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Abstract
The most common tools for word-alignment rely on a large amount of parallel sentences,

which are then usually processed according to one of the IBM model algorithms. The training
data is, however, the same as for machine translation (MT) systems, especially for neural MT
(NMT), which itself is able to produceword-alignments using the trained attention heads. This
is convenient becauseword-alignment is theoretically a viable byproduct of any attention-based
NMT, which is also able to provide decoder scores for a translated sentence pair.

We summarize different approaches on how word-alignment can be extracted from align-
ment scores and then explore ways in which scores can be extracted from NMT, focusing on
inferring the word-alignment scores based on output sentence and token probabilities. We
compare this to the extraction of alignment scores from attention. We conclude with aggregat-
ing all of the sources of alignment scores into a simple feed-forward network which achieves
the best results when combined alignment extractors are used.

1. Introduction

Although word alignment found its use mainly in phrase-based machine trans-
lation (for generating phrase tables), it is still useful for many other tasks and ap-
plications: boosting neural MT performance (Alkhouli et al., 2016), exploring cross-
linguistic phenomena (Schrader, 2006), computing quality estimation (Specia et al.,
2013), presenting quality estimation (Zouhar and Novák, 2020) or simply highlight-
ing matching words and phrases in interactive MT (publicly available MT services).

The aim of this paper is to improve the word alignment quality and demonstrate
the capabilities of alignment based on NMT confidence. Closely related to this is
the section devoted to aggregating multiple NMT-based alignment models together,
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which outperforms the individual models. This is of practical use (better alignment)
aswell as of theoretical interest (word alignment information encoded inNMTscores).

We first briefly present the task of word alignment, the metric and the used tools
and datasets. In Section 2 we introduce the soft word alignment models based onMT
scores and also several hard word alignment methods (extractors). The models are
evaluated together with other solutions (fast_align and Attention) in Section 3. We
then evaluate the models enhanced with new features and combined together using a
simple feed-forward neural network (Section 4). In both cases, we explore themodels’
behaviour on Czech-English and German-English datasets.

All of the code is available open-source.1

1.1. Word Alignment

Word alignment (also bitext alignment) is a task of matching two groups of words
together that are each other’s semantic translation. This is problematic for non-content
wordswhich are specific for the given language but generally one is able to construct a
mapping as in the example in Figure 1. Word alignment usually follows after sentence
alignment. Even though it is called word alignment, it usually operates on all tokens,
including punctuation marks.

Wählen Sie im Popupmenü unten im Dialogfeld die Option " Exportieren . "

Choose Export from the pop-up menu at the bottom of the dialog box .

Figure 1. Illustration of English (top) to German (bottom) word alignment. The token
»choose« is aligned to two tokens »wählen« and »Sie« while the token »Option« is left
unaligned. The article »die« is mistakenly aligned to two unrelated articles »the«.

Word alignment output can be formalized as a set containing tuples of source-
target words. For an aligner output A, a sure alignment S and a possible alignment P
(S ⊆ P),2 precision can be computed as |A∩P|

|A|
and recall as |A∩S|

|S|
. The most common

metric, Alignment Error Rate (AER), is defined as 1 − |A∩S|+|A∩P|

|S|+|A|
(lower is better).

Even though the test set is annotated with two types of alignments, the aligner is

1github.com/zouharvi/LeverageAlign
2Sure alignments can be treated as gold alignments with very high confidence, while pairs marked with

possible alignments are still sensible to connect, but with the decision being much less clear. The AER is
designed not to penalize models by including more possible alignments in the gold annotations.
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expected to produce only one type. These evaluation measures are described by Mi-
halcea and Pedersen (2003) and Och and Ney (2003).

Traditionally word alignment models can be split into soft and hard alignment
parts. In soft alignment, the model produces a score for every source-target pair.
When producing hard alignment (extractors), the model makes decisions as to which
alignments to include in the output. For source sentence S and target sentence T , the
output of soft alignment is a R|S|×|T | matrix while hard alignment is a set A ⊆ S× T .

Symmetrization. Assuming that we have access to bi-directional word alignment
(in the context of this paper to two MT systems of the opposite directions) we can
compute both the alignment from source to target (X) and target to source (X ′). Hav-
ing access to both X and X ′ makes it possible to create a new alignment Y with either
higher precision through intersection or higher recall through union (Koehn, 2009).

XT := {(b, a) : (a, b) ∈ X}

Yprec = X ∩ X ′T Yrec = X ∪ X ′T

We can make use of the fact that the models output soft alignment scores and cre-
ate new alignment scores in the followingway using a simple linear regressionmodel.
This allows us to fine-tune the relevance of each of the directions as well as their in-
teraction. However, it does not have the same effects as the union or the intersection
because it affects the soft alignment and not hard alignment in contrast to the previous
case.

psym(s, t) = β0 · p(s, t) + β1 · pr(t, s) + β2 · p(s, t) · pr(t, s)

More complex symmetrization techniques have been proposed and implemented
by Och and Ney (2000); Junczys-Dowmunt and Szał (2011).

1.2. Relevant Work

Och and Ney (2003) introduce the word alignment task and systematically com-
pare the IBMword alignment models. The work of Li et al. (2019) is closely related to
this article as it examines the issue of word alignment from NMT and proposes two
ways of extracting it: prediction difference and explicit model. They also show that
without guided alignment in training, NMT systems perform worse than fast_align
baseline. Using attention for word alignment is thoroughly discussed by Bahdanau
et al. (2014) and Zenkel et al. (2019). Word alignment based on static and contextu-
alized word embeddings is explored by the recent work of Sabet et al. (2020). Word
alignment based on cross-lingual (more than 2 languages) methods is presented by
Wu et al. (2021). The work of Chen et al. (2020b) focuses on inducing word align-
ments from glass-box NMT as a replacement for using Transformer attention layers
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directly. Chen et al. (2020a) document Mask Align, an unsupervised neural word
aligner based on a single masked token prediction.

Chen et al. (2016) propose guided attention, a mechanism that uses word align-
ment to bias the attention during training. This improves the MT performance on
especially rare and unknown tokens. The usage of word alignment in this work is,
however, opposite to the goals of this paper. While for Chen et al. (2016) the word
alignment improved their MT system, here the MT system improves the word align-
ment.

1.3. Tools

The experiments in this paper require an MT system capable of providing output
probabilities (decoder scores) and optionally also attention-based word alignment.
For comparison, we also use an IBM-model-based word aligner. This tool is also used
as an additional feature to the final aggregation model.

MarianNMT (Junczys-Dowmunt et al., 2018a,b) is a popular (both in academia and
in deployment scenarios), actively developed andmaintained system for fastmachine
translation. It already contains options for producing word alignment, output prob-
abilities for words and sentences and also attention scores.

fast_align (Dyer et al., 2013) is an unsupervised word aligner based on IBM Align-
ment Model 2. It does not provide state of the art pre-neural performance but is easy
to build with modern toolchains and has low resource requirements (both memory-
and computational-wise).

1.4. Data

For trainingpurposes, wemakeusemostly of the parallel corpora ofCzech–English
word alignments by Mareček (2016), based on manually annotated data. We also in-
clude a largeCzech-English corpus byKocmi et al. (2020) and a largeGerman–English
corpus by Rozis and Skadiņš (2017), which are not word aligned. From this corpus,
1M sentences were sampled randomly. A small manually aligned German–English
corpus by Biçici (2011) is included for testing. An overview of the corpus sizes is
displayed in Table 1.

1.5. MT Models

We make use of the MT models made available3 by Germann et al. (2020) and Bo-
goychev et al. (2020). For both Czech-English and English-German, CPU-optimized

3github.com/browsermt/students
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CS/DE-English Type Domain CS/DE Tok. EN Tok. Sent.
Czech Small aligned news, legal 53k 60k 2.5k
Czech Big unaligned multi 2618M 3013M 188M
German Small aligned legal 1k 1k 0.1k
German Big unaligned tech, news, legal 23M 25M 1M

Table 1. Used word aligned corpora with their sizes, domains and origin.

student models are used. They are transformer-based (Vaswani et al., 2017) and were
created by using knowledge distillation. WithWMT19 andWMT20 SacreBLEU (Post,
2018), the models achieve the following BLEU scores: Czech-English (27.7), English-
Czech (36.3) and English–German (42.7).4 Since the English–German MT is only
available in one direction, word alignment is reported in this direction as well. Excep-
tions, such as word alignment using an MT for the opposite direction, are explicitly
mentioned.

2. Individual Models

In this section, we describe and evaluate the individual word alignment models.
All of the newly introduced models make use of the fact that NMT systems can be
viewed as language models and can produce translation probabilities.

2.1. Baseline Models

The first model is fast_align. The second is attention-based soft word alignment
extracted from MarianNMT (Attention), which was trained with guided alignment
during the distillation. For the rest of this subsection, we will focus on models gener-
ating soft alignment scores (an unbounded real number corresponding to the quality
of a possible alignment between two tokens) and not the alignments themselves.

One Token Translation (M1). The simplest approach to get alignment scores is to
compute decoder translation probability using the MT (function m) between every
source and target token si and tj of the source and target sentences S and T . Single
tokens are passed to the models as if they were a sentence pair. The scores are not
normalized which is not an issue in this case, since the models working with these
alignment scores (in Section 2.2) compare output from sequences of the same length.

∀si ∈ S, tj ∈ T : p(si, tj) = m({si}, {tj})

4BLEU+case.mixed+lang.cs-en+numrefs.1 +smooth.exp+test.wmt20+tok.13a+version.1.4.13
BLEU+case.mixed+lang.en-cs+numrefs.1 +smooth.exp+test.wmt20+tok.13a+version.1.4.13
BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt19+tok.13a+version.1.4.8
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The produced values are in a log space (− inf, 0]. This approach requires |S| · |T | of
one-token translation scorings (decoder probability of the target reference) for pro-
ducing word alignments of a single sentence pair. On a CPU,5 the models average to
2.7s per one sentence pair alignment.

Source Token Dropout (M2). A more refined approach was chosen by Zintgraf
et al. (2017) inwhich the alignment score is computed as the difference in target token
probability when the source token is unknown. The exact approach is too computa-
tionally demanding (requires translation scorings with large amounts of replacement
words), and therefore we use a much simpler, yet conceptually similar method by
either omitting the token or replacing it with <unk>.6 Assume mj(S, T) produces the
log probability of the j-th target token. The sentence S

a/b

i with an obscured token si
can be defined in two ways which leads to two versions of this model: Ma

2 and Mb
2 .

Output is then possibly unbounded (− inf, inf).

∀si ∈ S, tj ∈ T : p(si, tj) = mj(S, T) −mj(S
a/b

i , T)

Word deletion (Ma
2 ) : Sai = s0, s1, . . . , si−1, si+1, . . . , s|S|

Word substitution (Mb
2 ) : Sbi = s0, s1, . . . , si−1, <unk>, si+1, . . . , s|S|

This requires |S| translation scorings of source and target lengths |S| and |T |, which
is comparable to M1. The models average to 1.5s per one sentence pair alignment.7

Source and Target Dropout (M3). A very similar methodwould be to also dropout
the target token and examine how the sentence probability changes. Applying the
two different ways of dropout leads to four versions of this approach. Note that in
this case we compute the sentence probability (because the target word is hidden)
and also do not subtract from the base sentence probability, but rather use the new
sentence probability as it is. This probability should be highest if the corresponding
tokens are both obscured. The probability is in log space (− inf, 0].

∀si ∈ S, tj ∈ T : p(si, tj) = m(S
a/b

i , T
a/b

j )

Ta
j = t0, t1, . . . , tj−1, tj+1, . . . , t|T |

Tb
j = t0, t1, . . . , tj−1, <unk>, tj+1, . . . , t|T |

58 threads 2.3GHz Ryzen 7 3700u, no RAM to disk swapping
6Even though subword-based MT models do not need <unk>, SentencePiece reserves the token <unk>

for an unknown symbol.
7The running time is lower because in this case it is |S| scorings of length |T |, while in M1 it is |S| × |T |

scorings of length 1.
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Word deletion, deletion (Maa
3 ) Sai , T

a
j

Word deletion, substitution (Mab
3 ) Sai , T

b
j

Word substitution, deletion (Mba
3 ) Sbi , T

a
j

Word substitution, substitution (Mbb
3 ) Sbi , T

b
j

This approach requires |S| · |T | translation scorings of source and target lengths of
|Sa/b| and |Ta/b| for sentence S translated to T which is roughly |T | times more than
in M1 and M2. This makes it it the most computationally demanding approach. On
average it takes 46.1s to produce one sentence pair alignment on a CPU.

2.2. Direct Alignment from Baseline Models

All of the models (except for fast_align) are not producing the alignments them-
selves, but soft alignment scores p for each pair of tokens (s, t) in source S × target T
sentence. The hard alignment itself can then, for example, be computed in the follow-
ing ways. The parameter α can be estimated from the development set. The function
p is in general any soft alignment function (e.g. attention scores or the alignment
scores from IBM model 1 EM algorithm).

1. For every source token s take the target tokens t with the maximum score.

A1 =
∪
s∈S

{(s, t) : p(s, t) = maxr{p(s, r)}}

2. For every source token s take all target tokens twith a high enough score (above
threshold). Thismethod is used to control the density of alignments in thework
of Liang et al. (2006) and provides a parameter to tradeoff precision and recall.

Aα
2 =

∪
s∈S

{(s, t) : p(s, t) ≥ α}

3. For every source token s take any target token which has a score of at least α
times the score of the best candidate. Special handling for negative cases in
the form of a division is required to make the formula work for the whole R.
The motivation for this is M2, which provides possibly unbounded alignment
scores. Assume α ∈ (0, 1].

Aα
3 =

∪
s∈S

{(s, t) : p(s, t) ≥ min
[
max

r
p(s, r) · α,max

r
p(s, r) /α

]
}

A1 can then be expressed asA1
3. Lower alpha values lead to lower precision and

higher recall because the algorithm includes more, less probable, alignments.
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A variation on this approach would be to subtract α instead of multiplying it.
The reason for choosing multiplication is that it dynamically adapts to a wider
range of intervals and bounds the parameters between 0 and 1. This is not the
case for substraction and because of this, it would be harder to choose the right
parameter.

4. Similar approach is forA3, but with the focus on the target side. For every target
token t take any source token which has a score of at least α times the score of
the best candidate.

Aα
4 =

∪
t∈T

{(s, t) : p(s, t) ≥ min
[
max

r
p(r, t) · α,max

r
p(r, t)/α

]
}

Similar reversal forA2 would not make sense, because it already takes all align-
ment above a threshold without any consideration for the direction.

5. Similarly to M3 and M4 it is possible to create an extractor in which instead of
having a single dropout on the target side, there are a multiple of them. This
way, the score would not be between the source token and the target token, but
between the source token and a subset of all target tokens. Formally, this would
replace the (complete)weighted graph structurewith a (complete) hypergraph.
Instead of just having a weight for Choose–Wählen, there would also be a weight
for {Choose}–{Wählen, Sie}, {Choose}-{Wählen, im, Popupmenü} etc. This would,
however, lead to exponential complexity in terms of target sentence length. The
number of words participating in an edge would then have to be limited to the
number of alignments to a single token that we can empirically expect of the
given language pair. Figure 1 suggests that for English-German this could be
3. Upon computing the scores for all the edges in this hypergraph, a follow-up
task would be to find the maximum-weight matching.

Coverage. The suggested greedywayof computing alignments fromalignment scores
is far from perfect. In the scenario depicted in Figure 2, all but the last source token
(German) have been alignedwith the target, eachwith different alignment scores. Al-
though the model may lack any lexical knowledge of the word Übersetzung, it should
consider the prior of a word being aligned to at least one target token.

In this specific case, A0.9
3 would probably include all alignments to the wordÜber-

setzung, since there is no single strong candidate (assume that lines not visible depict
soft alignments close to 0). Similarly, A0.9

4 would also include most alignments of
the word Übersetzung, including the word phetolelo, since the alignment score with
maschinelle is weak and also close to 0. Intersecting these two extractors A0.9

3 ∩ A0.9
4

would yield the correct alignment Übersetzung–phetolelo. Other tokens would not be
aligned to either of these two words because they have strong alignment scores with
different tokens.

This prior may not always be desirable. For this, intersecting with Aα
2 provides

a limiting threshold. In an application where the target token is erroneous, this pre-
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Thupelo ea phetolelo ea mochini

Ein Tutorial für maschinelle Übersetzung

Figure 2. Partial alignment from German (top) to Sesotho (bottom). The model has no
lexical knowledge about the alignment of »Übersetzung«, though »phetolelo« is a good
candidate because no other word aligned to it. Line strength corresponds to the soft

alignments produced by the model.

vents the alignment model from aligning the two corresponding tokens. Inducing
alignment based on graph properties is examined by Matusov et al. (2004), though
without the presence of NMT.

3. Evaluation of Individual Models

BaselineModels. Figure 3 shows the results on Czech↔English data averaged from
both directions. Different models have different spans of their scores, and therefore it
is much harder to select the single bestα. Themost basic model,M1, achieves the best
performance (AER = 0.46). The figure serves as an illustration of the Aα

2 landscape.

Figure 3. Precision, Recall and AER of individual models on CS↔EN data extracted using
A2 (directions averaged)

The results on Czech↔English data averaged from both directions withA3 can be
seen in Figure 4. The case of α = 0 corresponds to aligning everything with every-
thing, while α = 1 means aligning only the token with the highest score to the single
source one (i.e. A1). The different model families behave similarly with respect to
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Precision, Recall and AER. M1 achieves again the best result (AER = 0.34), but with
a smoother distinction between models.

Out of the model M3 family, Mbb
3 outperformed the rest significantly. In A2 (Fig-

ure 3), the other models,Maa
3 ,Mab

3 andMba
3 , performworse thanMa

2 andMb
2 . This

is reversed in case of using theA3 extractor, as shown in Figure 4 and Figure 5. For the
M3 model family, models with mixed obscuring functions (Mab

3 and Mba
3 ) perform

worse than with the same obscuring function on both the source and the target side
(Maa

3 and Mbb
3 ).

Figure 4. Precision, Recall and AER of individual models on CS↔EN extracted using A3

(directions averaged)

The English→German dataset proved to be more difficult. The AER, that are
shown in Figure 5, are higher than for Czech↔English. The modelM1 again achieves
the best results with AER = 0.43. The model ordering is preserved from Figure 4.

Figure 5. Precision, Recall and AER of individual models on EN→DE extracted using A3
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Figure 6 documents that different model types produce different number of align-
ments per one token. It also shows that the performance rapidly decreases with sen-
tence length. The high AER in Figure 4 can be explained by the dataset containing
mostly longer sentences (21 tokens on average). The model M1 is still better than
Mbb

3 even on longer sentences despite the fact it does not model the context.

Figure 6. AER for α = 1 (left) and average number of aligned tokens (right) of individual
baseline models on CS↔EN extracted using A3 (directions averaged)

The best resultswere achievedwithA1
4 usingM1: AER= 0.30 forGerman→English

and AER = 0.31 for Czech↔English. The plots (not shown) are very similar to those
ofA3. HenceMbb

3 follows upwithAER= 0.38 andAER= 0.36 for German andCzech
respectively using A1

4.

Data Precision Recall AER
Czech↔English Small 0.54 0.66 0.41

Czech↔English Big 0.63 0.64 0.38

German→English Small 0.49 0.55 0.48

German→English Small+Big 0.63 0.72 0.34

Table 2. Precision, Recall and AER of fast_align. Models were evaluated on the respective
annotated datasets part.

fast_align. For comparison, the results of fast_align can be seen in Table 2. For both
language pairs, we use twomodels, trained on the Small and Big corpora. Themotiva-
tion for the latter is that the performance of fast_align on 5k sentence pairs is unfairly
low in comparison to the othermethods because the usedMT systemhas had access to
a much larger amount of data. This is shown by the performance difference between
these two models.
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Data Subword Aggregation Precision Recall AER
Czech↔English Small maximum 0.64 0.81 0.29

Czech↔English Small average 0.64 0.81 0.29

German→English Small maximum 0.69 0.81 0.26

German→English Small average 0.68 0.80 0.27

Table 3. Precision, Recall and AER of attention-based word alignment extracted using A1
3

Attention Scores. Extracting alignment from MT model attention using A1
3 results

in the highest performance (Table 3). Since the attention scores are between subword
units from SentencePiece (Kudo and Richardson, 2018), we chose twomethods of ag-
gregation to a single score between two tokens (two lists of subwords): (1) taking the
maximum probability between two subwords and (2) taking the average probability.
They, however, produce almost identical results with respect to the word alignment
quality. Scores are listed with A1

3, but A0.25
2 achieved very close results.

Model Method Precision Recall AER
M1 reverse 0.56 0.82 0.35

M1 add 0.59 0.86 0.31

M1 intersect 0.73 0.77 0.26

Attention (avg) reverse 0.64 0.81 0.29

Attention (avg) multiply 0.66 0.83 0.28

Attention (avg) intersect 0.77 0.70 0.28

Table 4. Average Precision, Recall and AER on Czech↔English extracted using A1
4 with

symmetrization methods applied for M1 and Attention (avg)

Symmetrization. Results of symmetrization methods (akin to those described in
Section 1.1) for M1 and Attention scores (attention scores aggregated by averaging)
are shown in Table 4. Each method is accompanied by an example formula; px stands
for eitherM1 or Attention (avg) (in principle any function which produces soft align-
ments). Similarly, A1

4 could be replaced by other extractors, even though this one
worked the best. For reverse and add, A1

4 is applied on the final result, but for simplic-
ity left out of the formulas.
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Method reverse consists of using TGT→SRC translation direction to get alignment
scores but then transposing the soft alignmentmatrix so that the scores are SRC→TGT.

preverse
CS→EN(s, t) = px

EN→CS(t, s)

Method add simply combines the original and reversed scores before alignments
are extracted. The scores ofM1 are in log space; therefore, addition is used instead of
multiplication. For attentions, multiplication is used, since they are bounded by [0, 1].

padd
CS→EN(s, t) = px

CS→EN(s, t) + px
EN→CS(t, s)

p
mutliply
CS→EN(s, t) = px

CS→EN(s, t) · px
EN→CS(t, s)

Method intersect first extracts the alignments for the two directions and then in-
tersects the results (with one direction transposed). This method produces the best
results overall (AER = 0.26), also surpassing M1’s forward direction and attention-
based alignments.

A1
4(p

intersect
CS→EN(s, t)) = A1

4(p
x
CS→EN(s, t)) ∩A1

4(p
x
EN→CS(t, s))

In contrast to M1, none of the other models, including attention-based, improved
rapidly. This is partly explained by the fact that in other models, the precision-recall
balance is shifted from recall to precision, while inM1 it became more balanced after
intersection. The reversal also allowed us to get significant results (AER = 0.27) for
the English→German direction using Attention (avg), for which we did not have an
MT system.

3.1. Extractor Limitations

Computing word alignments by taking the most probable target token (A1
3, A

1
4)

has theoretical limitations to the AER because it makes a faulty assumption that every
token is aligned to at least one other token. The Czech→English dataset has 12%
of unaligned tokens and an average of 1.16 aligned target tokens per source tokens
(excluding non-aligned tokens).

Assuming access to a word alignment oracle (0 if not aligned, 1 if aligned), in case
the token is not aligned to any other, all of the scores are 0. The extractor A1

3 = A1

will then take all tokens with values equal to the maximum, effectively aligning the
in reality unaligned token to every possible one. This extractor is then bound to have
maximum recall, but relatively poor accuracy.

55



PBML 116 APRIL 2021

The measured performance shows that the Aα
2 is not the best extraction method.

However, it is objectively not prone to this issue because it does notmake any assump-
tions about the number of aligned tokens, and the minimum possible AER is 0 (A1

2

with an oracle). In the next section, we will therefore make use of Aα1

2 ∩Aα2

3 ∩Aα3

4 ,
which provides better performance than individual extractors.

4. Ensembling of Individual Models

In the previous section, we saw that multiple methods with different properties
achieved good results, but were sensitive to the method used to induce hard align-
ment. This section combines them together in a small feed-forward neural network,
which can be trained on a small amount of data.

4.1. Model

The ensemble neural network itself is a regressor: F → (0, 1), where F is the set of
feature vectors for every pair of source and target tokens.8 By applying sigmoid to the
output and establishing a threshold value for the positive class, the network would
become a classifier. This behaviour can, however, be simulated using Aα

2 . We work
with the threshold explicitly and use the network for computing alignment score and
not for the alignment itself. For the hard alignment, we use A0.001

2 ∩A1
3 ∩A1

4, which
we found to work the best with this ensemble on the training data.

Additional Features. Apart from M1, Mb
2 , Maa

3 , Mbb
3 and Attention with averag-

ing aggregation (Individual), we also include the output of fast_align as one of the
features. Moreover, four other manually crafted features (Manual) are added. The
motivation for the first two manual features is that the position and token length help
in determining the alignment in some cases. The last two are specifically targeted
at named entities, which have sparse occurrences in the data, and also at non-word
tokens, such as full stops, delimiters and quotation marks. We list Pearson’s corre-
lation coefficient with true alignments on Czech↔English data (the two directions
averaged).

• Difference in sentence positions:
ρ = - 0.18, abs( i/|S|− j/|T | )

• Difference in token lengths:
ρ = - 0.11, abs( |si|− |tj| )

• Difference in subword unit counts:
ρ = - 0.03, abs( |subw(si)|− |subw(tj)| )

8A completely different approach would be to simply use (pretrained) word embeddings as an input to
the network. This is, however, not possible due to the low amount of gold alignment data.
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• Normalized token case-insensitive Levenshtein distance:
ρ = - 0.30, lev(si, tj)/max(|si|, |tj|)

• Number of subword units which are present in both tokens:9
ρ = 0.32, | subw(si) ∩ subw(tj) |

• Token string case-insensitive equality (equal to zero Levenshtein distance):
ρ = 0.28, Isi≃tj

Architecture. For every model, the epoch with the lowest AER on the validation
dataset is used for the test dataset. This extractor was found to work best across all
ensemble models. The training was done with cross-entropy loss. The model was
composed of series of hidden linear layers, eachwith biases and Tanh as the activation
function with dropouts around the innermost layer:

LTanh
|Input| ◦ L

Tanh
32 ◦D0.2 ◦ LTanh

16 ◦D0.2 ◦ LTanh
16 ◦ LTanh

8 ◦ LSoftmax
1

4.2. Data

The Czech↔English dataset contains 1.5M source-target pairs, out of which 2.64%
is of a positive class (aligned). For German↔English Small these quantities are 22k
and 5.61% respectively. This could be an issue for a simple classifier network and
would need e.g. oversampling of the positive or undersampling of the negative class.

For Czech↔English, we used 10%and 10%(250 sentences each) for validation and
test data and the rest for training. Samples were split on sentence boundaries. The
English→German was used solely for testing, due to its small size.

4.3. Evaluation

The averaged results of each ensemble on Czech↔English are in Table 5. We also
show the results ofM1, but withoutA2. Due to the range ofM1’s values, it is difficult
to establish a cut-off threshold. Attention usesA1

3, since intersectionwith other extrac-
tors did not improve the performance, as described in Section 3. The results demon-
strate that adding any feature improves the overall ensemble. All features combined
together improve on the best individual model by −0.11 AER.10

Transfer. The best models on Czech↔English (one for each direction) were then
used on the English→German dataset, resulting on average in AER = 0.18. This is
higher than for Czech but still significantly lower (by a margin of −0.08)11 than for
the best individual model, Attention (max). This suggests that the features generalize

9Normalized version of this feature had slightly lower correlation coefficient: 0.30.
10Performed by Student’s t-test on 10 runs with p < 0.001.
11Performed by Student’s t-test with p < 0.001.
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Model / Features Precision Recall AER
M1 (A1

3 ∩A1
4) 0.75 0.78 0.25 ⋆

Attention (max, A1
3) 0.64 0.81 0.29

fast_align Small 0.54 0.66 0.41

fast_align Big 0.63 0.64 0.38

Manual features 0.55 0.46 0.50

Individual (M1, Mb
2 , Maa

3 , Mbb
3 , attention) 0.84 0.73 0.23

Manual + Indiv. 0.85 0.79 0.19

Manual + Indiv. + fast_align 0.86 0.79 0.18

Manual + Indiv. + fast_align + Attention 0.85 0.84 0.16

Manual + Indiv. + fast_align + Attention + M1 rev. 0.86 0.86 0.14 ⋆

Table 5. Average Precision, Recall and AER of M1 (best individual) and different
ensemble models (using A0.001

2 ∩A1
3 ∩A1

4) on Czech↔English data (averaged)

well and models can be trained even on other language data. Furthermore, since the
alignment datasets come fromdifferent origins, theremay be systematic biases, which
lower the performance of the transfer.

5. Summary

This paper explored and compared different methods of inducingword alignment
from trained NMT models. Despite its simplicity, estimating scores with single word
translations (combined with reverse translations) appears to be the fastest and the
most robust solution, even compared to word alignment from attention heads. En-
sembling individual model scores with a simple feed-forward network improves the
final performance to AER = 0.14 on Czech↔English data.

Future work. Section 2.1 presented but did not explore an idea of target dropout
with multiple tokens in order to better model the fact that words rarely map 1:1. We
then used neural MT for providing alignment scores but then used a primitive extrac-
tor algorithm for obtaining hard alignment. More sophisticated approaches which
consider the soft alignment origin (NMT), could vastly improve the performance.

Although it was possible to use any alignment extractor to get hard alignments out
of soft ones, we found that the choice of the mechanism and also the parameters had
a considerable influence on the performance. These alignment extractors are, how-
ever, not bound to alignment from NMT and their ability to be used with other soft
alignment models and other symmetrization techniques should be examined further.

Finally, we did not explore the possible effects of fine-tuning the translation model
on the available data or training it solely on this data. Similarity based on word em-
beddings could be used as yet another soft-alignment feature.
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