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INTRODUCTION 

This Product Data Sheet covers all features and characteristics of the Quantinuum System 
Model H1 Emulator. 

FEATURES 

• High fidelity noise models and parameters closely mimicking System Model H1 hardware 
performance. Each emulator uses the same physical noise model, but noise parameters 
reflect the performance of the device being emulated. 

• Uses identical API for job submission as System Model H1, enabling seamless 
translation from emulator to hardware 

• Uses identical compiler as System Model H1, containing all the native gates, transport 
operations and classical operations used in System Model H1 

• Provides identical output format as System Model H1 

• Allows usage of unique System Model H1 attributes: all-to-all connectivity and qubit reuse 
after mid-circuit measurement 

• Available even while System Model H1 is offline to enable maximized productivity and 
development time 

• TKET supported in the stack provides circuit optimization to all submitted circuits. 
Additional details on TKET options can be found in the Quantinuum Application 
Programming Interface (API) Specification. 

USE CASES 

The System Model H1 emulator provides a high-fidelity emulation of System Model H1.  Use 
cases include: 

• Debugging of quantum code before running on physical hardware 

• Optimization of quantum code in the presence of noise mechanisms 

• Exploring new algorithms and techniques for quantum error correction 

• Introduction to System Model H1 and its unique differentiating capabilities such as qubit 
reuse after mid-circuit measurement, all-to-all connectivity, and high-fidelity gates 

FUNCTIONAL REQUIREMENTS 

The System Model H1 emulator is meant to be a functional emulation of System Model H1 
and therefore supports the same functional operations as H1. Specifically, the System Model 
H1 emulator supports: 

• OPENQASM 2.0 circuits 

• Quantinuum QASM enhancements, including classical logic, math, and program flow 
control 

• Quantinuum native gate set1 

• Common compound gates from OPENQASM library, e.g., CX, H 

• User-defined compound gates 

• User option of noiseless simulation or inclusion of System Model H1 noise models 

 
1 For definition of native gates, please request a copy of the Quantinuum System Model H1 Product Data Sheet 
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• Large quantum circuits with a limit of 10,000 on the number of shots 

• Identical queuing prioritization as System Model H1 

EMULATOR ACCESS AND OUTPUT 

Communication with the System Model H1 emulator occurs through an API endpoint based 
on the OpenQASM 2.0 standard (Cross, Lev, John, & Jay, 2017). Interface details are given 
in the Quantinuum Application Programming Interface (API) Specification. 

Users can select a System Model H1 emulator in the machine list API, designated with the 
“E” suffix machine name. The output of H1 Emulator is a JSON-formatted array, identical to 
the output format of System Model H1. Through the Job Submission API, users may select 
the type of emulator used and turning on or off the application of the error model. 

PERFORMANCE 

The performance of the System Model H1 emulator is measured in the fidelity to hardware.  
With inclusion of accurate and up-to-date noise models, the System H1 Emulator can 
provide a high-fidelity representation of System Model H1 output. Fidelity is verified at 
Quantinuum by comparison between the emulator and hardware outputs. However, noise 
models cannot fully capture the behavior of System Model H1; users should expect some 
variance. In the case of exceptional or unexplained variance, users should contact 
Quantinuum technical support at QCsupport@quantinuum.com to discuss the circuit and 
results. 

EMULATION METHOD 

The System Model H1 emulator, accessible via the API, receives instructions directly from 
the same compilers used by the System Model H1 physical quantum hardware. These 
compilers translate the submitted quantum program into a set of instructions comprising of 
the native gate operations and the transport operations necessary to reconfigure the ion 
chain at each step of the program.  

Users can choose between either a state vector or stabilizer emulation method; in both 
cases results are performed shot-by-shot. The state vector emulation method can run any 
general quantum circuits, while the stabilizer emulation method is restricted to circuits 
involving only quantum unitary gates that are Clifford operations. 

The error model for the emulation can be turned on or off, allowing noisy or noise-free 
emulations, respectively. The emulated error model includes: 

• asymmetric depolarizing gate noise 

• leakage errors 

• crosstalk noise  

• dephasing noise due to transport and qubit idling 

Except for dephasing, errors on physical qubits are modeled as stochastic processes. For 
the state vector emulation, dephasing is handled as a coherent Z rotation according to a 
dephasing rate and the duration the qubit spends in transport or while idling while other 

mailto:QCsupport@quantinuum.com
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qubits are being gated. For the stabilizer emulation, the dephasing noise is treated as a 
stochastic Z error where the probability of a Z error is equal to the Pauli twirled 
approximation of the coherent dephasing channel, which is proportional to the square of the 
dephasing rate multiplied by the duration. 

NOISE MODEL 

Users who have direct access to the Quantinuum API have the option of experimenting with 
the physical noise parameters of the emulator. When deviating from the default emulation 
model, users should not assume that performance predicted with modified error parameters 
will match hardware performance. 

All parameters listed in Table 1 are the default settings of the System Model H1 emulators. 
As updates to the System Model H1 quantum computers are made, the emulator noise 
parameters and the underlying error model are subject to change to accommodate 
performance improvements, updates in the methodology for measuring devices parameter 
and research into the noise sources themselves  

All the errors are applied even when only certain parameters are specified. Only the 
parameters specified are overridden. To turn off certain error parameters, explicitly set them 
to 0. 

For more information on the errors observed, see the following publications: Realization of 
Real-Time Fault-Tolerant Quantum Error Correction, Implementing Fault-tolerant Entangling 
Gates on the Five-qubit Code and the Color Code. 

 

Table 1 Default Settings of the System Model H1 Emulators 

Default Settings H1-1 H1-2 

General   

Qubits 20 20 

Connectivity All-to-all All-to-all 

Parallel two-qubit operations 5 5 

Physical Noise   

Single-Qubit Fault Probability (p1) 2.1 × 10−5 5.45 × 10−5 

Two-Qubit Fault Probability (p2) 8.8 × 10−4 2.97 × 10−3 

Bit Flip Measurement Probability (0 outcome) (p_meas) 1.0 × 10−3 1.17 × 10−3 

Bit Flip Measurement Probability (1 outcome) (p_meas) 4.0 × 10−3 5.26 × 10−3 

Crosstalk Measurement Fault Probability 
(p_crosstalk_meas) 

1.45 × 10−5 3.4 × 10−5 

Initialization Fault Probability (p_init) 3.62 × 10−5 3.62 × 10−5 

Crosstalk Initialization Probability (p_crosstalk_init) 5.020 × 10−6 5.020 × 10−6 

Ratio of Single-Qubit Spontaneous Emission to p1 
(p1_emission_ratio) 

0.54 0.488 

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://arxiv.org/abs/2208.01863
https://arxiv.org/abs/2208.01863
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Ratio of Single-Qubit Spontaneous Emission in Two-
Qubit Gate to p2 (p2_emission_ratio) 

0.43 0.206 

Dephasing Noise   

Quadratic Dephasing Rate (quadratic_dephasing_rate) 0.122 0.122 

Linear Dephasing Rate (linear_dephasing_rate) 0.0 0.0 

Coherent to Incoherent Factor 
(coherent_to_incoherent_factor) 

2.5 2.5 

Arbitrary Angle Noise Scaling   

Fit Parameter 1 (przz_a) 1.651 1.651 

Fit Parameter 2 (przz_b) 0.175 0.175 

Fit Parameter 3 (przz_c) 1.651 1.651 

Fit Parameter 4 (przz_d) 0.175 0.175 

Polynomial (przz_power) 1.0 1.0 

PHYSICAL NOISE  

The emulator runs with default error parameters that represent a noise environment that 
closely resembles the respective hardware. These error parameters can be set and used to 
override the default error parameters and do finer-grain tweaks of the error model. 
Modification of the error parameters away from default values is an advanced option and not 
recommended as a starting point for emulations of hardware performance. 

• Single-Qubit Fault Probability (p1): probability of a fault occurring during a single-qubit 
gate 

• Two-Qubit Fault Probability (p2): probability of a fault occurring during a two-qubit gate 

• Bit Flip Measurement Probability (p_meas): probability of a bit flip being applied to a 
measurement. Either a float or a tuple of 2 floats. If it is a single float then that error rate 
is used to bitflip both 0 and 1 measurement results. If a tuple is supplied, the first element 
is the probability a bit flip is applied if a 0 result occurs during measurement while the 
second error rate if a 1 is measured. 

• Crosstalk Measurement Fault Probability (p_crosstalk_meas): probability of a 
crosstalk measurement fault occurring 

• Initialization Fault Probability (p_init): probability of a fault occurring during 
initialization of a qubit 

• Crosstalk Initialization Fault Probability (p_crosstalk_init): probability of a cross-talk 
fault occurring during initialization of a qubit 

• Ratio of Single-Qubit Spontaneous Emission to p1 (p1_emission ratio): fraction of 
p1 that is spontaneous emission for a single qubit instead of asymmetric depolarizing 
noise 

• Ratio of Single-Qubit Spontaneous Emission in Two-Qubit Gate to p2 
(p2_emission_ratio): fraction of p2 that is spontaneous emission for a single qubit in a 
two-qubit gate instead of asymmetric depolarizing noise 

The single and two-qubit fault probabilities are largely modeled using asymmetric 
depolarizing channels; however, there is smaller probability that a spontaneous emission 
event happens. The probability is about an order of magnitude lower than the corresponding 
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asymmetric depolarizing error rate. The spontaneous emission error rates can be scaled 
using the scaling parameters given in the Scaling section. If a spontaneous emission event 
happens then ¼ the time 𝑋 is applied, ¼ the time 𝑌 is applied, and ½ the time leakage is 
applied. For more details see: Realization of Real-Time Fault-Tolerant Quantum Error 
Correction.   

The two-qubit fault probability corresponds to the asymmetric depolarizing probability of the 
System Model H2 fully entangling two-qubit gate, 𝑍𝑍(). The probability of asymmetric 
depolarizing error for the arbitrary angle two-qubit gate, 𝑅𝑍𝑍(𝜃), depends on the angle 𝜃. 

The spontaneous emission error channel is the same for both 𝑍𝑍() and 𝑅𝑍𝑍(𝜃).  

DEPHASING NOISE 

The noise model includes a memory error for which 𝑍 is applied. This is often called 
"dephasing" or "memory" noise and depends on the duration for which the qubits are idling 
or transporting in the trap. We potentially model two types of dephasing noise: one where the 
probability of applying 𝑍 is quadratically dependent on the duration and another where the 
probability is linearly dependent on the duration. Note, we apply both sorts of noise 
simultaneously. For state vector simulations, the quadratic noise is modeled in the emulator 
by default as coherent noise. For this coherent quadratic dephasing noise, the 𝑅𝑍 gate is 
applied with an angle proportional to quadratic dephasing rate multiplied by the duration. The 
resulting probability of the 𝑅𝑍 gate applying a 𝑍 operation on a plus state is 

sin( rate x duration 2⁄ )2, which is why we call this a form of quadratic dephasing 

For the stabilizer simulator, by default this quadratic noise is modeled incoherently by 
applying Pauli 𝑍 with probability, sin( frequency x duration 2⁄ )2, to model more closely the 
quadratic dependency with frequency and time, as seen in the coherent model. Note, 
stabilizer simulations can only simulate Clifford and measurement-like gates, so the 𝑅𝑍 gate 
cannot be applied directly.  

For both state vector and stabilizer simulations, linear dephasing is modeled with 𝑍 applied 
using a probability equal to the linear dephasing rate multiplied by the duration. 

Switching between the coherent and incoherent quadratic dephasing model can be 
accomplished by setting coherent_dephasing either True or False. As mentioned, 
coherent_dephasing is True by default for the state vector simulations and False by default 
for stabilizer simulations. If coherent_dephasing is set to False then the frequency for the 
quadratic error model (quadratic_dephasing_rate) is multiplied by 
coherent_to_incoherent_factor to attempt to make up for increased noise due to coherent 
effects; however, how sensitive circuits are to coherent effects depends on the circuit. 
Therefore, users may want to adjust this factor appropriately. 

In addition, a transport dephasing parameter (transport_dephasing) and an idle dephasing 
parameter (idle_dephasing) are both turned on by default. Both can be toggled off. 

• Coherent Dephasing (coherent_dephasing): A boolean value determining whether 
quadratic dephasing is applied (default: True). 

• Coherent Quadratic Dephasing Model: the gate 𝑅𝑍 (frequency x duration) is applied 
during transport and qubit idling where frequency is equal to quadratic_dephasing_rate 
(units of 2𝜋 radians per second). This model is used if coherent_dephasing is True. 
Applied by default for the state vector simulator.  

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041058
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• Quadratic Dephasing Rate (quadratic_dephasing_rate): The frequency, 𝑓, in applying 
𝑅𝑍 (frequency x duration) during transport and idling. 

• Incoherent Quadratic Dephasing Model: Pauli 𝑍 is applied during transport and qubit 

idling according to the probability sin( frequency x duration 2⁄ )2 where frequency is equal 
to quadratic_dephasing_rate multiplied by the coherent_to_incoherent_factor (all in units 
of 2𝜋 radians per second). This model is used if coherent_dephasing is False. This model 
is mostly used to mimic coherent dephasing noise for stabilizer simulations and is applied 
by default for the stabilizer simulator. 

o Incoherence Multiplier (coherent_to_incoherent_factor): A multiplier on the 
quadratic term when running stabilizer simulations to attempt to account for 
increases in error due to coherent effects in the circuit. 

• Linear Dephasing Model: Pauli 𝑍 is applied during transport and qubit idling according 
to the probability of linear_dephasing_rate x duration where linear_dephasing_rate is per 
second (𝑠−1), and duration is in units of seconds. This model is used in conjunction with 
either the coherent or incoherent quadratic dephasing model. 

• Linear Dephasing Rate (linear_dephasing_rate): The probability of applying 𝑍 with 𝑝 =
𝑟𝑑 where 𝑟 is rate and 𝑑 is duration. This models the memory error. Note both the 
quadratic and linear term can be applied in the same simulation.  

• Transport Dephasing (transport_dephasing): A boolean affecting whether memory 
noise is applied during transport. 

• Idle Dephasing (idle_dephasing): A boolean affecting if memory noise is applied due to 
qubit idling. 

ARBITRARY ANGLE NOISE SCALING 

The System Model H2 systems have a native arbitrary-angle 𝑍𝑍 gate, 𝑅𝑍𝑍(𝜃). For 
implementation of this gate in the System Model H2 emulator, certain parameters relate to 
the strength of the asymmetric depolarizing noise. These parameters depend on the angle 𝜃. 

This is normalized so that 𝜃 =
𝜋

2
 gives the two-qubit fault probability (p2).  

The parameters for asymmetric depolarizing noise are fit parameters that fit the noise 
estimated as the angle 𝜃 changes per this equation:  

(𝑝𝑟𝑧𝑧𝑎 ∗ (|𝜃| 𝜋)⁄ 𝑝𝑟𝑧𝑧𝑝𝑜𝑤𝑒𝑟 +  𝑝𝑟𝑧𝑧𝑏) ∗ 𝑝2 𝜃 < 0 

(𝑝𝑟𝑧𝑧𝑐 ∗ (|𝜃| 𝜋)⁄ 𝑝𝑟𝑧𝑧𝑝𝑜𝑤𝑒𝑟 +  𝑝𝑟𝑧𝑧𝑑) ∗ 𝑝2 𝜃 > 0 

(𝑝𝑟𝑧𝑧𝑏 + 𝑝𝑟𝑧𝑧𝑑) ∗ 0.5 𝜃 = 0 

• Fit Parameter 1 (przz_a) 

• Fit Parameter 2 (przz_b) 

• Fit Parameter 3 (przz_c) 

• Fit Parameter 4 (przz_d) 

• Polynomial (przz_power) 

SCALING 

A scaling factor can be applied that multiplies all the default or supplied error parameters by 
the scaling rate. In this case, a 1 does not change the error rates while 0 makes all the errors 
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have a probability of 0. Other aspects of the noise model can scale specific error rates in the 
error model, which include: 

• Scaling (scale): scale all error rates in the model linearly 

• P1 Scaling (p1_scale): scale the probability of single-qubit gates having a fault 

• P2 Scaling (p2_scale): scale the probability of two-qubit gates having a fault 

• Measurement Scaling (meas_scale): scale the probability of measurement having a 
fault 

• Initialization Scaling (init_scale): scale the probability of initialization having a fault 

• Memory Scaling (memory_scale): linearly scale the probability of dephasing causing a 
fault 

• Emission Scaling (emission_scale): scale the probability that a spontaneous emission 
event happens during a single or two-qubit gate 

• Cross-talk Scaling (crosstalk_scale): scale the probability that measurement or 
initialization crosstalk events get applied to qubits, during mid-circuit measurement and 
reset (initialization), "crosstalk" noise can occur that effectively measures other qubits in 
the trap or cause them to leak. 

• Leakage Scaling (leakage_scale): scale the probability that a leakage even happens 
during single or two-qubit gates as well as during initialization or crosstalk; on the device 
half the time, spontaneous emission leads to a leakage event 

APPENDIX 

A H-System Quantum Credit (HQC) is defined as: 

 

𝐻𝑄𝐶 = 5 +  
𝑁1𝑞 + 10 𝑁2𝑞 + 5 𝑁𝑚

5000
𝐶 

 

where 𝑁1𝑞 is the number of single-qubit gates, 𝑁2𝑞 is the number of native two-qubit gates, 

𝑁𝑚 is the number of state preparation and measurement operations in a circuit, including the 
initial implicit state preparation and any intermediate and final measurements and state 
resets, and 𝐶 is the shot count. When a circuit is submitted, whether to a quantum computer, 
syntax checker, or emulator, the cost in HQCs is returned with the results. 
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