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Abstract
Evolutionary algorithms, such as particle swarm optimization (PSO), are widely applied to UAV path planning problems.
However, the fixed particle length of PSO, which may not be suitable for the scenario, will compromise the search effi-
ciency. This paper proposes the RGG-PSO+ method, which adapts to scenarios by dynamically adjusting the number of
waypoints. Random geometric graphs (RGG) and the divide-and-conquer paradigm are involved in improving the proposed
method. Comparative analyses with established heuristic methods demonstrate RGG-PSO+’s superior performance in com-
plex environments, particularly in terms of convergence speed and path length. The implementation of RGG significantly
improves the F-Measure, indicating a shift from exploration to exploitation of PSO’s iterations, and the implementation of
the divide-and-conquer paradigm is evident in the improved mean and variance of normalized path lengths.

Keywords Particle swarm optimization(PSO) · Random geometric graphs(RGG) · UAV · Path planning

1 Introduction

UAV path planning refers to the process of determining a
feasible or nearly optimal path for an unmanned aerial vehi-
cle (UAV) to follow from a starting position to a destination.
The primary goal of UAV path planning is to ensure that the
UAV navigates effectively and safely while avoiding obsta-
cles and meeting specific criteria required by applications
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[1]. Here, effectiveness refers to the quality of the path, and
safety relates to the capability of the path to guide the UAV
through obstacles without collision. As for the criteria, these
may include kinematic and dynamic constraints, minimiz-
ing the execution time of the navigation path, or finding the
Pareto solution for multi-objective tasks [2].

Path planning is a highly complex problem. Reif demon-
strated that in the piano mover’s problem, the complex-
ity of planning a feasible solution has a lower bound
of PSPACE-hard [3]. This complexity poses significant
challenges in practical applications. Thus, the research
work has focused on methods that yield near-optimal solu-
tions, including sampling-based, graph search-based, and
evolutionary-algorithm-based methods. Graph search-based
methods transform path planning into a graph-theoretic
path search problem, using methods such as A* [4, 5],
hybrid A* [6], and Jump Point Search [7, 8]. Sampling-
based path planning methods integrate the theory of Random
Geometric Graphs (RGG) to transform the construction of
roadmaps into graph-theoretic path search problems [9].
Supported by the principles of RGG, sampling-based meth-
ods possess numerous mathematical properties, including
probabilistic completeness and asymptotic optimality [9,
10]. Evolutionary-algorithm-based methods have become
increasingly popular in the path planning domain. In par-
ticular, these methods are capable of finding high-quality
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satisfactory solutions in complex scenarios, such as genetic
algorithm (GE) [11–13], differential evolution (DE) [14, 15],
ant colony optimization (ACO) [16], and particle swarmopti-
mization (PSO) [17–20].

Out of these evolutionary methods, PSO stands out due
to its widespread use and the development of several vari-
ants that enhance its application in UAV path planning. For
example, Hoang et al. proposed a phase-angle-encoded and
quantum-behaved PSO method [19]. Tang et al. proposed a
self-adaptive evolutionary PSO method for UAV Path plan-
ning [18]. Phung et al. proposed a spherical vector-basedPSO
method, validating the proposedmethodwith real UAV oper-
ations [21]. Huang et al. proposed cylindrical coordinates
and automatically adjusted inertia weight and acceleration
coefficients improvements to PSO [17]. These methods can
effectively search the configuration space of the UAV to gen-
erate quality solutions.

However, the aforementioned PSO-based methods pre-
suppose the dimension of the particle. In other words, all
particles are set with a predetermined number of waypoints
for their paths. Therefore, how to choose the number of way-
points remains an open question. Specifically, selecting a
larger number of waypoints in simple scenarios, i.e., scenar-
ios with fewer obstacles, will lead to the redundancy of the
particle dimensions, thereby reducing the search efficiency of
the algorithm.Conversely, selecting fewerwaypoints in com-
plex scenarios will result in insufficient particle dimensions,
thereby reducing the quality of the generated trajectory, and
may even lead to the inability to find a feasible path. There-
fore, how to dynamically adjust the number of waypoints for
particles is a question worth researching.

Furthermore, it is known that PSO has limitations in deal-
ing with local minima occurred in the field. For the UAV
path planning problem, the initialization process of PSO ran-
domly generates a few feasible solutions, leading to a lot of
computational waste in generating useless particles. As for
the evolution process, many illegal solutions are produced,
resulting in a smaller number of effective solutions. The
exploration ability of PSO inevitably declines due to two fac-
tors, making it highly susceptible to getting trapped in local
optima. Despite various modifications proposed in previous
research, enhancing the solution quality of PSO remains a
challenge.

In response to the aforementioned problems, this paper
proposes an innovative method for UAV path planning,
denoted as the RGG-PSO+, which integrates Random Geo-
metric Graphs (RGG) and divide-and-conquer paradigm.
Here, RGG is a type of probabilistic graph model, which
can effectively represent the connectivity in the configura-
tion space where paths need to be determined. The proposed
method can dynamically adjust the number of waypoints
in particles and improve the quality of randomly gener-
ated initial particles, thereby enhancing the method’s search

efficiency. Moreover, the proposed method involves the
divide-and-conquer paradigm to reduce the search space of
sub-planning problems. This improvement helps to prevent
the degradation of PSO’s exploration abilities and ensures
the full advantage of its exploitation capabilities during the
evolution iterations. These advancements contribute to the
search quality of RGG-PSO+.

For evaluation, 1000 random scenarios have been gener-
ated with increasing levels of complexity, which is measured
by the number of obstacles in the scenario. The comparisons
between the proposed RGG-PSO+ and other heuristic meth-
ods are then conducted on those scenarios to evaluate their
performance. The contributions of this study are listed as
follows:

• RGG is introduced to generate path candidates, and
variable-length particle mechanism is proposed to trans-
form the path candidates into particles.

• Divide-and-conquer paradigm of PSO-based path plan-
ning is proposed, which is capable of generating high-
quality solutions.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the related work of PSO and RGG applied
in UAV path planning. Section 3 provides a common pre-
liminary of definitions and assumptions for the literature.
Section 4 presents the proposed method, denoted as RGG-
PSO+. Sections 5 and 6 provide the experimental settings and
results analysis, respectively. Section 7 concludes the paper
and discusses the future work.

2 RelatedWork

We review related work in the area of particle swarm opti-
mization (PSO) and random geometric graphs (RGGs) for
the path planning problem.

2.1 Particle SwarmOptimization (PSO)

Particle swarm optimization (PSO) is a computational
method that optimizes problems by iteratively enhancing
potential solutions based on the predefined quality measure.
It operates with a group of candidate solutions, known as
particles, navigating them through the search space viamath-
ematical equations related to their position and velocity [22].
Each particle is influenced by its best-known position and the
collective best-known positions discovered within the search
space. These positions are dynamically updated as particles
identify superior solutions, progressively steering the entire
swarm closer to the optimal solutions [23]. In the context of
path planning, PSO is used tofind themost efficient path, con-
sidering various constraints and objectives. Specifically, PSO
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is widely used for path planning due to its strong searchabil-
ity, fast convergence, and efficiency [2]. However, it has been
found that PSO is prone to getting trapped in local optima
and lead to premature convergence while dealing with the
complex problems [2, 24].

To avoid possible local optima, the latest PSO meth-
ods are improved by incorporating techniques, such as
sigmoid-function-based weighting [24], fuzzy-based inertial
weighting [20], Bezier-curve-based path smoothness [25],
and adaptive parameter strategies [17, 18]. Some works have
developed various encoding methods tailored to meet the
constraints of cost functions. For example, the phase-angle-
encoded and quantum-behaved PSO method [17, 19, 26]
and the fitness-scaling adaptive chaotic PSOmethod [18, 27,
28] are proposed. In addition to the parameter setting, sup-
plementary methods are proposed to enhance the diversity
of its particle population. For example, cross-learning strat-
egy [29], spherical vector [21], and orientation angle-based
grouping strategy [30] are proposed. These improvements
have resulted in better particle quality outcomes with fewer
iterations.

2.2 RandomGeometric Graphs (RGGs)

Random geometric graphs (RGGs), first conceptualized by
Gilbert in 1961, play a pivotal role in enhancing the effec-
tiveness of path planning methods [9]. Essentially, an RGG
is a network of points randomly distributed within a spe-
cific subspace of Rd , where edges are drawn between points
within a predefined threshold r > 0, denoted as the connec-
tion radius. The connectivity property of random geometric
graphs, ensuring a highprobability of connections, stands as a
necessary and sufficient condition that the connection radius

r being in direct proportion to (
log n
n )

1
d , where n denotes the

quantity of points dispersed within a unit hypercube [0, 1]d
[31].

Based on the connectivity property, RGGs are integral to
the methodologies of lazy motion planning, which primar-
ily concentrates on diminishing the frequency of collision
detection. Methods such as Lazy-PRM [32] and Generalized
Lazy Search [33] exemplify this by selectively generating an
RGG and examining edges only when they are integral to the
most direct route towards the intended target. The intricacy
of the RGG, in harmony with the operational finesse of the
spanning tree, plays a critical role in drastically lowering the
occurrence of collision checks.

Furthermore, the essence of RGGs is deeply embedded
within sampling-based planning methods, which support the
asymptotically optimal property. Sampling-based planning
methods can, with a probability approaching 1, asymptoti-
cally converge to the optimal solution if one exists, as the
number of samples goes to infinity (i.e., they are almost

surely asymptotically optimal) [10, 34, 35]. TheRGGapplied
sampling-basedmethods are particularly effective in environ-
ments that are highly complex due to high dimensionality or
dynamic changes, such as Fast Marching Tree (FMT*) [36]
and Batch-Informed Trees (BIT*) [37].

3 Preliminary

In this part, we introduce fundamental definitions and con-
cepts of the planning problem [38] as the preliminary.

Definition 1 (Path planning problem) A planning problem is
defined as a triplet (X f ree, xinit , xgoal) [10],which is denoted
as a scenario. LetX = [0, x1]× [0, x2] be the configuration
space, a.k.a. scene, where x1, x2 ∈ R

+ and W ⊂ R
2. Let

Xobs be the obstacle region, which is an open set, and denote
the obstacle-free space as X f ree = cl(X \Xobs), where cl(·)
represents the closure of a set. The initial condition xinit
belongs to X f ree, as does the goal condition that xgoal ∈
X f ree.

Definition 2 (Feasible pathandoptimal path)A feasible path
σ : [0, 1] → R

2 is a sequence of states, where σ(0) = xinit ,
σ(1) = xgoal and σ(r) ∈ X f ree for all r ∈ [0, 1]. An optimal
path σ ∗ : [0, 1] → R

2 is the feasible path satisfying σ ∗ =
argmin{c(σ ) : σ ∈ �}, where � is the set of all feasible
paths and c(·) : � → R≥0 is a chosen cost function. Note
that any path σ that collides with obstacles is referred to as
a non-feasible path.

Figure1 illustrates the UAV path planning results in two
randomly generated scenarios. Obstacles Xobs are visually
represented by purple circles or polygons. The flight path σ

depicts the path from the initial position xinit to the goal
position xgoal , which is illustrated in red. In this paper,
the path is consists of a sequence states, denoted as σ =
[x0, x1, x2, . . . , xn]. The path length is regarded as the cost

function, where c(·) = �n−1
i=0

√
x2i + x2i+1.

4 Methodology

In this section, we elaborate on our proposed PSO-based path
planning algorithm. Section 4.1 presents the methodology of
the framework. The detail of each progress is clarified in
Sects. 4.2 and 4.3, respectively.

4.1 Framework of Methodology

Our PSO-based path planningmethod’s objective is to ensure
timely task completion while securing a path that aligns
closely with the optimal solution. In other words, within
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Fig. 1 Demonstrations of the UAV path planning, where red line represents the path, purple circles and polygons represent the obstacles, and the
green lines represent the connection edge of RGG filtered by RRT [10] and FMT* [36] methods

a predetermined operational timeframe for the method, the
objective is to identify the highest quality solution. To achieve
this objective, we propose a methodology comprising two
enhanced procedures. These procedures are outlined below.

• RGG-based variable-length particle. Path construc-
tion utilizes the random geometric graphs approach, then
transforms the paths into variable-length particles.

• Divide-and-conquer paradigm of PSO-based path
planning. The PSO-based method is employed to gen-
erate the path more efficiency, involving divide-and-
conquer paradigm

Specifically, procedure 1 uses random geometric graphs
to generate path candidates, and then transforms the path
candidates into particles by variable-length particle mech-
anism. This procedure significantly enhances the quality
of the initial particles and reduces the dimensionality of
the search space, thereby increasing search efficiency. The
improvement stems from shifting from list generation to
set generation, where randomly generated solutions are not
required to satisfy a sequential order. Procedure 2 utilizes
the divide-and-conquer paradigm of PSO-based path plan-
ning to generate the path. The original planning problem is
decomposed into the method of optimizing sub-paths, then
the sub-problems are solved separately by PSO algorithm,
and finally the solutions of the sub-problems are combined
into the solution of the original problem. Through the trans-

formation of the sub-problems, the search space is reduced,
which in turn improves the search efficiency.

In the subsequent two subsections, we dive deeper into
each methodology procedure. Detailed explanations of pro-
cedure 1 and 2 are provided in Sects. 4.2 and 4.3, respectively.

4.2 Construction of Particle

This section of work involves two steps: first, path candidates
are obtained by generating random geometric graphs (RGG).
Second, these path candidates are transformed into particles,
utilizing the variable-length particle representation.

Typically, existing methods assume that particles repre-
senting paths are constructed as fixed-length sequences with
randomly generated elements. On one hand, within practical
planning contexts, accurately determining the optimal num-
ber of path’s waypoint beforehand is problematic. This issue
renders the method of predefining a fixed-length vector for
path representation as inflexible and impractical. On the other
hand, ensuring path quality through randomly generated ele-
ments becomes a significant challenge. Moreover, in certain
complex scenarios, the probability of identifying a feasible
solution becomes exceedingly low. Specifically, if a larger
number of particle dimension(waypoints) are selected in sim-
ple scenarios, i.e., scenarios with fewer obstacles, it will lead
to waypoints redundancy, thereby reducing the search effi-
ciency of the algorithm. Conversely, if fewer waypoints are
selected in complex scenarios, itwill lead to insufficient parti-
cle dimensions, thereby reducing the quality of the generated
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Fig. 2 Demonstrations of different particle dimensions solving the same scenario, where red line represents the path, purple circles and polygons
represent the obstacles

path, and may even result in the inability to find a feasible
path. As shown in Fig. 2a displays a high-quality path in this
scenario, while Fig. 2b shows a low-quality path generated
when the particle dimensions are too long, and Fig. 2c shows
a low-quality path generated when the particle dimensions
are insufficient.

To address these issues, we argue that directly generating
each sequence element is inflexible. This method implic-
itly assumes that the randomly generated nodes will fit the

path’s curve precisely, which becomes less possible as the
number of nodes increases. Instead of using a sequence, we
construct a random geometric graph and generate the path
from the graph to ensure path quality. However, a challenge
arises in that it is difficult to forecast the number of key
nodes in the generated path. This unpredictability leads to
variable dimensions in the resulting particles, complicating
subsequent optimization processes. Thus, a variable-length
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Fig. 3 Demonstrations of random geometric graphs [39]

particle representation is proposed, which converts the path
into particles adaptable in dimension.

4.2.1 Generation of Random Geometric Graphs Based Path
Candidates

Random geometric graphs (RGG) consist of randomly dis-
tributed points within a metric space, where edges connect
pairs of points that meet specific criteria, such as distance
thresholds. Figure 3 shows a randomgeometric graph embed-
ded in X = [0, 1]2, with n = 80 vertices and radius ρ = 0.25
[39].

Specifically, the work in this part includes the following
steps:

• Sample N random nodes as candidate waypoints for the
path, making sure they avoid obstacle zones. In this con-
text, N denotes the PSO particle vector’s length.

• In the RGG framework, form edges in the graph using
the randomly generated points combined with the start
and end points. An edge here is defined as a direct line
between any two nodes.

• Utilize Dijkstra algorithm to generate path candidates
from RGG, initializing particles of PSO.

By shifting from creating lists (randomly generated paths)
to sets (RGGs), solutions are free from sequential order con-
straints. Consequently, this enhances the quality of the initial
particles, and thus increases the overall efficiency of the
search.

4.2.2 Designation of Variable-Length Particle

This section primarily focuses on the construction of PSO
particles. Initially, a particle is conceptualized as a set of
fixed-length vectors, with each element of the vector repre-
senting the coordinates of a point. The starting and ending
points are then added to either end of the vector to form
a complete path. To reiterate, the vector length, denoted
as N , indicates the maximum number of nodes in the
path. In this study, the length of the vector corresponds
to the maximum number of nodes the path can hold. In
cases where the actual path length is insufficient to fill
the vector, a method of randomly selecting nodes from the
path and replicating subsequent nodes to fill the vector is
employed. As Fig. 4 shows, consider a vector length of 10.
Suppose the actual path contains only 7 waypoints, denoted
as σ = [x0, x1, . . . , x6]. In this case, 3 additional waypoints,
denoted as x0, x2, x4, are randomly selected from the exist-
ing path. Finally, these selected waypoints are replicated
and sequentially inserted to fill the vector, as the particle
P = [x0, x0, x1, x2, x2, x3, x4, x4, x5, x6]. When interpret-
ing the particle as a path, if a waypoint is identical to its

Fig. 4 Conversion between
paths and particles
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predecessor, it is identified as a filler waypoint and conse-
quently removed from the path.

Specifically, the process of obtaining the particle from the
path is described as Algorithm 1:

Algorithm 1: Path to Particle Converter
Input: path

Output: particle

1 Ndup ←
⌈
N−len(path)
len(path)

⌉

2 Nran ← N − len(path) × Ndup

3 Select Nran nodes from path randomly, denoted as Nodes

4 foreach node ∈ path do

5 if node ∈ Nodes then

6 for i ← 0 to Ndup do

7 particle.append(node)

8 else

9 for i ← 0 to Ndup − 1 do

10 particle.append(node)

As Fig. 4 shows, the transformation procedure of path to
particle is illustrated in detail. Algo.1 transforms a path
into a particle. Here, a systematic approach is employed,
involving calculated duplication of elements from the origi-
nal path. The pseudo-code outlines the specific logic behind
this transformation, detailing howelements from thepath are
selected, duplicated, and assembled into the particle vector,
thereby achieving the required size with an optimal and effi-
cient methodology.

The designation of Algorithm 1 is instrumental in ensur-
ing that the generated particles uniformly gravitate towards
various nodes of both the personal best (pbest) and the global
best (gbest) during the iterative process. In PSO, the ability
to explore the vicinity of pbest and gbest is essential for find-
ing optimal solutions. Each particle’s movement, influenced
by both its own experience (pbest) and the collective experi-
ence of the swarm (gbest), is crucial in navigating the search
space. The proposed algorithm ensures that the exploration
is not biased towards any specific region, but rather covers
the search space more uniformly. As a result, through suc-
cessive iterations, the algorithm can more effectively probe
different areas, enhancing the likelihood of identifying the
most optimal solutions within the search space.

Algorithm 2 illustrates the reverse process, transforming
a particle into a path. Since the particle is a vector of fixed
length, the path is obtained by removing the duplicate ele-
ments from the particle. Specifically, for each element in the
particle array (referred to by index i), the algorithm checks if
the current element (particle[i]) is equal to the previous ele-

ment (particle[i-1]). Finally, a path that consists of elements
from the particle where consecutive duplicate elements are
removed. Essentially, it creates a version of particle with no
immediate repetitions.

Algorithm 2: Particle to Path Converter
Input: particle

Output: path

1 path.append(particle[0])

2 for i ← 1 to len(particle) − 1 do

3 if particle[i] �= particle[i − 1] then

4 path.append(particle[i])

4.3 Divide-and-Conquer Paradigm of PSO-Based
Path Planning

This part first introduces the basic optimization process of
PSO for path planning problems. Based on the introduced
optimization process, the involvement of the divide-and-
conquer paradigm is elucidated.

4.3.1 PSO Process

PSO is a computational method used to optimize a problem
by iteratively trying to improve a candidate solution with
regard to a given measure of quality. First, the definition of
PSO is introduced as follows.

• Particle: Denoted as Pi , where i is the index of the par-
ticle. In this paper, a particle is represented as a vector,
which is encoded as a path, as Fig. 4 shown.

• Position: The position of each particle in the search
space, represented by a vector xi , where i is the index
of the particle. The element of vector xi is a waypoint
in the path, denoted as xij with the element index j .

As the example shown in Sect. 4.2.2, Particle Pi is a
vector of fixed-length N , where each element of the vec-
tor represents the coordinates of a waypoint, denoted as
Pi = [xi0, xi1, . . . , xiN ].

• Velocity: The movement velocity of particle Pi , repre-
sented by a vector vi .

• Personal Best: The best position that the particle Pi has
found in its history, denoted as p∗i .

• Global Best: The best position found by any particle in
the swarm, represented as g∗.

Secondly, Here’s an overview of the process, including the
update rules, objective function, and termination condition.
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• Update Rules:

xi,t+1 = xi,t + v(i,t)

vi,t+1 = wvi,t + c1r1
(
p∗i − xi,t

)

+ c2r2
(
g∗ − xi,t

) (1)

Here, i is the index of the particle, t represents the itera-
tion index, w is the inertia weight, c1 and c2 are learning
factors, and r1 and r2 are random numbers.

• Objective Function: A function used to evaluate the
goodness of a particle’s position, generally expressed as
c(x). In this paper, the path distance is used as the objec-
tive function, introduced in Sect. 3.

• Termination Condition: The condition for ending the
algorithm, which could be reaching a maximum num-
ber of iterations, finding a satisfactory solution, or other
criteria.

4.3.2 Designation of Divide-and-Conquer Paradigm

From the view of divide-and-conquer paradigm, the PSO
process can be divided into two parts, divide and conquer.

Divide The divide part is to divide the original path into two
sub-paths, and then optimize the two sub-paths, respectively.
Based on the previous introduced PSO process in Sect. 4.3,
each sub-path is represented as a particle and optimized. The
divide process is illustrated in the following pseudo-code.

Algorithm 3: Divide path into two optimized sub-paths
Input: path

Output: path1, path2

1 idx ← �len(path)/2�
2 path1, path2 ← path[0 : idx+ 1], path[idx :]

3 path1, path2 ← PSO(path1),PSO(path2)

4 return path1, path2

Note that, function PSO in line. 3 of the Algorithm 3 is
the process introduced in Sect. 4.3, including the RGG-based
candidates generation introduced in Sect. 4.2.

Conquer
In this part, the optimization results of the two sub-paths

aremerged. It is necessary to consider whether the waypoints
of the two sub-paths can skip the selected intermediate way-
point to build a better path, andfinally stitch the two sub-paths
together. Algorithm 4 is the pseudo-code of the conquer part.
Note that, c(path) is the objective function, which is the path
distance introduced in Sect. 4.3.1.

Algorithm 4: Conquer algorithm for combining paths
Input: path1, path2

Output: path

1 path∗ ← []

2 len∗ ← ∞
3 for each node1 in path1 do

4 for each node2 in path2 do

5 if node1 to node2 is feasible then

6 path ← path1[0 : node1] + path2[node2 :]

7 if c(path) < len∗ then

8 path∗ ← path

9 len∗ ← c(path)

10 return path∗

Algorithm 4 aims to merge two paths, path1 and path2
optimally. It iterates through each node of path1 and path2,
constructing new paths by combining segments of these two
paths at feasible transition points. For each new path created,
it evaluates its cost and records the path with the lowest cost.
The algorithm continues until all node combinations have
been evaluated. Finally, the merge part returns path∗, the
path of the lowest cost among the combinations.

5 Experiments Setting

This section reports on our experiments to assess our pro-
posed method’s effectiveness. Section 5.1 introduces the
Research Questions, and the setup of the experiment follows
in Sect. 5.2.

5.1 Research Questions

RQ1 What is the performance of the proposed RGG-PSO+
method compared to PSO, GA and DE?

RQ2 How does the RGG-based variable-length particle
compare with the baseline of a randomly generated
path?

RQ3 What is the effectiveness of divide-and-conquer
Paradigm in the proposed RGG-PSO+ method?

In RQ1, we aim at evaluating the effectiveness of RGG-
PSO+, which will be answered in Sect. 6.1. We select 1000
stochastic scenarios with various obstacle distributions to
evaluate the performance of the proposed RGG-PSO+ and
other candidates, including PSO [40], SPSO [21], GA [40]
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and DE [41]. For each scenario, 10 times plannings are exe-
cuted to obtain the statistical data, including the average and
standard deviation values. Detailed settings of the scenario,
parameters and evaluationmetrics are introduced in Sect. 5.2.

In RQ2, we aim at evaluating the effectiveness of RGG-
based variable-length particle, which will be answered in
Sect. 6.2. The performance of RGG-based variable-length
particle is compared with the baseline of pure randomly gen-
erated path. Here, F-Measure is used to indicate the first
feasible path generated by RGG and pure random. These
two metrics are used to indicate how effectiveness of RGG-
based variable-length improvement, which are introduced in
Sect. 5.2. Detailedly, the forementioned 1000 stochastic sce-
narios are selected as the testing cases and 10 times plannings
are executed for each scenario. The average F-Measure val-
ues are collected.

In RQ3, we aim at evaluating the effectiveness of divide-
and-conquer Paradigm, which will be answered in Sect. 6.3.
The performance of RGG-PSO+ and RGG-PSO are com-
pared. Here, RGG-PSO+ is the proposed method involving
RGG-based variable-length particle and divide-and-conquer
Paradigm. RGG-PSO is the RGG-based variable-length par-
ticle method without divide-and-conquer Paradigm. The
forementioned 1000 stochastic scenarios are selected and 10
times plannings are executed for each. Same as RQ1, the
average and standard deviation values are collected.

5.2 Experimental Setup

5.2.1 Scenarios

Tovalidate the effectiveness and efficiency of theRGG-based
particle and divide-and-conquer paradigm for PSO-based
path planning, we perform simulations in 1000 stochastic
scenarios with various obstacle distributions. The range of all
scenarios is set to 100 × 100 with 5–15 obstacles randomly
distributed in different sizes. For each obstacle setting, we
randomly generate 100 test scenarios. For each scenario, we
execute the planning process 10 times to obtain the statisti-
cal data, including the average and standard deviation values.
Worth mentioning, there always exists a feasible path and an
optimal one for any scenario. Besides, we avoid invalid sce-
narios that the optimal path is the segment connecting the
start and the goal.

5.2.2 Parameter Settings

Our experiment selectsRGG-PSO+,RGG-PSO,PSO,SPSO,
GA, and DE, as the testing candidates to compare the perfor-
mance of the preprocessor. Here, RGG-PSO+ andRGG-PSO
are the proposed methods in this paper, and the other 4 meth-
ods are the benchmark methods.

For comparisons, all PSO variants are implemented with
the same set of parameters: w = 1 with the damping rate of
0.98, η1 = 1.5 and η2 = 1.5. The swarm size is chosen to be
100 particles and the number of iterations is 200. The number
of waypoints are selected as N = 20, corresponding 21 line
segments.1 As for PSO, SPSO, GA, and DE, the setting of
parameters are the same as the original paper [21, 40, 41].

5.2.3 Evaluation Metrics

Normalized Path Length In different scenarios, the distance
of each optimal path varies from another, so we normalized
the distance in each scenario for comparison. Specifically,
we use the min-max normalization to normalize the length
of each path, i.e.,

zi = xi − min(x)

max(x) − min(x)
, (2)

where x = (x1, ..., xn) represents distances of all paths
obtained in a scenario from 10 times execution and zi is
the ith normalized distance. For each scenario, we take the
distance of the shortest path as min(x), and the longest path
as max(x) in normalization.

F-Measure F-Measure, denoted as M f , indicates, at each
setting of scenario, the number of iterations executed before
the first feasible particle obtained. In otherwords,F-Measure
indicate the first feasible path, which navigates from the ini-
tiation to the destination without any collision. In this paper,
we record the average and variance, including the iteration
number of the first feasible particle obtained and the normal-
ized path length of the first feasible particle.

6 Analysis

6.1 RQ1

In this section, we compile statistics on the average nor-
malized path lengths for RGG-PSO+, SPSO, PSO, GA, and
DE. For each candidates, we use the same 20 waypoints and
100 population as the settings. As for the individual param-
eters involved in each algorithm, adjustments are made in
accordance with the configurations detailed in the respective
research papers (see Sect. 5.1). The results are visually rep-
resented in a Fig. 5 for comparison, which shows the best
result over iterations where the values obtained from each
methods. The figure features the number of iterations on the
horizontal axis and the relative lengths on the vertical axis.

1 A total number of node is 22, including 20 waypoints, start and target
position. Therefore, there are 21 line segments connected sequentially
from the start to the target.
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Fig. 5 Best normalized path
distance over iterations of
RGG-PSO+ and other
evolutional methods

Essentially, the path produced by a generated particle is con-
firmed to be within the [0, 1] range only in the final output
results.

Worth mentioning, the calculation of normalized path
length involves the use of min(·) and max(·) functions,
derived from 10 times execution of the candidate methods’
results. In other words, min(·) and max(·) record the final
output of the algorithm (the global best particle g∗), not the
optimal solution (p∗i ) for each particle p at each stage i .
Although g∗i ismonotonically decreasing and gradually con-
verges to g∗, there is no guarantee that g∗i is smaller than
max(·). It is possible that zi is greater than 1. Besides, a
fixed penalty value is assigned to the normalized path length
when the iteration number is 0, due to the initialization phase
of the methods where the absolute path lengths are infinite.
Accordingly, a penalty value of 5 is set for the normalized
path length.

Figure 5 reveals that RGG-PSO+ significantly outper-
forms other methods in terms of convergence speed, which is
largely attributed to theRGGmethod’s effective optimization
of initial particles (see Sect. 6.2). Furthermore, RGG-PSO+
excels commendable results in path optimization quality.
Although SPSO yields a better optimal solutionwith a higher
iteration count compared to RGG-PSO+, integrating RGG
and divide-and-conquer strategies with the fundamental PSO
method shows promise for further enhancements. However,
the challenge lies in integrating these strategies with SPSO’s
spherical vector-based particles, as the direct application of
the RGG method is not feasible. This issue remains an open
question.

6.2 RQ2

In this part, we aim to indicate the F-Measure and normal-
ized path length of the first feasible path generated by RGG
improvement and baseline PSO, denoted as RGG-PSO and
PSO, respectively. Here, the calculation of normalized path
length requires min(·) and max(·), which are obtained from
10 times execution of RGG-PSO and PSO. Note that, since
we compare the path distance encoded by the particle, which
is the candidates of the final result, the normalized length
may bigger than 1. In this case, the path of generated particle
is longer than the worst result of executions.

For both candidates, we use the same parameter settings,
and the length of the particle is set to 20, which indicates
the particle have 20 waypoints. From Table 1, we can see
that the RGG-PSO improves both the mean and variance of
the F-Measure, and the quality of the generated trajectories is
significantly improved, as well as the length. Specifically, the
mean of F-Measure is improved from 13.984 to 4.139, and
the variance is improved from 48.365 to 24.140. As for the
quality of the particle, the mean of normalized path length is
improved from 3.210 to 0.593, and the variance is improved
from 1.555 to 0.074. The improvement indicates that RGG
can generate better particles, which obviously speeds up the
convergence of the path planningmethod, and can focusmore
computation from the exploring process to the exploiting pro-
cess. Thus, better results can be obtained in the same number
of iterations.
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Table 1 F-Measure comparison F-Measure Normalized path length

Method Mean Var Mean Var

RGG-PSO 4.139 24.140 0.593 0.074

PSO 13.984 48.365 3.210 1.555

Table 2 Divide-and-conquer paradigm comparison

Normalized path length

Method Mean Var

PSO-RGG+ 0.248 0.086

PSO-RGG 0.307 0.089

PSO 0.872 0.781

6.3 RQ3

In this part, we test the divide-and-conquer paradigm to
demonstrate its effectiveness in the proposed method. We
select RGG-PSO+, RGG-PSO and PSO as test candidates,
here RGG-PSO+ is the proposed RGG method with divide-
and-conquer paradigm, and RGG-PSO is the proposed RGG
method without divide-and-conquer paradigm. The setting
of parameters are the same as Sect. 5.2. The same 1000 sce-
narios are selected and 10 times plannings are executed for
each scenario. The number of waypoints encoded by parti-
cles is still N = 20. Worth mentioning, since RGG-PSO+
involves multiple PSO evolution process, we fix themax iter-
ation number to 200 and compare the result of RGG-PSO+
with the result of RGG-PSO and PSO, which are obtained in
the max iteration number. Note that, for RGG-PSO+, we set
the iteration number of PSO evaluation for sub-paths to 100.

From Table 2, we can see that the mean and variance of
the normalized path length of RGG-PSO+ and RGG-PSO
are significantly better than the PSO method. Furthermore,
divide and conquer paradigm resulted in a further improve-
ment in the path quality and a slight decrease in the variance
of the RGG-PSO+ results. Specifically, the path length mean
and variance of RGG-PSO+ are reduced by 0.059 and 0.003,
respectively. The experimental result indicates that the strat-
egy is able to improve the path quality with the same number
of iterations.

7 Conclusion

In summary, this paper introduces the RGG-PSO+ method
for UAV path planning, which integrates random geometric
graphs (RGG) with particle swarm optimization (PSO) and
incorporates a divide-and-conquer paradigm. RGG-PSO+
dynamically adjusts the number of waypoints in response

to the complexity of the scenario, enhancing the method’s
efficiency and quality of the generated paths. The effi-
cacy of RGG-PSO+ is demonstrated through comparative
analysis with other heuristic methods in various complex
scenarios. The integration of RGG substantially improves
the F-Measure, yielding higher quality initial particles and
reflecting a shift in focus from exploration to exploita-
tion. The divide-and-conquer paradigm further elevates the
method’s effectiveness, as shown by the improved mean
and variance in normalized path lengths. In the future, the
research plans to explore the integration of RGG with the
spherical vector-based particle method (SPSO). The inte-
gration combines the strengths of RGG’s efficient waypoint
adjustment andSPSO’s advanced evolution capability, poten-
tially leading to more effective and efficient UAV path
planning methods.
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