
S
T

A
T

E
 O

F
 S

O
F

T
W

A
R

E
 S

E
C

U
R

IT
Y

V

O
L

U
M

E
 1

0

1State of Software Security 1State of Software Security

Welcome Letter	 2

Executive Summary	 3

Overall State of Software Security	 6
How prevalent are application flaws?

What proportion of flaws are fixed?

How quickly are flaws fixed?

Does DevSecOps drive faster fixing?

Is security debt rising or falling?

A Look at Application Security Testing	 14
How often are applications tested?

How regularly are applications tested?

Not All Flaws Are Created Equal	 18
What types of flaws are most common?

How common are severe and exploitable findings?

Does flaw prevalence differ by language?

Not All Flaws Are Remediated Equally	 26
Which flaws are fixed most often?

Is remediation out of focus?

How fast are flaws fixed?

The Elusive “Average”

Which flaws are fixed the fastest?

Breaking Down Security Debt	 37
Do priorities contribute to security debt?

Is there a security debt-to-income ratio?

Is fix capacity a constant?

What is security debt comprised of?

Regional Breakouts 	 49
Does software security change by region?

Key Takeaways	 52

Appendix: Methodology	 55

Contents

2 Veracode

As we reflect back over the past 10 volumes, we’re struck by both the enormous change
and growth in our industry (and in our own company), and also what has remained the
same. We’ve seen AppSec awareness grow in leaps and bounds since we started down
this SOSS path a decade ago. When we were working on SOSS Volume 1, we spent most
of our time trying to explain and advocate for application security. Today, we spend far
less time talking about what AppSec is, and more time talking about how to build an
effective, mature application security program.

At the same time, the core problem we are trying to solve today is not that far
removed from the problem we were trying to solve 10 years ago. In State of Software
Security v1, we concluded that “Most software is indeed very insecure.” We could use
that same statement in Volume 10. However, we are seeing some positive AppSec
signs in 2019. Organizations are increasingly focused on not just finding security
vulnerabilities, but fixing them, and prioritizing the flaws that put them most at risk.
Though vulnerabilities are introduced as part of the development process, the data
suggests that finding and fixing vulnerabilities is becoming just as much a part of
the process as improving functionality.

Even with the strides the industry has made over the past 10 years, there’s plenty
of room for improvement — especially regarding the time it takes to make those fixes.
In talking with our customers, and examining the data we used for this year’s report,
the notion of security debt has emerged as a significant pain point. Just as with
credit card debt, if you start out with a big balance and only pay for each month’s new
spending, you’ll never eliminate the balance. In AppSec, you have to address the new
security findings while chipping away at the old. Easier said than done, but we unearthed
some data points for this year’s report that shed light on a path forward, and highlight
some of the practices that help our customers tackle their security debt. This year’s
analysis highlights compelling evidence that a steady, regular scanning cadence not
only improves fix rates, but also lightens the security debt load.

Thanks for being part of this big milestone on our AppSec journey. We started Veracode
with a mission to secure the world’s software. Today, that mission remains, with the
added focus of enabling you to create, innovate, and “change the world” with software,
without being held back by security concerns. We hope the best practices outlined in
this report play a role in that goal.

Here’s to the next 10!

Welcome to the 10th volume of Veracode’s flagship
report, the State of Software Security (SOSS). This is
a big milestone for the application security industry,
and for us — a decade of SOSS!

Chris Eng
Chief Research Officer

SINCERELY,

Tim Jarret t, Chris Wysopal and Chris Eng

Chris Wysopal
Founder and Chief
Technology Officer

Tim Jarrett
Senior Director,
Product Management

2 Veracode

LETTER FROM TIM JARRETT, CHRIS WYSOPAL AND CHRIS ENG

3State of Software Security 3State of Software Security

Executive
Summary
In 2011, Marc Andreessen wrote an article in the Wall Street Journal
that included the now-famous phrase “software is eating the world.”
Eight years on, that statement rings truer than ever. It’s not a stretch
to say that software is eating the cybersecurity world as well. The
fallout from not integrating security early in the development lifecycle
has never been more apparent. And our annual report on the
State of Software Security (SOSS) has never been more important.

3State of Software Security

4 Veracode

VOL. 10

VOL. 10

83%

This year also marks an important milestone for the SOSS itself.
It’s our 10th edition! We’ve observed and learned a lot over the
last decade producing this report, and we’re especially excited
to share some “Then vs. Now” comparisons.

VOL. 1Number of
applications
tested:

Applications with
at least one flaw:

Applications with
high-severity flaws:

VOL. 10

1,591 85,000 That’s a
growth of 50x!

That’s an
increase of 11%!

That’s a
decrease of 14%!

Pass rate for OWASP
Top 10 policy scans:

IMPROVED BY
ALMOST 10%

VOL. 1 VOL. 10

59 171

Average number
of days to fix flaws:

But the median remained
59 days. This indicates most
fixes happen quickly, but
there’s a long and growing
tail of unresolved findings.

VOL. 1

VOL. 1

72% 34%

VOL. 10

20%

5State of Software Security

C
O

R
E

L

E
S

S
O

N It’s a near certainty that your applications have security flaws of various types. The likelihood
of remediating those flaws in a comprehensive and timely manner is not nearly as certain.
The ability to do this consistently — and thereby driving down security debt rather than
racking it up — is what separates leading and lagging SDLC programs.

Beyond those 10-year
views, we learned
more about the state of
software security in 2019.

 POLICY COMPLIANCE

2 in 3
applications fail
to pass initial tests
based on the OWASP
Top 10 and SANS
25 industry standards

Those who read last year’s SOSS may remember a heavy emphasis
on flaw persistence timeframes and what contributes to making
them longer or shorter. We return to that topic this year, but focus
on the accumulating security debt in applications caused by those
persistent flaws and long fix timeframes.
Here are some key findings we’ll expound on in this report:

 SECURITY DEBT

The chance that flaws will ever be dealt with
diminishes the longer they stick around, resulting in
accumulating “security debt” in many applications.

5x
less security debt in organizations
that scan their code more than
300 times per year

A more regular testing cadence
also corresponds to driving
down security debt.

C++
carries 3x to 5x more
unresolved flaws than
.NET over a sample period

Certain languages
appear more prone to
the buildup of security
debt than others.

 FLAW BUSTING

56%
of software flaws
eventually get fixed

76%
of high-severity flaws are
addressed by developers

Half of applications showed a
net reduction in flaws over the
sample time frame. Another
20% either had no flaws or
showed no change. This means
70% of development teams are
keeping pace or pulling ahead
in the flaw busting race!

 MEDIAN FIX TIME OF SCANNED FLAWS

68
days for applications
scanned 12 or fewer
times per year

19
days for applications
scanned 260+ times
per year

That’s a 72%
reduction!
They also tripled fix
rates over teams that
scan infrequently.

5State of Software Security

6 Veracode6 Veracode

Overall State of
Software Security
As stated previously, this is the 10th edition of the SOSS.
As we review what the data tells us about important trends
over the last year, it makes sense to reflect back on what
we’ve seen during the last decade as well. Let’s do that now,
in fact, starting with a data point that shows just how much
the SOSS has grown over the years.

7State of Software Security

1,591 applications
in Volume 1

85,000 applications
in Volume 10

(= 500 applications)

Source: Veracode SOSS Volume 10

1,591 applications
in Volume 1

85,000 applications
in Volume 10

(= 500 applications)

Source: Veracode SOSS Volume 10

1,591
applications tested

85,000
applications tested

VOL. 1 VOL. 10

Number of Apps Tested in SOSS Volume 1 vs. Volume 10

FIGURE 1 Comparison of the number of apps tested in SOSS Vol. 1 vs. Vol. 10

Source: Veracode SOSS Vol. 10

Represents 500 applications

Way back in Volume 1, we studied scan results from
1,591 applications. In Volume 10, we have the privilege
of testing over 85,000 applications. That’s over a
50-fold increase in sample size!

That’s pretty impressive, but perhaps even more so is the level of depth
we’re now able to achieve in that analysis. We’ve teamed up once again
with the data scientists and storytellers at the Cyentia Institute to level up
that analytical prowess to maximize value to our readers. And with a massive
dataset spanning 85,000 applications, 1.4 million scans, and nearly 10 million
security findings at our disposal, you’re in for an analytical treat in the pages
that follow!

7State of Software Security

That’s over a 50-fold
increase in sample size!

8 Veracode

FIGURE 2

Proportion of applications with
at least one flaw in the initial scan

Source: Veracode SOSS Vol. 10

How prevalent are application flaws?
This first question seems simple on the surface but gets deep
pretty quick. We’ll dip a toe into those waters now, and wade in
progressively deeper through the report. We’ve already mentioned
that we discovered about 10 million flaws across 85,000 applications.
Beyond that, 83% of those applications had at least one flaw in the
initial scan run by customers. That’s squarely within the range of
our most recent volumes, but somewhat higher than the inaugural
prevalence of 72% recorded way back in Volume 1. We attribute that
upward shift to the broader set of applications tested and expanded
scanning capabilities developed over that timeframe.

Beyond overall prevalence, we closely track the OWASP Top 10 vulnerabilities and SANS 25 software
errors because of their status as consensus listings of the critical flaws across the industry. The pass rate
for OWASP Top 10 compliance on the initial scan reversed a three-year decline by rising to 32%. That’s not
the highest ever recorded — that peak happened in 2016 — but the 10-year trend in Figure 3 shows things
are moving in the right direction. The pass rate on tests based around the SANS 25, surprisingly, matches
exactly what we tested in Volume 1.

FIGURE 3

Pass rates for OWASP Top 10 and SANS 25 compliance testing

Source: Veracode SOSS Vol. 10

8

JARGON WATCH

Flaw Prevalence
The proportion
of applications
that have a
(type of) flaw.

Veracode

32%

68%

23%

77%

33%

67%

Volume 1 Volume 10

33%

67%

Apps pass OWASP compliance

Apps don’t pass OWASP

Apps pass SANS compliance

Apps don’t pass SANS

Source: Veracode SOSS Volume 10

Volume 1 Volume 10

Source: Veracode SOSS Volume 10

72%
83%

28%

17%

Volume 1 Volume 10

Apps with no flaws

Apps have at least 1 flaw

9State of Software Security

We now know that most applications are flawed, but how
serious are those findings? Overall, we discovered high-severity
(level 4 or 5) vulnerabilities in 20% of applications, a 14%
improvement over the equivalent statistic measured 10 years ago.
Thus, the overall prevalence of findings rose over the last decade
but fewer of them constitute a serious risk to applications. If you
want more information on the types of flaws discovered and which
ones are considered more severe, sit tight. Many pages lie ahead.

What proportion of flaws are fixed?
Prevalence conveys a key aspect of the state of application
security, but more important still is whether these issues are
dealt with in an effective and timely manner. Fix rate offers one
way of looking at that and measures the proportion of discovered
flaws that are closed or remediated. The overall fix rate across all
flaws is 56%, which lands right in the neighborhood of recent
years (52% in 2018; 58% in 2017).

Logic holds that not all flaws are fixed with equal urgency,
and the evidence presented in Figure 5 backs that conclusion.
Findings in the OWASP and SANS lists, for instance, receive
slightly preferential treatment over general flaws. High-severity
flaws are roughly 15% to 20% more likely to be remediated than
those of lower severity. Again, none of this is terribly surprising.
The main takeaway is that application teams achieve better-
than-average fix rates for the flaws they prioritize. We’ll talk
more about what gets prioritized and why later.

56.0%

60.7%

58.6%

68.9%

75.7%

All

OWASP 10

SANS 25

Severity 4

Severity 5

Fix Rate
Source: Veracode SOSS Volume 10

FIGURE 5 Fix rate across all flaws and for various categories of flaws

Source: Veracode SOSS Vol. 10

80%

20%

66%

34%

Volume 1 Volume 10

Apps with no high-sev flaws

Apps with at least 1 high-sev flaw

Source: Veracode SOSS Volume 10

JARGON WATCH

Fix Rate
The proportion of
discovered flaws
that are successfully
closed or remediated.

9State of Software Security

FIGURE 4

Proportion of applications with
higher-severity flaws in initial scan

Source: Veracode SOSS Vol. 10

10 Veracode

29% of apps fix all flaws

16% of apps fix no flaws

0%

5%

10%

15%

20%

25%

0%

1%

2%

3%

4%

5%

6%

0% 25% 50% 75% 100%

Fix Rate (Excluding 0% and 100%)

0% 25% 50% 75% 100%

Fix Rate

P
e
rc

e
n

t o
f A

p
p

lic
a
tio

n
s

P
e
rc

e
n

t o
f A

p
p

lic
a
tio

n
s

Source: Veracode SOSS Volume 10

We’re glad to see a slight
skewing toward the upper
end of that distribution
and hope this report will
motivate even more to
cross over to the right
side of the fix rate chasm.

FIGURE 6

Distribution of flaw fix rates
across applications with
at least one flaw

Source: Veracode SOSS Vol. 10

Another interesting angle is how fix rate applies to individual
applications. Figure 6 grants us that perspective. On the top, we
see that development teams fix nothing for 16% of applications and
successfully close all flaws in 29% of apps. Upon further investigation,
we noted that many applications at these opposing ends of the
spectrum had very few flaws.

Because these opposing extremes dominate the scale in Figure 6,
we removed them from the bottom chart to focus more closely
on the majority of applications that fall in the middle. Other than
the spikes at 33%, 50%, and 66% that show the influence of small
denominators (i.e., 1 of 3 fixed, 1 of 2, 2 of 3), there’s a nice concave
shape of the “bridge” connecting the two extremes.

11State of Software Security

How quickly are flaws fixed?
Having covered the overall fix rate for application flaws, we now
turn attention to how long it takes development teams to roll out
those fixes. Readers of last year’s SOSS may remember a heavy
emphasis on fix timelines using survival analysis techniques. We’ll
delve even deeper into that topic this time around; let’s start simple
with the common measure of Mean Time to Remediation (MTTR).
As the name implies, MTTR measures the average time it takes
to remediate flaws.

Figure 7 contrasts the MTTR observed in SOSS Volume 1 with that
of our current sample. The results are eye-opening, to say the least.
MTTR nearly tripled over the ensuing decade, raising the question
of what’s going on with software security in the 2010s. That
comparison is deceptive, however, because the average of
flaws suffers from the flaw of averages.

JARGON WATCH

MTTR
The mean
(average) time it
takes to fix flaws
discovered in an
application.

MedianTTR
The median time
it takes to fix
flaws discovered
in an application.

Median: 59 days

59 days

171 days

Volume 1 Volume 10

Source: Veracode SOSS Volume 10

FIGURE 7

Distribution of Mean Time to
Remediation among closed
application flaws

Source: Veracode SOSS Vol. 10

Figure 7 shows a tripling
of average fix time over the
last decade, which seems
to suggest software security
may have lost its way. But
the median fix time remains
unchanged from 10 years
ago. Thus, typical fix times
haven’t gotten worse; the tail
of ever-accruing “security
debt” just got a lot longer.

Not to be overly mean,1 but the average becomes an
unreliable measure of “typical” values in skewed distributions.
And time-to-remediation creates a very long-tailed distribution
(take a sneak peek at Figure 21 if you want proof). That long tail is
comprised of unresolved findings that inflate the MTTR. By way of
comparison, the median time-to-remediation (MedianTTR) of flaws
in the development cycle during the last year is just two months —
equal to the MTTR from back in the SOSS Volume 1 report. Thus,
typical fix times haven’t gotten worse; the tail of ever-accruing
“security debt” just got a lot longer.

1 Stats jokes always regress to being mean. 11State of Software Security

12 Veracode

Does DevSecOps drive faster fixing?
As with financial debt, escaping out from under security debt
necessarily requires changing habits to pay down balances. The
integration of software development and IT operations (DevOps)
and integration of security into those processes (often called
DevSecOps) over the last several years has certainly changed habits.
We do not have a definitive way to distinguish development teams
that practice Dev(Sec)Ops, but we can look for certain observables
tied to behaviors in keeping with that spirit.

The frequency and cadence of security testing are two such
observables. In general, we expect a DevOps-oriented team to
conduct frequent security scans of their code at regular intervals
during the development lifecycle. Furthermore, we’d hope to see
evidence that those behaviors correlate with faster fix timelines.

Figure 8 shows that hope has some merit. The MedianTTR for
applications scanned 12 or fewer times a year (less than once per
month, on average) stands at 68 days. Those with an average scan
frequency of daily or more (260+ scans2) knocked that statistic
way down to 19 days. That’s a 72% reduction in MedianTTR.

19 days

26 days

59 days

68 days

260+ scans
(daily+ avg)

53-260 scans
(weekly-daily avg)

13-52 scans
(monthly-weekly avg)

1-12 scans

Median TTR
Source: Veracode SOSS Volume 10

FIGURE 8 Effect of scan frequency on fix rate and time-to-remediation

Source: Veracode SOSS Vol. 10

2 260 scans approximates an average of one scan per working day (52 X 5).

It’s not shown in Figure 8, but those same frequent scanners also tripled their fix rate and
reduced security debt by five-fold! “I should scan my apps more often” is the smart mental
note to make here.

13State of Software Security

Is security debt rising or falling?
That notion of security debt brings us to arguably the most defining
indicator of the state of software security in 2019 — whether applications
are accruing or eliminating flaws over time. To that end, Figure 9
measures the overall fix capacity of development teams by comparing
the number of flaws found in an application’s first and last scans.

Overall, 30% of applications show an increased number of flaws in their
latest scan. This doesn’t necessarily imply those teams are doing a bad
job managing flaws — it could represent a period of rapid growth and
change — but it does reveal evidence of accruing security debt. If these
applications are on a path similar to those of virtuous venture-backed
startups, then we hope to see them escape their negative security burn
rate in the near future.

FIGURE 9 Difference in the number of flaws found between first and last scans of sample period

Source: Veracode SOSS Vol. 10

50.4% 12.1% 7.4% 30.1%

45.8% 25.1% 5.9% 23.3%

43.2% 26.6 23.9%6.3%

19.8% 69.6% 8.7%

11.0% 82.9% 5.1%

1.9%

1.0%

Reduced Amount of Flaws No Flaws Same Increased Flaws

Sev 5

Sev 4

SANS

OWASP Top 10

All Flaws

Percent of Applications
Source: Veracode SOSS Volume 10

JARGON WATCH

Fix Capacity
The number
of flaws a
development
team can close
relative to the
number of flaws
discovered.
Usually expressed
as a negative or
positive ratio.

Half of application teams drove down flaws over the sample time
frame. Another 20% either had no flaws (12%) or showed no change
(7%). This means a respectable 70% of development teams are
keeping pace or pulling ahead in the flaw busting race! What’s more,
that win record jumps to over 90% for high-severity flaws. We view
this as a positive sign that the overall state of software security is on a
positive trajectory in 2019. But there’s still a lot of work to be done and
many lessons to be learned, and supporting those endeavors is exactly
what the rest of this report is all about. Let’s dive in.

14 Veracode14 State of Software Security

A Look at
Application
Security Testing
Given that this is a report about software security, it makes
sense to review how organizations incorporate security testing
into their development processes. We walk through a few brief
Q&As in this section to help level set for the analysis of testing
results in the sections that follow.

15State of Software Security

How often are applications tested?
This is a tricky question because organizations test many different
types and sizes of applications in various stages of development.
Nevertheless, there’s still value in an overall scan rate across all
applications because it provides an indicator of security interest
and activity among development teams. Readers of last year’s SOSS
Volume 9 may remember that more frequent scanning correlated
with a marked improvement in remediation timeframes. In that light,
Figure 10 contains both encouraging and discouraging signs.

A little north of one in three applications received just a single
scan during the year. Granted, some of those applications represent
software introduced late in the sample period or code that died on
the vine or was grafted into a larger application. But many of them
are legitimate applications that would almost certainly benefit from
more security attention than they’re currently getting.

JARGON WATCH

Scan Frequency
The number
of application
security scans
conducted over
a period of time.

36.1%
32.9%

11.9%
8.9%

5.3% 3.2% 1.4% 0.3%

1 2-6 7-12 13-26 27-52 53-130 131-260 260+

Scans per year

P
e
rc

e
n

t
o

f
A

p
p

lic
a
ti

o
n

s

Source: Veracode SOSS Volume 10

FIGURE 10 Frequency of security scanning across applications

Source: Veracode SOSS Vol. 10

After those one-and-done scanners, we see another third of applications received two to
six scans and another 12% recorded seven to 12. Adding those up determines that 80% of
applications average one scan per month or less. Note, however, there’s no guarantee those
scans occurred regularly on monthly intervals. We checked into that, in fact, and uncovered
some interesting observations about scanning cadence that we hit in the next section.

15State of Software Security

16 Veracode

Before we go there, the 20% of applications scanned more than
12 times in the year warrant special mention (and kudos). As previously
mentioned, these frequent scanners are significantly faster than the
average bear at busting flaws. They lean slightly toward larger, more
business-critical applications coded in enterprise software languages
like .NET and Java (COBOL and VB6 exhibit the lowest scan rates).
Beyond that, though, we see no consistent defining characteristics
among these applications and are left to assume that scanning
frequency depends more on the coders than the code. Clearly the
integration of security into continuous development practices has
a way to go to be truly universal.

How regularly are applications tested?
In addition to the frequency of application scanning, we can measure
the cadence of scans over time. Some development teams conduct
tests at very regular intervals, while others take a more irregular, or
bursty approach. This regularity (or lack thereof) is a challenge to
capture in a single number. To measure scan cadence we employ
something called the Fano factor, which is simply the ratio between
the variance of time between scans and the average time between
scans. Regular scanning means low variance and a low Fano factor,
waiting and then repeatedly scanning in a short period means a
high variance and low mean, ergo a high Fano factor.

Figure 11 shows what this looks like in practice over the course of
one year. Each row represents an application and each dot represents
a scan of said application. Applications at the top exhibit a steady
cadence, those on the bottom are the most bursty, and the middle
are classified as irregular.

JARGON WATCH

Scan Cadence
A measure of
the regularity
of application
security scans
over a period
of time.

17State of Software Security

Similar to frequency, there’s no magic cadence that separates
good and bad practice. Bursty scanning could be in keeping with
a waterfall development cycle or an event-driven testing schedule.
Regular scanning could indicate a DevSecOps orientation, but it may
simply reflect ordinary scheduled scanning. We’ll return to the topic
of scanning cadence and frequency a bit later and test whether either
correlate with the reduction of security debt.

B
u

rs
ty

Ir
re

g
u

la
r

S
te

a
d

y

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Source: Veracode SOSS Volume 10

FIGURE 11

Cadence of security
scanning across a sample
of applications

Source: Veracode SOSS Vol. 10

Each row in Figure 11 represents an application and each
dot marks a security scan of said application. Applications
at the top exhibit a steady cadence, those on the bottom are
the most bursty, and the middle can be classified as irregular.

18 Veracode

Not All Flaws Are
Created Equal
We established earlier that 83% of applications have at least
one flaw in their initial security scan. From that, it’s clear that
most applications have security issues, but it’s hard to know
what to do with that information without additional details.
It goes without saying (but we’ll say it anyway) that the types
of flaws aren’t uniformly distributed or equally important
across those applications. In this section, we aim to qualify
those statements so development teams and application
security staff have a better idea of what they’re up against.

18 State of Software Security

19State of Software Security

What types of flaws are most common?
Let’s begin answering this question by stepping into the wayback
machine to retrieve some stats from SOSS Volume 1 on the most
common flaws. Updating that with our most recent results in the
‘Now’ column creates the nifty 10-year trajectory across flaw
categories found in Figure 12.

The top two flaw types from Volume 1, Cryptographic Issues and
Information Leakage, remain the same 10 volumes later but swapped
places. CRLF and Insufficient Input Validation appear to be the top two
gainers over the decade, followed closely by Credential Management.
This may be due more to broadening scanner coverage than any major
prevailing trend.

Buffer Overflow, Buffer Management Errors, and Numeric Errors
weigh in as the decade’s biggest losers. This is consistent with the
decline we noted earlier of C++ as a coding platform. With the rise
of JavaScript and .NET, buffer management is more often handled by
the language itself, reducing the prevalence of related flaw categories.

44%

37%

33%

29%

25%
23%
20%
18%
18%
15%
15%
13%
8%
8%
7%

 Information Leakage: 64%
 Cryptographic Issues: 62%
 CRLF Injection: 61%

 Code Quality: 56%

 Insufficient Input Validation: 48%
 Cross-Site Scripting (XSS): 47%
 Directory Traversal: 46%
 Credentials Management: 45%

 SQL Injection: 24%

 Encapsulation: 22%

 Time and State: 16%

 API Abuse: 11%

 Error Handling: 5%
 Buffer Management Errors: 2%
 Buffer Overflow: 1%
 Numeric Errors: 1%

Volume 1 Volume 10

P
e
rc

e
n

t
o

f
A

p
p

lic
a
ti

o
n

s
w

it
h

 F
la

w

Source: Veracode SOSS Volume 10

FIGURE 12 Prevalence of flaw categories in SOSS Volume 1 and 10

Source: Veracode SOSS Vol. 10

The top two flaw types:

VOL. 1

1. Cryptographic Issues
2. Information Leakage

VOL. 10

1. Information Leakage
2. Cryptographic Issues

20 Veracode

Following that little jaunt down memory lane, we now take a
closer look at present-day application security findings. Figure 13
presents flaw categories detected by static analysis (SAST) along
two dimensions: prevalence and intensity. Prevalence measures the
proportion of applications that exhibit a given type of flaw, while
intensity captures the volume of those flaws when detected. Both
tell us something about frequency but from different perspectives.

JARGON WATCH

Flaw Intensity
The number of
flaws present per
application (when
discovered).

Information Leakage

Cryptographic Issues

CRLF Injection

Code Quality

Insufficient Input Validation

Cross-Site Scripting (XSS)

Directory Traversal

Credentials Management

SQL Injection

Encapsulation

Time and State

Command or Argument Injection

API Abuse

Session Fixation

Untrusted Initialization

Code Injection

Race Conditions

Authorization Issues

Authentication Issues

Untrusted Search Path

Error Handling

Insecure Dependencies

Buffer Management Errors

Server Configuration

Buffer Overflow

Numeric Errors

10

100

0% 20% 40% 60%

Prevalence
(% of Apps with Finding)

In
te

n
si

ty
(A

v
g

 F
in

d
in

g
s

p
e
r

A
p

p
)

Source: Veracode SOSS Volume 10

FIGURE 13 Prevalence and intensity of flaw categories discovered by static analysis

Source: Veracode SOSS Vol. 10

Figure 13 (and several
following) presents
the commonality of
flaw categories on two
dimensions: prevalence
and intensity. Prevalence
measures the proportion
of applications that exhibit
a given type of flaw, while
intensity captures the
volume of those flaws
when detected.

There’s a lot to take in from Figure 13, so we suggest consuming it
by quadrants. Starting in the top left quadrant, we find flaws that are
relatively rare overall (low prevalence) but tend to show up in droves
(high intensity). These often represent endemic issues for particular
types of applications, languages, etc. Error Handling flaws, for example,
are often found among C/C++ applications as well as those based on
IBM’s old RPG 4 language.

21State of Software Security

FIGURE 14 Prevalence and intensity of flaw categories discovered by dynamic analysis

Source: Veracode SOSS Vol. 10

Server Configuration

Information Leakage

Cryptographic Issues

Deployment Configuration

Encapsulation

Authentication Issues

Cross-Site Scripting (XSS)

Credentials Management

Session Fixation

SQL Injection

Insecure Dependencies

Directory Traversal

Code Injection

Insufficient Input Validation

Command or Argument Injection

CRLF Injection1

10

100

0% 25% 50% 75%

Prevalence
(% of Apps with Finding)

In
te

n
si

ty
(A

v
g

 F
in

d
in

g
s

p
e
r

A
p

p
)

Source: Veracode SOSS Volume 10

The top right quadrant features flaws that affect numerous applications in
great numbers. Thus, XSS and CRLF Injection can be considered pandemic
flaws across the application landscape. That doesn’t necessarily mean
they represent the gravest risk, but it does imply an incessant plague on
development programs that carries a high cost or consequence or both.

The sparsely populated lower-right quadrant represents widespread
“point” issues. Specifically, flaws falling under Credentials Management
and Cryptographic Issues are common, but fortunately they’re not
typically found in many unique areas of an application.

The bottom left is rather crowded, but that’s actually a good thing.
Anything listed there is rare with a low per-app intensity. May all your
flaws move in that direction.

We apply the same visual technique to flaws discovered via dynamic
analysis (DAST) in Figure 14. This noticeably rearranges the distribution
of flaws across the grid and highlights the different (yet complementary)
capabilities offered by SAST and DAST. The much higher prevalence of
potential Server Configuration issues exemplifies this; such vulnerabilities
have more to do with the environment in which applications run than
the codebase itself. We’ll let you explore other comparisons as you wish.
The main point is that both dynamic and static scans have a place in
application security and both have a story to tell in our data.

22 Veracode

Severity Score Severity Level Description

5 Very High The offending line or lines of code is a very serious weakness and is an easy
target for an attacker. The code should be modified immediately to avoid
potential attacks.

4 High The offending line or lines of code have significant weakness and the code
should be modified immediately to avoid potential attacks.

3 Medium A weakness of average severity. These flaws should be fixed in high assurance
software. You should consider fixing this weakness after you fix the very high
and high flaws for medium-assurance software.

2 Low This is a low priority weakness that will have a small impact on the security
of the software. You should consider fixing these flaws for high-assurance
software. Medium- and low-assurance software can ignore these flaws.

1 Very Low Minor problems that some high-assurance software may want to be aware
of. These flaws can be safely ignored in medium- and low-assurance software.
This year’s data found these flaws only in manual and dynamic scans — static
data analyzed in this section does not include flaws in this severity level.

0 Informational Issues that have no impact on the security quality of the application but which
may be of interest to the reviewer.

How common are severe and
exploitable findings?
Looking over the previous charts, you may have thought something
to the effect of “yeah, but some flaws are worse than others.” And
you’d be onto something. We assess the severity and exploitability
of all flaws so that application security teams can better prioritize
their remediation efforts.

Severity scores reflect the potential impact of any given flaw
to the confidentiality, integrity, and availability of the application.
In general, higher severity flaws are less complicated to attack,
more prone to remote exploitation, and allow full application
compromise. A fuller description of these scores can be found
in the table below for reference.

23State of Software Security

Informational

Low

Medium

High

Very High

Very Unlikely

Unlikely

Neutral

Likely

Very Likely

0

100

200

300

0

50

100

150

200

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Prevalence
(% of Apps with Finding)

Prevalence
(% of Apps with Finding)

In
te

n
si

ty
(A

v
g

 F
in

d
in

g
s

p
e
r

A
p

p
)

In
te

n
si

ty
(A

v
g

 F
in

d
in

g
s

p
e
r

A
p

p
)

Total Flaws 250k 1m 10m Total Flaws 2m 4m 6m

Severity Exploitability

Source: Veracode SOSS Volume 10

FIGURE 15

Prevalence and intensity of flaws categorized by severity and exploitability

Source: Veracode SOSS Vol. 10

The leftmost chart in Figure 15 plots the prevalence, intensity,
and volume (dot size) of flaws within each severity level. The
results generally reveal what we know and expect. High-severity
vulnerabilities (Severity 4 and 5) are relatively rare across and
within applications, as are those on the bottom end of the severity
spectrum. The mid-range flaws clearly dominate scan results,
with most applications exhibiting high frequency of severity 2
and severity 3 findings.

Exploitability adds another dimension to evaluating the
importance of application security findings. While severity
scores assess a flaw’s overall potential impact to the application,
exploitability estimates its susceptibility to attack. We measure
exploitability on a scale from -2 (very unlikely) to 2 (very likely).

Flaws are aggregated by exploitability rating and depicted on
the right side of Figure 15. Here we see a different pattern than
for severity scores. Flaws deemed likely candidates for exploitation
win the Triple Crown by leading the field according to prevalence,
intensity, and volume. That’s unfortunate, but a good reminder
of the importance of identifying and remediating flaws during
the development lifecycle. We’ll see how teams are going about
that a bit later.

Flaws deemed
likely candidates for
exploitation win the
Triple Crown by leading
the field according to
prevalence, intensity,
and volume.

24 Veracode

Does flaw prevalence differ by language?
With the rather large caveat that some applications are mixed-
language, we compare flaw prevalence among the most common
languages in Figure 16. The results leave little doubt that some are
more susceptible to flaws than others. Python and JavaScript boast
the lowest levels, though a majority of applications coded in those
languages still exhibit findings of various types. On the other end,
over 90% of applications based on Android, PHP, and iOS Bitcode
contain flaws.

Figure 17 expands on this language-centric view of software security
by contrasting the most common flaw categories on the prevalence-
intensity grid we’ve used throughout this report. It contains a ton of
detail, much of which will not be of interest unless you’re responsible
for applications based on certain languages. Because of that, we will
just set out the buffet and let your eyes feast on whatever seems
most relevant. Bon appetit!

47%

53%

13%

87%

34%

66%

9%

91%

14%

86%

8%

92%

14%

86%

5%

95%

Source: Veracode SOSS Volume 10

Java .NETPython JavaScript

C++ iOS PHP Android

Apps with at least 1 flaw Apps with no flaws

FIGURE 16

Comparison of flaw prevalence
by top application languages

Source: Veracode SOSS Vol. 10

25State of Software Security

FIGURE 17 Prevalence and intensity of flaw categories by top application languages

Source: Veracode SOSS Vol. 10

Information Leakage

Cryptographic Issues

Insufficient Input Validation

Code Quality

Directory Traversal

CRLF Injection

Cross-Site Scripting (XSS)

Credentials Management

SQL Injection

Untrusted Initialization

Error Handling

Buffer Overflow

Buffer Management Errors

Cryptographic Issues

Directory Traversal

Numeric Errors

Code Quality

Race Conditions

Information Leakage

Format String

CRLF Injection

Information Leakage

Code Quality

Cryptographic Issues

Credentials Management

Cross-Site Scripting (XSS)

Directory Traversal

Insufficient Input Validation
Encapsulation

SQL Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Information Leakage

Credentials Management

Untrusted Initialization

Code Injection

Command or Argument Injection

CRLF Injection

Code Quality

Cryptographic Issues

Code Quality

CRLF Injection

Information Leakage

Credentials Management
Insufficient Input Validation

Time and State

Directory Traversal

Encapsulation

Authorization Issues

Error Handling

Cryptographic Issues

Information LeakageCode Quality
Credentials Management

Insufficient Input Validation

CRLF Injection

Cross-Site Scripting (XSS)

Directory Traversal

Race Conditions

Cross-Site Scripting (XSS)

CRLF Injection

Credentials Management

Insufficient Input ValidationInformation Leakage

Cryptographic Issues

Directory Traversal

Authentication Issues

Code Injection

Code Quality

Cryptographic Issues

Directory Traversal

CRLF Injection

Cross-Site Scripting (XSS)

Command or Argument Injection

Information Leakage
Insufficient Input Validation

Code Injection

Credentials Management

Server Configuration

PHP Python

Java JavaScript

C++ iOS

.NET Android

25% 50% 75% 25% 50% 75%

10

100

10

100

10

100

10

100

Prevalence
(% of Apps with Finding)

In
te

n
si

ty
(A

v
g

 F
in

d
in

g
s

p
e
r

A
p

p
)

Source: Veracode SOSS Volume 10

26 Veracode26 State of Software Security

Not All Flaws
Are Remediated
Equally
By now, it’s clear that most software has flaws of one kind
or another. It’s the inevitable legacy of our flawed wetware.
Understanding that flaws are bound to happen, the test is how
teams address those issues when they inevitably surface in the
development process. We assess this key aspect of software
security from multiple perspectives in this section.

27State of Software Security

Which flaws are fixed most often?

F
ix

 R
a
te

5
3

.6
%

4
1.

9
%

6
1.

7
%6
8

.9
%7
5

.7
%

In
fo

rm
a
ti

o
n

a
l

L
o

w

M
e

d
iu

m

H
ig

h

V
e

ry
 H

ig
h

Severity

7
1.

8
%

4
7

.6
%

5
1.

1%

6
2

.5
%

5
5

.6
%

V
e

ry
 U

n
li
k
e

ly

U
n

li
k
e

ly

N
e

u
tr

a
l

L
ik

e
ly

V
e

ry
 L

ik
e

ly

Exploitability

3
0

.6
%

4
7

.5
%

6
2

.0
%

5
8

.4
%

5
1.

6
%

V
e

ry
 L

o
w

L
o

w

M
e

d
iu

m

H
ig

h

V
e

ry
 H

ig
h

App. Criticality

Source: Veracode SOSS Volume 10

FIGURE 18

Fix rate across flaw severity,
exploitability, and application
criticality levels

Source: Veracode SOSS Vol. 10

The pattern of fix rates by
application criticality levels is
curious. It doesn’t seem random,
yet exhibits two distinct trends.
One theory that fits the data
is that attention on fixing flaws
increases to the point where
the application’s criticality
to the business triggers more
and more restrictive change
control. Another possibility
is that the criticality ratings
assigned by users of the
platform don’t actually
map to business priorities.

Fix rates for flaws contained in
the SANS 25 (61%) and OWASP
Top 10 (59%) lists show a minor
uptick from the overall rate of
56%. There’s not much to say
or conclude beyond that except
it appears those standards may
have some degree of influence
over which flaws get fixed.

We examined fix rates across
flaw categories but found
no obvious universal rules of
remediation. Flaws with the
highest likelihood of closure
were not the same as those
found most often among scan
results. Thus, we must conclude
that developers put more
weight on attributes other than
just prevalence when deciding
which flaws should be fixed.

When considering why certain issues get addressed while
others don’t, several feasible possibilities arise. Some findings
are low-hanging fruit and easy to pick off. Some may be viewed
as more risky. Others just happen to be next on the task list.
We could go on. The point is that we cannot determine precisely
why, but we can make observations about what and when from
the data. The next few figures focus on the types of flaws most
likely to be fixed.

Figure 18 starts things off with a trio of charts portraying
fix rates across the dimensions of severity, exploitability, and
application criticality. The first in that series offers good evidence
that severity scores influence which findings receive attention.
The likelihood of remediation increases steadily from ‘Low’ to
‘Very High’ ratings. Informational findings buck that trend, but
many of those are easily addressed or just accepted for what
they are — an FYI.

The contribution of exploitability and criticality scores on fix
rates is less apparent in Figure 18. Flaws considered least likely to
be exploited are the mostly likely to be fixed. That seems strange
at first, but keep in mind that not all “fixes” involve code-level
changes. Simply accepting/closing a finding works too, and
that action may be warranted when the chance of exploitation
is negligible and so many other things demand attention.

27State of Software Security

28 Veracode

Is remediation out of focus?
The analysis in this section casts a spotlight on the focus of flaw
remediation efforts. Are developers prioritizing the most important
vulnerabilities? How do we best define what “most important”
even means? Does that meaning change within the context of each
application/team/organization? These are difficult questions without
clear answers but we can, at least, see if the data contains some
helpful hints.

The OWASP Top 10 purposes to spread awareness of the most critical
security risks to web applications.3 In that sense, it represents a broad
consensus of what’s “most important.” Figure 19 shows fix rate and
prevalence statistics for flaws in the OWASP Top 10. The reasons
for doing this will become clear in a moment. Once again we see the
pattern that the most common flaws aren’t necessarily seen as the
most important (or easiest) to fix.

A1 - Injection

A2 - Broken Authentication
A3 - Sensitive Data Exposure

A4 - XML External Entities

A5 - Broken Access Control

A6 - Security Misconfiguration

A7 - XSS

A8 - Insecure Deserialization

A10 - Insufficient Log/Monitoring
0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Fix Rate

P
re

v
a
le

n
c
e

(%
 o

f
A

p
p

s
w

it
h

 F
in

d
in

g
)

Source: Veracode SOSS Volume 10

Another interpretation of “most important” would include flaws that
are most often used in known exploits or security incidents. We do
not have access to such data, but F5 Networks does and they were
kind enough to share some with us to support this analysis.

FIGURE 19

Fix statistics for flaws
in the OWASP Top 10

Source: Veracode SOSS Vol. 10

3 www.owasp.org/index.php/Category:OWASP_Top_Ten_Project28 State of Software Security

29State of Software Security

A3-Data Exposure

A1-Injection

A2-Auth

A7-XSS

A4-XML Ext. Entities

A6-Misconfig

A8-Deserialization

A5-Access Control

A10-Logging

A1-Injection

A5-Access Control

A7-XSS

A2-Auth

A3-Data Exposure

A8-Deserialization

A4-XML Ext. Entities

A2-Auth

A6-Misconfig

A5-Access Control

A1-Injection

A7-XSS

A9-Known Vuln

A10-Logging

A10-Logging

A2-Auth

A1-Injection

A3-Data Exposure

A5-Access Control

A7-XSS

A8-Deserialization

A4-XML Ext. Entities

A6-Misconfig

Flaw Prevalence Fix Rate Exploits Incidents

9

8

7

6

5

4

3

2

1

R
a
n

k
in

g

Source: Veracode SOSS Volume 10

FIGURE 20 Ranking of OWASP Top 10 vulnerabilities based on flaw prevalence and
fix rate from Veracode scans along with exploits and incidents provided by F5 Networks
Source: Veracode SOSS Vol. 10

What we want to explore now is what the evidence suggests about
the focus of remediation efforts in light of these two sources for
determining what’s “most important.” In the first two columns of
Figure 20 you’ll find a ranking of flaw prevalence and fix rate based
on Figure 19. On the right, you’ll find two columns based on the data
provided by F5 Networks. The first ranks OWASP vulnerabilities
according to their presence in exploits recorded in Exploit Database.
The second draws from a sample of incidents analyzed by their team
and traced back to the root issue.

The contrast depicted across the columns in Figure 20 is fascinating.
A10-Logging ranks lowest in terms of prevalence, but highest in terms
of fix rate. A5-Access Control appears low in the prevalence column,
yet filters toward the top of the exploits and incidents rankings.
A1-Injection and A2-Authentication float around the top half across
the board and A8-Deserialization consistently hangs out toward the
bottom. Note that A9-Using Components with Known Vulnerabilities
does not appear because such flaws do not lend themselves to
detection through static analysis. Do not let that omission lull you
into a false sense of complacency.

In conducting this analysis, we do not intend to imply that perfect
alignment across these columns represents the ideal state. We don’t
have enough data to make that bold assertion. But if remediation
priorities and efforts were broadly out of focus, the results depicted
in Figure 20 would not cause us to question that reality.

29State of Software Security

Figure 20 asks “Are the
most prevalent flaws
the same as those with
the highest fix rate? Are
they also the ones most
likely to be involved in
known exploits or security
incidents?” The lines show
how the ranking of flaw
categories shifts across
those columns.

30 Veracode

How fast are flaws fixed?
In the opening section, we pegged the average time to remediate
(MTTR) flaws across our (very large and diverse) sample at 171 days
and the median at 59 days, but hinted those numbers tell only part
of the story. We now pick up where we left off, thicken the plot, and
hopefully bring things to a satisfying resolution. Our story begins
with what it means to be average.

THE ELUSIVE “AVERAGE”

MTTR is a common metric intended to provide a measure of
“central tendency” for remediation efforts. Its virtues are simplicity
and commonality, which aid comparisons of MTTR across different
datasets or reports. But the data MTTR attempts to describe by
a single point statistic is anything but simple. To understand why
one need look no further than the heavily-skewed distribution in
Figure 21 depicting the time flaws remain open after discovery.

30% of closed findings are
closed in the first 2 weeks

Half of findings
closed are closed in
the first two months

0 3
months

6
months

9
months

1
year

1.5
years

2
years

Time Until Remediation

D
e
n

si
ty

Source: Veracode SOSS Volume 10

Mean time to remediate is
calculated as 171 days

FIGURE 21 Distribution of time until remediation for closed flaws

Source: Veracode SOSS Vol. 10

Figure 21 illustrates the
long tail inherent to flaw
remediation timelines. It’s
meant to show the difficulty
of isolating a central or
“typical” measure in such
a skewed distribution.

30 Veracode

31State of Software Security

Notice the huge spike on the left? When flaws are first discovered there’s a rush of activity
to fix them, but that effort is relatively short-lived. The excitement drops off quickly in the
first month and continues to decline at a steady rate. Now step back and take in the full
scope of remediation times in Figure 21. Where is the center or average? The large spike
on the left makes it clear that closing flaws in under one month is the most common scenario
by far. We can calculate the traditional average (“arithmetic mean”) to get 171 days, but
that measurement is heavily influenced by the long tail (the oldest flaw almost reached
its 9th birthday before finally being addressed). By day 171, almost 3 out of every 4 findings
are closed. That doesn’t feel very “central”, does it? We can also derive the median, which
is just under two months (59 days). We’ll hold onto that for now, because looking at closed
findings is only half the story.

By focusing on just the time-to-remediation for closed flaws, we ignore all the unaddressed
findings accumulating over time. These are the issues perpetually stuck in the “real soon
now” status month after month. Per Figure 22, they show a much different distribution
for remediation timeframe. Remembering that half of flaw closures in Figure 21 occurred
in the first two months, now consider that this halfway point lies more than six months out.
And roughly 10% of findings have been around for at least two years. That complicates
any estimation of the average time-to-remediation, doesn’t it?

Half of open findings have
been open at least 181 days

These findings are known to
be open at least this long
(they are still open)

0 3
months

6
months

9
months

1
year

1.5
years

2
years

Time Until Remediation
Source: Veracode SOSS Volume 10

D
en

si
ty

FIGURE 22 Distribution of time until remediation for all open and closed flaws

Source: Veracode SOSS Vol. 10

31State of Software Security

32 Veracode

While there is no clear “Aha — there’s the average!” solution here, we
can get one step closer by using both the timing of known closures and
the knowledge that some findings have been open for at least some
duration. Event analysis (also called survival analysis) takes both open
and closed findings into account when calculating the probability that
flaws discovered during our 12-month sample will “survive” the passing
of time. SOSS veterans may recall we utilized survival analysis to study
flaw persistence from numerous angles in Volume 9.

We leverage that technique in Figure 23, noting two new measures
of centrality along the curve. The “closed median” of two months
certainly doesn’t look like a measure of flaw half-life, and the “closed
mean” also seems a bit optimistic from this perspective. The “event
median” marks the point where survival analysis determines a flaw
has a 50% chance of being remediated (eight months). That same
technique places the expected lifespan of a finding, the “event mean,”
way out beyond 20 months.

Again, it’s difficult to choose a winner from the four candidates for
the coveted “average” time-to-remediation award marked in Figure 23.
The “closed” stats have the strength of measuring what was actually
fixed, but omit anything unfixed. The “event” stats capture the whole
picture, but become increasingly inflated over time as unresolved flaws
build up. Both are true, but neither story tells the whole truth.

Unless otherwise noted, we use the “Closed Median” or “MedianTTR”
for time-to-remediation statistics in this section. We do so because
it is the most appropriate and direct option given what we want to
measure — a highly skewed distribution of time required to remediate
flaws (that were actually closed).

Closed Median: 50% of closed findings
are remediated in the first two months

Closed Mean: The classic “average” calculation,
arithmetic mean of closed findings

Event Mean: the “average” expected
time before a finding is closed,
accounting for open findings

Event Median: 50% chance a finding
will be closed by this time2

months

6
months

1 yr
8 months

8
months

0%

20%

40%

60%

80%

100%

0 1 2

Time (years)

P
ro

b
a
b

ili
ty

 f
in

d
in

g
 i
s

st
ill

 o
p

e
n

Source: Veracode SOSS Volume 10

FIGURE 23

Flaw persistence curve with
four possible central statistics
for time-to-remediation

Source: Veracode SOSS Vol. 10

33State of Software Security

Contractor

Open Source

Internally Developed

Purchased Application

Outsourced Team

0 100 200 300

Time to Fix (days)

A
p

p
 P

u
rp

o
se

25% closed 50% closed 75% closed
Source: Veracode SOSS Volume 10

Very Low

Low

Medium

High

Very High

0 50 100 150 200

Time to Fix (days)

A
p

p
 C

ri
ti

c
a
lit

y

25% closed 50% closed 75% closed
Source: Veracode SOSS Volume 10

FIGURE 24 Comparison of time-to-remediation statistics across application sources

FIGURE 25 Comparison of time-to-remediation statistics across application criticality ratings

Source: Veracode SOSS Vol. 10

Which flaws are fixed the fastest?
Now that we have a better working definition of what’s “average”
(or median, rather) for remediation time frames, we’re ready to slice
and dice this metric across the various segments. We’ll start from
the beginning — the supplier or source of the application itself —
in Figure 24.

We recommend anchoring your review of Figure 24 on the 72 days
indicated as the median remediation timeframe for internally developed
applications. It’s not shown but worth noting that insourced software
posted the highest fix rates. Software supplied by contractors or
open sourced take about a month longer than that. Interestingly,
an outsourced team gets the job done a couple weeks faster.

Since the source of an application appears to affect fix speed, it
seems logical that its criticality to the business might as well. Figure 25
doesn’t cause us to reject that hypothesis, but doesn’t overwhelmingly
support it either. Barring one exception for “High,” the MedianTTR
does indeed shorten somewhat as criticality rises. The lower and
upper quantiles, however, display no such pattern, and the least critical
systems hit the 75% remediated mark months before anything else.
Clearly, other factors must be in the mix.

Figures 24–27 mark the
MedianTTR with blue
dots. Imagine those are
the end of a standard bar
chart if you’re just looking
for a simple comparison
among items. We add
the 25% and 75% closed
marks to indicate the
large amount of variation
around those medians.

34 Veracode

Perhaps the flaw severity score is one of those factors. After all,
the stated purpose of assigning these scores is to help organizations
prioritize remediation efforts on security findings that pose the
highest risk to the application. And according to the results observed
in Figure 18 for fix rates, those recommendations do hold weight.
We see that effect here as well.

Flaws considered to be of the very highest severity get addressed
most expediently, according to Figure 26. That holds true right out
of the gate (25%), midway through the race (50%), and in the home
stretch (75%). Other severity levels aren’t quite so unwavering in that
regard, but there’s a fairly consistent trend of quicker fixes of more
severe flaws through the 25% and 50% closed waypoints. That focus
appears to fall apart late in the game, but we have a theory for
what’s going on there that we’ll get into later.

Informational

Low

Medium

High

Very High

0 50 100 150 200

Time to Fix (days)

F
la

w
 S

e
v
e
ri

ty

25% closed 50% closed 75% closed
Source: Veracode SOSS Volume 10

FIGURE 26 Comparison of time-to-remediation statistics across flaw severity scores

Source: Veracode SOSS Vol. 10

35State of Software Security

Moving on to Figure 27, we see fix time statistics for specific types of flaws.
Before commentating on the flaws themselves, though, let’s take in the big
picture. The first big takeaway is that a high degree of variation exists among
flaw categories. The MedianTTR for flaws at the bottom of the list is 5X longer
than those at the top. Differences are even more dramatic at the 75% closure
mark, with hundreds of days separating the fastest and slowest categories. Some
of this variation stems from perceptions about which flaws are the most important
to fix quickly or which represent the most risk. But these results also undoubtedly
reveal developers taking action on what’s easiest for them to fix, which may not
necessarily align with what’s most important.

Much of what we see here matches up with our intuition as security professionals.
Flaws such as Authentication/Authorization issues, Code Injection, and Credential
Management are the types of flaws likely to draw the ire of internal security teams.
Deployment Configuration, Server Configuration, and the like are infrastructure-
specific issues that can be changed more easily than a complex application code
base, contributing to the relatively good fix times for these issues.

FIGURE 27 Comparison of time-to-remediation statistics across flaw categories

Source: Veracode SOSS Vol. 10

Encapsulation
Race Conditions

Code Quality
Insecure Dependencies

Information Leakage
Time and State

Buffer Management Errors
Error Handling
SQL Injection
Format String

Cross-Site Scripting (XSS)
Numeric Errors

Insufficient Input Validation
CRLF Injection

Session Fixation
Untrusted Initialization

Cryptographic Issues
Directory Traversal
Potential Backdoor

API Abuse
Buffer Overflow

Command or Argument Injection
Authorization Issues

Credentials Management
Untrusted Search Path

Server Configuration
Code Injection

Dangerous Functions
Deployment Configuration

Authentication Issues

0 30 60 90 120 150 180 210 240 270 300 330 360

Time to Fix (days)

C
a
te

g
o

ry
 o

f
F

la
w

25% closed 50% closed 75% closed
Source: Veracode SOSS Volume 10

36 Veracode

PrioritizedTargeted

DeferredNeglected

API Abuse

Authentication Issues

Authorization Issues

Buffer Management Errors

Buffer Overflow

Code Injection

Code Quality

Command or Argument Injection

Credentials Management

CRLF Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Dangerous Functions

Deployment Configuration

Directory Traversal

Encapsulation

Format String

Information Leakage
Insecure Dependencies

Insufficient Input ValidationNumeric Errors

Potential Backdoor

Race Conditions

Server Configuration

Session Fixation

SQL Injection

Time and State

Untrusted Initialization

Untrusted Search Path

0

20

40

60

80

100

40% 50% 60% 70% 80% 90% 100%

Fix Rate

M
e
d

ia
n

T
T

R

Source: Veracode SOSS Volume 10

FIGURE 28 Fix rate and MedianTTR for flaw categories

Source: Veracode SOSS Vol. 10

Figure 28 offers an interesting view combining fix rate and MedianTTR
for flaw categories. We’ve already discussed each of those measures
individually and so will restrict our commentary here to the labels
superimposed over the four quadrants of the grid.

Flaws listed in the lower right quadrant are fixed both comprehensively
and quickly. Thus, we can reasonably conclude they receive priority
attention from developers due to perceived importance, ease of fix,
or some other reason. Those in the upper right usually get addressed,
but not until higher-priority issues are dealt with first.

The lower left quadrant is sparse, but flaws near that region tend
to be remediated fairly quickly on a small scope. A plausible scenario
for this might be a flaw that affects a critical component within an
application. The organization may choose to remediate the flaw in
that component but not (yet) across the entire application. This is
what we mean by “targeted” remediation.

Flaws in and around the upper left of the grid receive neither
comprehensive or quick attention. Perhaps there’s a legitimate
reason for neglecting them in some cases; we’ve mentioned a few
of those earlier in this report. But ignored long enough, these findings
become security debt, gradually accumulating over the lifespan of
the application. Some applications, unfortunately, become buried
under that debt and never get out.

Figure 28 combines two
important aspects of fixing
flaws — comprehensiveness
(fix rate) and speed
(MedianTTR). We believe it
to be a useful comparison
because it categorizes the
urgency with which flaws
are addressed. Those fixed
widely and quickly are
“Prioritized” by developers,
whereas those largely left
open for long periods of
time are “Neglected.”

37State of Software Security

Breaking Down
Security Debt
The concept of security debt has come up several times so far
in this report. We’ve seen that unaddressed flaws don’t simply
disappear from applications, but rather accumulate over time.
To combat this, we need to better understand the mechanics
and makeup of software security debt. That’s the purpose
of this final section.

37State of Software Security

38 Veracode

Do priorities contribute to security debt?
To understand how security debt piles up over time, we need to
examine the lifecycle of a typical software flaw. Continuing in the
vein of the earlier “The Elusive Average” section, Figure 29 depicts
the probability that any finding will be fixed in a given month (assuming
it’s still open by that month). There’s about a 22% chance that a flaw will
be fixed within a month of being discovered. If it’s not closed in the first
month, the probability of remediation falls to 10% for the second month.
That chance drops a little more in the third month, and so on. After eight
months, the likelihood of a flaw being fixed hovers around 3% to 5%
each month thereafter.

What’s important about this plot is that it hints at some kind of recency
bias at work when it comes to remediating flaws. We saw findings
receiving priority treatment based on severity, category, etc. but all
things being equal, the data suggests that developers tend to fix things
most recently discovered. Remediation generally follows a “stack” or
LIFO (Last In, First Out) method rather than “queue” or FIFO (First In,
First Out) method.

0%

3%

6%

9%

12%

15%

18%

21%

2 4 6 8 10 12 14 16 18 20 22 24

Time (months)

P
ro

b
a
b

ili
ty

 o
f

R
e
m

e
d

ia
ti

o
n

Source: Veracode SOSS Volume 10

FIGURE 29

Monthly probability of
remediation based on flaw age

Source: Veracode SOSS Vol. 10

Figure 29 tracks the
probability of a flaw being
fixed over time. It shows
that younger flaws (those
discovered recently) are
more likely to be fixed than
older flaws, and hints at a
“recency bias” at work in
flaw remediation practices.
These unaddressed older
flaws accumulate over time
and become security debt
in applications.

What do you do with that information? For starters, it never hurts
to know how biases affect behaviors. In terms of changing those
behaviors, neither LIFO or FIFO methods seem optimal for processing
findings. We’d like to see more of a PIFO (Priority In, First Out) approach
where any debt that accumulates consists only of inconsequential
flaws. But that’s not the way things appear to work in practice. Reality
suggests there’s a capacity element involved in the debt equation
in addition to prioritization.

38 Veracode

39State of Software Security

Is there a security debt-to-income ratio?
We use “income” here to refer to the working capacity development
teams have available to allocate to flaw remediation. If their capacity
to fix flaws consistently exceeds the rate at which flaws are introduced
to the codebase, security debt in applications should go down over time.
If flaw creation exceeds capacity, we should see the opposite trend.

Earlier sections of this report hint that not all development teams possess
sufficient capacity to reduce the number of flaws in their applications.
The overall fix rate, for instance, stands at 56%, meaning teams close
a little over half of the findings they discover. We also learned that
30% of applications showed a buildup of flaws between their first and
last scans for the sample period. Figure 30 goes deeper in that line of
analysis, presenting a comparison of open and closed flaws across tens
of thousands of applications during our sample period.

The blue dots in Figure 30 represent applications with a positive
fix capacity (they fixed more flaws than they found) and the fuchsia
dots mark those with a negative capacity (found more than they fixed).
Any application forming the dark line in the center maintained a steady
balance. Not shown are the 25% of applications that remained flaw-free
for the whole year.

These applications

fixed more findings

than were found

These applications

found more findings

than were fixed

1

10

100

1000

10k

1 10 100 1000 10k 100k

New Findings

F
ix

e
d

 F
in

d
in

g
s

Source: Veracode SOSS Volume 10

FIGURE 30 Ratio of discovered vs. remediated findings among applications

Source: Veracode SOSS Vol. 10

Figure 30 presents a
comparison of open and
closed flaws across tens of
thousands of applications
during our sample period.
Blue dots represent
development teams gaining
ground against flaws and
the fuchsia dots mark those
falling behind.

40 Veracode

Aside from being pretty, the plot highlights the extreme amount
of variation in the ratio of discovered versus remediated findings.
Applications cluster toward the breakeven line, but there are some
extremes on either side. Figure 31 makes that contrast easier to see and
compare. About half of development teams are falling behind flaws in
their applications and a little over a quarter gaining positive ground.

The two sides in Figure 31 don’t sum to 100% because we’ve removed
approximately one-quarter of applications that maintained a zero
balance for security debt over the year. It’s the two sides of the
“mountain” that we’re interested in here and the extreme amount of
variation we see in terms of fix capacity. The majority of applications
fall within a +-2X capacity, but some fix (or discover) 10X, 20X, or
even 100X the number of flaws they discover (or fix)!

The two sides in Figure 31 could be seen as a comparison between
the “haves” (top) and the “have-nots” (bottom). But it could also be
argued that an application’s place in Figure 31 is less about having
vs. not having and more about setting priorities. Namely, does the
business invest more heavily in reducing security debt or reducing
time-to-market? Either way you choose to interpret it, one thing is
clear; there are many application teams on both sides of that line.

49% of applications found more
findings than they fixed

27% of applications fixed more
findings than they found

2x
Found

5x

10x

20x

100x

2x
Fixed

5x

10x

20x

100x

Density
Source: Veracode SOSS Volume 10

Figure 31 shows about half of application teams falling behind
their flaws and a little over a quarter gaining positive ground
(the rest are breaking even). The majority of applications fall
within a +-2X capacity, but some fix (or discover) 10X, 20X,
or even 100X the number of flaws they discover (or fix)!

FIGURE 31

Proportion of applications
reducing security debt (top)
vs. adding debt (bottom)

Source: Veracode SOSS Vol. 10

40 Veracode

41State of Software Security

Is fix capacity a constant?
We’ve already seen that the proportion of applications that
increase vs. decrease or maintain security debt is relatively even.
Now we want to know if that fate is locked in or if it changes under
certain conditions. Let’s start by generating a data-driven picture of
what abstract concepts like fix capacity and security debt look like.
Figure 32 does just that.

Figure 32 is meant to model how a typical application pays down
and accumulates security debt over time. The dark blue bars at the
top correspond to weekly flaw closures. It’s rather obvious that, on
average, only a small proportion of known issues are successfully
closed at any given time. The pink area tallies the average number
of unresolved findings each week, taking into account the
preexisting balance, new flaws found, and old flaws closed.

The fact that Figure 32 bears an uncanny resemblance to an
iceberg did not escape us, and we’re pretty sure it made a similar
impression on you. Though development teams focus heavily
on keeping up with new flaws they discover in applications,
that mountain of aging security debt looming under the surface
cannot be ignored.

On average, only a small portion of findings are closed…

…and open findings tend to stay around, creating…

Security Debt

200

150

100

50

0

0 1 2 3 4 5 6 7 8 9
Application Age (months)

A
ve

ra
g

e
F

in
d

in
g

s
p

er
 A

p
p

Source: Veracode SOSS Volume 10

FIGURE 32 Depiction of flaw closure (fix capacity) and accumulation (security debt) over time

Source: Veracode SOSS Vol. 10

Figure 32 models the
mechanics of security debt
in a typical application.
The dark blue bars on top
correspond to weekly flaw
closures. The pink area
tallies the average number
of unresolved flaws carried
over each week. Though
development teams focus
on keeping up with new
flaws, the mountain of
security debt looming
under the surface cannot
be ignored.

41State of Software Security

42 Veracode

This brings up an interesting dilemma about how to accomplish
two difficult feats: staying on top of new flaws introduced during the
development process while chipping away at security debt littering
the codebase. The good news is that evidence shows it can be done.
The ability to accomplish this feat seems to be partially about who
you are, partially about what language you use, and partially about
how you integrate security into the development process.

Let’s start with who you are. Figure 33 compares the typical
remediation and debt cycle for different industries. We recommend
not getting too caught up in the minor details and movements here.
Note instead the average size of security debt for each sector and
whether that’s growing or shrinking over time. The main takeaway
here is that some industries seem more or less prone to security debt
than others.

Fixed

Open

Manufacturing Retail Technology

Financials Gov/Edu Healthcare Infrastructure

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

300

200

100

0

100

300

200

100

0

100

Application Age (months)

A
v
e
ra

g
e
 F

in
d

in
g

s
p

e
r

A
p

p

Source: Veracode SOSS Volume 10

FIGURE 33

Comparison of fix capacity
and security debt by industry

Source: Veracode SOSS Vol. 10

We recommend not getting too caught up in the minor
details of Figures 33-37. Note instead the size of security debt
(icebergs) for each category and the trend over time. The main
takeaway is that some categories seem more/less prone to
security debt than others.

43State of Software Security

Moving on to what language you use, Figure 34 presents a view of
security debt split across the top programming languages identified
among applications tested. The differences here are surprisingly
dramatic (notice the scale on the vertical axis). Average security
debt for PHP apps dwarfs everything else and C++ carries a debt
that’s anywhere from 3X to 5X larger than .NET at various points
over the sample period.

Fixed

Open

Java JavaScript PHP

.NET Android C++

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

800

600

400

200

0

800

600

400

200

0

Application Age (months)

A
v
e
ra

g
e
 F

in
d

in
g

s
p

e
r

A
p

p

Source: Veracode SOSS Volume 10

FIGURE 34

Comparison of fix capacity and
security debt by application language

Source: Veracode SOSS Vol. 10

The point here is not “Stay out of debt by ditching C++ for .NET,”
though that does make for a rather nice jingle. We realize that most
teams can’t up and change what language they’re using on a whim
and do not recommend such a drastic course of action. What we do
recommend taking away from Figure 34 is an awareness that some
applications may be more or less prone to the buildup of security
debt irrespective of anything else you do. With that awareness, you
can consider viable actions to take in order to counter and control
language-based proclivities to security debt.

44 Veracode

Speaking of actions you can take, Figures 35 and 36 examine the
effect of scanning frequency and cadence on security debt. As we
saw with fix rates and remediation speeds, results indicate that the
way in which development teams approach these activities can have
a positive impact. The top 1% of applications with the highest scan
frequency carry about 5X less debt than the bottom one-third.

In Figure 35, we see the total volume of debt reducing steadily with
more frequent security scanning. That said, the most frequently tested
applications show a buildup of security debt over the period. We
suspect this is partly due to the relatively low number of applications in
that category. But it may also be that these applications were scanned
so often because they were in an active development phase. The main
point is that the propensity to accumulate debt is much less when
applications undergo frequent testing.

Fixed

Open

13-50 Annual Scans 51-299 Annual Scans 300+ Annual Scans

1-3 Annual Scans 4-6 Annual Scans 7-12 Annual Scans

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

400

300

200

100

0

400

300

200

100

0

Application Age (months)

A
v
e
ra

g
e
 F

in
d

in
g

s
p

e
r

A
p

p

Source: Veracode SOSS Volume 10

FIGURE 35 Comparison of fix capacity and security debt by scan frequency
Source: Veracode SOSS Vol. 10

The top 1% of
applications with
the highest scan
frequency carry about
5X less debt than the
bottom one-third.

45State of Software Security

The relationship of scanning cadence to security debt depicted
in Figure 36 isn’t as obvious. For most of the time period studied,
applications scanned at the various intervals carried similar amounts
of debt (though a ‘Steady’ cadence averaged about 30% less). Where
they ended, however, is a different matter. Steadily tested applications
began chopping away at their end-of-year security debt, while those
subject to bursty scanning began rapidly piling it on. This may again be
attributable to small-ish numbers. But it’s also logical that applications
in the bursty category entered a rapid development phase before an
offsetting burst of scans was conducted.

FIGURE 36 Comparison of fix capacity and security debt by scan cadence
Source: Veracode SOSS Vol. 10

Fixed

Open

Steady Irregular Bursty

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

300

200

100

0

Application Age (months)

A
v
e
ra

g
e
 F

in
d

in
g

s
p

e
r

A
p

p

Source: Veracode SOSS Volume 10

46 Veracode

What is security debt comprised of?
If these icebergs of debt are lurking beneath the surface of our
applications, what sort of flaws make up this debt? We start by
examining the long-unaddressed OWASP Top 10 flaws displayed
below in Figure 37. Interestingly, the composition of flaws does not
match the overall prevalence we saw back in Figure 19, suggesting
that certain types of flaws are more likely to become security debt
than others. The largest amount of debt across applications comes
from Cross-site Scripting (XSS), with Injection, Authentication,
and Misconfiguration flaws making up sizable portions as well.
We consider this noteworthy, as Injection is the second most
prevalent flaw category in reported exploits (recall Figure 20).

0%

25%

50%

75%

100%

1 months 3 months 5 months 7 months

Application Age

P
e
rc

e
n

t
o

f
F

la
w

s

A1-Injection

A2-Authentication

A3-XXE

A4-XML Ext. Entities

A5-Access Control

A6-Misconfiguration

A7-XSS

A8-Deserialization

A10-Logging
Source: Veracode SOSS Volume 10

FIGURE 37 Percentage breakdown of flaw debt over the lifetime of an application
Source: Veracode SOSS Vol. 10

The largest amount
of debt across
applications comes
from Cross-Site
Scripting (XSS).

47State of Software Security

Perhaps more interesting is the breakdown of debt by language
presented in Figure 38. We exclude the predominant XSS category
to get a better look at the less common flaws across languages. For
JavaScript we see lots of security debt in the form of Injection and
Authentication flaws. Misconfiguration errors are largely concentrated
in Java, with large portions in .Net and PHP as well. C++ stands out as
the only language with a significant portion of Access Control flaws
and with debt that spans a variety of flaw types.

FIGURE 38 Flaw debt types across application age by language
Source: Veracode SOSS Vol. 10

Java JavaScript PHP

.NET Android C++

1m 3m 5m 7m 1m 3m 5m 7m 1m 3m 5m 7m

1m 3m 5m 7m 1m 3m 5m 7m 1m 3m 5m 7m
0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Application Age

P
e
rc

e
n

t
o

f
F

la
w

s

A1-Injection

A2-Authentication

A3-XXE

A4-XML Ext. Entities

A5-Access Control

A6-Misconfiguration

A8-Deserialization

A10-Logging

Source: Veracode SOSS Volume 10

48 Veracode

Before we leave the land of OWASP breakdowns, we want to see if
scanning cadence affects the type of flaw debt found in an application
and whether that changes over the application’s lifetime. The results
are below in Figure 39. A steady scanning cadence is the only cadence
associated with meaningful change in the proportion of flaw types.
Specifically we see a steady reduction in Authentication flaw debt as
the drumbeat of scans progresses. This is positive as Authentication
flaws are most likely to be used in incidents (Figure 20).

A bursty or irregular cadence does not appear to significantly change
the nature of security debt as the application ages. We’re encouraged
to see the proportionality of flaws change with steadier scan patterns.
We suspect that this reflects teams using their scan results in a more
mature process whereby they choose the types of issues to tackle first
and the types of debt they’re willing to tolerate. That puts them closer
to being on top of their security debt rather than drowning under it.
And that’s a much better place to be.

Steady Irregular Bursty

1m 3m 5m 7m 1m 3m 5m 7m 1m 3m 5m 7m
0%

25%

50%

75%

100%

Application Age

P
e
rc

e
n

t
o

f
F

la
w

s

A1-Injection

A2-Authentication

A3-XXE

A4-XML Ext. Entities

A5-Access Control

A6-Misconfiguration

A8-Deserialization

A10-Logging

Source: Veracode SOSS Volume 10

FIGURE 39 Flaw debt type by scanning cadence
Source: Veracode SOSS Vol. 10

A steady scanning
cadence is the only
cadence associated
with meaningful
change in the
proportion of
flaw types.

49State of Software Security

Regional
Breakouts
While our dataset associates applications with the geographic
location of the organizations to which they belong (as opposed to,
for instance, the location of development teams), we can still glean
some interesting regional trends.

49State of Software Security

50 Veracode

Does software security change by region?
Figure 40 compares the three high-level regions according to several
key measures from our software security testing over the last year.
Proceeding from left to right, the columns shed light on the mechanics
of security debt, starting with the proportion of applications with
higher-severity (level 4 or 5) flaws, the percentage of those flaws
that are fixed, the median speed at which those flaws are fixed,
and the average number of unfixed flaws (debt) per application.

Statistics for the Americas track closely with the overall results
presented thus far in the report. That’s not terribly surprising, given
the fact that the Americas — specifically the U.S. — dominate the
sample data. But the other regions do show some interesting variation.

Beginning on the left, EMEA boasts the lowest prevalence of
high-severity flaws, while APAC has the highest. The Americas and
EMEA stand neck and neck in terms of fixing those flaws. Fix rates
among organizations in APAC, however, are substantially lower. Even
though APAC claims the quickest median remediation timeframes,
it’s not enough to offset the comparatively large amount of security
debt accumulated among firms in that region. Organizations in EMEA
generally appear to take longer to fix flaws, but still manage to keep
debt under control — likely tracing back to the lower starting point
for flaw prevalence.

3
7

%
 o

f
a
p

p
s

3
2

%
 o

f
a
p

p
s

4
0

%
 o

f
a
p

p
s

7
3

%
 f

ix
e
d

7
2

%
 f

ix
e
d

5
5

%
 f

ix
e
d

5
6

 d
a
y
s

14
7

 d
a
y
s

4
2
 d

a
y
s

15
6

 f
la

w
s

2
10

 f
la

w
s

7
3

2
 f

la
w

s

Fix RateSev 4 or 5 MedianTTR

Americas EMEA APAC Americas EMEA APAC Americas EMEA APAC Americas EMEA APAC

Source: Veracode SOSS Volume 10

Debt per App

FIGURE 40

Comparison of key software
security testing metrics
by region

Source: Veracode SOSS Vol. 10

50 Veracode

51State of Software Security

Due to the substantial difference in MedianTTR for EMEA, we include
Figure 41 to add more context. The major difference from the chart
above is that this includes all flaws rather than just those rated as higher
severity. In this expanded scope, EMEA’s MedianTTR (50% closed)
seems much more inline with other regions, though the long tail of
slower fix timeframes remains apparent. APAC closes 75% of flaws
in about half the time (yet still carries the highest amount of debt).

Americas

EMEA

APAC

0 100 200

Time To Fix (days)

R
e
g

io
n

25% closed 50% closed 75% closed
Source: Veracode SOSS Volume 10

FIGURE 41 Comparison of time-to-remediation statistics across regions

Source: Veracode SOSS Vol. 10

52 Veracode

Key Takeaways
Any honest “state of” review is destined to be filled with
a range of developments that can be considered encouraging,
discouraging, and even uncertain. Our latest State of Software
Security is no exception to the rule.

52 State of Software Security

53State of Software Security

Part of the challenge in interpreting what the data says about
the current state is that we’re measuring a moving target.

Applications are living codebases that evolve over time in response to customer
needs. Any change has the potential to introduce flaws that expose the application
and organization to risk. Rather than fearing change, thereby conceding irrelevancy,
development teams can embrace change by ensuring their ability to find and fix flaws
keeps pace with their ever-evolving codebase. Our key takeaways reflect the evolving
and challenging nature of this process.

 RECAP

Most applications have flaws, and it’s
critical that development teams find them
before they’re rolled into production.

The overall prevalence of flaws rose 11%
since we first reported it 10 years ago, but
the proportion of those flaws assessed to
be of high severity dropped 14% over the
same period. Many (us included) would
view that as a net positive.

 RECAP

The majority of flaws get fixed, but the
time typically required to fix those flaws
reveals a decade of no change (59 day
average in 2010; 59 day median in 2019).

That seems discouraging at first, but
considering the rapid proliferation of
applications and vulnerabilities during
that time, one could reasonably argue
that developers are nobly standing
ground in the face of overwhelming
odds. We like this interpretation and
are glad to support that mission.

#1

#2

 BOTTOM LINE

Prioritize flaws for efficient fixing.

With so many applications and flaws,
it’s easy to get overwhelmed. Don’t
assume recently discovered flaws are
the most important. Even older Injection
and Authentication flaws (which topped
those used by exploits and incidents)
can cause major problems.

 BOTTOM LINE

Build habits around security activities.

Whether this is scanning codebases
after every nightly build or remembering
to follow a security checklist for all new
features, creating a habit can be extremely
useful. If you can find a corresponding
trigger and reward for developers that
encourage desired behaviors, you’re
most of the way toward creating a habit.

54 Veracode

So it goes with security debt.
Security findings are just like any other bug — developers create them along with writing
new features, and there are usually a bunch more lurking in the code written years ago.
You can choose to handle this one of three ways:

 RECAP

Security debt — defined as aging and
accumulating flaws in software — is a
challenge for all development teams.

About half of applications are accruing
debt over time, a quarter driving it down,
and another quarter breaking even.
Our data offers strong evidence that
a DevSecOps approach incorporating
frequent, regular application testing
cuts typical fix timeframes by 72% and
decreases overall security debt by a
factor of 5X!

#3 BOTTOM LINE

Make a plan to pay down security debt.

Security debt can be thought of as
analogous to personal credit card debt.
If you spend every month and never make
a payment, you’ll have a whopping big bill
that balloons over time. If you start paying
for each month’s new spending only, you’ll
never eliminate the balance (in fact, it’ll
keep growing due to interest). To get rid
of the debt, you must address both the
new spending and the balance.

Ideally, you want to pay off ALL the debt as soon as possible, and then fix new findings every
time they appear. This is like paying off your credit card in full every month — never living
beyond your means so to speak.

Ignore all the
findings. Bad idea.

Like ignoring new
charges on credit
cards, eventually
this leads to bad
outcomes and further
indebtedness.

�Fix the new findings,
ignore the old ones.

Also a bad idea. Leaving
old flaws may be attractive
to development teams
because they probably
didn’t create them, but
those long-unaddressed
findings will inevitably
come back to haunt you.

Fix the new findings and
burn down the old in sprints.

Ideally, all of that happens every sprint,
facilitated by frequent, regular security
scanning (that’s what the data would
recommend). But special periodic
“security sprints” could be run separately
from normal finding/fixing to burn down
security debt, provided you can accept
the risk that those unresolved flaws may
be exploited.

1 2 3

54 State of Software Security

55State of Software Security

Methodology
Appendix

Veracode methodology for data
analysis uses statistics from a
12-month sample window.

The data represents application
assessments submitted for analysis
from April 1, 2018 through March 31,
2019. The time-to-fix data stretches
back farther than that because flaws
closed in the sample period may have
been opened well before it. The data
represents large and small companies,
commercial software suppliers,
open source projects, and software
outsourcers. In most analyses, an
application was counted only once,
even if it was submitted multiple times
as vulnerabilities were remediated
and new versions uploaded.

The report contains findings about
applications that were subjected
to static analysis, dynamic analysis,
software composition analysis,
and/or manual penetration testing
through Veracode’s cloud-based
platform. The report considers data
that was provided by Veracode’s
customers (application portfolio
information such as assurance level,
industry, application origin) and
information that was calculated or
derived in the course of Veracode’s
analysis (application size, application
compiler and platform, types of
vulnerabilities, and Veracode Level —
predefined security policies which
are based on the NIST definitions
of assurance levels).

A Note on Mass Closures

While preparing the data for our
analysis, we noticed several large
single-day closure events. While it’s
not strange for a scan to discover that
dozens or even hundreds of findings
have been fixed (50% of scans closed
three or less findings, 75% closed less
than 8), we did find it strange to see
some applications closing thousands
of findings in a single scan. Upon
further exploration, we found many
of these to be invalid: developers
would scan entire filesystems, invalid
branches or previous branches, and
when they would rescan on the valid
code, every finding not found again
would be marked as “fixed.” These
mistakes had a large effect: the top
one-tenth of one-percent of the scans
(0.1%) accounted for almost a quarter
of all the closed findings. These
“mass closure” events have significant
effects on exploring flaw persistence
and time-to-remediation and were
ultimately excluded from the analysis.

55State of Software Security

A Veracode

Veracode is a leader in helping organizations secure the software that powers their world. Veracode’s SaaS platform
and integrated solutions help security teams and software developers find and fix security-related defects at all
points in the software development lifecycle, before they can be exploited by hackers. Our complete set of offerings
helps customers reduce the risk of data breaches, increase the speed of secure software delivery, meet compliance
requirements, and cost effectively secure their software assets — whether that’s software they make, buy, or sell.

Veracode serves more than 1,400 customers across a wide range of industries, including nearly one-third of the
Fortune 100, three of the top four U.S. commercial banks, and more than 20 of Forbes’ 100 Most Valuable Brands.
Learn more at www.veracode.com, on the Veracode blog, on Twitter and in the Veracode Community.

Copyright © 2019 Veracode, Inc.

All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

Veracode can help
secure your applications

C O N TA C T U S

https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website

