <expr>
 <sum>
 <expr>
 <term>
 <factor>
 <number>
 <digit>1</digit>
 <digit>0</digit>
 </number>
 </factor>
 </term>
 </expr>+
 <term>
 <factor>
 <id>
 <letter>b</letter>
 </id>
 </factor>
 </term>
 </sum>
 </expr>)
 </factor>

On the Descriptions of Data

147

 </prod>
 </term>
</expr>

As you can see, for such a small input string, this is a surprisingly long XML
document, since it records every little part of the parse.

The first thing that is noticeable is the large numbers of terms and factors in
the tree. Since we don't need these at all in the parse tree, we mark them for
exclusion at their definitions, by prepending a "-" sign:

-term: factor; prod.
-factor: id; number; "(", expr, ")".

(This only excludes the elements for term and factor from the serialisation, but
not their children.)

The parse tree has already become considerably smaller:
<expr>
 <prod>
 <id>
 <letter>p</letter>
 <letter>i</letter>
 </id>×(
 <expr>
 <sum>
 <expr>
 <number>
 <digit>1</digit>
 <digit>0</digit>
 </number>
 </expr>+
 <id>
 <letter>b</letter>
 </id>
 </sum>
 </expr>)
 </prod>
</expr>

Now we exclude the letters and digits (the nonterminals, not the terminals):
-letter: ["a"-"z"].
-digit: ["0"-"9"].

which gives as parse:
<expr>
 <prod>
 <id>pi</id>×(
 <expr>

On the Descriptions of Data

148

 <sum>
 <expr>
 <number>10</number>
 </expr>+
 <id>b</id>
 </sum>
 </expr>)
 </prod>
</expr>

and finally we get rid of the exprs:
<prod>
 <id>pi</id>×(
 <sum>
 <number>10</number>+
 <id>b</id>
 </sum>
</prod>

to give us a 'minimal' parse: structured, unambiguous, and still with all semantic
information.

A consequence of including everything by default in the parse is the presence
of 'extraneous' terminals in the tree, such as "+" and "(" above. These are harmless
in themselves, and can be ignored in processing (since they are identifiable as
characters not immediately surrounded by an element); they also provide an
advantage that all input characters are present in the output, making the original
document easier to recreate. However, if they are not wanted, they can still be
explicitly removed by marking them in the same way:

sum: expr, -"+", term.
-factor: id; number; -"(", expr, -")".

giving as parse:
<prod>
 <id>pi</id>
 <sum>
 <number>10</number>
 <id>b</id>
 </sum>
</prod>

7. Attributes
Ixml grammars allow you to express that some nonterminals should be serialised
as attributes in the XML, so for instance, changing the rules for id and number in
the above grammar to the following:

On the Descriptions of Data

149

id: name.
@name: letter+.
number: value.
@value: digit+.

gives the serialisation:
 <prod>
 <id name='pi'/>
 <sum>
 <number value='10'/>
 <id name='b'/>
 </sum>
 </prod>

Again, non-terminals can be marked like this at the point of definition, or the
point of use.

Note that you have to be careful when defining non-terminals as attributes,
since while child elements are ordered in XML, and several child elements may
have the same name, this is not true of attributes.

8. Adding Nodes
If we change the input parse string from "pi×(10+b)" to "pi+(10×b)" and process
it, we get:

<sum>
 <id name='pi'/>
 <prod>
 <number value='10'/>
 <id name='b'/>
 </prod>
</sum>

A possible problem here, is that this is the identical parse to what you would get
for the string "pi+10×b": that is, the brackets in the input do not affect the parse
tree. This is understandable, since the brackets add no extra information: the two
strings are semantically identical. We can fix this, if required, by adding back the
node for expr in the case that it is a bracketed expressions:

-factor: id; number; -"(", ^expr, -")".
giving for the bracketed case:

<sum>
 <id name='pi'/>
 <expr>
 <prod>
 <number value='10'/>

On the Descriptions of Data

150

 <id name='b'/>
 </prod>
 </expr>
</sum>

Another solution would be to add a rule:
-factor: id; number; bracketed.
bracketed: -"(", expr, -")".

to give:
<sum>
 <id name='pi'/>
 <bracketed>
 <prod>
 <number value='10'/>
 <id name='b'/>
 </prod>
 </bracketed>
</sum>

9. Other Examples

9.1. URLs
As another small example, consider this restricted grammar for URLs:

url: scheme, ":", authority, path.
scheme: name.
@name: letter+.
authority: "//", host.
host: sub+".".
sub: name.
path: ("/", seg)+.
seg: sname.
@sname: fletter*.
-letter: ["a"-"z"]; ["A"-"Z"]; ["0"-"9"].
-fletter: letter; ".".

Here you can see the use of repetitions with separators (sub+"." means one or
more subs separated by points), as well as a grouped repetition: ("/", seg)+

Given the input string "http://www.w3.org/TR/1999/xhtml.html" you get
the parse:

<url>
 <scheme name='http'/>:
 <authority>//
 <host>

On the Descriptions of Data

151

 <sub name='www'/>.
 <sub name='w3'/>.
 <sub name='org'/>
 </host>
 </authority>
 <path>/
 <seg sname='TR'/>/
 <seg sname='1999'/>/
 <seg sname='xhtml.html'/>
 </path>
</url>

This illustrates a point about attributes and elements: if they have a different syn-
tax in the input, they have to have a different name in the output. Here sub has an
attribute called name and seg has an attribute called sname. The attribute sname
cannot be called name because it has a different syntax to a name (an sname can
contain points ".", whereas a name may not).

9.2. Parsing JSON

We can take the grammar for JSON [8], and convert it to ixml:
json: S, object.
object: "{", S, members, "}", S.
-members: pair*(",", S).
pair: @string, S, ":", S, value.
array: "[", S, value*(",", S), "]", S.
-value: string, S; number, S; object; array; "true", S; "false", ►
S; "null", S.
string: -"""", char*, -"""".
-char: ~['"'; "\"; #0-#1F];
 '\', ('"'; "\"; "/"; "b"; "f"; "n"; "r"; "t"; "u", hexdigits).
number: "-"?, int, frac?, exp?.
-int: "0"; digit19, digit*.
-frac: ".", digit+.
-exp: ("e"; "E"), sign?, digit+.
-sign: "+"; "-".
-S: " "*.
-digit: ["0"-"9"].
-digit19: ["1"-"9"].
-hexdigits: hexdigit, hexdigit, hexdigit, hexdigit.
-hexdigit: digit; ["a"-"f"; "A"-"F"].

(There are some potential quibbles here: json.org says that whitespace may
appear between any two tokens, without saying what a token is, or what white-
space is; this means that leading and trailing spaces are not allowed, which this
grammar does allow).

On the Descriptions of Data

152

Parsing this piece of JSON:
{"name": "pi", "value": 3.145926}

then gives us this XML:
<json>
 <object>{
 <pair string='name'>:
 <string>pi</string>
 </pair>,
 <pair string='value'>:
 <number>3.145926</number>
 </pair>}
 </object>
</json>

9.3. Parsing XML

To move to another example, let us consider a simplified grammar for XML itself:
xml: element.
element: -"<", name, (-" "+, attribute)*, (-">", content, -"</", ►
close, -">"; -"/>").
@name: ["a"-"z"; "A"-"Z"]+.
@close: name.
attribute: name, -"=", value.
@value: -'"', dchar*, -'"'; -"'", schar*, -"'".
content: (cchar; element)*.
-dchar: ~['"'; "<"].
-schar: ~["'"; "<"].
-cchar: ~["<"].

Note the notation for character exclusions: ~['"'; "<"] means "any character
except a double quote or a less-than".

Using input:
<test lang="en" class="test">
 This is a test.
</test>

gives as parse:
<xml>
 <element name='test' close='test'>
 <attribute name='lang' value='en'/>
 <attribute name='class' value='test'/>
 <content> This
 <element name='em' close='em'>
 <content>is</content>

On the Descriptions of Data

153

 </element> a test.</content>
 </element>
</xml>

Note XML is not context-free, since you can't check on parsing that open and clos-
ing tags match. It is for this reason that the serialisation contains both the opening
and the closing tag names, so that they can be checked on later processing.

10. Parsing ixml
Of course, an ixml grammar is itself expressible in ixml. That is to say, we can
write a grammar that expresses ixml, and then process it with ixml to give an
XML serialisation of the grammar.

So here is ixml expressed in itself. "S" represents a string of spaces or com-
ments. Comments are enclosed in curly braces { and }. The notation mark? means
that mark is optional at that point.

ixml: S, rule+.
rule: mark?, name, S, ":", S, def, ".", S.
def: alt+(";", S).
alt: term*(",", S).
-term: factor; repeat0; repeat1; option.
repeat0: factor, "*", S, sep?.
sep: factor.
repeat1: factor, "+", S, sep?.
option: factor, "?", S.
-factor: nonterminal; terminal; "(", S, def, ")", S.
nonterminal: mark?, name, S.
terminal: mark?, (quoted; hex; charset; exclude).

charset: "[", S, element+(";", S), "]", S.
exclude: "~", S, -charset.

-element: range; character, S; class, S.
range: from, S, "-", S, to, S.
@from: character.
@to: character.
class: letter, letter. {One of the Unicode character classes}

@name: letgit, xletter*.
-letgit: letter; digit.
-letter: ["a"-"z"; "A"-"Z"].
-digit: ["0"-"9"].
-xletter: letgit; "-".

@mark: "@", S; "^", S; "-", S.

On the Descriptions of Data

154

quoted: -'"', dstring, -'"', S; -"'", sstring, -"'", S.
@dstring: dchar+.
@sstring: schar+.
dchar: ~['"']; '""'. {all characters, dquotes must be doubled}
schar: ~["'"]; "''". {all characters, squotes must be doubled}
-character: '"', dchar, '"'; "'", schar, "'"; hex.

hex: "#", number.
number: hexit+.
-hexit: digit; ["a"-"f"; "A"-"F"].

-S: (" "; comment)*.
comment: "{", cchar*, "}".
-cchar: ~["}"].
{the end}

Parsing this with itself gives 479 lines of output, so only the first couple of rules
will be shown:

<ixml>
 <rule name='ixml'>:
 <def>
 <alt>
 <nonterminal name='S'/>,
 <repeat1>
 <nonterminal name='rule'/>+
 </repeat1>
 </alt>
 </def>.</rule>
 <rule name='rule'>:
 <def>
 <alt>
 <option>
 <nonterminal name='mark'/>?
 </option>,
 <nonterminal name='name'/>,
 <nonterminal name='S'/>,
 <terminal>
 <quoted dstring=':'/>
 </terminal>,
 <nonterminal name='S'/>,
 <nonterminal name='def'/>,
 <terminal>
 <quoted dstring='.'/>
 </terminal>,
 <nonterminal name='S'/>

On the Descriptions of Data

155

 </alt>
 </def>.</rule>

The upshot of this is that any grammar that produces a similar output (ignoring
extraneous terminals) can be used to parse a document. That means that the
grammar format for ixml is not set in stone, but alternatives can be offered. For
instance, here is ixml expressed in a different grammar format, BNF [2], repre-
senting itself:

<ixml>::= <S> <rules>
-<rules>::= <rule> | <rule> <rules>
<rule>::= <mark> <name> "::=" <S> <def> |
 <name> "::=" <S> <def>
<def>::= <alts>
-<alts>::= <alt> | <alt> "|" <S> <alts>
<alt>::= <terms> | <empty>
-<terms>::= <term> | <term> <S> <terms>
<empty>::=
<term>::= <mark> <name> | <name> | <string> | <range>
@<name>::= "<" <letters> ">" <S>
@<mark>::= "@" <S> | "^" <S> | "-" <S>
<letters>::= <letter> <more-letters>
<letter>::= ["a"-"z"] | ["A"-"Z"] | ["0"-"9"]
<more-letters>::= <letter> <more-letters> | "-" <more-letters> | <empty>
@<string>::= """" <chars> """" <S>
<chars>::= <char> <chars> | <char>
<char>::= [" "-"!"] | ["#"-"~"] | """""" {all characters, quotes must be ►
doubled}
<range>::= "[" <S> <character> <S> "-" <S> <character> <S> "]" <S>
-<character>::= """" <char> """" | """" """" """" """"
-<S>::= " " <S> | <comment> <S> |
<comment>::= "{" <schars> "}"
-<schars>::= <schar> <schars> |
-<schar>::= [" "-"|"] | "~" {Everything except: }

which parsed with itself gives (again, only showing the first few lines):

<ixml>
 <rule name='ixml'>::=
 <def>
 <alt>
 <term name='S'/>
 <term name='rules'/>
 </alt>
 </def>
 </rule>
 <rule mark='-' name='rules'>::=

On the Descriptions of Data

156

 <def>
 <alt>
 <term name='rule'/>
 </alt>|
 <alt>
 <term name='rule'/>
 <term name='rules'/>
 </alt>
 </def>
 </rule>

11. Other Output Formats
In the true spirit of "data wants to be format neutral", there is strictly speaking no
reason why the parse tree need be in XML, but could be equally well serialised in
some other form, such as JSON. Taking an example like this:

<expr>
 <prod>
 <letter>a</letter>
 <sum>
 <digit>3</digit>
 <letter>b</letter>
 </sum>
 </prod>
</expr>

you might be tempted to try to express this as:
{"expr":
 {"prod":
 {"letter": "a";
 "sum": {"digit":"3"; "letter":"b"}
 }
 }
}

However, JSON object members are more like XML attributes than child ele-
ments, because they are not ordered, and (probably) member names may not be
duplicated.

Therefore you have to use arrays, which are ordered, where each array ele-
ment is a single-member group:

{"expr":
 [{"prod":
 [{"letter": "a"}],
 [{"sum":
 [{"digit":"3"}],

On the Descriptions of Data

157

 [{"letter":"b"}]
 }]
 }]
}

There still remains the question of what to do with extraneous terminals, such as
here:

<expr>
 <prod>
 <letter>a</letter>×(
 <sum>
 <digit>3</digit>+
 <letter>b</letter>
 </sum>)
 </prod>
</expr>

The best approach is to treat them as members without a name, like this:

{"expr":
 [{"prod":
 [{"letter": "a"}],
 [{"": "×("}],
 [{"sum":
 [{"digit":"3"}],
 [{"":"+"}]
 [{"letter":"b"}]
 }],
 [{"":")"}]
 }]
}

12. Conclusion
Notations can have a profound effect on what we are able to express. In the end
notations are a human artifact, for use by people, and we should not lose sight of
the fact that what is suitable for an automaton is not necessarily ideal for a per-
son. We can learn from the techniques of usability, such as user testing and itera-
tive design, to make notations that are more suitable for human use.

Bibliography
[1] AV Aho, and JD Ullman, The Theory of Parsing, Translation, and Compiling,

Prentice-Hall, 1972, ISBN 0139145567
[2] Backus-Naur Form, http://en.wikipedia.org/wiki/Backus-Naur_Form

On the Descriptions of Data

158

http://en.wikipedia.org/wiki/Backus-Naur_Form

[3] Earley Parser, https://en.wikipedia.org/wiki/Earley_parser
[4] Steven Pemberton. Invisible XML, Presented at Balisage: The Markup

Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of
Balisage: The Markup Conference 2013. Balisage Series on Markup
Technologies, vol. 10 (2013). doi:10.4242/BalisageVol10.Pemberton01. http://
www.cwi.nl/~steven/Talks/2013/08-07-invisible-xml/invisible-xml-3.html

[5] Steven Pemberton. Data Just Wants to Be Format-Neutral, Proc. XML Prague,
2016, Prague, Czech Republic, pp109-120. http://archive.xmlprague.cz/2016/
files/xmlprague-2016-proceedings.pdf

[6] Steven Pemberton. Parse Earley, Parse Often: How to Parse Anything to XML,
Proc. XML London 2016, London, UK, pp120-126. http://xmllondon.com/2016/
xmllondon-2016-proceedings.pdf#page=120

[7] International Standards Organisation, ISO 9241 - Ergonomic requirements for
office work, 1997.

[8] Introducing JSON, http://json.org/
[9] Jakob Nielsen, Why You Only Need to Test with 5 Users, 2000. https://
www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

[10] Ben Shneiderman et al., Designing the User Interface, Pearson, 2013, ISBN
1292023902.

On the Descriptions of Data

159

https://en.wikipedia.org/wiki/Earley_parser
http://www.cwi.nl/~steven/Talks/2013/08-07-invisible-xml/invisible-xml-3.html
http://www.cwi.nl/~steven/Talks/2013/08-07-invisible-xml/invisible-xml-3.html
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=120
http://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=120
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

160

FOXpath navigation of physical, virtual
and literal file systems

Hans-Jürgen Rennau
Traveltainment GmbH
<hrennau@yahoo.de>

Abstract

The FOXpath language extends the XPath language by adding support for
file system navigation. This paper explores possibilities how to extend file
system navigation beyond physical file systems and include logical file sys-
tems like jar files, SVN repositories or github projects. The extension is
based on a set of simple concepts related to URIs and their processing, and it
is implemented as a FOXpath processor which supports the navigation of
physical and various types of logical file systems.

Keywords: FOXpath, XPath, XQuery, file systems, file system naviga-
tion, BaseX

1. Introduction
Tree-structured information is ubiquitous. A simple shopping list, for instance,
which groups items by department or shop, is a tree. Other examples include file
systems, jar files, SVN repositories, NOSQL databases, github projects and Java
packages. Major advantages of a tree structure are obvious. It favours a clear
understanding where to find what and enables an intuitive addressing of single
items. It invites to dwell on a chosen level of detail or abstraction. It domesticates
complexity and appears natural to human thought. One particular advantage,
however, is still well-hidden from broad attention: this is an amazing conductiv-
ity which information attains when arranged as a tree. The term borrowed from
physics should capture the ease of traversing a bulk of information, in order to
arrive at points of interest. This quality is revealed by XPath (6), an expression
language for navigating the contents of XML node trees. Consider this example:

//route/arrival[airport = 'JFK']/../departure[@t > '18:00']/airport
The expression returns the departure airports of evening flights to the airport
JFK. In order to arrive at the airport items of interest, complex information is
traversed in a single fell sweep.

The elegance of such expressions is not based on specific qualities of the XML
data format – it reflects inherent qualities of tree-structured information. Con-
sider the key concepts of XPath: the combination of navigation axis, node test and

161

predicates into a step; the chaining of steps into a path. The XPath model of naviga-
tion is not tied to XML and would perhaps make sense in many tree-structured
collections of information. How about file systems? Like XML documents, they
are trees, and finding particular folders and files is as important (at least) as find-
ing particular XML elements and attributes. Can we have something like XPath
for file systems?

The FOXpath language (2) turns this idea into reality. It is a superset of XPath
3.0, adding file system navigation – multi-step movement across the hierarchical
structure of the file system. Consider this FOXpath expression:

\projects\gateway\\routes-*.xml[not(ancestor~::blacklisted)]
Its value is the set of documents about flight routes found in the gateway project,
but not at any depth under a blacklisted folder. The integration of XPath-like file
system navigation into XPath has two interesting benefits. First, file system navi-
gation can be seamlessly combined with file content navigation – even within a
single expression. Example:

\projects\gateway\\routes-*.xml[not(ancestor~::blacklisted)]
//route/arrival[airport = 'JFK']/../departure[@t > '18:00']/airport

Here the navigation to file resources (\ seperated steps) is continued by naviga-
tion within them (/ seperated steps). The next example,

\projects\gateway\\routes-*.xml[not(ancestor~::test)]
//route/arrival[airport = 'JFK']/../departure[@t > '18:00']/airport
=> distinct-values() => sort()

demonstrates the advantages of navigation embedded into a full-blown expres-
sion language: navigation can be used as operand of other operations which have
nothing to do with navigation.

FOXpath thus creates an interesting experience of information: a tree (file sys-
tem) whose leaf nodes (files) are themselves trees (XML node trees), merged into
a continuous space of information by a single navigation model, which is embed-
ded into a fully composable expression language.

This paper reports my efforts to push things one step further: to extend file
system navigation beyond physical file systems, into the realm of logical file sys-
tems like jar files or github projects (3). As a preparatory step I provide some
information about the FOXpath language.

2. The FOXpath language
FOXpath (2) is a superset of the XPath 3.0 language (6). The purpose of extension
is adding support for file system navigation which has the same look and feel as
node tree navigation. The extension of XPath can be summarized as follows:
• Addition of a new expression kind, the URI axis step (e.g. descendant~::foo)

FOXpath navigation of physical, virtual and literal file systems

162

• Addition of a new operand, the URI path operator (e.g. foo\bar)
• Semantic extensions (backward-compatible)
A URI axis step expression mirrors the axis step expression of XPath, being a com-
bination of navigation axis, name test and optional predicates. A URI axis step
maps input URIs to output URIs related to the input URIs by a navigation axis
(child, descendent, parent, ancestor, …). File system navigation axes are defined
in analogy to the navigation axes defined by the XPath language.

The URI path operator chains two consecutive steps of URI navigation into a
complex operation, echoing the way how the path operator of XPath chains two
consecutive steps of node navigation.

Semantic extensions modify the semantics of a few XPath expressions in such
a way that
• Any expression which yields a value (rather than raises an error) when evalu-

ated as an XPath expression yields the same value when evaluated as a FOX-
path expression

• Some expressions which raise an error when evaluated as an XPath expression
yield a value when evaluated as a FOXpath expression

The semantic extensions enable a seamless integration of file system and node
navigation. Consider the expression:

\projects\\foo.xml//bar
which navigates to foo.xml files and then to the bar elements which they contain:
without semantic extension, the node navigation would raise an error as the con-
text item is a resource URI, not a node. However, the extended semantics of node
axis steps prescribe automatic conversion of an atomic context item into a node
by parsing the document found at the document URI given by the context item.
Further semantic extensions concern the definition of the effective boolean value,
which in certain cases yields a value in FOXpath, whereas an error is raised in
XPath.

Besides file system navigation, the FOXpath language adds to XPath 3.0 a few
more extensions:
• Support for external variables (as defined by XQuery)
• Support for namespace declarations (as defined by XQuery)
• Support for simple FLWOR expressions, containing one or more let clauses

and/or one or more for clauses (simplified version of XQuery’s FLWOR expres-
sion)

• Support for the arrow operator (as defined by XPath 3.1)
• About 60 extension functions
It is important to note, however, that FOXpath does not extend or modify the data
model of XPath (XDM, (8). File system navigation is viewed as operations applied
to strings interpreted as URIs.

FOXpath navigation of physical, virtual and literal file systems

163

To summarize, the FOXpath language complements node tree navigation with
file system navigation, moving around in a tree of folders and files. The FOXpath
model of file system navigation is a faithful copy of the XPath model of node nav-
igation. In particular, navigation is viewed as a sequence of steps which typically
combine a navigation axis (child, descendant, parent, ancestor, …) with an item
test (name test) and optional predicates.

3. The challenge of generalization
Many systems of resources appear to be organized like file systems, although
they are not implemented by a physical file system. Examples include the con-
tents of archive files, the repositories of version control systems, some NOSQL
database systems, project repositories like github and the resources exposed by
many RESTful web services. If the scope of FOXpath navigation could be exten-
ded to include such logical file systems, the usefulness of the FOXpath language
might increase considerably.

The model of FOXpath navigation is based on navigation axes. These presup-
pose tree-structured collections of URIs, of which physical file systems are just a
special case. The FOXpath language is therefore in no way tied to physical file
systems, and navigation of non-physical and physical file systems should be
equally possible. This situation suggests a dual challenge:
1. To provide a conceptual framework relating the abstract navigational functional-

ity of the FOXpath language to an implementation-defined set of logical file
systems

2. To provide a proof of concept implementation of the FOXpath language which
supports the navigation of physical as well as various kinds of non-physical
file systems.

4. Concepts
This section sketches a conceptual framework relating the navigation model of
the FOXpath language – based on navigation axes applicable to resource URIs –
and actual systems of resources to which such navigation may be applied. Formal
rigour and precision are sacrificed to readability. As an example of this impreci-
sion, the contained-by relationship between a given URI and a file system is not
discussed, although it is important for the exact meaning of an operation like
“mapping a URI to its child URIs”, as such a mapping can only be unambigu-
ously defined in the context of an actual file system.

4.1. File system types
Desiring a generalization of FOXpath navigation, a good starting point is a gener-
alized concept of file systems. Loosely speaking, a logical file system is a tree of

FOXpath navigation of physical, virtual and literal file systems

164

URIs which has a single root, whose leaf URIs can be resolved to a chunk of con-
tent (sequence of characters or bytes) and whose inner nodes cannot be resolved
to content, but are perceived as containers of other URIs. The generalized notions
of files and folders are thus the outer and inner nodes of such a tree of URIs.

As the notion of a “tree of URIs” is vague, we introduce the concept of child
URI. A URI U2 is said to be a child URI of another URI U1 if U1 is a prefix of U2,
followed by a slash and a non-empty sequence of characters not containing a
slash. So, for example, the URI

https://github.com/marklogic/semantic
is a child URI of

https://github.com/marklogic
A logical file system can thus be characterized as a tree of abstract nodes repre-
senting URIs, where child nodes are child URIs and only leaf nodes are URIs
pointing to content. Some examples:
• The contents of a jar file (or some other archive file)
• The contents of a BaseX database (or some other NOSQL database)
• The contents of an SVN repository (or some other version control system)
• The contents of a github project
• The URIs exposed by a typical RESTful web service
A logical file system is usually backed by APIs enabling some form of navigation
and content retrieval. Applications based on such APIs may create the semblance
of a file system that can be browsed in the usual way. As an example, consider the
github web service (4) and the github web site (3). When APIs and applications
create the semblance of a physical file system, we speak of a virtual file system.

While virtual file systems behave like a tree of URIs, they usually do not expose
any literal representation of the tree and its nodes, a representation composed of
distinct units of information describing. individual URIs. Such a literal represen-
tation might for example be an XML document or an RDF graph, representing
URIs by XML elements or RDF nodes, respectively. Note however that for any
logical file system such a representation can be constructed by tools using the
available APIs. We propose the notion of a literal file system which is a tree of
resource URIs described by an artifact composed of distinct units representing
single URIs. A literal file system may, but need not be a one-to-one representation
of a physical or virtual file system. It may contain selected parts of a single or
multiple logical file systems, and also URIs not associated with any file system at
all. Such unconstrained compositions can be merged into a logical file system (a
tree of URIs) because the URIs actually exposed need not be the original URIs. The
URIs integrated into a literal file system are navigation URIs, which are associated
with resource access URIs – the original URIs which may be equal to or different
from the navigation URI. A literal file system can be thought of as a special kind

FOXpath navigation of physical, virtual and literal file systems

165

of catalog, mapping a set of URIs (resource access URIs) to a tree-structured set of
target URIs (navigation URIs) and providing additional information about the
resources, like file size or date of last modification).

In summary, we introduce the notion of a logical file system which may be a
physical file system, a virtual file system or a literal file system. The FOXpath
language is tied to the concept of a logical file system, rather than a physical file
system. In principle, it should be possible to support navigation of all kinds of
logical file system. To realize this potential, it is important to identify key opera-
tions which (a) serve as an abstraction hiding the actual type of file system at
hand, (b) serve as building blocks from which the complete functionality of FOX-
path navigation can be constructed.

4.2. URI operations
URI operations are operations applied to URIs and yielding a result which is val-
uable in the context of file system navigation and the retrieval of resource con-
tents and resource properties. We reserve the term for basic operations, usable as
building blocks from which to construct more complex operations. A crucial
aspect is to define these operations in a generic way which is independent of the
type of logical file system at hand (physical file system, archive file, …). For
instance, an SVN command defined to map the URI of an SVN folder to the URIs
of contained SVN folders and files is not a generic URI operation; an operation
defined to map a URI to its child URIs is a generic URI operation. Think of URI
operations as a basic interface exposed by a logical file system of any type.

4.2.1. Navigation primitives

File system navigation as defined by the FOXpath language is based on naviga-
tion axes. These are mappings of an input URI to related URIs, e.g. descendant or
ancestor URIs. Upward navigation is a purely syntactical operation (the removal
of trailing URI steps) and downward navigation can be achieved by single or
recursive mapping of a URI to its child URIs. Therefore the complete implemen-
tation of all FOXpath-defined axes requires only a single navigation primitive,
which is a mapping of an input URI to its child URIs.

Practical considerations, however, led me to define two navigation primitives
designed with the goal of balancing simplicity and the efficiency of operations
based on these primitives:

uri-to-child-uris ($uri, $nameFilter?, $kindFilter?) as xs:anyURI*
uri-to-descendant-uris ($uri, $nameFilter?, $kindFilter?) as xs:anyURI*

where $uri is the input URI, $nameFilter is an optional name pattern to be
matched by the trailing step of the returned URIs, and $kindFilter is an optional
filter retaining only files or only folders.

FOXpath navigation of physical, virtual and literal file systems

166

4.2.2. Content retrieval

Files are URIs pointing to content, which is a sequence of characters or bytes. We
define the following URI operations for content retrieval:

file-text ($uri, $encoding) as xs:string
file-bytes ($uri) as xs:base64Binary
file-doc ($uri) as document-node()
file-json-doc ($uri) as document-node()

4.2.3. Resource property retrieval

A file system resource has a few basic properties:
• resource kind, which is file or folder
• timestamp of last modification
• size in bytes (only if the resource is a file, not a folder)
The following URI operations can be used to retrieve the property values:

resource-kind($uri) as xs:string // value is one of 'file' ►
or 'folder'
resource-date($uri) as xs:dateTime?
resource-size($uri) as xs:nonNegativeInteger?

4.3. URI processor
A URI processor is a program or program module which implements the URI
operations for URIs stemming from a particular type of logical file system. URI
processors are therefore classified by the type of logical file system they can han-
dle. A few examples:
• file system URI processor
• archive file URI processor
• BaseX database URI processor
• SVN URI processor
• UTREE processor
• UGRAPH processor
UTREE and UGRAPH processors deal with literal file systems defined by XML
documents and RDF graphs, respectively. See [Section 5] for details.

4.4. URI dispatchal rules
A FOXpath implementation including a particular type of URI processor may
support FOXpath navigation of the corresponding type of file systems. An SVN
URI processor, for example, may enable FOXpath navigation of SVN repositories.

Navigation support for multiple types of file system requires an identification
of the type of file system to which a given URI belongs. This operation I call URI

FOXpath navigation of physical, virtual and literal file systems

167

dispatchal, as it amounts to dispatching a URI to the appropriate URI processor.
The dispatchal rules of a FOXpath implementation are implementation defined.
Obvious possibilities are based on URI schemes and URI prefixes. Rules may ref-
erence configuration data, in which case they must define the format and seman-
tics of such data.

Note that dispatchal rules do not identify an instance of a file system – e.g. a
particular SVN repository. They only identify the type of file system.

5. Literal file systems
A literal file system is an association between a collection of resources and a tree
of resource URIs. The tree facilitates discovery of the resources via navigation,
and it enables retrieval of resource contents and basic resource properties. The
tree should be viewed as a tree of logical components, to be distinguished from
data encoding the tree. I have defined two data formats, where one is an XML
document and another is an RDF graph.

5.1. Logical model
A literal file system is an instance of an information model designed to model a
system of folders and files. It is a tree of abstract nodes defined and constrained
as follows:
• Every leaf node represents either a file or an empty folder
• Every inner node represents a non-empty folder
• A file node has the following properties:

• A navigation URI
• A resource access URI
• File size (optional)
• Timestamp of last modification (optional)

• A folder node has the following properties:
• A navigation URI
• Timestamp of last modification (optional)

• For any two nodes N1 and N2 where N2 is a child node of N1, the navigation
URI of N2 is a child URI of the navigation URI of N1

Navigation and resource access URIs are distinct properties of a file node – they
may, but need not be equal. A navigation URI is a URI associated with a resource
in order to make it conveniently discoverable. From the file system user’s point of
view, the navigation URI is also the URI which is resolved to the resource con-
tents. From the file system implementation’s point of view, however, resource
access is not provided by the navigation URI, but by the associated resource
access URI. The tree structure emerging from the collected navigation URIs does
in no way constrain the locations of the resources represented by that tree, nor the

FOXpath navigation of physical, virtual and literal file systems

168

protocols used in order to retrieve those resources. The literal file system may be a
one-to-one representation of some physical or virtual file system. It may also be a
projection of such a system, representing some and not representing other resour-
ces contained by the original system. A literal file system may also represent a
collection of resources belonging to several logical file systems, or even not
belonging to any known file system at all.

5.2. Data formats - UTREE and UGRAPH

Two data formats representing a literal file system have been defined: an XML
based representation (UTREE) and an RDF based representation (UGRAPH).

5.2.1. The XML format (UTREE)

UTREE is an XML format for representing the contents of one or several literal
file systems. Element summary:

• Document root element: <trees>
• File system root element: <tree>
• Inner nodes: <dir> elements
• Leaf nodes: <file> and/or <dir> elements

Attribute summary:

• On <trees>
• @uriPrefix – optional; if used, a URI processor must treat any URI starting

with that prefix as either described by a <tree>, <file> or <dir> element in
that document or not corresponding to any existent resource

• On <tree>
• @baseURI – the navigation URI of the literal file system root, followed by a

slash, unless the navigation URI ends with a slash

• On <file>
• @name – the file name
• @path – the trailing part of the navigation URI; the URI is obtained by

appending the attribute value to the @baseURI value of the containing
<tree> element

• @accessURI – the URI to be used for resource access
• @lastModified – timestamp of last modification (optional, may be

unknown)
• @size – size of the file, in bytes (optional, may be unknown)

• On <dir>
• @name – the folder name

FOXpath navigation of physical, virtual and literal file systems

169

• @path – the trailing part of the navigation URI; the navigation URI is
obtained by appending the attribute value to the @baseURI value of the
containing <tree> element

• @lastModified – timestamp of last modification (optional, may be
unknown)

Constraints
• A child node of a given node N has a navigation URI which is a child URI of

the navigation URI of N

5.2.2. The RDF format (UGRAPH)

UGRAPH is an RDF format for representing the contents of a literal file system.
In the following description, the prefix fs: represents the URI

http://www.foxpath.org/ns/rdf/filesystem/
In an instance of UGRAPH, two types (rdf:types) of resources are distinguished:
• fs:dir – resource represents a folder
• fs:file – resource represents a file
Properties of fs:dir resources:
• fs:navURI – the navigation URI of a folder
• fs:parentDir – resource URI of the parent folder resource (optional, as the

root folder has no parent folder)
• fs:name – the folder name (optional, as the root folder may have no name)
• fs:lastModified – timestamp of last modification (optional, may be

unknown)
Properties of fs:file resources:
• fs:navURI – the navigation URI of a file
• fs:accessURI – the resource access URI of a file
• fs:parentDir – resource URI of the parent folder resource
• fs:name – the file name
• fs:lastModified – timestamp of last modification (optional, may be

unknown)
• fs:fileSize - size of the file, in bytes (optional, may be unknown)
Constraints:
• An UGRAPH has exactly one fs:dir resource without fs:parentDir prop-

erty; this resource represents the root folder of the system
• An fs:dir resource without fs:parentDir property must not be a descend-

ant URI of a resource contained by the graph – any non-root resource is con-
nected to the root folder by a chain of fs:parentDir properties

• If a resource R has an fs:parentDir D, D is also contained by the UGRAPH

FOXpath navigation of physical, virtual and literal file systems

170

• If a resource R has an fs:parentDir D, the f:navURI of R is a child URI of the
f:navURI of D

• A non-root folder MUST have a name

6. Implementation

This section describes the implementation of a FOXpath language processor
which supports the navigation of physical, virtual and literal file systems. The
language implementation is accompanied by a command-line tool for creating lit-
eral file systems represented by UTREE documents or UGRAPH triple sets.

6.1. Overview

A FOXpath language processor can be downloaded from here:

https://github.com/hrennau/foxpath

The scope of file system navigation includes:

• physical file systems
• archive files (jar, zip, …)
• BaseX databases
• SVN repositories
• github.com repositories (represented by UTREE or UGRAPH)
• UTREE literal file systems
• UGRAPH literal file systems

The processor ships with a command-line tool for creating literal file systems
(UTREE or UGRAPH style) ...

• from SVN repositories
• from github.com repositories

The FOXpath processor is implemented as a set of XQuery modules, XQuery ver-
sion 3.1. As several extension functions of the XQuery processor BaseX (1) are
used, FOXpath can currently only be executed using the XQuery processor BaseX.
The implementation of the FOXpath language is a set of ordinary XQuery mod-
ules – it does not involve any changes of the XQuery processor.

The XQuery interface of the processor is a function resolving FOXpath expres-
sions to their value.

A command-line interface is provided by shell scripts (fox.bat, fox.sh). They
resolve FOXpath expressions provided either as a command-line parameter or as
file contents.

FOXpath navigation of physical, virtual and literal file systems

171

6.2. Interfaces
The XQuery interface of the implementation is an XQuery function resolving FOX-
path expressions to their value:

declare function f:resolveFoxpath(
 $foxpath as xs:string, (: the expression text :)
 $ebvMode as xs:boolean?, (: true => return effective boolean value :)
 $context as xs:string?, (: folder URI providing file system ►
context :)
 $options as map(*)?, (: UTREE locations, UGRAPH endpoints, ... :)
 $externalVariableBindings as map(xs:QName, item()*)?)
 as item()* (: the expression value :)

The command-line interface is a shell script (fox.bat, fox.sh) resolving FOXpath
expressions to their value:

fox [-t utree-dir] [-g ugraph-endpoint] [-v name=value]* expression-text ►

fox [-t utree-dir] [-g ugraph-endpoint] [-v name=value]* -f expression-
file

6.3. Implementation details
The XQuery-based implementation of the FOXpath language relies on several
XQuery extension functions supported by the XQuery processor BaseX (1). The fol-
lowing tree-structured representation summarizes the dependencies of functional
areas. Underlying view:
• FOXpath = XPath + file system navigation
• file system = physical file system | archive file | BaseX database | SVN repo |

UTREE | UGRAPH
Leaf nodes of the tree are XQuery extension functions, inner nodes are areas of
functionality, the root node is the FOXpath language, as implemented. The nota-
tions [expath] and [basex] mark functions as defined either by EXPath (2) or
BaseX (1).

FOXpath
. XPath
. . [basex] xquery:eval // for partial function ►
applications
. logical_file_system_navigation
. . physical_file_system
. . . [expath] file:list // downward navigation
. . . [expath] file:is-dir // retrieval of file properties
. . . [expath] file:last-modified // retrieval of file properties
. . . [expath] file:size // retrieval of file properties
. . . [expath] file:read-binary // resource retrieval

FOXpath navigation of physical, virtual and literal file systems

172

. . archive_file

. . . [expath] file:read-binary // downward navigation

. . . [basex] archive:entries // downward navigation

. . . [basex] archive:extract-text // resource retrieval

. . . [basex] archive:extract-binary // resource retrieval

. . basex_database

. . . [basex] db:list // downward navigation

. . svn

. . . [basex] proc:system // access to SVN CL interface

. . utree

. . utree_for_github

. . . [expath] http:send-request // access to github REST API

. . . [basex] convert:binary-to-string// github API delivers binary

. . ugraph

. . . [expath] http:send-request // access to SPARQL endpoints

. . ugraph_for_github

. . . [expath] http:send-request // access to github REST API

. . . [basex] convert:binary-to-string // github API delivers binary

6.4. URI dispatchal

URI dispatchal maps a given URI to at most one of the supported file system
types. URI dispatchal rules are implementation defined, and they are crucial for
supporting the navigation of multiple file system types.

6.4.1. URI dispatchal configuration

Dispatchal is controlled by static rules and configuration data passed to the
expression resolver at runtime. The configuration data consist of

• UTREE folders – folders containing one or more UTREE documents
• UGRAPH endpoints - SPARQL endpoints exposing one or more UGRAPH tri-

ple sets

UTREE folders and UGRAPH endpoints are passed as parameters to the FOX-
path processor. On the command line, the UTREE folders and UGRAPH end-
points are specified using option –t and –g, respectively:

fox –t "utree-dirs" ...
fox –g "ugraph-endpoints" ...

On the XQuery interface of FOXpath, UTREE folders and UGRAPH endpoints
can be specified as entries in a map of options (keys UTREE_DIRS and
UGRAPH_ENDPOINTS).

FOXpath navigation of physical, virtual and literal file systems

173

6.4.2. URI dispatchal rules

The following URI dispatchal rules are evaluated in order, and the first rule infer-
ring a file system type provides the final result.

6.4.2.1. Rule #1 - archive rule

A URI containing one or more steps with the text #archive# points to contents of
an archive file. The archive file URI is given by the path prefix preceding the last
occurrence of an #archive# step. The within-archive path is given by the path suf-
fix following the last occurrence of an #archive# step.

For example, the URI
/apache-jena-3.1.0//jena-tdb-3.1.0.jar/#archive#/org//*.properties

references all resources found in the archive file
/apache-jena-3.1.0//jena-tdb-3.1.0.jar

at locations matching
/org//*.properties

URI dispatchal rules are applied recursively in order to access the archive file.
The archive file may therefore be contained by any of the file system types sup-
ported by the FOXpath processor. It may, for example, itself be located in an
archive file.

6.4.2.2. Rule #2 - literal file system rule

If the URI does not refer to archive contents, run time inspection of the provided
UTREE documents and UGRAPH triples enables the FOXpath processor to infer
a mapping of URI prefixes to UTREE documents and UGRAPH endpoints:
• A URI with one of the UTREE-associated prefixes is inferred to belong to a

UTREE-based literal file system
• A URI with one of the UGRAPH-associated prefixes is inferred to belong to a

UGRAPH-based literal file system

6.4.2.3. Rule #3 - BaseX rule

If the URI starts with basex:/, the URI refers to a resource contained by a BaseX
database.

6.4.2.4. Rule #4 - SVN rule

If the URI scheme starts with svn- (e.g. the URI starts with svn-file:/, svn-
http:/ or svn-https:/), the URI refers to a resource contained by an SVN repo-
sitory.

FOXpath navigation of physical, virtual and literal file systems

174

6.4.2.5. Rule #5 - github rule

If the URI starts with https:// api.github.com/ repos/, the URI refers to a
resource contained by a github project.

6.4.2.6. Rule #6 - physical file system rule

• If URI starts with file:/, the URI refers to a physical file system resource
• If the URI has no URI scheme, the URI refers to a physical file system resource

6.4.2.7. Rule #7 - match failure rule

A URI for which no file system can be determined, does not belong to a (recog-
nized) file system. This implies:
• Attempts at downward navigation (e.g. navigation to child URIs) yield the

empty sequence
• Attempts to retrieve file properties yield the empty sequence
• The semantics of content retrieval (functions fn:doc, fn:unparsed-text, ...)

are not affected - content retrieval is controlled by the URI scheme

6.4.3. Proprietary URI schemes

Note the use of proprietary URI schemes
• svn-…/ (… = file | http | https)
• basex:/
A proprietary URI is derived from a standard URI by inserting a prefix (svn-,
basex:) or an intermediate step (#archive#), which indicates the type of contain-
ing file system. The FOXpath implementation relies on the use of proprietary
URIs in order to recognize certain types of file system, like SVN, BaseX or
archive, which cannot be inferred from the URI scheme. Proprietary URIs are
used by the FOXpath processor, but never passed to the underlying APIs for nav-
igation and retrieval. Note however that the choice of underlying API is crucial, as
navigation, for instance, must be handled differently according to the file system
type. The switching between proprietary and standard URIs is transparent to the
FOXpath user, though, who supplies and receives only the proprietary URIs.
Consider the following examples:

svn-https://svn.apache.org/repos/asf/tomcat/jk/trunk/*
svn-https://svn.apache.org/repos/asf/tomcat/jk/trunk/KEYS/grep('apache')
https://svn.apache.org/repos/asf/tomcat/jk/trunk/*

The first expression yields a list of child URIs, which of course have the same URI
scheme as the parent URI. These URIs cannot be used outside of FOXpath expres-
sions. Within FOXpath expressions, however, they are used as if they were stand-

FOXpath navigation of physical, virtual and literal file systems

175

ard URIs, as the second expression demonstrates, which retrieves resource
contents. The third expression will probably return the empty sequence, as the
URI is not recognized as referring to SVN resources.

6.4.4. Tool support for constructing literal file systems

The creation of literal file systems is supported by a command-line tool called
lifis (literal file system). The tool enables the convenient construction of literal
file systems whose structure and contents capture the structure and contents of a
physical or virtual file system – e.g. a github or SVN repository. The literal file
system can be restricted to a fragment of the original system (rooted in a non-root
folder) and to the result of filtering the original system contents (ignoring selected
folders or files). The tool user identifies one or several source file systems and the
literal file system format (UTREE or UGRAPH). The tool creates a UTREE docu-
ment or a UGRAPH graph. Additional options can be specified which load the
UTREE document into a BaseX database or load the UGRAPH triples into a TDB
triple store (5).

7. Examples
Several examples will demonstrate FOXpath navigation of various types of logi-
cal file systems. The examples are provided as calls of the fox script, a command-
line tool for resolving FOXpath expressions. The examples use a syntax variant of
the FOXpath language called friendly syntax, in which the roles of slash and
backslash are swapped. The axis step operator inherited from XPath is represented
by a backslash, not by a slash as in XPath. The slash represents the URI axis step
operator, which separates file system navigation steps.

7.1. Navigating the physical file system

We explore an installation of the application server Wildfly (version 10.1.0). To get
started, we list the top-level folders, together with the number of contained XML
files:

fox "/wildfly101/*[is-dir()]
 /concat(rpad(file-name(), 25, '.'), ' ', count(.//*.xml))"

=>
.installation 0
appclient 1
bin 1
docs 15
domain 4
modules 362

FOXpath navigation of physical, virtual and literal file systems

176

standalone 4
welcome-content 0

Next, we list the paths of all XML files not contained in the modules or the docs
folder:

fox "/wildfly101//*.xml[not(ancestor~::modules)][not(ancestor~::docs)]"

=>
/wildfly101/appclient/configuration/appclient.xml
/wildfly101/bin/jboss-cli.xml
/wildfly101/domain/configuration/domain.xml
…

Finally, we list all XML files which are not described by any of the (278) XSDs
contained in the installation:

fox "let $xsdnames :=
 /wildfly101//*.xsd
 \xs:schema\xs:element\@name\QName(..\..\@targetNamespace, .)
 return /wildfly101//*.xml[not(node-name(*) = $xsdnames)]"

=>
/wildfly101/docs/licenses/licenses.xml
/wildfly101/modules/system/layers/base/org/jboss/genericjms/main/META-
INF/ra.xml

7.2. Navigating the contents of an archive file

We navigate into a .jar file and extract a .properties file defining messages.
The .jar file has a name pattern “mod_cluster*”. The .properties file is found by
looking for the string “# error messages”:

fox "/wildfly101//mod_cluster*.jar
 /#archive#//*.properties[grep('# error messages')]/file-content()"

=>
Regular messages
modcluster.advertise.start=Listening to proxy advertisements on {0}:{1}
modcluster.context.disable=Undeploy context [{0}] from host [{1}]
modcluster.context.enable=Deploy context [{0}] to host [{1}]
…

7.3. Navigating the contents of BaseX databases

We list the names of all BaseX databases containing XSD files:

fox "basex://*[.//*.xsd]"

FOXpath navigation of physical, virtual and literal file systems

177

7.4. Navigating an SVN repository
We access the public SVN repository of the Apache foundation and extract the
names of developers involved in the xerces project:

fox "svn-https://svn.apache.org/repos/asf
 /xerces/xml-commons/trunk/status.xml
 \\developers\person\@name
 => string-join(', ')"
=>
Shane Curcuru, David Crossley, Neil Graham, Ilene Seelemann, Norman ►
Walsh,
Michael Glavassevich, Morris Kwan, Jeremias Maerki, Cameron McCormack,
Volunteer needed

7.5. Navigating a UTREE file system
In a preparatory step, we create a UTREE file system of the github.com projects
published by the organisation MarkLogic. We use the lifis tool:

lifis "github?org=marklogic,format=utree" > /utree/github/ml/utree-ml.xml
Now we can navigate this system, specifying the UTREE folder via fox option –t.
We create a report of dependencies defined by any of the POM files in any of the
MarkLogic projects:

fox -t /utree/github/ml
 "https://github.com/marklogic//pom.xml
 *:dependency
 \concat(rpad(*:groupId, 35, '.'), ' ',
 rpad(*:artifactId, 30, '.'), ' ',
 *:version)
 => distinct-values() => sort()"

=>
...
log4j log4j 1.2.17
net.sf.opencsv opencsv 2.3
net.sourceforge.htmlcleaner htmlcleaner 2.4
net.sourceforge.openutils openutils-log4j
org.apache.avro avro-tools 1.7.4
org.apache.commons commons-csv 1.2
org.apache.derby derby
org.apache.hadoop hadoop-annotations 2.6.0
...

In order to improve performance, we load the document into a BaseX database
which we call utreebase. We repeat our reporting, now specifying the UTREE
database, rather than the UTREE folder:

FOXpath navigation of physical, virtual and literal file systems

178

fox -t basex://utreebase "https://github.com/marklogic//pom.xml …"

7.6. Navigating a UGRAPH file system

In the previous section we created a literal file system of the UTREE type in order
to navigate the github projects of MarkLogic. We may alternatively create a literal
file system of the UGRAPH type:

lifis "github?org=marklogic,format=ugraph" > /ugraph/github/ml/ugraph-
ml.ttl

After loading the triples into a TDB database (5):

tdbloader --loc=/tdb/ugraph-github-ml /ugraph/github/ml/ugraph-ml.ttl
we start a Fuseki server (5), which exposes the database as a SPARQL endpoint:

fuseki-server --loc=/tdb/ugraph-github-ml /marklogic
We repeat our reporting step, now specifying the UGRAPH endpoint via option -
g:

fox -g http://localhost:3030/marklogic
 "https://github.com/marklogic//pom.xml
 *:dependency
 \concat(rpad(*:groupId, 35, '.'), ' ',
 rpad(*:artifactId, 30, '.'), ' ',
 *:version)
 => distinct-values() => sort()"

8. Discussion
The FOXpath language extends the XPath language by adding support for file
system navigation. Navigation is modelled in terms of new expressions which
map a URI to other URIs, based on structural relationships within a tree of URIs
(e.g. asserting a URI to be a descendant or the parent of another URI). Expression
semantics make no assumptions about the rationale of these relationships. In par-
ticular, they may be established by coexistence within a physical file system, but
also by coexistence within a virtual file system, which attains the appearance of a
file system due to APIs or applications. Literal file systems, finally, enable a com-
plete decoupling of the original resource URIs and the URIs used for navigation,
so that the relationships driving navigation can be constructed independently of
coexistence and relationships within a physical or virtual file system.

What has been called "file system navigation" throughout this paper might
therefore more aptly be called URI navigation. The generic nature of this added
functionality points to a certain lack of concepts as how to bind potential use to
actual, implementation-defined uses. This paper should be seen as a tentative

FOXpath navigation of physical, virtual and literal file systems

179

step towards closing the gap and also towards proving the practical value of the
new potential.

URI navigation is about discovering resources of interest. The discovery is
based on relationships between URIs, which are not established by explicit hyper-
links. The relationships are implied by the structure of the URIs themselves,
which conveys a "place" occupied within a system of URIs. A navigation lan-
guage like FOXpath, which lets us take advantage of URI structures in an unpre-
cedented way - in the same way as XPath lets us take advantage of XML structure
- might encourage a broader interest in a potential hitherto by and large ignored.

Bibliography
[1] BaseX: XML database and XQuery processor. http://basex.org
[2] EXPath Community Group. Homepage. https://www.w3.org/community/
expath/

[3] Rennau, Hans-Jürgen. "FOXpath - an expression language for selecting files
and folders." Presented at Balisage: The Markup Conference 2016,
Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup
Conference 2016. Balisage Series on Markup Technologies, vol. 17 (2016). doi:
10.4242/BalisageVol17.Rennau01. http://www.balisage.net/Proceedings/vol17/
html/Rennau01/BalisageVol17-Rennau01.html.

[4] github - how people build software. Homepage.https://github.com/
[5] Github Developer - APIhttps://developer.github.com/v3/
[6] Apache Jena - A free and open source Java framework for building Semantic

Web and Linked Data applications. https://jena.apache.org/
[7] Robie, Jonathan et al, eds. XML Path Language (XPath) 3.0 W3C

Recommendation 8 April 2014. http://www.w3.org/TR/xpath-30/
[8] Robie, Jonathan et al, eds. XQuery 3.0: An XML Query Language. W3C

Recommendation 8 April 2014. http://www.w3.org/TR/xquery-30/
[9] Walsh, Norman et al, eds. XQuery and XPath Data Model (3.0). W3C

Recommendation 8 April 2014. http://www.w3.org/TR/xpath-datamodel/

FOXpath navigation of physical, virtual and literal file systems

180

http://basex.org
https://www.w3.org/community/expath/
https://www.w3.org/community/expath/
http://www.balisage.net/Proceedings/vol17/html/Rennau01/BalisageVol17-Rennau01.html
http://www.balisage.net/Proceedings/vol17/html/Rennau01/BalisageVol17-Rennau01.html
https://github.com/
https://developer.github.com/v3/
https://jena.apache.org/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xpath-datamodel/

DHW: An online introductory toolset for
XML encoding

Alejandro Bia
Miguel Hernández University (UMH), Spain

<abia@umh.es>

Abstract

In this paper we will describe a set of online tools built initially for teaching
XML encoding, though they can be used for production as well.

This set of tools comprises:

• An online platform with tools to validate, pretty-print, edit and trans-
form XML documents.

• Tools for automatic XML-TEI markup from a lightweight markup lan-
guage.

• Tools to graphically visualize and design markup vocabularies and XML
document instances.

• XSLT processing.

• XPATH evaluation.

These tools will be briefly showcased during the conference presentation.

Keywords: XML-TEI, text encoding tools, automatic markup, visuali-
zation

Acknowledgements: This work has been developed within the TRACE project:
Software Tools for Contrastive Analysis of Texts in Parallel Bilingual Corpora,
and has been parcially financed with aid FFI2012-39012-C04-02 from the
MINECO (Ministry of Economy and Competitiveness of Spain).

1. The DHW platform
The DHW (Digital Humanities Workbench) platform integrates a wide collection
of useful XML-TEI related tools, starting at the creation of the Miguel de Cer-
vantes Digital Library in 1999 and finishing with the more recent TRACE project
which served to integrate and evolve these tools to make working with XML and
TEI faster and easier, while favouring mobility and portability by offering them
as online services.

181

Figure 1. DHW: An integrated online collaborative working environment

This set of tools comprise:
• Tools related to XML documents: TEI, DTDs, Schemas, XSLT processing,

Xpath, HTML, etc.
• Tools to graphically visualize and design markup vocabularies and XML

document instances.
• Tools for automatic TEI markup from a Markdown-style lightweight markup

language.
• Tools to validate, pretty-print, improve and transform XML documents.
• Tools to render XML documents
• Tools related to image processing.
Some of the tools used in this project already exist, and the rest are of our own
breed. Not all of them are currently available, neither as online services, nor for
download. The tools that are available for download are not generally available
as web services, so they need to be installed according to different requirements

DHW: An online introductory toolset for XML encoding

182

and be configured properly. For examples of some of these tools see: DiRT , Cover
Pages , Garshol’s XML Tools , TEI Tools . In some cases, there was some re-engi-
neering of the tools to adapt them for client-server operation. We realized we
could do this with tools that performed in an extended filter fashion. Apart from
tool integration as web services, a virtual desktop with file management capabili-
ties has been developed to provide a complete integrated work environment.

The idea of having the tools adapted to run as web services (see figure 1),
allows for anyone to use them from anywhere, anytime, without the need of
installation. This is particularly useful for Digital Humanities hands-on courses,
where one of the main problems is to get all the necessary tools installed before
the course takes place. This set of online services will also suffice for emerging or
small digitization projects, and as a display and workbench for DH scholars look-
ing for tools.

Furthermore, some intelligent piping of the tools can be arranged to follow
certain processing workflows required for digital libraries or DH document pro-
cessing. The platform can serve as a playground for workflow and task pipelining
experiments.

Following the Software as a Service delivery model (SaaS), the purpose was to
set up a web-server able to run different types of tools, and to develop a user
friendly front end to allow beginners to operate the tools through a web browser
(thin client) without the need for installation and configuration of myriad com-
puter programs. In this sense, the DH-Workbench would serve as a teaching aid
for beginners, and as an entry level solution for emerging DH projects, allowing
for savings in software and installation costs.

The implementation is based on the popular and reliable XAMPP platform
(Apache HTTP Server, MySQL, PHP, Perl), plus the Java Runtime Environment
(JRE) and eventually any other runtime processor required by the tools to run
(Saxon, Xalan, Phyton, etc.). Only a Web browser is needed on the client side.

The following is a non-exhaustive list of the services and tools included in the
DH Workbench:

• dtd2xs : Dtd2Xs allows conversion of complex, modularized XML DTDs and
DTDs with namespaces to W3C XML Schemas.

• DTDinst : Converts DTDs to XML-DTD, i.e. DTD structure represented in
XML format. Useful for XML processing of DTDs.

• DTDprune: A DTD simplification tool (Bia and Carrasco 2001).

• Mindmap diagrams generated from XML document instances to visualize and
analyze the document structure (Bia, Munoz and Gómez 2010).

• Mindmap diagrams generated from DTDs and Schemas to visualize and ana-
lyze the structuring rules (Bia, Munoz and Gómez 2010).

DHW: An online introductory toolset for XML encoding

183

• Multilingual Markup Translator (previously called “Multilingual Markup
Website”) (Bia, Malonda and Gómez 2006)

• rxp : RXP is a validating XML parser written in C.

• Tidy : HTML Tidy is a computer program and a library the purpose of which
is to fix invalid HTML and to improve the layout and indent style of the
resulting markup. It was developed by Dave Raggett of W3C, then passed on
to become a Sourceforge project.

• TEIdown: automatic markup tool that converts a document with a very sim-
ple and easy to apply lightweight markup to a valid TEI document (Bia 2015).

• Trang : Receives DTDs, Relax-NG and Relax-NC Schemas, and XML docu-
ment instances as input, to produce DTDs, XML Schemas (XSD), and Relax-
NG and NC Schemas. Trang can also infer a schema from one or more
example XML documents.

• xmllint : The xmllint program parses one or more XML files, specified on the
command line as xmlfile. It prints various types of output, depending upon
the options selected. It is useful for detecting errors in XML documents.

• XSLT ready-made transformations: Several standard ready-made transforma-
tions (e.g. tei2html).

• XSLT online transformations: This is an online service providing transforma-
tions of XML document instances by user-provided XSLT scripts, using one of
several parsers offered: csxslt, MSXSL, Saxon (versions 6, 7 and 8), Xalan, Xer-
ces, xml4j, xsltproc and XT

All these tools have been integrated in the DH workbench using a bilingual (Eng-
lish/Spanish) web interface that includes a file manager (see figure 2) that resem-
bles a conventional file explorer, and a basic online editor (figures 4 to 6).

The file management area allows operations like: file upload and download,
copy, move, rename, delete and selection of files for editing or processing (see fig-
ure 3). The editing view, from which transformations and processing functions
can be launched, offers basic editing facilities to work with up to three files in
parallel folders: e.g., input, transformation and output files (see figures 4, 5 and 6
respectively).

DHW: An online introductory toolset for XML encoding

184

Figure 2. DHW file manager

Figure 3. File options

DHW: An online introductory toolset for XML encoding

185

Figure 4. XML Editor: Input 1 (XML document instance)

Figure 5. XML Editor: Input 2 (XSLT script)

DHW: An online introductory toolset for XML encoding

186

Figure 6. XML Editor: Output (HTML file)

The online application allows for three types of users: not registered (can use the
online tools but cannot store documents in the cloud), registered users (have their
own work area where documents can be left to be used in future work sessions),
and administrators (can perform application management tasks).

We hope that this online platform will serve to test and share new tools in the
future. Hence, easy maintenance and upgradeability were amongst the main
design goals of the project.

Although power tools like these can enhance training and production activi-
ties, we have to agree with Schreibman and Hanlon that ‘tool development is
indeed considered a scholarly activity by developers, but recognition of this work
and rewards for it lag behind rewards for traditional scholarly pursuits (such as
journal articles and book publication)’ (Schreibman and Hanlon 2010). In this
sense is not always easy to find support and recognition for this type of projects.

2. Tools for automatic markup
Creating new XML (eXtensible Markup Language) documents, from scratch or
from plain-text, can be a difficult, time consuming and error prone task, espe-
cially when the markup vocabulary used is rich and complex, as is the case of the
TEI (Text Encoding Initiative) with a vocabulary of more than 500 different tags.
It usually takes a good amount of time to make the document validate for the first

DHW: An online introductory toolset for XML encoding

187

time, and the errors that appear in the process can be many and hard to locate
and repair.

A couple of decades ago, SGML (Structured Generalized Markup Language)
allowed certain freedom to document encoders, meant to save time and effort,
like leaving certain tags open, or omitting the quotes of attribute values. In this
sense, SGML was more permissive than XML. This was good for document
encoders, but made it difficult for programmers to create parsers and applications
that fully complied to SGML’s permissive rules and inferences. On the contrary,
XML was meant to be very restrictive, and hence, more predictable, which makes
parsing and processing easier and contributes to the fast popularity that XML
gained soon after its introduction.

On the other hand, in the Wiki world (web sites where the reader can edit and
add contents directly from the web browser), a myriad of Wiki languages
emerged with the purpose of simplifying, or completely avoid, HTML markup.
Among these lightweight markup languages, Markdown (Gruber, 2004) is a
recent and very successful shorthand notation, adopted, in some cases with var-
iants, by several successful projects like GitHub, reddit, Diaspora, Stack
Exchange, OpenStreetMap, and SourceForge, to avoid writing HTML tags while
still keeping text legibility intact.

Merging the spirit of SGML with the principles of Markdown, we came to the
idea of TEIdown (Bia 2015), which consists of an extension of the markdown syn-
tax meant for the easy creation of TEI-XML documents. We implemented this
idea by creating the corresponding parsers needed to perform such conversion
(see figure 7). The parser generates TEI from extended multimarkdown (mmd):
‘.dtei’ files. In the prototype, we separate metadata from body text for separate
processing (this will not be done in the final version). In this way, we obtain an
intermediate file that is not yet TEI, but ‘protoTEI’. Then an XSLT transformation
puts everything in place and performs the last fixes. We obtain a valid document,
although it may require further markup.

Figure 7. Prototype parser built as proof-of-concept

With this approach, it is easy to obtain a valid TEI document in a very short time,
avoiding going through a long list of validation errors (see figures 8 and 9). The
approach, however, has some limitations. It is meant to process the most common
tags, like the ones used for prose and verse, and the most commonly used for
metadata (within the teiHeader section of the document). For specialized applica-
tions (like manuscripts, for instance), further tagging is necessary after the initial

DHW: An online introductory toolset for XML encoding

188

conversion, but even in such cases a significant amount of time is saved in the
process.

Figure 8. Example of input text encoded using dtei extended markdown.

DHW: An online introductory toolset for XML encoding

189

Figure 9. Example of output XML-TEI encoded text.

3. Visualization
Visual modelling: is the graphic representation of objects and systems of interest
using graphical languages. Creating information models for use in SGML or XML
applications is not like designing a data model for a conventional database appli-
cation. A typical information model for an SGML or XML application will be
much less constraining about the structure of information. Whereas a data model
for a classical database application will be very precise about the number and
order of fields, and the length of the content of fields, a typical SGML or XML
information model will allow greater variation in the number, sequence and con-
tent of the structural components (elements)

The OHCO model (Ordered Hierarchy of Content Objects), is a way to define
text in computer terms. [Steven J. DeRose, David G. Durand, Elli Mylonas, and
Allen Renear, ‘What is Text, Really?’]

Each content object is a chunk of text marked at its beginning and end with
opening and closing tags. Content objects can contain both text and other content
objects. The nesting of these contained text chunks convert the document into a
tree of hierarchically contained objects. The OHCO model is inherent in SGML,

DHW: An online introductory toolset for XML encoding

190

and its descendants: HTML and XML. OHCO is a useful, but imperfect model. It
is more powerful than a model of text as a stream of characters and formatting
instructions, but one of its limitations is that it does not allow for overlapping
content objects. A book is a good example of what can be represented in this way.

A good model must be capable of hiding unnecessary detail. This is precisely
one of the problems that we had when we used available UML tools with stereo-
typed Class diagrams:
• Whole DTD/Schema diagrams were too complex to handle and display,
• There was no way to selectively fold parts of them.
• Lack of efficient automatic arranging of visual objects while importing a DTD/

Schema
All this made our attempts impractical for real-application purposes. So, it is not
only the type of diagram, but the tool is also important.

Concerning visualization, we adapted mind maps to successfully visualize,
model, design, modify, import and export XML-TEI schemas, including DTDs
(see figure 10), as well as TEI document instances (see figure 11). Using Freemind,
a software tool for drawing mind maps, and XSLT transformation scripts, we get
very manageable, easily comprehensible, folding diagrams from XML sources,
which in turn can be edited in a graphical environment and converted back to
their original XML format. In this way, we adapted a general purpose mind-map-
ping tool, into a visual tool for XML vocabulary design and simplification. This
approach is also very useful for teaching and presentation purposes.

It is frequently said that a good model must be capable of hiding unnecessary
detail. The ability to interactively hide/unhide branches of a mind map diagram,
and the automatic allocation of nodes around a central point is what makes Free-
mind so attractive to our purposes of representing semistructured document
structures. User friendly features for copying, pasting, moving, dragging-and-
dropping subtrees make it ideal for visual structure design. For this we needed a
way to import and export several types of schemes. So we implemented transfor-
mations for the most popular notations: DTDs, W3C XML Schema and RelaxNG.

Freemind uses an XML file format, which can be generated using XSLT
scripts. We have written several scripts to translate DTDs, XSD and Relax NG
Schemas to and from Freemind’s file format. In the case of DTDs, whose syntax is
not actually XML, we used some additional pre/post processing.

4. Conclusions
• ONLINE TOOL INTEGRATION: We have built an online service to provide a

wide collection of useful text processing tools.
• AUTOMATIC MARKUP: The proposed method significantly reduces the time

required to markup an XML-TEI document. It is good both, for expert encod-

DHW: An online introductory toolset for XML encoding

191

ers, and, particularly, for beginners, reducing frustration, since the generated
document validates immediately. It may also speed-up the learning curve.

• VISUALIZATION: We managed to use mind maps and the Freeplane tool to
successfully import, model and generate DTDs, Schemas and also XML
instances, getting very manageable, easily comprehensible, folding diagrams.
In this way, we converted a general purpose mind-mapping tool, into a handy
tool for XML vocabulary design and visualization (for teaching XML-TEI
markup, or just for presentation purposes)

• STUDENT INVOLVEMENT: Involving advanced students proved to be a
good experience of merging research and teaching, where several groups par-
ticipated in a creative environment building prototypes to test different
aspects of the problem.

• PROTOTYPING: was useful as a means to gather design information from
future users, and to discuss with other designers.

Figure 10. A simple example of XML Schema represented as a Mind Map. (the
root node `BOOK’ is the only node not pointed from any other content model)

DHW: An online introductory toolset for XML encoding

192

References
[1] Bia, A., and Carrasco, R.: Automatic DTD simplification by examples. In ACH/

ALLC 12001. The Association for Computers and the Humanities, The
Association for Literary and Linguistic Computing, The 2001 Joint
International Conference New York City, New York University, pages 7–91,
2001.

[2] Bia, A., Malonda, J. and, Gómez, J.: The Multilingual Markup Website. In
Digital Humanities 2006: The First ADHO International Conference, C. Sun, S.
Menasri 1 and J. Ventura, editors Paris, Universite Paris-Sorbonne, pages 26–
31, 2006.

[3] Bia, A., Munoz, R., and Gómez, J.: Using Mind Maps to Model Semistructured
Documents. Lecture Notes in Computer Science, 6273:421–424, 6–10 Sept.
2010.

[4] Bia, A: Down to TEI: use of extended markdown to speed-up the creation of
TEI documents. In 15th TEI Conference and Member’s Meeting Universite
Lumiere Lyon 2, Lyon, France, 2015.

Figure 11. An example of an XML-TEI document instance.

DHW: An online introductory toolset for XML encoding

193

[5] Gruber, J.: Markdown. (accessed on 15/09/2016) http://daringfireball.net/
projects/markdown/

[6] Schreibman, S., and Hanlon, A. M.: Determining Value for Digital Humanities
Tools: Report on a Survey of Tool Developers. Digital Humanities Quarterly,
4(2), 2010.

DHW: An online introductory toolset for XML encoding

194

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

A Text Structure “Epischema” for TEI
Constraining a generic Relax NG schema with an additional

Relax NG schema
Gerrit Imsieke

le-tex publishing services GmbH
<gerrit.imsieke@le-tex.de>

Abstract

This paper presents an underutilized mechanism for XML document gram-
mar customization. Instead of altering the base schema or adding Schema-
tron constraints, a second grammar-implementing schema is associated
with the document. This second schema will enforce structural constraints
where the basic schema is liberal. This second schema is lightweight in that
it allows anything anywhere except for a certain aspect for which it adds
grammatical constraints over the permissive base schema. We call this addi-
tional, sparse, aspect-oriented schema an Epischema. An example to which
this concept is applied is TEI’s notoriously generic div hierarchy, where the
div/ @type attribute can assume arbitrary values. Generic vocabularies
such as TEI and HTML are increasingly used by publishers as the primary
source format. These publishers ask for prescriptive constraints to be
imposed on top of basic schema conformance. An advantage of epischemas
over the commonplace Schematron constraints is that they allow better con-
text-aware markup completion in authoring systems.

Keywords: XML Schema, Relax NG, Schematron, Schema customiza-
tion

1. Introduction
It is common in publishing, digital humanities, or technical writing that XML
schemas are subject to customization. Popular XML vocabularies such as DITA [1]
and TEI [2] are designed to be customized.

Often a customization is derived from a library of modules – such as for
drama, dictionaries, or critical apparatus – by omitting modules entirely or by
omitting or adding module members, to wit elements, attributes, and attribute
values.

A common approach is to have a comprehensive schema for XML experts and
derivative schemas that reduce choice for authors or copy editors. For example,
JATS comes in three flavors, archive and interchange, publishing, and author-
ing [3], ordered by increasing prescriptiveness.

195

For publishers, it is difficult to find the right balance between flexibility and
prescription. On the one hand, it is important to be able to find adequate struc-
tures in order to best model a given piece of content, and content can be quite
diverse within a single publishing house. On the other hand, even for experts
there is often not consensus which markup to apply to a given content. You can
find examples for these kinds of discussions in the TEI-L archives for any given
month [4]. Therefore, in order to contain complexity of both rendering and
authoring systems, and to make a content repository homogeneous enough for
meaningful analysis, additional constraints are to be exerted on top of generic
schemas. This can either be done by creating derived schemas by means of sev-
eral extension mechanisms or by applying independent rules, typically in the
Schematron language [5] (see Section 3). A zoo of derived Schemas raises con-
cerns of maintainability and configuration management, favoring schema genera-
tion from configuration files and composable constraint libraries over
“handcrufted” customizations.

1.1. Motivation
The current work was motivated by a group of German-language publishers of
fiction, non-fiction, and of scientific literature in the humanities.1 They wanted to
use a common XML vocabulary for their publication workflows. Of the wide-
spread and well-maintained vocabularies DocBook, JATS (specifically, the BITS
customization [7]), TEI, and HTML (specifically HTMLBook [6]) they selected
TEI as the XML schema for integrated print/electronic book production. What tip-
ped the scales in favor of TEI was the consideration that a small but important
percentage of their book projects is funded by Deutsche Forschungsgemeinschaft
(DFG). DFG usually requires projects in the humanities to deliver their content as
TEI XML [8], preferably according to the TEI-Simple customization [9].

The problem with TEI is that it is quite non-prescriptive when it comes to
modeling the document structure (see Section 2). In order to be able to use a com-
mon basis of conversion pipeline adaptations [10], and in order to be able to pro-
duce EPUBs in the publisher’s layout from TEI that was prepared by other means,
we looked into harmonizing the use of div types across the TEI-adopting trans-
pect [11] users. In order to produce reliable TEI input, it is not only necessary to
limit the div attribute values to a fixed set. It is rather necessary to define which
typed divs may occur in which elements, at which position, and in which cardin-
ality. This very much sounds like a grammar problem that can be expressed by a
schema.

Another motivation came from a request on TEI-L [12] that was about restrict-
ing the top-level div’s model in a TEI body and make oXygen take this model
change into account when issuing completion suggestions. Restricting the model

1C.H. Beck, Beltz, Campus, Hanser, Klett-Cotta, Suhrkamp, Unionsverlag

A Text Structure “Epischema” for TEI

196

seemed like a task for Schematron. However, for content completion, inferring
the allowed elements and attributes at a given position is only implemented for
Schemas, not for Schematron constraints on top of a Schema.

In addition, it turned out that context-specific schema customizations are
impossible with the TEI ODD mechanisms and utterly cumbersome with Relax
NG customization mechanisms, which made the author explore the epischema
approach to this problem, too.

2. Generic Sectional Hierarchy Elements in TEI
TEI offers two approaches for modeling the hierarchic organization of a work, by
unnumbered (div) and by numbered (div1, div2, …) element names [13]. The
@type attribute may be used to name each structural unit (chapter, part, sec-
tion, …) according to a community’s or a publisher’s conventions.

As an example, think of a textbook publisher whose books all follow the same
structure:
• Frontmatter ?

• User Guide ?
• Preface +

• Section *
• Mainmatter

• Unit +
• Intro ?
• Part +

• Intro ?
• Lesson +

• Section *
• Exercise *

• Backmatter
• (Glossary ? | Vocabulary ?)

When textbook content is authored as XML or when printed works are converted
to XML, the publisher wants to make sure that the structure complies with these
rules. XML schemas are well suited for checking these structural constraints and
for giving document authors meaningful suggestions. Except when everything is
a div and any div may contain any type of div.

TEI’s div, like many other hierarchization methods in other grammars, do not
allow paragraph-like content after a div has ended.2 To circumvent this restric-

2This restriction has recently been questioned on TEI-L [14].

A Text Structure “Epischema” for TEI

197

tion, a generic element, floatingText, was introduced. This is a device designed
to hold embedded structures such as sidebar boxes or letters. It can appear any-
where where paragraphs are permitted, and said German publishers need a fixed
set of these floatingText types. In principle, both these floatingTexts and the struc-
tural divisions that they may contain enjoy the freedom of arbitrary typing. This
is certainly a good thing for scholars who can select a type vocabulary that they
deem appropriate to mark up a given source text. It is, however, overly permis-
sive when the goal ist to provide guidance to authors and transformation tool
developers. Therefore we can state that TEI’s sectional division approach is Beh-
lendorf-flexible [15]:

The advantage of TEI’s document structuring approach is its flexibility, while
the drawback is its flexibility.

Let’s suppose though that the textbook publisher or the abovementioned
transpect/TEI-adopting publishers have good reasons to select TEI as their XML
format, and that they want to adapt it to their needs by adding detailed and pre-
scriptive hierarchy modeling.

3. Approaches for Augmenting the Model
Several approaches seem feasible:
1. HyTime Architectural Forms [16]. The idea is to have a front-end DTD that

maps its custom elements (textbook-unit, textbook-exercise, etc.) to TEI
typed divs. Then a more refined grammar can be defined for the custom ele-
ments, while after HyTime processing, they appear as TEI divs.

On second thought, SGML is as dead as many Web pundits consider XML
to be (and as the author wishes XML DTDs were), so please regard this sug-
gestion as a joke.

In a sense, this paper presents the antithesis to an architectural forms
approach. Architectural forms: Different tags, same underlying metamodel.
Epischema: Same tags, different models.

2. Use the numbered element names (div1 etc.) and implicitly know that in the
frontmatter, div1 is a Preface or a User Guide and in the main matter, it’s a
Unit.

3. Use one of the ODD customization mechanisms that are suggested in the
guidelines [17], in particular:
a. limiting the permissible values of the div/@type attribute
b. adding new elememts (such as unit or part) to a TEI content model class

(such as model.divLike 3 or model.div1Like 4

3 http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.divLike.html
4 http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.div1Like.html

A Text Structure “Epischema” for TEI

198

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.divLike.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.div1Like.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.divLike.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-model.div1Like.html

c. changing the content model
4. Import an existing TEI schema (in RNG or XSD, DTD schema and redefine the

content models). This is equivalent to the previous content model change,
although it will be applied to an existing schema rather than to the
ODD source.

5. Impose Schematron rules for these nesting rules: which div/ @type may
appear in which context, for the types of divs that may precede or follow a
div of a given type, for the maximum number of certain divs in a given con-
text, etc.

6. Create an additional schema that will allow anything everywhere outside of
front, body, back, and div contexts. In these contexts, it will apply the com-
plex, context-dependent nesting rules for the given publication type.

Approach 3a allows only the @type attributes to be taken from a finite list. No
hierarchical order whatsoever among typed divs may be prescribed by this kind
of customizing.

Approach 2 doesn’t really cut it, either: if any two elements that are allowed as
div1 are supposed to have differing content models, you can’t use the same div1
element. In the example above, the User Guide might only contain lists, para-
graphs, and tables, while the preface may have a section substructure. Or sup-
pose that a publisher wants a book to contain either parts or chapters as
immediate children. Then you wouldn’t know whether your div1 elements are
supposed to be chapters or parts. This may be regarded as nitpicking about arbi-
trary terms, but as soon as there are different content models involved (for exam-
ple, only part, not a chapter, should be allowed to contain a minitoc divGen), this
becomes unwieldy.

The same holds true for Approach 3b—if both unit and part belong to the
same content model class, they share the same content model, which cannot be
context-dependent.

The only approaches that seem suitable for context-aware content modeling
are 3c/4, 5, and 6.

3.1. Changing the model (3c/4)
In order to specify what type of div may appear at which location in a book, we’d
have to redefine the models for div, front, body, and back. Changing a model in
Relax NG (which used to be ODD’s mechanism, too) is only easy if the basic
schema already provides all the hooks for redefining attributes and models at the
required level of granularity (see Sect. 12.1.1 of Eric van der Vlist’s Relax NG
book [18]). Otherwise you’d have to define these constituents in first place, or live
with unmanageable redundancy of redefining large portions of the original
schema. This is the issue here. TEI’s Relax NG schema granularity corresponds to

A Text Structure “Epischema” for TEI

199

the granularity of its class and element definitions, which is not sufficiently fine-
grained for permitting the addition of context-aware div nesting rules.

Apart from embedded Schematron, modern ODD [2] offers less flexibility
than pure Relax NG in defining context-dependent models. This is probably due
to the requirement that ODD should also be convertible to DTD, which lacks con-
text-dependent models, too. This excludes approach 3c.

In any case, approaches 3c and 4 replace existing models with new ones.
You’ll always have to pay attention not to damage the existing model when deriv-
ing the new models, take the changes into account that other people may have
made upstream, etc. In other words: it’s a daunting task to redesign a model that
wasn’t designed to be redesigned at the required granularity.

3.2. Schematron (5)
It is feasible to convert a grammar-oriented schema (XSD, RNG, DTD) to Schema-
tron. At least to an extent that is sufficient for the context-aware div nesting
check. There’s particularly Rick Jelliffe’s long running XSD2SCH project for auto-
matically converting a grammar to Schematron rules [19].

Everybody in XML processing should be able to come up with the Schema-
tron rules for the context-aware typed div constraints. Everybody should have a
Schematron checker at their disposal. Everybody may include these rules in an
existing Relax NG schema without the need to tamper with the preexisting (and
sometimes poorly extensible, see above) grammar. We have in fact used Schema-
tron for these kind of additional constraints. So why shouldn’t we?

We think that Schematron is the answer to many validation issues and is quite
well suited to complement grammar-based checks. But if you have a grammar-
based checker at your disposal and the task at hand looks grammatical—why
shouldn’t you just add your grammar like you’d add your Schematron, on top of
an unaltered preexisting grammar?

The practical benefit of this approach might be context-aware content comple-
tion.

4. Add an Independent Schema (6)

4.1. Example 1: Constraining the Top-Level div Model
In order to demonstrate the feasibility of the epischema approach, we will inspect
the (simpler) solution for whitelisting top-level div children of [12] first. See Sec-
tion 4.3 for details of associating the epischema with the document.

The task at hand is to require a single head and to only allow p, figure, list,
and div below a div that is immediately below body. Otherwise, the default
tei_all model should prevail.

A Text Structure “Epischema” for TEI

200

So in the following example, ab as a child of body/div should be invalid while
ab and other elements are valid below body/div/div etc.

<body>
 <div>
 <head>Top-Level div</head>
 <p>allowed</p>
 <ab>not allowed (only p, figure, list, or div)</ab>①
 <div>
 <head>2nd-level div</head>
 <ab>allowed</ab>
 </div>
 <div>
 <ab>allowed</ab>
 <div>
 <head>3rd-level div</head>
 <ab>allowed</ab>
 </div>
 <ab>Not allowed here because of base schema</ab>②
 </div>
 </div>
</body>

① element "ab" not allowed here; expected the element end-tag or element
"div", "figure", "list" or "p"

② element "ab" not allowed here; expected the element end-tag or element
"addSpan", "alt", "altGrp", "anchor", "argument", "byline", "cb", "certainty",
"closer", "damageSpan", "dateline", "delSpan", "div", "divGen", "docAuthor",
"docDate", "epigraph", "fLib", "figure", "fs", "fvLib", "fw", "gap", "gb", "inci-
dent", "index", "interp", "interpGrp", "join", "joinGrp", "kinesic", "lb", "link",
"linkGrp", "listTranspose", "meeting", "metamark", "milestone", "notatedMu-
sic", "note", "pause", "pb", "postscript", "precision", "respons", "salute", "shift",
"signed", "space", "span", "spanGrp", "substJoin", "timeline", "trailer", "vocal",
"witDetail" or "writing"

There is no precise recipe for creating epischemas, but it usually starts with a
named pattern that may be called almost-anything:

<define name="almost-anything">
 <choice>
 <element>
 <anyName>
 <except>
 <choice>
 <name>div</name>
 <name>body</name>
 </choice>

A Text Structure “Epischema” for TEI

201

 </except>
 </anyName>
 <ref name="any-atts"/>
 <zeroOrMore>
 <choice>
 <text/>
 <choice>
 <ref name="body"/>
 <ref name="almost-anything"/>
 </choice>
 </choice>
 </zeroOrMore>
 </element>
 </choice>
</define>

When validation starts at the top-level element, it will accept any element that is
not called body or div. As children, this any-element may have other any-ele-
ments, text, or body. If you think that this allows construction of all kinds of inva-
lid TEI documents, you are right. It is important to note that we are not creating a
modified TEI schema here but an epischema that is meant to be used in conjunc-
tion with a TEI schema proper.

When validation encounters a body element, it will check it against the fol-
lowing patten:

<define name="body">
 <element name="body">
 <ref name="any-atts"/>
 <choice>
 <zeroOrMore>
 <choice>
 <ref name="top-div"/>
 <ref name="almost-anything"/>
 </choice>
 </zeroOrMore>
 </choice>
 </element>
</define>

If there is a div below body, it must conform to the top-div pattern, which is
defined as

<define name="top-div">
 <element name="div">
 <ref name="any-atts"/>
 <element name="head">
 <ref name="any-mixed"/>

A Text Structure “Epischema” for TEI

202

 </element>
 <oneOrMore>
 <choice>
 <element name="p">
 <ref name="any-mixed"/>
 </element>
 <element name="list">
 <ref name="any-mixed"/>
 </element>
 <element name="figure">
 <ref name="any-mixed"/>
 </element>
 <ref name="regular-div"/>
 </choice>
 </oneOrMore>
 </element>
</define>

with

<define name="any-mixed">
 <ref name="any-atts"/>
 <zeroOrMore>
 <choice>
 <text/>
 <ref name="almost-anything"/>
 <ref name="regular-div"/>
 </choice>
 </zeroOrMore>
</define>

and

<define name="regular-div">
 <element name="div">
 <ref name="any-mixed"/>
 </element>
</define>

It’s important to note that any-mixed, the pattern that becomes ubiquitous just
when we’re past the top-level div, holds a reference to regular-div, which is a
div that can contain virtually anything. This means that from this point on, the
epischema will not stand in the way of what tei_all permits.

The epischema is available at [20] and an NVDL bundling of this epischema
with the tei_all.rng “standard” TEI customization is at [21]. A sample document
that is associated with the NVDL version is available at [22].

A Text Structure “Epischema” for TEI

203

4.2. Example 2: Docbook-like divs

This epischema is a bit more complex than the first example. This is due to sev-
eral factors:
• the number of individual context-dependent models
• the inclusion of section/sect1 alternatives
• modeling of typed floatingText

The epischema’s Relax NG file size is 22 kB large. However, trying to impose
these restrictions on the base TEI schema by conventional extension mechanisms
would have necessitated many times more of schema code.

We selected a TEI base schema with some extras here, SVG, MathML,
CSSa [23], RDFa. An important advantage of an independent, on-top schema is
that we don’t need to care which base customization we use. This orthogonality is
certainly an advantage that epischema shares with Schematron.

We encourage you to explore the epischema [24] and the sample docu-
ment [25]. You will see one advantage over Schematron and that is content com-
pletion for section types.

Figure 1. Content completion for Docbook-like divs

4.3. Using it in practice

4.3.1. Multiple Relax NG Associations or a single NVDL Association?

It has already been mentioned in Section 4.1 that the epischema can be bundled
with the main schema in an NVDL schema. The NVDL of the whitelist example
looks like

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"
 startMode="tei">

 <mode name="tei">
 <namespace ns="http://www.tei-c.org/ns/1.0">

A Text Structure “Epischema” for TEI

204

 <validate schema="tei/tei_all.rng"/>
 <validate schema="whitelisted-body-div-children.rng"
 useMode="allow"/>
 </namespace>
 </mode>

 <mode name="allow">
 <anyNamespace>
 <allow/>
 </anyNamespace>
 </mode>

</rules>
When associated with the document via an xml-model processing instruction, an
oXygen 19 beta version5 will give this restricted content completion list:

Figure 2. Content completion for whitelisted top-level div children

Wrapping the Docbook-like divs and the SVG/MathML-enhanced TEI in an
NVDL looks like

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"
 startMode="tei">
 <mode name="tei">
 <namespace ns="http://www.tei-c.org/ns/1.0">
 <validate useMode="allow"
schema="http://www.le-tex.de/resource/schema/tei-cssa/docbook-like-
divs.rng"/>
 <validate useMode="extensions"

5Many thanks to George Bina for personally improving the schema-based content completion list calcu-
lation in oXygen XML Editor when multiple schemas apply in a given context.

A Text Structure “Epischema” for TEI

205

schema="http://www.le-tex.de/resource/schema/tei-cssa/tei_allPlus-
cssa.rng"/>
 </namespace>
 </mode>

 <mode name="extensions">
 <namespace ns="http://www.w3.org/1996/css">
 <attach/>
 </namespace>
 <namespace ns="http://www.w3.org/1998/Math/MathML">
 <attach/>
 </namespace>
 <namespace ns="http://www.w3.org/2000/svg">
 <attach/>
 </namespace>
 </mode>

 <mode name="allow">
 <anyNamespace>
 <allow/>
 </anyNamespace>
 </mode>

</rules>
As an alternative to wrapping the schemas in an NVDL, they can be associated by
adding a second <?xml-model?> processing instruction:

<?xml-model type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"
href="https://www.tei-c.org/release/xml/tei/custom/schema/relaxng/►
tei_all.rng"?>
<?xml-model type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"
href="http://www.le-tex.de/resource/schema/tei-cssa/whitelisted-body-div-
children.rng"?>

4.3.2. Effects on oXygen Content Completion

It is currently recommended to use it as NVDL in oXygen because of content
completion. When associating multiple Relax NG schemas by xml-model PIs,
oXygen derives content completion suggestions only from the first one. There can
be no optimal choice on which xml-model to place first: You’ll end up with either
sparse epischema suggestions or with only the standard TEI completion options.
On the plus side, immediately after insertion, the document will be validated
against both schemas and you will see in the validation messages which elements
are actually valid at the given location.

A Text Structure “Epischema” for TEI

206

When using NVDL in oXygen prior to version 19, the completion suggestions
that each Schema generates will be merged. At any document location, you will
have the full TEI completion choices plus the additional choices of the epischema.

This is ok for the div type values that haven’t been present in the base schema,
but it is not ideal. Until now, oXygen’s NVDL implementation does not remove
suggestions from the list that are prohibited by the other schema.

This is due to a heuristic that they apply. In terms of computing costs and per-
ceived lag, they are currently not pursuing to pre-validate every scenario “would
it still be valid according to all schemas if this element/attribute/attribute value
was inserted at this position?” for each possible insertion item. This pre-valida-
tion would be necessary in order to filter suggestions according to Schematron
constraints.

The author of this paper managed to convince oXygen XML Editor’s George
Bina that they can improve suggestion list generation in the case of multiple con-
current schemas. Instead of computing the union of all suggestions, they need to
calculate the intersection. This has been implemented and will hopefully find its
way into the forthcoming version 19 of oXygen XML Editor.

George Bina mentioned that there is another, explicit method of configuring
the content completion that also works with Schematron constraints [26]. While
this is useful, it requires additional configuration. The elegance of the epischema
approach is that only a single (NVDL) schema association is necessary for both
validation and content completion.

4.4. Complementing Other Base Schema Languages

It should be noted that although epischemas are probably best written in Relax
NG, they work on top of any other schema mechanism, including DTD.

This demonstrates the limitations of a monistic DOCTYPE declaration as well as
xml-model6’s and NVDL’s utility for positively associating schemas with docu-
ments.

5. Outlook
It was already mentioned that epischema-based content completion will probably
be supported in future versions of oXygen XML Editor.

It will also be interesting to explore how this concept can be applied to Web-
based XML editors that often derive their context-dependent completion rules
from translating schemas into program code or into configuration settings.

And it will also be interesting to apply this approach to other type- or class-
heavy vocabularies with nested models, such as DITA topics or HTML divs/

6 http://www.w3.org/TR/xml-model/

A Text Structure “Epischema” for TEI

207

http://www.w3.org/TR/xml-model/
http://www.w3.org/TR/xml-model/

sections. Their users might also benefit from typed-section grammars for a more
prescriptive authoring experience.

6. Conclusion

Although other approaches are feasible, additional structural constraints can be
exerted elegantly by adding an epischema (or multiple epischemas, if you want to
extend a basic schema in multiple dimensions). Epischemas offer aspect-based
orthogonality, a separation of concerns, while they allow you to stick to the finest
tool for defining XML document grammars (which is Relax NG, of course).

Bibliography
[1] http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/configuration-
specialization-and-constraints.html#configuration-specialization-and-
constraints. Accessed 2017-01-28.

[2] http://www.tei-c.org/Guidelines/Customization/. Accessed 2017-01-28.
[3] https://jats.nlm.nih.gov/. Accessed 2017-01-28.
[4] See for example https://listserv.brown.edu/archives/cgi-bin/wa?
A1=ind1612&L=TEI-L#11 (accessed 2017-01-28) and subsequent threads.

[5] http://schematron.com/. Accessed 2017-01-28.
[6] https://oreillymedia.github.io/HTMLBook/. Accessed 2017-01-28.
[7] https://jats.nlm.nih.gov/extensions/bits/. Accessed 2017-01-28.
[8] Deutsche Forschungsgemeinschaft: Praxisregeln Digitalisierung (12/2016).
http://www.dfg.de/formulare/12_151/12_151_de.pdf

[9] TEI Simple ODD: https://github.com/TEIC/TEI/blob/dev/P5/Exemplars/
tei_simplePrint.odd#L448. Accessed 2017-01-18.

[10] https://subversion.le-tex.de/common/transpect-adaptions/docx-idml-tei-
epub_github/. Accessed 2017-01-28.

[11] http://transpect.io/. Accessed 2017-01-28.
[12] https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1606&L=TEI-L#35.

Accessed 2017-01-28.
[13] http://www.tei-c.org/release/doc/tei-p5-doc/en/html/DS.html#DSDIV.

Accessed 2017-01-28.
[14] https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1701&L=TEI-L#10.

Accessed 2017-01-28.

A Text Structure “Epischema” for TEI

208

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/configuration-specialization-and-constraints.html#configuration-specialization-and-constraints
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/configuration-specialization-and-constraints.html#configuration-specialization-and-constraints
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/configuration-specialization-and-constraints.html#configuration-specialization-and-constraints
http://www.tei-c.org/Guidelines/Customization/
https://jats.nlm.nih.gov/
https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1612&L=TEI-L#11
https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1612&L=TEI-L#11
http://schematron.com/
https://oreillymedia.github.io/HTMLBook/
https://jats.nlm.nih.gov/extensions/bits/
http://www.dfg.de/formulare/12_151/12_151_de.pdf
https://github.com/TEIC/TEI/blob/dev/P5/Exemplars/tei_simplePrint.odd#L448
https://github.com/TEIC/TEI/blob/dev/P5/Exemplars/tei_simplePrint.odd#L448
https://subversion.le-tex.de/common/transpect-adaptions/docx-idml-tei-epub_github/
https://subversion.le-tex.de/common/transpect-adaptions/docx-idml-tei-epub_github/
http://transpect.io/
https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1606&L=TEI-L#35
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/DS.html#DSDIV
https://listserv.brown.edu/archives/cgi-bin/wa?A1=ind1701&L=TEI-L#10

[15] http://httpd.apache.org/docs/2.0/rewrite/#preamble. Accessed 2017-01-28.
[16] Gary F. Simons, C. M. Sperberg-McQueen, and David G. Durand. 1999.

Rethinking TEI markup in the light of SGML architectures. ACH-ALLC ’99
International Humanities Computing Conference. June 9–13, 1999.
Charlottesville, Virginia. http://www2.iath.virginia.edu/ach-allc.99/
proceedings/simons.html. Accessed 2017-01-28.

[17] http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#MD. Accessed
2017-01-28.

[18] Eric van der Vlist. 2003. RELAX NG. O’Reilly & Associates. http://
books.xmlschemata.org/relaxng/relax-CHP-12-SECT-1.html#relax-CHP-12-
SECT-1.1. Accessed 2017-01-28.

[19] http://broadcast.oreilly.com/2009/03/post-1.html. Accessed 2017-01-28.
[20] https://subversion.le-tex.de/common/schema/tei-cssa/whitelisted-body-div-
children.rng. Accessed 2017-01-28.

[21] https://subversion.le-tex.de/common/schema/tei-cssa/tei_all_whitelisted-
body-div-children.nvdl. Accessed 2017-01-28.

[22] https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-
epischema_sample_whitelist.xml. Accessed 2017-01-28.

[23] http://archive.xmlprague.cz/2013/presentations/
Conveying_Layout_Information_with_CSSa/
CSSa_xmlprague_gimsieke.html .

[24] https://subversion.le-tex.de/common/schema/tei-cssa/docbook-like-divs.rng.
Accessed 2017-01-28.

[25] https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-
epischema_sample.xml. Accessed 2017-01-28.

[26] https://www.oxygenxml.com/doc/versions/18.1/ug-editor/topics/configuring-
content-completion-proposals.html. Accessed 2017-01-28.

A Text Structure “Epischema” for TEI

209

http://httpd.apache.org/docs/2.0/rewrite/#preamble
http://www2.iath.virginia.edu/ach-allc.99/proceedings/simons.html
http://www2.iath.virginia.edu/ach-allc.99/proceedings/simons.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#MD
http://books.xmlschemata.org/relaxng/relax-CHP-12-SECT-1.html#relax-CHP-12-SECT-1.1
http://books.xmlschemata.org/relaxng/relax-CHP-12-SECT-1.html#relax-CHP-12-SECT-1.1
http://books.xmlschemata.org/relaxng/relax-CHP-12-SECT-1.html#relax-CHP-12-SECT-1.1
http://broadcast.oreilly.com/2009/03/post-1.html
https://subversion.le-tex.de/common/schema/tei-cssa/whitelisted-body-div-children.rng
https://subversion.le-tex.de/common/schema/tei-cssa/whitelisted-body-div-children.rng
https://subversion.le-tex.de/common/schema/tei-cssa/tei_all_whitelisted-body-div-children.nvdl
https://subversion.le-tex.de/common/schema/tei-cssa/tei_all_whitelisted-body-div-children.nvdl
https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-epischema_sample_whitelist.xml
https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-epischema_sample_whitelist.xml
http://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html
http://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html
http://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html
https://subversion.le-tex.de/common/schema/tei-cssa/docbook-like-divs.rng
https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-epischema_sample.xml
https://subversion.le-tex.de/common/schema/tei-cssa/sample/tei-epischema_sample.xml
https://www.oxygenxml.com/doc/versions/18.1/ug-editor/topics/configuring-content-completion-proposals.html
https://www.oxygenxml.com/doc/versions/18.1/ug-editor/topics/configuring-content-completion-proposals.html

210

CSS for Print via XSL-FO
George Bina
Syncro Soft

<george@oxygenxml.com>
Dan Caprioara

Syncro Soft
<dan@sync.ro>

Abstract

The problem with XSL-FO is that it is complex to create and modify, and
people prefer to customize PDF using CSS rather than creating/modifying
an XSLT stylesheet that generates XSL-FO. Thus, CSS for print has
received more traction lately. There are many initiatives for various XML
vocabularies to provide support for CSS for print (for example, there are two
open-source projects to generate PDF from DITA using CSS).

On the other hand, there are a number of XSL-FO engines available
(including the open-source Apache FOP engine) that provide reasonable
support for XSL-FO to produce PDF.

In order to leverage the existing FO processors for CSS-based PDF, we
can support CSS for print by implementing a conversion from XML+CSS
to XSL-FO and then apply an FO processor to get the actual PDF output.

We will show the anatomy of such an engine that implements CSS for
print using XSL-FO as an intermediary format. We will focus on the
advantages of such an approach as well as discussing challenges we encoun-
tered during implementation. Some advanced CSS level 3 and level 4 func-
tions are essential for more advanced layouts or rendering of information.
We also propose a few CSS extensions that can be very useful, such as a
function to provide XPath evaluation support.

Keywords: Print, XML, CSS, PDF, XSL-FO

1. Motivation
XSL-FO is a very good option to generate PDF documents and it has already been
used for a number of years in production systems, so it is a mature and powerful
technology. The only issue with it relates to customizations. Usually the process
involves converting XML content to XSL-FO via XSLT stylesheets and the cus-
tomization means applying changes to the XSLT code that generates the XSL-FO.

211

Thus, someone needs to possess very good knowledge of both XSLT and XSL-FO
as a minimum, since in most cases one needs to also understand how the current
XSLT stylesheets are designed and how to integrate new XSLT scripts into the
existing processing workflow. This makes any customization of XSL-FO based
systems a rather difficult task and many people lack part of the required knowl-
edge, so only a few are actually able to make such customizations.

As an alternative approach to XSL-FO, in the last few years we have seen a lot
of advancements to CSS-based processors that basically use CSS and specific page
extensions to describe how a document should be formatted for print and they
generate PDF based on that information. These have the very important advant-
age of being easy to customize, taking advantage of the simple CSS syntax and
the fact that many potential users already know CSS. Also, a very important fact
is that the existing CSS design is not very important, thus you can just import the
existing CSS and add new rules in the new CSS file.

So, if we come back to XSL-FO, it is a good and mature option and there is at
least one free and open-source product that converts XSL-FO to PDF, the Apache
FOP processor. We can try to solve the customization problem by providing a
simple customization layer to control the XSL-FO generation from there. Now, if
we choose this customization layer to be CSS, we basically obtain a CSS to PDF
processor that internally goes through XSL-FO as an intermediary stage and
reuses the available formatting objects processors.

CSS for Print via XSL-FO

212

2. CSS customizations
To understand why CSS is a good choice as the XSL-FO customization layer, we
can look at a few examples. To define page properties, we can use the @page CSS
at-rule and define page size, margins, background, and which static content
appears in various areas of the page (such as page number, title, and so on).

Example 1. CSS for defining default page properties

@page {
 size:a4;
 margin: 1.3in;
 @top-left {
 background-color:silver;
 font-size: 1.5em;
 font-weight:bold;
 font-family: sans-serif;
 content: string(article-title);
 padding-left:1em;
 color:white;
 }
 @top-right-corner{
 background-color:red;
 color:white;
 font-size:large;
 content: counter(page) " / " counter(pages);
 text-align: center;
 vertical-align: middle;
 }
}

Such a CSS will generate the document title and the current page number
from the total pages in the page header:

In order to define how a specific element should appear, or to customize its ren-
dering, we do not need a lot of knowledge about the existing CSS. If we want
titles to be centered, then all we need is a rule like:

title {
 text-align:center;
}
and titles will be centered:

CSS for Print via XSL-FO

213

Marking a document as draft, with a watermark image can be done with a few
lines:

Example 2. Marking as draft

@page {
...
 background-image:url('draft.png');
 background-repeat:no-repeat;
 background-position:center;
...
}

Rendering the content on two columns is as easy as:

Example 3. Split content on two columns

@page {
...
 column-count : 2;
 column-gap : 2em;

CSS for Print via XSL-FO

214

...
}

3. CSS and XSL-FO
While CSS and XSL-FO share many common properties, there are also some dif-
ferences between them that need to be taken into account. We can explore a few
cases where we have an impedance mismatch between CSS and XSL-FO.

3.1. Different page regions
For example, the page regions are different. In CSS we have 17 regions, but in
XSL-FO only 5 regions, as can be seen in the following figure:

CSS for Print via XSL-FO

215

This means that in order to convert from CSS to XSL-FO, we need to define addi-
tional structure inside XSL-FO to accommodate all of these regions (for example,
we can add a table in the region-before and region-after areas with one row
and up to three columns, or a set of block container elements in the region-start
and region-end areas, controlling the width and height to store the correspond-
ing content specified in CSS).

3.2. Nested elements on separate page types

Another difference is that an XML document can contain nested structures that
the CSS styles can place in different page types and nested page types are not
supported in XSL-FO. Thus, another important thing to consider is splitting and
slicing the document to avoid nesting content that goes into different page types.

Example 4. Sections in section specific page types

section {
 /* Each section is in its own page. */
 page:sectionPage;
}

A document like:
<article>
…
 <section>
 …
 </section>
 <section>

CSS for Print via XSL-FO

216

 …
 </section>
…
</article>

will need to have the article content in the default page type and each section con-
tent in section-specific page types and while sections are within an article element
in the original XML document, we need to split/slice the document to avoid nest-
ing of content that belongs to different page types, like:

<article>
…
</article>
<article>
 <section>
 …
 </section>
</article>
<article>
 <section>
 …
 </section>
</article>
<article>
…
</article>

3.3. Start and end indent

If the CSS marks an element as block then it can be translated to an XSL-FO
block, but if the CSS specifies a width for a block element, then we need to trans-
late it to an XSL-FO block container to be able to also specify the width property
in XSL-FO. This does not seem to generate any issues at first glance, but in XSL-
FO, text indent in block containers is relative to the nearest ancestor block con-
tainer, ignoring block ancestors, while in CSS, this will be relative to the parent
block. Thus, we get this difference that we need to take into account in order to
make sure the generated XSL-FO behaves the same as the original CSS.

3.4. Font management

Sometimes, parts of the CSS cannot be fully translated to XSL-FO, but they need
to go into some other type of resources. For example, the CSS fonts may also
result in an FO processor-specific configuration file that loads or defines those
fonts for the FO processor.

CSS for Print via XSL-FO

217

3.5. XSL-FO versus FOP

Another thing to take into account, from a practical point of view, is the fact that a
specific FO processor may not fully support the XSL-FO standard, so even if some
CSS functionality translates to XSL-FO, we may not be able to use that in practice
with the specific FOP we use. As an example, the relative-align="baseline" is
not supported by Apache FOP, so we need to either improve the FOP to add the
missing support or we need to find some other way to obtain the same behavior
by generating a different XSL-FO code.

4. Implementation
We need a system that takes XML as input and generates PDF taking into account
the styles specified in a CSS file. This conversion can be split in a number of pro-
cessing stages:

• annotate XML with CSS information
• slice the annotated document into pages
• transform to XSL-FO
• apply FOP processing

4.1. Annotate XML with CSS information

The first processing stage, after we parse the document resolving entities, default
values, XInclude includes, etc. is to annotate the document with CSS information.
That is, we need to find what styles apply to each node and make that informa-
tion available within the XML document so that it can be processed further by the
following processing stages.

While the annotations that represent the CSS information are mostly attrib-
utes, there are a few cases where we need to use XML elements (for example, the
static content generated from CSS will appear as XML elements in the annotated
document).

All annotations are stored in a particular namepsace (we used http://
www.w3.org/1998/CSS mapped to the css prefix).

Example 5. Annotate with CSS properties

If we have an XML document, for example an article:

CSS for Print via XSL-FO

218

<article>
...
</article>

and we specify it as a block in the CSS file:
article {
 display:block;
}

then the annotated document will contain this information using a css:display
attribute:

<article css:display="block">
...
</article>

For static content, we generate annotation elements, because we can have multi-
ple static blocks of content and that can also be composed from multiple sources,
static text, attribute values, functions results, etc.

Example 6. Annotation elements for static content

Let's say we want to precede section titles with a “Title:” prefix. Then, if we have
an XML document:

<section>
 <title>Processor</title>
</section>

and a CSS that generates that prefix:
section, title {
 display:block;
}
title:before {
 color:green;
 content: "Title:";
}

the annotated XML will contain a css:before element with the generated static
content inside:

<section xmlns:css="http://www.w3.org/1998/CSS" css:display="block"
 css:font-family="sansserif" css:font-size="12pt">
 <title css:display="block">
 <css:before css:display="inline" css:color="green">
 <css:text>Title:</css:text>
 </css:before>
 Processor

CSS for Print via XSL-FO

219

 </title>
</section>

In order to further process page information, we also add that as annotation ele-
ments in the css namespace.

Example 7. Page information:

@page {
 size: A4;
 margin: 0.5in;
}

will result in an XML fragment that expands the CSS properties:
<css:pages>
 <css:page>
 <css:property name="width" value="8.27in"/>
 <css:property name="height" value="11.69in"/>
 <css:property name="margin-top" value="0.5in"/>
 <css:property name="margin-right" value="0.5in"/>
 <css:property name="margin-left" value="0.5in"/>
 <css:property name="margin-bottom" value="0.5in"/>
 </css:page>
</css:pages>

We also need to take into account application defaults, such as font size, page
size, and so on, as well as implicit CSS rules and inheritance. Also, the CSS may
be more generic and specify properties that do not apply to print media, so we
need to collect only the general ones and the ones marked with print media and
ignore others that are specified for other media, (screen for instance).

4.2. Slice into page sequences
At this stage, we have each element that should be placed on a specific page type
annotated with a css:page attribute.

<article xmlns="http://docbook.org/ns/docbook" version="5.0"
 xmlns:css="http://www.w3.org/1998/CSS"
 css:display="block" css:font-family="sansserif"
 css:font-size="12pt">
 <title css:display="block" css:font-size="20pt">
 Sample
 </title>
 <section css:display="block" css:page="section_page">
 <title css:display="block" css:font-size="20pt">
 Introduction
 </title>

CSS for Print via XSL-FO

220

 </section>
 <section css:display="block" css:page="section_page">
 <title css:display="block" css:font-size="20pt">
 Content
 </title>
 </section>
 <acknowledgements css:display="block">
 <para css:display="block">Thanks!</para>
 </acknowledgements>
</article>

Notice here that for some elements there is no page information. This means they
do not change the page type and if no ancestor contains page information, the
default page type will be used. This stage tries to flatten the page structure, mak-
ing the document ready for the following transformation to XSL-FO. That means
we need to slice the document into separate page sequences, each containing con-
tent that should be rendered in pages of the same type.

We generate a wrapper element to contain page sequences, and a page-
sequence element to mark each page sequence. Thus, the above example will
result in:

<css:root xmlns:css="http://www.w3.org/1998/CSS"
 xmlns="http://docbook.org/ns/docbook">
 <css:pages>
 <css:page name="section_page">
 <css:property name="margin-left" value="2cm"/>
 </css:page>
 </css:pages>
 <css:page-sequence page="css2fo-default">
 <article version="5.0" css:display="block"
 css:font-family="sansserif" css:font-size="12pt">
 <title css:display="block" css:font-size="20pt">Sample</title>
 </article>
 </css:page-sequence>
 <css:page-sequence page="section_page">
 <article version="5.0" css:display="block"
 css:font-family="sansserif" css:font-size="12pt">
 <section css:display="block">
 <title css:display="block" css:font-size="20pt">Introduction</►
title>
 </section>
 </article>
 </css:page-sequence>
 <css:page-sequence page="section_page">
 <article version="5.0" css:display="block"
 css:font-family="sansserif" css:font-size="12pt">

CSS for Print via XSL-FO

221

 <section css:display="block">
 <title css:display="block" css:font-size="20pt">Content</title>
 </section>
 </article>
 </css:page-sequence>
 <css:page-sequence page="css2fo-default">
 <article version="5.0" css:display="block"
 css:font-family="sansserif" css:font-size="12pt">
 <acknowledgements css:display="block">
 <para css:display="block">Thanks!</para>
 </acknowledgements>
 </article>
 </css:page-sequence>
</css:root>
The css:root wrapper element will also include the page meta-information.

4.3. Transform to XSL-FO
Now we have an annotated document that is ready for XSL-FO conversion. At
this stage, we apply an XSLT script that will transform the annotated document
into XSL-FO. This transformation does not depend on the element names from
the original XML document. We basically match on the CSS annotations and
drive the conversion to XSL-FO based on that.

Example 8. Processing inline elements

<xsl:template match="*[@css:display = 'inline'">
 <fo:inline>
 <xsl:apply-templates select="@* except @css:display | node()"/>
 </fo:inline>
</xsl:template>

4.4. Apply FOP to obtain PDF
At this stage, we have the XSL-FO file and we apply the Apache FOP processor to
obtain the print format, the PDF file. There is one additional thing that changes
the overview diagram a bit and that is the fact that some of the CSS properties
translate to entries in the FOP configuration file, such as the font information, so
the FOP stage also receives that configuration file as an input.

CSS for Print via XSL-FO

222

5. Related work
CSSToXSLFO1 is an open-source project that was started to implement this idea
of converting to XSL-FO from XML and CSS. Unfortunately, there has been no
activity on this project for the past few years.

Then we have a number of commercial CSS to print engines, but they do not
advertise whether or not they go through XSL-FO as an intermediary format:
• PrinceXML2

• AntennaHouse3

• PDF Reactor4

• Vivlyostyle5

6. Final thoughts
The processing pipeline can include some additional steps, such as a pre-process-
ing step for the XML document before it is matched against the CSS file, or a post
processing of the generated XSL-FO before it goes through the FOP stage. These
extension points should allow for more advanced functionality or provide work-
arounds for solving specific problems.

With the print extensions, CSS can be the easy customization layer for gener-
ating XSL-FO, its main advantages being that it is a widely used and rather easy
technology and in order to customize it, you do not necessarily need to know
how the existing CSS is developed.

CSS may not solve all the customization requirements in general, but for tech-
nical documentation it should be enough. Although there are a number of impe-

1 http://www.re.be/css2xslfo/
2 https://www.princexml.com
3 http://www.antennahouse.com/
4 http://www.pdfreactor.com/
5 http://vivliostyle.com/

CSS for Print via XSL-FO

223

http://www.re.be/css2xslfo/
https://www.princexml.com
http://www.antennahouse.com/
http://www.pdfreactor.com/
http://vivliostyle.com/
http://www.re.be/css2xslfo/
https://www.princexml.com
http://www.antennahouse.com/
http://www.pdfreactor.com/
http://vivliostyle.com/

dance mismatches between CSS and XSL-FO, there are ways to solve them and
we solve them once, taking advantage of this work every time we transform XML
to print using CSS.

CSS for Print via XSL-FO

224

Jiří Kosek (ed.)

XML Prague 2017
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2017

ISBN 978-80-906259-2-1 (pdf)
ISBN 978-80-906259-3-8 (ePub)

	XML Prague 2017
	Table of Contents
	General Information
	Sponsors
	Preface
	XPath 3.1 in the Browser
	1. Introduction
	1.1. Saxon-JS Runtime – dynamic evaluation

	2. Overall design
	2.1. Parsing the expression
	2.2. Generating the execution plan
	2.3. Static analysis and typechecking
	2.4. Evaluation

	3. Pure JavaScript XPath evaluation
	4. Testing
	4.1. QT3 testing in the browser
	4.2. Comparing browser coverage
	4.3. Testing the JavaScript API

	5. Performance
	6. Future Developments & Conclusions
	6.1. Conclusion

	References

	Soft validation in an editor environment
	1. Introduction
	2. The case for soft validation
	3. Schematron
	4. Implementation
	4.1. Requirements
	4.2. Written in JavaScript, running client-side
	4.3. Real-time updates
	4.4. Putting everything together
	4.5. Quick fix
	4.6. UI

	5. Future work
	5.1. Performance
	5.2. Preventing worsening the document
	5.3. Using Schematron quickfix
	5.4. Open sourcing

	6. Conclusions
	Bibliography

	Improving text quality with automatic majority editions
	1. Introduction
	2. The Problem
	3. Mitigating the Problem
	4. A Majority Proposal
	5. The Algorithm
	6. A Variation: Word-at-a-time Mode
	7. Converting to XML
	8. Evaluation and Further Work
	9. Conclusion
	A. Majority Edition Script
	B. Project Makefile
	Bibliography

	Checking documents for DTP with the free online service data2check
	1. What is data2check?
	2. Why do we need such checks?
	3. What is the technical difficulty to connect DTP and XML?
	3.1. WordML is also XML, or not?

	4. Which check mechanisms are implemented in data2check?

	W3C ITS 2.0 in OASIS XLIFF 2.1
	1. Introduction
	2. Lay of the land
	3. ITS metadata categories and their purpose
	3.1. Source metadata that inform Extraction behavior
	3.2. Other metadata that inform localization behavior
	3.3. Subject Matter related datacats
	3.4. Metadata that are produced during or by localization transformations of content
	3.5. ITS metadata categories from the XLIFF representation point of view
	3.5.1. Already in
	3.5.2. Implemented from scratch
	3.5.3. Partial overlap
	3.5.4. Not represented

	4. The nitty gritty
	5. Impact and what's next
	Bibliography

	Projection and Streaming: Compared, Contrasted, and Synthesized
	1. Overview
	2. Document Projection
	2.1. Overview of the Marian/Siméon Technique
	2.2. Document Projection in Saxon: XMark Performance
	2.3. Implementation of Document Projection in Saxon

	3. Document Streaming
	3.1. Overview of Streaming in XSLT 3.0
	3.2. Streaming in Saxon: XMark Performance
	3.3. Streaming in Saxon: Implementation

	4. Projection and Streaming: a Comparison
	5. Seeking Synergy
	5.1. A Simple Example
	5.2. Tolerating Local Variables
	5.3. Tolerating Multiple Consuming Operands
	5.4. Document Projection in XSLT
	5.5. Automatic Streaming and Projection

	References
	A. Appendix: XMark Queries

	The HTML 5.1 DTD
	1. Introduction
	2. The HTML5.1 DTD
	2.1. Flow and phrasing content
	2.2. Tag omission
	2.2.1. End-element tag omission
	2.2.2. Start-element tag omission
	2.2.3. Start- and end-element tag omission in table content
	2.2.4. Tag omission in body content

	2.3. The datalist element
	2.4. Boolean Attributes
	2.5. The contenteditable and spellcheck attributes
	2.6. Void elements
	2.7. Self-closing elements
	2.8. RAWTEXT and RCDATA
	2.9. Script data
	2.10. Attribute defaults
	2.11. Transparent content

	3. Limitations
	4. Conclusion
	Bibliography

	The X-definition 3.1
	1. Preamble: What is The X-definition?
	1.1. Model of element

	2. Processing of large data
	3. The stream mode
	4. Processing of JSON data
	5. Processing of errors
	6. Connection to database
	7. X-components
	7.1. Generating X-componets

	8. The X-definition and the X-components in real-world project

	Relational and Semantic Views over Documents
	1. Introduction
	2. Data Model Overviews
	2.1. The Entity-Relationship Model
	2.1.1. Hypertext: Documents and Links
	2.1.2. RDF Enhancement

	2.2. The Relational Model
	2.2.1. Normalization
	2.2.2. Extract, Transform, and Load

	2.3. The RDF Data Model
	2.4. The Document Model

	3. Reaching Data Model Nirvana
	3.1. Document First Data Modelling
	3.2. Document Links
	3.3. Business Intelligence and Analysts

	4. Template Driven Extraction: A Simple Solution
	4.1. Relational Lens
	4.2. Triples Lens

	5. Discussion of Benefits
	5.1. Updating
	5.2. Heterogenous Documents, Homogenous Tables or Triples
	5.3. NoETL
	5.4. Silo-Busting
	5.5. Data in Context

	6. Conclusion

	On the Descriptions of Data
	1. Usability
	2. Notations
	3. Invisible XML
	4. Data Descriptions
	5. User Testing
	6. An Example
	7. Attributes
	8. Adding Nodes
	9. Other Examples
	9.1. URLs
	9.2. Parsing JSON
	9.3. Parsing XML

	10. Parsing ixml
	11. Other Output Formats
	12. Conclusion
	Bibliography

	FOXpath navigation of physical, virtual and literal file systems
	1. Introduction
	2. The FOXpath language
	3. The challenge of generalization
	4. Concepts
	4.1. File system types
	4.2. URI operations
	4.2.1. Navigation primitives
	4.2.2. Content retrieval
	4.2.3. Resource property retrieval

	4.3. URI processor
	4.4. URI dispatchal rules

	5. Literal file systems
	5.1. Logical model
	5.2. Data formats - UTREE and UGRAPH
	5.2.1. The XML format (UTREE)
	5.2.2. The RDF format (UGRAPH)

	6. Implementation
	6.1. Overview
	6.2. Interfaces
	6.3. Implementation details
	6.4. URI dispatchal
	6.4.1. URI dispatchal configuration
	6.4.2. URI dispatchal rules
	6.4.2.1. Rule #1 - archive rule
	6.4.2.2. Rule #2 - literal file system rule
	6.4.2.3. Rule #3 - BaseX rule
	6.4.2.4. Rule #4 - SVN rule
	6.4.2.5. Rule #5 - github rule
	6.4.2.6. Rule #6 - physical file system rule
	6.4.2.7. Rule #7 - match failure rule

	6.4.3. Proprietary URI schemes
	6.4.4. Tool support for constructing literal file systems

	7. Examples
	7.1. Navigating the physical file system
	7.2. Navigating the contents of an archive file
	7.3. Navigating the contents of BaseX databases
	7.4. Navigating an SVN repository
	7.5. Navigating a UTREE file system
	7.6. Navigating a UGRAPH file system

	8. Discussion
	Bibliography

	DHW: An online introductory toolset for XML encoding
	1. The DHW platform
	2. Tools for automatic markup
	3. Visualization
	4. Conclusions
	References

	A Text Structure “Epischema” for TEI
	1. Introduction
	1.1. Motivation

	2. Generic Sectional Hierarchy Elements in TEI
	3. Approaches for Augmenting the Model
	3.1. Changing the model (3c/4)
	3.2. Schematron (5)

	4. Add an Independent Schema (6)
	4.1. Example 1: Constraining the Top-Level div Model
	4.2. Example 2: Docbook-like divs
	4.3. Using it in practice
	4.3.1. Multiple Relax NG Associations or a single NVDL Association?
	4.3.2. Effects on oXygen Content Completion

	4.4. Complementing Other Base Schema Languages

	5. Outlook
	6. Conclusion
	Bibliography

	CSS for Print via XSL-FO
	1. Motivation
	2. CSS customizations
	3. CSS and XSL-FO
	3.1. Different page regions
	3.2. Nested elements on separate page types
	3.3. Start and end indent
	3.4. Font management
	3.5. XSL-FO versus FOP

	4. Implementation
	4.1. Annotate XML with CSS information
	4.2. Slice into page sequences
	4.3. Transform to XSL-FO
	4.4. Apply FOP to obtain PDF

	5. Related work
	6. Final thoughts

	Table of Contents

