

 Copyright © 2019 ISSM
 Page 1/5

Implementing Secure Boot in Your Next Design

Tutorial 2019/1 - Revision 1.0 - 19-Sep-19

Why Implementing a Secure Boot in Your ASIC, SoC or FPGA?

The number of new viruses and malwares created every day is getting close to 1
million. Thus, in an always more connected world, getting protected against these
attacks becomes absolutely critical.

To make a device trustable one needs to make sure it runs only genuine firmware.
Let’s take the example of a portable connected electrocardiogram (ECG): if a hacker
could install a malicious piece of software on this equipment, such software could lead
to extremely severe consequences:

- Send the confidential patient data in clear over the air, making it accessible to

anyone

- Report fake patient data leading to false alarms or wrong diagnosis

- Make the device stop measuring heartrate, this is often referred as a Denial Of

Service (DoS) attack and could be life threatening

Secure Boot Principles

Using cryptographic digital signatures is the way to guarantee firmware authenticity
and integrity.

To implement digital signatures, asymmetric cryptography is often the preferred option.
It allows an easy management of the keys. Asymmetric cryptography involves a key
pair made of a private key and a public key. The private key allows privileged
operations and must be strongly protected. The public key can be openly disclosed
and is thus easy to distribute.

Figure 1. The Public key can be easily distributed as it is not confidential

Implementing Secure Boot in Your Next Design

 Copyright © 2019 Thales Design Services
 Page 2/5

Once the software development is complete, the developer generates a key pair that
will be further used to authenticate the firmware. In order to enable secure boot, the
firmware is signed with the private key by the developer and is verified with the public
key in the end product.

At each boot, end equipment in the field will verify the firmware signature using the
matching public key. The public and private keys are mathematically and uniquely
linked. The principles of asymmetric cryptography are such that only the privileged
entity (the developer in our case) can sign a content with the private key that he owns
while any entity can check the signature using the public key. The main benefit of this
approach is that one does not need a secret to verify that the firmware is genuine,
hence there is no need to store a secret in the devices deployed in the field.

This method is widely used because of its flexibility, on the other hand it brings some
constraints. Let’s now see what these constraints are and how INVIA’s software
libraries or Intellectual Property blocks overcome them.

Invia provides the building blocks to efficiently support secure boot

Asymmetric cryptography operations are generally slow and call for a lot of computing
resources. For a powerful CPU core at high frequency (e.g. Arm® Cortex A or Intel™
x86 running at 1GHz), the computation time of a digital signature can be considered

Signature
computation

Private

Figure 2. Firmware signature happens in R&D facility using the private key

Verification
verification

Public

Figure 3. Firmware signature verification in the field uses the matching public key

Implementing Secure Boot in Your Next Design

 Copyright © 2019 Thales Design Services
 Page 3/5

as acceptable. When it comes to embedded processors it is a whole different story
since a digital signature verification can take seconds. Because the boot time is often
a critical parameter, increasing the boot time by several seconds is clearly not an
option. The challenge of the slow computation for asymmetric cryptography can be
solved by the integration of hardware cryptographic accelerators or by using a well
optimized software library. Here follow some examples of ECDSA verification times
based on NIST P256 curve:

Arm® Cortex M3 CPU
Core

Non optimized C
code

Invia optimized
assembly code

Invia hardware
accelerator

Signature verification time
(ms) @96 MHz

500ms

< 190ms

< 50ms

Signature verification time
(ms) @32 MHz

1.5s

< 600ms

< 150ms

Another way of reducing the signature verification time is to reduce the amount of data
to be verified. Let’s assume we want to verify the digital signature of a 100kB piece of
firmware. Assuming each verification operation lasts 200ms using ECDSA with 256
bits key length. ECDSA runs on 256 bits long blocks. The signature computation would
be (100,000 x 8 / 256) x 0.02 = 625s. Once more we are in a situation that would be
hardly acceptable and could get even worse if it comes to a full operating system which
size would be in the MB range.

The way to circumvent this drawback is to substitute a digest to the original content
(the firmware in our case). To make this substitution valid without introducing a security
breach the digest must have the following properties:

- the same message always results in the same digest

- it is infeasible to generate a message that yields a given digest value

- it is infeasible to find two different messages with the same digest value

Such a digest is called a hash and the functions able to turn a digital content into a
digest with the properties above are called Secure Hash Functions. In addition, hash
functions are also designed so that a small change to a message should change the
hash value so extensively that the new hash value appears uncorrelated with the old
hash value. Speed of the hash computation is obviously a key factor too.

Signature
computation

A#p$Gkx*l !
!

Hash
computation

 A#p$Gkx*l !

A#p$Gkx*l !

Figure 4. Hash based digital signature

Implementing Secure Boot in Your Next Design

 Copyright © 2019 Thales Design Services
 Page 4/5

Similar to ECDSA operations, hash can be very time consuming and here again
dedicated hardware can also help improving boot performances. A DMA controller
supporting transfers from the target firmware memory and the hardware hash
accelerator may also improve performances.

Arm® Cortex M3
CPU Core

Non optimized C
code

Invia optimized
assembly code

Invia hardware
accelerator

Hash computation time
(ms) @96 MHz for
100kB

0.58s

< 0.25s

< 0.08s

Hash computation time
(ms) @32 MHz for
100kB

1.7s

< 0.75s

< 0.24s

On top of the ECDSA and SHA hardware accelerators or libraries, the secure boot
process shall be managed by a dedicated secure boot firmware. This secure boot
firmware should be stored in an immutable memory, ideally in ROM or OTP and as an
alternative in a locked flash sector along with the device public key certificate.

Figure 5. Typical secure boot sequence

Invia provides sample secure boot code supporting the sequence above as well as
technical support for implementation in your target ASIC, SoC or FPGA.

Implementing Secure Boot in Your Next Design

 Copyright © 2019 Thales Design Services
 Page 5/5

Secure Firmware Updates Over The Air (FOTA)

To efficiently counter malware attacks, on top of supporting secure boot, it is also
critical to guarantee the security of the firmware updates over the air.
The technique described above relying on firmware signature using a private key and
verification based on a public key also applies to firmware updates and brings a high
level of flexibility as it does to the secure boot.
Hence, same building blocks are used for secure boot and secure updates.

Conclusion

Secure boot is fundamental when it comes to design a trusted electronic device.
Asymmetric cryptography offers the highest level of flexibility but also sets some
challenges when it comes to implementation in embedded systems. INVIA software
and hardware IPs provide proven and efficient solutions in terms of cost, resistance to
attacks and performances.

Figure 6. Building blocks for secure boot implementation

