
© 2016 Virtual Genius, LLC v.07.28.16 w w w . v i r t u a l g e n i u s . c o m 	
	 	 	 	 	 	 	 								

	 	

Stories	for	Design	and	Delivery	
	

What	is	a	story?	 Characteristics	of	useful	stories	 Why	stories?	

A	story	describes	product	functionality	from	a	
customer’s	perspective.	It	is	a	collaboration	tool	-	a	
reminder	to	have	a	conversation	about	what	the	
customer	needs	so	the	team	can	design	it	well	&	
deliver	it	quickly.	

	
	

• Supports	satisfying	the	customer	through	early	and	
continuous	delivery	of	valuable	software	

• Shifts	the	focus	from	writing	to	talking	-	words	are	
imprecise	

• Supports	and	encourages	participatory	domain-
driven	design	(DDD)	and	user	experience	design	
(UXD):	involve	users,	domain	experts	and	
stakeholders	(i.e.	customers)	in	a	creative,	iterative,	
collaborative	design	process		

• Describes	concrete	business	reference	scenarios,	
equally	understandable	by	developers	and	customers	
in	a	common,	shared	language	

• Customer	ranks	stories	in	team’s	work	queue	
according	to	relative	business	value,	and	team	
designs	iteratively	&	delivers	incrementally	

• The	right	size	for	planning	–	level	of	detail	is	based	on	
implementation	horizon	

What	is	a	helpful	pattern	to	follow?	
“As	a	<user	role>,	I	want	to	<goal>	so	that	<benefit>”	

	
e.g.	As	a	nurse	practitioner,	I	want	to	add	an	appointment	to	my	
schedule	so	that	no	patient	has	to	wait	more	than	5	minutes	for	
treatment	
	
Start	first	with	benefits	and	goals	
Consider	each	user	role	and	identify	the	goals	that	user	
role	has	for	interacting	with	the	software.	Identify	stories	
as	core,	supporting	or	generic	subdomain.	Focus	on	what	
is	needed	and	why,	not	how.	

Model	exploration	 Augment	when	appropriate	 Why	user	roles	in	stories?	
	 • User	stories	are	not	the	end-all,	be-all	for	

representing	“requirements”	
• Augment	them	as	appropriate	with:	

o Design	documents/sketches	
o Proof	of	concepts,	code	probes	
o Photos,	screenshots,	mockups	
o Examples	of	inputs	and	expected	result	

(be	specific!!!)	
o Business	rules,	data	dictionaries,	use	

cases,	glossaries,	diagrams,	
spreadsheets	

• Broadens	scope	from	looking	at	only	one	user	
• Allows	users	to	vary	by:	

o How	they	use	the	software	and	for	what	
o Background	
o Familiarity	with	the	software/computers	

• Used	extensively	in	usage-centered	design	(c.f	personas)	
• Advantages	

o Users	become	tangible	–	software	solves	the	needs	of	
real	people	

o Incorporate	roles	into	stories	

	 	

INVEST	

Independent	

NegoUable	

Valuable	

EsUmable	

Small	

Testable	

• Avoid	design	fragmentation	
when	splitting	stories	by	doing	
model	exploration	when	needed	

• Exercise	the	ubiquitous	language	
in	stories.	

• Look	for	key	business	examples	
in	user	stories	to	source	as	
reference	scenarios	for	modeling	

© 2016 Virtual Genius, LLC v.07.28.16 w w w . v i r t u a l g e n i u s . c o m 	
	 	 	 	 	 	 	 								

	 	

Independent1	 Estimable	 Common	patterns	for	splitting	stories2	
• Identify	dependencies	–	they	

make	prioritizing	and	planning	
more	difficult	

• 	“Slice	the	cake”	–	each	story	
must	have	a	little	from	each	
system	layer	
o Exercising	each	layer	of	the	

architecture	reduces	risk	
of	finding	last-minute	
problems	in	one	of	the	
layers	

o Possible	to	release	
application	with	only	
partial	functionality	

• Don’t	get	hung	up	on	estimation	or	traceability,	
focus	on	delivering	

• A	story	might	not	be	estimable	if:	
o Developers	lack	domain	knowledge	
o Developers	lack	technical	knowledge	
o The	story	is	too	big	(see	below)	

• Stories	used	in	project	planning	
• Developers	are	responsible	for	estimating	
• Technique	such	as	planning	poker	or	planning	

game	can	be	useful	for	making	estimates	
• Story	points	are	a	relative	measure	of	

effort/uncertainty/risk	in	implementing	a	story	

Workflow	Steps	–	potential	need	for	modeling	here	if	core	domain	
As	a	content	manager,	I	can	publish	a	news	story	to	the	corporate	website	

…I	can	publish	a	news	story	directly	to	the	corporate	website	
…I	can	publish	a	news	story	with	editor	review	
…I	can	publish	a	news	story	with	legal	review	

	
Business	Rule	Variations	–	potential	need	for	modeling	&	UXD	here	
As	a	user,	I	can	search	for	flights	with	flexible	dates	

…as	“n	days	between	x	and	y”	
…as	“a	weekend	in	December”	

	
Break	Out	a	Code	Probe	or	Spike/POC	–	in	core	domain	(avoid	otherwise)	
As	a	user,	I	can	pay	by	credit	card	

…Investigate	credit	card	processing	
…Implement	credit	card	processing	(as	1	or	more	stories)	

	
Simple/Complex	–	is	complex	stuff	within	core	domain?	Potential	need	for	modeling	here.	Otherwise,	
avoid	complexity	in	supporting	&	generic	
As	a	user,	I	can	search	for	flights	between	two	destinations	

…specifying	a	max	number	of	stops	
…including	nearby	airports	

	
Major	Effort	–	supporting?	maybe	simple	case	is	good	enough	
As	a	user,	I	can	pay	for	my	flight	with	VISA,	MasterCard,	Diners	Club,	or	American	Express	

…I	can	pay	with	one	credit	card	type	(of	VISA,	MC,	DC,	AMEX)	
…I	can	pay	with	all	four	credit	card	types	(VISA,	MC,	DC,	AMEX)	

	
Data	Variation	–	supporting?	maybe	simple	case	is	good	enough	
As	a	content	manager,	I	can	create	news	stories	

…in	English	
…in	Japanese	

	
Data	Entry	Methods	–	collaborate	with	UXD	
As	a	user,	I	can	search	for	flights	between	two	destinations	

…using	simple	date	input	
…with	a	fancy	calendar	UI	

	
Defer	Performance	–	leverage	domain	events	&	aggregate	boundaries?	
As	a	user,	I	can	search	for	flights	between	two	destinations	

…(slow	–	just	get	it	done,	show	a	“searching	animation”)	
…(in	under	5	seconds)	

	
Operations	(eg.	CRUD:	Create/Read/Update/Delete)	–	basic	operations	unlikely	to	be	in	core	domain,	is	it	
supporting	subdomain?	
As	a	user,	I	can	manage	my	account	

…I	can	sign	up	for	my	account	
…I	can	edit	my	account	settings	

Negotiable	 Small	
• Stories	are	not:	

o Written	contracts	
o Requirements	(they	

express	customer	needs	
that	software	can	help	
fulfill)	

• Don’t	include	all	details,	
otherwise	gives	impression	of:	
o 	false	precision	or	

completeness	
o 	no	need	to	discuss	further	

• Small	stories	for	implementing	in	the	near	future,	
and	higher-level	(larger)	stories	for	further	out.	

• Large	stories	(aka	“epics”):	
o Do	domain	distillation:	separate	what	is	core	

from	what	is	supporting	and	generic	
o Often	hide	assumptions	that	should	be	made	

explicit	
o Hard	to	estimate	and	to	plan	-	won’t	fit	in	a	

single	iteration,	so	split	into	smaller	stories	
• Bugs	can	be	turned	into	user	stories	if	this	is	

helpful	
Valuable	 Testable	
• Identify	if	story	relates	to	core,	

supporting	or	generic	
subdomain	

• Stories	must	be	valuable	either	
to	users/domain	experts		

• Completed	stories	have	more	
value.	Finish	stories	early	and	
often.	

• Drive	important	design	decisions	test-first	with	
unit	tests	

• Specify	acceptance	criteria:	these	tests	
demonstrate	that	a	story	meets	the	customer’s	
expectations,	they	define	the	conditions	of	
satisfaction	for	the	story	

• Use	specific,	concrete,	actual	business	scenarios	
for	modeling	and	testing		

• Where	possible,	automate	acceptance	tests	

	
																																																													

1	User	stories	content	adapted	from	Mike	Cohn,	User	Stories	Applied	(Addison	Wesley:	2004).	
2	Adapted	from	Story	Splitting	Cheat	Sheet	by	Richard	Lawrence	of	Humanizing	Work	(http://www.richardlawrence.info/2009/10/28/patterns-for-splitting-user-stories)	
3	DDD	Whirlpool	adapted	from	http://domainlanguage.com/ddd/whirlpool	

