

Quantinuum

System Model H1

Product Data Sheet

Version 6.8.3 July 18th, 2024

© 2024 by Quantinuum. All rights reserved.

Page 2

TABLE OF CONTENTS

INTRODUCTION .. 3

FEATURES .. 3

USE CASES ... 3

FUNCTIONAL REQUIREMENTS ... 3

EMULATOR ACCESS AND OUTPUT ... 4

PERFORMANCE .. 4

EMULATION METHOD .. 4

NOISE MODEL .. 5

PHYSICAL NOISE ... 6

DEPHASING NOISE .. 7

ARBITRARY ANGLE NOISE SCALING .. 8

SCALING ... 8

APPENDIX ... 9

REFERENCES ... 9

© 2024 by Quantinuum. All rights reserved.

Page 3

INTRODUCTION

This Product Data Sheet covers all features and characteristics of the Quantinuum System
Model H1 Emulator.

FEATURES

• High fidelity noise models and parameters closely mimicking System Model H1 hardware
performance. Each emulator uses the same physical noise model, but noise parameters
reflect the performance of the device being emulated.

• Uses identical API for job submission as System Model H1, enabling seamless
translation from emulator to hardware

• Uses identical compiler as System Model H1, containing all the native gates, transport
operations and classical operations used in System Model H1

• Provides identical output format as System Model H1

• Allows usage of unique System Model H1 attributes: all-to-all connectivity and qubit reuse
after mid-circuit measurement

• Available even while System Model H1 is offline to enable maximized productivity and
development time

• TKET supported in the stack provides circuit optimization to all submitted circuits.
Additional details on TKET options can be found in the Quantinuum Application
Programming Interface (API) Specification.

USE CASES

The System Model H1 emulator provides a high-fidelity emulation of System Model H1. Use
cases include:

• Debugging of quantum code before running on physical hardware

• Optimization of quantum code in the presence of noise mechanisms

• Exploring new algorithms and techniques for quantum error correction

• Introduction to System Model H1 and its unique differentiating capabilities such as qubit
reuse after mid-circuit measurement, all-to-all connectivity, and high-fidelity gates

FUNCTIONAL REQUIREMENTS

The System Model H1 emulator is meant to be a functional emulation of System Model H1
and therefore supports the same functional operations as H1. Specifically, the System Model
H1 emulator supports:

• OPENQASM 2.0 circuits

• Quantinuum QASM enhancements, including classical logic, math, and program flow
control

• Quantinuum native gate set1

• Common compound gates from OPENQASM library, e.g., CX, H

• User-defined compound gates

• User option of noiseless simulation or inclusion of System Model H1 noise models

1 For definition of native gates, please request a copy of the Quantinuum System Model H1 Product Data Sheet

© 2024 by Quantinuum. All rights reserved.

Page 4

• Large quantum circuits with a limit of 10,000 on the number of shots

• Identical queuing prioritization as System Model H1

EMULATOR ACCESS AND OUTPUT

Communication with the System Model H1 emulator occurs through an API endpoint based
on the OpenQASM 2.0 standard (Cross, Lev, John, & Jay, 2017). Interface details are given
in the Quantinuum Application Programming Interface (API) Specification.

Users can select a System Model H1 emulator in the machine list API, designated with the
“E” suffix machine name. The output of H1 Emulator is a JSON-formatted array, identical to
the output format of System Model H1. Through the Job Submission API, users may select
the type of emulator used and turning on or off the application of the error model.

PERFORMANCE

The performance of the System Model H1 emulator is measured in the fidelity to hardware.
With inclusion of accurate and up-to-date noise models, the System H1 Emulator can
provide a high-fidelity representation of System Model H1 output. Fidelity is verified at
Quantinuum by comparison between the emulator and hardware outputs. However, noise
models cannot fully capture the behavior of System Model H1; users should expect some
variance. In the case of exceptional or unexplained variance, users should contact
Quantinuum technical support at QCsupport@quantinuum.com to discuss the circuit and
results.

EMULATION METHOD

The System Model H1 emulator, accessible via the API, receives instructions directly from
the same compilers used by the System Model H1 physical quantum hardware. These
compilers translate the submitted quantum program into a set of instructions comprising of
the native gate operations and the transport operations necessary to reconfigure the ion
chain at each step of the program.

Users can choose between either a state vector or stabilizer emulation method; in both
cases results are performed shot-by-shot. The state vector emulation method can run any
general quantum circuits, while the stabilizer emulation method is restricted to circuits
involving only quantum unitary gates that are Clifford operations.

The error model for the emulation can be turned on or off, allowing noisy or noise-free
emulations, respectively. The emulated error model includes:

• asymmetric depolarizing gate noise

• leakage errors

• crosstalk noise

• dephasing noise due to transport and qubit idling

Except for dephasing, errors on physical qubits are modeled as stochastic processes. For
the state vector emulation, dephasing is handled as a coherent Z rotation according to a
dephasing rate and the duration the qubit spends in transport or while idling while other

mailto:QCsupport@quantinuum.com

© 2024 by Quantinuum. All rights reserved.

Page 5

qubits are being gated. For the stabilizer emulation, the dephasing noise is treated as a
stochastic Z error where the probability of a Z error is equal to the Pauli twirled
approximation of the coherent dephasing channel, which is proportional to the square of the
dephasing rate multiplied by the duration.

NOISE MODEL

Users who have direct access to the Quantinuum API have the option of experimenting with
the physical noise parameters of the emulator. When deviating from the default emulation
model, users should not assume that performance predicted with modified error parameters
will match hardware performance.

All parameters listed in Table 1 are the default settings of the System Model H1 emulators.
As updates to the System Model H1 quantum computers are made, the emulator noise
parameters and the underlying error model are subject to change to accommodate
performance improvements, updates in the methodology for measuring devices parameter
and research into the noise sources themselves

All the errors are applied even when only certain parameters are specified. Only the
parameters specified are overridden. To turn off certain error parameters, explicitly set them
to 0.

For more information on the errors observed, see the following publications: Realization of
Real-Time Fault-Tolerant Quantum Error Correction, Implementing Fault-tolerant Entangling
Gates on the Five-qubit Code and the Color Code.

Table 1 Default Settings of the System Model H1 Emulators

Default Settings H1-1 H1-2

General

Qubits 20 20

Connectivity All-to-all All-to-all

Parallel two-qubit operations 5 5

Physical Noise

Single-Qubit Fault Probability (p1) 2.1 × 10−5 5.45 × 10−5

Two-Qubit Fault Probability (p2) 8.8 × 10−4 2.97 × 10−3

Bit Flip Measurement Probability (0 outcome) (p_meas) 1.0 × 10−3 1.17 × 10−3

Bit Flip Measurement Probability (1 outcome) (p_meas) 4.0 × 10−3 5.26 × 10−3

Crosstalk Measurement Fault Probability
(p_crosstalk_meas)

1.45 × 10−5 3.4 × 10−5

Initialization Fault Probability (p_init) 3.62 × 10−5 3.62 × 10−5

Crosstalk Initialization Probability (p_crosstalk_init) 5.020 × 10−6 5.020 × 10−6

Ratio of Single-Qubit Spontaneous Emission to p1
(p1_emission_ratio)

0.54 0.488

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://arxiv.org/abs/2208.01863
https://arxiv.org/abs/2208.01863

© 2024 by Quantinuum. All rights reserved.

Page 6

Ratio of Single-Qubit Spontaneous Emission in Two-
Qubit Gate to p2 (p2_emission_ratio)

0.43 0.206

Dephasing Noise

Quadratic Dephasing Rate (quadratic_dephasing_rate) 0.122 0.122

Linear Dephasing Rate (linear_dephasing_rate) 0.0 0.0

Coherent to Incoherent Factor
(coherent_to_incoherent_factor)

2.5 2.5

Arbitrary Angle Noise Scaling

Fit Parameter 1 (przz_a) 1.651 1.651

Fit Parameter 2 (przz_b) 0.175 0.175

Fit Parameter 3 (przz_c) 1.651 1.651

Fit Parameter 4 (przz_d) 0.175 0.175

Polynomial (przz_power) 1.0 1.0

PHYSICAL NOISE

The emulator runs with default error parameters that represent a noise environment that
closely resembles the respective hardware. These error parameters can be set and used to
override the default error parameters and do finer-grain tweaks of the error model.
Modification of the error parameters away from default values is an advanced option and not
recommended as a starting point for emulations of hardware performance.

• Single-Qubit Fault Probability (p1): probability of a fault occurring during a single-qubit
gate

• Two-Qubit Fault Probability (p2): probability of a fault occurring during a two-qubit gate

• Bit Flip Measurement Probability (p_meas): probability of a bit flip being applied to a
measurement. Either a float or a tuple of 2 floats. If it is a single float then that error rate
is used to bitflip both 0 and 1 measurement results. If a tuple is supplied, the first element
is the probability a bit flip is applied if a 0 result occurs during measurement while the
second error rate if a 1 is measured.

• Crosstalk Measurement Fault Probability (p_crosstalk_meas): probability of a
crosstalk measurement fault occurring

• Initialization Fault Probability (p_init): probability of a fault occurring during
initialization of a qubit

• Crosstalk Initialization Fault Probability (p_crosstalk_init): probability of a cross-talk
fault occurring during initialization of a qubit

• Ratio of Single-Qubit Spontaneous Emission to p1 (p1_emission ratio): fraction of
p1 that is spontaneous emission for a single qubit instead of asymmetric depolarizing
noise

• Ratio of Single-Qubit Spontaneous Emission in Two-Qubit Gate to p2
(p2_emission_ratio): fraction of p2 that is spontaneous emission for a single qubit in a
two-qubit gate instead of asymmetric depolarizing noise

The single and two-qubit fault probabilities are largely modeled using asymmetric
depolarizing channels; however, there is smaller probability that a spontaneous emission
event happens. The probability is about an order of magnitude lower than the corresponding

© 2024 by Quantinuum. All rights reserved.

Page 7

asymmetric depolarizing error rate. The spontaneous emission error rates can be scaled
using the scaling parameters given in the Scaling section. If a spontaneous emission event
happens then ¼ the time 𝑋 is applied, ¼ the time 𝑌 is applied, and ½ the time leakage is
applied. For more details see: Realization of Real-Time Fault-Tolerant Quantum Error
Correction.

The two-qubit fault probability corresponds to the asymmetric depolarizing probability of the
System Model H2 fully entangling two-qubit gate, 𝑍𝑍(). The probability of asymmetric
depolarizing error for the arbitrary angle two-qubit gate, 𝑅𝑍𝑍(𝜃), depends on the angle 𝜃.

The spontaneous emission error channel is the same for both 𝑍𝑍() and 𝑅𝑍𝑍(𝜃).

DEPHASING NOISE

The noise model includes a memory error for which 𝑍 is applied. This is often called
"dephasing" or "memory" noise and depends on the duration for which the qubits are idling
or transporting in the trap. We potentially model two types of dephasing noise: one where the
probability of applying 𝑍 is quadratically dependent on the duration and another where the
probability is linearly dependent on the duration. Note, we apply both sorts of noise
simultaneously. For state vector simulations, the quadratic noise is modeled in the emulator
by default as coherent noise. For this coherent quadratic dephasing noise, the 𝑅𝑍 gate is
applied with an angle proportional to quadratic dephasing rate multiplied by the duration. The
resulting probability of the 𝑅𝑍 gate applying a 𝑍 operation on a plus state is

sin(rate x duration 2⁄)2, which is why we call this a form of quadratic dephasing

For the stabilizer simulator, by default this quadratic noise is modeled incoherently by
applying Pauli 𝑍 with probability, sin(frequency x duration 2⁄)2, to model more closely the
quadratic dependency with frequency and time, as seen in the coherent model. Note,
stabilizer simulations can only simulate Clifford and measurement-like gates, so the 𝑅𝑍 gate
cannot be applied directly.

For both state vector and stabilizer simulations, linear dephasing is modeled with 𝑍 applied
using a probability equal to the linear dephasing rate multiplied by the duration.

Switching between the coherent and incoherent quadratic dephasing model can be
accomplished by setting coherent_dephasing either True or False. As mentioned,
coherent_dephasing is True by default for the state vector simulations and False by default
for stabilizer simulations. If coherent_dephasing is set to False then the frequency for the
quadratic error model (quadratic_dephasing_rate) is multiplied by
coherent_to_incoherent_factor to attempt to make up for increased noise due to coherent
effects; however, how sensitive circuits are to coherent effects depends on the circuit.
Therefore, users may want to adjust this factor appropriately.

In addition, a transport dephasing parameter (transport_dephasing) and an idle dephasing
parameter (idle_dephasing) are both turned on by default. Both can be toggled off.

• Coherent Dephasing (coherent_dephasing): A boolean value determining whether
quadratic dephasing is applied (default: True).

• Coherent Quadratic Dephasing Model: the gate 𝑅𝑍 (frequency x duration) is applied
during transport and qubit idling where frequency is equal to quadratic_dephasing_rate
(units of 2𝜋 radians per second). This model is used if coherent_dephasing is True.
Applied by default for the state vector simulator.

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058

© 2024 by Quantinuum. All rights reserved.

Page 8

• Quadratic Dephasing Rate (quadratic_dephasing_rate): The frequency, 𝑓, in applying
𝑅𝑍 (frequency x duration) during transport and idling.

• Incoherent Quadratic Dephasing Model: Pauli 𝑍 is applied during transport and qubit

idling according to the probability sin(frequency x duration 2⁄)2 where frequency is equal
to quadratic_dephasing_rate multiplied by the coherent_to_incoherent_factor (all in units
of 2𝜋 radians per second). This model is used if coherent_dephasing is False. This model
is mostly used to mimic coherent dephasing noise for stabilizer simulations and is applied
by default for the stabilizer simulator.

o Incoherence Multiplier (coherent_to_incoherent_factor): A multiplier on the
quadratic term when running stabilizer simulations to attempt to account for
increases in error due to coherent effects in the circuit.

• Linear Dephasing Model: Pauli 𝑍 is applied during transport and qubit idling according
to the probability of linear_dephasing_rate x duration where linear_dephasing_rate is per
second (𝑠−1), and duration is in units of seconds. This model is used in conjunction with
either the coherent or incoherent quadratic dephasing model.

• Linear Dephasing Rate (linear_dephasing_rate): The probability of applying 𝑍 with 𝑝 =
𝑟𝑑 where 𝑟 is rate and 𝑑 is duration. This models the memory error. Note both the
quadratic and linear term can be applied in the same simulation.

• Transport Dephasing (transport_dephasing): A boolean affecting whether memory
noise is applied during transport.

• Idle Dephasing (idle_dephasing): A boolean affecting if memory noise is applied due to
qubit idling.

ARBITRARY ANGLE NOISE SCALING

The System Model H2 systems have a native arbitrary-angle 𝑍𝑍 gate, 𝑅𝑍𝑍(𝜃). For
implementation of this gate in the System Model H2 emulator, certain parameters relate to
the strength of the asymmetric depolarizing noise. These parameters depend on the angle 𝜃.

This is normalized so that 𝜃 =
𝜋

2
 gives the two-qubit fault probability (p2).

The parameters for asymmetric depolarizing noise are fit parameters that fit the noise
estimated as the angle 𝜃 changes per this equation:

(𝑝𝑟𝑧𝑧𝑎 ∗ (|𝜃| 𝜋)⁄ 𝑝𝑟𝑧𝑧𝑝𝑜𝑤𝑒𝑟 + 𝑝𝑟𝑧𝑧𝑏) ∗ 𝑝2 𝜃 < 0

(𝑝𝑟𝑧𝑧𝑐 ∗ (|𝜃| 𝜋)⁄ 𝑝𝑟𝑧𝑧𝑝𝑜𝑤𝑒𝑟 + 𝑝𝑟𝑧𝑧𝑑) ∗ 𝑝2 𝜃 > 0

(𝑝𝑟𝑧𝑧𝑏 + 𝑝𝑟𝑧𝑧𝑑) ∗ 0.5 𝜃 = 0

• Fit Parameter 1 (przz_a)

• Fit Parameter 2 (przz_b)

• Fit Parameter 3 (przz_c)

• Fit Parameter 4 (przz_d)

• Polynomial (przz_power)

SCALING

A scaling factor can be applied that multiplies all the default or supplied error parameters by
the scaling rate. In this case, a 1 does not change the error rates while 0 makes all the errors

© 2024 by Quantinuum. All rights reserved.

Page 9

have a probability of 0. Other aspects of the noise model can scale specific error rates in the
error model, which include:

• Scaling (scale): scale all error rates in the model linearly

• P1 Scaling (p1_scale): scale the probability of single-qubit gates having a fault

• P2 Scaling (p2_scale): scale the probability of two-qubit gates having a fault

• Measurement Scaling (meas_scale): scale the probability of measurement having a
fault

• Initialization Scaling (init_scale): scale the probability of initialization having a fault

• Memory Scaling (memory_scale): linearly scale the probability of dephasing causing a
fault

• Emission Scaling (emission_scale): scale the probability that a spontaneous emission
event happens during a single or two-qubit gate

• Cross-talk Scaling (crosstalk_scale): scale the probability that measurement or
initialization crosstalk events get applied to qubits, during mid-circuit measurement and
reset (initialization), "crosstalk" noise can occur that effectively measures other qubits in
the trap or cause them to leak.

• Leakage Scaling (leakage_scale): scale the probability that a leakage even happens
during single or two-qubit gates as well as during initialization or crosstalk; on the device
half the time, spontaneous emission leads to a leakage event

APPENDIX

A H-System Quantum Credit (HQC) is defined as:

𝐻𝑄𝐶 = 5 +
𝑁1𝑞 + 10 𝑁2𝑞 + 5 𝑁𝑚

5000
𝐶

where 𝑁1𝑞 is the number of single-qubit gates, 𝑁2𝑞 is the number of native two-qubit gates,

𝑁𝑚 is the number of state preparation and measurement operations in a circuit, including the
initial implicit state preparation and any intermediate and final measurements and state
resets, and 𝐶 is the shot count. When a circuit is submitted, whether to a quantum computer,
syntax checker, or emulator, the cost in HQCs is returned with the results.

REFERENCES

Cross, A. W., Lev, B. S., John, S. A., & Jay, G. M. (2017). Open Quantum Assembly Language.
arXiv:1707.03429v2.

