
Vol.:(0123456789)

SN Computer Science (2023) 4:486
https://doi.org/10.1007/s42979-023-01919-6

SN Computer Science

ORIGINAL RESEARCH

Characterizing a Time–Memory Tradeoff Against PudgyTurtle

David A. August1 · Anne C. Smith2

Received: 19 February 2022 / Accepted: 14 May 2023
© The Author(s) 2023

Abstract
PudgyTurtle is not a cipher, but rather an alternative way to utilize the keystream in binary-additive stream-cipher crypto-
systems. Instead of modulo-2 adding the keystream to the plaintext, PudgyTurtle uses the keystream to encode 4-bit groups
of plaintext, and then to encipher each codeword. One goal of PudgyTurtle is to make time–memory tradeoff attacks more
difficult. Here, we investigate one such attack (a modification of the well-known Babbage–Golić method), and show that
its time-complexity is harder on average than an analogous tradeoff attack against a standard binary-additive stream cipher;
may approach that of a ’brute-force’ attack; can be reduced by certain parameter choices; and can be formulated in terms of
a probability distribution which is amenable to simulation.

Keywords Symmetric encryption · Stream cipher · Time–memory tradeoff · Coding theory

Introduction

PudgyTurtle uses keystream to encode, as well as to enci-
pher, the plaintext. It is not properly a cipher, but rather
a technique that can be incorporated into binary-additive
stream cipher systems [2]. Previous work suggested that
time–memory attacks against PudgyTurtle were difficult [3,
4], but this conclusion was based on relatively few attacks
using a limited range of parameters. Here, we explore one
time–memory tradeoff attack in much greater detail, and
show how its cryptanalytic cost depends upon various
parameters. Our main result is that, while a time–memory
tradeoff attack against PudgyTurtle can be more efficient
than brute-force, it is typically harder than a ’standard’ time-
memory attack against a non-PudgyTurtle system with the
same inner state size.

First, we provide general overviews of PudgyTurtle
and time–memory–data tradeoff attacks (“Notation” and
“PudgyTurtle: A Review”). Next, we explain in detail one
such attack against PudgyTurtle (“Tradeoff Attacks”), review

a measure for its time-complexity, (“Modified Babbage–Golić
Attack”), explore how this quantity varies with several different
parameters (“Complexity of the Modified BG-Attack”); and
show its dependence upon an underlying probability distribu-
tion (“Empirical Results”). Finally, we discuss PudgyTurtle
in the context of lightweight stream-ciphers (“Lightweight
Ciphers”).

Notation

Hexadecimal values are prefixed by 0x and binary val-
ues subscripted by 2 (e.g., 254 can be written 0xFE or
111111102). X stands for plaintext, Y for ciphertext, and
K for keystream, and all elements of these sequences are
1-indexed. PudgyTurtle operates on 4-bit groups (’nibbles’)
rather than single bits. Subscripted upper case letters denote
groups of bits (e.g., Ki , Xi , and Yi denote a keystream nib-
ble, a plaintext nibble, and a ciphertext byte). Subscripted
lowercase letters denote bits (e.g., the keystream K can
be written K1 , K2 , K3,… , where Ki = (k4i−3 ‖k4i−2 ‖k4i−1
‖k4i) ∈ {0, 1}4 , ki ∈ {0, 1} , and ’ ‖ ’ denotes concatenation.
The length of binary sequence Z is |Z| (bits) or NZ = |Z|∕4
(nibbles). Quantities known to the attacker are decorated
with primes or double-primes. For example, X� ∈ X is the
known plaintext, and Y � ∈ Y is the encrypted known plain-
text. This notation of convenience maintains the correspond-
ence between indices (i.e., X�

1
,X�

2
,X�

3
,… ↔ Y �

1
, Y �

2
, Y �

3
 , etc.)

 * David A. August
 daugust@mgh.harvard.edu

 Anne C. Smith
 asmith3142@protonmail.com

1 MGH-DACCPM/GRJ 444, 55 Fruit St., 02114 Boston, MA,
USA

2 Boston, MA 02114, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01919-6&domain=pdf
http://orcid.org/0000-0003-2732-5983

 SN Computer Science (2023) 4:486 486 Page 2 of 25

SN Computer Science

without having to include the positional offsets of X′ within
X and Y ′ within Y.

PudgyTurtle: A Review

This section provides a short overview of PudgyTurtle’s
encryption and decryption process, its ciphertext expan-
sion, and its keystream consumption. Readers already
familiar with this material may wish to skip to Sect. 3.

PudgyTurtle is a cipher-agnostic method that can be
used alongside a binary-additive stream cipher. In essence,
a keystream-dependent plaintext encoding step is included
before the usual XOR-based enciphering step. PudgyTurtle
encryption and decryption are

Keystream

The keystream used by PudgyTurtle can be from any
finite-state machine ’black-box’ keystream generator
(KSG). This KSG operates on an n = log2(N)-bit state,
which behaves as follows on the ith iteration:

where Si ∈ {0, 1}n and Si+1 ∈ {0, 1}n are the current and next
states; � ∶ {0, 1}n → {0, 1}n is the state-update function;
z ∶ {0, 1}n → {0, 1} is the output function; and ki ∈ {0, 1}
is the output bit. Since z and � are known to all, the sender
and receiver must initialize the KSG to state S0 with a secret
key and also possibly an initial value (IV, such as a nonce or
counter). After initialization, a warm-up phase (i.e., updat-
ing the KSG a number of times but ignoring the output)
may also be used to mix S0 into the state. In this manu-
script, however, the notation KSG[S] refers specifically to
the ’immediate’ sequence of bits k1, k2, k3,… generated from
state S—ignoring warm-up. Thus, PudgyTurtle encryption
in (1) can also be written as Y = P(X, KSG[S0]).

Encryption

To encrypt plaintext nibble Xi with keystream starting at
nibble Kj :

1. Set position marker t(i − 1) to j − 1;

(1)
Y = P(X,K)

X = P
−1(Y ,K).

Si+1 = �(Si)

ki = z(�(Si)),

2. Create a mask from the first two available keystream
nibbles: M = (Kj‖Kj+1);

3. Generate new keystream nibbles (starting with Kj+2)
until either

(a) some keystream nibble, denoted Kt(i) , matches Xi
exactly or differs from it by a single bit. If this
happens, proceed to Step 4.

 or...
(b) 32 keystream nibbles have been generated without

a match as described in 3(a). If this overflow event
happens,

• Output the byte ����⊕M to mark the event;
• Let j ← j + 34;
• Return to Step 1;

4. Encode the plaintext-to-keystream match:

• Calculate the failure counter, F, which represents
the number of times (modulo 32) that Xi failed to
match a keystream nibble: F = t(i) − t(i − 1) − 3 .
Note that F is limited to the range {0, 1, 2,… , 31}.

 If there are no overflows (the usual case),
then Kt(i) = Kj+2+F . For instance, starting with
i = j = 1, and assuming that X1 matches the
very first keystream nibble after the mask
(i.e., K3), then the failure counter is zero:
F = t(1) − t(0) − 3 = 3 − 0 − 3 = 0 . If instead X1
had matched K4 , then F would be 1; and so on. If an
overflow occurs (e.g., if X1 did not match the key-
stream until K40), then F would be 40 − 34 − 3 = 3.

• Define the discrepancy code

D encodes the similarity between Xi and Kt(i) onto the
set {0, 1, 2, 3, 4} (i.e., 0 for an exact match, and 1–4
for a 1-bit mismatch, with the rightmost/low-order
bit defined as position #1).

• Form an 8-bit codeword, C = (F‖D) , where F is
represented as a 5-bit number and D as a 3-bit
number (e.g., if F = 3 and D = 4 , then C would be
000112 ‖ 1002 = 000111002 = 0x1C);

5. Encipher this codeword by XOR’ing it with the mask to
produce a ciphertext byte Y = C⊕M;

6. Output Y.

Table 1 illustrates how the PudgyTurtle process trans-
forms the short (2-nibble) plaintext 0xAB into ciphertext
0x0516, using keystream 0, 1, 2, 3, 4, 5, 6,

D =

{
0, ifX

i
= K

t(i)

1 + log2(Xi
⊕ K

t(i)), ifXi
≠ K

t(i);

SN Computer Science (2023) 4:486 Page 3 of 25 486

SN Computer Science

7, 8, 9. Notice that the ciphertext is twice as long as
the original plaintext and that about five keystream nib-
bles are consumed per plaintext nibble. These ’expansion’
effects are detailed in "Expansion and Lengths".

Table 2 illustrates overflow events in detail, assuming that
X1 has already been encrypted (using K1 through K4) and
X2 is now being encrypted starting at K5 . Each section of
the table shows how a failure counter of F = 2 would look
assuming a different number of overflow events (0, 1, or 2).
In the usual situation (no overflows, top), the plaintext-to-
keystream match occurs at K9 ; with one overflow, the match
would occur at K43 ; and with two overflows, at K77.

Decryption

Each ciphertext symbol Y = Y1, Y2, ... represents an 8-bit
byte – not a 4-bit nibble. To decrypt Yi with keystream start-
ing at nibble Kj :

1. Create a mask M = (Kj‖Kj+1);
2. Decipher (unmask) Yi to reveal the underlying codeword

C = Yi ⊕M;
3. Decode C as follows:

(a) If C = 0xFF, then an overflow occurred during
the original encoding:

• Generate and discard 32 keystream nibbles;
• Let j ← j + 34;
• Let i ← i + 1;
• Return to Step 1.

(b) If C ≠ ���� , then

• Extract the failure counter from the codeword’s
five high-order bits (F = (C⊗ ����) ≫ 3) and
the discrepancy code from its three low-order bits
(D = C⊗ ����), where ⊗ is a bit-wise ’AND’ and
≫ is the right-shift operator.

• Generate F + 1 new keystream nibbles. The last
of these, Kt(i) , is the one that matched the plaintext
nibble to within a bit;

• Recover the plaintext nibble from Kt(i) by inverting
D

X =

{
Kt(i) ifD = 0;

Kt(i) ⊕ 2D−1 ifD ≠ 0.

Table 1 PudgyTurtle encryption

Plaintext X = 0xAB is transformed into ciphertext 0x0516 under keystream K = {���, ���, ���, ���, ���,
0x5, 0x6, 0x7, 0x8, 0x9}

PLAINTEXT X = X1,X2 = 0xA, 0xB
KEYSTREAM K = K1,K2,K3,… ,K10 = 0,1,2,3,4,5,6,7,8,9
ENCRYPT X1 = ���

Make mask M = K1‖K2 = 0x01
Find match K3 = 0x2 = 00102 matches 0xA = 10102 to within a bit
Failure counter No failures before K3

F = t(1) − t(0) − 3 = 3 − 0 − 3 = 000002

Discrepancy-code D = 1 + log2(X1 ⊕ K3)

= 1 + log2(���⊕ ���)

= 1 + log2(10002) = 4 = 1002

Encode X1 Codeword C = F‖D = 000002‖ 1002

= 000001002 = 0x04
Encipher Y1 = C⊕M = 0x04 ⊕ 0x01 = 0x05
ENCRYPT X2 = ���

Make mask M = K4‖K5 = 0x34
Find match K6 = 0x5 = 01012 fails to match 0xB = 10112 to within a bit.

K7 = 0x6 = 01102 fails to match.
K8 = 0x7 = 01112 fails to match.
K9 = 0x8 = 10002 fails to match.
K10 = 0x9 = 10012 matches

Failure counter Four failures before K10

F = t(2) − t(1) − 3 = 10 − 3 − 3 = 4 = 001002

Discrepancy-code D = 1 + log2(X2 ⊕ K10)

= 1 + log2(00102) = 2 = 0102

Encode X2 Codeword C = F‖D = 001002‖ 0102 = 0x22
Encipher Y2 = C⊕M = 0x22 ⊕ 0x34 = 0x16
OUTPUT Y = Y1,Y2 = 0x0516

 SN Computer Science (2023) 4:486 486 Page 4 of 25

SN Computer Science

4. Output plaintext nibble X

Expansion and Lengths

The keystream-dependent ’matching’ process described in
Sect. 2.2 adds an element of unpredictability to PudgyTur-
tle. Unlike randomized encryption schemes [42], however,
this unpredictability depends only upon the secret key: a
message encrypted twice with the same key will produce
the same ciphertext both times, but the exact ciphertext
length can only be guessed on average (before encryp-
tion)—not known with certainty.

Specifically, the failure counter behaves like a geometri-
cally distributed random variable, representing one ’suc-
cess’ (i.e., a plaintext-to-keystream match) following zero
or more ’failures’ (i.e., unsuccessful matching attempts)

In PudgyTurtle, f is limited to the set {0, 1, 2, … , 31}, so that
a 5-bit representation of F can be uniquely decoded. Prob-
ability p = 5/16 reflects the five possible ways in which two
nibbles can ‘match’—either they are exactly equal or one of
the four 1-bit mismatches.

Pr{F = f } = (1 − p)f p.

Whenever a successful match requires > 32 keystream
nibbles (an overflow event), an extra byte is inserted into
Y as a marker. The probability of such events is

suggesting that one overflow occurs ≈ every 80,583 cipher-
text bytes (644,664 ciphertext bits).

A standard binary-additive stream cipher system produces
ciphertext Y by bit-wise addition of plaintext X to keystream
K, so that |Y| = |K| = |X| . For PudgyTurtle, these sequences
do not all have the same length:

• Overflows mean that the exact ciphertext length is not
known until after encryption. However, because over-
flows are uncommon, |Y| ≈ 2|X|.

• The keystream-dependent encoding process means that
the exact amount of keystream required is not known
until after encryption. Since the geometric distribu-
tion’s mean value is 1∕p = (5∕16)−1 , approximately 3.2
keystream nibbles will be needed for each successful
plaintext-to-keystream match. PudgyTurtle’s encryption
process also consumes two more keystream nibbles for
each mask. Thus, on average, 1/p + 2 = 5.2 keystream

Pr{F > 31} = 1 −

31∑

f=0

(1 − p)f p ≈ 6.0248 × 10−6,

Table 2 Overflow events

F = 2; no overflows

0 1 2 ⇐ Failure-counter
1 2 3 4 5 6 7 8 9 ⇐ Index of each keystream nibble

↑ ⇐ t(1)

F = 2; one overflow

0 1 ... 30 31 0 1 2

1 2 3 4 5 6 7 8 ... 37 38 39 40 41 42 43

↑

F = 2; two overflows

0 1 ... 30 31 0 1 ... 30 31 0 1 2

1 2 3 4 5 6 7 8 ... 37 38 39 40 41 42 ... 71 72 73 74 75 76 77

↑

Three examples of how the same failure counter (F = 2) could occur with different numbers of overflow events, assuming that the second plain-
text nibble is being encrypted under keystream K5,K6,K7,… (i.e., X1 already consumed K1 through K4). Each section above has three rows,
showing (respectively) the failure counter; the index of each keystream nibble; and an arrow under the position marker, t(1). Circled indexes
are nibbles used in masks. TOP: with no overflows, the plaintext nibble matches K9 , which occurs two failures beyond mask (K5‖K6). Thus,
the F = t(2) − t(1) − 3 = 9 − 4 − 3 = 2. MIDDLE: with one overflow event, F reaches 31 and re-sets back to zero at K41 after a new mask
(K39‖K40); and F = 43 − 38 − 3 = 2. BOTTOM: with two overflows, F re-sets back to zero twice: once at K41 and again at K75 , which means that
F = 77 − 72 − 3 = 2. The actual number of failures before the plaintext-to-keystream match could be 2, 34, or 66, all of which equal 2 (modulo
32)

SN Computer Science (2023) 4:486 Page 5 of 25 486

SN Computer Science

nibbles are needed to encode and encrypt each plaintext
nibble, and |K| ≈ 5.2|X|.

These values are termed the ciphertext expansion fac-
tor (CEF) and keystream expansion factor (KEF). The
PudgyTurtle configuration discussed in this manuscript uses
4-bit plaintext symbols (nibbles), 8-bit codewords, 5-bit fail-
ure counters, and 3-bit discrepancy codes, which means that
CEF ≈ 2 and KEF ≈ 5.2. Note, however, that PudgyTurtle
can also be implemented with the other lengths for the code-
word, failure counter, etc. in which case CEF and KEF may
also differ [4].

Tradeoff Attacks

This section describes the cryptanalytic technique of
time–memory–data tradeoff (TMDT) attacks. This method
is a powerful, generic tool which does not depend upon sys-
tem-specific design flaws or weaknesses (e.g., unintended
algebraic structure, statistical correlations among keystream
bits, inadequate mixing of the secret key into the KSG-state,
etc.). TMDT attacks assume that the cryptanalyst has the
ciphertext Y, known plaintext X′ of size |X′| ≤ |X| ; and the
KSG algorithm (functions � and z).

TMDT attacks offer a compromise between two naive
cryptanalytic strategies: the ’time extreme’ and the ’mem-
ory extreme’. The former involves decrypting the cipher-
text under every possible secret key and checking whether
the result matches the known plaintext. This requires O(N)
time but little memory. The latter involves encrypting the
known plaintext under every possible key in advance, stor-
ing this information in a large table, and then finding the
secret key by searching the table for something that matches
a sub-string of the intercepted ciphertext. This requires O(N)
memory but little time. TMDT attacks forge a middle-
ground: they use more memory than the time-extreme and
take longer than the memory-extreme, but their combined
time–memory resource requirements can still be ≪ O(N).

The BG‑Attack

Although the first cryptanalytic time–memory tradeoff pro-
posed by Hellman targeted block-ciphers [29], these ideas
were adapted for use against stream-ciphers as well. Early
research by Babbage [5] and Golić [24] led to what has
become known as the ’BG-attack’. This attack is conducted
in two phases:

1. During the precomputation phase, an M × 2 table is
constructed,1 each row of which contains a unique, ran-
domly chosen n-bit KSG-state S paired with its prefix
P. In this context, ’prefix’ means the first n bits of key-
stream generated when the KSG starts from state S.

2. During real-time phase, a ’testing’ keystream X′ ⊕ Y ′
is constructed, and successive n-bit fragments of this
keystream are searched for among prefixes in the table.
If a matching prefix, Ph is discovered (a hit), then its
paired KSG-state, Sh , likely occurred during encryption.
This hypothesis can be checked via a test-decryption
(i.e., using keystream KSG[Sh] to decrypt a segment of
Y ′). If the test-decryption correctly reproduces the cor-
responding segment of X′ , then the attack succeeds and
the remaining message can be read; if not, a false alarm
has occurred, and the attack continues with the next n-
bit fragment of testing keystream. Typically, false alarms
are rare in the BG-attack.

An important but subtle point is that the word ’keystream’ in
the description above actually has three different meanings:

• The ’actual keystream’ obtained from the initial state, KA
= KSG[S0], which the sender uses to encrypt the plain-
text;

• The ’testing keystream’ obtained by XOR’ing the known
plaintext to its corresponding ciphertext, KT = X′ ⊕ Y ′ ,
which the attacker uses as a source of n-bit targets to
search for within the table;

• The ’regenerated keystream’ obtained by initializing the
KSG to the state discovered by the hit, KR = KSG[Sh],
which the attacker uses for the test-decryption.

For a standard BG-attack against a binary-additive
stream cipher, these three keystreams are equivalent:
KT = KR = KA , at least starting from some bit-offset. For
PudgyTurtle, as we shall see, this is not the case.

TMDT attacks against various stream-ciphers like A5/1,
GSM, and LILI-128 and others have been proposed [15,
30, 35, 41, 43]. Many researchers have also refined and
improved the original BG-attack. For example, Oeschlin
suggested multiple reduction-functions within a single ’rain-
bow table’ [40]; Dunkelman and Keller incorporated the IV
into a tradeoff framework [21]; Wagner and others have dis-
cussed using distinguished points [11]; and Biryukov and
Shamir proposed using multiple tables so as to better lever-
age available data [10].

In previous work, versions of both the BG- and Biryu-
kov–Shamir (BS) attacks were adapted for use against
PudgyTurtle. We refer to these as the mBG (modified BG)
and mBS (modified BS) attacks. While both modified
attacks were less efficient than their original counterparts, 1 Since this table is constructed offline in advance, the time required

for this task is not typically factored into the cost of the BG-attack.

 SN Computer Science (2023) 4:486 486 Page 6 of 25

SN Computer Science

the mBG-attack was faster than the mBS-attack [3]. This
was somewhat surprising, since the original BS-attack may
be considered an improvement on the original BG-attack.
However, several reasons for this observation were pro-
posed (e.g., the need for multiple Hamming-chains, and the
relative lack of advantage of binary-search algorithms vs.
a simple row-by-row search). Because it was shown to be
the better choice, this manuscript focuses exclusively on the
mBG-attack.

Modified Babbage–Golić Attack

The modified BG-attack is a tradeoff-based state-recovery
attack whose goal is to find a KSG-state S′′ , such that X′′
= P−1(Y ��, KSG[S��]) for some subset of known plaintext
X�� ∈ X� and its corresponding ciphertext Y �� ∈ Y � . The
remainder of the original message (X∗) extending beyond
X′′ can also be read. Relationships among these different
segments of text are diagrammed in Fig. 1.

The mBG-attack differs in several important respects
from its counterpart, the ’traditional’ BG-attack:

• The testing keystream (KT) in the mBG-attack, from
which n-bit search-targets are obtained, is not simply
X′ ⊕ Y ′ , but rather one of potentially many hypothesized
keystreams. These ’tentative keystreams’ are constructed
via a guess-and-determine procedure. Each one is con-
sistent with available information (i.e., it encrypts X′ into
Y ′), but may not be correct (i.e., it may not decrypt Y ′ into
X′ , or be obtainable from a KSG-state in the table).

• Each tentative keystream contains unknown (undefined)
information—keystream nibbles that would have been

skipped over and discarded, because they failed to match
a plaintext nibble during PudgyTurtle’s encoding pro-
cess.

• False alarms are more common. Since an unknown nib-
ble in KT could theoretically match any nibble in the
precomputed table, a fragment of tentative keystream
could, therefore, ’hit’ many rows of the table by chance,
but few (if any) of these coincidental hits will correctly
decrypt the ciphertext.

Tentative Keystream

Each tentative keystream represents a different model of
how X′ could have been encoded and enciphered into Y ′ .
The model is just a collection of randomly selected code-
words, each one made up of a failure counter and a dis-
crepancy code. Thus, the mBG-attack begins by choosing
NX� = |X�|∕4 failure counters from the set {0, 1, 2,… , 31}
at random, according to a geometric distribution with p =
5/16; and choosing the same number of discrepancy codes
uniformly from the set {0,1,2,3,4}. This produces a set of
codewords

Next comes filling in, a guess-and-determine process
whereby each codeword is used to define three nibbles of
tentative keystream: two that make up the mask and one that
matches a nibble of known plaintext.

Consider a situation where the attacker knows the corre-
spondence (X′

i
, Y ′

i
) and has a model suggesting that codeword

C�
i
= (F�

i
‖D�

i
) produced this correspondence, under tentative

keystream starting at KT
j
 . First, since Y ′

i
 results from XOR’ing

the ith mask and codeword, the attacker concludes that mask
(KT

j
 ‖ KT

j+1
) must equal Y ′

i
⊕ C′

i
 . This fixes the position and

identity of two nibbles of tentative keystream. Next, the mod-
el’s failure counter implies that X′

i
 would match the tentative

keystream on the (F�
i
+ 1)th nibble after the mask. This fixes

the location of a third tentative-keystream nibble, KT
t(i)

 , where

since j = t(i − 1) + 1 . Finally, the model’s discrepancy code
D′

i
 can be used to fix the identity of this third tentative-key-

stream nibble

The end result of filling-in is a segment of tentative
keystream

{C�
1
,C�

2
,… ,C�

NX�
} = {(F�

1
‖D�

1
), (F�

2
, ‖D�

2
),… , (F�

NX�
‖D�

NX�
).}

t(i) = F�
i
+ j + 2 = F�

i
+ t(i − 1) + 3

KT
t(i)

=

{
X�
i

ifD�
i
= 0

X�
i
⊕ 2D

�
i
−1 ifD�

i
≠ 0.

… , KT
j
, KT

j+1
, ?, ?, … , ?, KT

t(i)
, …

Fig. 1 Relationships among segments of plaintext (or ciphertext).
The mBG-attack uses known plaintext X� ∈ X and its corresponding
ciphertext Y � ∈ Y to recover a KSG-state (S′′) that correctly decrypts
some segment of ciphertext Y �� ∈ Y � into its corresponding segment
of known plaintext X�� ∈ X� . The attacker can then decrypt the rest of
the ciphertext (Y∗) even beyond the known plaintext. For notational
convenience, all of these segments are all indexed from 1 (i.e., for
some indices a and b [bottom], X�

1
= Xa , and X��

1
= X�

b
= Xa+b−1 , and

similarly for analogous segments of Y). mBG: modified Babbage–
Golić; KSG: keystream generator

SN Computer Science (2023) 4:486 Page 7 of 25 486

SN Computer Science

with three ’known’ nibbles and F′
i
 intervening ’unknown’

nibbles (represented by ? symbols). All that can be stated
about the unknown nibbles is that none of them would have
matched X′

i
 to within a bit.

By doing the same with every codeword, the rest of KT
can be specified. Table 3 illustrates how a tentative keystream
would be constructed given X′ = 0xAB and Y ′ = 0x0516,
using a model whose codewords are 0x12 and 0x0C.

Verified Sequence

We also define a verified sequence, V, as a sequence of 0/1
markers which distinguish known bits of KT from unknown
bits

V contains runs of twelve 1-bits in a row interspersed with
variable-length gaps of 0-bits, as shown below

Vj =

{
��� = 11112, ifKT

j
known;

��� = 00002, ifKT
j
is unknown;

The first four 1’s of each 12-bit run correspond to the bits
of KT that match a known plaintext nibble (e.g., X′

i
), and the

other eight 1’s correspond bits of KT that would be used to
mask the next (e.g., X�

i+1
) known-plaintext nibble.

By serving as a bit-mask, V can define unknown bits as
zeroes. For example, the model in Table 3 has codewords
whose failure counters are 2 and 1, represented by verified
sequence 0xFF00FFF0F. Bitwise-multiplying this with
the tentative keystream transforms the partially undefined
sequence 1,7,?,?,8, 1,A,?,3 into the fully defined
number 0x170081A03.

Word‑Based Notation

The tentative keystream can also be viewed as a sequence of
variable-length ’words’

...

4Fi−1 zeros

⏞⏞⏞
0000...0 1111...1

⏟⏟⏟
12 ones

4Fi zeros

⏞⏞⏞
0000...0 1111

⏟⏟⏟
Matches X�

i

11111111
⏟⏞⏞⏟⏞⏞⏟
Masks X�

i+1

4Fi+1 zeros

⏞⏞⏞
0000...0 1111...1

⏟⏟⏟
12 ones

...

Table 3 Making a tentative keystream

This table shows the guess-and-determine process for ’filling in’ a tentative keystream, starting from a model (codewords C′
1
 =

0x12 and C′
2
 = 0x0C), the known plaintext X′ = 0xAB, and its corresponding ciphertext Y ′ = 0x0516. Codeword C′

1
 is first used

to determine the mask 0x17, which defines two nibbles of KT . Next, C′
1
 is used to define the position and identity of a third nib-

ble of KT that matches X′
1
 to within a bit (namely, KT

5
=0x8). This involves splitting C′

1
 into its failure counter and discrepancy code (i.e.,

C�
1
= ���� = ��������2 = �����2‖���2 = F�

1
‖D�

1
), so that F′

1
 = 2 and D′

1
 = 2. Notice that the final tentative keystream contains three

’unknown’ nibbles (the third, fourth, and eighth) in addition to six ’known’ nibbles. Nothing can be concluded about these unknowns except that
they failed to match their corresponding known-plaintext nibble (e.g., the third and fourth nibbles of KT could take any value that differed from
X′
1
 = 0xA by ≥ two bits—namely, 0x0, 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x9, 0xC, 0xD, or 0xF)

INPUT
Known plaintext X

′ = 0xAB
Ciphertext Y

′ = 0x0516
Model C

′
1
,C′

2
 = 0x12, 0x0C

FIRST CODEWORD
Re-create mask M = Y

�
1
⊕ C

�
1
 = 0x05 ⊕ 0x12 = 0x17

Mask defines two nibbles K
T

1
 = 0x1, KT

2
 = 0x7

Find position of keystream
nibble that matches X′

1

t(1) = F
�
1
+ t(0) + 3 = (C�

1
⊗ ����) ≫ 3)

+ t(0) + 3 = 000102 + 0 + 3 = 5

Define this nibble K
T

5
= X

�
1
⊕ 2D

�
1
−1 = 0xA ⊕ 2 = 0x8

Resulting segment of KT 1,7,?,?,8

SECOND CODEWORD
Re-create mask M = Y

�
2
⊕ C

�
2
 = 0x16 ⊕ 0x0C = 0x1A

Mask defines two nibbles K
T

6
 = 0x1, KT

7
 = 0xA

Find position of keystream
nibble that matches X′

2

t(2) = F
�
2
+ t(1) + 3 = 1 + 5 + 3 = 9

Define this nibble K
T

9
= X

�
2
⊕ 2D

�
2
−1 = 0xB ⊕24−1 = 0x3

Resulting segment of KT 1,A,?,3

OUTPUT
K

T = 1 7 ? ? 8 1 A ? 3

 SN Computer Science (2023) 4:486 486 Page 8 of 25

SN Computer Science

where word Wi contains all F�
i
+ 3 nibbles involved in encod-

ing and enciphering X′
i
:

– The first two (known) nibbles are the ith mask;
– The next F′

i
 (unknown) nibbles are those that failed to

match X′
i
—including case of an immediate match, where

F�
i
= 0;

– The last (known) nibble is the one that matches X′
i
 to

within a bit.

Failure counters are ≤ 31 , so that word lengths are geometri-
cally distributed between 3 and 34 nibbles (12–136 bits)
with an average of 5.2 nibbles (20.8 bits).

The verified sequence can also be viewed as a sequence
of words, each taking the form 0xFF0...0F. While their
length differs (as above), all words of V share the same Ham-
ming-weight of 12, where Hamming-weight h() is defined as

for vector U = (u1, u2,… , u|U|) with us ∈ {0, 1}.
Figure 2 illustrates the structure of the first three words of

a hypothetical tentative keystream and its verified sequence,
assuming a model with failure counters F�

1
= 1 , F�

2
= 0 , and

F�
3
= 2.

Modified BG‑Attack: Detailed Description

Next, the mechanics of the mBG-attack are described in
detail, and several definitions are provided. During the

KT = W1,W2,… ,WNX�
,

h(U) ∶=

|U|∑

s=1

us

precomputation phase, a table with M (state, prefix) pairs
is constructed—just like the traditional BG-attack. During
the real-time phase, the mBG-attack makes use of succes-
sive n-bit fragments of tentative keystream.

DEFINITION. For binary sequence Z = {z1, z2,…} , the
fragment Z(b) = {zb, zb+1, zb+2,… , zb+n−1} is an n-bit sub-
sequence starting at bit b.

For example, if keystream K = KSG[S], then fragment
K(1) is the prefix of state S. Each successive n-bit fragment
KT (b) with b ∈ {1, 2,… ,�} and � = |KT | − n + 1 ≈ (5.2)D
is searched for among the prefixes in the table. However,
before searching, all unknown bits must be defined (set
to zero) by bit-wise multiplying KT (b) by V(b) and also
multiplying each prefix in the table by V(b).

DEFINITION. For three binary vectors A, B, and
C of the same length, we say A mimics B under C if
A⊗ C = B⊗ C.

DEFINITION. A hit between tentative-keystream frag-
ment KT (b) and prefix Ph in the precomputed table means
that KT (b) mimics Ph under V(b).

Importantly, a hit in the mBG-attack does not necessarily
imply that KT (b) equals Ph—only that the known bits of the
fragment match those bits in the same positions within the
prefix. (Unknown bits match automatically, having all been
set to zero.)

The more unknown bits, the more likely a hit will occur
purely by coincidence. One simple strategy to reduce these
coincidences is to reject any hits for which the number of
known bits falls below some threshold, � . The attacker’s
choice of � has significant implications: at the lowest values
(� ≈ 0), the mBG-attack somewhat resembles an exhaustive
search/brute-force attack; at the highest values (� ≈ n), the

Fig. 2 ‘Words’ of tentative keystream and verified sequence. UPPER
PANEL: Three words of a tentative keystream generated by a model
with failure counters 1, 0, and 2. Row 1 gives the index of, and num-
ber of failures in, each word; Rows 2 and 3 provide the index and
identity of each tentative keystream nibble (where ’?’ stands for
unknown); and Row 4 gives the accompanying nibbles of verified

sequence. LOWER PANEL: Close-up of the beginning of word #1.
The first three rows depict the indices of the word, its nibbles, and
its bits; the next two rows show individual bits of KT and V, with
unknown bits in KT (symbolized as ’?’) corresponding to 0-bits in V
and known bits of KT corresponding to 1-bits in V

SN Computer Science (2023) 4:486 Page 9 of 25 486

SN Computer Science

mBG-attack somewhat resembles a ’traditional’ BG-attack.
(“Extremes of �” covers this topic in detail.)

Since the number of known bits in KT (b) is just the Ham-
ming-weight of its corresponding verified-sequence frag-
ment h(V(b)), two kinds of hits can be distinguished:

DEFINITION. A spurious hit involving KT (b) means a
hit for which h(V(b)) < 𝜃.

DEFINITION. A high-quality hit involving KT (b) means
a hit for which h(V(b)) ≥ �.

In the modified BG-attack, many hits are spurious. But
even a high-quality hit may not crack the cipher: it still
contains n − � unknown bits, any of which may mean
that the prefix is paired with the ’wrong’ KSG-state (i.e.,
KT (b) mimics Ph under V(b), but keystream KSG[Sh] gener-
ated from Ph ’s paired KSG-state does not match up with
KA = KSG[S0] , the actual keystream used to encrypt the
message).

Therefore, a test-decryption must be performed on each
high-quality hit, to determine whether KSG[Sh] will indeed
decrypt some portion of Y ′ into the corresponding portion
of X′ . This test-decryption need not involve all of Y ′—only
enough bits to ensure a statistically meaningful comparison
with the known plaintext. We refer to this number of bits as
Q. Here, Q was chosen as 96 bits. Note, however, that—due
to PudgyTurtle’s keystream expansion property—decrypt-
ing 96 bits requires ≈ (5.2)(96) = 500 bits of tentative key-
stream, on average.

Adjustment

During the traditional BG-attack, the test-decryption pro-
ceeds directly and immediately from the ’hit’. In other
words, if the bth keystream fragment X�(b)⊕ Y(b) produces
a hit, then keystream generated by its paired KSG-state in
the table will decrypt the ciphertext starting at bit y�+b into
plaintext starting at bit x�+b , where � is the bit-offset of X′
within X.

Applying this same strategy to the modified BG-attack,
however, becomes problematic: (1) due to keystream expan-
sion, the index of the keystream nibble Kj quickly becomes
’out of synch’ with that of plaintext nibble Xi ; (2) since
PudgyTurtle operates on nibbles rather than bits, decryp-
tion requires that b is a multiple of 4; (3) since it is easier
in practice to compare strings aligned byte-by-byte, test-
decryptions are more efficient when b is a multiple of 8.

Thus, before each test-decryption, the mBG-attack
includes an adjustment procedure. Given a high-quality hit
between tentative keystream fragment KT (b) and prefix Ph
(with associated KSG-state Sh), the goal of this adjustment is
to find a new index (�), such that NQ ciphertext bytes (start-
ing at byte Y ′

�) can be test-decrypted into NQ known-plain-

text nibbles (starting at nibble X′
�), where NQ = Q∕4 = 24.

This new index � defines the first byte of an NQ-byte sub-
set of ciphertext

and the first nibble of an NQ-nibble subset of known-plaintext

To decrypt Y ′′ into X′′ , the original KSG-state (Sh) must
be advanced to a new state, S′′ , which will produce tenta-
tive keystream starting from a new bit-offset, b′′ , instead of
original bit-offset b.

Recall that word Wi of the tentative keystream contains
all tentative-keystream nibbles involved in decoding and
decrypting ciphertext byte Y ′

i
 and/or encoding and encrypt-

ing plaintext nibble X′
i
 . Since the index of the final bit of

Wi is

Y �� ∶= {Y ��
1
, Y ��

2
,… , Y ��

NQ
} = {Y �

�, Y
�
�+1, Y

�
�+2,… , Y �

�+NQ−1
}

X�� ∶= {X��
1
,X��

2
,… ,X��

NQ
} = {X�

�, X
�
�+1, X

�
�+2,… ,X�

�+NQ−1
}.

Table 4 Adjusting a high-quality hit

UPPER: For each of the first six ’words’ (W1 −W6) of an arbitrary
tentative keystream KT , the word index (Column 1), its associated
failure counter (Column 2), and its bit-span (Column 3) are shown.
For example, the first failure counter (i.e., 1) represents the pat-
tern KT

1
,KT

2
, ?,KT

4
 (where ? is an unknown nibble), which spans

4 + 4 + 4 + 4 = 16 bits. The next three columns show indices of
the known-plaintext nibble (Column 4) and byte (Column 5), and
the ciphertext byte (Column 6) corresponding to each word of KT .
LOWER: Adjustment procedure, assuming KT (50) makes a high-
quality hit. Bit #50 lies within word W4 . However, since W4 is not
exactly aligned with a plaintext byte (i.e., it is the second half of byte
#2), the word index is incremented by one. Word W5 starts at bit-off-
set 65, which means that the original KSG-state Sh should be updated
65–50 = 15 times before the test-decryption. With this adjustment,
decrypted ciphertext (starting at Y5) can be compared to known plain-
text (starting at byte #3, made from nibbles X′

5
 and X′

6
)

A high-quality hit involving fragmentKT (50)

Bit-offset b = 50 falls within tentative-keystream word W4 (bits
49–64)
→ W4 is not aligned with the the beginning of a plaintext byte,
→but word W5 is
→The new bit-offset corresponding to W5 is b′′ = 65, and
→ the new KSG-state (S′′) is 65–50 = 15 state-
updates beyond the original state
→Now, a test-decryption from Y5 can be compared to X′,
starting from plaintext byte #3 (i.e., nibbles #5 and #6)

Index of
‘word’ in KT

Failure-
counter

Bit-range
of word

Plaintext
NIBBLE

Plaintext
BYTE

Ciphertext
BYTE

1 1 1−16 1 1 1
2 0 17−28 2 2
3 2 29−48 3 2 3
4 1 49−64 4 4
5 1 65−80 5 3 5
6 0 81−92 6 6

 SN Computer Science (2023) 4:486 486 Page 10 of 25

SN Computer Science

the word containing bit b will be Ws , where

To facilitate string comparisons, each test-decryption should
start at the beginning of a plaintext byte. Since plaintext
bytes #1, #2, #3,... correspond to plaintext nibbles #1, #3,
#5,..., which correspond to tentative keystream words #1, #3,
#5,..., the goal can be easily accomplished by adding one to s
if it is even. Thus, the index of the new word of KT is

Using this word of tentative keystream, a test-decryption
will begin at the next-nearest whole byte of plaintext. The
bit-offset of this new word within KT will be

and the new KSG-state corresponding to this bit-offset is

Thus, KSG[S′′] = K� , K�+1 , K�+2 , ⋯ can be used to test-
decrypt Y ′

� , Y �
�+1 , Y

�
�+2 , ⋯ , and the result compared to X′

� ,
X�
�+1 , X

�
�+2 , ⋯ , where conveniently (X�

�‖X
�
�+1) is aligned

with a whole byte of data (namely, the [(� + 1)∕2]-th byte).
A worked example is given in Table 4, which adjusts

a high-quality hit involving KT (50) (i.e., bit-offset
b=50). The new index is � = 5, from which the new
bit-offset b�� = �(� − 1) + 1 = 65 and new KSG-state
S
�� = �65−50(S

h
) = �15(S

h
) can be found. After this adjust-

ment, a test-decryption using the new keystream KSG[S′′]
can be applied to the ciphertext starting at Y5 , and then com-
pared byte-by-byte with X′ (i.e., known-plaintext bytes #3,
#4, #5, etc. corresponding to known-plaintext nibbles (#5,
#6), (#7, #8), (#9, #10) etc.).

DEFINITION. For a high-quality hit between fragment
KT (b) and row (Ph, Sh) in the table, KR = KSG[S′′] is the
regenerated keystream, where S′′ is from Eq. (3).

DEFINITION. T = P−1(Y ��,KR) is the test-decryption of
Y ′′ under keystream KR.

DEFINITION. A correct test-decryption means that
Tj = X�

�+j = X��
j
 for every j ∈ {0, 1, 2,… ,NQ} and where �

is from Eq. (2).
DEFINITION. A valid hit is a high-quality hit which

yields a correct test-decryption.
DEFINITION. A false alarm is a high-quality hit which

yields an incorrect test-decryption.

�(Wi) =

i∑

j=1

|Wj|

s = min
1,2,3,…,NX�

i �(Wi) ≥ b.

(2)� =

{
s, if s is odd

s + 1, if s is even.

b�� = �(W�−1) + 1,

(3)S�� = �(b��−b)(Sh).

If a false alarm occurs, the mBG-attack continues by
searching the rest of the table for any other prefixes that
mimic KT (b) under V(b). Once the entire table has been
searched, b is incremented by 1, and a table-search is per-
formed on this new target (i.e., KT (b + 1)⊗ V(b + 1)) until
all of the tentative keystream has been utilized. If still no
valid hits have been discovered, a new model is chosen, a
new tentative keystream is built, and the entire process is
repeated.

Complexity of the Modified BG‑Attack

This section describes the time-, memory-, and data-com-
plexity of the modified BG-attack. Both the traditional
BG-attack and the mBG-attack have the same memory
complexity

and the same data-complexity

where M is the number of rows in the precomputed table,
and D = |X�| is the number of bits of known plaintext. (Note:
earlier, ’D’ was used to symbolize the discrepancy-code,
and M the mask, but context should make it clear what is
being discussed.) The time-complexity of the two attacks,
however, differs

Traditional BG‑Attack: Time‑Complexity

For the traditional BG-attack, D bits of known-plaintext
data means D keystream fragments, and therefore D table-
searches. Thus

Most precisely, TBG = D − n + 1 , but (4) is a reasonable
approximation, since usually D ≫ n . Although this equa-
tion is useful in practice, it contains several assumptions:

• Assumption #1: Recall from Sect. 3.1 that the n-bit frag-
ments used as search-targets are actually from the ’test-
ing keystream’ (X′ ⊕ Y ′), not from the known plaintext
itself. Equation (4) ignores the time needed to construct
this testing keystream;

• Assumption #2: Each table-search is viewed as a single
’operation’ (i.e., D table-searches require D time units).
In practice, however, search-algorithms may require dif-
ferent numbers of operations;

MBG = MmBG = M

DBG = DmBG = D,

TBG ≠ TmBG.

(4)TBG = D.

SN Computer Science (2023) 4:486 Page 11 of 25 486

SN Computer Science

• Assumption #3: False alarms are expected to be rare
enough that the time required to perform a test-decryp-
tion on each ’hit’ is ignored.

How might (4) look without these assumptions? First, since
each byte of the D-bit testing keystream is simply 1 byte of
X′ XOR’d to 1 byte of Y ′ , constructing the testing keystream
would add another D∕8 = NX�∕2 operations to the time com-
plexity. Next, each table-search would add ∼ log(M) opera-
tions, assuming binary-type sort/search algorithms. Finally,
each Q-bit test-decryption would add Q KSG-update opera-
tions. With these modifications, a more accurate representa-
tion of the time complexity of a standard BG-attack would
be

where Nsearches and Ndecrypts are the number of table-searches
and test-decryptions. This simplifies to

under the usual assumptions that half the table needs to be
searched (i.e., Nsearches = D∕2) and that false alarms are rare
(i.e., Ndecrypts ≈ 1). Since both log(M) and Q are typically
≪ D , the time-complexity is still O(D) , and so, (4) is not a
bad approximation.

But what if this was not the case? Specifically, what if the
number of test-decryptions or operations per table-search
was not small compared to D? As will be discussed next, this
more accurately describes what happens during the modified
BG-attack.

Modified BG‑Attack: Time‑Complexity

The time-complexity of the mBG-attack can be meas-
ured in different ways. The simplest is based on the idea
that the attack uses Nmodels tentative keystreams, each of
which requires Tmodel processing operations. In turn, Tmodel
depends upon the number of table-searches and the number
of test-decryptions

TBG = NX� ⋅
1

2
+ Nsearches ⋅ log(M) + Ndecrypts ⋅ Q,

TBG ≈ D

(
1

8
+

log(M)

2

)
+ Q

A more precise formula for TmBG assigns different weights
to each cryptanalytic task. First, a tentative keystream must
be constructed from a model with Ncodewords = D∕4 code-
words—one for each known-plaintext nibble. Essentially,
building each nibble of KT requires a random-number gen-
erator call plus several more XOR, AND, and bit-shifts. For
convenience, we count all this as four ’operations’, so that
Ncodewords × 4 = D more operations will be used. Next, con-
sider the cost of performing table-searches. Since the modi-
fied BG-attack uses a row-by-row search strategy instead
of a binary search,2 this increases the time-complexity
by Nsearches ⋅M operations, where ’operation’ means bit-
wise multiplication and comparison of two n-bit strings.
Finally, the time-complexity must include the cost of doing
a test-decryption on all the high-quality hits. Since a Q-bit
test-decryption requires ∼ (5.2)Q KSG-updates, this adds
another Ndecrypts ⋅ (5.2)Q operations to the time-complexity.
From these values, a more precise estimate of time-com-
plexity would be

(5)
TmBG = Nmodels × Tmodel

= Nmodels × (Nsearches + Ndecrypts).

20 24 28 32

8

16

24

32

40

KSG−size (bits)

lo
g 2

 (
T m

B
G

)
Fig. 3 Time-complexity of the mBG-attack. The log-scaled time-
complexity is plotted against KSG inner state size (log2(N) bits). Dot-
ted line segments mark the O(

√
N) time-complexity of a traditional

BG-attack; solid line segments mark the O(N) time-complexity of an
exhaustive state-space search. TmBG exceeds the time-complexity of a
traditional BG-attack, and often approaches or even exceeds that of a
brute-force attack. mBG, modified Babbage–Golić; KSG, keystream
generator

2 It might be argued that the attacker would be better off using
more advanced search/sort algorithms instead of a naive row-by-row
search. For two reasons, however, this may not be the case. First, each
search can produce multiple hits, a condition which reduces the effi-
ciency of binary-type search algorithms. Second, before each search,
all of the prefixes of the table must be bit-wise multiplied by the cur-
rent verified-sequence fragment. This requires M operations. Thus,
while specialized search-algorithms would reduce the number of
comparisons from M to log(M); nevertheless, the entire search pro-
cess (including the bit-wise multiplications) would need M + log(M)
operations, which is still O(M).

 SN Computer Science (2023) 4:486 486 Page 12 of 25

SN Computer Science

This version of TmBG may easily exceed O(
√
N) . For

instance, if D = M =
√
N and Nsearches ≈ D (as per the tra-

ditional BG-attack), then the Nsearches ⋅M term will have
complexity O(D ⋅M) = O(N).

Empirical Results

Here, we report the results of many hundreds of mBG-
attacks, showing how TmBG depends on parameters con-
trolled by the attacker (i.e., Hamming-weight threshold � ,
table size M, and quantity of known-plaintext D) and by the
message sender (i.e., KSG-size n).

Most attacks [i.e., most (n, �,M,D) parameter combina-
tions] were repeated two-to-ten times, each with a differ-
ent secret key and different sample of known plaintext. For
all attacks, the plaintext source was an English-language
ASCII text [45]. Four ’toy’ KSGs were used: two nonlin-
ear feedback shift registers (NLFSRs) of sizes 20 and 24
bits, and two linear feedback shift registers (LFSRs) of sizes
28 and 32 bits. NLFSR polynomials were from Dubrova’s
well-known source [20], but because this list stops at n=25,
LFSRs were used for the larger sized KSGs. We empha-
size that none of these simple KSGs (especially LFSRs!)
are intended to be ’secure’. Each one is merely a convenient
tool for studying different KSG-sizes.

Effect of n on TmBG

How is time-complexity related to the KSG-size? Figure 3
shows the base-2 logarithm of time-complexity from Eq. (5)
vs. KSG-size from 226 mBG-attacks. A small random jitter
is included for visual clarity. The horizontal line segments in
the figure are not averages or confidence bounds, but rather
markers for certain time-complexity cutoffs. The solid line
segments mark where TmBG = N (i.e., the time-complexity
of a brute-force search of state-space), and the dotted seg-
ments mark where TmBG =

√
N (i.e., the time complexity of

a traditional BG-attack against an n-bit stream-cipher system
not using PudgyTurtle).

The data suggest a reduced ’scatter’ of data-points rela-
tive to n (i.e., especially for larger KSGs), which might lead
to a false conclusion that TmBG approaches some limiting
value for large n. In fact, however, this phenomenon is sim-
ply because attacks against larger KSGs took longer, and so
fewer of them were performed. For example, an off-the-shelf

(6)

TmBG = Nmodels × Tmodel

≈ Nmodels ×
(
Ncodewords ⋅ 4

+Nsearches ⋅M + Ndecrypts ⋅ (5.2)Q
)

≈ Nmodels ×
(
D + Nsearches ⋅M + Ndecrypts ⋅ (5.2)Q

)
.

IBM laptop running research-level (not production-grade)
software could easily complete attacks against the 20-bit
KSG in minutes or hours, but could take weeks for even a
single successful attack against the 32-bit KSG. Thus, we
anticipate that the scatter of points at each KSG-size will be
similar—provided that one waits long enough to collect the
same amount of data for each n.

Several conclusions may be drawn from Fig. 3. First and
as expected, the attack’s time-complexity increases as the
inner state size of the KSG increases. Next, TmBG always
exceeds O(

√
N) , suggesting that the PudgyTurtle process

adds significant time-complexity compared to a trade-
off attack against an analogous (n-bit) system not using
PudgyTurtle. Some TmBG even exceed the time-complexity
of an exhaustive search.3 Finally, the scatter of TmBG values
for each n suggests that it may be possible to speed up the
attack by choosing the right parameters.

Using this same data, Table 5 compares the two ways to
measure time-complexity, with the left column using the
simpler formula (5) and the right column the more precise,
weighted estimate (6). To facilitate comparison among mul-
tiple KSG-sizes, this table reports the ’normalized loga-
rithm’ of time-complexity

Table 5 Two ways to measure time-complexity

The normalized logarithmic time-complexity �(T
mBG

) = log2 (TmBG)∕n
is shown for mBG-attacks against KSGs of size 20, 24, 28, and 32 bits.
The left-hand column uses the simpler time-complexity measure (5);
the right-hand column uses the more precise one (6), which weights
each term differently. For both measures of time-complexity, the aver-
age, 95% confidence interval, range, and the percentage of attacks with
𝜂(TmBG) < 1 are given. Note that �(TmBG) of the ’weighted’ estimate
on average exceeds that of the simpler estimate, and is always > 1. CI:
confidence interval; mBG, modified Babbage-Golić; KSG: keystream
generator s

�(T
mBG

) = log2(TmBG)∕n

‘Simple’ ‘Weighted’

Equation (5) Equation (6)
Mean [95% CI] 1.0813 [1.06, 1.10] 1.5385 [1.51, 1.57]
Minimum 0.68 1.14
Maximum 1.52 2.02
% with 𝜂(T

mBG
) < 1 33 0

3 We emphasize that T
mBG

> O(N) does not imply that PudgyTur-
tle is ’more secure’ against brute-force cryptanalysis than other
cryptosystems! Rather, these large values illustrate that the mBG-
attack is not a particularly efficient way to run a brute-force search
(e.g., some KSG-states are tried multiple times, and not every KSG-
state is checked at each bit-offset within the tentative keystream). A
more reasonable interpretation would be to view attacks for which
T
mBG

> N as cases where brute-force cryptanalysis would be a rea-
sonable alternative to the mBG-attack, with respect to time require-
ments.

SN Computer Science (2023) 4:486 Page 13 of 25 486

SN Computer Science

Thus, �(TmBG) = 1∕2 represents the O(
√
N) complexity of a

traditional BG-attack; and �(TmBG) = 1 the O(N) complexity
of a brute-force attack. The mean, 95% confidence interval,
range, and % of attacks in which �(TmBG) falls below 1 are all
reported, Notice that the weighted estimate tends to exceed
the simpler one, and always exceeds 1.

In the rest of this manuscript, (5) will be used to measure
time-complexity. Since this simpler formula tends to result
in smaller values than (6), this gives the most favorable
assumptions to the attacker, and has the added benefit of
making some upcoming analysis (e.g., “Estimated Time-
Complexity”) more straightforward.

Effect of M on TmBG

Figure 4A shows log2(TmBG) vs. log2(M) for attacks in which
table size M was varied (from as low as 1024 to as high as
65,536 rows), while keeping KSG-size n fixed at 24 bits, D
at 4096 bits and � at 6. Intuitively, it would seem that big-
ger tables should lead to faster attacks: since each tentative
keystream fragment would get compared against more rows,
more high-quality hits would occur, and each model would
thus be more likely to succeed. Interestingly, this is not the
case: TmBG is not greatly affected by changes in M.

�(TmBG) = log2(TmBG) ∕ n.

How might this be explained? Consider the quantities that
contribute to time-complexity: Nmodels , Nsearches , and Ndecrypts .
First, since larger tables allow for more comparisons against
a fixed amount of tentative keystream, the number of mod-
els drops as M increases (Fig. 4B). Next, since table size
does not affect the number of searches per model (which just
depends on D, n, and �), Nsearches remains constant (Fig. 4C).
Finally, since bigger tables mean that each search can yield
more high-quality hits (i.e., a single tentative keystream frag-
ment can hit more rows of a bigger table), Ndecrypts increases
(Fig. 4D). The net effect of reducing Nmodels while increas-
ing Ndecrypts makes time-complexity relatively insensitive to
changes in table size. Larger tables mean more high-quality
hits and test-decryptions among fewer models, while smaller
tables mean fewer decryptions among more models.

Effect of D on TmBG

How does the amount of known-plaintext affect time-
complexity? To study this, we mounted a set of attacks in
which D was varied between 1024 and 65,536 bits, while
fixing the other parameters at n = 24 , M = 4096 , and
� = 6 . Results are shown in Fig. 5. Changing D has little
effect on time-complexity (Fig. 5A). As the amount of data
increases, fewer models are needed (Fig. 5B), but more
time is spent on each model—for both searches (Fig. 5C)

A

0

12

24

36

10 12 14 16
log2(M)

lo
g 2

(T
m

M
G
)

B

0

25

10 16
log2(M)

lo
g 2

(N
m

od
el

s) C

0

25

10 16
log2(M)

lo
g 2

(N
se

ar
ch

es
) D

0

25

10 16
log2(M)

lo
g 2

(N
de

cr
yp

ts
)

Fig. 4 Effect of table size on time-complexity. A Time-complexity
TmBG is plotted against table size M (both log-scaled), for attacks
against a 24-bit KSG, with � = 6 and D = 4096. Panel B shows
log2(Nmodels) ; C shows log2(Nsearches) ; and D shows log2(Ndecrypts) ,
all along the same X-axis as the top panel. As M grows larger, fewer
models are needed, but more test-decryptions are performed on each
one—opposing trends which leave TmBG itself relatively unaffected.
mBG, modified Babbage–Golić; KSG: keystream generator

A

0

12

24

36

10 12 14 16
log2(D)

lo
g 2

(T
m

M
G
)

B

0

25

10 16
log2(D)

lo
g 2

(N
m

od
el

s) C

0

25

10 16
log2(D)

lo
g 2

(N
se

ar
ch

es
) D

0

25

10 16
log2(D)

lo
g 2

(N
de

cr
yp

ts
)

Fig. 5 Effect of data on time-complexity. A Time-complex-
ity log2(TmBG) is plotted against the quantity of known plain-
text data, log2(D) , for attacks against an n = 24-bit KSG with � =
6 and M = 4096 rows. Panel B shows log2(Nmodels) ; C shows log
2(Nsearches) ; and D shows log2(Ndecrypts) , all plotted against the same
X-axis as in the top panel. The time-complexity is not significantly
affected by changes in D, consistent with the observation that as
D increases, Nmodels and its co-factor in the time-complexity (i.e.,
Nsearches + Ndecrypts) change in opposite directions. KSG: keystream
generator; mBG, modified Babbage–Golić

 SN Computer Science (2023) 4:486 486 Page 14 of 25

SN Computer Science

and test-decryptions (Fig. 5D). Intuitively, larger D means
each model produces a longer tentative keystream; more
table-searches, high-quality hits, and test-decryptions;
but that correspondingly fewer models will be necessary.
Again, these two opposing trends make the product, TmBG ,
less sensitive to changes in D.

Effect of � on TmBG

Previously, it was hypothesized that extremes of � would
lead to slower, less-efficient attacks [3]. Smaller values (e.g.,
� ≤ n∕4) would waste too much time on false alarms—
since each tentative keystream, with so many unknown bits,
could generate so many spurious hits. Larger values (e.g.,
� ≥ 3n∕4) would expend too much time-constructing mod-
els—since each one would lead to few (if any) high-quality
hits. Either way, TmBG would increase. We therefore sug-
gested that choosing mid-range �∕n ∈ [

2

3
,
3

4
] (the middle of

its range) would balance these two factors, allowing success-
ful attacks in a reasonable amount of time. Here, we vary �
over a wider range. Interestingly, (see below) this original
intuition was wrong: although mBG-attacks with smaller
� do indeed generate more test-decryptions, the time-com-
plexity of these attacks still falls below that of attacks with
larger �.

Figure 6A shows the normalized-logarithmic time-com-
plexity, as a function of �∕n for attacks against 20-, 24-, 28-,
and 32-bit KSGs, using various � ∈ {2, 4, 6,… , n − 2} . The
dotted line at �(TmBG) = 1 represents O(N) time-complexity.

Figure 6B shows �(Nmodels); 6C shows �(Nsearches) , and 6D

shows �(Ndecrypts) , all plotted against �∕n as well.
The time-complexity exhibits an upward trend, especially

above �∕n = 0.5 . That is, low-� attacks actually take less
time than high-� attacks. Larger � means that fewer frag-
ments exceed threshold and are chosen for a table-search
(Fig. 6C), with correspondingly fewer test-decryptions
(Fig. 6D), which in turn means that more models are neces-
sary for the attack to succeed (Fig. 6B). Just as in Figs. 4 and
5, there is an opposing trend between Nmodels and the time-
per-model (Nsearches + Ndecrypts). However, in this case, the
net result differs: there is less of a time-penalty for lowering
� (using fewer models, each with more false alarms) than for
raising � (using more models, each with few false alarms).

Parameterizing the Time‑Complexity

Here, we develop an expression for TmBG in terms of system
parameters (n, � , M, and D), rather than the experimentally
derived quantities Nmodels , Nsearches , and Ndecrypts . To do so,
these measured quantities will be expressed in terms of an
underlying probability distribution which represents the
number of ’known’ bits in each n-bit fragment of tentative
keystream.

The number of known bits in fragment KT (b) is just the
Hamming-weight of its corresponding verified-sequence
fragment V(b)

Letting discrete random-variable H represent the Hamming-
weight of an n-bit fragment of verified sequence, its proba-
bility mass function (p.m.f.) supported on a ∈ {0, 1, 2,… , n}
is written as

Using this p.m.f., we can compute three important prob-
abilities: the probability that an n-bit fragment of KT will
be chosen for a table-search; the probability of that a table-
search will produce a high-quality hit; and the probability
that a high-quality hit will lead to a successful test-decryp-
tion. These three probabilities will then be used to estimate
Nsearches , Ndecrypts , and Nmodels , which then lead to an estimate
of the time-complexity itself.

∶ { known bits in KT (b)} = h(V(b)), ∀ b ∈ {1, 2,… ,�}.

pH(a) ≡ Pr{H = a}.

A

0

1

2

0 0.25 0.5 0.75 1
θ n

η(
T m

M
G
)

B

0

0.5

1

0 0.5 1
θ n

η(
N

m
od

el
s)

C

0

1

0 0.5 1
θ n

η(
N

se
ar
ch

es
) D

0

1

0 0.5 1
θ n

η(
N

de
cr
yp

ts
)

Fig. 6 Effect of Hamming-weight threshold on time-complexity. A
Normalized logarithmic time-complexity, �(TmBG) = log2(TmBG)∕n , is
plotted against normalized Hamming-weight threshold �∕n for attacks
against n = 20-, 24-, 28-, and 32-bit KSGs, with D = M =

√
N and

various 2 ≤ � ≤ n − 2 . The dotted line represents the time-complexity
of a brute-force attack. Panels BD show the normalized logarithm of
Nmodels , Nsearches , and Ndecrypts , respectively. Notice that time-complex-
ity trends upwards with larger � , suggesting that the rise in Nmodels
outweighs the fall in Nsearches and Ndecrypts . KSG, keystream generator
mBG, modified Babbage–Golić

SN Computer Science (2023) 4:486 Page 15 of 25 486

SN Computer Science

Hamming‑Weight Distribution

We begin by describing the distribution of Hamming-
weights of n-bit fragments of V. While this distribution
can be obtained by mining data from mBG-attacks, there
is also a ’shortcut’ for getting these data: simulation. The
verified sequence simply marks the known/unknown
status of each bit of KT . Filling in the actual bits of a
tentative keystream requires an mBG-attack (i.e., infor-
mation about X′ and Y ′), but simply marking each of its
bits as ’known’ or ’unknown’ just requires the model’s
failure counters. Since these failure counters are randomly
selected during an mBG-attack, so too can they be ran-
domly selected ’in isolation’, thus providing the basis for
a simulated verified sequence, V̂ . From this, frequency-
counting then provides the simulated Hamming-weight
distribution p

Ĥ

where the delta function is

There are two ways to simulate a verified sequence. One
method is to randomly choose a geometrically distributed
failure counter f ∈ {0, 1, 2,… , 31} ; construct a ’word’ of
format 0xFF0...0F with f zeros; concatenate this word to
the existing sequence; and repeat this procedure until some
desired total length is reached. The other method is to use
a Markov process (see below), whose two states (0x0 and
0xFFF) have transition probabilities that reflect the plain-
text-to-keystream matching process during PudgyTurtle
encoding.

p
Ĥ
(a) = Pr{h(V̂(b)) = a} =

1

|V̂|
⋅

|V̂|∑

b=1

�(h(V̂(b)) − a),

�(u) =

{
1 if u = 0

0 if u ≠ 0.

A

0

0.05

0.1

0.15

0 16 32 48 64
Hamming weight (HW)

Fr
eq

ue
nc

y

B

0

0.15

0 12 24 36 48 60
HW

Fr
eq

ue
nc

y C

0

0.075

0 32 64
HW

D

0

0.02

0 32 64
HW

Fig. 7 Hamming-weight distribution. Panel A shows p
Ĥ

 , the fre-
quency distribution of Hamming-weights of n = 64-bit fragments of a
simulated 5,200,000-bit verified sequence. The unusual, multi-peaked
shape is composed of three sub-distributions: one at Hamming-
weight multiples of 12 (B); one at multiples of 4, but not 12 (C); and
one at multiples of 1, 2, and 3 (mod 4), whose thicker looking ele-
ments are actually three closely spaced bars of similar amplitude (D).
Notice that each of these distributions is ’bell-shaped’; that each is
slightly skewed with maxima at > n∕2 = 32 ; and that amplitudes are
highest for Hamming-weights that are multiples of 12, mid-range for
multiples of four, and lowest for weights of 1, 2, or 3 (mod 4)

n = 32 n = 33 n = 34 n = 35

0

1

2

3

0 6 12 0 6 12 0 6 12 0 6 12
Hamming weight

Fr
eq

ue
nc

y
(%

)
Fig. 8 Hamming-weight distribution for different KSG-sizes. The
lower tails (Hamming-weights < 12) of Hamming-weight distribu-
tions from simulated 5,200,000-bit verified sequences for n = 32, 33,
34, and 35. Each distribution has a similar shape, but its peaks are
right-shifted by n (mod 4). In the leftmost distribution (n = 32 = 0
modulo 4) for example, the arrow shows a peak at Hamming-weight
of 4. As n increases to 33, 34, and 35, this peak is seen at 5, 6, and 7,
respectively. KSG, keystream generator

 SN Computer Science (2023) 4:486 486 Page 16 of 25

SN Computer Science

0xFFF 0x0

11
16

5
16

11
16

5
16

The first method does not produce any overflow events,
just like the tentative keystreams used in an actual mBG-
attack. The second method not only does allow overflows
(i.e., words with ≥ 32 zero-nibbles) but also fails to mark
them (e.g., with an extra 0xFF codeword). Since this anom-
aly might slightly affect the resulting p.m.f., we will there-
fore use the first simulation method.

One example of a simulated Hamming-weight distribution
(for n = 64) is shown in Fig. 7A. Its unusual, characteristic

multi-peak appearance seems to be composed of three sub-
distributions. The highest-amplitude peaks correspond to
Hamming-weights that are multiples of 12 (Fig. 7B); the
next-highest peaks to Hamming-weights that are multiples
of 4, but not 12 (Fig. 7C); and the lowest-amplitude peaks to
Hamming-weights that are not multiples of four (Fig. 7D).
While this distribution is easy to simulate and its shape is
straightforward to describe, an analytical expression for pH
remains an open question.

When KSG-size n is not a multiple of four, the Ham-
ming-weight distribution has the same general shape, but its
peaks are shifted rightwards by n (mod 4). Figure 8 shows
close-up views of the left tails (first 12 values) of simulated
Hamming-weight distributions for n = 32, 33, 34, and 35.
Notice that each time n increases by one, the peaks shift
rightwards as well. For instance, the peak at 4 (shown by the
arrow) moves along the X-axis to 5, 6, and 7.

NSearches

The next step is to use the observed pH or simulated p
Ĥ

 to
parameterize each of the three components of time-com-
plexity in Eq. (5).

For the number of table-searches, what is needed is a
probabilistic expression for the rate at which n-bit fragments
of tentative keystream contain � or more known bits

where A stands for ’above threshold’. Averaging over the
whole tentative keystream, we get

Figure 9 shows PA(n, �) as a function of �∕n , from simu-
lated verified sequences (◦) and actual mBG-attacks (∙).
Simulations involved 5,200,000-bit V̂ sequences, each rep-
resenting the amount of keystream required to encrypt ∼ 1
million bits. For each V̂ , values of n ∈ {20, 24, 28, 32} and
� ∈ {0, 1, 2,… , n} were assigned; PA(n, �) was calculated;
and the process repeated with different random seeds to
obtain an average value. For mBG-attacks, the probability
was obtained by dividing the measured number of table-
searches by |KT | , and averaging over Nmodels repetitions. This
figure demonstrates the close agreement between simulated
and measured values.

NDecrypts

Since a test-decryption is done following every high-quality
hit, and since high-quality hits are a sub-type of all hits,

PA(n, �) = Pr{H ≥ �} =

n∑

j=�

pH(j),

(7)N̂searches = 𝓁 ⋅ PA(n, �) ≈ (5.2)D ⋅

n∑

j=�

pH(j).

0

0.25

0.5

0.75

1

0 0.5 1

θ n

Pr
 (

h
(n

−b
it

fr
ag

m
en

t o
f V

)
>=

 θ
)

Fig. 9 Probability of � or more known bits. The probability that an n-
bit tentative-keystream fragment has ≥ � known bits is plotted against
the normalized Hamming-weight threshold �∕n . Data are shown from
simulations (◦) and actual mBG-attacks (∙). Simulated probabilities
were calculated from 5,200,000-bit verified sequences, to which val-
ues of n ∈ {20, 24, 28, 32} and 0 ≤ � ≤ n were assigned. Measured
probabilities were obtained by dividing the observed number of table-
searches by the tentative-keystream length, using only those attacks in
which at least four models were available to average. mBG, modified
Babbage–Golić

SN Computer Science (2023) 4:486 Page 17 of 25 486

SN Computer Science

Ndecrypts can be discussed by starting with the probability of
a hit (’mimic’) itself.

Probability of Any Hit

Recall from Sect. 4.2 that a hit between the n-bit tentative-
keystream fragment KT (b) and the n-bit prefix Ph means that
V(b)⊗ KT (b) = V(b)⊗ Ph , or equivalently V(b)⊗ U = 0 ,
where U is a short-hand for (KT (b)⊕ Ph). We refer to this
equality as the hit condition.

Let v be a single bit of verified-sequence fragment V(b).
The hit condition will be satisfied trivially whenever v =
0. Since prefixes are chosen randomly and uniformly, and
since the table is built independently of the model, U can be
viewed as a uniformly distributed n-bit vector, so that the hit
condition will also be satisfied about half the time when v
= 1. Since V(b) contains h(V(b)) 1’s, the per-fragment prob-
ability that KT (b) is a hit is

To obtain the per-keystream probability, we average this
quantity over all bit-offsets within the �-bit tentative
keystream

Pr{V(b)⊗ U = 0} =
(
1

2

)h(V(b))

.

where the summation index changes from b = 1, 2,… ,� to
j = 0, 1,… , n using the notation (#j) to represent the number
of n-bit fragments of KT which contain j known bits. Finally,
since (#)j∕� is just the probability pH(j)

Figure 10 shows PHIT (n) vs KSG-size for data from
mBG-attacks (∙) and simulations (×). As can be seen, the

PHIT (n) =
(
1

𝓁

) 𝓁∑

b=1

(
1

2

)h(V(b))

=

(
1

𝓁

)[(
1

2

)h(V(1))

+

(
1

2

)h(V(2))

+⋯ +

(
1

2

)h(V(𝓁))
]

=

(
1

𝓁

)[
(#0)

(
1

2

)0

+ (#1)

(
1

2

)1

+(#2)

(
1

2

)2

+⋯ + (#n)

(
1

2

)n
]

=

n∑

j=0

(#j)

𝓁
⋅

(
1

2

)j

,

PHIT (n) =

n∑

j=0

pH(j)
(
1

2

)j

.

mBG−attacks
Simulations

0

0.05

0.1

0.15

0.2

12 24 36 48 60
KSG−size (n)

Pr
ob

ab
ili

ty
 o

f a
 H

IT

Fig. 10 Probability of a hit. The probability PHIT (n) that an n-bit
tentative-keystream fragment ’hits’ a row of the precomputed table
is shown against KSG-size n, using data from actual mBG-attacks (∙
symbols) and simulations (× symbols). Notice that the PHIT (n) falls
exponentially as n increases. KSG: keystream generator; mBG, modi-
fied Babbage–Golić

Successful attacks
Unsuccessful attacks
Simulation

−40

−30

−20

−10

0

0 0.25 0.5 0.75 1
θ n

lo
g 2

 (
Pr

 [
H

ig
h−

Q
ua

lit
y

H
it

])
Fig. 11 Probability of a high-quality hit. Shown here is the base-2
logarithm of PHQH(n, �) , plotted against �∕n . Data are from simula-
tions (×), successful attacks (∙), and planned unsuccessful attacks (◦).
For simulations, the probability comes from the second term in Eq.
(9), with � = 5,200,000 bits; n ∈ {20, 24, 28, 32} ; M = D =

√
N , and

various � ∈ {0, 2, 4,… , n}). For mBG-attacks, the probability was
obtained by computing Ndecrypts∕(M × Nsearches) . Notice the similar-
ity between the measured and simulated data, and also that as �∕n
approaches 1, probability estimates become less precise

 SN Computer Science (2023) 4:486 486 Page 18 of 25

SN Computer Science

probability of a hit declines exponentially with KSG-size n,
and fits the equation

Note that 12/20.8 is the length of runs of 1-bits in the veri-
fied sequence divided by the average length (in bits) of each
of its ’words’.

Probability of a High‑Quality Hit

In the mBG-attack, hits are either accepted as ’high-quality’
(when KT (b) has ≥ � known bits), or rejected as ’spurious’
(when KT (b) has < 𝜃 known bits). Thus, PHIT (n) can be split
into two terms

where Pspurious(n, �) is only defined when � ≥ 1.
From the original �-bit tentative keystream, at most

Nsearches fragments will be chosen as search-targets to com-
pare with the table. However, each of these targets could
potentially (e.g., when � = 0) hit up to M rows in the table.
To account for this, the number of test-decryptions per
model is defined as

Just as simulation offers an easy way to study N̂searches , so
too can it be applied to study N̂decrypts [i.e., p

Ĥ
(j) can be used

interchangeably with pH(j) in Eq. (10)]. But besides simula-
tion, there is still another short-cut at our disposal: un-suc-
cessful mBG-attacks. Since the number of test-decryptions
is a ’per-model’ quantity, it is not affected by the ultimate
outcome (i.e., success or failure) of cryptanalysis. Thus,
rather than waiting for an attack to succeed, useful informa-
tion can still be obtained by halting an attack after some
predetermined number of models have been analyzed, and
then averaging Ndecrypts over this number of models.

Figure 11 compares these different ways to estimate the
probability of a high-quality hit. All are log2-scaled and
plotted against �∕n . The ∙ symbols are from successful
mBG-attacks; the ◦ symbols are from a series of (planned)
unsuccessful mBG-attacks; and the × symbols are from

(8)PHIT (n) ≈
(

12

20.8

)
× 2−(0.135152)n.

(9)
PHIT (n) =

�−1∑

j=0

pH(j)
(
1

2

)j

+

n∑

j=�

pH(j)
(
1

2

)j

= Pspurious(n, �) + PHQH(n, �),

(10)

N̂decrypts = N̂searches ⋅MPHQH(n, �)

= 𝓁PA(n, �) ⋅M
n∑

j=�

PHQH(n, �)

≈ (5.2)DM

n∑

j=�

pH(j) ⋅

n∑

j=�

pH(j)
(
1

2

)j

.

simulations. Attacks used n = 20, 24, 28, and 32; M = D = √
N ; various � from 0 to (n − 2) ; and repetitions with differ-

ent secret keys and different samples of known-plaintext.
The planned unsuccessful attacks were halted once 100
models had been tried—or earlier if the attack succeeded
before that point. Either way, the probability of a high-qual-
ity hit was calculated by dividing Ndecrypts by (Nsearches ⋅M),
and averaging over however many models were used. (This
was done for successful attacks as well.) Simulations were
based on 5,200,000-bit V̂-sequences, with PHQH(n, �) calcu-
lated using the second summation in (9).

Figure 11 illustrates several important points. First (and
as expected), the three estimates of PHQH(n, �) are simi-
lar. Next, as � increases, the probability of high-quality
hit decreases. Two factors explain this trend: the number
of n-bit fragments of KT chosen to undergo a table-search
becomes smaller; and also the chance that one of these frag-
ments matches a prefix diminishes (i.e., this probability falls
as the number of known bits per-fragment, and � , increase).
Finally, the three methods for determining PHQH(n, �) all
become less precise as � approaches n. In this region of
parameter space, relatively few fragments within each KT
possess ≥ � known bits. In essence, the growing uncertainty
as � → n comes from fewer and fewer data-points being
included in each probability estimate.

NModels

The mBG-attack analyzes model after model until one ten-
tative keystream finally produces a valid hit. Nmodels is the
number of keystreams needed to make this happen. In some
sense, then, Nmodels is inversely related to the ’correct test-
decryption’ probability.

To review, suppose that fragment KT (b) makes a high-
quality hit with prefix Ph (paired with KSG-state Sh in the
precomputed table). This newly discovered state is first
adjusted (Sh → S′′

h
), and then used to produce ’regenerated’

keystream KR = KSG[S′′
h
]. If a test-decryption using KR cor-

rectly matches Q bits of known-plaintext, then KR must be
identical to part of the actual keystream (KA) used to encrypt
the message, and the attack succeeds. Consider several sce-
narios for the likelihood of a correct test-decryption, based
on the number of known bits in KT (b):

– If none of its bits are known (h(V(b)) = 0) , then KT (b)
would mimic all prefixes in the table; KR would not nec-
essarily bear any relationship to KT (b) or KA ; and a cor-
rect test-decryption would be unlikely. This could happen
during a mBG-attack with � = 0.

– If all bits of KT (b) are known (h(V(b)) = n), then KR
would usually reproduce KA , and a correct test-decryp-
tion would be likely. This could happen during a ’tra-

SN Computer Science (2023) 4:486 Page 19 of 25 486

SN Computer Science

ditional’ BG-attack (in which false alarms are rare), or
during a modified BG-attack with � = n.

– What if all of KT (b) ’s bits are known except for one? For
example, consider an mBG-attack with � = n − 1 , during
which a high-quality hit is produced by a KT-fragment for
which h(V(b)) = n − 1.

 Before comparison, Ph and KT (b) are both multiplied
by a vector (V(b)) containing n − 1 ones and a single
zero. This causes the prefix to only have a 50% chance
of being linked with the desired KSG-state. In other
words, KSG[Sh] always faithfully reproduces Ph , but Ph
may not actually equal KT (b) . After all, Sh was obtained
after comparing [Ph ⊗ V(b)] and [KT (b)⊗ V(b)] , not after
directly comparing Ph and KT (b) . If the single 0-bit in
V(b) causes KT (b) to be off from the original keystream,
then KR will not match KA and the test-decryption will be
wrong. Since 0- and 1-bits in Ph occur with equal prob-
ability, only 50% of the high-quality hits of this type will
yield a correct test-decryption.

Generalizing this idea, a correct test-decryption becomes
50% less likely with each unknown bit of KT (b) , so that

is the probability that a high-quality hit with KT (b) leads to
a correct test-decryption.

Notice that the above is a conditional probability, depend-
ing upon KT (b) being a high-quality hit in the first place. The
unconditional probability of interest is

where C stands for ’correct’ and STEP is the right-contin-
uous Heaviside function, STEP[x] = 1 (if x ≥ 0) and 0 (if
x < 0).

To obtain the per-model (not per-fragment) probability,
this quantity is averaged all tentative-keystream fragments

(
1

2

)n−h(V(b))

PC(b) = Pr{KT (b) → correct test-decryption ∩ KT (b) is a HQH}}

= Pr{KT (b) → correct | KT (b) is HQH} × Pr{KT (b) is HQH}

=
(1
2

)n−h(V(b))
× Pr{KT (b) is a HQH}

=
(1
2

)n−h(V(b))
× Pr{KT (b) is a hit ∩ KT (b) has ≥ � known bits}

=
(1
2

)n−h(V(b))
× Pr{KT (b) is a hit ∩ h(V(b)) ≥ �}

=
(1
2

)n−h(V(b))
× Pr{KT (b) is a hit | h(V(b)) ≥ �} × Pr{h(V(b)) ≥ �}

=
(1
2

)n−h(V(b))
×
(1
2

)h(V(b))
× STEP[h(V(b)) − �]

= STEP[h(V(b)) − �] ∕ N,

Pcorrect(n, �) =
(
1

�

) �∑

b=1

PC(b) =
PA(n, �)

N
.

Since each model will on average produce N̂decrypts test-
decryptions, the number of correct test-decryptions per
model is

so that the average number of models required for a suc-
cessful attack (i.e., the number of models per correct test-
decryption) will be

Estimated Time‑Complexity

Using (7), (10), and (11) respectively for N̂searches , N̂decrypts ,
and N̂models , the time-complexity can be estimated as

Ncorrect(n, �) = N̂decrypts ⋅ Pcorrect(n, �),

(11)

N̂models =
1

Ncorrect(n, �)

=
1

(𝓁M)PA(n, �)PHQH(n, �) ⋅ PA(n, �)∕N

≈
N

(5.2)DM ⋅ PHQH(n, �) ⋅ P
2
A
(n, �)

.

T̂mBG = N̂models × (N̂searches + N̂decrypts),

 MEASURED (TmBG)

ESTIMATED (TmBG)

20 24 28 32

8

16

24

32

40

KSG−size (bits)

lo
g 2

 (
tim

e
−

co
m

pl
ex

ity
)

Fig. 12 Time-complexity: measured vs. estimated. The logarithmic
time-complexity is plotted against KSG-size for two groups of data.
The ∙ symbols are empirically measured TmBG values, collected from
∼ 130 successful mBG-attacks. The × symbols are estimated T̂mBG
values, obtained from 5,200,000-bit simulated verified sequences
with the same (n, �)-values as the empirical data. Notice that T̂mBG
over-estimates the measured data, most apparently when n = 20 and
28. mBG, modified Babbage–Golić; KSG: keystream generator

 SN Computer Science (2023) 4:486 486 Page 20 of 25

SN Computer Science

which can be expanded to

Since 0 ≤ PA(n, �) ≤ 1 , this estimated time-complexity will
be ≥ N , whereas measured values, like those in Fig. 3, need
not always be this large (see "Comparing T̂mBG and TmBG" for
details). To emphasize, however, �TmBG > N simply suggests
that the mBG-attack would perform no better than brute-
force—not that PudgyTurtle is somehow providing security
’beyond’ O(N) complexity.

How well does this estimate reproduce results obtained
from actual attacks, and how can T̂mBG be used to further our
understanding of the mBG-attack? Figures 12 and 13 pro-
vide some confirmatory findings, while Table 6 and Fig. 14
use T̂mBG to gain some useful insights.

(12)

T̂mBG =

(
N

𝓁M ⋅ P2
A
(n, �)PHQH(n, �)

)

× [𝓁 ⋅ PA(n, �) + (𝓁M) ⋅ PA(n, �)PHQH(n, �)]

=
N

PA(n, �)

(
1 +

1

MPHQH(n, �)

)
.

Comparing T̂
mBG

 and T
mBG

Figure 12 shows TmBG and T̂mBG as a function of KSG-size.
Notice first that the estimated (×) and measured (∙) time-
complexities are similar, but that the estimates somewhat
exceed measured values—especially in the lower (smaller

A

TmBG vs. M

TmBG vs. D22

24

26

10 12 14 16
log2(D) (bits of data) or log2(M) (table−size)

lo
g 2

 (
T m

B
G
)

B

12

24

36

48

0 0.25 0.5 0.75 1
θ n

lo
g 2

 (
T m

B
G
)

Fig. 13 Estimated time-complexity. A Estimated time-complexity
T̂mBG (for n=24 and �=6) is shown against a log2-scaled X-axis,
which represents either D (the number of known-plaintext bits, shown
as ∙ symbols) or M (the number of rows in the table, shown as ◦ sym-
bols). The estimated time-complexity does not change substantially
with either D or M. B The log2-scaled estimated time-complexity is
plotted against �∕n for n = 24, M = D = 4096, and various � . Time-
complexity increases with � , a trend that becomes more noticeable
once �∕n exceeds 0.5. mBG, modified Babbage–Golić; KSG: key-
stream generator

Table 6 Time-complexity for ’extreme’ �

Shown here are mBG-attack complexity measures based on simu-
lated verified sequences, assuming a 24-bit KSG, M = D = 4096, and
Hamming-weight thresholds of � = 0 or � = 24 , all averaged over 20
repetitions. For each � (Column 1), the estimated number of tenta-
tive keystreams needed for a successful attack (̂Nmodels , Column 2);

the estimated time-per-model (̂Nsearches + N̂decrypts , Column 3); and
the estimated time-complexity (̂TmBG , Column 4) are given. Small � ’s
lead to fewer models which each require lengthy analysis; and vice
versa for large � . However, this tradeoff is not symmetric: the time-
complexity is lower when � = 0 compared to when � = n
mBG, modified Babbage–Golić, KSG: keystream generator

� N̂
models

Time- T̂
mBG

per-model

0 3.14 5.36e+06 1.68e+07
24 1.09e+10 1.42e+03 1.55e+13

MEASURED
(TmBG)

ESTIMATED
(TmBG)

0

32

64

lo
g 2

 (
tim

e
−

co
m

pl
ex

ity
)

Fig. 14 Time-complexity of attacks against a 32-bit KSG. Measured
(left) and estimated (right) time-complexity of attacks against an n
= 32-bit KSG, on a log2 scale. Even for this small KSG (by cryp-
tographic standards), successful mBG-attacks take a long time, and
thus, only a few data-points from actual attacks are available, and
these are limited to � ≤ 12 . However, estimating the time-complexity
allows visualization of data over the full range of � . mBG, modified
Babbage–Golić; KSG: keystream generator

SN Computer Science (2023) 4:486 Page 21 of 25 486

SN Computer Science

�) range. Some of this inaccuracy may be due to implemen-
tation-dependent ’endpoint effects’. For example, our soft-
ware only advances through KT until the point at which there
would no longer be sufficient data for a Q-bit test-decryption.
Sometimes, this number may be considerably smaller than
the idealized parameter � = |KT | − n + 1 (e.g., when n = 20,
D =

√
N = 1024, and Q = 96, this amounts to a difference

of Q∕� ≈ 10%). Another contributor to this over-estimation
is that attacks halt as soon as a valid hit occurs—which usu-
ally happens only part-way through a tentative keystream.
If, for example, only one model is needed (again, when � is
small), then Nsearches will only be tabulated from part of KT ,
not from all � of its bits. This would reduce the measured
time-per-model (i.e., relatively speaking, inflate the estimate),
and could produce similar effects on averaged values even
when Nmodels is small but still > 1.

Figure 13 shows how the estimated time-complexity
varies with D, M, and � . Of note, the estimated time-com-
plexity behaves the same way as its empirically measured
counterpart: it remains relatively unaffected by changes
in D (as in Fig. 5) or changes in M (as in Fig. 4), but
increases with �∕n (as in Fig. 6).

Extrapolating with T̂mBG

Described next are two usage cases in which the estimated
time-complexity—by extending the available parameter
range—facilitates more understanding of the mBG-attack.

Extremes of �

What happens when the mBG-attack is performed with
the most ’extreme’ Hamming-weight thresholds? At one
extreme (when � = 0), the mBG-attack behaves more like a
brute-force approach. Every KSG-state in the table is used
repeatedly for test-decryptions starting from each bit-offset
within the known plaintext. Few models will be required, but
each one will take longer to analyze. At the other extreme
(when � = n), the mBG-attack behaves more like the tradi-
tional BG-attack. Each tentative-keystream fragment only
rarely (probability ∼ 1∕N) makes a high-quality hit. More
models will be required, but the few—if any—high-quality
hits in each one can be tested quickly.

These analogies are imperfect. For instance, a real brute-
force attack involves trying N KSG-states, whereas the
mBG-attack with � = 0 repeatedly tries the same M ≤ N
states. Similarly, a traditional BG-attack uses every n-bit
fragment of known keystream, while the mBG-attack with
� = n only uses some fragments drawn from many ’hypo-
thetical’ (tentative) keystreams.

The time-complexity estimate can be further simpli-
fied when � = 0 and � = n . The probability of being above
threshold is

and the probability of a high-quality hit is

where the latter comes from the observation that, when � is
zero, all hits are ’high-quality’ by definition. Equation (12)
can be likewise simplified. When � = 0 , the estimated time-
complexity takes its smallest value

where the final approximation uses the curve-fitting equa-
tion for the PHIT (n) data in Fig. 10. When � = n , the time-
complexity reaches its largest value

Table 6 shows averaged results from 20 simulated extreme-�
mBG-attacks against a 24-bit KSG, 10 with � = 0 and 10
with � = n (i.e., 24). Columns 2 (Nmodels) and 3 (time-
per-model) confirm that fewer models each take longer to
analyze when � = 0 ; and more more models each require
less processing-time when � = n . This inverse relationship
between the number of models and the time-per-model
might suggest that the mBG-attack performs poorly at both
extremes of � . However, the estimated time-complexity
(column 4) demonstrates that this is not the case: the ’trade-
off’ between Nmodels and time-per-model is not symmetric.
Attacks with smaller � ran faster than attacks with larger
� . The time-penalty for creating models is heavier than the
penalty for analyzing them.

Worst‑Case Time‑Complexity

Another use for the estimated time-complexity is to study
mBG-attacks that would otherwise take a prohibitive amount
of time. For instance, even though a n=32-bit inner state
KSG-size is small by cryptographic standards, nevertheless
a modified BG-attack against a 32-bit KSG may take a very
long time—especially when �∕n is close to 1. This ’worst-
case’ cryptanalysis scenario can be better quantified via the
estimated time-complexity rather than the measured one.

Figure 14 shows the time-complexity measured from
mBG-attacks (∙ symbols) and estimated from simulated
verified sequences (× symbols). While actual attacks only

PA(n, �) =

{
1 if � = 0

pH(n) if � = n,

PHQH(n, �) =

{
PHIT (n) if � = 0

pH(n)∕N if � = n,

MIN[T̂mBG] = N

(
1 +

1

MPHIT (n)

)
≈ N

(
1 +

20.8

12
⋅
N0.135152

M

)
,

MAX[T̂mBG] =
N

pH(n)

(
1 +

N

MpH(n)

)
.

 SN Computer Science (2023) 4:486 486 Page 22 of 25

SN Computer Science

provide data up to log2(TmBG) ≈ 32 , the estimation technique
broadens the range substantially, to log2(T̂mBG) ≈ 56.

Although the measured data (left) do not allow any con-
clusions about the upper bound of TmBG , the expanded view
(right) shows it to be ∼ 7

4
⋅ log2(N) . Again, we emphasize

that time-complexities in this large just denote cases in
which brute-force would be as reasonable an approach as the
mBG-attack. Nevertheless, knowing the magnitude of this
upper bound is still helpful: as a target to be lowered, it may
help benchmark future improvements in the mBG-attack.

Lightweight Ciphers

The Internet of Things (IoT) is fostering a demand for
encryption by devices with significant hardware and soft-
ware limitations (e.g., ’smart’ lightbulbs, RFID tags, and
micro-sensor arrays), which in turn has sparked an interest
in ’lightweight’ ciphers.4

While many lightweight block-ciphers have been pro-
posed (including but not limited to KLEIN [25], Simon /
Speck [8], KTANTAN [18], PRESENT [12], Piccolo [44],
Midori [7], PRINCE [14], LBlock [50], LED [26], and
TWINE [32]), there are fewer lightweight stream-ciphers
(e.g., Trivium [16], A4 [39], Hummingbird [22], Bean [33],
Sprout [1], Plantlet [37], and LIZARD [27]). In part, this
relative paucity is due to an oft-cited design criterion that
applies to stream (but not block) ciphers: to achieve n-bit
security, the inner state size of the stream cipher must be at
least 2n bits [38]. While this precaution addresses concerns
about the Birthday Paradox and TMDT attacks, doubling the
inner state size obviously makes it harder to be ’lightweight’.

Recently, two new approaches to lightweight stream
cipher design have been proposed. One, discussed by
Hamann, Krause, and Meier and instantiated as LIZARD,
is based on the so-called ’FP(1)-mode’ [27]. Essentially,
this involves using the key twice—once (paired with the
IV) as an initial state, and once again (via XOR) after ade-
quate mixing of the initial state. This approach can raise the
security level of a tradeoff-based key-recovery attack from
n

2
 to 2n

3
 bits. Another approach, proposed by Armknecht and

Mikhalev and instantiated as Sprout, is “KSG with Keyed
Update Function” (KUF) [1]. This concept involves incor-
porating part of the secret key into the state-update func-
tion, thus reducing its vulnerability to TMDT attacks while
still allowing smaller states. Since its introduction, Sprout

has been cryptanalyzed in several ways, including not only
time–memory tradeoffs [23] but also other attacks involv-
ing guess-and-determine strategies, SAT solvers, differential
fault analysis, and chosen-IV/related-key determination [6,
28, 34, 36]. A more generalized approach to attacking KUF-
based stream-ciphers has also been advanced [31]. Even so,
the KUF concept remains an exciting new design approach
for lightweight stream-ciphers, and a successor to Sprout
(called Plantlet) which addresses various security issues is
now available [37].

How does PudgyTurtle fit into the lightweight stream-
cipher taxonomy? Since PudgyTurtle is not itself a cipher,
neither can it be a ’lightweight cipher’. It can, however, work
alongside a lightweight KSG. PudgyTurtle seems to oppose
one goal of lightweight cryptography: resource minimiza-
tion. Its expansion property (i.e., producing about twice as
much ciphertext and consuming about five times as much
keystream) could be impractical for some IoT applications.
Nevertheless, PudgyTurtle shares another goal of light-
weight stream-ciphers: resistance to tradeoff attacks. Using
PudgyTurtle, an n-bit KSG provides a security level of > n

2

against the mBG-attack (i.e., TmBG >
√
N). Thus, while it is

wrong to claim that PudgyTurtle inherently turns an exist-
ing stream-cipher algorithm into one that is ’lightweight’,
it is certainly reasonable to continue studying PudgyTurtle
within the overall framework of lightweight ciphers. Future
work in this context should focus on determining the added
hardware cost (e.g., logic blocks and gate equivalents) and
performance penalty (e.g., FELICS metrics [19]) of combin-
ing the PudgyTurtle process with the existing lightweight
stream-ciphers.

Conclusions

We have analyzed a time–memory–data tradeoff attack
against PudgyTurtle. This method, the modified-BG
(mBG) attack, is based on the well-known work of Bab-
bage and Golić [5, 24]. Using ’toy’ keystream generators
based on simple feedback shift registers of various sizes,
we have shown that the time-complexity of the mBG-
attack exceeds O(

√
N)—the bound suggested by the tradi-

tional BG-attack against a standard binary-additive stream
cipher system. We have also demonstrated how various
parameters, including memory, data, and an mBG-spe-
cific quantity (Hamming-weight threshold, �), affect the
attack’s time-complexity. Specifically, choosing smaller
values of � leads to faster attacks, while changing the table
size or amount of data have only limited effects. Finally,
we have suggested a way to estimate time-complexity
based on a probability distribution which can be simu-
lated. Simulations validate these conclusions, and extend

4 For example, the US National Institute of Standards and Technol-
ogy site https:// csrc. nist. gov/ Proje cts/ light weight- crypt ograp hy/ final
ists discusses several proposals in this area, and https:// crypt olux. org/
index. php/ Light weight_ Crypt ograp hy compares them using several
metrics.

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://cryptolux.org/index.php/Lightweight_Cryptography
https://cryptolux.org/index.php/Lightweight_Cryptography

SN Computer Science (2023) 4:486 Page 23 of 25 486

SN Computer Science

them to a wider range of parameter space than could have
obtained from actual attacks.

Several questions about the mBG-attack and PudgyTur-
tle remain as open topics of research:

What is the distribution of the Hamming-weights of n-
bit samples of the verified sequence? The pH distribution
has an interesting and unusual shape. An analytical expres-
sion for it remains elusive, but could lead to a closed-form
solution for the mBG-attack’s time-complexity.

Could a better tradeoff attack be designed? Specifically,
could some other (non-mBG) TMDT-attack reduce time-
complexity down to O(

√
N) ? Or could the mBG-attack

itself be improved? For example, optimizing the software
that does ’model creation’ and ’filling-in’ could speed up
attacks which require many models, thus expanding the
attacker’s flexibility to choose larger values of �.

Does the PudgyTurtle process itself introduce vulner-
abilities? PudgyTurtle uses keystream differently than a
standard binary-additive stream cipher. Instead of enci-
phering plaintext by XOR’ing it with the keystream,
PudgyTurtle uses keystream to encode the plaintext and
to encipher the codewords. In some ways, this concept
(using the output of an encryption algorithm in a differ-
ent way) resembles an ‘encryption mode’—like cipher-
text block chaining [CBC] for block-ciphers. The security
of CBC-mode is linked to the security of its underlying
block-cipher, but is PudgyTurtle’s security similarly linked
to the security of its underlying KSG? Or does PudgyTur-
tle produce its own security problems—in the same way
that, for example, poorly implemented CBC-mode may
produce vulnerabilities (e.g., padding oracle, non-random,
or repeated-IV attacks [46, 48]) despite a strong underly-
ing block-cipher.

Besides TMDT attacks, what other forms of cryptanaly-
sis would succeed against PudgyTurtle? Related to the
above, a cipher may be secure against tradeoff attacks yet
susceptible to other forms of cryptanalysis. For example,
the Advanced Encryption Standard [AES] with large-
enough keys is TMDT-resistant, but may be susceptible
to side-channel (timing) attacks if not implemented care-
fully [9, 13, 47]; and stream-ciphers may be tradeoff-
resistant but still vulnerable to slid-pair and correlation-
based attacks [17, 49]. Since non-TMDT attacks against
PudgyTurtle will be inevitable, its apparently good perfor-
mance against a tradeoff attack is reassuring, but still only
one aspect of an overall security evaluation.

Data availability The authors declare that the data supporting the find-
ings of this study are available within the paper and by request. As
well, a limited implementation of PudgyTurtle encryption/decryption
is available at https:// www. github. com/ Smaug ust/ pudgy turtle.

Declarations

Conflict of interest Both authors declare that no funding or grants were
received to assist with the preparation of this manuscript, and confirm
that no human or animal subjects were involved in this research. Opin-
ions and results contained herein do not imply any official position
or endorsement by the Massachusetts General Hospital, Mass General
Brigham, McKnight Brain Institute, or the University of Arizona.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Armknecht F, Mikhalev V. On lightweight stream ciphers with
shorter internal states. In: Fast software encryption—22nd inter-
national workshop, FSE 2015, Istanbul, Turkey, March 8–11,
2015, revised selected papers. 2015. pp. 451–70.

 2. August D, Smith A. Pudgyturtle GitHub repository, 2021. https://
github. com/ smaug ust/ Pudgy Turtle.

 3. August DA, Smith AC. Pudgyturtle: using keystream to encode
and encrypt. SN Comput Sci. 2020;1(4):Article#226. https:// doi.
org/ 10. 1007/ s42979- 020- 00221-z

 4. August DA, Smith AC. Pudgyturtle: variable-length, keystream-
dependent encoding to resist time-memory tradeoff attacks. IACR
Cryptology ePrint Archive, Report 2020/838. 2020. https:// eprint.
iacr. org/ 2020/ 838.

 5. Babbage S. Improved “exhaustive search” attacks on stream
ciphers. In: European convention on security and detection, 1995,
Institution of Engineering and Technology. 1995. pp. 161–66.

 6. Banik S. Some results on Sprout. In: Biryukov A, Goyal V
(eds) 16th international conference on cryptology in India,
INDOCRYPT 2015. Lecture notes in computer science
INDOCRYPT ’15. Springer International Publishing, Berlin;
2015. pp. 124–39.

 7. Banik S, Bogdanov A, Isobe T, Shibutani K, Hiwatari H, Akishita
T, Regazzoni F. Midori: a block cipher for low energy. In: Iwata T,
Cheon JH, editors. Advances in cryptology—ASIACRYPT 2015.
Springer, Berlin; 2015. pp. 411–36.

 8. Beaulieu R, Treatman-Clark S, Shors D, Weeks B, Smith J, Wing-
ers L. The SIMON and SPECK lightweight block ciphers. In:
2015 52nd ACM/EDAC/IEEE design automation conference
(DAC), 2015. pp. 1–6. https:// doi. org/ 10. 1145/ 27447 69. 27479 46.

 9. Bernstein DJ. Cache-timing attacks on AES. 2005. http:// cr. yp. to/
antif orgery/ cache timing- 20050 414. pdf.

 10. Biryukov A, Shamir A. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In: Okamoto T, editor. Advances in cryptol-
ogy—ASIACRYPT 2000. Springer, Berlin; 2000. pp. 1–13.

 11. Biryukov A, Shamir A, Wagner D. Real time cryptanalysis of
A5/1 on a PC. In: Goos G, Hartmanis J, van Leeuwen J, Schneier
B, editors. Fast software encryption. Springer, Berlin; 2001. pp.
1–18.

 12. Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann
A, Robshaw MJB, Seurin Y, Vikkelsoe C. PRESENT: an

https://www.github.com/Smaugust/pudgyturtle
http://creativecommons.org/licenses/by/4.0/
https://github.com/smaugust/PudgyTurtle
https://github.com/smaugust/PudgyTurtle
https://doi.org/10.1007/s42979-020-00221-z
https://doi.org/10.1007/s42979-020-00221-z
https://eprint.iacr.org/2020/838
https://eprint.iacr.org/2020/838
https://doi.org/10.1145/2744769.2747946
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

 SN Computer Science (2023) 4:486 486 Page 24 of 25

SN Computer Science

ultra-lightweight block cipher. In: Paillier P, Verbauwhede I, edi-
tors. Cryptographic hardware and embedded systems—CHES
2007. Springer, Berlin; 2007. pp. 450–66.

 13. Bonneau J, Mironov I. Cache-collision timing attacks against aes.
In: Goubin L, Matsui M, editors. Cryptographic hardware and
embedded systems—CHES 2006. Springer, Berlin; 2006. pp.
201–15.

 14. Borghoff J, Canteaut A, Güneysu T, Kavun EB, Knezevic M,
Knudsen LR, Leander G, Nikov V, Paar C, Rechberger C, Rom-
bouts P, Thomsen SS, Yalçın T. PRINCE—a low-latency block
cipher for pervasive computing applications. In: Wang X, Sako K,
editors. Advances in cryptology—ASIACRYPT 2012. Springer,
Berlin; 2012. pp. 208–25.

 15. van den Broek F, Poll E. A comparison of time-memory trade-off
attacks on stream ciphers. In: Youssef A, Nitaj A, Hassanien AE,
editors. Progress in cryptology—AFRICACRYPT 2013. Springer,
Berlin; 2013. pp. 406–23.

 16. Cannière CD, Preneel B. Trivium. In: Billet O, Robshaw M (eds)
New stream cipher designs. Lecture notes in computer science,
vol. 4986. Springer, Berlin; 2008. pp. 244–66.

 17. Copeland J, Simpson L. Finding slid pairs for the Plantlet stream
cipher. In: Proceedings of the Australasian computer science week
multiconference, association for computing machinery, New York,
NY, USA, ACSW ’20, 2020. https:// doi. org/ 10. 1145/ 33730 17.
33730 24.

 18. De Cannière C, Dunkelman O, Knežević M. KATAN and KTAN-
TAN—a family of small and efficient hardware-oriented block
ciphers. In: Clavier C, Gaj K, editors. Cryptographic hardware
and embedded systems—CHES 2009. Springer, Berlin; 2009. pp.
272–88.

 19. Dinu D, Biryukov A, Großschädl J, Khovratovich D, Le Corre Y,
Perrin L. FELICS—fair evaluation of lightweight cryptographic
systems. 2015. https:// www. crypt olux. org/ index. php/ FELICS.
Accessed 2 Oct 2022.

 20. Dubrova E. A list of maximum period NLFSRs. IACR Cryptol-
ogy ePrint Archive, Report 2012/166, 2012. https:// eprint. iacr. org/
2012/ 166.

 21. Dunkelman O, Keller N. Treatment of the initial value in time-
memory-data tradeoff attacks on stream ciphers. Inf Process Lett.
2008;107(5):133–7.

 22. Engels DW, Fan X, Gong G, Hu H, Smith EM. Hummingbird:
ultra-lightweight cryptography for resource-constrained devices.
In: Financial cryptography workshops 2010.

 23. Esgin MF, Kara O. Practical cryptanalysis of full Sprout with
TMD tradeoff attacks. Cryptology ePrint Archive, Report
2015/289, 2015. https:// eprint. iacr. org/ 2015/ 289.

 24. Golić JD. Cryptanalysis of alleged A5 stream cipher. In: Fumy
W, editor. Advances in cryptology—EUROCRYPT ’97. Berlin:
Springer; 1997. p. 239–55.

 25. Gong Z, Nikova S, Law YW. KLEIN: a new family of lightweight
block ciphers. In: Juels A, Paar C, editors. RFID: security and
privacy. Berlin: Springer; 2012. p. 1–18.

 26. Guo J, Peyrin T, Poschmann A, Robshaw M. The LED block
cipher. In: Preneel B, Takagi T, editors. Cryptographic hardware
and embedded systems—CHES 2011. Berlin: Springer; 2011. p.
326–41.

 27. Hamann M, Krause M, Meier W. LIZARD—a lightweight stream
cipher for power-constrained devices. IACR Trans Symm Cryptol.
2017;1:45–79.

 28. Hao Y. A related-key chosen-IV distinguishing attack on full
Sprout stream cipher. Cryptology ePrint Archive, Report
2015/231, 2015. https:// ia. cr/ 2015/ 231

 29. Hellman M. A cryptanalytic time-memory trade-off. IEEE Trans
Inf Theor. 1980;26(4):401–6.

 30. Kalenderi M, Pnevmatikatos D, Papaefstathiou I, Manifavas C.
Breaking the GSM A5/1 cryptography algorithm with rainbow

tables and high-end FPGAS. In: 22nd international conference
on field programmable logic and applications (FPL); 2012. pp.
747–53.

 31. Kara O, Esgin MF. On analysis of lightweight stream ciphers with
keyed update. IEEE Trans Comput. 2019;68(1):99–110. https://
doi. org/ 10. 1109/ TC. 2018. 28512 39.

 32. Kobayashi E, Suzaki T, Minematsu K, Morioka S. TWINE: a
lightweight block cipher for multiple platforms. In: Selected areas
in cryptography, 19th international conference (SAC 2012), vol.
7707. Lecture notes in computer science. Springer, Berlin; 2012.
pp. 339–54.

 33. Kumar N, Ojha S, Jain K, Lal S. Bean: a lightweight stream
cipher. In: Proceedings of the 2nd international conference on
security of information and networks, association for computing
machinery, New York, NY, USA, SIN ’09, 2009. pp. 168–71.
https:// doi. org/ 10. 1145/ 16261 95. 16262 38.

 34. Lallemand V, Naya-Plasencia M. Cryptanalysis of full Sprout.
In: Gennaro R, Robshaw M (eds) Advances in cryptology—
CRYPTO 2015, Part 1. lecture notes in computer science, vol.
9215. Springer, Berlin; 2015;663–82.

 35. Li Z. Optimization of rainbow tables for practically cracking GSM
A5/1 based on validated success rate modeling. In: Proceedings
of the RSA conference on topics in cryptology—CT-RSA 2016—
volume 9610. Springer, Berlin; 2016. pp. 359–77.

 36. Maitra S, Sarkar S, Baksi A, Dey P. Key recovery from state infor-
mation of sprout: application to cryptanalysis and fault attack.
IACR cryptology ePrint Archive, Report 2015/236, 2015. https://
ia. cr/ 2015/ 236.

 37. Mikhalev V, Armknecht F, Muller C. On ciphers that continu-
ally access the non-volatile key. IACR Trans Symmet Cryptol.
2017;2016:52–79.

 38. Mileva A, Dimitrova V, Kara O, Mihaljević MJ. Catalog and
illustrative examples of lightweight cryptographic primitives. In:
Avoine G, Hernandez-Castro J, editors. Security of ubiquitous
computing systems: selected topics. Cham: Springer International
Publishing; 2021. p. 21–47.

 39. Mohandas NA, Swathi A, R A, Nazar A, Sharath G. A4: a light-
weight stream cipher. In: 2020 5th international conference on
communication and electronics systems (ICCES), 2020. pp.
573–77. https:// doi. org/ 10. 1109/ ICCES 48766. 2020. 91380 48.

 40. Oechslin P. Making a faster cryptanalytic time-memory trade-off.
In: Boneh D, editor. Advances in cryptology—CRYPTO 2003.
Berlin: Springer; 2003. p. 617–30.

 41. Papantonakis P, Pnevmatikatos D, Papaefstathiou I, Manifavas C.
Fast, FPGA-based rainbow table creation for attacking encrypted
mobile communications. In: 2013 23rd international conference
on field programmable logic and applications, 2013. pp. 1–6.
https:// doi. org/ 10. 1109/ FPL. 2013. 66455 25.

 42. Rivest RL, Sherman AT. Randomized encryption techniques. In:
Chaum D, Rivest RL, Sherman AT (eds) Advances in cryptology:
Proceedings of Crypto ’82, Springer US, Boston, MA; 1983. pp.
145–63.

 43. Saarinen MJO. A time-memory tradeoff attack against LILI-128.
In: Daemen J, Rijmen V, editors. Fast software encryption. Berlin:
Springer; 2002. p. 231–6.

 44. Shibutani K, Isobe T, Hiwatari H, Mitsuda A, Akishita T, Shirai T.
Piccolo: an ultra-lightweight blockcipher. In: Preneel B, Takagi T,
editors. Cryptographic hardware and embedded systems—CHES
2011. Berlin: Springer; 2011. p. 342–57.

 45. Smith A. An Inquiry into the Nature and Causes of the Wealth
of Nations. Project Gutenberg. 2002. http:// www. guten berg. org/
ebooks/ 3300. Retrieved 2 Jan 2021. Urbana, Illinois. 2002.

 46. of Standards NI, Technology MD. Recommendations for block
cipher modes of operation: Methods and techniques. Tech. Rep.
NIST Special Publication SP 800-38A, U.S. Department of Com-
merce, Washington, D.C. 2001.

https://doi.org/10.1145/3373017.3373024
https://doi.org/10.1145/3373017.3373024
https://www.cryptolux.org/index.php/FELICS
https://eprint.iacr.org/2012/166
https://eprint.iacr.org/2012/166
https://eprint.iacr.org/2015/289
https://ia.cr/2015/231
https://doi.org/10.1109/TC.2018.2851239
https://doi.org/10.1109/TC.2018.2851239
https://doi.org/10.1145/1626195.1626238
https://ia.cr/2015/236
https://ia.cr/2015/236
https://doi.org/10.1109/ICCES48766.2020.9138048
https://doi.org/10.1109/FPL.2013.6645525
http://www.gutenberg.org/ebooks/3300
http://www.gutenberg.org/ebooks/3300

SN Computer Science (2023) 4:486 Page 25 of 25 486

SN Computer Science

 47. Tsunoo Y, Saito T, Suzaki T, Shigeri M, Miyauchi H. Cryptanaly-
sis of des implemented on computers with cache. In: Walter CD,
Koç ÇK, Paar C, editors. Cryptographic hardware and embedded
systems—CHES 2003. Berlin: Springer; 2003. p. 62–76.

 48. Vaudenay S. Security flaws induced by CBC padding—applica-
tions to SSL, IPSEC, WTLS... In: Proceedings of the interna-
tional conference on the theory and applications of cryptographic
techniques: advances in cryptology, EUROCRYPT ’02, 2002. .
Springer, Berlin. pp. 534–46.

 49. Wang S, Liu M, Lin D, Ma L. Fast correlation attacks on Grain-
like small state stream ciphers and cryptanalysis of Plantlet,

Fruit-v2 and Fruit-80. IACR Cryptology ePrint Archive, Report
2019/763, 2019. https:// ia. cr/ 2019/ 763.

 50. Wu W, Zhang L. Lblock: a lightweight block cipher. In: Lopez
J, Tsudik G, editors. Applied cryptography and network security.
Berlin: Springer; 2011. p. 327–44.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://ia.cr/2019/763

	Characterizing a Time–Memory Tradeoff Against PudgyTurtle
	Abstract
	Introduction
	Notation

	PudgyTurtle: A Review
	Keystream
	Encryption
	Decryption
	Expansion and Lengths

	Tradeoff Attacks
	The BG-Attack

	Modified Babbage–Golić Attack
	Tentative Keystream
	Verified Sequence
	Word-Based Notation

	Modified BG-Attack: Detailed Description
	Adjustment

	Complexity of the Modified BG-Attack
	Traditional BG-Attack: Time-Complexity
	Modified BG-Attack: Time-Complexity

	Empirical Results
	Effect of n on
	Effect of M on
	Effect of D on
	Effect of on

	Parameterizing the Time-Complexity
	Hamming-Weight Distribution
	Anchor 28
	Anchor 29
	Probability of Any Hit
	Probability of a High-Quality Hit

	Anchor 32
	Estimated Time-Complexity
	Comparing and
	Extrapolating with
	Extremes of
	Worst-Case Time-Complexity

	Lightweight Ciphers
	Conclusions
	References

