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Department of Electrical and Computer Engineering, State University of New York at Stony Brook, Stony Brook,
NY 11794-2350, USA
Email: djuric@ece.sunysb.edu

Received 4 May 2003; Revised 29 January 2004

In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic
systems. Thesemethods require amathematical representation of the dynamics of the system evolution, together with assumptions
of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical
forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more
robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new
class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous
positioning of a vehicle in a 2-dimensional space.
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1. INTRODUCTION

Many problems in signal processing can be stated in terms of
the estimation of an unobserved discrete-time random signal
in a dynamic system of the form

xt = fx(xt−1) + ut , t = 1, 2, . . . , (1)

yt = fy(xt) + vt, t = 1, 2, . . . , (2)

where

(a) xt ∈ RLx is the signal of interest, which represents the
system state at time t;

(b) fx : RLx → Ix ⊆ RLx is a (possibly nonlinear) state
transition function;

(c) ut ∈ RLx is the state perturbation or system noise at
time t;

(d) yt ∈ RLy is the vector of observations collected at time
t, which depends on the system state;

(e) fy : RLx → Iy ⊆ RLy is a (possibly nonlinear) transfor-
mation of the state;

(f) vt ∈ RLy is the observation noise vector at time t, as-
sumed statistically independent from the system noise
ut .

Equation (1) describes the dynamics of the system state vec-
tor and, hence, it is usually termed state equation or system
equation, whereas (2) is commonly referred to as observation
equation or measurement equation. It is convenient to dis-
tinguish the structure of the dynamic system defined by the
functions fx and fy from the associated probabilistic model,
which depends on the probability distribution of the noise
signals and the a priori distribution of the state, that is, the
statistics of x0.

We denote the a priori probability density function (pdf)
of a random signal s as p(s). If the signal s is statistically
dependent on some observation z, then we write the con-
ditional (or a posteriori) pdf as p(s|z). From the Bayesian
point of view, all the information relevant for the estimation
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of the state at time t is contained in the so-called filtering pdf,
that is, the a posteriori density of the system state given the
observations up to time t,

p
(
xt|y1:t

)
, (3)

where y1:t = {y1, . . . , yt}. The density (3) usually involves
a multidimensional integral which does not have a closed-
form solution for an arbitrary choice of the system structure
and the probabilistic model. Indeed, analytical solutions can
only be obtained for particular setups. The most classical ex-
ample occurs when fx and fy are linear functions and the
noise processes are Gaussian with known parameters. Then
the filtering pdf of xt is itself Gaussian, with mean mt and
covariance matrix Ct, which we denote as

p
(
xt|y1:t

) = N
(
mt ,Ct

)
, (4)

where the posterior parameters mt and Ct can be recur-
sively computed, as time evolves, using the elegant algorithm
known as Kalman filter (KF) [1]. Unfortunately, the assump-
tions of linearity and Gaussianity do not hold for most
real-world problems. Although modified Kalman-like solu-
tions that account for general nonlinear and non-Gaussian
settings have been proposed, including the extended KF
(EKF) [2] and the unscented KF (UKF) [3], such tech-
niques are based on simplifications of the system dynam-
ics and suffer from severe degradation when the true dy-
namic system departs from the linear and Gaussian assump-
tions.

Since general analytical solutions are intractable, Baye-
sian estimation in nonlinear, non-Gaussian systems must
be addressed using numerical techniques. Deterministic ap-
proaches, such as classical numerical integration procedures,
turn out ineffective or too demanding except for very low-
dimensional systems and, as a consequence, methods based
on the Monte Carlo methodology have progressively gained
momentum. Monte Carlo methods are simulation-based
techniques aimed at estimating the a posteriori pdf of the
state signal given the available observations. The pdf esti-
mate consists of a random grid of weighted points in the state
space RLx . These points, usually termed particles, are Monte
Carlo samples of the system state that are assigned nonnega-
tive weights, which can be interpreted as probabilities of the
particles.

The collection of particles and their weights yield an em-
pirical measure which approximates the continuous a poste-
riori pdf of the system state [4]. The recursive update of this
measure whenever a new observation is available is known
as particle filtering (PF). Although there are other popular
Monte Carlo methods based on the idea of producing em-
pirical measures with random support, for example, Markov
Chain Monte Carlo (MCMC) techniques [5], PF algorithms
have recently received a lot of attention because they are par-
ticularly suitable for real-time estimation. The sequential im-
portance sampling (SIS) algorithm [6, 7] and the bootstrap
filter (BF) [8, 9] are the most successful members of the PF
class of methods [10]. Existing PF techniques rely on

(i) the knowledge of the probabilistic model of the dy-
namic system (1)-(2), which includes the densities
p(x0), p(ut), and p(vt),

(ii) the ability to numerically evaluate the likelihood
p(yt|xt) and to sample from the transition density
p(xt|xt−1).

Therefore, the practical performance of PF algorithms in
real-world problems heavily depends on how accurate the
underlying probabilistic model of choice is. Although this
may seem irrelevant in engineering problems where it is rel-
atively straightforward to associate the observed signals with
realistic and convenient probability distributions, in many
situations, this is not the case. Many times, it is very hard
to find an adequate model using the information available
in practice. In other occasions, the working models obtained
after a lot of effort (involving, e.g., time-series analysis tech-
niques) are so complicated that they render any subsequent
signal processing algorithm impractical due to its high com-
plexity.

In this paper, we introduce a new PF approach to deal
with uncertainty in the probabilistic modeling of the dy-
namic system (1)-(2). We start with the requirement that the
ultimate objective of PF is to yield an estimate of the sig-
nals of interest x0:t, given the observations y1:t . If a suitable
probabilistic model is at hand, good signal estimates can be
computed from the filtering pdf (3) induced by the model,
and a PF algorithm can be employed to recursively build up
a random grid that approximates the posterior distribution.
However, it is often possible to use signal estimationmethods
that do not explicitly rely on the a posteriori pdf, for example,
blind detection in digital communications can be performed
according to several criteria, such as the constrained mini-
mization of the received signal power [11] or the constant
modulus method [12, 13]. Such approaches are very popular
because they are based on a simple figure of merit, and this
simplicity leads to robust and easy-to-design algorithms.

The same advantages in robustness and easy design can
be gained in PF whenever a complex (yet possibly not
strongly tied to physical reality) probabilistic model can be
substituted by a simpler reference for signal estimation. Con-
trary to initial intuition, estimation techniques based on
ad hoc, heuristic, or, simply, alternative references, differ-
ent from the state posterior distribution, are not precluded
by the use of the PF methodology. It is important to real-
ize that the procedure for sequential build-up of the ran-
dom grid is not tied to the concept of a posteriori pdf. We
will show that, by simply specifying a stochastic mechanism
for generating particles, the PF methodology can be success-
fully used to build an approximation of any function of the
system state that admits a recursive decomposition. Specif-
ically, we propose a new family of PF algorithms in which
the statistical reference of the a posteriori state pdf is sub-
stituted by a user-defined cost function that measures the
quality of the state signal estimates according to the avail-
able observations. Hence, methods within the new class are
termed cost-reference particle filters (CRPFs), in contrast
to conventional statistical-reference particle filters (SRPFs).
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As long as a recursive decomposition of the cost function is
found, a PF algorithm, similar to the SIS and bootstrapmeth-
ods, can be used to construct a random-grid approximation
of the cost function in the vicinity of its minima. For this rea-
son, CRPFs yield local representations of the cost function
specifically built to facilitate the computation of minimum-
cost estimates of the state signal.

The remainder of this paper is organized as follows.
The fundamentals of the CRPF family are introduced in
Section 2. This includes three basic building blocks: the cost
and risk functions, which provide a measure of the quality of
the particles, and the stochastic mechanism for particle gen-
eration and sequential update of the random grid. Since the
usual tools for PF algorithm design (e.g., proposal distribu-
tions, auxiliary variables, etc.) do not necessarily extend to
the new framework, this section also contains a discussion on
design issues. In particular, we identify the factors on which
the choice of the cost and risk functions will usually depend,
and derive consequent design guidelines, including a useful
choice of parameters that leads to a simple interpretation of
the algorithm and its connection with the theory of stochas-
tic approximation (SA) [14].

Due to the change in the reference, convergence results
regarding SRPFs are not valid for CRPFs. Section 3 is devoted
to the problem of identifying sufficient conditions for asymp-
totically optimal propagation (AOP) of particles. The stochas-
tic procedure for drawing new samples of the state signal and
propagating the existing particles using the new samples is
the key for the convergence of the algorithm. We term this
particle propagation step as asymptotically optimal when the
increment in the average cost of the particles in the filter after
propagation is minimal. A set of sufficient conditions for op-
timal propagation, related to the properties of the sampling
and weighting methods, is provided.

Section 4 is devoted to the discussion of resampling in the
new family of PF techniques. We argue that the objective of
this important algorithmic step is different from its usual role
in conventional PF algorithms, and exploit this difference
to propose a local resampling scheme suitable for a straight-
forward implementation using parallel VLSI hardware (note
that resampling is a major bottleneck for the parallel imple-
mentation of PF methods [15]).

Computer simulation results that illustrate the validity
of our approach are presented in Section 5. In particular, we
tackle the problem of positioning a vehicle that moves along
a 2-dimensional space. An instance of the proposed CRPF
class of methods that employs a simple cost function is com-
pared with the standard auxiliary BF [9] technique. Finally,
Section 6 contains conclusions.

2. COST-REFERENCE PARTICLE FILTERING

The basics of the new family of PF methods are introduced
in this section. We start with a general description of the
CRPF technique, where key concepts, namely, the cost and
risk functions, particle propagation, and particle selection,
are introduced. The second part of the section is devoted to
practical design issues. We suggest guidelines for the design

of CRPFs and propose a simple choice of the algorithm pa-
rameters that lead to a straightforward interpretation of the
CRPF technique.

2.1. Sequential algorithm

The ultimate aim of the method is the online estimation of
the sequence of system states from the available observations,
that is, we intend to estimate xt|y1:t, t = 0, 1, 2, . . . , accord-
ing to some reference function that yields a quantitative mea-
sure of quality. In particular, we propose the use of a real cost
function with a recursive additive structure, that is,

C
(
x0:t|y1:t, λ

) = λC
(
x0:t−1|y1:t−1, λ

)
+�C

(
xt|yt

)
, (5)

where 0 < λ < 1 is a forgetting factor,�C : RLx × RLy → R
is the incremental cost function, and C(x0:t|y1:t, λ) complies
with the definition

C : R(t+1)Lx ×RtLy ×R −→ R. (6)

We should remark that (5) is not the only recursive decom-
position that can be employed. A straightforward alternative
is to choose a cost function which is built at time t as the
convex sum

C
(
x0:t|y1:t, λ

) = λC
(
x0:t−1|y1:t−1, λ

)
+ (1− λ)�C(xt|yt).

(7)

This form of cost function is perfectly valid for the defini-
tion and construction of CRPFs and choosing it would not
affect (or would affect trivially) the arguments presented in
the rest of this paper, including the asymptotic convergence
results in Section 3. However, we will constrain ourselves to
the familiar form of (5) for simplicity.

A high value of C(x0:t|y1:t, λ) means that the state se-
quence x0:t is not a good estimate given the sequence of ob-
servations y1:t , while a low value of C(x0:t|y1:t, λ) indicates
that x0:t is close to the true state signal. The sequence x0:t is
said to have a high cost, in the former case, or a low cost, in
the latter case. Particularly notice the recursive structure in
(5), where the cost of a sequence up to time t − 1 can be up-
dated by solely looking at the state and observation vectors
at time t, xt , and yt , respectively, which are used to compute
the cost increment�C(xt|yt). The forgetting factor λ avoids
attributing an excessive weight to old observations when a
long series of data are collected, hence allowing for potential
adaptivity.

We also introduce a one-step risk function of the form

R : RLx ×RLy −→ R,

xt−1, yt � R
(
xt−1|yt

) (8)

that measures the adequacy of the state at time t−1 given the
new observation yt. It is convenient to view the risk function
R(xt−1|yt) as a prediction of the cost increment �C(xt|yt)
that can be obtained before xt is actually propagated. Hence,
a natural choice of the risk function is

R
(
xt−1

∣∣yt) = �C
(
fx
(
xt−1

)∣∣yt). (9)
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The proposed estimation technique proceeds sequen-
tially in a similar manner as the BF. Given a set of M
state samples and associated costs up to time t, that is, the
weighted-particle set (wps)

Ξt =
{
x(i)t ,C(i)

t

}M
i=1, (10)

where C(i)
t = C(x(i)0:t|y1:t, λ), the grid of state trajectories is

randomly propagated when yt+1 is observed in order to build
an updated wps Ξt+1. The state and observation signals are
those described in the dynamic system (1)-(2). We only add
the following mild assumptions:

(1) the initial state is known to lie in a bounded interval
Ix0 ⊂ RLx ;

(2) the system and observation noise are both zero mean.

Assumption (1) is needed to ensure that we initially draw a
set of samples that is not infinitely far from the true state x0.
Notice that this is a structural assumption, not a probabilis-
tic one. Assumption (2) is made for the sake of simplicity
because zero-mean noise is the rule in most systems.

The sequential CRPF algorithm based on the structure
of system (1)-(2), the definitions of cost and risk functions
given by (5) and (8), respectively, and assumptions (1) and
(2), is described below.

(1) Time t = 0 (initialization).DrawM particles from the
uniform distribution in the interval Ix0 ,

x(i)0 ∼U
(
Ix0
)
, (11)

and assign them a zero cost. The initial wps

Ξ0 =
{
x(i)0 ,C(i)

0 = 0
}M
i=1 (12)

is obtained.
(2) Time t+1 (selection of the most promising trajectories).

The goal of the selection step is to replicate those particles
with a low cost while high-cost particles are discarded. As
usual in PF methods, selection is implemented by a resam-
pling procedure [7]. We point out that, differently from the
standard BF, resampling in CRPFs does not produce equally
weighted particles. Instead, each particle preserves its own
cost. Notice that the equal weighting of resampled particles
in standard PF algorithms comes from the use of a statisti-
cal reference. In CRPF, preserving the particle costs after re-
sampling actually shifts the random grid representation of
the cost function toward its local minima. Such a behavior
is sound, as we are interested in minimum cost signal esti-
mates. Further issues related to resampling are discussed in
Section 4.

For i = 1, 2, . . . ,M, compute the one-step risk of particle
i and let

R(i)
t+1 = λC(i)

t +R
(
x(i)t |yt+1

)
(13)

which yields a predictive cost of the trajectory x0:t according
to the new observation yt . Define a probability mass function
(pmf) of the form

π̂(i)
t+1 ∝ µ

(
R(i)

t+1

)
, (14)

where µ : R → [0, +∞) is a monotonically decreasing func-
tion. An intermediate wps is obtained by resampling the

trajectories {x(i)t }Mi=1 according to the pmf π̂(i)
t+1. Specifically,

we select x̂(i)t = x(k)t with probability π̂(k)
t+1, and build the

set Ξ̂t+1 = {x̂(i)t , Ĉ(i)
t }Mi=1, where Ĉ(i)

t = C(k)
t if and only if

x̂(i)t = x(k)t .
(3) Time t + 1 (random particle propagation). Select an

arbitrary conditional pdf of the state pt+1(xt+1|xt) with the
constraint that

Ept+1(xt+1|xt)
[
xt+1

] = fx
(
xt
)
, (15)

where Ep(s)[·] denotes expected value with respect to the pdf
in the subindex. Using the selected propagation density, draw
new particles

x(i)t+1 ∼ pt+1
(
xt+1|x̂(i)t

)
(16)

and update the associated costs

C(i)
t+1 = λĈ(i)

t +�C(i)
t+1, (17)

where

�C(i)
t+1 = �C

(
x(i)t+1

∣∣yt+1) (18)

for i = 1, 2, . . . ,M.
As a result, the updated wps Ξt+1 = {x(i)t+1,C(i)

t+1}Mi=1 is ob-
tained.

(4) Time t + 1 (estimation of the state). Estimation pro-

cedures are better understood if a pmf π(i)
t+1, i = 1, 2, . . . ,M,

is assigned to the particles in Ξt+1. The natural way to define
this pmf is according to the particle costs, that is,

π(i)
t+1 ∝ µ

(
C(i)
t+1

)
, (19)

where µ is a monotonically decreasing function.
The minimum cost estimate at time t+1 is trivially com-

puted as

i0 = argmax
i

{
π(i)
t+1

}
,

x̃min
0:t+1 = x(i0)t+1

(20)
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and its physical meaning is obvious. An equally useful esti-

mate can be computed as the mean value of x(i)t+1 according to
the pmf π(i)

t+1, that is,

x̃mean
t+1 =

M∑
i=1

π(i)
t+1x

(i)
t+1. (21)

Note that x̃mean
t+1 can also be regarded as a minimum cost es-

timate because the particle set Ξt+1 is a random-grid local
representation of the cost function in the vicinity of its min-
ima. In fact, estimator (21) has slight advantages over (20).

Namely, the averaging of particles according to the pmf π(i)
t+1

yields an estimated state trajectory which is smoother than
the one resulting from simply choosing the particle with the
least cost at each time step. Besides, computing the mean

of the particles under π(i)
t+1 may result in an estimate with a

slightly smaller cost than the least cost particle, since x̃mean
t+1

is obtained by interpolation of particles around the least cost
state.

Sufficient conditions for the mean estimate (21) to attain
an asymptotically minimum cost are given in Section 3.

We will refer to the general procedure described above as
a CRPF algorithm. It is apparent that many implementations
are possible for a single problem, so in the next section, we
discuss the choice of the functions and parameters involved
in the method.

2.2. Design issues

An instance of the CRPF class of algorithms is selected by
choosing

(i) the cost function C(·|·),
(ii) the risk functionR(·|·),
(iii) the monotonically decreasing function µ : R → [0,

+∞) that maps costs and risks into the resampling and
estimation pmfs, as indicated in (14) and (19), respec-
tively,

(iv) the sequence of pdfs pt+1(xt+1|xt) for particle genera-
tion.

The cost and risk functions measure the quality of the par-
ticles in the filter. Recall that the risk is conveniently inter-
preted as a prediction of the cost of a particle, given a new ob-
servation, before random propagation is actually carried out
(see the selection step in Section 2.1). Therefore, the cost and
the risk should be closely related, and we suggest to choose
R(·|·) according to (9). Whenever possible, both the cost
and risk functions should be

(i) strictly convex in the range of values of xt, where the
state is expected to lie, in order to avoid ambiguities in
the estimators (20) and (21) as well as in the selection
(resampling) step,

(ii) easy to compute in order to facilitate the practical im-
plementation of the algorithm,

(iii) dependent on the complete state and observation sig-
nals, that is, it should involve all the elements of xt and
yt.

A simple, yet useful and physically meaningful, choice of
C(·|·, ·),R(·|·) that will be used in the numerical examples
of Section 5 is given by

C
(
x0
) = 0, (22)

�C
(
xt
∣∣yt) = ∥∥yt − fy

(
xt
)∥∥q, (23)

R
(
xt
∣∣yt+1) = ∥∥yt+1 − fy

(
fx
(
xt
))∥∥q, (24)

where q ≥ 1 and ‖v‖ = √vTv denotes the norm of v. Given a
fixed and bounded sequence of observations y1:t, the optimal
(minimum cost) sequence of state vectors is

x
opt
0:t = argmin

x0:t

{
C
(
x0:t
∣∣y1:t, λ)}

= argmin
x0:t

{ t∑
k=0

λ(t−k)�C
(
xt
∣∣yt)

}
.

(25)

We call x
opt
0:t optimal because it is obtained by minimization

of the continuous cost function, and it is in general different
from the minimum cost estimate obtained by CRPF, which
we have denoted as x̃min

0:t in Section 2.1.
With the assumed choice of cost and risk functions given

by (22)–(24), the invertible observation function fy : RLx →
Iy ⊆ RLy , and yt ∈ Iy , for all t ≥ 1, it is straightforward to
derive a pointwise solution of the form1

x
opt
t = argmin

xt

{�C
(
xt
∣∣yt)} = f −1y

(
yt
)
. (26)

Therefore, as the CRPF algorithm randomly selects and
propagates the sample states with the least cost, it can be un-
derstood (again, under assumption of (22)–(24)) as a nu-
merical stochastic method for approximately solving the set
of (possibly nonlinear) equations

yt − fy
(
xt
) = 0, t = 1, 2, . . . . (27)

Furthermore, setting q = 1 in (23) and (24), we obtain a
Monte Carlo estimate of the mean absolute deviation solu-
tion of the above set of equations, while q = 2 results in a
stochastic optimization of the least squares type.

This interpretation of the CRPF algorithm as a method
for numerically solving (27) allows to establish a connec-
tion between the proposed methodology and the theory of
SA [14], which is briefly commented upon in Appendix A.

The function µ : R → [0, +∞) should be selected to
guarantee an adequate discrimination of low-cost particles
from those presenting higher costs (recall that we are inter-
ested in computing a local representation of the cost func-
tion in the vicinity of its minima). As shown in Section 5,
the choice of µ has a direct impact on the algorithm perfor-
mance. Specifically, notice that the accuracy of the selection
step is highly dependent on the ability of µ to assign large
probability masses to lower-cost particles.

1Note, however, that additional solutions may exist at ∇x fy(x) = 0 de-
pending on fy(·).
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A straightforward choice of this function is

µ1
(
C(i)
t

) = C(i)
t

−1
, C(i)

t ∈ R \ {0}, (28)

which is simple to compute and potentially useful in many
systems. It has a serious drawback, however, in situations

where the range of the costs, that is, maxi{C(i)
t }−mini{C(i)

t },
is much smaller than the average cost (1/M)

∑M
i=1C

(i)
t . In

such scenarios, µ1 yields nearly uniform probability masses
and the algorithm performance degrades. Better discrimina-
tion properties can be achieved with an adequate modifica-
tion of µ1, for example, with

µ2
(
C(i)
t

) = 1(
C(i)
t −mink

{
C(k)
t

}
+ δ
)β , (29)

where 0 < δ < 1 and β > 1. When compared with µ1, µ2
assigns larger masses to low-cost particles and much smaller
masses to higher-cost samples. The discrimination ability of
µ2 is enhanced by reducing the value of δ (i.e., δ 
 0) and/or
increasing β. The relative merit of µ2 over µ1 is experimen-
tally illustrated in Section 5.

The last selection to be made is the pdf for particle prop-
agation, pt+1(xt+1|xt), in step 3 of the CRPF algorithm. The
theoretical properties required for optimal propagation are
explored in Section 3. From a practical and intuitive2 point
of view, it is desirable to use easy-to-sample pdfs with a large
enough variance to avoid losing tracks of the state signal,
but not too large, to prevent the generation of too dispersed
particles. A simple strategy implemented in the simulations
of Section 5 consists of using zero-mean Gaussian densities
with adaptively selected variance. Specifically, the particle i is
propagated from time t to time t + 1 as

x(i)t+1 ∼ N
(
fx
(
x̂(i)t−1

)
, σ2,(i)t ILx

)
, (30)

where ILx is the Lx × Lx identity function and the variance

σ2,(i)t is recursively computed as

σ2,(i)t = t − 1
t

σ2,(i)t−1 +

∥∥x(i)t − fx
(
x̂(i)t−1

)∥∥2
tLx

. (31)

This adaptive-variance technique has appeared useful and ef-
ficient in our simulations, as illustrated in Section 5, but al-
ternative approaches (including the simple choice of a fixed
variance) can also be successfully exploited.

3. CONVERGENCE OF CRPF ALGORITHMS

In this section, we assess the convergence of the proposed
CRPF algorithm. In particular, we seek sufficient conditions

2Part of this intuition is confirmed by the convergence theorem in
Section 3.

for AOP of the particles from time t − 1 to time t. Let
Ξt = {x(i)t ,C(i)

t }Mi=1 be the wps computed at time t. We say
that Ξt has been obtained by AOP from Ξt−1 if and only if

lim
M→∞

∣∣�C
(
x
opt
t

∣∣yt)−�Ct

∣∣ = 0 (in some sense), (32)

where x
opt
t is the optimal state according to (26) and

�Ct =
M∑
i=1

�(i)
t �C(i)

t , (33)

with a pmf �(i)
t ∝ µ(�C(i)

t ), is the mean incremental cost at
time t. The results presented in this section prove that AOP
can be ensured by adequately choosing the propagation den-
sity and function µ : R → [0,∞) that relates the cost to the

pmf ’s π̂(i)
t and π(i)

t . Notice that π(i)
t = �(i)

t when λ = 0.
A corollary of the AOP convergence theorem is also es-

tablished that provides sufficient conditions for the mean
state estimate given by (21), for the case λ = 0, to be asymp-
totically optimal in terms of its incremental cost.

3.1. Preliminary definitions

Some preliminary definitions are necessary before stating
and proving sufficient AOP conditions. If the selection
and propagation steps of the CRPF method are considered
jointly, it turns out that, at time t,M particles are sampled as

x(i)t ∼ pM
′

t (x), (34)

where M′ < ∞ denotes the number of particles available at
time t − 1 and sampling the pdf pM

′
t (x) amounts to resam-

pling M times in Ξt−1 = {x(i)t−1,C(i)
t−1}M′

i=1 and then propagat-
ing the resulting particles and updating the costs to build the

new wps Ξt = {x(i)t ,C(i)
t }Mi=1 (note that we explicitly allow

M �= M′). Although other possibilities exist, for example, as
described in Section 4, when multinomial resampling is used
in the selection step of the CRPF algorithm, the pdf in (34) is
a finite mixture of the form

pM
′

t (x) =
M′∑
k=1

π̂(k)
t pt

(
x
∣∣x(k)t−1

)
. (35)

We also introduce the following notation for a ball cen-
tered at x

opt
t with radius ε > 0:

S
{
x
opt
t , ε

} = {x ∈ RLx :
∥∥x− x

opt
t

∥∥ < ε
}
, (36)

and we write

SM
{
x
opt
t , ε

} = {x ∈ {x(i)t }Mi=1 : ∥∥x − x
opt
t

∥∥ < ε
}

(37)

for its discrete counterpart built from the particles in Ξt.
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3.2. Convergence theorem

Lemma 1. Let {x(i)t }Mi=1 be a set of particles drawn at time t
using the propagation pdf pM

′
t (x) as defined by (34), let y1:t be a

fixed bounded sequence of observations, and let�C(x|yt) ≥ 0
be a continuous cost function, bounded in S{xoptt , ε}, with a
minimum at x = x

opt
t .

If the three following conditions are met:

(1) any ball with center at x
opt
t has a nonzero probability un-

der the propagation density, that is,

∫
S{xoptt ,ε}

pM
′

t (x)dx = γ > 0 ∀ε > 0, (38)

(2) the supremum of the function µ(�C(·|·)) for points
outside S(x

opt
t , ε) is a finite constant, that is,

Sout = sup
xt∈RLx \S(xoptt ,ε)

{
µ
(�C

(
xt
∣∣yt))} <∞, (39)

(3) the supremum of the function µ(�C(·|·)) for points in-
side SM(x

opt
t , ε) converges to infinity faster than the iden-

tity function, that is,

lim
M→∞

M

Sin
= 0, (40)

where

Sin = sup
xt∈SM(x

opt
t ,ε)

{
µ
(�C

(
xt
∣∣yt))}, (41)

then the set function µt : A ⊆ {x(i)t }Mi=1 → [0,∞) defined as

µt
(
A ⊆ {x(i)t }Mi=1) = ∑

x∈A
µ
(�C

(
x
∣∣yt)) (42)

is an infinite discrete measure (see definition in, e.g., [16]) that
satisfies

lim
M→∞

Pr

[
1− µt

(
SM
(
x
opt
t , ε

))
µt
({
x(i)t
}M
i=1
) ≥ δ

]
= 0 ∀δ > 0, (43)

where Pr[·] denotes probability, that is,

lim
M→∞

µt
(
SM
(
x
opt
t , ε

))
µt
({
x(i)t
}M
i=1
) = 1 (i.p.), (44)

where i.p. stands for “in probability.”

See Appendix B for a proof.

Theorem 1. If conditions (38), (39), and (40) in Lemma 1
hold true, then the mean incremental cost at time t,

�Ct =
M∑
i=1

�(i)
t �C

(
x(i)t
∣∣yt), (45)

converges to the minimal incremental cost asM →∞,

lim
M→∞

∣∣�C
(
x
opt
t

∣∣yt)−�Ct

∣∣ = 0 (i.p.). (46)

See Appendix C for a proof.
Finally, an interesting corollary that justifies the use of the

mean estimate (21) can be easily derived from Lemma 1 and
Theorem 1.

Corollary 1. Assuming (38), (39), and (40) in Lemma 1, and
forgetting factor λ = 0, the mean cost estimate is asymptotically
optimal, that is,

lim
M→∞

∣∣�C
(
x̃mean
t

∣∣yt)−�Ct
(
x
opt
t |yt

)∣∣ = 0 (i.p.), (47)

where

x̃mean
t =

M∑
i=1

π(i)
t x(i)t . (48)

See Appendix D for a proof.

3.3. Discussion

Theorem 1 states that conditions (38)–(40) are sufficient to
achieve AOP (i.p.). The validity of this result clearly depends
on the existence of a propagation pdf, pM

′
t [·], and a measure

µt with good properties in order to meet the required condi-
tions.

It is impossible to guarantee that condition (38) holds
true in general, as the value of x

opt
t is a priori unknown, but

if the number of particles is large enough and they are evenly
distributed on the state space, it is reasonable to expect that
the region around x

opt
t has a nonzero probability. Intuitively,

if the wps is locked to the system state at time t− 1, using the
system dynamics to propagate the particles to time t should
keep the filtering algorithm locked to the state trajectory. In-
deed, our computer simulation experiments give evidence
that the propagation pdf is not a critical weakness, and the
proposed sequence of Gaussian densities given by (30) and
(31) yields a remarkably good performance.

Conditions (39) and (40) are related to the choice of µ
or, equivalently, the measure µt. For the proposed cost model
given by (22) and (23), it is simple to show that condition
(39) holds true, both for µ = µ1 and µ = µ2, as defined in (28)
and (29), respectively. The analysis of condition (40) is more
demanding and will not be addressed here. An educated in-
tuition, also supported by the computer simulation results in
Section 5, points in the direction of selecting µ = µ2 with a
small enough value of δ.
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PE 1

PE 6PE 2

PE 3

PE 4

PE 5

Figure 1:M = 6 processors in a ring configuration for parallel im-
plementation of the local resampling algorithm.

4. RESAMPLING AND PARALLEL IMPLEMENTATION

Resampling is an indispensable algorithmic component in
sequential methods for statistical reference PF, which, oth-
erwise, suffer from weight degeneracy and do not converge
to useful solutions [4, 7, 15]. However, resampling also be-
comes a major obstacle for efficient implementation of PF
algorithms in parallel VLSI hardware devices because it cre-
ates full data dependencies among processing units [15]. Al-
though some promising methods have been recently pro-
posed [15, 17], parallelization of resampling algorithms re-
mains an open problem.

The selection step in CRPFs (see Section 2.1) is much less
restrictive than resampling in conventional SRPFs. Specifi-
cally, while resampling methods in SRPFs must ensure that
the probability distribution of the resampled population is
an unbiased and unweighted approximation of the original
distribution of the particles [4], selection in CRPFs is only
aimed at ensuring that the particles are close to the locations
that produce cost function minima. We have found evidence
of state estimates obtained by CRPF being better when the
random grid of particles comprises small regions of the state
space around these minima. Therefore, selection algorithms
can be devised with the only andmild constraint that they do
not increase the average cost of particles.

Now we briefly describe a simple resampling technique
for CRPFs that lends itself to a straightforward paralleliza-
tion. Figure 1 shows an array of independent processors con-
nected in a ring configuration. We assume, for simplicity,
that the number of processors is equal to the number of
particles M, although the algorithm is easily generalized to
a smaller number of processing elements (PEs). The ith PE

(PEi) contains the triple {x(i)t ,C(i)
t ,R(i)

t+1} in its memory. The
proposed local resampling technique proceeds in two steps.

(i) PEi transmits {x(i)t ,C(i)
t ,R(i)

t+1} to PEi+1 and PEi−1
and receives the corresponding information from its
neighbors. This communication step can be typically
carried out in a single cycle and, when complete, PEi
contains three particles {x(k)t ,C(k)

t ,R(k)
t+1}i+1k=i−1.

(ii) Each PE draws a single particle with probabilities ac-
cording to the risks, that is, for the ith PE:

x̂(i)t = x(k)t , Ĉ(i)
t = C(k)

t , k ∈ {i− 1, i, i + 1}, (49)

with probability π̂(k)
t = µ(R(k)

t+1)/
∑i+1

l=i−1 µ(R
(k)
t+1).

Note that, in two simple steps, the algorithm stochasti-
cally selects those particles with smaller risks. It is appar-
ent that the method lends easily to parallelization, with very
limited communication requirements. The term local resam-
pling comes from the observation that low-risk particles are
only locally spread by the method, that is, a PE containing a
high-risk particle can only get a low-risk sample from its two
neighbors.

5. COMPUTER SIMULATIONS

In this section, we present computer simulations that illus-
trate the validity of our approach. We have considered the
problem of autonomous positioning of a vehicle moving
along a 2-dimensional space. The vehicle is assumed to have
means to estimate its current speed every Ts seconds and it
also measures, with the same frequency, the power of three
radio signals emitted from known locations and with known
attenuation coefficients. This information can be used by a
particle filter to estimate the actual vehicle position.

Following [18], we model the positioning problem by the
state-space system

(i) state equation:

xt = Gxxt−1 +Gvvt +Guut ; (50)

(ii) observation equation:

yi,t = 10 log10

(
Pi,0∥∥ri − xt

∥∥αi
)
+wi,t, (51)

where xt ∈ R2 indicates the position of the vehicle in the
2-dimensional reference set, Gx = I2 and Gv = Gu = TsI2
are known transition matrices, vt ∈ R2 is the observable
vehicle speed, which is assumed constant during the in-
terval ((t − 1)Ts, tTs), and ut is a noise process that ac-
counts for measurement errors of the speed. The vector yt =
[y1,t, y2,t, y3,t]T collects the received power from three emit-
ters located at known reference locations ri ∈ R2, i = 1, 2, 3,
that transmit their signals with initial power Pi,0 through a
fading channel with attenuation coefficient αi, and, finally,
wt = [w1,t,w2,t,w3,t]T is the observation noise. Each time
step represents Ts seconds, the position vectors xt and ri have
units of meters (m), the speed is given in m/s, and the re-
ceived power is measured in dB. The initial vehicle position
x0 is drawn from a standard 2-dimensional Gaussian distri-
bution, that is, x0 ∼ N (0, I2).

We have applied the proposed CRPF methodology for
solving the positioning problem and, for comparison and
benchmarking purposes, we have also implemented the pop-
ular auxiliary BF [9], which has an algorithmic structure (re-
sampling, importance sampling, and state estimation) very
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Parameters. For all i,
λ = 0.95; q = 1, 2; δ = 0.01; β = 2;M = 50; σ2,(i)

0 = 10.
Initialization. For i = 1, . . . ,M,

x(i)0 ∼U(−8, +8),
C(i)

0 = 0.

Recursive update. For i = 1, . . . ,M,

R(i)
t+1 = λC(i)

t + ‖yt+1 − fy(Gxx
(i)
t +Gvvt+1)‖q.

Multinomial selection (resampling).

pmf : π̂(i)
t+1 =




(R(i)
t+1)−1∑M

l=1(R
(l)
t+1)−1

(function µ1),

(R(i)
t+1 −min j∈{1,...,M}R

( j)
t+1 + δ)−β∑M

l=1(R
(l)
t+1 −min j∈{1,...,M}R

( j)
t+1 + δ)−β

(function µ2).

Selection. (x̂(i)t , Ĉ(i)
t ) = (x(k)t ,C(k)

t ), k ∈ {1, . . . ,M}, with probability π̂(k)
t+1.

Variance update.

t ≤ 10: σ2,(i)
t+1 = σ2,(i)

t ,

t > 10: σ2,(i)
t = t − 1

t
σ2,(i)
t−1 +

‖x(i)t − fx(x̂
(i)
t−1)‖2

tLx
.

Let x(i)t+1 ∼ pt+1(xt+1|x̂(i)t ), where

E
pt+1(xt+1|x̂(i)t )

[xt+1] = fx(x̂
(i)
t ),

Cov
pt+1(xt+1|x̂(i)t )

[xt+1] = σ2,(i)
t+1 I2,

x(i)0:t+1 = {x̂(i)0:t , x(i)t+1},
C(i)

t+1 = λĈ(i)
t + ‖yt+1 − fy(x

(i)
t+1)‖q.

State estimation.

π(i)
t ∝ µ1(C

(i)
t ) or π(i)

t ∝ µ2(C
(i)
t ),

x̃mean
t =

M∑
i=1

π(i)
t x(i)t .

Algorithm 1: CRPF algorithm with multinomial resampling for the 2-dimensional positioning problem.

similar to the proposed CRPF family. Algorithm 1 summa-
rizes the details of the CRPF algorithm with multinomial se-
lection, including the alternatives in the choice of function µ.
The selection step can be substituted by the local resampling
procedure shown in Algorithm 2. A pseudocode for the aux-
iliary BF is also provided in Algorithm 3.

In the following subsections, we describe different com-
puter experiments that were carried out using synthetic data
generated according to model (50)-(51). Two types of plots
are presented, both for CRPF and BF algorithms. Vehicle tra-
jectories in the 2-dimensional space, resulting from a single
simulation of the dynamic system, are shown to illustrate the
ability of the algorithms to remain locked to the state trajec-
tory. We chose the mean absolute deviation as a performance
figure of merit. It was measured between the true vehicle tra-
jectory in R2 and the trajectory estimated by the particle fil-
ters and its unit was meter. All mean-deviation plots were
obtained by averaging 50 independent simulations. Both the
BF and the CRPF type of algorithms were run with M = 50
particles.

5.1. Mixture Gaussian noise processes

In the first experiment, we modeled the system and observa-
tion noise processes ut and wt, respectively, as independent

and temporally white, with the mixture Gaussian pdfs:

ut ∼ 0.3N
(
0,
√
0.2I2

)
+ 0.4N

(
0, I2

)
+ 0.3N

(
0,
√
10I2

)
,

wl,t ∼ 0.3N (0, 0.2) + 0.4N (0, 1)

+ 0.3N (0, 10), l = 1, 2, 3.

(52)

In Figure 2, we compare the auxiliary BF with perfect knowl-
edge of the noise distributions, and several CRPF algorithms
that use the cost and risk functions proposed in Section 2.2
(see (22)–(24)). For all CRPF methods, the forgetting factor
was λ = 0.95, but we ran algorithms with different values of
q, q = 1, 2, and functions µ1 and µ2 (see (28) and (29)). For
the latter function µ2, we set δ = 0.01 and β = 2. The prop-
agation mechanism for the CRPF methods consisted of the
sequence of Gaussian densities given by (30) and (31), with

initial value σ2,(i)0 = 10 for all i.
Figure 2a shows the system trajectory in a single run and

the estimates corresponding to the BF and CRPF algorithms.
The trajectory started in an unknown position close to (0, 0)
and evolved for one hour, with sampling period Ts = 2 sec-
onds. It is apparent that all the algorithms remained locked
to the vehicle position during the whole simulation interval.
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Local selection (resampling) at the ith PE.

For k = i− 1, i, i + 1, π̂(k)
t+1 =




(
R(k)

t+1

)−1
∑i+1

l=i−1
(
R(l)

t+1

)−1 (
µ1
)
,

(
R(k)

t+1 −min j∈{i−1,i,i+1}R
( j)
t+1 + δ

)−β
∑i+1

l=i−1
(
R(l)

t+1 −min j∈{i−1,i,i+1}R
( j)
t+1 + δ

)−β (
µ2
)
.

Selection. (x̂(i)t , Ĉ(i)
t ) = (x(l)t ,C(l)

t ), l ∈ {i− 1, i, i + 1}, with probability π̂(l)
t+1.

Algorithm 2: Local resampling for the CRPF algorithm.

Initialization. For i = 1, . . . ,M,

x(i)0 ∼ N (0, I2),

w(i)
0 = 1

M
.

Recursive update.
For t = 1, . . . ,K ,
For i = 1, . . . ,M,
x̂(i)t = fx(x

(i)
t−1),

κi = k, with probability p(yt|x̂(k)t )w(k)
t−1,

x(i)t ∼ p[xt|x(κi)t−1].

Weight update. w̃(i)
t = p(yt|x(i)t )

p(yt|x̂(κi)t )
.

Weight normalization. w(i)
t = w̃(i)

t∑M
k=1 w̃

(k)
t

.

Algorithm 3: Auxiliary BF for the 2-dimensional positioning
problem.

The latter observation is confirmed by the mean absolute
deviation plot in Figure 2b. The deviation signal was com-
puted as

et = 1
50

1
2

50∑
j=1

∣∣∣x1,t, j − xest1,t, j

∣∣∣ + ∣∣∣x2,t, j − xest2,t, j

∣∣∣, (53)

where j is the simulation number, xt, j = [x1,t, j , x2,t, j]T is the
true position at time t, and xestt, j = [xest1,t, j , x

est
2,t, j]

T is the cor-
responding estimate obtained with the particle filter. We ob-
serve that the CRPF algorithms with µ2 attained the lowest
deviation and outperformed the auxiliary BF. Although it is
not shown here, the auxiliary BF improved its performance
as the sampling period was decreased,3 and achieved a lower
deviation than the CRPFs for Ts ≤ 0.5 second. The reason
is that, as Ts decreases, the correlation of the states increases
due to the variation of Gu, and the BF exploits this statistical
information better. Therefore, we can conclude that the BF
can be more accurate when strong statistical information is
available, and that the proposed CRPFs are more robust and

3Obviously, the BF will also deliver a better performance as the number
of particles M grows. In fact, it can be shown [4] that the estimate of the
posteriori pdf and its moments obtained from the BF converge uniformly
to the true density and the true values of the moments. This means that, as
M → ∞, the state estimates given by the BF become optimal (in the mean
square error sense) and that for large M, the BF will outperform the CRPF
algorithm.

steadily attain a good performance for a wider range of sce-
narios. This conclusion is easily confirmed with the remain-
ing experiments presented in this section.

Figures 3 and 4 show the trajectories and the mean ab-
solute deviations for the BF and CRPF algorithms when the
sampling period was increased to Ts = 5 seconds and Ts = 10
seconds, respectively. Note that increasing Ts also increases
the speed measurement error. As before, the CRPF tech-
niques with µ2 outperformed the BF in the long term.

Because of its better performance, we also checked the
behavior of the CRPF method that uses µ2 for different val-
ues of parameter δ. Figure 5a shows the true position and the
estimates obtained using three different values of δ, namely,
0.1, 0.01, and 0.001, with fixed β = 2. All the algorithms ap-
pear to perform similarly for the considered range of values.
This is confirmed with the results presented in Figure 5b in
terms of the mean absolute deviation. They also illustrate the
robustness and stability of the method.

In the following, unless it is stated differently, the CRPF
algorithm was always implemented with µ2 and parameters
q = 2, δ = 0.01, and β = 2. The sampling period was also
fixed and was Ts = 5 seconds.

5.2. Mixture Gaussian system and observation
noise—Gaussian BF

Figure 6 shows the results (trajectory and mean deviation)
obtained with the same system and observation noise distri-
butions as in Section 5.1 when the auxiliary BF (labeled as BF
(Gaussian)) is mismatched with the dynamical system and
models the noise processes with Gaussian densities:

p[ut] = N (0,
√
0.2I2),

p[wl,t] = N (0, 0.2), l = 1, 2, 3.
(54)

It is apparent that the use of the correct statistical infor-
mation is critical for the bootstrap algorithm (in the figure,
we also plotted the result obtained when the BF used the true
mixture Gaussian density—labeled as BF (M-Gaussian)).
Note that the CRPF algorithm also drew the state particles
from a Gaussian sequence of densities (see Section 2.2), but
it attained a superior performance compared to the BF.

5.3. Local versusmultinomial resampling

We have verified the performance of the CRPF that uses the
new resampling scheme proposed in Section 4. The results
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Figure 2: Mixture Gaussian noise processes. Ts = 2 seconds. (a)
Trajectory. (b) Mean absolute deviation.

can be observed in Figure 7. The CRPF with local resampling
shows approximately the same performance as the BF with
perfect knowledge of the noise statistics. Although it presents
a slight degradation with respect to the CRPF with multi-
nomial resampling, the feasibility of a simple parallel imple-
mentation makes the local resampling method extremely ap-
pealing.

5.4. Different estimation criteria

Figure 8 compares the trajectory and mean deviation of
two CRPF algorithms that used different criteria to obtain
the estimates of the state: the minimum cost estimate x̃min

t
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Figure 3: Mixture Gaussian noise processes. Ts = 5 seconds. (a)
Trajectory. (b) Mean absolute deviation.

(see (20)) and the mean cost estimate x̃mean
t (see (21)). It is

clear that both algorithms performed similarly and outper-
formed the BF in the long term.

5.5. Laplacian noise

Finally, we have repeated our experiment by modeling the
noises using Laplacian distributions, that is,

p[ut] = L
(
0,
√
0.5I2

) = 1
0.5

e−|ut|/0.5,

p
[
wl,t
] = 0.3L(0, 0.5) = 1

0.5
e−|wl,t|/0.5, l = 1, 2, 3.

(55)
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Figure 4: Mixture Gaussian noise processes. Ts = 10 seconds.
(a) Trajectory. (b) Mean absolute deviation.

Figure 9 depicts the results obtained for the BF with perfect
knowledge of the probability distribution of the noise and
the CRPF algorithm. Again, the proposed method attained
better performance in terms of mean absolute deviation.

6. CONCLUSIONS

Particle filters provide optimal numerical solutions in prob-
lems that amount to estimation of unobserved time-varying
states of dynamic systems. Such methods rely on the knowl-
edge of prior probability distributions of the initial state
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Figure 5: Different δ values. Ts = 5 seconds. (a) Trajectory.
(b) Mean absolute deviation.

and noise processes that affect the system, and require the
ability to evaluate likelihood functions and the state tran-
sition densities. Under these assumptions, different meth-
ods have been proposed that recursively estimate posterior
densities by generating a collection of samples and associ-
ated importance weights. In this paper, we introduced a new
class of particle filtering methods that aim at the estimation
of system states from available observations without a priori
knowledge of any probability density functions. The proposed
method is based on cost functions that measure the quality
of the state signal estimates given the available observations.
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Figure 6: Mixture Gaussian system and observation noise—
Gaussian BF. Ts = 5 seconds. (a) Trajectory. (b) Mean absolute de-
viation.

Since they do not assume explicit probabilistic models for the
dynamic system, the proposed techniques, which have been
termed CRPFs, are more robust than standard particle fil-
ters in problems where there is uncertainty (or a mismatch
with physical phenomena) in the probabilistic model of the
dynamic system. The basic concepts related to the formu-
lation and design of these new algorithms, as well as theo-
retical results concerning their convergence, were provided.
We also proposed a local resampling scheme that allows for
simple implementations of the CRPF techniques with paral-
lel VLSI hardware. Computer simulation results illustrate the
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Figure 7: Local versus multinomial resampling. Ts = 5 seconds.
(a) Trajectory. (b) Mean absolute deviation.

robustness and the excellent performance of the proposed al-
gorithms when compared to the popular auxiliary BF.

APPENDICES

A. CRPF AND STOCHASTIC APPROXIMATION

It is interesting to compare the CRPF method with the SA
algorithm. The subject of SA can be traced back to the 1951
paper of Robbins and Monro [19], and a recent tutorial re-
view can be found in [14].
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Figure 8: Different estimation criteria. Ts = 5 seconds. (a) Trajec-
tory. (b) Mean absolute deviation.

In a typical problem addressed by SA, an objective func-
tion that has to be minimized involves expectations, for ex-
ample, the minimization of E(Q(x,ψt)), where Q(·) is a
function of the unknown x and random variables ψt. The
problem is that the distributions of the random variables are
unknown and the expectation of the function cannot be an-
alytically found. To make the problem tractable, one approx-
imates the expectation by simply dropping the expectation
operator, and proceeding as if E(Q(x,ψt)) = Q(x,ψt). Rob-
bins and Monro proposed the following scheme that solves
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Figure 9: Laplacian. Ts = 5 s. (a) Trajectory. (b) Mean absolute
deviation.

for xt:

x̂t = x̂t−1 + γtQ
(
x̂t−1,ψt

)
, (A.1)

where γt is a sequence of positive scalars that have to satisfy
the conditions

∑
t γt = ∞,

∑
t γ

2
t <∞. In the signal processing

literature, the best known SA method is the LMS algorithm.
The CRPF method also attempts to estimate the un-

known xt without probabilistic assumptions. In doing so, it
actually aims at inverting the dynamic model and, therefore,
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it performs SA similarly to RM though by other means.4 In
CRPF, the dynamics of the state are taken into account both
through the propagation step and by recursively solving the
optimization problem (25). Further research in CRPF from
the perspective of SA can probably yield new and deeper in-
sight of this new class of algorithms.

B. PROOF OF LEMMA 1

The proof is carried out in two steps. First, we prove the im-
plication

1− δ

δ
Sout lim

M→∞

EpM
′

t
nM

µt
(
SM
(
x
opt
t , ε

)) = 0 (B.1)
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Pr


1− µt

(
SM
(
x
opt
t , ε

))
µt
({
x(i)t
}M
i=1
) ≥ δ


 = 0 (B.2)

for any ε, δ > 0. Then, we only need to show that (B.1) holds
true under conditions (38)–(40) in order to complete the
proof.

Straightforward manipulation of the inequality in (43)
leads to the following equivalence chain that holds true for
any ε, δ > 0:
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M→∞

Pr


1− µt

(
SM
(
x
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t , ε

))
µt
({
x(i)t
}M
i=1
) ≥ δ
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 = 0 (B.3)
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(
SM
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x
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({
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}M
i=1
)] = 0 (B.4)
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where we have exploited that

µt
({
x(i)t
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(
SM
(
x
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t , ε

))
+ µt

({
x(i)t
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i=1 \ SM

(
x
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t , ε

))
.

(B.6)

Using the notation

1A(x) =

1 if x ∈ A,

0 otherwise,
(B.7)

4Note, however, that the notion of inversion must be understood in a
broad sense, since fy may not necessarily be invertible and, even if f −1y exists,
it may happen that yt does not belong to its domain.

for the indicator function, we can write
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) = SoutnM ,

(B.8)

where nM is the cardinality of the discrete set {x(i)t }Mi=1 \
SM(x

opt
t , ε). Therefore, using (B.8) and the equivalence be-

tween (B.3) and (B.5), we arrive at the implication
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Since both µ(�C(xt|yt)) ≥ 0 and (1 − δ)SoutnM/δ > 0,
we can use the relationship [16, equation 4.4-5] to obtain
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[
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]
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EPr[nM][nM]

µt
(
SM
(
x
opt
t , ε

)) ,
(B.10)

where we have used the fact that the supremum Sout does
not depend onM or nM . When jointly considered, (B.9) and
(B.10) yield the implication (B.1)⇒(B.2) and we only have to
show that (B.1) holds true in order to complete the proof.

The expectation on the left-hand side of (B.1) can be
computed by resorting to assumption (38), which yields, af-
ter straightforward manipulations,

lim
M→∞

EPr[nM]
[
nM
] = (1− γ) lim

M→∞
M (i.p.). (B.11)

Substituting (B.11) into (B.1) yields
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where the last equality is obtained from assumptions (39)
and (40). The proof is complete by going back to implication
(B.1)⇒(B.2).
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C. PROOF OF THEOREM 1

Using Lemma 1, we obtain that the set SM(x
opt
t , ε) has

(asymptotically) a unit probability mass after the propaga-
tion step, that is,
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for all ε > 0.
We write the upper bound on the right-hand side of

(C.3) as a function of the radius ε:
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It can be easily proved that limM→∞ #SM(x
opt
t , ε = 1/

√
M) =

∞, where # denotes the number of elements in a discrete set.
Since limM→∞ 1/

√
M = 0 and it is assumed that�C(·|yt) is

continuous and bounded in S(x
opt
t , ε) for all ε > 0, it follows

that

B
(
ε = 1√
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)
= 0 (i.p.) (C.5)

and, by exploiting the fact that the left-hand side of (C.2)
does not depend on ε, we can readily use (C.5) to obtain
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which concludes the proof.

D. PROOF OF COROLLARY 1

When λ = 0, �(i)
t = π(i)

t and, according to Lemma 1,
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for all ε > 0. Hence, we can write the mean state estimate (in
the limitM →∞) as
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and, therefore, the incremental cost of the mean state esti-
mate can be upper bounded as
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Using inequality (D.3) and the obvious fact that�C(x
opt
t |yt)

is minimal by definition, we find that
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where B(ε) is the same as defined in (C.4). Therefore, we can
apply the same technique as in the proof of Theorem 1 and,
taking ε = 1/

√
M, we obtain

lim
M→∞
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which concludes the proof of the corollary.
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ciado en Informática (M.S.) and Doctor en
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