
Christophe Pettus, pgexperts.com

The PostgreSQL Role System

Check Your Privileges 



Hi!

• I’m Christophe. 

• CEO and lead consultant at PGX. 

• PostgreSQL person for a long time. 

• thebuild.com 

• christophe.pettus@pgexperts.com

http://thebuild.com
mailto:christophe.pettus@pgexperts.com


v16



What is a role, anyway?



It’s that thing you use to log in, right?

• Well, yes, that’s part of it. 

• But roles are so much more! 

• PostgreSQL has a very sophisticated role and privileges system. 

• Let’s explore!



OK, so what is a role, then?

• 1. A “role” is an object that holds privileges, and has attributes. 

• We’ll talk about the difference between them soon. 

• 2. Roles are also used to authenticate access to the database. 

• Each session has a role associated with it (which may or may not be the one that was used to log 
in.) 

• Authentication is a talk in itself. Another time. 

• 3. Every object in the database is owned by a particular role.



OK, so, what’s a user?

• It’s a role with the LOGIN attribute. 

• That’s it. 

• That’s all. 

• No, no tricks, that’s the only thing a user is. 

• We’ll exclusively use the term role here.



I’m sure I saw something called a group.

• You’ll see some mentions of a “group” in the documentation. 

• Mostly in the form of obsolete commands. 

• A group is a role. 

• There’s no special separate thing called a group.



Roles are cluster-wide.

• Roles are global objects, not database-specific. 

• Using privileges, access to particular databases can be restricted by role. 

• Privileges are all database specific. 

• Just because you can select from table t in one database doesn’t mean you can select from 
anything in a different database. 

• Remember to do a pg_dumpall to capture them: pg_dump of a single database doesn’t!



First, let’s understand privileges.

• A privilege is an object that allows a session to perform an operation on a database object. 

• Select from a table. 

• Create a new table in a schema. 

• Call a function. 

• We say that a role “has a privilege” if a privilege object exists in the database that grants that role that privilege. 

• A session can only perform an operation if its current role has the privilege to do it. 

• But there are all kinds of ways for a role to gain a privilege.



HOW CAN YOU  
BECOME PRIVILEGED?



1. Be a superuser.

if (current_role->is_superuser) { 
      return TRUE; 
}



Superusers can do anything.

• It’s not so much that it has all privileges, as it doesn’t matter what privileges it has: the answer is 
always, “Sure, go ahead.” 

• You get one superuser role (postgres) automatically when you create a new PostgreSQL cluster. 

• You really should never have more than one. 

• Being a superuser is an attribute of the role, not a privilege granted to the role. 

• We’ll talk about why that’s important in a bit.



2. Be the object owner.

• The role that creates a database object is its owner (unless another owner is specified at the time). 

• The owner can “give away” ownership. 

• But not to just anyone: you can only give ownership to a role you can SET ROLE to (more later). 

• The owner initially has all available privileges on that object. 

• All can be revoked except the privilege to ALTER or DROP the object.



3. Do something that is granted to PUBLIC.

• PUBLIC is a pseudo-role that is built into the system. 

• All roles are (in effect) “members” of PUBLIC and inherit all of its privileges. 

• Anything PUBLIC can do, all roles can do. 

• Not every single privilege can be granted to PUBLIC. 

• Some are granted by default (which can be a surprise, which we’ll discuss later). 

• Don’t confuse the PUBLIC role with the public schema.



4. Have that privilege explicitly granted.

• Roles have the privileges they have been explicitly granted. 

• GRANT SELECT ON TABLE t TO my_role; 

• Of course, what is granted can be taken away: 

• REVOKE SELECT ON TABLE t FROM my_role;



5. Inherit the privilege from another role.

• Roles can be members of other roles. (That’s where the “group” thing comes from.) 

• A role can inherit the privileges of the roles it is a member of. 

• Can but not always does: there are controls here! 

• Only privileges are inherited, not attributes. 

• To fully understand how this works, let’s talk about…



Role Inheritance.

• A role can be a “member” of another role. 

• This is a directed graph: one role can be a member of multiple roles. 

• By default, if you don’t specify anything else, a role will inherit all of the privileges of its “parent” role. 

• This is recursive, so the privileges “build up” as you work your way down the graph. 

• A role can be assigned as a member of another group when it is created, when the parent is 
created, or later.



Role A Role B

Role C



How do you become a member of a role?

• A role becomes a member of another role with a form of the GRANT command: 

• GRANT <parent role> TO <child role>; 

• A role can also be added to the parent when the child is created: 

• CREATE ROLE <child role> IN ROLE <parent role>, …; 

• Or a role can be added to the parent when the parent is created: 

• CREATE ROLE <parent role> ROLE <child role>, …;



Membership has its privileges.

• A grant of membership in a role can have options associated with it: 

• SET — This option lets a session using the child role SET ROLE to the new role. 

• ADMIN — This option lets the child role add and remove new members (“siblings”) to/from the 
parent role. 

• This is similar to WITH GRANT OPTION on grants of a privilege. 

• INHERIT — This option lets the child role inherit all of the privileges of the parent role.



Inheritance Controls.

• A role can be created with NOINHERIT: It will not inherit anything from any parent (unless you override that). 

• A role can be added to another role with INHERIT FALSE: the “child” role won’t inherit anything from that 
particular parent role. 

• Inheritance is all-or-nothing: a child gets all of the privileges of the parent, or none of them. 

• You can’t revoke an inherited privilege directly on the inheriting role. 

• If a child does not inherit the privileges of its parent, its children don’t either (no generation-skipping). 

• So, why be a member of a role you don’t inherit from?



6. Switch to a role that has the privilege.

• A session can change roles. 

• An old role can change to a new role, if: 

• The old role is a member of the role you are changing to, and, 

• The old role has the SET option on the new role. (This can be granted when added to the new role, or 
afterwards.)  

• The SET option can come from a parent of the new role, as long as there is an unbroken chain of SETs. 

• (You also need the SET option to “give away” an object that you own to a different role.)



OK, great, but how do you get privileges in the first place?

• A role is granted privileges by another role. 

• Using the GRANT statement, to no one’s surprise. 

• A superuser can grant any privilege to any role. 

• A role can grant another role a privilege if it was granted that privilege WITH GRANT OPTION. 

• Role x: GRANT SELECT ON TABLE t TO a WITH GRANT OPTION; 

• Role a: GRANT SELECT ON TABLE t TO b;



Forms of GRANT.

• GRANT SELECT ON TABLE t TO role1; 

• GRANT ALL PRIVILEGES ON TABLE t TO role1; 

• GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA schema1 TO role1; 

• GRANT SELECT ON TABLE t TO role1 WITH GRANT OPTION; 

• GRANT SELECT ON TABLE t TO ROLE role1 GRANTED BY role2;



Ownership has its privileges.

• The owner of an object can grant any privilege on that object (even if it doesn’t have it itself). 

• This means that the owner can “restore” to itself a privilege that has been revoked. 

• Revoking a privilege from the owner is for safety, not security. 

• The ability to modify or drop an object acts like a privilege, but can’t be granted. It can be inherited, 
though.



REVOKE.

• A superuser can revoke any privilege. 

• A role can revoke any privilege that it granted (which role granted the privilege is tracked). 

• If revoking a privilege on a role that has granted it other roles, you must specify CASCADE on the 
REVOKE statement (or you’ll get an error). 

• You can revoke just the WITH GRANT OPTION. Any roles that have inherited that privilege will have 
it revoked (assuming you specify CASCADE), but the direct role will keep it. 

• The INHERIT, SET, and ADMIN options can be revoked as well.



Variations on GRANT.

• GRANT can grant a role privileges on a whole class of object at once. 

• GRANT SELECT ON ALL TABLES IN SCHEMA my_schema TO my_role; 

• This is a one-time operation; new tables created in that schema do not automatically get the same 
grants. 

• GRANT can also grant all privileges at once: 

• GRANT ALL PRIVILEGES ON TABLE t TO my_role; 

• The privileges can be individually revoked after such a grant, or revoked all at once.



Grants on PUBLIC.

• PUBLIC can be granted additional privileges beyond the defaults. 

• This automatically grants all roles in the system the same privileges. 

• Revoking them from PUBLIC revokes them from all roles (if the role gets them from PUBLIC). 

• WITH GRANT OPTION can’t be used on grants to PUBLIC, because c’mon.



GRANT IS AN OBJECT. 

REVOKE IS AN OPERATION.



You can only REVOKE what was GRANTed.

• A REVOKE operation will only revoke a privilege that has been GRANTed. 

• It doesn’t “block” the privilege if the object you revoked it from gets it from somewhere else. 

• Think of it as: 

• GRANT creates a privilege object. 

• REVOKE deletes a privilege object, but there is no “revoke” object. 

• You may or may not get a warning when you revoke a non-existent privilege!



z=> select current_user; 
 current_user  
-------------- 
 x 
(1 row) 

z=> CREATE FUNCTION f() RETURNS INT AS $$ SELECT 1; $$ LANGUAGE SQL; 
CREATE FUNCTION 
z=> SELECT f(); 
 f  
--- 
 1 
(1 row) 

z=> REVOKE EXECUTE ON FUNCTION f() FROM x; 
REVOKE 
z=> SELECT f(); 
 f  
--- 
 1 
(1 row) 



z=> REVOKE EXECUTE ON FUNCTION f() FROM y; 
REVOKE 
z=>  
\q 
Swift:~ xof$ psql -U y z; 
psql (16.3) 
Type "help" for help. 

z=> SELECT f(); 
 f  
--- 
 1 
(1 row) 



The call is coming from inside the house.

• y got its EXECUTE privilege via PUBLIC. 

• PUBLIC has certain default privileges on some database objects: 

• EXECUTE on all functions and procedures. 

• CONNECT and TEMPORARY on databases. 

• USAGE on languages and data types, 

• The database owner or a superuser can revoke these. (But don’t unless you know what you are 
doing.)



Attributes.

• Roles also have attributes in addition to granted privileges. 

• They are not GRANTed: they are assigned when the role is created, or later with ALTER ROLE. 

• They are never inherited.



Attributes
• SUPERUSER | NOSUPERUSER 
•CREATEDB | NOCREATEDB 
•CREATEROLE | NOCREATEROLE 
• INHERIT | NOINHERIT 
• LOGIN | NOLOGIN 
• REPLICATION | NOREPLICATION — Pragmatically, must have LOGIN as well. 
• BYPASSRLS | NOBYPASSRLS 
•CONNECTION LIMIT connlimit 
• [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL 
• VALID UNTIL 'timestamp' 
• IN ROLE role_name [, ...] 
• IN GROUP role_name [, ...] 
• ROLE role_name [, …] 
•ADMIN role_name [, ...] 
• SET configuration_parameter



SET configuration_parameter

• Sets the named configuration parameter when a role connects to the database. 

• Does not set it on SET ROLE, which is a shame. 

• Is not inherited, which is really a shame. 

• Only works with configuration parameters that you can SET (“on the command line” in the 
documentation).



Role Administration.

• New in version 16! Practical role administration that does not require a superuser. 

• A role with the CREATEROLE attribute can create new roles in the database. 

• It is automatically granted the ADMIN privilege on any role it creates. 

• It can be granted ADMIN on existing roles as well. 

• A role with CREATEROLE (on itself) and ADMIN on its parent role can add and remove members 
from the parent role. 

• Can’t create superuser or REPLICATION roles.



Pre-version-16.

• The ADMIN privilege doesn’t exist, so… 

• A role with CREATEROLE can manipulate any role in the system, even ones it did not create. 

• This allows a role with CREATEROLE to “break out” of many access controls. 

• Such as being able to access the underlying filesystem. 

• Considered Harmful.



Role Playing.

• A session has two roles associated with it: 

• The current role, which is the role whose privileges are applied to operations. (current_user) 

• The session role, which is (usually but not always) the role that the session logged in as. 
(session_user) 

• You can also get the role used for authentication and the authentication method, and those never 
change during the life of the session. (system_user) 

• Two confusingly similar ways to adopt a new role.



SET ROLE

• Changes the current role, but not the session role, to the new role. 

• The old role must be a member of the new role, with the SET option. (Or the old role is a superuser.) 

• You can reset back to the session role (SET ROLE NONE) or to the original authenticated role 
(RESET ROLE). (These are the same in 100%-ε cases.) 

• Non-superusers can use this to temporarily escalate their privileges, if set up properly (example 
later). 

• Use this one.



SET SESSION AUTHORIZATION

• Can only be used if the authenticated role is a superuser. 

• Changes both the session user and the current user to the new role. 

• You will probably never use this statement.



WHAT PRIVILEGES 

ARE THERE?



A stroll through the privilege garden.

• Each database object class has a specific set of privileges that can be granted on it. 

• Often, privileges share a name but not semantics (or share semantics just conceptually). 

• USAGE on a schema isn’t the same as USAGE on a foreign data wrapper. 

• Not every combination of privileges make sense. 

• Some privileges are only practical in combination with others.



Privileges on Tables.

• SELECT — Select from the table. 

• INSERT — Insert into the table. (Needs UPDATE for ON CONFLICT DO UPDATE.) 

• UPDATE  — Update rows in the table. (De facto requires SELECT.) 

• DELETE — Delete from the table. (De facto requires SELECT.) 

• TRUNCATE  — Truncate the table. 

• REFERENCES  — Create a foreign key constraint referencing (“pointing to”) this table. 

• TRIGGER — Can create a trigger on the table. (Not required to run the trigger.)



Privileges on Tables.

• SELECT, INSERT, UPDATE, REFERENCES can be granted on individual columns instead of the entire table. 

• For INSERT, non-granted columns must have defaults or an appropriate BEFORE trigger. 

• You can’t revoke access to columns individually; you need to revoke access to the whole table and re-grant. 

• Using row-level security, can be granted on a subset of rows (beyond scope of this talk). 

• Can be granted to an individual table, or all tables in a schema at once. 

• Only applies to existing tables; privileges on new tables not automatically granted. 

• Views and materialized use the same command syntax; you can even call them TABLEs to be confusing.



What about indexes?

• Indexes do not have separate privileges. 

• Whatever a role has privileges to do on a table, it has sufficient privileges on the index. 

• INSERT on a table implies the privilege to scan the index to implement a CHECK constraint. 

• No current way of preventing a specific role from using an index.



Privileges on Sequences.

• USAGE — Allows use of currval and nextval. 

• SELECT — Allows use of currval. 

• UPDATE  — Allows use of nextval and setval. 

• Privileges on tables and their associated sequences are set separately. Granting INSERT on a table 
without USAGE on its sequences will probably result in errors.



Privileges on Schemas.

• CREATE — Allows creation of objects within the schema. 

• USAGE — Allows roles to “see” objects inside of the schema.



Privileges on Databases.

• CREATE — Allows creation of new schemas and publications (for replication), and creating trusted 
extensions. 

• CONNECT — Allows the role to connect to the database. Not much fun without the LOGIN attribute. 
Revoking it doesn’t force-disconnect sessions using that role. 

• Automatically granted to PUBLIC, and probably not a good idea to revoke it. Use the LOGIN attribute 
instead. 

• TEMPORARY (or TEMP)  — Allows creation of temporary tables. 

• Automatically granted to PUBLIC, and only revoke it if you know what you are doing.



Privileges on Functions, Procedures, etc.

• EXECUTE — This is the only privilege available for these. Lets the role execute the function. 

• Functions and procedures can be declared as SECURITY DEFINER, which means they adopt the 
role of the owner when running (instead of running as the invoker). 

• Using ALL FUNCTIONS includes trigger functions and user-defined aggregate and window 
functions, but not procedures; you have to explicitly say ALL PROCEDURES for that. 

• If you want to capture everything with one GRANT, you can use ALL ROUTINES.



Things that just have USAGE.

• Domains. 

• Foreign data wrappers. 

• Foreign servers. 

• Languages. 

• Types.



Exotica.

• Tablespaces just have CREATE (there’s no way of preventing a role from using a tablespace as a 
whole). 

• Database parameters have SET (allows superuser-only parameters to be set by other roles) and 
ALTER SYSTEM (allows a role to issue an ALTER SYSTEM to set a parameter globally). 

• Large objects have SELECT and UPDATE. Don’t use large objects.



Default Privileges.

• Setting privileges on newly-created objects can be tedious. 

• ALTER DEFAULT PRIVILEGES is there for you! 

• Sets the default privileges for newly-created objects system-wide, or in a particular schema, and, 

• For a particular role or for all roles.



Dropping Roles.

• If a role owns objects, the system won’t let you drop it. 

• Reassign ownership of all the objects the role owns to another role, then drop the role. 

• REASSIGN OWNED makes this much easier. 

• Dropping a role that has members just removes the members from the role; it doesn’t drop the 
members.



Predefined Roles.

• PostgreSQL defines a bunch of handy roles that you can grant. Notable ones include: 

• pg_monitor — Allows reading the system statistics views. Usually granted to a monitoring 
agent. 

• pg_read_all_data — Can read all data, even from tables without explicit grants. Does not 
bypass RLS unless the role also has the BYPASSRLS attribute. Handy for a role that does 
pg_dump. 

• pg_signal_backend — Can signal another backend process to cancel a query, or to 
terminate.



COOKBOOK



An application-driven OLTP user.
# CREATE USER oltp; 
# GRANT USAGE ON SCHEMA public TO oltp; 
# REVOKE TEMPORARY ON DATABASE db FROM oltp; 
  -- Requires that TEMPORARY be revoked from PUBLIC but granted to a parent role. 
# GRANT ALL ON ALL TABLES IN SCHEMA public TO oltp; 
# ALTER DEFAULT PRIVILEGES GRANT USAGE ON SCHEMAS TO oltp; 
# ALTER DEFAULT PRIVILEGES GRANT SELECT, UPDATE, INSERT, DELETE, TRUNCATE 
      ON TABLES TO oltp; 
# ALTER ROLE oltp SET statement_timeout = ‘2 sec’;  
# ALTER ROLE oltp SET work_mem = ‘64MB’; 
# ALTER ROLE oltp SET idle_in_transaction_session_timeout = ‘1s’;



A “analyst” role.
# CREATE USER george_analyst; 
# GRANT USAGE ON SCHEMA public TO george_analyst; 
# CREATE SCHEMA workspace; 
# GRANT CREATE ON SCHEMA workspace TO george_analyst; 
# GRANT SELECT ON ALL TABLES IN SCHEMA public TO george_analyst; 
# ALTER ROLE oltp SET statement_timeout = 0;  
# ALTER ROLE oltp SET work_mem = ‘1GB’; 
# ALTER ROLE oltp SET idle_in_transaction_session_timeout = ‘1m’;



A read-only user.
# CREATE USER read_only; 
  -- If tables already exist, repeat for each schema. 
# GRANT USAGE ON SCHEMA public TO read_only; 
# GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; 
# ALTER DEFAULT PRIVILEGES GRANT USAGE ON SCHEMAS TO read_only; 
# ALTER DEFAULT PRIVILEGES GRANT SELECT ON TABLES TO read_only; 



A read-only user the easy way.
-- Useful if there are a lot of default privileges and objects already 
# CREATE USER read_only; 
# ALTER USER read_only SET default_transaction_read_only = true;



Create a DML-only user.
# CREATE USER dml_only; 
# GRANT USAGE ON SCHEMA public TO dml_only; 
# GRANT SELECT, UPDATE, INSERT, DELETE, TRUNCATE 
      ON ALL TABLES IN SCHEMA public TO dml_only; 
# ALTER DEFAULT PRIVILEGES GRANT USAGE ON SCHEMAS TO dml_only; 
# ALTER DEFAULT PRIVILEGES GRANT SELECT, UPDATE, INSERT, DELETE, TRUNCATE 
      ON TABLES TO dml_only; 



If you are using role restrictions on functions…
# REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA public FROM PUBLIC; 
# ALTER DEFAULT PRIVILEGES REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;



A general DBA role.
# CREATE ROLE dba_user_role; 
# GRANT ALL ON DATABASE my_db TO dba_user_role; 
  -- If tables already exist, repeat for each schema. 
# GRANT ALL ON SCHEMA public TO dba_user_role; 
# GRANT ALL ON ALL TABLES IN SCHEMA public TO dba_user_role; 
# GRANT pg_monitor TO dba_user_role; 
# ALTER DEFAULT PRIVILEGES GRANT ALL ON SCHEMAS TO dml_only; 
# ALTER DEFAULT PRIVILEGES ALL ON TABLES TO dml_only; 
# ALTER DEFAULT PRIVILEGES ALL ON ROUTINES TO dml_only; 



A “superuser”
# CREATE ROLE pgx_admin CREATEDB CREATEROLE BYPASSRLS NOLOGIN; 
# GRANT CREATE ON my_db TO pgx_admin; 
# GRANT ALL ON SCHEMA public TO pgx_admin; 
# GRANT pg_read_all_data, 
        pg_write_all_data, 
        pg_read_all_settings, 
        pg_read_all_stats, 
        pg_stat_scan_tables, 
        pg_monitor, 
        pg_signal_backend, 
        pg_checkpoint, 
        pg_use_reserved_connections, 
        pg_create_subscription WITH ADMIN OPTION; 
# GRANT ALL ON PARAMETER <parameter>, ... TO pgx_admin WITH GRANT OPTION; 
# ALTER DEFAULT PRIVILEGES GRANT ALL ON SCHEMAS TO dml_only WITH GRANT OPTION; 
# ALTER DEFAULT PRIVILEGES GRANT ALL ON TABLES TO dml_only WITH GRANT OPTION; 
# ALTER DEFAULT PRIVILEGES GRANT ALL ON ROUTINES TO dml_only WITH GRANT OPTION; 

-- This role cannot log in, but other users can be granted the ability to set to it. 
-- DO NOT use this user for regular operations.



Creating a user that can “sudo.”
# CREATE USER personal_role IN ROLE general_user_role; 
# GRANT pgx_admin TO personal_role WITH INHERIT FALSE;



Tips.

• Don’t user the superuser for anything besides granting privileges to other roles. 

• Transfer ownership of each database to an appropriately-privileged “owning” user. That user can 
be used to apply migrations, but don’t use it for routine DML operations. 

• Remember that any newly-created role only has what PUBLIC has, which isn’t much. 

• Don’t revoke CONNECT from PUBLIC. Use the LOGIN attribute instead. 

• Only revoke TEMPORARY or EXECUTE from PUBLIC if you are using to use a designed role 
hierarchy.



BUT ABOVE ALL…



KISS



DON’T OVER-ENGINEER 

YOUR ROLE SYSTEM.



QUESTIONS?



THANK YOU!




