Skip to main content
Log in

Vietoris thickenings and complexes have isomorphic homotopy groups

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

We study the relationship between metric thickenings and simplicial complexes associated to coverings of metric spaces. Let \({\mathcal {U}}\) be a cover of a separable metric space X by open sets with a uniform diameter bound. The Vietoris complex \({\mathcal {V}}({\mathcal {U}})\) contains all simplices with vertex set contained in some \(U \in {\mathcal {U}}\), and the Vietoris metric thickening \({\mathcal {V}}^\textrm{m}({\mathcal {U}})\) is the space of probability measures with support in some \(U \in {\mathcal {U}}\), equipped with an optimal transport metric. We show that \({\mathcal {V}}^\textrm{m}({\mathcal {U}})\) and \({\mathcal {V}}({\mathcal {U}})\) have isomorphic homotopy groups in all dimensions. In particular, by choosing the cover \({\mathcal {U}}\) appropriately, we get isomorphisms between the homotopy groups of Vietoris–Rips metric thickenings and simplicial complexes \(\pi _k(\textrm{VR}^\textrm{m}(X;r))\cong \pi _k(\textrm{VR}(X;r))\) for all integers \(k\ge 0\), where both spaces are defined using the convention “diameter \(< r\)” (instead of \(\le r\)). Similarly, we get isomorphisms between the homotopy groups of Čech metric thickenings and simplicial complexes \(\pi _k(\check{\mathrm {{C}}}^\textrm{m}(X;r))\cong \pi _k(\check{\mathrm {{C}}}(X;r))\) for all integers \(k\ge 0\), where both spaces are defined using open balls (instead of closed balls).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. So long as one ignores whether an endpoint of a bar is open or closed.

  2. For example, when \(r=0\), then \(\textrm{VR}_\le (X;0)\) is X equipped with the discrete topology, whereas \(\textrm{VR}^\textrm{m}_\le (X;0)\) is the metric space X equipped with its standard topology. A less trivial example is that if \(S^1\) is the geodesic circle of circumference \(2\pi \), then \(\textrm{VR}_\le (S^1;\frac{2\pi }{3})\simeq \bigvee ^\infty S^2\) is an uncountably infinite wedge sum of 2-dimensional spheres (Adamaszek and Adams 2017), whereas \(\textrm{VR}^\textrm{m}_\le (S^1;\frac{2\pi }{3})\simeq S^3\) obtains the expected homotopy type of a 3-sphere (Adamaszek et al. 2018; Adams et al. 2020). We say “expected” since we do have \(\textrm{VR}_\le (S^1;r)\simeq S^3\) for all \(\frac{2\pi }{3}<r<\frac{4\pi }{5}\). This entire footnote has analogues for Čech complexes and thickenings, as well.

  3. To see that point-set topology assumptions are needed, consider a cover of a connected space X by two disjoint sets.

  4. As any q-Wasserstein metric for \(1\le q< \infty \) induces the same topology, we make the choice \(q=1\) for convenience.

  5. For example, if \(x,y\in X\) and \(U,U'\in {\mathcal {U}}\) satisfy \(x\in U\cap U'\) and \(y\in U'\setminus U\), then \(\delta _x\in M_U\). Any open ball in \(B_{{\mathcal {V}}^\textrm{m}({\mathcal {U}})}(\delta _x;\varepsilon )\) contains points of the form \((1-\varepsilon ')\delta _x + \varepsilon '\delta _y\notin M_U\) for \(\varepsilon '>0\) sufficiently small. This shows that \(M_U\) is not open.

  6. One choice that suffices is to pick \(s' < \frac{s}{2}\) to furthermore satisfy \(s'<(1-p)\varepsilon \), since then \(\nu \in B_{{\mathcal {V}}^\textrm{m}({\mathcal {U}})}(\mu ;s')\) implies that some transport plan between \(\mu \) and \(\nu \) has cost less than \((1-p)\varepsilon \), which means that less than \(1-p\) of the mass in \(\nu \) can be outside of \(Y_1=\cup _i B_X(y_i;\varepsilon )\).

  7. For example, define \(\phi (x)=\frac{d(x,Y_2^C)}{d(x,Y_1)+d(x,Y_2^C)}\).

References

  • Adamaszek, M.: Clique complexes and graph powers. Isr. J. Math. 196(1), 295–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Adamaszek, M., Adams, H.: The Vietoris–Rips complexes of a circle. Pac. J. Math. 290, 1–40 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Adamaszek, M., Adams, H., Frick, F., Peterson, C., Previte-Johnson, C.: Nerve complexes of circular arcs. Discrete Comput. Geom. 56, 251–273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Adamaszek, M., Adams, H., Frick, F.: Metric reconstruction via optimal transport. SIAM J. Appl. Algebra Geom. 2(4), 597–619 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, H., Coskunuzer, B.: Geometric approaches to persistent homology. SIAM J. Appl. Algebra Geom. (2022)

  • Adams, H., Mirth, J.: Metric thickenings of Euclidean submanifolds. Topol. Appl. 254, 69–84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, H., Bush, J., Frick, F.: Metric thickenings, Borsuk–Ulam theorems, and orbitopes. Mathematika 66, 79–102 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, H., Bush, J., Frick, F.: The topology of projective codes and the distribution of zeros of odd maps. Accepted to appear in Mich. Math. J. arXiv preprint arXiv:2106.14677, (2022a)

  • Adams, H., Mémoli, F., Moy, M., Wang, Q.: The persistent topology of optimal transport based metric thickenings. Accepted to appear in Algebr. Geom. Topol. arXiv preprint arXiv:2109.15061 (2022b)

  • Björner, A.: Nerves, fibers and homotopy groups. J. Comb. Theory Ser. A 102(1), 88–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogachev, V.I.: Weak Convergence of Measures. American Mathematical Society Providence (2018)

  • Borsuk, K.: Über eine Klasse von lokal zusammenhängenden Räumen. Fundam. Math. 19, 220–242 (1932)

    Article  MATH  Google Scholar 

  • Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fundam. Math. 35(1), 217–234 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, vol. 82. Springer (1982)

  • Brown, K.S.: Cohomology of Groups, vol. 87. Springer (2012)

  • Cardona, R.: On spectral sequences arising from topological covers. Unpublished notes (2018)

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov–Hausdorff stable signatures for shapes using persistence. In: Computer Graphics Forum, vol. 28, pp. 1393–1403 (2009)

  • Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedic. 174, 193–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieck, T.T.: Partitions of unity in homotopy theory. Compositio Mathematica 23(2), 159–167 (1971)

    MathSciNet  MATH  Google Scholar 

  • Dowker, C.H.: Topology of metric complexes. Am. J. Math. 74(3), 555–577 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Dugger, D., Isaksen, D.C.: Topological hypercovers and 1-realizations. Mathematische Zeitschrift 246(4), 667–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  • Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 454–463. IEEE (2000)

  • Fritsch, R., Piccinini, R.: Cellular Structures in Topology, vol. 19. Cambridge University Press (1990)

  • Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs. In: Research in Computational Topology, pp. 33–56. Springer (2018)

  • Gillespie, P.: A homological nerve theorem for open covers. arXiv preprint arXiv:2210.00388 (2022)

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Hausmann, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. Ann. Math. Stud. 138, 175–188 (1995)

    MathSciNet  MATH  Google Scholar 

  • Katz, M.: Diameter-extremal subsets of spheres. Discrete Comput. Geom. 4(2), 117–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Katz, M.: On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional. Fundam. Math. 137(3), 161–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Latschev, J.: Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold. Arch. Math. 77(6), 522–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Lim, S., Mémoli, F., Okutan, O.B.: Vietoris–Rips persistent homology, injective metric spaces, and the filling radius. arXiv preprint arXiv:2001.07588 (2020)

  • Moy, M.: Persistence stability for metric thickenings. Master’s thesis, Colorado State University (2021)

  • Moy, M.: Vietoris–Rips metric thickenings of the circle. arXiv preprint arXiv:2206.03539 (2022)

  • Nagórko, A.: Carrier and nerve theorems in the extension theory. Proc. Am. Math. Soc. 135(2), 551–558 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Nhu, N.T., Cu, T.K.: Probability measure functors preserving the ANR-property of metric spaces. Proc. Am. Math. Soc. 106(2), 493–501 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Vershik, A.M.: Long history of the Monge–Kantorovich transportation problem. Math. Intell. 35(4), 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  • Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Virk, Ž: Approximations of 1-dimensional intrinsic persistence of geodesic spaces and their stability. Revista Matemática Complutense 32, 195–213 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Virk, Ž: 1-dimensional intrinsic persistence of geodesic spaces. J. Topol. Anal. 12, 169–207 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Virk, Ž: Rips complexes as nerves and a functorial Dowker-nerve diagram. Mediterr. J. Math. 18(2), 1–24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Virk, Ž.: A counter-example to Hausmann’s conjecture. Found. Comput. Math. 22, 469–475 (2022)

  • Virk, Ž: Footprints of geodesics in persistent homology. Mediterr. J. Math. 19, 160 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Virk, Ž: Introduction to Persistent Homology. University of Ljubljana, Založba (2022)

    Book  MATH  Google Scholar 

  • Weil, A.: Sur les théoremes de de Rham. Comment. Math. Helv 26(1), 119–145 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Zaremsky, M.C.B.: Bestvina–Brady discrete Morse theory and Vietoris–Rips complexes. Am. J. Math. 144(5), 1177–1200 (2022)

  • Zeeman, E.C.: Dihomology: I. Relations between homology theories. Proc. Lond. Math. Soc. 3(1), 609–638 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Cardona for helpful conversations. This research was supported through the program “Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in 2019. The second author was supported by NSF Grant DMS 1855591, NSF CAREER Grant DMS 2042428, and a Sloan Research Fellowship. The third author was supported by Slovenian Research Agency Grants Nos. N1-0114 and P1-0292. The first and third authors would like to thank the Institute of Science and Technology Austria (ISTA) for hosting research visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Adams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, H., Frick, F. & Virk, Ž. Vietoris thickenings and complexes have isomorphic homotopy groups. J Appl. and Comput. Topology 7, 221–241 (2023). https://doi.org/10.1007/s41468-022-00106-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-022-00106-5

Keywords

Mathematics Subject Classification

Navigation