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Abstract. We present an approach to inductive concept learning using multiple models for time series. Our
objective is to improve the efficiency and accuracy of concept learning by decomposing learning tasks that admit
multiple types of learning architectures and mixture estimation methods. The decomposition method adapts
attribute subset selection and constructive induction (cluster definition) to define new subproblems. To these
problem definitions, we can apply metric-based model selection to select from a database of learning components,
thereby producing a specification for supervised learning using a mixture model. We report positive learning
results using temporal artificial neural networks (ANNs), on a synthetic, multiattribute learning problem and on a
real-world time series monitoring application.
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1. Introduction

This paper discusses inductive concept learning from time series data. It presents a new
approach that adapts attribute subset selection and constructive induction—especiallyclus-
ter definition(Michalski, 1983; Stepp & Michalski, 1986; Donoho, 1996)—to decompose
problems, then uses quantitative metrics to select techniques for each identifiable (and rel-
evant) embedded subproblem. This approach is best suited forheterogeneoustime series
data—that arising from multiple sources of data (such as in sensor fusion or multimodal
human-computer interaction). The multistrategy solution is compared to some hierarchical
mixture models that recombinine specialized classifiers, for large-scale data sets. Experi-
mental evaluation uses real and synthetic data that captures heterogeneity in time series and
in general.
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The purpose of applying integrative, multistrategy learning to such data is to improve
the accuracy and efficiency of classifier learning using a mixture model, through systematic
transformation of learning tasks into a collection of subtasks. Problems that admit this
transformation are referred to in this paper asdecomposable, by means of task partitioning
and subproblem definition, quantitative model selection, and construction of hierarchical
mixture models for data fusion. Decomposition of time series learning tasks alleviates
some aspects of heterogeneity, such as having multimodal inputs and diversity in scale and
structure, that arise in monitoring problems. Equally important, it supports selection of the
most appropriate learning architecture (Benjamin, 1990; Engels, Verdenius, & Aha, 1998)
for each homogeneous component of a time series, and accounts for prior knowledge on
subdivision of learning tasks.

The key novel contributions of the system are:

1. The explicit organization of learning components into recombinable and reusable classes
2. Metrics for properties of data sets that indicate an appropriate learning technique
3. A framework for decomposing learning tasks and combining classifiers learned using

different techniques

A typical application for such a system is learning for crisismonitoring, the prediction
and classification of anomalous, potentially catastrophic, conditions. This form of pattern
recognition is useful in decision support orrecommender(Resnick & Varian, 1997) systems
for many time-critical applications. Examples of crisis monitoring problems in the indus-
trial, military, agricultural and environmental sciences are numerous. They include: crisis
control automation (Wilkins & Sniezek, 1997; Hsu et al., 1998), online medical diagnosis
(Hayes-Roth et al., 1996), simulation-based training and critiquing for crisis management
(Mengshoel & Wilkins, 1996; Grois et al., 1998), and intelligent data visualization (Horvitz
& Barry, 1995).

2. Background

This section surveys background material on time series learning using stochastic process
models, particularly temporal artificial neural networks (ANNs). It presents the concepts
of memory forms, convolutional codes, theautoregressive moving average (ARMA)family
of processes, and the linear models (corresponding to time-delay, recurrent, and gamma
memories) that can be used to represent ARMA processes. It then describes a framework
for integrated, multistrategy learning of time series that adapts one of several constructive
induction techniques to decompose a learning task, derives a learning specification by
selecting among supervised inductive learning architectures and algorithms, and synthesizes
the resultant predictions using a mixture model.

2.1. Heterogeneous time series: learning techniques

A key assumption made in this paper is that predictive capability is a good indicator of
performance (classification accuracy) for a time series learning architecture, such as a re-
current ANN. Although the merit of this assumption varies among time series classification



A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING 215

problems (Gershenfeld & Weigend, 1994; Mozer, 1994), the authors have found it to be
reliable for a variety of problems studied. The design rationale that follows from this assump-
tion defines metrics for evaluating problem definitions. Each metric estimates an intrinsic
statistical property: namely, how closely a particular type of stochastic process fits (i.e., can
generate) observed data. Our objective is to identify the predominantprocess typeto select
an appropriate learning architecture. Thememory form, as defined by Mozer (1994), is a
property of a time series learning architecture that characterizes how it represents a temporal
sequence. Memory forms include limited-depth buffers, exponential traces, gamma mem-
ories (Principé & deVries, 1992; Princip´e & Lefebvre, 1998), and state transition models.
In the ideal case, learning subtasks can be isolated that each exhibit exactly one process
type (i.e., each ishomogeneous), and these can be matched to known memory forms in the
system’s catalogue.

For temporal ANNs, a memory form can be represented using a functional descriptor
called aconvolutional code. Past values of a time series are stored by a particular type of
recurrent ANN, which transforms the original data into its internal representation. This
transformation can be formally defined in terms of akernel functionthat is convolved over
the time series. This definition is important because it yields a general mathematical charac-
terization for individually weighted “windows” of past values (time delay orresolution) and
nonlinear memories that “fade” smoothly (attenuated decay, ordepth) (Principé & deVries,
1992; Mozer, 1994; Princip´e & Lefebvre, 1998). The interested reader is referred to Mozer
(1994) and Hsu (1998) for definitions of the convolutional codes for temporal ANNs dis-
cussed in this paper. These are tapped delay-line memories, also called time-delay neural
networks, or TDNNs (Lang, Waibel, & Hinton, 1990); exponential trace memories, also
called input recurrent networks (Ray & Hsu, 1998); and gamma memories (Princip´e &
deVries, 1992; Princip´e & Lefebvre, 1998). The latter express both resolution and depth,
at a cost of more degrees of freedom, convergence time, and kernel function complexity.

To evaluate the degree to which a time series exhibits known memory forms, the convo-
lutional code for each one is applied to the time series data, and the transformed data sets
are compared to choose the most effective one. The criterion for this metric-based model
selection step is the change inconditional entropy(Cover & Thomas, 1991), with respect
to each convolutional code, for the stochastic process of which the training data is a sample.
The entropy of the next value conditioned on past values of theoriginal data should, in
general, be higher than that of the next value conditioned on past values of thetransformed
data. This indicates that the memory form yields an improvement in predictive capability,
which is ideally proportional to the expected performance of the mode being evaluated.

To model a time series as a stochastic process, one assumes that there is some mechanism
that generates a random variable at each point in time. The random variablesX(t) can be
univariate or multivariate (corresponding to single and multiple attributes orchannelsof in-
put per exemplar) and can take discrete or continuous values, and time can be either discrete
or continuous. For clarity of exposition, the experiments focus on discrete classification
problems with discrete time. Following the parameter estimation literature (Duda & Hart,
1973), time series learning can be defined as finding the parameters2={θ1, . . . , θn} that de-
scribe the stochastic mechanism, typically by maximizing the likelihood that a set of realized
or observablevalues,{x(t1), x(t2), . . . , x(tk)}, were actually generated by that mechanism.
This corresponds to the backward, or maximization, step in theexpectation-maximization
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(EM) algorithm (Dempster, Laird, & Rubin, 1977). Forecasting with time series is accom-
plished by calculating the conditional densityP(X(t) | {2, {X(t − 1), . . . , X(t −m)}}),
when the stochastic mechanism and the parameters have been identified by the observable
values{x(t)}. The orderm of the stochastic mechanism can, in some cases, be infinite; in
this case, one can only approximate the conditional density.

Despite recent developments with nonlinear models (Kantz & Schreiber, 1997), some
of the most common stochastic models used in time series learning are parametric, linear
models for generating processes calledautoregressive (AR), moving average (MA), and
autoregressive moving average (ARMA)processes. We refer the reader to Hsu et al. (1998)
and Hsu (1998) for the mathematical definition of these models. Inheterogeneoustime
series, the embedded temporal patterns belong to different categories of statistical models,
such asM A(q) andAR(p), whereq andp denote the polynomial order of the process. Ex-
amples of such embedded processes are presented in the discussion of the experimental test
beds. A multichannel time series learning problem can be decomposed into homogeneous
subtasks by aggregation or synthesis of attributes.Aggregationoccurs in multimodal sensor
fusion (e.g., for medical, industrial, and military monitoring), where each group of input at-
tributes represents the bands of information available to a sensor (Stein & Meredith, 1993).
Complex attributes may besynthesizedexplicitly by constructive induction, as in causal
discovery of latent (hidden) variables (He96); or implicitly by preprocessing transforms
(Haykin, 1994; Mozer, 1994; Ray & Hsu, 1998).

For a stochastic process (time-indexed sequence of random variables)X(t), we are
interested in the conditional entropy of the next value given earlier ones. This can be
written as: Hd= def H(X(t) | X1(t), . . . , Xd(t)). To measure the improvement due to
convolution with a kernel function withd components, we further define:̂Hd= def H(X(t) |
X̂i (t), 1≤ i ≤ d) where X̂i (t) is as defined above. Similarly, we defineHs

d and Ĥ s
d, for

the restrictionXs(t) of X(t) to thesubsetof attributess. Our refinement permits specific
subsets of input data to be evaluated to determine the predominant process type. Given a
kernel function for a candidate learning architecture, we define a metric:MR= Hs

d/Ĥ s
d for

a recurrent ANN of typeR∈ {TDNN, SRN, GAMMA}, which denotes the degree of match
between a known memory form and observed time series data.

2.2. Integrated multistrategy learning systems

Figure 1 depicts a learning system for decomposable, multi-attribute data sets. The central
elements of this system are:attribute partitioning, metric-based model selection, and adata
fusionmechanism for integration of multiple models. Given a specification for reformulated
(reduced or partitioned) input, new intermediate conceptsEy′i can be formed by unsupervised
learning—e.g., conceptual clustering cf. Stepp and Michalski (1986); the newly defined
problem or problems can then be mapped to one or more appropriate hypothesis languages
(model specifications). The next section presentsSelect-Net, a high-level algorithm for
generating this specification, which we shall refer to as acomposite. This algorithm also
configures and trains subnetworks in a hierarchical system for multistrategy learning, whose
components are selected bySelect-Net; a data fusion step occurs after individual training
of each model. The system incorporates attribute partitioning into constructive induction to
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Figure 1. Overview of the integrated, multistrategy learning system.

obtain multiple problem definitions (decomposition of learning tasks); applies metric-based
model selection over subtasks tosearch for efficient hypothesis preferences; and integrates
these techniques in a data fusion (mixture estimation) framework.

3. Learning task decomposition and model selection

This section introducesattribute partitioningfor problem decomposition in multiattribute
inductive learning and a new metric-based model selection approach (composite learning)
for decomposable learning tasks.

3.1. Attribute-driven problem decomposition: subset selection and partition search

Many techniques have been studied for decomposing learning tasks, to obtain more tractable
subproblems and to apply multiple models for reduced variance. This section examines
attribute-basedapproaches for problem reformulation, especiallypartitioning of input at-
tributes in order to defineintermediate concepts(Fu & Buchanan, 1985) in problem decom-
position. This mechanism produces multiple subproblems for which appropriate models
must be selected; the trained models can then be combined usingclassifier fusionmod-
els adapted from bagging (Breiman, 1996), boosting (Freund & Schapire, 1996), stacking
(Wolpert, 1992), and hierarchical mixture models (Jordan & Jacobs, 1994).
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Figure 2. State space formulation of the attribute partitioning problem.

Attribute subset selectionis the task of focusing a learning algorithm’s attention on
some subset of the given input attributes, while ignoring the rest (Kira & Rendell, 1992;
Kohavi & John, 1997). In this research, it is adapted to the systematic decomposition of
learning problems over heterogeneous time series. Instead of focusing a single algorithm
on a single subset, the set of all input attributes is partitioned, and a specialized algorithm
is focused oneachsubset. Whereas subset selection presumes a single learning model
by default, partitioning is designed specifically for multiple-model learning. This new
approach adopts the role of feature construction in constructive induction: to formulate
a new input specification from the original one (Donoho, 1996). It uses partitioning to
decomposea learning task into parts that are individually useful (usingaggregationas
described in Section 2.1), rather than toreduceattributes to a single useful group. This
permits new intermediate concepts to be formed by unsupervised learning methods such as
conceptual clustering (Stepp & Michalski, 1996) or cluster formation using self-organizing
algorithms (Kohonen, 1990; Hsu et al., 1999). The newly defined problem or problems can
then be mapped to one or more appropriate hypothesis languages (model specifications).
In our new system, the subproblem definitions obtained by partitioning of attributes also
specify a mixture estimation problem (i.e., data fusion step occurs after training of the
models for all the subproblems).

Figure 2 depicts the state space of all partitions of a set of 4 attributes. The size of the
state space for n attributes isBn, thenth Bell number, defined as follows:

Bn =
n∑

k= 0

S(n, k)

S(n, k) =
0 if n < k or k = 0, n 6= 0

1 if n = k
S(n− 1, k− 1)+ kS(n− 1, k) otherwise

Thus, it is impractical to search the space exhaustively, even for moderate values ofn.
The functionBn is ω(2n) ando(n!), i.e., its asymptotic growth is strictlyfasterthan that
of 2n and strictlyslower than that ofn!. It thus results in a highly intractable evaluation
problem if all partitions are considered. Instead, a heuristic evaluation function is used
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so that informed search algorithms such as hill climbing, best-first search, beam search,
and A/A* (Barr & Feigenbaum, 1981; Russell & Norvig, 1995) may be applied. This
evaluation function is themodular mutual information score(Hsu, 1998), which measures
mutual information across subsets of a partition (Jordan, 1997b). It is directly proportional
to the conditional mutual information of the desired output given each subsetby itself(i.e.,
the mutual information between one subset and the target class,givenall other subsets).
This quantity,modular mutual information, is denotedIi for each subset of input attributes
X i . The score is inversely proportional to the difference between joint and total conditional
mutual information (i.e., shared information among all subsets). Themodular common
informationis denotedI∇ for an entire partitionX:

Ii =def I (X i ;Y | X 6=i ) =def H(X;Y)− H(X i | Y,X1, . . . ,X i − 1,X i + 1, . . . ,Xk)

I∇ =def I (X1;X2; . . . ;Xk;Y) =def I (X;Y)−
k∑

i = 1

Ii

MMS-HME =
(

k∑
i = 1

Ii

)
− I∇ = 2

(
k∑

i = 1

Ii

)
− I (X;Y)

The purpose of the score,MMS-HME, is to reward high conditional mutual information
between an attribute subset and the desired output given other subsets (i.e.,each learning
component will be alloted a large share of the work through the subproblem defined on that
subset). It should also penalize high common information (i.e., the gating network is alloted
more work relative to the experts). Note that while the partition separates inputs into groups
of channelsX i , it does not affect the intrinsic cross-information among these groups.

In the ideal case, this metric yields a speedup that reduces partition search to an NP-
complete problem—that is, finding the optimum partition of size 2, from among 2n−1,
then repeating this for the resulting refinements (or subpartitions). Empirical experiments
described in (Hsu, 1998) demonstrate a speedup (up to 40 times for a synthetic 8-attribute
problem) that effectively doubles the number of attributes that can be partitioned using
algorithm A. Members of the schema for the optimum partition (Goldberg, 1989) are also
shown to have high evaluation function scores.

3.2. Subproblem definition

This section summarizes the role of attribute partitioning in defining intermediate concepts
and subtasks of decomposable time series learning tasks, which can be mapped to the
appropriate submodels. In both attribute subset selection and partitioning, attributes are
grouped into subsets that are relevant to a particular task: the overall learning task or a
subtask. Each subtask for a partitioned attribute set has its own inputs (the attribute subset)
and its ownintermediate concept. This intermediate concept can be discovered using un-
supervised learning methods, such as self-organizing feature maps (Kohonen, 1990; Hsu
et al., 1999) andk-means clustering(Russell & Norvig, 1995). Other methods, such as
competitive clustering or vector quantization using radial basis functions (Haykin, 1994),
neural trees (Li, Fang, & Li, 1993), and similar models (Duda & Hart, 1973; Ray & Hsu,
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1998), principal components analysis (Watanabe, 1985; Haykin, 1994), Karhunen-Lo`eve
transforms (Watanabe, 1985), or factor analysis (Watanabe, 1985), can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this
system. Whereas attribute subset selection yields asingle, reformulated learning prob-
lem (whose intermediate concept is neither necessarily nor intentionally different from the
original concept), attribute partitioning yieldsmultiple learning subproblems(whose inter-
mediate concepts may or may not differ, but are simpler by design when they do). The
goal of this approach is to find a natural and principled way to specifyhow intermediate
concepts should be simpler than the overall concept.

3.3. Metric-based model selection and composite learning

Model selectionis the problem of choosing a hypothesis class that has the appropriate
complexity for the given training data (Stone, 1977; Schuurmans, 1997). Quantitative, or
metric-based, methods for model selection have previously been used to learn using highly
flexible models with many degrees of freedom (Schuurmans, 1997), but with no particular
assumptions on the structure of decision surfaces (e.g., that they are linear or quadratic)
(Geman, Bienenstock, & Doursat, 1992). Learning without this characterization is known
in the statistics literature asmodel-free estimation or nonparametric statistical inference.

For time series, we seek toidentifya stochastic process type from the training data (i.e.,
a process that generates the observations, as documented in Section 2.1). The performance
element, time series classification, will then apply amodelof this process (represented
by exactly one memory form) to a continuation of the input (i.e., “test” data) to generate
predictions. For example, an exponential trace memory form (Mozer, 1994; Ray & Hsu,
1998; Hsu, 1998) can express certain types of MA(1) processes (Box, Jenkins, & Reinsel,
1994; Kantz & Schreiber, 1997). The more precisely a time series can be described in terms
of exponential processes, the more strongly it will match this memory form. The stronger
this match, the better the expected performance of an MA(1) learning model, such as an
input recurrent (IR) network. A metric that measures this degree of match on a time series
is therefore a useful predictor of IR network performance.

Table 1 lists three learning architectures (rows of the “lookup table” in figure 1) and
metrics corresponding to their strengths. These are referred to asnode metricsbecause the
choice of architecture is local to each node (subnetwork) in a hierarchy, corresponding to a
single learning subtask. The choice of hierarchical model is global over all subtasks, so the
corresponding metrics are calledtree metrics. The metrics are calledprescriptivebecause
each one provides evidence in favor of a particular architecture.

Table 1. Learning architectures and their prescriptive metrics.

Learning architecture Node metric

Simple recurrent network (SRN) Exponential trace (MA) score

Time delay neural network (TDNN) Autoregressive (AR) score

Gamma network Autoregressive moving average (ARMA) score
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Table 2. Hierarchical models for classifier fusion and their prescriptive metrics.

Hierarchical model type Tree metric

Specialist-Moderator (SM) Network Factorization score

Multistrategy Hierarchical Mixture of Modular mutual information score
Experts (MS-HME) Network

The ability to decompose a learning task into simpler subproblems prefigures a need to
map these subproblems to the appropriate models. The general mapping problem, broadly
termedmodel selection, can be addressed at very minute to very coarse levels. This paper
examines quantitative, metric-based approaches for model selection at a coarse level. This
approach is a direct extension of theproblem definition and technique selectionprocess
(Engels, Verdenius, & Aha, 1998). (We will henceforth use the termmodel selection
to refer to both traditional model selection and the metric-based methods for technique
selection as presented here.) The time series learning architectures that populate part of a
collection of modelcomponents(Smyth, 1998), along with their prescriptive (node) metrics,
are documented in Section 2.1.

Two mixture models (columns of the “lookup table” in figure 1, listed in Table 2), are
presented in this paper. These are theHierarchical Mixture of Experts(HME) of Jordan
et al. (Jordan, Jacobs, & Barto, 1991; Jacobs et al., 1991; Jordan & Jacobs, 1994) and
theSpecialist-Moderator(SM) network of Ray and Hsu (Ray & Hsu, 1998; Hsu & Ray,
1998). This design choice is a critically important consideration in how a hierarchical
learning model is built, and thereby affects the performance of multistrategy approaches to
learning from heterogeneous time series. The learning methods being evaluated define the
hierarchical model used to perform multistrategy learning in the integrated, or composite,
learning system. The expected performance of this model is aholistic measurement; that
is, it involves all of the subproblem definitions, the learning architecture used for each one,
and even the training algorithm used. It must therefore take the subproblem definitions
into account. As a convention, the choice ofpartition (and intermediate training targets) is
committed first; next, the hierarchical model type; then, the learning architectures for each
subset. Each selection is made subject to the previous choices.

The tree metric for specialist-moderator networks is thefactorization score. This is
an empirical measure of howevenlythe learning problem is modularized (Ray & Hsu,
1998); it is not specific to time series data. In (Hsu, 1998), a factorization is defined for an
intermediate target that is formed through cluster definition using a subsetai of the partition;
that is, the set of distinguishable classes depends on therestricted viewthrough a subset
of the original attributes. We characterize this restricted view in terms of the number of
distinguishable output classesoi for each subsetai , 1≤ i ≤ k. If the product of alloi is N,
then the score is defined:

MSM = −
k∑

i = 1

∣∣∣∣ lg( oi
k
√

N

)∣∣∣∣
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The tree metricMMS-HME for HME-type networks (Jacobs, Jordan, & Barto, 1991; Jacobs
et al., 1991; Jordan & Jacobs, 1994) is given in Section 3.1.

Definition. A compositeis a set of tuplesL = ((A1, B1, θ1, γ1, S1), . . . , (Ak, Bk, θk, γk,

Sk)), whereAi andBi are sets of input and output attributes,θi andγi are names of network
parameters and hyperparameters cf. (Neal, 1996) (i.e., the learning architecture), andSi is
the name of a learning method (a training algorithm and a mixture model).

A composite is depicted in figure 1 in the box labeled “learning specification”. Ideally,
a composite would specify the partitioning of input attributes, synthetic attributes, and all
high-level model descriptors. These include trainable weights and biases; the specification
of model structure (e.g., number, size, and connectivity of ANN hidden layers); the initial
conditions for learning (e.g., prior distributions of parameter values); and most important
for time series learning, the process type. Composites are generated using the following
algorithm.

Given:

1. A (multiattribute) time series data setD= ((x(1), y(1)), . . . , (x(n), y(n))) with input at-
tributesA= (a1, . . . ,aI ) such thatx(i )= (x(i )1 , . . . , x

(i )
I ) and output attributesB= (b1,

. . . ,bO) such thaty(i )= (y(i )1 , . . . , y(i )O )

2. A constructive induction functionF (as described in Sections 3.1 and 3.2) such that
F(A, B, D)={(A′, B′)}, whereA′ is an attribute partition andB′ is the set of interme-
diate concepts for each subset ofA′.

Algorithm Select-Net(D,A,B, F)
repeat

Generate a candidate representation(A′, B′)∈ F(A, B, D)
for each learning architectureτa

for each subsetA′i of A′

Computenodemetricsxa
i τ =ma

τ (A
′
i , B′i ) that evaluateτ a with respect to

(A′i , B′i ).
for each learning methodτ d

Computetreemetricsxd
τ =md

τ (A
′, B′) that evaluateτ d with respect to

(A′, B′).
Normalize the metricsxτ using a precalibrated functionGτ—see Eq. (1).
Select the most strongly prescribed architecture(θ, γ ) and learning methodS for
(A′, B′), i.e., the table entry (row and column) with the highest metrics.

if the fitness (strength of prescription) of the selected model meets a
predetermined threshold

then accept the proposed representation and learning technique(A′, B′, θ, γ, S)
until the set of plausible representations is exhausted
Compile and train acomposite, L , from the selected complex attributes and

techniques.
Compose the classifiers learned by each component ofL using data fusion.
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tτ : shape parameter

λτ : shape parameter

Gτ (xτ ) =
∫ xτ

0
fτ (x) dx

fτ (x) = λτe−λτ x(λτ x)tτ−1

0(tτ )

0(tτ ) =
∫ ∞

0
e−yytτ−1 dy

Equation 1. Normalization formulas for metricsxτ (τ =metric type)

The normalization formulas for metrics, given in Eq. (1), simply describe how to fit
a multivariate gamma distributionfτ , based on acorpus of homogeneous data sets(cf.
(Hsu & Zwarico, 1995), for a related model selection application). In this calibration
phase, each data set is a “training point” for the metric normalization function,Gτ (i.e.,
the shape and scale parameters offτ ). By applyingSelect-Netwith Gτ thus calibrated, we
can generate a learning composite—aspecificationfor supervised, multistrategy learning
on a decomposed time series. A composite is implemented from a database of model
components. For discussions on populating this database, the reader is referred to (Hsu,
1998).

4. Adapting hierarchical models to multistrategy time series learning

Decomposition of supervised learning tasks, as presented in this paper, entails three stages:
subproblem definition, model selection for subproblems, and reintegration of trained mod-
els. This section examines the third and final stage, reintegration, by means ofhierarchical
mixture models. It presents the problem ofdata fusionin composite learning, and a generic,
hierarchical approach using probabilistic networks. It then surveys thehierarchical mix-
ture of experts(HME) of Jordan et al. (Jacobs, Jordan, & Barto, 1991; Jacobs et al., 1991;
Jordan & Jacobs, 1994), and thespecialist-moderator (SM) network, an architecture that
was specifically designed for data fusion in decomposition of learning tasks.

4.1. Data fusion and probabilistic network composites

This section presentsspecialist-moderator (SM)networks andhierarchical mixtures of ex-
perts (HME)for reintegration of composite time series models. The system overview in
Figure 3 depicts a learning system for decomposable time series. The central element of this
system is a hierarchicalmixture model—a general architecture for combining predictions
from submodels. In this research, the submodels are recurrent ANNs. Attribute parti-
tioning, described in Section 3.1, produces the subdivided inputs,x0n, to these specialist,
or expert, subnetworks (henceforth calledspecialistsor experts). Unsupervised learning
methods, such as self-organizing feature maps (SOMs) (Kohonen, 1990; Hsu et al., 1999)
and competitive clustering (Haykin, 1994), are applied to form intermediate targetsy0n, as
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Figure 3. Role of hierarchical mixtures and two mixture models (HME and SM networks).

described in Section 3.2. Selection of subnetwork types is documented in Section 3.3. The
overall concept(y11) is the learning target for the top-level moderator.

A mixture modelis one that combines the outputs of a finite set of subordinate models
by weighted averaging (Haykin, 1994). The weights are referred to asmixing proportions
(Haykin, 1994),mixing coefficients, gating coefficients(Jordan & Jacobs, 1994), or simply
“weights”. Traditionally, a mixture model is formally defined as a probability density
function (pdf), f , that is the sum of weighted contributions from subordinate models:

f (y;θ,π) =
N∑

n= 1

πn fn(y;θ)

where
N∑

n= 1

πn = 1 and πn ≥ 0 for all n

fn are the individual pdfs for mixture components, drawn from populationsSn1≤ n≤ N,
and f is a pdf over samplesy drawn uniformly from the populationS. That is, fn denotes
the likelihood thatSn contributesy to the mixtureS. πi denotes thenormalized weight
for this likelihood (Haykin, 1994). The parametersθ include all unknowns in the sub-
ordinate models upon which the distributionsfn are to be conditioned. This generalizes
over all parameters of the learning architecture, such as network weights and biases. The



A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING 225

hyperparametersπ are simply the mixing coefficients. The mixture estimation problem is
to fit π , given training data(y1, . . . , yn, y).

An alternative definition (Jordan & Jacobs, 1994) that is more familiar to the nomenclature
of connectionist (probabilistic network) learning is to estimate the distribution ofy as a
weighted sum of predictions. The mixing coefficients still denote the normalized weight
for a likelihood function over samples from a population, but we have now specified that the
estimatorfor the likelihood function is the output of anexpert. As Jordan and Jacobs (Jordan
& Jacobs, 1994) and Haykin (1994) note, experts may be arbitrary learning components.
For example, Haykin specifically considers experts that arerule generatorsor arbitrary
probabilistic network regression models, with real-valued, discrete, or 1-of-C (“locally”)
coded targets (Kohavi & John, 1997; Sarle, 1999). In this paper, only discrete (including
binary) and 1-of-C-coded classification targets are considered.

Finally, an even more flexible formulation of mixture models is as ahierarchical mix-
ture network(Hsu, 1998), whose vertices all represent subnetworks. The leaves are ex-
perts or specialist networks; the internal vertices, gating or moderator subnetworks. The
target distributionf (y) is thus described as a parameter estimation problem, where the
submodel parametersθ belong to probabilistic networks such as feedforward or recurrent
ANNs. For multilayer perceptrons, or MLPs (a type of feedforward ANN), the mixture is
y= f (yn), 1≤ n≤ N, where the vector-valued functionf is defined over output channels
fk (of which each is a mixture) in the output layer of the MLP (Neal, 1996; Hsu, 1998).fk

are the mixture estimation targets.
Data fusion, in the context of composite learning, can naturally be interpreted as a

mixture estimation problem. Each expert is an inducer trained on some intermediate target
concept, resulting in a classifier that maps a subset of the input, or of a continuation of
the input (Gershenfeld & Weigend, 1994) for time series, to intermediate predictions that
are combined using the mixture model. The rest of this section definespartitioning and
aggregationmixtures, two general types of mixture models that are exemplified by HME
and SM networks.

4.2. Multistrategy hierarchical mixture of experts (MS-HME)

This section presents the HME architecture, one of two mixture models that may be selected
in our system, and discuses its adaptation to multistrategy learning as anintegrativemethod.
For a review of existing learning procedures for HME, such as algorithms for Bayesian learn-
ing of ANN parameters (Neal, 1996; Jordan, 1997a), and a discussion of how they may
be incorporated into a “repertoire” of techniques, the interested reader is referred to (Hsu,
1998). Figure 3 shows an HME network of height 2, with 4 expert networks at its leaves.
Note that the expert and gating networks all receive the same input x. The target output val-
uesyl j , for levell and (gating or expert) networkj , are also identical. Traditional HME uses
a tree-structured network ofgeneralized linear models(GLIMs), or fixed, continuous, non-
linear functions with linear parameters (McCullagh & Nelder, 1983). GLIMs include single
layer perceptrons with linear, sigmoidal, and piecewise linear transfer (activation) functions,
which implement regression, binary classification, and hazard models for survival analysis,
respectively (Jordan & Jacobs, 1994; Neal, 1996). The mixing is implemented bygating
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GLIMs that combine outputs from the expert GLIMs. HME networks are trained using anin-
terleavedupdvate algorithm that computes the error function at the topmost gating network,
then propagates credit down through the hierarchy on every pass (a single trainingepoch).
This generic procedure can be specialized to expectation-maximization (EM) (Jordan &
Jacobs, 1994), gradient (Hsu, 1998), and Markov chain Monte Carlo (MCMC) learning
algorithms (Neal, 1996). HME thus supports a type of self-organization over submod-
els (which are identical in the original formulation); (Jordan & Jacobs, 1994) explains this
property and how the “learning load” is distributed over experts by the multi-pass algorithm.

We adapt HME to multistrategy learning (MS-HME) by replacing GLIMs with feedfor-
ward and recurrent ANNs, with nonlinear (sigmoidal or hyperbolic tangent) or piecewise
linear input-to-hidden layer transfer functions and linear hidden-to-output layer transfer
functions. The purpose of this modification is to permit an arbitrarymixture function,
which is implemented by all of the interior (moderator) subnetworks as a whole, to be
learned. As Kohavi, Sommerfield, & Dougherty (1996) point out, however, mixture func-
tions that arenot linear combinations of the input (i.e., those that do not have the same
mixing coefficients for any input data) are semantically obscure. Furthermore, the real is-
sue is not the ability to fit a mixture perfectly, because (just as in general concept learning) it
is always possible to learn by rote if there are sufficient model resources. The true criterion
is generalizationquality. In general concept learning as well as mixture modeling, we can
evaluate generalization by means of cross validation methods (Wolpert, 1992). While such
empirical results may not be as conclusive as a computational learning theoretic model
(Vapnik, 1995), it is more feasible to collect them than to develop a formal generalization
model for recurrent ANNs. Some discretion, therefore, is essential when undertaking to
use a general mixture function instead of a linear gating or fusion model.

Finally, in order to adapt HME todecompositionof learning problems, it is necessary
to make inputs to experts (at the leaves of the tree-structured network)nonidentical. Sec-
tion 3.1 describes attribute partitioning algorithms that split the input data along “columns”.
Each expert receives the data restricted to one subset of input attributes (i.e., the columns
or channels specified by that subset), and each gating network receives as inputs the con-
catenation of inputs to each expert and the normalized output from each expert. The target
outputs at every expert and gating level are identical to one another and to the overall target.
Thus, a training exemplar is a set of subnetwork outputs, concatenated with the total input
to all experts in thedomainof the moderator (i.e., the subtree rooted at that moderator).
Training a moderator means revising its internal weights to approximate a mixture function.

4.3. Specialist-moderator (SM) networks

This section presents the SM network architecture and its construction, and discuses its
adaptation to multistrategy learning. The SM network, which was developed by Ray and
Hsu (Ray & Hsu, 1998; Hsu & Ray, 1998), is one of two mixture types that may be selected
in our composite learning system. Figure 3 shows an SM network with two layers of
moderators. The construction of SM networks allows arbitrary real inputs to the expert
(specialist) networks at the leaves of the mixture tree, but constructs higher level attributes
based uponx0 j (see figure 3). The target output classes of each parent are the Cartesian
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product (denoted×) of its children’s, and the children’s outputs and the concatenation of
their input (denoted o) are given as input to the parent. This is one of the two main differences
between SM networks and HME. The other is that a specialist-moderator network is trained
in a single bottom-up pass, while HME networks are trained iteratively, in a top-down
fashion, duringeachM step of EM (Jordan & Jacobs, 1994). Interested readers are referred
to (Hsu, 1998) for details of the construction algorithmSM-net.

Gradient learning in SM networks was introduced in (Ray & Hsu, 1998) and (Hsu & Ray,
1998). As does HME, SM networks also admit EM (Dempster, Laird, & Rubin, 1977) and
MCMC (Neal, 1996) learning for certain specialist architectures (Hsu, 1998).

The primary novel contribution is the model’s synergy with attribute-based learning task
decomposition:

1. Reduced variance. On decomposable time series learning probems, SM networks exhibit
lower classification error than non-modular networks of comparable complexity. Section
5 reports results that demonstrate this in a manner very similar to that of Reuckl, Cave
and Kosslyn (1989) and Jacobs, Jordan and Barto (1991).

2. Improved learning efficiency. Compared to non-modular networks, SM networks require
fewer trainable weights or fewer training cycles to achieve convergence on decomposable
problems (the reader is referred to (Hsu, 1998) and (Hsu & Ray, 1999) for experimental
details).

3. Facility for multistrategy learning. Our experimental results, reported in Sections 5 and
6, show improvements using time series specialists ofdifferent typeswithin the SM
network, selected from Table 1.

The main practical distinction between SM networks and HME are the ways in which each
one achieves reduced variance and reduced computational complexity.SM-net produces
moderator networks whose worst-case complexity is the product of that of their children.
This growth is limited, however, because the tree height and maximum branch factor are
typically (very) small constants (Hsu, 1998). Thus, SM networks trade more rapid growth in
complexity and susceptibility to overtraining (compared to HME, which computes no cross-
product targets) for increasedresolution capabilityand reduction oflocalization error. By
exploiting differences among the problem definitions for each subnetwork, an SM network
can distinguish among more concepts than its components, and achieve higher classification
accuracy than a comparable non-modular network. In time series learning applications such
as multimodal sensor integration, this localization error may be reduced in space or time
(Jacobs, Jordan, & Barto, 1991; Stein & Meredith, 1993).

5. Experimental results

This section presents experimental results with comparisons to existing inductive learning
systems (Kohavi, Sommerfield, & Dougherty, 1996), traditional regression-based meth-
ods as adapted to time series prediction, and non-modular probabilistic networks (both
atemporal and ARMA-type ANNs).
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5.1. A time series learning problem: musical tune classification

This section documents a sensor fusion experiment onmusical tune classification, illus-
trated in figure 4. It gives a design rationale for the test bed used to evaluate the SM network.
In experiments using hierarchical classifier fusion models, our focus is primarily onclas-
sificationof time series. The architecture addresses one of the key shortcomings of many
current approaches to time series learning: the need for anexplicit, formal model of inputs
from different modalities. For example, the specialists at each leaf in the SM network might
represent audio and infrared sensors in an industrial or military monitoring system (Stein &
Meredith, 1993). The SM network model and learning algorithm, described in Section 4.3,
capture this property by allocating different channels of input (collected in each complex
input attribute) to every specialist. Other models that can be represented by SM architecture
are hierarchies of decision-making committees (Bishop, 1995).

The input data was generated from digitized audio recordings of musical tunes, prepro-
cessed using a simple autocorrelation technique to find a coarse estimate of thefundamental
frequency(Beauchamp, Maher, & Brown, 1993). This signal was used to produce thefre-
quency component, an exponential trace of a tune over 7 input channels (essentially, a
7-note scale). The other group of input attributes is therhythm component, containing 2
channels: the position in the tune (i.e., a time parameter ranging from 1 to 11) and a binary
sound-gap indicator. Figure 4 also depicts non-modular and specialist-moderator archi-
tectures for learning the musical tune classification database. The non-modular network

Figure 4. Organization of the musical tune classification experiment.
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Table 3. Performance of an SM network versus that of other inducers on the tune classification problem.

Classification accuracy, musical tune classification (%)

Training Cross validation

Inducer Min Mean StdDev Max Min Mean StdDev Max

ID3 99.4 99.4 0.09 99.6 46.6 63.4 5.67 73.2

ID3, bagged 99.4 99.4 0.09 99.6 48.6 63.4 5.55 74.0

ID3, boosted 99.4 99.4 0.09 99.6 53.4 66.6 4.85 83.6

C5.0 95.0 95.8 0.64 96.3 67.1 77.1 3.41 84.9

C5.0, boosted 94.4 98.9 1.11 99.6 57.5 77.5 5.57 89

IBL 92.7 94.0 1.02 95.6 41.1 52.7 4.88 62.3

Discrete Na¨ıve-Bayes 93.8 95.6 0.78 96.3 41.1 59.6 4.79 67.1

DNB, bagged 93.4 94.6 0.79 96.3 47.9 60.8 4.19 67.1

DNB, boosted 93.8 94.4 0.47 96.5 45.2 58.3 5.34 69.2

PEBLS 72.6 76.8 1.67 84.2 30.8 42.5 4.71 56.8

SM net, FF – – – 74.9 – – – 60.2

SM net, IR – – – 100.0 – – – 81.3

receives all 9 channels of input and is trained using the overall concept class. The first-
level (leaf) networks in the specialist-moderator network receivespecializedinputs: the
frequency component only or the rhythm component only. The concatenation of frequency
and rhythm components (i.e., the entire input) is given as input to the moderator network,
and the target of the moderator network is the Cartesian product of its children’s targets
(Hsu, 1998). The intermediate targets are equivalence classesI F ={F1, F2, F3, F4} and
I R={R1, R2, R3, R4}. Experiments using feedforward networks and Elman, Jordan, and
input recurrent varieties of simple recurrent networks (Elman, 1990; Princip´e & Lefebvre,
1998) showed input recurrent networks to achieve higher performance (accuracy and conver-
gence rate) for exponentially coded time series, alone and as part of the specialist-moderator
networks (Ray & Hsu, 1998).

Table 3 lists performance statistics (mean, extrema, and standard deviations of classifi-
cation accuracy) using atemporal inducers such asID3, C5.0, Naı̈ve Bayes,IBL, andPEBLS
on the the musical tune classification problem (S4 data set) described in this section. The
non-ANN inducers tested are all part of theMLC++ package (Kohavi, Sommerfield, &
Dougherty, 1996). Table 4 shows the performance of the non-modular (simple feedforward
and input recurrent) ANNs compared to their specialist-moderator counterparts—each net-
work has approximately 1200 weights each. Each tune is coded using between 5 and 11
exemplars, for a total of 589 training and 128 cross validation exemplars (73 training and
16 cross validation tunes). The italicized networks have 16 targets; the specialists, 4 each.
Prediction accuracy is measured by the number of individual exemplars classified correctly
in a 1-of-4 or 1-of-16 coding (Sarle, 1999). Significant overtraining was detected only in the
frequency specialists and did not affect classification accuracy for this data set. The results
illustrate that input recurrent networks (simple, specialist, and moderator) are more capable
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Table 4. Performance of non-modular and specialist-moderator networks.

Network Training Training CV
Design type MSE accuracy MSE CV accuracy

Feedfwd. Simple 0.0575 344/589 (58.40%) 0.0728 67/128 (52.44%)

Feedfwd. Rhythm 0.0716 534/589 (90.66%) 0.1530 104/128 (81.25%)

Feedfwd. Frequency 0.0001 589/589 (100.0%) 0.0033 128/128 (100.0%)

Feedfwd. Moderator 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)

Input rec. Simple 0.0167 566/589 (96.10%) 0.0717 83/128 (64.84%)

Input rec. Rhythm 0.0653 565/589 (95.93%) 0.1912 107/128 (83.59%)

Input rec. Frequency 0.0015 589/589 (100.0%) 0.0031 128/128 (100.0%)

Input rec. Moderator 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

Table 5. Performance of HME and specialist-moderator networks.

Design Training MSE Training acc. CV MSE CV accuracy

HME, 4 leaves 0.0576 387/589 (65.71%) 0.0771 58/128 (45.31%)

HME, 8 leaves 0.0395 468/589 (79.46%) 0.0610 77/128 (60.16%)

SM net, FF 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)

SM net, IR 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

of generalizing over the temporally coded music data than are feedforward ANNs. The
advantage of the specialist-moderator architecture is demonstrated by the higher accuracy
of the moderator test predictions (100% on the training set and 81.25% or 15 of 16 tunes
on the cross validation set, the highest among the inducers tested). As Table 5 shows, our
implementation of a non-recurrent HME network (trained using gradient learning) with 8
leaves outperforms the version with 4 leaves and is comparable to the specialist-moderator
network of feedforward networks. It is, however, outperformed by the specialist- moderator
network of input recurrent networks.

5.2. An application: crop condition monitoring

The real-world test bedfor model selectionin our multistrategy learning system is a pre-
diction and monitoring problem using weekly crop condition estimates (corn condition in
Illinois farms) collected over 11 years. Hsu (1998) describes the problem in detail and
presents several visualizations of the time series data. The data is shown to admit two
embedded process types: an exponential trace (MA) process and an autoregressive (AR)
process. Task decomposition can improve performance here, by isolating the AR and MA
components for identification and application of the correct specialized architecture (a time
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delay neural network (Lang, Waibel, & Hinton, 1990; Haykin, 1994) or simple recurrent
network (Elman, 1990; Princip´e & Lefebvre, 1998), respectively). The training target is
quantized to nominal values:{very poor, poor, fair, good, very good}, thereby defining
a predictive evaluation, or simulation, model. (Hsu, 1998) reports how recurrent ANNs
outperform linear prediction methods (and certainly outperform na¨ıve linear or quadratic
regression, which invariably predict no change in condition from one week to the next) in
the “middle to distant future”. This is important because the utility of near-term predictions
tends to be lower for decision support systems (Russell & Norvig, 1995).

To demonstrate the decomposability of thecrop condition-monitoringproblem, an exper-
iment was first conducted an experiment using Elman, Jordan, and input recurrent networks
as well as TDNNs and MLPs (Hsu, 1998). A gamma network in an MS-HME configuration
(as defined in Section 4.2) was used to select the correct classifier (if any) for each exemplar.
This context-sensitive fusion step combined predictions from the two best overall networks
(input recurrent, or IR, with momentum of 0.9 and time-delay neural networks, or TDNNs,
with momentum of 0.7). It reduced the error by almost half, indicating that even with
identical inputs and targets, a simple mixture model could reduce variance. These results
are reported in (Hsu, 1998). A pairedt-test with 10 degrees of freedom (for 11-yearcross-
validation over the weekly predictions) indicates significance at the level ofp< 0.004 for
the moderator versus TDNN and at the level ofp< 0.0002 for the moderator versus IR.
The null hypothesis is rejected at the 95% level of confidence for TDNN outperforming IR
(p< 0.09), which is consistent with the hypothesis that an MS-HME network yields a per-
formance boost over either network type alone. This result, however, is based on relatively
few samples (in terms of weeks per year) and very coarse spatial granularity (statewide
averages).

Table 6 summarizes the performance of an MS-HME network versus that of other
induction algorithms fromMLC++ (Kohavi, Sommerfield, & Dougherty, 1996) on the
crop condition monitoring problem. This experiment illustrates the usefulness of learn-
ing task decomposition over heterogeneous time series. The improved learning results due
to application of multiple models (TDNN and IR specialists) and a mixture model (the
Gamma network moderator). Reports from the literature on common statistical models
for time series (Box, Jenkins, & Reinsel, 1994; Gershenfeld & Weigend, 1994; Neal,
1996) and experience with the (highly heterogeneous) test bed domains documented here
bears out the idea that “fitting the right tool to each job” is critical. Research that is re-
lated to this paper (Hsu et al., 1999) applies this methodology to specific problems in
diagnostic monitoring for decision support (orrecommender) systems (Resnick & Varian,
1997).

6. Conclusions and future work

This section analyzes the experimental results reported in the previous sections, especially
Section 5. It begins with a discussion of the design choices and properties of interest,
continues with an account of the the main findings and their ramifications, and concludes
with a brief synopsis of current and future work.
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Table 6. Accuracy of MS-HME versus that of other inducers on the crop condition monitoring problem.

Classification accuracy, crop condition monitoring (%)

Training Cross validation

Inducer Min Mean Max StdDev Min Mean Max StdDev

ID3 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51

ID3, bagged 99.7 99.9 100.0 0.15 30.3 58.2 88.2 18.30

ID3, boosted 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51

C5.0 90.7 91.7 93.2 0.75 38.7 58.7 81.8 14.30

C5.0, boosted 98.8 99.7 100.0 0.40 38.7 60.9 79.4 13.06

IBL 93.4 94.7 96.7 0.80 33.3 59.2 73.5 11.91

Discrete Na¨ıve-Bayes 74.0 77.4 81.8 2.16 38.7 68.4 96.7 22.85

DNB, bagged 73.4 76.8 80.9 2.35 38.7 70.8 93.9 19.63

DNB, boosted 76.7 78.7 81.5 1.83 38.7 69.7 96.7 21.92

PEBLS 91.6 94.2 96.4 1.68 27.3 58.1 76.5 14.24

IR Expert 91.0 93.7 97.2 1.67 41.9 72.8 94.1 20.45

TDNN Expert 91.9 96.8 99.7 2.02 48.4 74.8 93.8 14.40

MS-HME 98.2 98.9 100.0 0.54 52.9 79.0 96.9 14.99

Traditionally, domain knowledge about the sources of data is used in their decomposition
(Hsu & Ray, 1998; Hsu et al., 1998). This is typical of the time series learning problems
surveyed in Section 1; examples of heterogeneous time series with multiple data sources
include multimodal sensor integration (sensor fusion) and multimodal HCI. Section 3.1
describes a knowledge-free approach (attribute partitioning) that can be applied when such
information is not available, but the learning problem is decomposable. As explained in
Section 1, this paper focuses on decomposable learning problems defined over heteroge-
neous time series. To briefly recap, a heterogeneous time series is one containing data
from multiple sources (Stein & Meredith, 1993), and typically contains different embed-
ded temporal patterns, which can be formally characterized in terms of different memory
forms (Mozer, 1994). These sources can therefore be thought to correspond to different
“pattern-generating” stochastic processes. A decomposable learning problem is one for
which multiple subproblems can be defined by systematic means, possibly based on heuris-
tic search (Barr & Feigenbaum, 1981; Russell & Norvig, 1995; Kohavi & John, 1997) or
other approximation algorithms. Some specific properties that characterize most kinds of
heterogeneous and decomposable time series, and are typically of interest for real-world
data, are as follows:

1. Heterogeneity: multiple processes for which a stochastic model is known or can be
hypothesized and tested

2. Decomposability: a known or hypothesized method for isolating one or more of these
processes (often part of the application domain knowledge)
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3. Feasibility: evidence that that (ideally) all of identifiable embedded processes are
homogeneous

These properties are present to some degree in the musical tune classification and crop condi-
tion monitoring test beds, and can be simulated in purely synthetic data (Hsu,
1998).

An important topic of continued research is the process of automating task decomposition
for model selection. This paper has shown how recurrent neural networks and hierarchical
mixture models can be organized for multistrategy learning. Some of the findings reported
here indicate that the most appropriate learning architecture, mixture model, and training
algorithm can be selected for each subproblem in a modular task decomposition. For exam-
ple, a boost in classifier accuracy was achieved on the crop condition monitoring problem
by using multistrategy (i.e., multiple process model) learning. This shows how the quality
of generalization achieved by a mixture of classifiers can benefit from the ability to identify
the “right tool” for each job. The findings reported here, however, only demonstrate the
improvement for a very limited set of real-world problems, and a (relatively) small range
of stochastic process models. This needs to be greatly expanded (through collection of
much more extensive corpora) to form any definitive conclusions regarding the efficacy of
the coarse-grained model selection approach. The relation of model selection to attribute
formation and data fusion in time series is an area of continuing research (Hsu & Ray,
1998; Hsu & Ray, 1999). A key question that the authors continue to investigate is: how
does attribute partitioning-based decomposition supportrelevance determination(Kohavi
& John, 1997) in a modular learning architecture?

Another very important issue that is beyond the scope of this paper is the role of prior
background knowledge (e.g., about time series preprocessing, the sources of data, etc). In
the musical tune classification problem, for example, the 4-by-4 factorization was discov-
ered using competitive clustering by Gaussian radial-basis functions (RBFs) (Haykin, 1994;
Ray & Hsu, 1998). In this experiment, the frequency and rhythm partitioning ofinputis self-
evident in the signal processing construction, so thesubdivision of inputthrough attribute
partitioning could have been constrained or guided by prior knowledge from sensor spec-
ifications (Stein & Meredith, 1993). (Note, however, that the intermediate targets arenot
known in advance, and the same knowledge is not necessarily useful for cluster definition.)
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