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Abstract

Neural captioners are typically trained to mimic human-

generated references without optimizing for any specific

communication goal, leading to problems such as the gen-

eration of vague captions. In this paper, we show that

fine-tuning an out-of-the-box neural captioner with a self-

supervised discriminative communication objective helps to

recover a plain, visually descriptive language that is more

informative about image contents. Given a target image,

the system must learn to produce a description that enables

an out-of-the-box text-conditioned image retriever to iden-

tify such image among a set of candidates. We experiment

with the popular ClipCap captioner, also replicating the

main results with BLIP. In terms of similarity to ground-

truth human descriptions, the captions emerging from dis-

criminative finetuning lag slightly behind those generated

by the non-finetuned model, when the latter is trained and

tested on the same caption dataset. However, when the

model is used without further tuning to generate captions

for out-of-domain datasets, our discriminatively-finetuned

captioner generates descriptions that resemble human ref-

erences more than those produced by the same captioner

wihtout finetuning. We further show that, on the Concep-

tual Captions dataset, discriminatively finetuned captions

are more helpful than either vanilla ClipCap captions or

ground-truth captions for human annotators tasked with an

image discrimination task.1

1. Introduction

The last decade has seen impressive progress on the task

of automatically generating image descriptions with deep

neural networks [5, 39, 44, 46]. Most of the proposed meth-

1Our code is available at https : / / github . com /

facebookresearch / EGG / tree / main / egg / zoo /

discriminative_captioner.

Figure 1. Setup of our discriminative finetuning method when ap-

plied to the ClipCap captioner [27]. All CLIP encoders are frozen,

while the language generation modules (mapper and GPT-2) are

updated based on reward values.

ods try to optimize the similarity of system-produced cap-

tions with ground-truth human references, either through a

standard cross-entropy cost function [3], or by maximizing

natural-language-generation (NLG) metrics such as CIDEr

[31, 36] through a reward-based objective. While imitating

human captions is a reasonable goal, it does not take into

account that, in concrete applications, an image description

is produced for a purpose [15, 21].

There are a multitude of context-dependent purposes a

description might be produced for, but a fundamental one

is to correctly characterize an object so that a hearer could

discriminate it from other contextual elements [18]. This

ability to discriminate between referents is a core purpose

of communication, playing a fundamental role in its evo-

lution and acquisition (e.g., [6, 38]). We study here what

happens when we take an out-of-the-box image captioner

that was trained to imitate human captions, and finetune its

language components with a discriminative objective using

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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reinforcement learning. In particular, we let the captioner

play a discrimination game with an out-of-the-box caption-

based image retriever. The captioner generates a caption

given a target image, and the retriever (whose weights are

not updated) uses the caption to select the target among a set

of candidates, as shown in Fig. 1. This finetuning technique

does not require annotated data (only a set of images), and

it’s agnostic to the underlying captioner and retriever com-

ponents.

We report two strong and novel results. First, we show

that captions finetuned in this way lead to better 0-shot

cross-domain caption generation.2 Second, not only are

the finetuned captions good for neural text-based image

retrieval (both in- and across-domain), but they can also

be more useful to human annotators, helping discrimi-

nate the target from distractors more than human-generated

ground-truth captions do. We conclude the paper with

an analysis of the finetuned captions, comparing them to

human-generated and non-finetuned ones from the Concep-

tual Captions dataset. We find that discriminative finetuning

undoes the more abstract language that the underlying sys-

tem had learned from the ground-truth captions, leading to

a more plainly descriptive style that we expect to be more

useful in practical applications.

2. Related Work

In recent years, deep learning has led most progress in

image captioning [3, 12]. While early approaches relied on

supervised learning to maximize the likelihood of the model

against human references [3, 44], other methods have tried

to maximize a reward based on standard language genera-

tion metrics [34, 35]. Our work belongs to a third tradition,

exploring the idea of caption learning or finetuning with a

reward-based objective that is not (only) based on a compar-

ison with reference captions. Among the approaches more

closely related to ours, the system of Yu et al. [49] uses

a ClipCap-like system for caption generation, and CLIP to

measure image-caption similarity, focusing on generating

captions in multiple styles. Cho et al. [8] use CLIP to fine-

tune a pre-trained captioner. Like [49], they use the CLIP-

Score image-caption similarity measure [16] as a reward

signal, rather than a discriminative objective like the one

we adopt. We show in Appendix B.2 that the discriminative

objective outperforms an image-caption similarity objective

similar to CLIPScore (cosine similarity in Table 9). Luo

et al. [26] apply discriminative finetuning to basic MLE-

trained models. Their method requires the use of ground-

truth captions for concurrent CIDEr-based optimization. A

similar approach was presented by Liu et al. [25]. They

2We note that in the earlier literature, cross-domain captioning can rely

on sets of unpaired images and captions from the target domain (e.g., [7,

47, 50]). We consider here a more challenging and realistic 0-shot transfer

task in which no captions from the target domain are available.

also finetune a MLE-pre-trained captioner with a mixture of

discriminative and CIDEr-based rewards (requiring ground-

truth captions for the latter). Intriguingly, their method pro-

duces a higher portion of novel and unique captions com-

pared to a system trained only to imitate human captions,

pointing to the potential for generalization that we confirm

here. Finally, in another early paper using discrimination-

based caption learning, Dai and Lin [9] propose a loss that

explicitly pushes a model to make captions more discrimi-

native with respect to those of a reference model.

Our study builds on this earlier work. Our main nov-

elties lie in the development of a simple system to perform

discriminative finetuning that only requires unannotated im-

ages, out-of-the-box generation/retrieval components and

applying the vanilla REINFORCE algorithm, and in our

out-of-domain and human-based evaluations.

3. Discriminative Self-Supervised Training

We finetune with reinforcement learning a pre-trained

image captioner to generate a caption that is subsequently

fed as input to a frozen discriminator. The discriminator is

then tasked to retrieve the original image among a set of

distractors. We refer to our tuning method as DiscriTune.

Captioner We employ a multimodal language model as

neural captioner. We experiment with two different cap-

tioners, namely the ClipCap architecture from Mokady et

al. [27], and the captioner network of the BLIP model [23].3

ClipCap is an image-conditioned publicly available

GPT-2 model [33]. Importantly, Mokady et al. [27] showed

that it performs comparably to other state-of-the-art cap-

tioning systems while having less parameters and being

more efficient to train. Given an input image, ClipCap uses

a frozen CLIP [32] visual encoder to extract visual features.

These features are then projected through a trainable map-

per network onto the GPT-2 embedding space, where they

are used as a prefix conditioning the generation of an image

description. In practice, they act as soft image prompts that

are used to kickstart the caption generation process.

We use the publicly available ClipCap checkpoints

where the language model weights were also updated dur-

ing training. Such checkpoints were trained on Con-

ceptual Captions [37] (ClipCap-ConCap henceforth), and

MS COCO [24] (ClipCap-COCO henceforth), respectively.

Given that these models were trained with a frozen ViT-

B/32-based CLIP as visual feature extractor, we use the

same visual encoder in our experiments.

To test whether our method generalizes to other models,

we experiment with the BLIP system [23], a large captioner

pre-trained with web-mined data which performed on par or

3Additional results with the recently introduced CaMEL [4] captioner

are provided in Appendix C.
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better than other state-of-the-art systems on several bench-

marks and has shown strong retrieval and captioning per-

formance [23]. BLIP is made of a text Transformer [42]

and a vision Transformer [13]. The text Transformer is

trained to maximize the likelihood of reproducing a ground-

truth reference by autoregressively generating a caption. Vi-

sual information is injected by cross-attending over the out-

put of the vision Transformer. The model is trained with

multi-task learning with two other multimodal alignment

losses. We refer the reader to [23] for additional details on

BLIP. We use the BLIP-base version,4 pre-trained on a large

dataset including both COCO and Conceptual Captions.

Retriever We used the standard CLIP model from Rad-

ford et al. [32] as our neural retriever. CLIP is a multimodal

dual encoder model that embeds text and images and learns

to maximize their similarity through a contrastive loss. It

was trained on a dataset of 400M human-curated image-text

pairs. We refer the reader to [32] for additional details about

CLIP pre-training. We use the publicly available original

implementation of CLIP with a ViT-B/32 backbone [13]. 5

We perform retrieval by computing a matching score

match(c, i) for an image i and a caption c as the dot product

between the embedded representation of c (computed by the

frozen CLIP textual encoder) and the embedded representa-

tion of i (computed by the frozen CLIP visual encoder). We

consider an image i correctly retrieved against a set of dis-

tractors D ⊆ I (taken from a larger image collection I) iff

i′ ∈ D, and i ̸= i′, match(c, i) > match(c, i′).

Optimization Since the decoding process creates a dis-

crete bottleneck, we cannot use a loss function to back-

propagate end-to-end from the retriever output. Thus, we

use REINFORCE [45] to optimize the captioner (ClipCap

or BLIP) by using a reward that is based on the match-

ing scores between the caption c and the set of candidates

D ∪ {i}. In this process, the CLIP retriever is kept frozen

and, given the non-differentiable text generation step, there

is no gradient flowing from the retriever to the captioner.

To compute a reward, we normalize the retriever scores

to a probability distribution, and then use as reward the so-

defined log probability of the original image i: R(c, i,D) =

log e
match(c,i)

∑
i′∈D∪{i} ematch(c,i′) . We then compute the reward as

the cross-entropy loss between such distribution and the po-

sition of the target image in the list of candidates. Our cap-

tioner, which, in essence, models the probability Pθ(c|i) of

a caption c given an image i, is, in reinforcement learning

terms, the action policy, and the actions taken are just the

selected tokens. The policy is trained to minimize the neg-

ative expected reward, i.e., Ec∼Pθ(·|i)[−R(c, i,D)] and we

4The model is publicly available through the LAVIS library [22]
5https://github.com/openai/CLIP

compute the gradient of this expectation as the expectation

of the gradient. To reduce variance of the gradient estima-

tor we use as a baseline a running mean of past rewards [41]

(see Appendix B for more details).

In our experiments we let both our captioners freely gen-

erate for a maximum of 40 tokens, or until a full stop (or

EOS token for BLIP) is produced. We set such maximum

length after observing that most captions were much shorter

and taking into account the fact that CLIP, our downstream

retriever, does not process contexts larger than 75 tokens.

4. Experiments

4.1. Setup

In this section, we report experiments with our Dis-

criTune method where we finetune the pre-trained cap-

tioner with a self-supervised discriminative reward pro-

vided by a frozen downstream CLIP receiver. We apply

the method to the ClipCap checkpoints introduced above,

namely ClipCap-COCO and ClipCap-ConCap. We fine-

tune them with CLIP-provided discriminative reward us-

ing COCO and Conceptual Captions data, respectively. We

call the resulting finetuned models DiscriTune-COCO and

DiscriTune-ConCap. We also repeat the main experiments

using the BLIP checkpoint trained on COCO, which we fur-

ther finetune on COCO with our DiscriTune method.6

We finetune both our captioners with the discriminative

reward using the Adam [20] optimizer with a learning rate

of 10−7 and a constant schedule. We use a batch size of

100, with in-batch distractors, so that each target image is

mixed with 99 randomly sampled distractors for discrimi-

native finetuning. All our experiments were performed on

a single Tesla V100 GPU. For ClipCap on COCO, we fine-

tune for 20 epochs, with around 1.2K batches per epochs

and roughly 24K updates, whereas on Conceptual Captions

we finetune for 2 epochs leading to around 28K batches per

epoch and 56K updates. For BLIP, we finetune on COCO

for a single epoch corresponding to 1.2K updates, as prelim-

inary experiments showed that to be sufficient for conver-

gence. We use greedy decoding at training time and beam

search at test time.

Hyperparameter search We used the Flickr validation

set [48], not used elsewhere in the paper, to tune learning

rate, reward function (discriminative- vs accuracy-based),

and REINFORCE baseline (see Appendix B).

Data We used the standard MS COCO [24] and Con-

ceptual Captions [37] datasets to perform discriminative

finetuning. MS COCO is on of the most commonly used

6We use the EGG library [19] to perform all our experiments.
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captioning and text-conditioned retrieval datasets, contain-

ing around 120K images, each provided with 5 human-

generated captions. We use the Karpathy train and test

set split [17]. Conceptual Captions is a collection of im-

ages mined from the web and aligned with their alt-text de-

scriptions. It contains around 3M samples for training and

around 16K images for validation, that we used as our test

set. After filtering out corrupted images due to outdated

download links, we are left with 2.8M samples in the train

set and exactly 13K images for testing.

To test 0-shot cross-domain generalization, we use the

Flickr [48], nocaps [1] and Concadia [21] datasets. We di-

vided Flickr data according to the Karpathy split and evalu-

ate on the test set (1K samples), where each image is aligned

with 5 human captions. The nocaps dataset was introduced

to test caption generalization performance of models trained

on COCO. It is divided into three splits. We do not use the

control in-domain split, since it contains the same object

classes as COCO. The near-domain split has images from

COCO categories as well as images from new categories.

The out-domain split only contains pictures of objects that

are not present in COCO. Following prior work [27], we use

the validation set of nocaps for testing purposes. Concadia

is a dataset recently introduced to test difference in text gen-

eration performance when producing captions compared to

descriptions. The former are meant to accompany an image

in order to provide additional context, as in books or news-

papers, while the latter should be able to replace the image,

an example being descriptions for visually impaired peo-

ple.7 We use the Concadia test split, which contains 9.6K

images, each annotated with a caption and a description.

We want to emphasize again that, when finetuning our

models, we did not use any human reference. Ground-truth

captions were only used to compute NLG metrics.

4.2. Results

4.2.1 Text-Conditioned Image Retrieval

Table 1 shows that, as expected, ClipCap trained with Dis-

criTune greatly improves over vanilla ClipCap on the im-

age retrieval tasks it was finetuned on. The result how-

ever also extends to cross-domain retrieval. DiscriTune-

COCO (slightly) outperforms ClipCap-ConCap on Con-

ceptual Captions, and DiscriTune-ConCap greatly outper-

forms ClipCap-COCO on COCO. Moreover, both versions

of DiscriTune greatly outperform ClipCap on all other

datasets. Interestingly, DiscriTune almost always outper-

forms human-generated captions, confirming a recent re-

sult by Dessı̀ et al. [11] on how neural retrievers show bet-

ter performance with neural captions. We performed addi-

tional experiments on a more challenging setup where hard

7Note that in this paper we follow instead the standard practice of using

“caption” to refer to both captions and descriptions in the sense of Kreiss

et al. [21].

distractors are either automatically mined or selected from

adjacent frames in videos and confirm the superior perfor-

mance of our DiscriTune method (Appendix D).

4.2.2 Ground-Truth-Based Caption Quality Evalua-

tion

The text-based caption retrieval results show that our ap-

proach is remarkably good at the task it was finetuned on,

also in the 0-shot cross-domain setup. However, it is less

clear that retrieval-based finetuning should improve the cap-

tions’ faithfulness to human ground-truth image descrip-

tions. Table 2 shows that, indeed, discriminative finetuning

leads to some decrease in caption faithfulness, when testing

on the dataset used for supervised pre-training. However,

this performance drop (which, in the case of COCO is very

small) is balanced by greater generalization performance,

as shown in Table 3. DiscriTune-COCO is the best domain

transfer model across-the-board. In addition, DiscriTune-

ConCap is also consistently outperforming its vanilla coun-

terpart, ClipCap-ConCap, in this 0-shot cross-domain gen-

eralization setup. Interestingly, for the Concadia dataset we

have a (slightly) higher gain over plain ClipCap with the

descriptions split rather than with the captions one, espe-

cially for DiscriTune-ConCap. Human references in the de-

scriptions split were generated with the goal of replacing an

image by describing its contents. This confirms that Dis-

criTune contributes to captions that are more suited for the

“communicative” purpose of characterizing the crucial as-

pects of an image contents. Overall, the results suggest that,

on the one hand, discriminative finetuning leads to captions

that drift apart somewhat from the human descriptions that

the model learnt to mimic. At the same time, though, this

might allow the model to get away from the idiosyncrasies

of a specific captioning style, leading to captions that bet-

ter generalize to a wider set of unseen images and domains.

As the experiment in Section 4.2.4 below shows, sometimes

this drifting might be beneficial even when captioning im-

ages in the same domain.

4.2.3 Applying Discriminative Finetuning to BLIP

To verify the robustness of DiscriTune finetuning, we next

apply it to BLIP. We finetune BLIP on COCO captions, one

of the datasets it was pre-trained on. Tables 4 (retrieval)

and 5 (captioning) show that Discrirune-BLIP outperforms

its non-finetuned counterpart for both retrieval performance

and caption quality. The results confirm that our captioner-

agnostic discriminative finetuning is helpful even when ap-

plied to this latest-generation general-purpose vision-and-

language model. DiscriTune-BLIP outperforms its vanilla

counterpart on all out-of-domain datasets tested. Again, we

note the greater performance boost on the Concadia De-

scriptions split compared to the Captions one, confirming
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Model COCO ConCap Flickr nocaps near nocaps out Concadia

ClipCap-COCO 74.2 73.0 65.9 77.3 73.9 53.74

DiscriTune-COCO 84.8 83.6 79.4 86.0 82.5 64.79

ClipCap-ConCap 73.4 82.5 76.7 78.1 73.6 59.17

DiscriTune-ConCap 81.6 94.4 87.8 89.1 88.7 80.49

Human captions 76.3 81.6 88.7 85.5 87.7 73.96

Table 1. ClipCap and DiscriTune percentage accuracy (P@1) when retrieving a target image from a set of 100 candidates taken from the

COCO, Concpetual Captions and Concadida test set, and nocaps validation sets.

COCO

Model B@4 M C S

ClipCap-COCO 32.60 27.50 108.55 20.33

DiscriTune-COCO 32.31 26.05 105.40 20.03

Conceptual Captions

Model B@4 M C S

ClipCap-ConCap 7.32 10.81 87.22 18.07

DiscriTune-ConCap 3.92 8.79 55.26 15.40

Table 2. NLG metrics (BLEU@4 [30], METEOR [10], CIDEr

[43] and SPICE [2]) for ClipCap and DiscriTune captions tested

in-domain on COCO and Conceptual Captions.

the results obtained with ClipCap and the benefits of our

finetuning method to generate captions that are closer to

human references produced with the communicative intent

of replacing an image. Given that BLIP is not based on a

CLIP encoder, this experiment also refutes the hypothesis

that DiscriTune performance gains are simply due to using

CLIP both as visual encoder for the captioner and as re-

triever, confirming the wider applicability of our method.

4.2.4 Human Text-Based Image Retrieval

The results in tables 1 and 2 show that, when testing on

Conceptual Captions, DiscriTune-ConCap produces out-

puts that are less similar to human captions than those of

ClipCap-ConCap, but it greatly outperforms the latter in

text-based image retrieval accuracy. Recall that the ground-

truth captions in Conceptual Captions come from the alt-

texts associated to images harvested from the Web [37].

As discussed in more detail in the qualitative analysis be-

low, when taken out of context, such captions are often

non-informative, and thus it’s not clear that learning to

reproduce their style as closely as possible, like vanilla

ClipCap-ConCap does, is a good idea. Consider for exam-

ple Fig. 2(c) below. ClipCap-ConCap is perfectly reproduc-

ing the ground-truth description (“digital art selected for the

#”), and yet this is not as informative as the caption pro-

duced by DiscriTune-ConCap (“a boy in a pond with a lot

of stars”). We thus conjecture that, despite their lower faith-

fulness to the human ground truth, DiscriTune-ConCap cap-

COCO

Model B@4 M C S

ClipCap-ConCap 8.50 13.29 37.03 9.77

DiscriTune-ConCap 13.99 16.97 53.20 12.07

Conceptual Captions

ClipCap-COCO 1.47 6.43 23.74 7.98

DiscriTune-COCO 1.71 6.58 28.01 9.00

Flickr

ClipCap-COCO 17.21 18.43 41.65 12.04

DiscriTune-COCO 18.48 18.61 44.78 12.68

ClipCap-ConCap 8.28 12.24 27.57 7.81

DiscriTune-ConCap 13.01 15.16 36.35 9.44

nocaps-near

ClipCap-COCO 30.47 24.36 69.66 10.89

DiscriTune-COCO 32.87 24.11 70.63 10.98

ClipCap-ConCap 10.41 13.25 30.47 5.72

DiscriTune-ConCap 18.93 17.66 46.45 7.53

nocaps-out

ClipCap-COCO 20.32 20.22 51.74 8.55

DiscriTune-COCO 24.10 20.49 57.06 8.83

ClipCap-ConCap 10.69 13.15 36.57 5.71

DiscriTune-ConCap 16.76 17.03 54.03 7.56

Concadia-Descriptions

ClipCap-COCO 1.94 5.57 14.99 6.44

DiscriTune-COCO 2.03 5.65 16.70 7.15

ClipCap-ConCap 0.62 3.69 12.77 5.82

DiscriTune-ConCap 1.12 4.81 17.20 7.13

Concadia-Captions

ClipCap-COCO 0.24 2.45 4.35 2.11

DiscriTune-COCO 0.30 2.49 5.57 2.59

ClipCap-ConCap 0.50 2.74 9.22 3.65

DiscriTune-ConCap 0.30 2.79 9.37 4.20

Table 3. NLG metrics (BLEU@4, METEOR, CIDEr and SPICE)

for ClipCap and DiscriTune captions tested across domain on

COCO (Conceptual Captions-based models only), Conceptual-

Captions (COCO-based models only), Flickr, nocaps, Concadia.

tions are more informative than ClipCap captions, and pos-

sibly even more informative than the original human cap-

tions in this dataset.
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Model Flickr nocaps nocaps Concadia

near out

BLIP 75.1 87.0 90.6 71.0

DiscriTune-BLIP 80.8 90.2 92.6 74.9

Table 4. BLIP and DiscriTune-BLIP percentage accuracy on the

cross-domain retrieval task described in Section 4.2.1.

Flickr

Model B@4 M C S

BLIP 27.18 22.74 70.63 16.03

DiscriTune-BLIP 28.19 23.61 74.77 16.9

nocaps-near

BLIP 44.91 29.52 107.13 14.52

DiscriTune-BLIP 45.46 29.81 108.70 14.97

nocaps-out

BLIP 38.42 26.95 105.63 13.77

DiscriTune-BLIP 37.34 27.13 106.23 14.14

Concadia-Descriptions

BLIP 2.71 6.90 26.02 9.75

DiscriTune-BLIP 2.90 7.18 27.20 9.98

Concadia-Captions

BLIP 0.66 3.14 9.97 3.84

DiscriTune-BLIP 0.74 3.35 10.84 3.96

Table 5. NLG metrics (BLEU@4, METEOR, CIDEr and SPICE)

for BLIP and DiscriTune-BLIP captions tested across domains.

To verify this hypothesis, we designed an experiment in

which human annotators had to select a target image from a

set of 10 candidates, based either on a ground-truth human

description, or a ClipCap-ConCap or DiscriTune-ConCap-

generated one. We sampled the data for this experiment

from our Conceptual Captions test set. To make sure that

the captions needed to be genuinely informative in order to

allow successful target retrieval, we selected hard distrac-

tors among the nearest visual neighbours of the target. The

latter were found by passing images through the CLIP ViT-

B/32 visual encoder and computing the cosine of the result-

ing representations.8 We collected human data for 500 tar-

get+distractor sets, for each of the three caption types. We

recruited Amazon Mechanical Turk participants who saw

100 sets each.9 Experimental details (including ethical ap-

proval) are in Appendix A.

Results are reported in Table 6. They confirm that the

task, due to the hard distractors, is quite challenging, with

the annotators failing to reach 50% accuracy independently

of caption type. However, even with the least informa-

tive ClipCap-ConCap captions, humans are well above the

8We found that very high-similarity neighbours are often near dupli-

cates of the target image and we excluded those with similarity above 0.8

9https://www.mturk.com/

Captions accuracy

Human 42.8

ClipCap-ConCap 36.2

DiscriTune-ConCap 47.6

Table 6. Percentage accuracy of human annotators when selecting

a target image among 9 distractors based on the target human-,

ClipCap- or DiscriTune-generated captions.

10% chance level. Importantly, the DiscriTune-ConCap

captions greatly outperform not only their ClipCap coun-

terparts, but also the human ones, with a solid 5% accuracy

boost. We thus confirm our conjecture that, given a rela-

tively noisy dataset such as Conceptual Captions, our fine-

tuning procedure can produce captions that are more infor-

mative than the original human-produced descriptions. In

the next section, we explore the differences between human

and DiscriTune-generated captions.

5. Caption Analysis

Fig. 2 shows 6 Conceptual Captions examples from the

experiment with humans in which human annotators were

only able to guess the target given the DiscriTune-generated

captions (correct target image is on the left; image picked

by subjects in response to the human-generated caption is

shown on the right). These cases, selected among those

where no human face is recognizable, were hand-picked to

illustrate various phenomena. They are however represen-

tative of the data, which we manually inspected as a whole.

Starting with a comparison of DiscriTune and ClipCap

captions,10 we observe that the latter tend to be more vague

(cf. examples (b), (c), (d) and (f)), where sometimes these

vague captions are actually matching the human-generated

ones very closely (as in (c)). The other issue with Clip-

Cap captions is that they are often inaccurate, as in exam-

ple (a), where people are playing in the water, not on the

beach; and it’s hard to believe the desolated landscape in

(b) is a tourist attraction. Note that the use of a generic term

such as tourist attraction in this last example is a peculiarity

that ClipCap inherited from the Conceptual Captions style

(the dataset was constructed by replacing place and people

names with generic hypernyms such as this one). Clearly,

learning to reproduce such Conceptual Captions-specific id-

iosyncrasies penalizes ClipCap when it’s evaluated on other

datasets. On the other hand, it’s remarkable that discrimi-

native finetuning, built on top of this very ClipCap system,

was able to steer the captions back towards a more descrip-

tive and precise language.

Comparing DiscriTune with the human captions, we see

that the former tend to be more plainly descriptive and pre-

10As the focus of this analysis in on the Conceptual Captions-

trained/finetuned models, we will drop the -ConCap suffix.
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H: beach is a beach that slopes into the 

water or in the hilly areas of shallow water. 

C: mother and children playing on the 

beach. 

D: a mother and her children playing  

in a sea. 

H: person crosses lake on the way. 

C: tourist attraction in the snow. 

D: a man in a snow covered mountain. 

H: digital art selected for the # 

C: digital art selected for the #. 

D: a boy in a pond with a lot of stars. 

H: building is an outdoor amphitheater  

ixiion the shores. 

C: skyline on a sunny day. 

D: a sailboat in a lake with a skyline. 

H: church with belfry in the town 

C: church in the old town. 

D: a church in a colonial town. 

H: a sketch for my new avatar . 

C: painting of a man's head. 

D: a drawing of a bird with a pink nose. 

(a) 

(d) (e) (f) 

(b) (c) 

Figure 2. Example Conceptual Captions images with the corresponding captions produced by humans (H), ClipCap (C) and DiscriTune

(D), respectively. In all cases, annotators were able to identify the target image (framed in green) only when receiving the DiscriTune

caption as input. The image on the right of each pair is the distractor that was chosen by annotators when receiving the human caption as

input.

cise than the latter. Often, human captions in the Concep-

tual Captions dataset contain non-discriminative “meta” in-

formation about an image that is not useful to identify it, or

might have made sense in the context of the original web

page, but becomes opaque once the image and its alt-text

are extrapolated. In example (a), the human caption is just

stating that we are on a beach with shallow water, so that

the human discriminator picked another shallow-beach pic-

ture. The DiscriTune caption precisely reports that there are

a woman and children in the water. The human caption of

example (b) might be accurate, but without more context

it’s difficult to recognize the white plateau as a frozen lake.

Consequently, the human discriminator wrongly chose a

more stereotypical picture of a lake. Concerning examples

(c) and (f), the human captions report that they are “digi-

tal art” and an ”avatar”, respectively, leading the annotators

to pick other potential exemplars of digital art and avatars

from the distractors. The DiscriTune caption for (f) is actu-

ally inaccurate, as the avatar is not a bird, but the mention

of a pink nose nevertheless helped the subject identifying

the right image. The human caption of example (d) refers

to an outdoor amphitheater that is not visible in the picture.

Again, DiscriTune was more helpful to the human discrim-

inators by providing a plain description of the picture con-

human ClipCap DiscriTune

new young red

other old green

musical biological blue

outdoor close black

small white pink

long trendy colorful

big digital yellow

low funny denim

large aerial purple

beautiful general high

Table 7. Top 10 adjective lemmas most associated to a caption type

(human, ClipCap or DiscriTune) according to the local Mutual In-

formation association statistics computed on all captions generated

for our full Conceptual Captions test set.

tents. Finally, example (e) is interesting because the human

caption highlights the somewhat atypical belfry in the pic-

ture (and so the human discriminator picked a photo with

a more prominent belfry), whereas the DiscriTune caption

provides a more discriminative cue by mentioning the colo-

nial style of the landscape.
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To get a more general sense of the language of the differ-

ent caption types, we lemmatized and part-of-speech tagged

the full Conceptual Captions test set caption corpora with

Spacy.11 We then computed the local Mutual Information

statistics [14] across all possible lemma/caption-type pairs.

We restricted the analysis to adjectives and nouns, as we

found these two parts of speech to include the most visu-

ally descriptive terms. The adjective results are presented

in Table 7 (noun analysis is in Appendix E). The difference

between the adjectives in human and DiscriTune captions

is striking: the latter are nearly all highly visual descriptive

terms (in particular, colours), whereas the former contain

several terms that are hardly providing any visual informa-

tion (new, musical, other). Even the most concrete human-

caption adjectives are not as specific as those strongly asso-

ciated with DiscriTune (compare small, big, large, beautiful

to red, blue, purple, denim). The ClipCap list also contains

few adjectives that might be genuinely useful to discrimi-

nate a specific image (white, aerial), with most being either

abstract or very generic (biological, trendy, funny, general).

It is remarkable that self-supervised discriminative finetun-

ing, probably by exploiting the multimodal knowledge en-

coded in the pre-trained ClipCap components, is able to re-

cover a highly visually descriptive language, despite the fact

that it operates on a system that has been trained on hu-

man captions that, as we have just seen, are not as plainly

descriptive, and that the system is not exposed to any new

language during finetuning.

6. Conclusion

We presented a simple finetuning method to make

model-generated captions more discriminative. Given a

pre-trained captioner, its text generation component is fine-

tuned on the task of helping a black-box text-based image

retriever picking a target image among distractors. The

task only requires unannotated images, and we were able

to make the system work with the basic REINFORCE al-

gorithm. We leave the exploration of more sophisticated

reinforcement learning techniques as an obvious direction

for future work. Our results are reported using two caption-

ers, ClipCap, a decoder-only model, and BLIP, an encoder-

decoder trained with multitask learning on web-scale data.

We found that the discriminatively finetuned captions do

not improve over the original ones in terms of similarity to

human ground truth, when tested on the same dataset the

captioner was trained on. However, for both models and

on a variety of out-of-domain datasets, they consistently

outperform those of the original captioner. Discriminative

pressure might be a strong enough signal to “unlearn” some

of the overfit on the caption style of the pre-training dataset,

and instead better capture the semantic content of the image.

11https://spacy.io/

What’s more, for the noisily annotated Conceptual Captions

data-set (where we observed the largest performance drop in

terms of mimicking ground-truth descriptions when finetun-

ing ClipCap), discriminatively finetuned captions are more

helpful than ground-truth captions, not only to a neural re-

triever, but also for humans tasked with a challenging image

identification task. This suggests that our system could be

used as-is to generate Web image captions that are on av-

erage more informative to users than alt-text descriptions

(which are the source of Conceptual Captions annotations).

Qualitatively, we find that, even when finetuning the

Conceptual Captions-trained captioner (that has learned to

reproduce the somewhat abstract style of alt-text descrip-

tions), our discriminative finetuning procedure recovers a

more precise and plainly descriptive language. Compared

to those of the original captioner, it is also clear why these

more descriptive captions, that shed the idiosyncrasies of

alt-text, will generalize better to other datasets. We focused

our analysis on ClipCap and Conceptual Captions, since

this is the setup where we observed the largest discrep-

ancy between human and discriminatively-generated cap-

tions, and a marked asymmetry in retrieval vs. generation

performance. We leave a thorough investigation of how the

nature of the captions used to train the backbone captioner

affects our method to future work. Given that several pre-

trained text-based image retrievers are publicly available,

another interesting direction would be to alternate different

retrievers during finetuning. This might help the model fur-

ther generalize, as it would be less likely to overfit the quirks

of one specific retriever.

Finally, there has been recent progress in training models

to learn from human feedback through reinforcement learn-

ing [28, 29, 40]. Given the costly human annotation process

required by this approach, our method could be seen as a

cheaper alternative, exploiting “neural” feedback to guide

the finetuning of an existing model. Future research direc-

tions should study the interplay between human and neural

feedback to improve the capabilities of current systems.
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