
Well yes OK, we know we’re rather stretching
the defi nition of “mashup” here, but it has
rather more punch as a title than “we attempt to
cobble together some random bits of software
into a trading application/model doing a spot
of (re)reviewing along the way”. Though that’s
probably a more accurate description of what the
Wrecking Crew and Automated Trader’s Founder,
Andy Webb, have actually been up to for the last
month or two.

Mashup!

In that perfect trading world in which we all exist,
everybody has a single homogenous environment
that handles everything – development, testing,

live deployment, the lot. Th ere’s never even the tiniest
thing that your perfect environment cannot handle.
Code never has to be ported to another application,
everything is seamless so you don’t even have to know
what API stands for – let alone use one. Nothing ever
goes wrong, the word “exception” is never heard (nor
are any of the other words that feature so regularly in
the Wrecking Crew’s vocabulary), optimisations take
seconds, if that, and trade execution nanoseconds.

Over here in the real world (and believe us, a world
inhabited by the Wrecking Crew can’t get much
more real) budgets get cut, heads of IT insist that
Vista is the One True Way, and not everybody had
Kernighan and Ritchie as their bedtime reading at
the age of two. People want the fl exibility to test and
deploy trade ideas quickly without having to spend a
sovereign defence budget on technology. Particularly
among smaller hedge funds and proprietary trading
groups, that often requires plugging various separate
applications together to achieve the desired
functionality, ease of use and time to market.
Old friends
While things have improved dramatically in
recent years, the phrase “plugging various
separate applications together” in the
previous paragraph can still easily end up
as a synonym for “hours of frustration and
nothing working”. Given that breaking

things is the Wrecking Crew’s forte and that trying
to get multiple things to work together implies more
wreckage and greater job satisfaction, we thought that
in this issue we might try this “plugging together” out
and revisit a few old friends along the way (while also
looking at some new technology).

So we started from the premise of doing our
preliminary modelling in MATLAB and deploying
any resulting models via IB-MATLAB to Interactive
Brokers’ trading API. However, just to make things
a little more demanding, some of the modelling
involved suffi ciently hefty workloads to justify giving
our test workstation’s CPUs a helping hand by using
its installed GPUs – courtesy of AccelerEyes Jacket –
to rev up our MATLAB number crunching. While we
could have used Interactive Brokers’ historical data to
feed this set-up, this has some limitations regarding
the amount of data available. We therefore decided
to take CQG’s API for a spin by hooking it up to
MATLAB to provide historical data.

We could have left it there, with anyone wanting to
monitor automated trading activity using Interactive
Brokers’ Trader Workstation (TWS). But by this stage
the Wrecking Crew had its collective bit between its
teeth and it was decided that we would knock up
some form of monitoring station in Excel that would

SOFTWARE REVIEW

Q1 2012 | Automated Trader 8 061

s

COVER STORY,
surely?

You’re right, but leave it.

Y
e
a
h

ri
gh

t
.

062 8 Automated Trader | Q1 2012

be fed via its COM interface with
position info from MATLAB (coming
via IB-MATLAB from IB) and via
CQG’s RTD server with real time and
historical data. The extremist wing of
the Wrecking Crew also wanted to add
a manual trading interface to Excel on
the premise that any trader monitoring
automated models would soon become
bored playing park keeper and would
want to punt about a bit on their own.
Fortunately reason prevailed (up to
a point) and the moderate majority
headed that one off at the pass.

Unfortunately this proved to be an
opening for the Crew’s oldest member.
Horace (see Automated Trader Q2
2010) has been grumbling because recent reviews
haven’t given his natural talent for distrust much of an
outlet – no compliance manuals to read, no security
audits to conduct. To get some peace and quiet, a further
act of lunacy was added to the brew: instead of having
MATLAB send the position info direct to Excel, it would
send it to a local version of Excel in our server room,
which would be automatically checked for updates by an
instance of Excel running on the park keeper’s/trader’s
workstation – in Italy. Or to be more precise, near the
top of a mountain in Italy with only a restricted capacity
community wireless internet link. Sigh...

This immediately raised the issue of security, which in
turn prompted a massive row about how to protect the
link between the two instances of Excel. Those of us
looking for a quiet life (and to finish this review before
2014) opted for LogMeIn Hamachi, the hard geekcore
wanted to use OpenVPN (and wanted to install
TomatoVPN firmware on all our routers), but Horace
insisted that we should use a Billion BiGuard S20 SSL
VPN box that he had found in our spare parts bin
covered in cobwebs and dust. (The fact that we didn’t
have and could no longer buy the security tokens to
generate the one time passwords to use with this didn’t
deter him.)

Having assembled this recipe for catastrophe, off we
set...

CQG => MATLAB
As the “consensus” was that we should try and put
together some statarb strategies for equities, our first
step was to get some historical equity data from CQG
into MATLAB. From a programmer’s perspective,
CQG’s API is thoroughly documented (although

some less experienced programmers might struggle
with figuring out how it all fits together). Fortunately,
CQG provides a decent selection of MATLAB code
samples that illustrate how to connect everything up
and actually get historical and real time data through
the API. (Although CQG’s API supports a lot more
than just real time and historical data – including
account, position and order management – it doesn’t
as yet provide execution in equity markets so we were
opting to use IB for that part of the brew.)

While the CQG examples were perfectly adequate for
our purposes, we actually chose to take advantage of
MATLAB’s ability to define custom object oriented
classes. One of our former Wrecking Crew members,
Dr Yang Wang (see Automated Trader Q3 2010 and
Q2 2011) had already knocked up a class packed
full of overloads that let us explore just about every
possible way of importing CQG data with negligible
effort. We took full advantage...
In doing so, we came across a curious problem that
at the time of going to press we still haven’t quite got
to the bottom of – though we have found a simple
an effective workaround. We started out by invoking
our object based on Dr Wang’s class from within a
function we had written to collect data from CQG,
validate it for errors and to append it to an existing
database. Big mistake. A frustrating few hours then
ensued as the data we had just requested from our
function kept disappearing. We created our object
within the function (“CQGMAT” being the class
name) with:

CQGMAT.new(‘cqg’);

We could then see (see Figure 1) that our empty
object had been successfully created in the function’s

Mashup!

Figure 1

SOFTWARE REVIEW

workspace (highlighted in red in Figure 1) from a
quick look MATLAB’s Variable Editor.

Running the next line of our function:

cqg=cqg.
QuickBar(symbols{j,1},’D’,
daysback);

...successfully populated the necessary input
arguments (see Figure 2).

 Then we ran the next line of the function:

cqg=cqg.Start();

...which fired up the CQG interface and passes the
arguments highlighted in Figure 2 for the desired
stock (in this case Maurel & Prom), the time frame
of the bars requested (daily) and the number of bars
required (8).

Then nothing. No data ever came back!

In MATLAB an object can obviously only remain in
scope for a function while the invoking function is
running (assuming the object hasn’t been explicitly
made global). As soon as the function exits, the object
disappears. But this wasn’t our problem – the calling
function had definitely not exited. We “F11d” through
the code above and could see the object being created in
the MATLAB base workspace (complete with the price
bars we wanted) but the version of the object in the
function’s workspace remained forever bar-less.

In the end we lost patience and simply converted the
function to script (which unlike a standard function
can access the MATLAB base workspace) and retrieved
our data that way (we could alternatively have left it
as a function and used MATLAB’s evalin.m function
to access the data). Hopefully when Dr W returns
from Chinese New Year we’ll get to the bottom of the
problem and publish an update.

This was clearly not a problem related to CQG
and when we briefly reverted to using the sample

code provided by CQG while trying to resolve our
disappearing data problem above we found the API
worked perfectly. Although we were retrieving data for
historical testing via the CQG API, we also did some
dabbling with real time updates to try and get a feel for
its capacity. Our portfolio of pairs was based upon a total
of 175 securities, of which more than half were large
caps with pretty frequent updates. While we didn’t have
any spectacularly fast markets during the test period to
really stress test things, we didn’t have any problems in
terms of bottlenecks. Just for the hell of it we also created

some custom studies in
CQG and pulled the values
for those into MATLAB
without any problems.

However, as part of the
CQG => MATLAB process,
we did come across one
other “interesting” potential
snag – exchanges. Some

exchanges have become extremely twitchy about
data vendors allowing their clients to access exchange
data through an API (the potential for “informal”
redistribution of this data and loss of revenue for the
exchange presumably being the issue at point). While
CQG were extremely helpful with the authorisation
process associated with this (major hat tips here to Alice
Morrison and Brian Vancil of CQG – thanks both),
certain exchanges didn’t exactly hurry. One European
exchange was first approached on December 1st 2011
about API access to their data (and then politely and
regularly reminded regularly thereafter) but took until
January 20th 2012 to actually authorise data access.
So the lesson appears to be that even if you can see an
exchange’s data within your data vendor’s application,
don’t assume that accessing that same data through
an API is a trivial matter – start the paperwork and
nagging process as early as possible!

First steps
In our quest to make things as difficult as possible,
it was decided that any testing of our initial model
(which was for pairs) should include cointegration
tests across multiple time windows for each pair. We
had over 1000 potential pairs to test and we ended up
deciding to cointegration test 350 time windows for
each pair. We tried this using both MATLAB’s own
egcitest.m function for the Engle-Granger test from
its Econometrics Toolbox, as well as the equivalent
cadf.m function provided in the freely available Spatial
Econometrics toolbox.

We started by running two instances of our code on
two machines – one with the code incorporating the s

Figure 2

Q1 2012 | Automated Trader 8 063

MATLAB version of the Engle-Granger test and one
incorporating the Spatial Econometrics’ version. (We
rather cut corners before doing this by only testing
that both stocks in each pair had unit roots once for
each pair across all the available data, using MATLAB’s
version of the augmented Dickey-Fuller test.)

We set the tests running, but after about forty minutes
lost interest and went to find some beer...

Upon our return we found that both tests had finished
at about the same time (around the seventy minute
mark). Wanting to cut this down significantly, we
decided to fire up MATLAB’s Parallel Computing
Toolbox (PCT), which would let us distribute the
task across all four of the CPU cores available in each
test workstation. That knocked the test times down to
about 22 minutes by replacing our original for loops
with the “parfor” loops available in the PCT.

The hard geekcore had originally wanted to use the
Johansen cointegration test framework (also available
in both MATLAB’s Econometrics toolbox and the
Spatial Econometrics toolbox), but the rest of the
team had a nasty feeling where that might lead to
when we tried to cut execution times, so we managed
to kill that idea off. How right we were, as now the
clamour was to cut execution times further by using
the CUDA-enabled NVIDIA Tesla C1060s GPUs (see
www.nvidia.com/object/cuda_home_new.html) in the
workstations in conjunction with AccelerEyes Jacket.

MATLAB + JACKET
Since we originally reviewed it in early 2010, Jacket
has changed beyond recognition. The number of
MATLAB functions it supports has ballooned and
among many other things now also includes support
for doubles using left matrix divide (mldivide or \ in
MATLAB), which was something we were whingeing
about in our original review. Another significant
change is that are you are no longer obliged to have
the MATLAB PCT in order to run Jacket across
multiple GPUs.

We had already spent a fair bit of time trying to
“vectorise” our MATLAB code in order to reduce the
number of for loops (which – depending on the exact
circumstances – can significantly slow code execution
in MATLAB). However, we were still left with a few
loops that we couldn’t eradicate, so we thought we
would use Jacket’s “gfor/gend” loops for the largest
and innermost of these. Unlike conventional CPU-
based looping, Jacket’s gfor/gend construct runs all
iterations of a loop simultaneously. It achieves this
by “tiling out” the values of all loop iterations and

then calculating the values of all tiles at the same time
using the individual cores of a CUDA-enabled GPU.
However, while this has the potential to massively
reduce computation times, the gfor loop does have a
few limitations some of which would require changes
to the functions we were using.

A case in point relates to “if ” statements, which are
not officially permitted at all inside gfor loops, because
they implicitly pull data back to the CPU from the
GPU. This could have been a major hassle for us
in our testing, as both the MATLAB and Spatial
Econometrics versions of the Engle-Granger test are
littered with conditional statements – as are many of
the other functions that they call.

Fortunately, this wasn’t as much of a problem as we
initially expected. Firstly, we found that it appears that
you can get away with “if ” statements in gfor loops
in certain circumstances. More specifically, if the “if ”
statement was in a function called by the gfor loop,
only involved MATLAB single or double data types
and was relatively straightforward, such as:

if (p < -1);
 error(‘p cannot be < -1 in

gcadf’);
end;

...then no errors were generated and the code would
run OK. However, if the “if ” statement involved
Jacket-specific data types (such as gdouble or gsingle)
then an error would throw.

if((abs(adf) > abs(crit(critval))))
 H = 1;
 else
 H = 0;
 end

AccelerEyes offer a number of suggested rather
elegant workarounds for this including one that
works by expressing the conditional statement as a
multiplication by logical values (see wiki.accelereyes.
com/wiki/index.php/GFOR_Usage#No_logical_
indexing). We took the rather more crude approach
of, wherever possible, retrieving the values that would
have been involved in an “if ” statement back to the
calling function. So our original if statement above
ended up as:

resultcoint = abs(adf) -
abs(crit(critval));

...in the function inside the gfor loop. Then when we

Mashup!

064 8 Automated Trader | Q1 2012

NO
!

YES!

gfor kdx = 1:(rows(xdata)-350)
 [tmprc, tmprp] = gcadf(yda

ta(kdx+idx,:),xdata(kdx+i
dx,:),0,1,2); rc(1,kdx) =
tmprc; rp(1,kdx) = tmprp;

gend

Furthermore, if you create the offset vector (idx =
gsingle(0:350);)as a Jacket data type such as
gsingle, this “marks” it for the GPU which delivers a
further speed boost.

On that point, the difference Jacket made to our code
performance was pretty dramatic. Using one GPU
on our single Jacket gfor/gend loop cut the total
function execution time from the 22 minutes achieved
by MATLAB’s PCT “parfor” loops, to just over five
minutes. Impressive, but then we remembered that
Jacket now no longer depends on MATLAB’s PCT
in order to run calculations across multiple GPUs.
The temptation to see whether we could further
improve things by using all three of the GPUs in our
workstation became irresistible...

had built the complete table of resultcoint values and
had completed the gfor/gend loop we simply evaluated
them all with:

resultcoint(resultcoint <=0)=0;
resultcoint(resultcoint >0)=1;

Hardly rocket science (to put it mildly) but it worked.
Incidentally, we couldn’t have used the above line
within the loop because apart from if statements, gfor/
gend loops don’t allow logical indexing.

Another thing not permitted in gfor/gend loops is
using the loop iterator in colon expressions, which is
a popular construct for many MATLAB users. Again,
there are ways around this that aren’t too demanding,
the most straightforward of which is pre-calculate any
offsets, e.g.:

idx = gsingle(0:350); rc
= gnan(1,datacols); rp =
gnan(1,datacols); ra =
gnan(1,datacols);

SOFTWARE REVIEW

s

However, after reading the online docs and arguing for
half an hour we couldn’t figure out the right syntax to
accomplish this, so posted a query on the AccelerEyes
forum. Within less than eight hours we had the
answer from Pavan Yalamanchili, one of AccelerEyes’
core developers (whose tag on the forum “If it is not
broken, you have not tried hard enough” has now
been adopted as the new Wrecking Crew mission
statement). After staring blankly at the sample code
provided by Pavan for about an hour, we actually got
round to reading the rest of his post properly and
finally appreciated the massive significance of his
phrase: “multiple gpus can be run concurrently, even if
their jobs are assigned serially”. In our simple serial-
minded way we hadn’t previously been able to figure
out how GPU two could start work before GPU one
had finished (ditto for GPU three/two).

Collective senior moment finally over, we were able to
run our code across all 3 GPUs – completing in one
minute fifty-two seconds.

It has to be said that we had to do a fair bit of hacking
of the original Spatial Econometrics functions to
produce our own “Jacketised” versions that would run
satisfactorily. Including any sub-functions called, this
took us probably half a day in total, which given the
speed improvement and the opportunity for reusing
those functions, we felt was a good return on effort
expended.

We also tried to do the same with the MATLAB
egcitest.m function but kept running into sub-
functions that it calls – such as qr.m (orthogonal-
triangular decomposition) – which Jacket doesn’t yet
support. With sufficient diligence we could probably
have found a way round these obstacles, but the
alternative of recasting a few “if ” statements in the
Spatial Econometrics functions was the sort of path

of least resistance that appeals to the
review team.

MATLAB => IB-MATLAB => IB
When we reviewed IB-MATLAB
in Q3 2011, one of the things we
remarked upon was its stability. From
conversations with developer Yair
Altman, it became clear that there
was quite a lot going on under the
hood in IB-MATLAB to manage
message flow more efficiently and
prevent lockups or crashes.

We were therefore particularly keen
to take a look at the latest version of
IB-MATLAB as it now incorporates

streaming quote functionality that was not available
at the time of our original review. In view of the
published capacity of 50 messages per second of the
“standard” IB API (the FIX version of the API has a
higher capacity) we were intrigued to see how IB-
MATLAB would deal with unreasonable users (such
as?) who tried to run streaming quotes on a large
number of highly active issues.

One thing that helps in this endeavour is that IB
doesn’t appear to transmit flat price ticks (trades at the
same price as the previous trade). We certainly didn’t
see any when we ran the following:

load(‘dow_stks.mat’);
tic;
for i = 1:rows(stk)
 stk{i,1} = IB_trade(‘action’,

‘Query’,‘symbol’,
stk{i,3}, ‘QuotesNumber’,
inf,‘QuotesBufferSize’, 1000
);

end
toc;
pause(10);
tic;
for i = 1:rows(stk)
 stk{i,2} = IB_trade(‘action’,

‘Query’,‘symbol’, stk{i,3},
‘QuotesNumber’, -1);

end
toc;

The first section of code requests continuous streaming
quotes (by using the MATLAB inf value as an input)
for all 30 stocks in the Dow and specifies a quotes
buffer capable of holding 1000 ticks. After a ten
second pause, the second section of code accesses those
ticks (bids, asks, trades and timestamps) which have

Mashup!

066 8 Automated Trader | Q1 2012

s

bu
tc

he
ry

Wrecking Crew mashing up

Mashup!

been stored in a MATLAB struct but by specifying
‘QuotesNumber’, -1 does not interrupt the
ongoing collection of ticks. Using this mechanism, it is
straightforward to write ticks to disk, build time or tick
bars or do pretty much anything else with the raw data.

Although it was hardly what you’d describe as the
cutting edge of high frequency, it didn’t take very
long to get the process going. The output below was
generated the MATLAB command prompt as a result
of running the code above. To register the initial
requests and subscribe for the 30 stocks via the IB API
took just under 10 seconds. Writing the buffered data
to a cell array of structs was obviously a lot faster.

>> DowStocksStreamQuoteTest

connecting to IB...

Server Version:59

TWS Time at connection:20120125
17:29:11 GMT

 [API.msg2] Market data farm
connection is OK:eurofarm {-1,
2104}

 [API.msg2] Market data farm
connection is OK:cashfarm {-1,
2104}

 [API.msg2] Market data farm
connection is OK:usfarm {-1,
2104}

Elapsed time is 9.967258 seconds.

Elapsed time is 0.061849 seconds.

An important point about IB-MATLAB is that it uses
MATLAB’s Java interface and not COM/ActiveX.
Apart from allowing it to run on both Windows and
non-Windows platforms, this has important benefits
when it comes to processing data. If you have a function
running in MATLAB when IB’s TWS fires an event
via a COM interface then MATLAB will not process
the event until after the function has completed, which
can result in dropped ticks and subsequent calculations
being applied to the wrong tick. By contrast, when
using the Java API, any fired event is automatically
caught by Java in the background to ensure processing
of the correct price tick.

From a statarb or even just a general short selling
perspective one of the most useful aspects of the
new IB-MATLAB tick functionality is its ability to
query multiple other data fields via the IB API. IB-

MATLAB can request what IB terms “Generic Tick
Types”, which includes data such as stock option
volume, option open interest and historical/implied
vol by specifying the relevant “Integer ID Value” in
any data request. However, from our perspective, the
most useful Integer ID Value was 236 as this returns
a value that indicates whether a stock is shortable.
Furthermore, the value also indicates how much
inventory IB has available for shorting. So (among
other things removed to save space) this:

>> data = IB_
trade(‘action’,‘QUERY’, ‘symbol’,
‘GOOG’,‘GenericTickList’,‘236’)

...returns

data =
 reqId: 147771273
 ...
 shortable: 3

A shortable value of 3 (because it is greater than 2.5)
indicates that IB has at least 1000 shares of inventory
available for a short sale. A value between 1.5 and
2.5 would indicate a stock is available for short sale if
shares can be located, while a value between 0.5 and
1.5 means the stock is not shortable. Granted, this
information is nowhere near as comprehensive as IB’s
Short Stock Availability Tool, which provides far more
granular data on both shortable individual stocks and
a portfolio uploaded as a file, but for smaller trades it’s
still extremely useful. The only downside is that we
could only get generic tick 236 to work for US stocks.
In view of the various and ongoing regulatory changes
regarding shorting in Europe, we’re obviously following
up with IB on this to double check whether this was
just an error on our part or simply not available for
European stocks. Expect an update shortly.

All told, we regarded the enhancements to IB-
MATLAB since we last reviewed it as significant. The
order submission process was rock solid as before, but
the new capabilities really open up the possibilities –
especially for trading that is analytically intensive but
not high frequency. We were able to deploy multiple
models in real time to IB’s simulated (nope – the
editorial budget still doesn’t stretch to funding an
account) trading platform without any difficulties or
glitches.

MATLAB => Excel, CQG => Excel and Excel =>
Excel Up a Mountain
It has to be said that this leg of the review project was
frankly a bit of a luxury. Interactive Brokers’ TWS
(see Figures 3a, 3b and 3c) provides pretty much every

068 8 Automated Trader | Q1 2012

SOFTWARE REVIEW

 This was an astonishingly painless process. We were able
to do both daily and intraday updates of the models,
write the parameters to Excel, run a few macros and
close Excel in a matter of seconds. Well, to be strictly
accurate, it was sometimes more than a few seconds
when we ran up against the old problem we encountered
in our original MATLAB review nearly three years ago,
which wasn’t actually a MATLAB issue at all. Whether
you are using MATLAB’s xlswrite.m function (or for
that matter its xlsread.m or xlsinfo.m cousins) or your

possible tool necessary to monitor trading activity.
However, the Wrecking Crew were adamant that the
park keeper/trader would also want to have access
to the parameters of any error correction model we
were using, plus the ability to track the spread and
following trading signals in real time. Since none
of the statarb models we had cobbled together in
MATLAB were remotely high frequency there was
some degree of realism to this. We therefore used
MATLAB to shunt error correction model updates
and other values both daily and every ten minutes into
Excel, while real time market data that could be used
in conjunction with these values was fed into Excel via
CQG’s RTD server.

MATLAB => Excel
When it came to moving data from MATLAB
into CQG, we considered a couple of options.
MATLAB has the xlswrite.m function as a quick
and straightforward way to shunt data into Excel.
However, while it is perfectly effective for small/simple
exports, it can become slow when writing to multiple
worksheets as it has to open/close Excel every time it
writes to a separate sheet. By contrast, establishing a
COM/ActiveX connection to Excel allows for far more
granular control. One quick way to get an inkling of
just how much control is to start the ActiveX server in
MATLAB, with (for example):

excel = actxserver (‘Excel.
Application’);

...then type:

excel.invoke;

at the MATLAB command prompt. This returns a list
of more than 50 available methods, while typing:

excel.get;

...returns a list of nearly 200 available properties.

Apart from relatively mundane things that the
xlswrite.m function can do anyway (such as write data
to worksheet ranges) using a COM/ActiveX connection
to Excel allows you to do things such as run macros
from within MATLAB. We used this capability to auto
generate charts of some of the various models – for
example, Figure 4 shows the historic spread of a simple
pairs model applied to two European oil stocks – as well
as to run an Excel AutoFilter so that the park keeper/
trader would only see tradable (rather than all possible)
instrument combinations or those in which a position
was already open.

Q1 2012 | Automated Trader 8 069

Figure 3a

Figure 3b

s

Figure 3c

Mashup!

own COM/ActiveX connection you
can sometimes find that deleting the
connection doesn’t actually delete it.

The underlying problem is that
other applications may have silently
established connections to Excel
(Google Desktop Search sometimes
used to be a sinner here) and won’t
let go. Fortunately, it’s possible to
run system-wide commands at the
MATLAB command prompt or in
MATLAB functions/scripts, so if you
want to terminate Excel with extreme
prejudice:

 system(‘taskkill /F /
 IM EXCEL.EXE’);

...seems to do the trick pretty reliably.

Just for the hell of it, we did one
additional test that wasn’t in our
original game plan, which was to take
data received into MATLAB from IB
via IB-MATLAB and immediately
retransmit it to Excel. We opted to
do this on a five minute batch basis,
using a custom MATLAB function to
compile the raw trade ticks into tick
(as opposed to time) bars. Again, we
were fortunate in having no difficulty
in doing this, but while automated,
the process could undoubtedly have
been slicker. As a result, we’re planning
to run a review of KaiTrade’s generic
K2 RTD Handler in our next issue
that will allow us to stream the quotes
from IB to Excel in real time.

CQG => Excel
Getting real time data into our park
keeper/trader’s instance of Excel
was similarly straightforward. Once
CQG’s Integrated Client application
is started, its RTD server just works
– period. OK, we could have done
with fewer double quote marks in the
formulas making us cross eyed:

RTD(“cqg.
rtd”,,”StudyData”,”S.
FR.MAU”,”Bar”,,”Close
”,”D”,,”primaryOnly”,
,,,”T”)

...but all told this was pretty painless.
While Microsoft Real-Time Data
Components have been around
for nearly ten years and are well-
established, we were still intrigued
to see how far they could be pushed.
Painful memories of how RTD’s DDE
forebear used to keel over remarkably
easily (or just drop data all over the
place if the going got tough) made us
wonder what was practically possible
in terms of throughput. In the case
of CQG’s implementation, the short
answer seems to be “quite a lot”. For
the hell of it, we dumped RTD links
for more than 3000 NASDAQ/NYSE
stocks into an Excel spreadsheet and
sat back. CQG’s Integrated Client
application started using rather more
memory and CPU cycles but that was
about all – no drama, loads of updates.

Another hat tip at this point to CQG’s
Thom Hartle, who seems to be making
pushing RTD/Excel to the limit and
beyond his life’s work. Thom kindly
shared some of his handiwork with us,
from which we plagiarised several of
our RTD worksheet formulas. (Figure
5 illustrates what’s possible with CQG
+ RTD + Excel + Thom. We didn’t
even attempt to emulate this, so he’ll
probably weep when he sees our feeble
attempts in Figure 4.)

Excel => Excel Up a Mountain
That finally brings us to the connection
between the two instances of Excel.
Much to our amazement, the Billion
S20 proved far easier to configure than
we expected. While the S20 appears
to have been superseded in Billion’s
security appliance line-up, the support
documentation was still available on
their site, as was the latest firmware
(with which we flashed the unit before
setting up the connection). With 20
simultaneous SSL VPN tunnels, the
S20 was rather overkill for our needs.
However, since it also provides two
WAN ports for link failover and load
balancing, we thought we’d better try
them out with a simulated line outage.
We’re still a bit hazy as to how much
data the S20 caches, but whatever the

070 8 Automated Trader | Q1 2012

m
o
st

 o
f

MATLAB

www.fa5t.net/rw

Interactive Brokers API

www.fa5t.net/s4

www.fa5t.net/rx

AccelerEyes Jacket

www.fa5t.net/ry www.fa5t.net/rz

CQG API

www.fa5t.net/s0 www.fa5t.net/s1

IB-MATLAB

www.fa5t.net/s2 www.fa5t.net/s3

Previous
Reviews
and Links

SOFTWARE REVIEW

Obviously, most readers would have followed a far less
convoluted path than ours, but the basic components
we used do seem to combine well and also represent
very good value. Combining first year license costs for
MATLAB (without additional toolboxes which we
didn’t need as we mangled the Spatial Econometrics
toolbox instead), AccelerEyes (single GPU license) and
IB-MATLAB runs up a total bill of $3498 that would
fall to approximately $576 in second and subsequent
years. The only additional costs would be Excel (which
we suspect most readers probably already have) and
CQG to provide data. The basic CQG Integrated
Client (not including exchange fees) costs $595 per
month, with a further $45 for real time API access and
$100 for basic historical API.

Apart from value and general “plumb-ability”, the
other thing that struck us during the review process
was how far some of the applications had advanced
in a relatively short space of time. CQG had made
some significant changes/enhancements to its API

sample code and MATLAB had launched
its new Econometrics toolbox; but the most
striking changes had probably been made by
AccelerEyes and IB-MATLAB. Jacket is now
virtually unrecognisable in terms of native
support for MATLAB functions, while its new
ability to apply multiple GPUs to a problem
without also requiring MATLAB’s PCT
toolbox1 represents a significant landmark in
cost effective high-performance computing.
IB-MATLAB’s addition of streaming data
support is similarly significant, as is its access
to other data items via the IB API. Combining
this with its existing automated trade execution
capabilities means in our minds that – as
long as it isn’t being used for high frequency
trading or a vast portfolio – then IB-MATLAB
effectively contradicts the declaration we’ve
seen on more than a few web sites that
“MATLAB is not for real time trading”.

case we were quite impressed when we yanked
the primary phone line part way through an
upload and the unit failed over instantly to the
backup line without data loss or interruption.

Another pleasant surprise was the relatively
compact nature of the data stream even after
encryption. Even when dedicated hardware
is being used, SSL encryption can chew up a
fair bit of additional bandwidth, and since our
park keeper/trader was at the end of a rather
tenuous occasionally narrowband internet
connection, this was a concern. In practice,
while performance during updates was hardly
what might be termed low latency, everything
worked reliably and certainly sufficiently
quickly for our needs. It also proved reasonably secure.
One of the Wrecking Crew who insists that he’s only
ever had a white hat had a go at compromising the
connection, firstly by attempting to dupe the park
keeper/trader with a fake log on page, and then by
trying to exploit possible vulnerability in the unit’s
implementation of block ciphers (no, us neither). No
luck, but it kept Horace quiet for hours poring over
log files for evidence of intrusion, so we didn’t care.

Conclusion
While this may appear to have been an extremely
artificial exercise, it did have the benefit of establishing
beyond doubt that even a diverse mix of applications
can actually function effectively in a live trading
environment. There was the odd thing to be tweaked
and we may well have been fortunate in our choice
of “ingredients”, but overall it was striking how quick
and easy it was to fit things together and actually be
productive.

Q1 2012 | Automated Trader 8 071

Figure 4

Figure 5

m
o
st

 o
f

1. We should mention that MATLAB has also added its own native GPU support to the PCT toolbox; we didn’t test that as part of this review, but we intend doing so in a future issue.

