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Abstract
PudgyTurtle is not a cipher, but rather an alternative way to utilize the keystream in binary-additive stream-cipher crypto-
systems. Instead of modulo-2 adding the keystream to the plaintext, PudgyTurtle uses the keystream to encode 4-bit groups 
of plaintext, and then to encipher each codeword. One goal of PudgyTurtle is to make time–memory tradeoff attacks more 
difficult. Here, we investigate one such attack (a modification of the well-known Babbage–Golić method), and show that 
its time-complexity is harder on average than an analogous tradeoff attack against a standard binary-additive stream cipher; 
may approach that of a ’brute-force’ attack; can be reduced by certain parameter choices; and can be formulated in terms of 
a probability distribution which is amenable to simulation.

Keywords Symmetric encryption · Stream cipher · Time–memory tradeoff · Coding theory

Introduction

PudgyTurtle uses keystream to encode, as well as to enci-
pher, the plaintext. It is not properly a cipher, but rather 
a technique that can be incorporated into binary-additive 
stream cipher systems [2]. Previous work suggested that 
time–memory attacks against PudgyTurtle were difficult [3, 
4], but this conclusion was based on relatively few attacks 
using a limited range of parameters. Here, we explore one 
time–memory tradeoff attack in much greater detail, and 
show how its cryptanalytic cost depends upon various 
parameters. Our main result is that, while a time–memory 
tradeoff attack against PudgyTurtle can be more efficient 
than brute-force, it is typically harder than a ’standard’ time-
memory attack against a non-PudgyTurtle system with the 
same inner state size.

First, we provide general overviews of PudgyTurtle 
and time–memory–data tradeoff attacks (“Notation” and 
“PudgyTurtle: A Review”). Next, we explain in detail one 
such attack against PudgyTurtle (“Tradeoff Attacks”), review 

a measure for its time-complexity, (“Modified Babbage–Golić 
Attack”), explore how this quantity varies with several different 
parameters (“Complexity of the Modified BG-Attack”); and 
show its dependence upon an underlying probability distribu-
tion (“Empirical Results”). Finally, we discuss PudgyTurtle 
in the context of lightweight stream-ciphers (“Lightweight 
Ciphers”).

Notation

Hexadecimal values are prefixed by 0x and binary val-
ues subscripted by 2 (e.g., 254 can be written 0xFE or 
111111102 ). X stands for plaintext, Y for ciphertext, and 
K for keystream, and all elements of these sequences are 
1-indexed. PudgyTurtle operates on 4-bit groups (’nibbles’) 
rather than single bits. Subscripted upper case letters denote 
groups of bits (e.g., Ki , Xi , and Yi denote a keystream nib-
ble, a plaintext nibble, and a ciphertext byte). Subscripted 
lowercase letters denote bits (e.g., the keystream K can 
be written K1 , K2 , K3,… , where Ki = (k4i−3 ‖k4i−2 ‖k4i−1 
‖k4i) ∈ {0, 1}4 , ki ∈ {0, 1} , and ’ ‖ ’ denotes concatenation. 
The length of binary sequence Z is |Z| (bits) or NZ = |Z|∕4 
(nibbles). Quantities known to the attacker are decorated 
with primes or double-primes. For example, X� ∈ X is the 
known plaintext, and Y � ∈ Y  is the encrypted known plain-
text. This notation of convenience maintains the correspond-
ence between indices (i.e., X�

1
,X�

2
,X�

3
,… ↔ Y �

1
, Y �

2
, Y �

3
 , etc.) 
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without having to include the positional offsets of X′ within 
X and Y ′ within Y.

PudgyTurtle: A Review

This section provides a short overview of PudgyTurtle’s 
encryption and decryption process, its ciphertext expan-
sion, and its keystream consumption. Readers already 
familiar with this material may wish to skip to Sect. 3.

PudgyTurtle is a cipher-agnostic method that can be 
used alongside a binary-additive stream cipher. In essence, 
a keystream-dependent plaintext encoding step is included 
before the usual XOR-based enciphering step. PudgyTurtle 
encryption and decryption are

Keystream

The keystream used by PudgyTurtle can be from any 
finite-state machine ’black-box’ keystream generator 
(KSG). This KSG operates on an n = log2(N)-bit state, 
which behaves as follows on the ith iteration:

where Si ∈ {0, 1}n and Si+1 ∈ {0, 1}n are the current and next 
states; � ∶ {0, 1}n → {0, 1}n is the state-update function; 
z ∶ {0, 1}n → {0, 1} is the output function; and ki ∈ {0, 1} 
is the output bit. Since z and � are known to all, the sender 
and receiver must initialize the KSG to state S0 with a secret 
key and also possibly an initial value (IV, such as a nonce or 
counter). After initialization, a warm-up phase (i.e., updat-
ing the KSG a number of times but ignoring the output) 
may also be used to mix S0 into the state. In this manu-
script, however, the notation KSG[S] refers specifically to 
the ’immediate’ sequence of bits k1, k2, k3,… generated from 
state S—ignoring warm-up. Thus, PudgyTurtle encryption 
in (1) can also be written as Y = P(X, KSG[S0]).

Encryption

To encrypt plaintext nibble Xi with keystream starting at 
nibble Kj : 

1. Set position marker t(i − 1) to j − 1;

(1)
Y = P(X,K)

X = P
−1(Y ,K).

Si+1 = �(Si)

ki = z(�(Si)),

2. Create a mask from the first two available keystream 
nibbles: M = (Kj‖Kj+1);

3. Generate new keystream nibbles (starting with Kj+2 ) 
until either 

(a) some keystream nibble, denoted Kt(i) , matches Xi 
exactly or differs from it by a single bit. If this 
happens, proceed to Step 4.

  or...
(b) 32 keystream nibbles have been generated without 

a match as described in 3(a). If this overflow event 
happens,

• Output the byte ����⊕M to mark the event;
• Let j ← j + 34;
• Return to Step 1;

4. Encode the plaintext-to-keystream match:

• Calculate the failure counter, F, which represents 
the number of times (modulo 32) that Xi failed to 
match a keystream nibble: F = t(i) − t(i − 1) − 3 . 
Note that F is limited to the range {0, 1, 2,… , 31}.

  If there are no overflows (the usual case), 
then Kt(i) = Kj+2+F . For instance, starting with 
i = j = 1, and assuming that X1 matches the 
very first keystream nibble after the mask 
(i.e., K3 ), then the failure counter is zero: 
F = t(1) − t(0) − 3 = 3 − 0 − 3 = 0 . If instead X1 
had matched K4 , then F would be 1; and so on. If an 
overflow occurs (e.g., if X1 did not match the key-
stream until K40 ), then F would be 40 − 34 − 3 = 3.

• Define the discrepancy code

D encodes the similarity between Xi and Kt(i) onto the 
set {0, 1, 2, 3, 4} (i.e., 0 for an exact match, and 1–4 
for a 1-bit mismatch, with the rightmost/low-order 
bit defined as position #1).

• Form an 8-bit codeword, C = (F‖D) , where F is 
represented as a 5-bit number and D as a 3-bit 
number (e.g., if F = 3 and D = 4 , then C would be 
000112 ‖ 1002 = 000111002 = 0x1C);

5. Encipher this codeword by XOR’ing it with the mask to 
produce a ciphertext byte Y = C⊕M;

6. Output Y.

Table 1 illustrates how the PudgyTurtle process trans-
forms the short (2-nibble) plaintext 0xAB into ciphertext 
0x0516, using keystream 0, 1, 2, 3, 4, 5, 6, 

D =

{
0, ifX

i
= K

t(i)

1 + log2(Xi
⊕ K

t(i)), ifXi
≠ K

t(i);
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7, 8, 9. Notice that the ciphertext is twice as long as 
the original plaintext and that about five keystream nib-
bles are consumed per plaintext nibble. These ’expansion’ 
effects are detailed in "Expansion and Lengths".

Table 2 illustrates overflow events in detail, assuming that 
X1 has already been encrypted (using K1 through K4 ) and 
X2 is now being encrypted starting at K5 . Each section of 
the table shows how a failure counter of F = 2 would look 
assuming a different number of overflow events (0, 1, or 2). 
In the usual situation (no overflows, top), the plaintext-to-
keystream match occurs at K9 ; with one overflow, the match 
would occur at K43 ; and with two overflows, at K77.

Decryption

Each ciphertext symbol Y = Y1, Y2, ... represents an 8-bit 
byte – not a 4-bit nibble. To decrypt Yi with keystream start-
ing at nibble Kj : 

1. Create a mask M = (Kj‖Kj+1);
2. Decipher (unmask) Yi to reveal the underlying codeword 

C = Yi ⊕M;
3. Decode C as follows: 

(a) If C = 0xFF, then an overflow occurred during 
the original encoding:

• Generate and discard 32 keystream nibbles;
• Let j ← j + 34;
• Let i ← i + 1;
• Return to Step 1.

(b) If C ≠ ���� , then

• Extract the failure counter from the codeword’s 
five high-order bits ( F = (C⊗ ����) ≫ 3 ) and 
the discrepancy code from its three low-order bits 
( D = C⊗ ���� ), where ⊗ is a bit-wise ’AND’ and 
≫ is the right-shift operator.

• Generate F + 1 new keystream nibbles. The last 
of these, Kt(i) , is the one that matched the plaintext 
nibble to within a bit;

• Recover the plaintext nibble from Kt(i) by inverting 
D

X =

{
Kt(i) ifD = 0;

Kt(i) ⊕ 2D−1 ifD ≠ 0.

Table 1  PudgyTurtle encryption

Plaintext X = 0xAB is transformed into ciphertext 0x0516 under keystream K = {���, ���, ���, ���, ���,
0x5, 0x6, 0x7, 0x8, 0x9}

PLAINTEXT X = X1,X2 = 0xA, 0xB
KEYSTREAM K = K1,K2,K3,… ,K10 = 0,1,2,3,4,5,6,7,8,9
ENCRYPT X1 = ���

Make mask M = K1‖K2 = 0x01
Find match K3 = 0x2 = 00102 matches 0xA = 10102 to within a bit
Failure counter No failures before K3

F = t(1) − t(0) − 3 = 3 − 0 − 3 = 000002

Discrepancy-code D = 1 + log2(X1 ⊕ K3)

= 1 + log2(���⊕ ���)

= 1 + log2(10002 ) = 4 = 1002

Encode X1 Codeword C = F‖D = 000002‖ 1002

= 000001002 = 0x04
Encipher Y1 = C⊕M = 0x04 ⊕ 0x01 = 0x05
ENCRYPT X2 = ���

Make mask M = K4‖K5 = 0x34
Find match K6 = 0x5 = 01012 fails to match 0xB = 10112 to within a bit.

K7 = 0x6 = 01102 fails to match.
K8 = 0x7 = 01112 fails to match.
K9 = 0x8 = 10002 fails to match.
K10 = 0x9 = 10012 matches

Failure counter Four failures before K10

F = t(2) − t(1) − 3 = 10 − 3 − 3 = 4 = 001002

Discrepancy-code D = 1 + log2(X2 ⊕ K10)

= 1 + log2(00102 ) = 2 = 0102

Encode X2 Codeword C = F‖D = 001002‖ 0102 = 0x22
Encipher Y2 = C⊕M = 0x22 ⊕ 0x34 = 0x16
OUTPUT Y = Y1,Y2 = 0x0516
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4. Output plaintext nibble X

Expansion and Lengths

The keystream-dependent ’matching’ process described in 
Sect. 2.2 adds an element of unpredictability to PudgyTur-
tle. Unlike randomized encryption schemes [42], however, 
this unpredictability depends only upon the secret key: a 
message encrypted twice with the same key will produce 
the same ciphertext both times, but the exact ciphertext 
length can only be guessed on average (before encryp-
tion)—not known with certainty.

Specifically, the failure counter behaves like a geometri-
cally distributed random variable, representing one ’suc-
cess’ (i.e., a plaintext-to-keystream match) following zero 
or more ’failures’ (i.e., unsuccessful matching attempts)

In PudgyTurtle, f is limited to the set {0, 1, 2, … , 31}, so that 
a 5-bit representation of F can be uniquely decoded. Prob-
ability p = 5/16 reflects the five possible ways in which two 
nibbles can ‘match’—either they are exactly equal or one of 
the four 1-bit mismatches.

Pr{F = f } = (1 − p)f p.

Whenever a successful match requires > 32 keystream 
nibbles (an overflow event), an extra byte is inserted into 
Y as a marker. The probability of such events is

suggesting that one overflow occurs ≈ every 80,583 cipher-
text bytes (644,664 ciphertext bits).

A standard binary-additive stream cipher system produces 
ciphertext Y by bit-wise addition of plaintext X to keystream 
K, so that |Y| = |K| = |X| . For PudgyTurtle, these sequences 
do not all have the same length:

• Overflows mean that the exact ciphertext length is not 
known until after encryption. However, because over-
flows are uncommon, |Y| ≈ 2|X|.

• The keystream-dependent encoding process means that 
the exact amount of keystream required is not known 
until after encryption. Since the geometric distribu-
tion’s mean value is 1∕p = (5∕16)−1 , approximately 3.2 
keystream nibbles will be needed for each successful 
plaintext-to-keystream match. PudgyTurtle’s encryption 
process also consumes two more keystream nibbles for 
each mask. Thus, on average, 1/p + 2 = 5.2 keystream 

Pr{F > 31} = 1 −

31∑

f=0

(1 − p)f p ≈ 6.0248 × 10−6,

Table 2  Overflow events

F = 2; no overflows

0 1 2 ⇐ Failure-counter
1 2 3 4 5 6 7 8 9 ⇐ Index of each keystream nibble

↑ ⇐ t(1)

F = 2; one overflow

0 1 ... 30 31 0 1 2

1 2 3 4 5 6 7 8 ... 37 38 39 40 41 42 43

↑

F = 2; two overflows

0 1 ... 30 31 0 1 ... 30 31 0 1 2

1 2 3 4 5 6 7 8 ... 37 38 39 40 41 42 ... 71 72 73 74 75 76 77

↑

Three examples of how the same failure counter (F = 2) could occur with different numbers of overflow events, assuming that the second plain-
text nibble is being encrypted under keystream K5,K6,K7,… (i.e., X1 already consumed K1 through K4 ). Each section above has three rows, 
showing (respectively) the failure counter; the index of each keystream nibble; and an arrow under the position marker, t(1). Circled indexes 
are nibbles used in masks. TOP: with no overflows, the plaintext nibble matches K9 , which occurs two failures beyond mask ( K5‖K6 ). Thus, 
the F = t(2) − t(1) − 3 = 9 − 4 − 3 = 2. MIDDLE: with one overflow event, F reaches 31 and re-sets back to zero at K41 after a new mask 
( K39‖K40 ); and F = 43 − 38 − 3 = 2. BOTTOM: with two overflows, F re-sets back to zero twice: once at K41 and again at K75 , which means that 
F = 77 − 72 − 3 = 2. The actual number of failures before the plaintext-to-keystream match could be 2, 34, or 66, all of which equal 2 (modulo 
32)
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nibbles are needed to encode and encrypt each plaintext 
nibble, and |K| ≈ 5.2|X|.

These values are termed the ciphertext expansion fac-
tor (CEF) and keystream expansion factor (KEF). The 
PudgyTurtle configuration discussed in this manuscript uses 
4-bit plaintext symbols (nibbles), 8-bit codewords, 5-bit fail-
ure counters, and 3-bit discrepancy codes, which means that 
CEF ≈ 2 and KEF ≈ 5.2. Note, however, that PudgyTurtle 
can also be implemented with the other lengths for the code-
word, failure counter, etc. in which case CEF and KEF may 
also differ [4].

Tradeoff Attacks

This section describes the cryptanalytic technique of 
time–memory–data tradeoff (TMDT) attacks. This method 
is a powerful, generic tool which does not depend upon sys-
tem-specific design flaws or weaknesses (e.g., unintended 
algebraic structure, statistical correlations among keystream 
bits, inadequate mixing of the secret key into the KSG-state, 
etc.). TMDT attacks assume that the cryptanalyst has the 
ciphertext Y, known plaintext X′ of size |X′| ≤ |X| ; and the 
KSG algorithm (functions � and z).

TMDT attacks offer a compromise between two naive 
cryptanalytic strategies: the ’time extreme’ and the ’mem-
ory extreme’. The former involves decrypting the cipher-
text under every possible secret key and checking whether 
the result matches the known plaintext. This requires O(N) 
time but little memory. The latter involves encrypting the 
known plaintext under every possible key in advance, stor-
ing this information in a large table, and then finding the 
secret key by searching the table for something that matches 
a sub-string of the intercepted ciphertext. This requires O(N) 
memory but little time. TMDT attacks forge a middle-
ground: they use more memory than the time-extreme and 
take longer than the memory-extreme, but their combined 
time–memory resource requirements can still be ≪ O(N).

The BG‑Attack

Although the first cryptanalytic time–memory tradeoff pro-
posed by Hellman targeted block-ciphers [29], these ideas 
were adapted for use against stream-ciphers as well. Early 
research by Babbage [5] and Golić [24] led to what has 
become known as the ’BG-attack’. This attack is conducted 
in two phases: 

1. During the precomputation phase, an M × 2 table is 
constructed,1 each row of which contains a unique, ran-
domly chosen n-bit KSG-state S paired with its prefix 
P. In this context, ’prefix’ means the first n bits of key-
stream generated when the KSG starts from state S.

2. During real-time phase, a ’testing’ keystream X′ ⊕ Y ′ 
is constructed, and successive n-bit fragments of this 
keystream are searched for among prefixes in the table. 
If a matching prefix, Ph is discovered (a hit), then its 
paired KSG-state, Sh , likely occurred during encryption. 
This hypothesis can be checked via a test-decryption 
(i.e., using keystream KSG[Sh ] to decrypt a segment of 
Y ′ ). If the test-decryption correctly reproduces the cor-
responding segment of X′ , then the attack succeeds and 
the remaining message can be read; if not, a false alarm 
has occurred, and the attack continues with the next n-
bit fragment of testing keystream. Typically, false alarms 
are rare in the BG-attack.

An important but subtle point is that the word ’keystream’ in 
the description above actually has three different meanings:

• The ’actual keystream’ obtained from the initial state, KA 
= KSG[S0 ], which the sender uses to encrypt the plain-
text;

• The ’testing keystream’ obtained by XOR’ing the known 
plaintext to its corresponding ciphertext, KT = X′ ⊕ Y ′ , 
which the attacker uses as a source of n-bit targets to 
search for within the table;

• The ’regenerated keystream’ obtained by initializing the 
KSG to the state discovered by the hit, KR = KSG[Sh ], 
which the attacker uses for the test-decryption.

For a standard BG-attack against a binary-additive 
stream cipher, these three keystreams are equivalent: 
KT = KR = KA , at least starting from some bit-offset. For 
PudgyTurtle, as we shall see, this is not the case.

TMDT attacks against various stream-ciphers like A5/1, 
GSM, and LILI-128 and others have been proposed [15, 
30, 35, 41, 43]. Many researchers have also refined and 
improved the original BG-attack. For example, Oeschlin 
suggested multiple reduction-functions within a single ’rain-
bow table’ [40]; Dunkelman and Keller incorporated the IV 
into a tradeoff framework [21]; Wagner and others have dis-
cussed using distinguished points [11]; and Biryukov and 
Shamir proposed using multiple tables so as to better lever-
age available data [10].

In previous work, versions of both the BG- and Biryu-
kov–Shamir (BS) attacks were adapted for use against 
PudgyTurtle. We refer to these as the mBG (modified BG) 
and mBS (modified BS) attacks. While both modified 
attacks were less efficient than their original counterparts, 1 Since this table is constructed offline in advance, the time required 

for this task is not typically factored into the cost of the BG-attack.
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the mBG-attack was faster than the mBS-attack [3]. This 
was somewhat surprising, since the original BS-attack may 
be considered an improvement on the original BG-attack. 
However, several reasons for this observation were pro-
posed (e.g., the need for multiple Hamming-chains, and the 
relative lack of advantage of binary-search algorithms vs. 
a simple row-by-row search). Because it was shown to be 
the better choice, this manuscript focuses exclusively on the 
mBG-attack.

Modified Babbage–Golić Attack

The modified BG-attack is a tradeoff-based state-recovery 
attack whose goal is to find a KSG-state S′′ , such that X′′ 
= P−1(Y ��, KSG[S��]) for some subset of known plaintext 
X�� ∈ X� and its corresponding ciphertext Y �� ∈ Y � . The 
remainder of the original message ( X∗ ) extending beyond 
X′′ can also be read. Relationships among these different 
segments of text are diagrammed in Fig. 1.

The mBG-attack differs in several important respects 
from its counterpart, the ’traditional’ BG-attack:

• The testing keystream ( KT ) in the mBG-attack, from 
which n-bit search-targets are obtained, is not simply 
X′ ⊕ Y ′ , but rather one of potentially many hypothesized 
keystreams. These ’tentative keystreams’ are constructed 
via a guess-and-determine procedure. Each one is con-
sistent with available information (i.e., it encrypts X′ into 
Y ′ ), but may not be correct (i.e., it may not decrypt Y ′ into 
X′ , or be obtainable from a KSG-state in the table).

• Each tentative keystream contains unknown (undefined) 
information—keystream nibbles that would have been 

skipped over and discarded, because they failed to match 
a plaintext nibble during PudgyTurtle’s encoding pro-
cess.

• False alarms are more common. Since an unknown nib-
ble in KT could theoretically match any nibble in the 
precomputed table, a fragment of tentative keystream 
could, therefore, ’hit’ many rows of the table by chance, 
but few (if any) of these coincidental hits will correctly 
decrypt the ciphertext.

Tentative Keystream

Each tentative keystream represents a different model of 
how X′ could have been encoded and enciphered into Y ′ . 
The model is just a collection of randomly selected code-
words, each one made up of a failure counter and a dis-
crepancy code. Thus, the mBG-attack begins by choosing 
NX� = |X�|∕4 failure counters from the set {0, 1, 2,… , 31} 
at random, according to a geometric distribution with p = 
5/16; and choosing the same number of discrepancy codes 
uniformly from the set {0,1,2,3,4}. This produces a set of 
codewords

Next comes filling in, a guess-and-determine process 
whereby each codeword is used to define three nibbles of 
tentative keystream: two that make up the mask and one that 
matches a nibble of known plaintext.

Consider a situation where the attacker knows the corre-
spondence ( X′

i
, Y ′

i
 ) and has a model suggesting that codeword 

C�
i
= (F�

i
‖D�

i
) produced this correspondence, under tentative 

keystream starting at KT
j
 . First, since Y ′

i
 results from XOR’ing 

the ith mask and codeword, the attacker concludes that mask 
(KT

j
 ‖ KT

j+1
) must equal Y ′

i
⊕ C′

i
 . This fixes the position and 

identity of two nibbles of tentative keystream. Next, the mod-
el’s failure counter implies that X′

i
 would match the tentative 

keystream on the ( F�
i
+ 1)th nibble after the mask. This fixes 

the location of a third tentative-keystream nibble, KT
t(i)

 , where

since j = t(i − 1) + 1 . Finally, the model’s discrepancy code 
D′

i
 can be used to fix the identity of this third tentative-key-

stream nibble

The end result of filling-in is a segment of tentative 
keystream

{C�
1
,C�

2
,… ,C�

NX�
} = {(F�

1
‖D�

1
), (F�

2
, ‖D�

2
),… , (F�

NX�
‖D�

NX�
).}

t(i) = F�
i
+ j + 2 = F�

i
+ t(i − 1) + 3

KT
t(i)

=

{
X�
i

ifD�
i
= 0

X�
i
⊕ 2D

�
i
−1 ifD�

i
≠ 0.

… , KT
j
, KT

j+1
, ?, ?, … , ?, KT

t(i)
, …

Fig. 1  Relationships among segments of plaintext (or ciphertext). 
The mBG-attack uses known plaintext X� ∈ X and its corresponding 
ciphertext Y � ∈ Y  to recover a KSG-state ( S′′ ) that correctly decrypts 
some segment of ciphertext Y �� ∈ Y � into its corresponding segment 
of known plaintext X�� ∈ X� . The attacker can then decrypt the rest of 
the ciphertext ( Y∗ ) even beyond the known plaintext. For notational 
convenience, all of these segments are all indexed from 1 (i.e., for 
some indices a and b [bottom], X�

1
= Xa , and X��

1
= X�

b
= Xa+b−1 , and 

similarly for analogous segments of Y). mBG: modified Babbage–
Golić; KSG: keystream generator
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with three ’known’ nibbles and F′
i
 intervening ’unknown’ 

nibbles (represented by ? symbols). All that can be stated 
about the unknown nibbles is that none of them would have 
matched X′

i
 to within a bit.

By doing the same with every codeword, the rest of KT 
can be specified. Table 3 illustrates how a tentative keystream 
would be constructed given X′ = 0xAB and Y ′ = 0x0516, 
using a model whose codewords are 0x12 and 0x0C.

Verified Sequence

We also define a verified sequence, V, as a sequence of 0/1 
markers which distinguish known bits of KT from unknown 
bits

V contains runs of twelve 1-bits in a row interspersed with 
variable-length gaps of 0-bits, as shown below

Vj =

{
��� = 11112, ifKT

j
known;

��� = 00002, ifKT
j
is unknown;

The first four 1’s of each 12-bit run correspond to the bits 
of KT that match a known plaintext nibble (e.g., X′

i
 ), and the 

other eight 1’s correspond bits of KT that would be used to 
mask the next (e.g., X�

i+1
 ) known-plaintext nibble.

By serving as a bit-mask, V can define unknown bits as 
zeroes. For example, the model in Table 3 has codewords 
whose failure counters are 2 and 1, represented by verified 
sequence 0xFF00FFF0F. Bitwise-multiplying this with 
the tentative keystream transforms the partially undefined 
sequence 1,7,?,?,8, 1,A,?,3 into the fully defined 
number 0x170081A03.

Word‑Based Notation

The tentative keystream can also be viewed as a sequence of 
variable-length ’words’

...

4Fi−1 zeros

⏞⏞⏞
0000...0 1111...1

⏟⏟⏟
12 ones

4Fi zeros

⏞⏞⏞
0000...0 1111

⏟⏟⏟
Matches X�

i

11111111
⏟⏞⏞⏟⏞⏞⏟
Masks X�

i+1

4Fi+1 zeros

⏞⏞⏞
0000...0 1111...1

⏟⏟⏟
12 ones

...

Table 3  Making a tentative keystream

This table shows the guess-and-determine process for ’filling in’ a tentative keystream, starting from a model (codewords C′
1
 = 

0x12 and C′
2
 = 0x0C), the known plaintext X′ = 0xAB, and its corresponding ciphertext Y ′ = 0x0516. Codeword C′

1
 is first used 

to determine the mask 0x17, which defines two nibbles of KT . Next, C′
1
 is used to define the position and identity of a third nib-

ble of KT that matches X′
1
 to within a bit (namely, KT

5
=0x8). This involves splitting C′

1
 into its failure counter and discrepancy code (i.e., 

C�
1
= ���� = ��������2 = �����2‖���2 = F�

1
‖D�

1
 ), so that F′

1
 = 2 and D′

1
 = 2. Notice that the final tentative keystream contains three 

’unknown’ nibbles (the third, fourth, and eighth) in addition to six ’known’ nibbles. Nothing can be concluded about these unknowns except that 
they failed to match their corresponding known-plaintext nibble (e.g., the third and fourth nibbles of KT could take any value that differed from 
X′
1
 = 0xA by ≥ two bits—namely, 0x0, 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x9, 0xC, 0xD, or 0xF)

INPUT
Known plaintext X

′ = 0xAB
Ciphertext Y

′ = 0x0516
Model C

′
1
,C′

2
 = 0x12, 0x0C

FIRST CODEWORD
Re-create mask M = Y

�
1
⊕ C

�
1
 = 0x05 ⊕ 0x12 = 0x17

Mask defines two nibbles K
T

1
 = 0x1, KT

2
 = 0x7

Find position of keystream
nibble that matches X′

1

t(1) = F
�
1
+ t(0) + 3 = (C�

1
⊗ ����) ≫ 3)

+ t(0) + 3 = 000102 + 0 + 3 = 5

Define this nibble K
T

5
= X

�
1
⊕ 2D

�
1
−1 = 0xA ⊕ 2 = 0x8

Resulting segment of KT 1,7,?,?,8

SECOND CODEWORD
Re-create mask M = Y

�
2
⊕ C

�
2
 = 0x16 ⊕ 0x0C = 0x1A

Mask defines two nibbles K
T

6
 = 0x1, KT

7
 = 0xA

Find position of keystream
nibble that matches X′

2

t(2) = F
�
2
+ t(1) + 3 = 1 + 5 + 3 = 9

Define this nibble K
T

9
= X

�
2
⊕ 2D

�
2
−1 = 0xB ⊕24−1 = 0x3

Resulting segment of KT 1,A,?,3

OUTPUT
K

T = 1 7 ? ? 8 1 A ? 3
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where word Wi contains all F�
i
+ 3 nibbles involved in encod-

ing and enciphering X′
i
:

– The first two (known) nibbles are the ith mask;
– The next F′

i
 (unknown) nibbles are those that failed to 

match X′
i
—including case of an immediate match, where 

F�
i
= 0;

– The last (known) nibble is the one that matches X′
i
 to 

within a bit.

Failure counters are ≤ 31 , so that word lengths are geometri-
cally distributed between 3 and 34 nibbles (12–136 bits) 
with an average of 5.2 nibbles (20.8 bits).

The verified sequence can also be viewed as a sequence 
of words, each taking the form 0xFF0...0F. While their 
length differs (as above), all words of V share the same Ham-
ming-weight of 12, where Hamming-weight h() is defined as

for vector U = (u1, u2,… , u|U|) with us ∈ {0, 1}.
Figure 2 illustrates the structure of the first three words of 

a hypothetical tentative keystream and its verified sequence, 
assuming a model with failure counters F�

1
= 1 , F�

2
= 0 , and 

F�
3
= 2.

Modified BG‑Attack: Detailed Description

Next, the mechanics of the mBG-attack are described in 
detail, and several definitions are provided. During the 

KT = W1,W2,… ,WNX�
,

h(U) ∶=

|U|∑

s=1

us

precomputation phase, a table with M (state, prefix) pairs 
is constructed—just like the traditional BG-attack. During 
the real-time phase, the mBG-attack makes use of succes-
sive n-bit fragments of tentative keystream.

DEFINITION. For binary sequence Z = {z1, z2,…} , the 
fragment Z(b) = {zb, zb+1, zb+2,… , zb+n−1} is an n-bit sub-
sequence starting at bit b.

For example, if keystream K = KSG[S], then fragment 
K(1) is the prefix of state S. Each successive n-bit fragment 
KT (b) with b ∈ {1, 2,… ,�} and � = |KT | − n + 1 ≈ (5.2)D 
is searched for among the prefixes in the table. However, 
before searching, all unknown bits must be defined (set 
to zero) by bit-wise multiplying KT (b) by V(b) and also 
multiplying each prefix in the table by V(b).

DEFINITION. For three binary vectors A, B, and 
C of the same length, we say A mimics B under C if 
A⊗ C = B⊗ C.

DEFINITION. A hit between tentative-keystream frag-
ment KT (b) and prefix Ph in the precomputed table means 
that KT (b) mimics Ph under V(b).

Importantly, a hit in the mBG-attack does not necessarily 
imply that KT (b) equals Ph—only that the known bits of the 
fragment match those bits in the same positions within the 
prefix. (Unknown bits match automatically, having all been 
set to zero.)

The more unknown bits, the more likely a hit will occur 
purely by coincidence. One simple strategy to reduce these 
coincidences is to reject any hits for which the number of 
known bits falls below some threshold, � . The attacker’s 
choice of � has significant implications: at the lowest values 
( � ≈ 0 ), the mBG-attack somewhat resembles an exhaustive 
search/brute-force attack; at the highest values ( � ≈ n ), the 

Fig. 2  ‘Words’ of tentative keystream and verified sequence. UPPER 
PANEL: Three words of a tentative keystream generated by a model 
with failure counters 1, 0, and 2. Row 1 gives the index of, and num-
ber of failures in, each word; Rows 2 and 3 provide the index and 
identity of each tentative keystream nibble (where ’?’ stands for 
unknown); and Row 4 gives the accompanying nibbles of verified 

sequence. LOWER PANEL: Close-up of the beginning of word #1. 
The first three rows depict the indices of the word, its nibbles, and 
its bits; the next two rows show individual bits of KT and V, with 
unknown bits in KT (symbolized as ’?’) corresponding to 0-bits in V 
and known bits of KT corresponding to 1-bits in V 
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mBG-attack somewhat resembles a ’traditional’ BG-attack. 
(“Extremes of �” covers this topic in detail.)

Since the number of known bits in KT (b) is just the Ham-
ming-weight of its corresponding verified-sequence frag-
ment h(V(b)), two kinds of hits can be distinguished:

DEFINITION. A spurious hit involving KT (b) means a 
hit for which h(V(b)) < 𝜃.

DEFINITION. A high-quality hit involving KT (b) means 
a hit for which h(V(b)) ≥ �.

In the modified BG-attack, many hits are spurious. But 
even a high-quality hit may not crack the cipher: it still 
contains n − � unknown bits, any of which may mean 
that the prefix is paired with the ’wrong’ KSG-state (i.e., 
KT (b) mimics Ph under V(b), but keystream KSG[Sh ] gener-
ated from Ph ’s paired KSG-state does not match up with 
KA = KSG[S0] , the actual keystream used to encrypt the 
message).

Therefore, a test-decryption must be performed on each 
high-quality hit, to determine whether KSG[Sh ] will indeed 
decrypt some portion of Y ′ into the corresponding portion 
of X′ . This test-decryption need not involve all of Y ′—only 
enough bits to ensure a statistically meaningful comparison 
with the known plaintext. We refer to this number of bits as 
Q. Here, Q was chosen as 96 bits. Note, however, that—due 
to PudgyTurtle’s keystream expansion property—decrypt-
ing 96 bits requires ≈ (5.2)(96) = 500 bits of tentative key-
stream, on average.

Adjustment

During the traditional BG-attack, the test-decryption pro-
ceeds directly and immediately from the ’hit’. In other 
words, if the bth keystream fragment X�(b)⊕ Y(b) produces 
a hit, then keystream generated by its paired KSG-state in 
the table will decrypt the ciphertext starting at bit y�+b into 
plaintext starting at bit x�+b , where � is the bit-offset of X′ 
within X.

Applying this same strategy to the modified BG-attack, 
however, becomes problematic: (1) due to keystream expan-
sion, the index of the keystream nibble Kj quickly becomes 
’out of synch’ with that of plaintext nibble Xi ; (2) since 
PudgyTurtle operates on nibbles rather than bits, decryp-
tion requires that b is a multiple of 4; (3) since it is easier 
in practice to compare strings aligned byte-by-byte, test-
decryptions are more efficient when b is a multiple of 8.

Thus, before each test-decryption, the mBG-attack 
includes an adjustment procedure. Given a high-quality hit 
between tentative keystream fragment KT (b) and prefix Ph 
(with associated KSG-state Sh ), the goal of this adjustment is 
to find a new index ( � ), such that NQ ciphertext bytes (start-
ing at byte Y ′

� ) can be test-decrypted into NQ known-plain-

text nibbles (starting at nibble X′
� ), where NQ = Q∕4 = 24.

This new index � defines the first byte of an NQ-byte sub-
set of ciphertext

and the first nibble of an NQ-nibble subset of known-plaintext

To decrypt Y ′′ into X′′ , the original KSG-state ( Sh ) must 
be advanced to a new state, S′′ , which will produce tenta-
tive keystream starting from a new bit-offset, b′′ , instead of 
original bit-offset b.

Recall that word Wi of the tentative keystream contains 
all tentative-keystream nibbles involved in decoding and 
decrypting ciphertext byte Y ′

i
 and/or encoding and encrypt-

ing plaintext nibble X′
i
 . Since the index of the final bit of 

Wi is

Y �� ∶= {Y ��
1
, Y ��

2
,… , Y ��

NQ
} = {Y �

�, Y
�
�+1, Y

�
�+2,… , Y �

�+NQ−1
}

X�� ∶= {X��
1
,X��

2
,… ,X��

NQ
} = {X�

�, X
�
�+1, X

�
�+2,… ,X�

�+NQ−1
}.

Table 4  Adjusting a high-quality hit

UPPER: For each of the first six ’words’ ( W1 −W6 ) of an arbitrary 
tentative keystream KT , the word index (Column 1), its associated 
failure counter (Column 2), and its bit-span (Column 3) are shown. 
For example, the first failure counter (i.e., 1) represents the pat-
tern KT

1
,KT

2
, ?,KT

4
 (where ? is an unknown nibble), which spans 

4 + 4 + 4 + 4 = 16 bits. The next three columns show indices of 
the known-plaintext nibble (Column 4) and byte (Column 5), and 
the ciphertext byte (Column 6) corresponding to each word of KT . 
LOWER: Adjustment procedure, assuming KT (50) makes a high-
quality hit. Bit #50 lies within word W4 . However, since W4 is not 
exactly aligned with a plaintext byte (i.e., it is the second half of byte 
#2), the word index is incremented by one. Word W5 starts at bit-off-
set 65, which means that the original KSG-state Sh should be updated 
65–50 = 15 times before the test-decryption. With this adjustment, 
decrypted ciphertext (starting at Y5 ) can be compared to known plain-
text (starting at byte #3, made from nibbles X′

5
 and X′

6
)

A high-quality hit involving fragmentKT (50)

Bit-offset b = 50 falls within tentative-keystream word W4 (bits 
49–64)
→ W4 is not aligned with the the beginning of a plaintext byte,
→but word W5 is
→The new bit-offset corresponding to W5 is b′′ = 65, and
→ the new KSG-state ( S′′ ) is 65–50 = 15 state-
updates beyond the original state
→Now, a test-decryption from Y5 can be compared to X′,
starting from plaintext byte #3 (i.e., nibbles #5 and #6)

Index of 
‘word’ in KT

Failure- 
counter

Bit-range 
of word

Plaintext 
NIBBLE

Plaintext 
BYTE

Ciphertext 
BYTE

1 1 1−16 1 1 1
2 0 17−28 2 2
3 2 29−48 3 2 3
4 1 49−64 4 4
5 1 65−80 5 3 5
6 0 81−92 6 6
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the word containing bit b will be Ws , where

To facilitate string comparisons, each test-decryption should 
start at the beginning of a plaintext byte. Since plaintext 
bytes #1, #2, #3,... correspond to plaintext nibbles #1, #3, 
#5,..., which correspond to tentative keystream words #1, #3, 
#5,..., the goal can be easily accomplished by adding one to s 
if it is even. Thus, the index of the new word of KT is

Using this word of tentative keystream, a test-decryption 
will begin at the next-nearest whole byte of plaintext. The 
bit-offset of this new word within KT will be

and the new KSG-state corresponding to this bit-offset is

Thus, KSG[S′′ ] = K� , K�+1 , K�+2 , ⋯ can be used to test-
decrypt Y ′

� , Y �
�+1 , Y

�
�+2 , ⋯ , and the result compared to X′

� , 
X�
�+1 , X

�
�+2 , ⋯ , where conveniently ( X�

�‖X
�
�+1 ) is aligned 

with a whole byte of data (namely, the [(� + 1)∕2]-th byte).
A worked example is given in Table 4, which adjusts 

a high-quality hit involving KT (50) (i.e., bit-offset 
b=50). The new index is � = 5, from which the new 
bit-offset b�� = �(� − 1) + 1 = 65 and new KSG-state 
S
�� = �65−50(S

h
) = �15(S

h
) can be found. After this adjust-

ment, a test-decryption using the new keystream KSG[S′′ ] 
can be applied to the ciphertext starting at Y5 , and then com-
pared byte-by-byte with X′ (i.e., known-plaintext bytes #3, 
#4, #5, etc. corresponding to known-plaintext nibbles (#5, 
#6), (#7, #8), (#9, #10) etc.).

DEFINITION. For a high-quality hit between fragment 
KT (b) and row (Ph, Sh) in the table, KR = KSG[S′′ ] is the 
regenerated keystream, where S′′ is from Eq. (3).

DEFINITION. T = P−1(Y ��,KR) is the test-decryption of 
Y ′′ under keystream KR.

DEFINITION. A correct test-decryption means that 
Tj = X�

�+j = X��
j
 for every j ∈ {0, 1, 2,… ,NQ} and where � 

is from Eq. (2).
DEFINITION. A valid hit is a high-quality hit which 

yields a correct test-decryption.
DEFINITION. A false alarm is a high-quality hit which 

yields an incorrect test-decryption.

�(Wi) =

i∑

j=1

|Wj|

s = min
1,2,3,…,NX�

i �(Wi) ≥ b.

(2)� =

{
s, if s is odd

s + 1, if s is even.

b�� = �(W�−1) + 1,

(3)S�� = �(b��−b)(Sh).

If a false alarm occurs, the mBG-attack continues by 
searching the rest of the table for any other prefixes that 
mimic KT (b) under V(b). Once the entire table has been 
searched, b is incremented by 1, and a table-search is per-
formed on this new target (i.e., KT (b + 1)⊗ V(b + 1) ) until 
all of the tentative keystream has been utilized. If still no 
valid hits have been discovered, a new model is chosen, a 
new tentative keystream is built, and the entire process is 
repeated.

Complexity of the Modified BG‑Attack

This section describes the time-, memory-, and data-com-
plexity of the modified BG-attack. Both the traditional 
BG-attack and the mBG-attack have the same memory 
complexity

and the same data-complexity

where M is the number of rows in the precomputed table, 
and D = |X�| is the number of bits of known plaintext. (Note: 
earlier, ’D’ was used to symbolize the discrepancy-code, 
and M the mask, but context should make it clear what is 
being discussed.) The time-complexity of the two attacks, 
however, differs

Traditional BG‑Attack: Time‑Complexity

For the traditional BG-attack, D bits of known-plaintext 
data means D keystream fragments, and therefore D table-
searches. Thus

Most precisely, TBG = D − n + 1 , but (4) is a reasonable 
approximation, since usually D ≫ n . Although this equa-
tion is useful in practice, it contains several assumptions:

• Assumption #1: Recall from Sect. 3.1 that the n-bit frag-
ments used as search-targets are actually from the ’test-
ing keystream’ ( X′ ⊕ Y ′ ), not from the known plaintext 
itself. Equation (4) ignores the time needed to construct 
this testing keystream;

• Assumption #2: Each table-search is viewed as a single 
’operation’ (i.e., D table-searches require D time units). 
In practice, however, search-algorithms may require dif-
ferent numbers of operations;

MBG = MmBG = M

DBG = DmBG = D,

TBG ≠ TmBG.

(4)TBG = D.
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• Assumption #3: False alarms are expected to be rare 
enough that the time required to perform a test-decryp-
tion on each ’hit’ is ignored.

How might (4) look without these assumptions? First, since 
each byte of the D-bit testing keystream is simply 1 byte of 
X′ XOR’d to 1 byte of Y ′ , constructing the testing keystream 
would add another D∕8 = NX�∕2 operations to the time com-
plexity. Next, each table-search would add ∼ log(M) opera-
tions, assuming binary-type sort/search algorithms. Finally, 
each Q-bit test-decryption would add Q KSG-update opera-
tions. With these modifications, a more accurate representa-
tion of the time complexity of a standard BG-attack would 
be

where Nsearches and Ndecrypts are the number of table-searches 
and test-decryptions. This simplifies to

under the usual assumptions that half the table needs to be 
searched (i.e., Nsearches = D∕2 ) and that false alarms are rare 
(i.e., Ndecrypts ≈ 1 ). Since both log(M) and Q are typically 
≪ D , the time-complexity is still O(D) , and so, (4) is not a 
bad approximation.

But what if this was not the case? Specifically, what if the 
number of test-decryptions or operations per table-search 
was not small compared to D? As will be discussed next, this 
more accurately describes what happens during the modified 
BG-attack.

Modified BG‑Attack: Time‑Complexity

The time-complexity of the mBG-attack can be meas-
ured in different ways. The simplest is based on the idea 
that the attack uses Nmodels tentative keystreams, each of 
which requires Tmodel processing operations. In turn, Tmodel 
depends upon the number of table-searches and the number 
of test-decryptions

TBG = NX� ⋅
1

2
+ Nsearches ⋅ log(M) + Ndecrypts ⋅ Q,

TBG ≈ D

(
1

8
+

log(M)

2

)
+ Q

A more precise formula for TmBG assigns different weights 
to each cryptanalytic task. First, a tentative keystream must 
be constructed from a model with Ncodewords = D∕4 code-
words—one for each known-plaintext nibble. Essentially, 
building each nibble of KT requires a random-number gen-
erator call plus several more XOR, AND, and bit-shifts. For 
convenience, we count all this as four ’operations’, so that 
Ncodewords × 4 = D more operations will be used. Next, con-
sider the cost of performing table-searches. Since the modi-
fied BG-attack uses a row-by-row search strategy instead 
of a binary search,2 this increases the time-complexity 
by Nsearches ⋅M operations, where ’operation’ means bit-
wise multiplication and comparison of two n-bit strings. 
Finally, the time-complexity must include the cost of doing 
a test-decryption on all the high-quality hits. Since a Q-bit 
test-decryption requires ∼ (5.2)Q KSG-updates, this adds 
another Ndecrypts ⋅ (5.2)Q operations to the time-complexity. 
From these values, a more precise estimate of time-com-
plexity would be

(5)
TmBG = Nmodels × Tmodel

= Nmodels × (Nsearches + Ndecrypts).

20 24 28 32

8

16

24

32

40

KSG−size (bits)
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g 2

 ( 
T m

B
G

 )
Fig. 3  Time-complexity of the mBG-attack. The log-scaled time-
complexity is plotted against KSG inner state size (log2(N) bits). Dot-
ted line segments mark the O(

√
N) time-complexity of a traditional 

BG-attack; solid line segments mark the O(N) time-complexity of an 
exhaustive state-space search. TmBG exceeds the time-complexity of a 
traditional BG-attack, and often approaches or even exceeds that of a 
brute-force attack. mBG, modified Babbage–Golić; KSG, keystream 
generator

2 It might be argued that the attacker would be better off using 
more advanced search/sort algorithms instead of a naive row-by-row 
search. For two reasons, however, this may not be the case. First, each 
search can produce multiple hits, a condition which reduces the effi-
ciency of binary-type search algorithms. Second, before each search, 
all of the prefixes of the table must be bit-wise multiplied by the cur-
rent verified-sequence fragment. This requires M operations. Thus, 
while specialized search-algorithms would reduce the number of 
comparisons from M to log(M); nevertheless, the entire search pro-
cess (including the bit-wise multiplications) would need M + log(M) 
operations, which is still O(M).
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This version of TmBG may easily exceed O(
√
N) . For 

instance, if D = M =
√
N and Nsearches ≈ D (as per the tra-

ditional BG-attack), then the Nsearches ⋅M term will have 
complexity O(D ⋅M) = O(N).

Empirical Results

Here, we report the results of many hundreds of mBG-
attacks, showing how TmBG depends on parameters con-
trolled by the attacker (i.e., Hamming-weight threshold � , 
table size M, and quantity of known-plaintext D) and by the 
message sender (i.e., KSG-size n).

Most attacks [i.e., most ( n, �,M,D ) parameter combina-
tions] were repeated two-to-ten times, each with a differ-
ent secret key and different sample of known plaintext. For 
all attacks, the plaintext source was an English-language 
ASCII text [45]. Four ’toy’ KSGs were used: two nonlin-
ear feedback shift registers (NLFSRs) of sizes 20 and 24 
bits, and two linear feedback shift registers (LFSRs) of sizes 
28 and 32 bits. NLFSR polynomials were from Dubrova’s 
well-known source [20], but because this list stops at n=25, 
LFSRs were used for the larger sized KSGs. We empha-
size that none of these simple KSGs (especially LFSRs!) 
are intended to be ’secure’. Each one is merely a convenient 
tool for studying different KSG-sizes.

Effect of n on TmBG

How is time-complexity related to the KSG-size? Figure 3 
shows the base-2 logarithm of time-complexity from Eq. (5) 
vs. KSG-size from 226 mBG-attacks. A small random jitter 
is included for visual clarity. The horizontal line segments in 
the figure are not averages or confidence bounds, but rather 
markers for certain time-complexity cutoffs. The solid line 
segments mark where TmBG = N (i.e., the time-complexity 
of a brute-force search of state-space), and the dotted seg-
ments mark where TmBG =

√
N (i.e., the time complexity of 

a traditional BG-attack against an n-bit stream-cipher system 
not using PudgyTurtle).

The data suggest a reduced ’scatter’ of data-points rela-
tive to n (i.e., especially for larger KSGs), which might lead 
to a false conclusion that TmBG approaches some limiting 
value for large n. In fact, however, this phenomenon is sim-
ply because attacks against larger KSGs took longer, and so 
fewer of them were performed. For example, an off-the-shelf 

(6)

TmBG = Nmodels × Tmodel

≈ Nmodels ×
(
Ncodewords ⋅ 4

+Nsearches ⋅M + Ndecrypts ⋅ (5.2)Q
)

≈ Nmodels ×
(
D + Nsearches ⋅M + Ndecrypts ⋅ (5.2)Q

)
.

IBM laptop running research-level (not production-grade) 
software could easily complete attacks against the 20-bit 
KSG in minutes or hours, but could take weeks for even a 
single successful attack against the 32-bit KSG. Thus, we 
anticipate that the scatter of points at each KSG-size will be 
similar—provided that one waits long enough to collect the 
same amount of data for each n.

Several conclusions may be drawn from Fig. 3. First and 
as expected, the attack’s time-complexity increases as the 
inner state size of the KSG increases. Next, TmBG always 
exceeds O(

√
N) , suggesting that the PudgyTurtle process 

adds significant time-complexity compared to a trade-
off attack against an analogous (n-bit) system not using 
PudgyTurtle. Some TmBG even exceed the time-complexity 
of an exhaustive search.3 Finally, the scatter of TmBG values 
for each n suggests that it may be possible to speed up the 
attack by choosing the right parameters.

Using this same data, Table 5 compares the two ways to 
measure time-complexity, with the left column using the 
simpler formula (5) and the right column the more precise, 
weighted estimate (6). To facilitate comparison among mul-
tiple KSG-sizes, this table reports the ’normalized loga-
rithm’ of time-complexity

Table 5  Two ways to measure time-complexity

The normalized logarithmic time-complexity �(T
mBG

) = log2 (TmBG)∕n 
is shown for mBG-attacks against KSGs of size 20, 24, 28, and 32 bits. 
The left-hand column uses the simpler time-complexity measure (5); 
the right-hand column uses the more precise one (6), which weights 
each term differently. For both measures of time-complexity, the aver-
age, 95% confidence interval, range, and the percentage of attacks with 
𝜂(TmBG) < 1 are given. Note that �(TmBG) of the ’weighted’ estimate 
on average exceeds that of the simpler estimate, and is always > 1. CI: 
confidence interval; mBG, modified Babbage-Golić; KSG: keystream 
generator s

�(T
mBG

) = log2(TmBG)∕n

‘Simple’ ‘Weighted’

Equation (5) Equation (6)
Mean [95% CI] 1.0813 [1.06, 1.10] 1.5385 [1.51, 1.57]
Minimum 0.68 1.14
Maximum 1.52 2.02
% with 𝜂(T

mBG
) < 1 33 0

3 We emphasize that T
mBG

> O(N) does not imply that PudgyTur-
tle is ’more secure’ against brute-force cryptanalysis than other 
cryptosystems! Rather, these large values illustrate that the mBG-
attack is not a particularly efficient way to run a brute-force search 
(e.g., some KSG-states are tried multiple times, and not every KSG-
state is checked at each bit-offset within the tentative keystream). A 
more reasonable interpretation would be to view attacks for which 
T
mBG

> N as cases where brute-force cryptanalysis would be a rea-
sonable alternative to the mBG-attack, with respect to time require-
ments.
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Thus, �(TmBG) = 1∕2 represents the O(
√
N) complexity of a 

traditional BG-attack; and �(TmBG) = 1 the O(N) complexity 
of a brute-force attack. The mean, 95% confidence interval, 
range, and % of attacks in which �(TmBG) falls below 1 are all 
reported, Notice that the weighted estimate tends to exceed 
the simpler one, and always exceeds 1.

In the rest of this manuscript, (5) will be used to measure 
time-complexity. Since this simpler formula tends to result 
in smaller values than (6), this gives the most favorable 
assumptions to the attacker, and has the added benefit of 
making some upcoming analysis (e.g., “Estimated Time-
Complexity”) more straightforward.

Effect of M on TmBG

Figure 4A shows log2(TmBG) vs. log2(M) for attacks in which 
table size M was varied (from as low as 1024 to as high as 
65,536 rows), while keeping KSG-size n fixed at 24 bits, D 
at 4096 bits and � at 6. Intuitively, it would seem that big-
ger tables should lead to faster attacks: since each tentative 
keystream fragment would get compared against more rows, 
more high-quality hits would occur, and each model would 
thus be more likely to succeed. Interestingly, this is not the 
case: TmBG is not greatly affected by changes in M.

�(TmBG) = log2(TmBG) ∕ n.

How might this be explained? Consider the quantities that 
contribute to time-complexity: Nmodels , Nsearches , and Ndecrypts . 
First, since larger tables allow for more comparisons against 
a fixed amount of tentative keystream, the number of mod-
els drops as M increases (Fig. 4B). Next, since table size 
does not affect the number of searches per model (which just 
depends on D, n, and � ), Nsearches remains constant (Fig. 4C). 
Finally, since bigger tables mean that each search can yield 
more high-quality hits (i.e., a single tentative keystream frag-
ment can hit more rows of a bigger table), Ndecrypts increases 
(Fig. 4D). The net effect of reducing Nmodels while increas-
ing Ndecrypts makes time-complexity relatively insensitive to 
changes in table size. Larger tables mean more high-quality 
hits and test-decryptions among fewer models, while smaller 
tables mean fewer decryptions among more models.

Effect of D on TmBG

How does the amount of known-plaintext affect time-
complexity? To study this, we mounted a set of attacks in 
which D was varied between 1024 and 65,536 bits, while 
fixing the other parameters at n = 24 , M = 4096 , and 
� = 6 . Results are shown in Fig. 5. Changing D has little 
effect on time-complexity (Fig. 5A). As the amount of data 
increases, fewer models are needed (Fig. 5B), but more 
time is spent on each model—for both searches (Fig. 5C) 
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Fig. 4  Effect of table size on time-complexity. A Time-complexity 
TmBG is plotted against table size M (both log-scaled), for attacks 
against a 24-bit KSG, with � = 6 and D = 4096. Panel B shows 
log2(Nmodels) ; C shows log2(Nsearches) ; and D shows log2(Ndecrypts) , 
all along the same X-axis as the top panel. As M grows larger, fewer 
models are needed, but more test-decryptions are performed on each 
one—opposing trends which leave TmBG itself relatively unaffected. 
mBG, modified Babbage–Golić; KSG: keystream generator
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Fig. 5  Effect of data on time-complexity. A Time-complex-
ity log2(TmBG) is plotted against the quantity of known plain-
text data, log2(D) , for attacks against an n = 24-bit KSG with � = 
6 and M = 4096 rows. Panel B shows log2(Nmodels) ; C shows log 
2(Nsearches) ; and D shows log2(Ndecrypts) , all plotted against the same 
X-axis as in the top panel. The time-complexity is not significantly 
affected by changes in D, consistent with the observation that as 
D increases, Nmodels and its co-factor in the time-complexity (i.e., 
Nsearches + Ndecrypts ) change in opposite directions. KSG: keystream 
generator; mBG, modified Babbage–Golić
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and test-decryptions (Fig. 5D). Intuitively, larger D means 
each model produces a longer tentative keystream; more 
table-searches, high-quality hits, and test-decryptions; 
but that correspondingly fewer models will be necessary. 
Again, these two opposing trends make the product, TmBG , 
less sensitive to changes in D.

Effect of � on TmBG

Previously, it was hypothesized that extremes of � would 
lead to slower, less-efficient attacks [3]. Smaller values (e.g., 
� ≤ n∕4 ) would waste too much time on false alarms—
since each tentative keystream, with so many unknown bits, 
could generate so many spurious hits. Larger values (e.g., 
� ≥ 3n∕4 ) would expend too much time-constructing mod-
els—since each one would lead to few (if any) high-quality 
hits. Either way, TmBG would increase. We therefore sug-
gested that choosing mid-range �∕n ∈ [

2

3
,
3

4
] (the middle of 

its range) would balance these two factors, allowing success-
ful attacks in a reasonable amount of time. Here, we vary � 
over a wider range. Interestingly, (see below) this original 
intuition was wrong: although mBG-attacks with smaller 
� do indeed generate more test-decryptions, the time-com-
plexity of these attacks still falls below that of attacks with 
larger �.

Figure 6A shows the normalized-logarithmic time-com-
plexity, as a function of �∕n for attacks against 20-, 24-, 28-, 
and 32-bit KSGs, using various � ∈ {2, 4, 6,… , n − 2} . The 
dotted line at �(TmBG) = 1 represents O(N) time-complexity. 

Figure 6B shows �(Nmodels ); 6C shows �(Nsearches) , and 6D 

shows �(Ndecrypts) , all plotted against �∕n as well.
The time-complexity exhibits an upward trend, especially 

above �∕n = 0.5 . That is, low-� attacks actually take less 
time than high-� attacks. Larger � means that fewer frag-
ments exceed threshold and are chosen for a table-search 
(Fig.  6C), with correspondingly fewer test-decryptions 
(Fig. 6D), which in turn means that more models are neces-
sary for the attack to succeed (Fig. 6B). Just as in Figs. 4 and 
5, there is an opposing trend between Nmodels and the time-
per-model ( Nsearches + Ndecrypts ). However, in this case, the 
net result differs: there is less of a time-penalty for lowering 
� (using fewer models, each with more false alarms) than for 
raising � (using more models, each with few false alarms).

Parameterizing the Time‑Complexity

Here, we develop an expression for TmBG in terms of system 
parameters (n, � , M, and D), rather than the experimentally 
derived quantities Nmodels , Nsearches , and Ndecrypts . To do so, 
these measured quantities will be expressed in terms of an 
underlying probability distribution which represents the 
number of ’known’ bits in each n-bit fragment of tentative 
keystream.

The number of known bits in fragment KT (b) is just the 
Hamming-weight of its corresponding verified-sequence 
fragment V(b)

Letting discrete random-variable H represent the Hamming-
weight of an n-bit fragment of verified sequence, its proba-
bility mass function (p.m.f.) supported on a ∈ {0, 1, 2,… , n} 
is written as

Using this p.m.f., we can compute three important prob-
abilities: the probability that an n-bit fragment of KT will 
be chosen for a table-search; the probability of that a table-
search will produce a high-quality hit; and the probability 
that a high-quality hit will lead to a successful test-decryp-
tion. These three probabilities will then be used to estimate 
Nsearches , Ndecrypts , and Nmodels , which then lead to an estimate 
of the time-complexity itself.

# ∶ { known bits in KT (b)} = h(V(b)), ∀ b ∈ {1, 2,… ,�}.

pH(a) ≡ Pr{H = a}.
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Fig. 6  Effect of Hamming-weight threshold on time-complexity. A 
Normalized logarithmic time-complexity, �(TmBG) = log2(TmBG)∕n , is 
plotted against normalized Hamming-weight threshold �∕n for attacks 
against n = 20-, 24-, 28-, and 32-bit KSGs, with D = M = 

√
N and 

various 2 ≤ � ≤ n − 2 . The dotted line represents the time-complexity 
of a brute-force attack. Panels BD show the normalized logarithm of 
Nmodels , Nsearches , and Ndecrypts , respectively. Notice that time-complex-
ity trends upwards with larger � , suggesting that the rise in Nmodels 
outweighs the fall in Nsearches and Ndecrypts . KSG, keystream generator 
mBG, modified Babbage–Golić
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Hamming‑Weight Distribution

We begin by describing the distribution of Hamming-
weights of n-bit fragments of V. While this distribution 
can be obtained by mining data from mBG-attacks, there 
is also a ’shortcut’ for getting these data: simulation. The 
verified sequence simply marks the known/unknown 
status of each bit of KT  . Filling in the actual bits of a 
tentative keystream requires an mBG-attack (i.e., infor-
mation about X′ and Y ′ ), but simply marking each of its 
bits as ’known’ or ’unknown’ just requires the model’s 
failure counters. Since these failure counters are randomly 
selected during an mBG-attack, so too can they be ran-
domly selected ’in isolation’, thus providing the basis for 
a simulated verified sequence, V̂  . From this, frequency-
counting then provides the simulated Hamming-weight 
distribution p

Ĥ

where the delta function is

There are two ways to simulate a verified sequence. One 
method is to randomly choose a geometrically distributed 
failure counter f ∈ {0, 1, 2,… , 31} ; construct a ’word’ of 
format 0xFF0...0F with f zeros; concatenate this word to 
the existing sequence; and repeat this procedure until some 
desired total length is reached. The other method is to use 
a Markov process (see below), whose two states (0x0 and 
0xFFF) have transition probabilities that reflect the plain-
text-to-keystream matching process during PudgyTurtle 
encoding.

p
Ĥ
(a) = Pr{h(V̂(b)) = a} =

1

|V̂|
⋅

|V̂|∑

b=1

�(h(V̂(b)) − a),

�(u) =

{
1 if u = 0

0 if u ≠ 0.
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Fig. 7  Hamming-weight distribution. Panel A shows p
Ĥ

 , the fre-
quency distribution of Hamming-weights of n = 64-bit fragments of a 
simulated 5,200,000-bit verified sequence. The unusual, multi-peaked 
shape is composed of three sub-distributions: one at Hamming-
weight multiples of 12 (B); one at multiples of 4, but not 12 (C); and 
one at multiples of 1, 2, and 3 (mod 4), whose thicker looking ele-
ments are actually three closely spaced bars of similar amplitude (D). 
Notice that each of these distributions is ’bell-shaped’; that each is 
slightly skewed with maxima at > n∕2 = 32 ; and that amplitudes are 
highest for Hamming-weights that are multiples of 12, mid-range for 
multiples of four, and lowest for weights of 1, 2, or 3 (mod 4)
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Fig. 8  Hamming-weight distribution for different KSG-sizes. The 
lower tails (Hamming-weights < 12) of Hamming-weight distribu-
tions from simulated 5,200,000-bit verified sequences for n = 32, 33, 
34, and 35. Each distribution has a similar shape, but its peaks are 
right-shifted by n (mod 4). In the leftmost distribution (n = 32 = 0 
modulo 4) for example, the arrow shows a peak at Hamming-weight 
of 4. As n increases to 33, 34, and 35, this peak is seen at 5, 6, and 7, 
respectively. KSG, keystream generator
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The first method does not produce any overflow events, 
just like the tentative keystreams used in an actual mBG-
attack. The second method not only does allow overflows 
(i.e., words with ≥ 32 zero-nibbles) but also fails to mark 
them (e.g., with an extra 0xFF codeword). Since this anom-
aly might slightly affect the resulting p.m.f., we will there-
fore use the first simulation method.

One example of a simulated Hamming-weight distribution 
(for n = 64) is shown in Fig. 7A. Its unusual, characteristic 

multi-peak appearance seems to be composed of three sub-
distributions. The highest-amplitude peaks correspond to 
Hamming-weights that are multiples of 12 (Fig. 7B); the 
next-highest peaks to Hamming-weights that are multiples 
of 4, but not 12 (Fig. 7C); and the lowest-amplitude peaks to 
Hamming-weights that are not multiples of four (Fig. 7D). 
While this distribution is easy to simulate and its shape is 
straightforward to describe, an analytical expression for pH 
remains an open question.

When KSG-size n is not a multiple of four, the Ham-
ming-weight distribution has the same general shape, but its 
peaks are shifted rightwards by n (mod 4). Figure 8 shows 
close-up views of the left tails (first 12 values) of simulated 
Hamming-weight distributions for n = 32, 33, 34, and 35. 
Notice that each time n increases by one, the peaks shift 
rightwards as well. For instance, the peak at 4 (shown by the 
arrow) moves along the X-axis to 5, 6, and 7.

NSearches

The next step is to use the observed pH or simulated p
Ĥ

 to 
parameterize each of the three components of time-com-
plexity in Eq. (5).

For the number of table-searches, what is needed is a 
probabilistic expression for the rate at which n-bit fragments 
of tentative keystream contain � or more known bits

where A stands for ’above threshold’. Averaging over the 
whole tentative keystream, we get

Figure 9 shows PA(n, �) as a function of �∕n , from simu-
lated verified sequences ( ◦ ) and actual mBG-attacks ( ∙ ). 
Simulations involved 5,200,000-bit V̂  sequences, each rep-
resenting the amount of keystream required to encrypt ∼ 1 
million bits. For each V̂  , values of n ∈ {20, 24, 28, 32} and 
� ∈ {0, 1, 2,… , n} were assigned; PA(n, �) was calculated; 
and the process repeated with different random seeds to 
obtain an average value. For mBG-attacks, the probability 
was obtained by dividing the measured number of table-
searches by |KT | , and averaging over Nmodels repetitions. This 
figure demonstrates the close agreement between simulated 
and measured values.

NDecrypts

Since a test-decryption is done following every high-quality 
hit, and since high-quality hits are a sub-type of all hits, 

PA(n, �) = Pr{H ≥ �} =

n∑

j=�

pH(j),

(7)N̂searches = 𝓁 ⋅ PA(n, �) ≈ (5.2)D ⋅

n∑

j=�

pH(j).
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Fig. 9  Probability of � or more known bits. The probability that an n-
bit tentative-keystream fragment has ≥ � known bits is plotted against 
the normalized Hamming-weight threshold �∕n . Data are shown from 
simulations ( ◦ ) and actual mBG-attacks ( ∙ ). Simulated probabilities 
were calculated from 5,200,000-bit verified sequences, to which val-
ues of n ∈ {20, 24, 28, 32} and 0 ≤ � ≤ n were assigned. Measured 
probabilities were obtained by dividing the observed number of table-
searches by the tentative-keystream length, using only those attacks in 
which at least four models were available to average. mBG, modified 
Babbage–Golić
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Ndecrypts can be discussed by starting with the probability of 
a hit (’mimic’) itself.

Probability of Any Hit

Recall from Sect. 4.2 that a hit between the n-bit tentative-
keystream fragment KT (b) and the n-bit prefix Ph means that 
V(b)⊗ KT (b) = V(b)⊗ Ph , or equivalently V(b)⊗ U = 0 , 
where U is a short-hand for ( KT (b)⊕ Ph ). We refer to this 
equality as the hit condition.

Let v be a single bit of verified-sequence fragment V(b). 
The hit condition will be satisfied trivially whenever v = 
0. Since prefixes are chosen randomly and uniformly, and 
since the table is built independently of the model, U can be 
viewed as a uniformly distributed n-bit vector, so that the hit 
condition will also be satisfied about half the time when v 
= 1. Since V(b) contains h(V(b)) 1’s, the per-fragment prob-
ability that KT (b) is a hit is

To obtain the per-keystream probability, we average this 
quantity over all bit-offsets within the �-bit tentative 
keystream

Pr{V(b)⊗ U = 0} =
(
1

2

)h(V(b))

.

where the summation index changes from b = 1, 2,… ,� to 
j = 0, 1,… , n using the notation (#j) to represent the number 
of n-bit fragments of KT which contain j known bits. Finally, 
since (#)j∕� is just the probability pH(j)

Figure  10 shows PHIT (n) vs KSG-size for data from 
mBG-attacks ( ∙ ) and simulations ( × ). As can be seen, the 

PHIT (n) =
(
1

𝓁

) 𝓁∑

b=1

(
1

2

)h(V(b))

=

(
1

𝓁

)[(
1

2

)h(V(1))

+

(
1

2

)h(V(2))

+⋯ +

(
1

2

)h(V(𝓁))
]

=

(
1

𝓁

)[
(#0)

(
1

2

)0

+ (#1)

(
1

2

)1

+(#2)

(
1
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)2

+⋯ + (#n)

(
1

2

)n
]

=

n∑

j=0

(#j)

𝓁
⋅

(
1

2

)j

,

PHIT (n) =
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j=0

pH(j)
(
1
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Fig. 10  Probability of a hit. The probability PHIT (n) that an n-bit 
tentative-keystream fragment ’hits’ a row of the precomputed table 
is shown against KSG-size n, using data from actual mBG-attacks ( ∙ 
symbols) and simulations ( × symbols). Notice that the PHIT (n) falls 
exponentially as n increases. KSG: keystream generator; mBG, modi-
fied Babbage–Golić
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Fig. 11  Probability of a high-quality hit. Shown here is the base-2 
logarithm of PHQH(n, �) , plotted against �∕n . Data are from simula-
tions ( × ), successful attacks ( ∙ ), and planned unsuccessful attacks ( ◦ ). 
For simulations, the probability comes from the second term in Eq. 
(9), with � = 5,200,000 bits; n ∈ {20, 24, 28, 32} ; M = D =

√
N , and 

various � ∈ {0, 2, 4,… , n} ). For mBG-attacks, the probability was 
obtained by computing Ndecrypts∕(M × Nsearches) . Notice the similar-
ity between the measured and simulated data, and also that as �∕n 
approaches 1, probability estimates become less precise
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probability of a hit declines exponentially with KSG-size n, 
and fits the equation

Note that 12/20.8 is the length of runs of 1-bits in the veri-
fied sequence divided by the average length (in bits) of each 
of its ’words’.

Probability of a High‑Quality Hit

In the mBG-attack, hits are either accepted as ’high-quality’ 
(when KT (b) has ≥ � known bits), or rejected as ’spurious’ 
(when KT (b) has < 𝜃 known bits). Thus, PHIT (n) can be split 
into two terms

where Pspurious(n, �) is only defined when � ≥ 1.
From the original �-bit tentative keystream, at most 

Nsearches fragments will be chosen as search-targets to com-
pare with the table. However, each of these targets could 
potentially (e.g., when � = 0 ) hit up to M rows in the table. 
To account for this, the number of test-decryptions per 
model is defined as

Just as simulation offers an easy way to study N̂searches , so 
too can it be applied to study N̂decrypts [i.e., p

Ĥ
(j) can be used 

interchangeably with pH(j) in Eq. (10)]. But besides simula-
tion, there is still another short-cut at our disposal: un-suc-
cessful mBG-attacks. Since the number of test-decryptions 
is a ’per-model’ quantity, it is not affected by the ultimate 
outcome (i.e., success or failure) of cryptanalysis. Thus, 
rather than waiting for an attack to succeed, useful informa-
tion can still be obtained by halting an attack after some 
predetermined number of models have been analyzed, and 
then averaging Ndecrypts over this number of models.

Figure 11 compares these different ways to estimate the 
probability of a high-quality hit. All are log2-scaled and 
plotted against �∕n . The ∙ symbols are from successful 
mBG-attacks; the ◦ symbols are from a series of (planned) 
unsuccessful mBG-attacks; and the × symbols are from 

(8)PHIT (n) ≈
(

12

20.8

)
× 2−(0.135152)n.

(9)
PHIT (n) =

�−1∑

j=0

pH(j)
(
1

2

)j

+

n∑

j=�

pH(j)
(
1

2

)j

= Pspurious(n, �) + PHQH(n, �),

(10)

N̂decrypts = N̂searches ⋅MPHQH(n, �)

= 𝓁PA(n, �) ⋅M
n∑

j=�

PHQH(n, �)

≈ (5.2)DM

n∑

j=�

pH(j) ⋅

n∑

j=�

pH(j)
(
1

2

)j

.

simulations. Attacks used n = 20, 24, 28, and 32; M = D = √
N ; various � from 0 to (n − 2) ; and repetitions with differ-

ent secret keys and different samples of known-plaintext. 
The planned unsuccessful attacks were halted once 100 
models had been tried—or earlier if the attack succeeded 
before that point. Either way, the probability of a high-qual-
ity hit was calculated by dividing Ndecrypts by ( Nsearches ⋅M ), 
and averaging over however many models were used. (This 
was done for successful attacks as well.) Simulations were 
based on 5,200,000-bit V̂-sequences, with PHQH(n, �) calcu-
lated using the second summation in (9).

Figure 11 illustrates several important points. First (and 
as expected), the three estimates of PHQH(n, �) are simi-
lar. Next, as � increases, the probability of high-quality 
hit decreases. Two factors explain this trend: the number 
of n-bit fragments of KT chosen to undergo a table-search 
becomes smaller; and also the chance that one of these frag-
ments matches a prefix diminishes (i.e., this probability falls 
as the number of known bits per-fragment, and � , increase). 
Finally, the three methods for determining PHQH(n, �) all 
become less precise as � approaches n. In this region of 
parameter space, relatively few fragments within each KT 
possess ≥ � known bits. In essence, the growing uncertainty 
as � → n comes from fewer and fewer data-points being 
included in each probability estimate.

NModels

The mBG-attack analyzes model after model until one ten-
tative keystream finally produces a valid hit. Nmodels is the 
number of keystreams needed to make this happen. In some 
sense, then, Nmodels is inversely related to the ’correct test-
decryption’ probability.

To review, suppose that fragment KT (b) makes a high-
quality hit with prefix Ph (paired with KSG-state Sh in the 
precomputed table). This newly discovered state is first 
adjusted ( Sh → S′′

h
 ), and then used to produce ’regenerated’ 

keystream KR = KSG[S′′
h
 ]. If a test-decryption using KR cor-

rectly matches Q bits of known-plaintext, then KR must be 
identical to part of the actual keystream ( KA ) used to encrypt 
the message, and the attack succeeds. Consider several sce-
narios for the likelihood of a correct test-decryption, based 
on the number of known bits in KT (b):

– If none of its bits are known ( h(V(b)) = 0) , then KT (b) 
would mimic all prefixes in the table; KR would not nec-
essarily bear any relationship to KT (b) or KA ; and a cor-
rect test-decryption would be unlikely. This could happen 
during a mBG-attack with � = 0.

– If all bits of KT (b) are known ( h(V(b)) = n ), then KR 
would usually reproduce KA , and a correct test-decryp-
tion would be likely. This could happen during a ’tra-
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ditional’ BG-attack (in which false alarms are rare), or 
during a modified BG-attack with � = n.

– What if all of KT (b) ’s bits are known except for one? For 
example, consider an mBG-attack with � = n − 1 , during 
which a high-quality hit is produced by a KT-fragment for 
which h(V(b)) = n − 1.

  Before comparison, Ph and KT (b) are both multiplied 
by a vector (V(b)) containing n − 1 ones and a single 
zero. This causes the prefix to only have a 50% chance 
of being linked with the desired KSG-state. In other 
words, KSG[Sh ] always faithfully reproduces Ph , but Ph 
may not actually equal KT (b) . After all, Sh was obtained 
after comparing [Ph ⊗ V(b)] and [KT (b)⊗ V(b)] , not after 
directly comparing Ph and KT (b) . If the single 0-bit in 
V(b) causes KT (b) to be off from the original keystream, 
then KR will not match KA and the test-decryption will be 
wrong. Since 0- and 1-bits in Ph occur with equal prob-
ability, only 50% of the high-quality hits of this type will 
yield a correct test-decryption.

Generalizing this idea, a correct test-decryption becomes 
50% less likely with each unknown bit of KT (b) , so that

is the probability that a high-quality hit with KT (b) leads to 
a correct test-decryption.

Notice that the above is a conditional probability, depend-
ing upon KT (b) being a high-quality hit in the first place. The 
unconditional probability of interest is

where C stands for ’correct’ and STEP is the right-contin-
uous Heaviside function, STEP[x] = 1 (if x ≥ 0 ) and 0 (if 
x < 0).

To obtain the per-model (not per-fragment) probability, 
this quantity is averaged all tentative-keystream fragments

(
1

2

)n−h(V(b))

PC(b) = Pr{KT (b) → correct test-decryption ∩ KT (b) is a HQH}}

= Pr{KT (b) → correct | KT (b) is HQH} × Pr{KT (b) is HQH}

=
( 1
2

)n−h(V(b))
× Pr{KT (b) is a HQH}

=
( 1
2

)n−h(V(b))
× Pr{KT (b) is a hit ∩ KT (b) has ≥ � known bits}

=
( 1
2

)n−h(V(b))
× Pr{KT (b) is a hit ∩ h(V(b)) ≥ �}

=
( 1
2

)n−h(V(b))
× Pr{KT (b) is a hit | h(V(b)) ≥ �} × Pr{h(V(b)) ≥ �}

=
( 1
2

)n−h(V(b))
×
( 1
2

)h(V(b))
× STEP[h(V(b)) − �]

= STEP[h(V(b)) − �] ∕ N,

Pcorrect(n, �) =
(
1

�

) �∑

b=1

PC(b) =
PA(n, �)

N
.

Since each model will on average produce N̂decrypts test-
decryptions, the number of correct test-decryptions per 
model is

so that the average number of models required for a suc-
cessful attack (i.e., the number of models per correct test-
decryption) will be

Estimated Time‑Complexity

Using (7), (10), and (11) respectively for N̂searches , N̂decrypts , 
and N̂models , the time-complexity can be estimated as

Ncorrect(n, �) = N̂decrypts ⋅ Pcorrect(n, �),

(11)

N̂models =
1

Ncorrect(n, �)

=
1

(𝓁M)PA(n, �)PHQH(n, �) ⋅ PA(n, �)∕N

≈
N

(5.2)DM ⋅ PHQH(n, �) ⋅ P
2
A
(n, �)

.

T̂mBG = N̂models × (N̂searches + N̂decrypts),
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Fig. 12  Time-complexity: measured vs. estimated. The logarithmic 
time-complexity is plotted against KSG-size for two groups of data. 
The ∙ symbols are empirically measured TmBG values, collected from 
∼ 130 successful mBG-attacks. The × symbols are estimated T̂mBG 
values, obtained from 5,200,000-bit simulated verified sequences 
with the same (n, �)-values as the empirical data. Notice that T̂mBG 
over-estimates the measured data, most apparently when n = 20 and 
28. mBG, modified Babbage–Golić; KSG: keystream generator
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which can be expanded to

Since 0 ≤ PA(n, �) ≤ 1 , this estimated time-complexity will 
be ≥ N , whereas measured values, like those in Fig. 3, need 
not always be this large (see "Comparing T̂mBG and TmBG" for 
details). To emphasize, however, �TmBG > N simply suggests 
that the mBG-attack would perform no better than brute-
force—not that PudgyTurtle is somehow providing security 
’beyond’ O(N) complexity.

How well does this estimate reproduce results obtained 
from actual attacks, and how can T̂mBG be used to further our 
understanding of the mBG-attack? Figures 12 and 13 pro-
vide some confirmatory findings, while Table 6 and Fig. 14 
use T̂mBG to gain some useful insights.

(12)

T̂mBG =

(
N

𝓁M ⋅ P2
A
(n, �)PHQH(n, �)

)

× [ 𝓁 ⋅ PA(n, �) + (𝓁M) ⋅ PA(n, �)PHQH(n, �) ]

=
N

PA(n, �)

(
1 +

1

MPHQH(n, �)

)
.

Comparing T̂
mBG

 and T
mBG

Figure 12 shows TmBG and T̂mBG as a function of KSG-size. 
Notice first that the estimated ( × ) and measured ( ∙ ) time-
complexities are similar, but that the estimates somewhat 
exceed measured values—especially in the lower (smaller 
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Fig. 13  Estimated time-complexity. A Estimated time-complexity 
T̂mBG (for n=24 and �=6) is shown against a log2-scaled X-axis, 
which represents either D (the number of known-plaintext bits, shown 
as ∙ symbols) or M (the number of rows in the table, shown as ◦ sym-
bols). The estimated time-complexity does not change substantially 
with either D or M. B The log2-scaled estimated time-complexity is 
plotted against �∕n for n = 24, M = D = 4096, and various � . Time-
complexity increases with � , a trend that becomes more noticeable 
once �∕n exceeds 0.5. mBG, modified Babbage–Golić; KSG: key-
stream generator

Table 6  Time-complexity for ’extreme’ �

Shown here are mBG-attack complexity measures based on simu-
lated verified sequences, assuming a 24-bit KSG, M = D = 4096, and 
Hamming-weight thresholds of � = 0 or � = 24 , all averaged over 20 
repetitions. For each � (Column 1), the estimated number of tenta-
tive keystreams needed for a successful attack ( ̂Nmodels , Column 2); 

the estimated time-per-model ( ̂Nsearches + N̂decrypts , Column 3); and 
the estimated time-complexity ( ̂TmBG , Column 4) are given. Small � ’s 
lead to fewer models which each require lengthy analysis; and vice 
versa for large � . However, this tradeoff is not symmetric: the time-
complexity is lower when � = 0 compared to when � = n
mBG, modified Babbage–Golić, KSG: keystream generator

� N̂
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per-model

0 3.14 5.36e+06 1.68e+07
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Fig. 14  Time-complexity of attacks against a 32-bit KSG. Measured 
(left) and estimated (right) time-complexity of attacks against an n 
= 32-bit KSG, on a log2 scale. Even for this small KSG (by cryp-
tographic standards), successful mBG-attacks take a long time, and 
thus, only a few data-points from actual attacks are available, and 
these are limited to � ≤ 12 . However, estimating the time-complexity 
allows visualization of data over the full range of � . mBG, modified 
Babbage–Golić; KSG: keystream generator
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� ) range. Some of this inaccuracy may be due to implemen-
tation-dependent ’endpoint effects’. For example, our soft-
ware only advances through KT until the point at which there 
would no longer be sufficient data for a Q-bit test-decryption. 
Sometimes, this number may be considerably smaller than 
the idealized parameter � = |KT | − n + 1 (e.g., when n = 20, 
D =

√
N = 1024, and Q = 96, this amounts to a difference 

of Q∕� ≈ 10%). Another contributor to this over-estimation 
is that attacks halt as soon as a valid hit occurs—which usu-
ally happens only part-way through a tentative keystream. 
If, for example, only one model is needed (again, when � is 
small), then Nsearches will only be tabulated from part of KT , 
not from all � of its bits. This would reduce the measured 
time-per-model (i.e., relatively speaking, inflate the estimate), 
and could produce similar effects on averaged values even 
when Nmodels is small but still > 1.

Figure 13 shows how the estimated time-complexity 
varies with D, M, and � . Of note, the estimated time-com-
plexity behaves the same way as its empirically measured 
counterpart: it remains relatively unaffected by changes 
in D (as in Fig. 5) or changes in M (as in Fig. 4), but 
increases with �∕n (as in Fig. 6).

Extrapolating with T̂mBG

Described next are two usage cases in which the estimated 
time-complexity—by extending the available parameter 
range—facilitates more understanding of the mBG-attack.

Extremes of �

What happens when the mBG-attack is performed with 
the most ’extreme’ Hamming-weight thresholds? At one 
extreme (when � = 0 ), the mBG-attack behaves more like a 
brute-force approach. Every KSG-state in the table is used 
repeatedly for test-decryptions starting from each bit-offset 
within the known plaintext. Few models will be required, but 
each one will take longer to analyze. At the other extreme 
(when � = n ), the mBG-attack behaves more like the tradi-
tional BG-attack. Each tentative-keystream fragment only 
rarely (probability ∼ 1∕N ) makes a high-quality hit. More 
models will be required, but the few—if any—high-quality 
hits in each one can be tested quickly.

These analogies are imperfect. For instance, a real brute-
force attack involves trying N KSG-states, whereas the 
mBG-attack with � = 0 repeatedly tries the same M ≤ N 
states. Similarly, a traditional BG-attack uses every n-bit 
fragment of known keystream, while the mBG-attack with 
� = n only uses some fragments drawn from many ’hypo-
thetical’ (tentative) keystreams.

The time-complexity estimate can be further simpli-
fied when � = 0 and � = n . The probability of being above 
threshold is

and the probability of a high-quality hit is

where the latter comes from the observation that, when � is 
zero, all hits are ’high-quality’ by definition. Equation (12) 
can be likewise simplified. When � = 0 , the estimated time-
complexity takes its smallest value

where the final approximation uses the curve-fitting equa-
tion for the PHIT (n) data in Fig. 10. When � = n , the time-
complexity reaches its largest value

Table 6 shows averaged results from 20 simulated extreme-� 
mBG-attacks against a 24-bit KSG, 10 with � = 0 and 10 
with � = n (i.e., 24). Columns 2 ( Nmodels ) and 3 (time-
per-model) confirm that fewer models each take longer to 
analyze when � = 0 ; and more more models each require 
less processing-time when � = n . This inverse relationship 
between the number of models and the time-per-model 
might suggest that the mBG-attack performs poorly at both 
extremes of � . However, the estimated time-complexity 
(column 4) demonstrates that this is not the case: the ’trade-
off’ between Nmodels and time-per-model is not symmetric. 
Attacks with smaller � ran faster than attacks with larger 
� . The time-penalty for creating models is heavier than the 
penalty for analyzing them.

Worst‑Case Time‑Complexity

Another use for the estimated time-complexity is to study 
mBG-attacks that would otherwise take a prohibitive amount 
of time. For instance, even though a n=32-bit inner state 
KSG-size is small by cryptographic standards, nevertheless 
a modified BG-attack against a 32-bit KSG may take a very 
long time—especially when �∕n is close to 1. This ’worst-
case’ cryptanalysis scenario can be better quantified via the 
estimated time-complexity rather than the measured one.

Figure 14 shows the time-complexity measured from 
mBG-attacks ( ∙ symbols) and estimated from simulated 
verified sequences ( × symbols). While actual attacks only 

PA(n, �) =

{
1 if � = 0

pH(n) if � = n,

PHQH(n, �) =

{
PHIT (n) if � = 0

pH(n)∕N if � = n,

MIN[T̂mBG] = N

(
1 +

1

MPHIT (n)

)
≈ N

(
1 +

20.8

12
⋅
N0.135152

M

)
,

MAX[T̂mBG] =
N

pH(n)

(
1 +

N

MpH(n)

)
.
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provide data up to log2(TmBG) ≈ 32 , the estimation technique 
broadens the range substantially, to log2(T̂mBG) ≈ 56.

Although the measured data (left) do not allow any con-
clusions about the upper bound of TmBG , the expanded view 
(right) shows it to be ∼ 7

4
⋅ log2(N) . Again, we emphasize 

that time-complexities in this large just denote cases in 
which brute-force would be as reasonable an approach as the 
mBG-attack. Nevertheless, knowing the magnitude of this 
upper bound is still helpful: as a target to be lowered, it may 
help benchmark future improvements in the mBG-attack.

Lightweight Ciphers

The Internet of Things (IoT) is fostering a demand for 
encryption by devices with significant hardware and soft-
ware limitations (e.g., ’smart’ lightbulbs, RFID tags, and 
micro-sensor arrays), which in turn has sparked an interest 
in ’lightweight’ ciphers.4

While many lightweight block-ciphers have been pro-
posed (including but not limited to KLEIN [25], Simon / 
Speck [8], KTANTAN [18], PRESENT [12], Piccolo [44], 
Midori [7], PRINCE [14], LBlock [50], LED [26], and 
TWINE [32]), there are fewer lightweight stream-ciphers 
(e.g., Trivium [16], A4 [39], Hummingbird [22], Bean [33], 
Sprout [1], Plantlet [37], and LIZARD [27]). In part, this 
relative paucity is due to an oft-cited design criterion that 
applies to stream (but not block) ciphers: to achieve n-bit 
security, the inner state size of the stream cipher must be at 
least 2n bits [38]. While this precaution addresses concerns 
about the Birthday Paradox and TMDT attacks, doubling the 
inner state size obviously makes it harder to be ’lightweight’.

Recently, two new approaches to lightweight stream 
cipher design have been proposed. One, discussed by 
Hamann, Krause, and Meier and instantiated as LIZARD, 
is based on the so-called ’FP(1)-mode’ [27]. Essentially, 
this involves using the key twice—once (paired with the 
IV) as an initial state, and once again (via XOR) after ade-
quate mixing of the initial state. This approach can raise the 
security level of a tradeoff-based key-recovery attack from 
n

2
 to 2n

3
 bits. Another approach, proposed by Armknecht and 

Mikhalev and instantiated as Sprout, is “KSG with Keyed 
Update Function” (KUF) [1]. This concept involves incor-
porating part of the secret key into the state-update func-
tion, thus reducing its vulnerability to TMDT attacks while 
still allowing smaller states. Since its introduction, Sprout 

has been cryptanalyzed in several ways, including not only 
time–memory tradeoffs [23] but also other attacks involv-
ing guess-and-determine strategies, SAT solvers, differential 
fault analysis, and chosen-IV/related-key determination [6, 
28, 34, 36]. A more generalized approach to attacking KUF-
based stream-ciphers has also been advanced [31]. Even so, 
the KUF concept remains an exciting new design approach 
for lightweight stream-ciphers, and a successor to Sprout 
(called Plantlet) which addresses various security issues is 
now available [37].

How does PudgyTurtle fit into the lightweight stream-
cipher taxonomy? Since PudgyTurtle is not itself a cipher, 
neither can it be a ’lightweight cipher’. It can, however, work 
alongside a lightweight KSG. PudgyTurtle seems to oppose 
one goal of lightweight cryptography: resource minimiza-
tion. Its expansion property (i.e., producing about twice as 
much ciphertext and consuming about five times as much 
keystream) could be impractical for some IoT applications. 
Nevertheless, PudgyTurtle shares another goal of light-
weight stream-ciphers: resistance to tradeoff attacks. Using 
PudgyTurtle, an n-bit KSG provides a security level of > n

2
 

against the mBG-attack (i.e., TmBG >
√
N ). Thus, while it is 

wrong to claim that PudgyTurtle inherently turns an exist-
ing stream-cipher algorithm into one that is ’lightweight’, 
it is certainly reasonable to continue studying PudgyTurtle 
within the overall framework of lightweight ciphers. Future 
work in this context should focus on determining the added 
hardware cost (e.g., logic blocks and gate equivalents) and 
performance penalty (e.g., FELICS metrics [19]) of combin-
ing the PudgyTurtle process with the existing lightweight 
stream-ciphers.

Conclusions

We have analyzed a time–memory–data tradeoff attack 
against PudgyTurtle. This method, the modified-BG 
(mBG) attack, is based on the well-known work of Bab-
bage and Golić [5, 24]. Using ’toy’ keystream generators 
based on simple feedback shift registers of various sizes, 
we have shown that the time-complexity of the mBG-
attack exceeds O(

√
N)—the bound suggested by the tradi-

tional BG-attack against a standard binary-additive stream 
cipher system. We have also demonstrated how various 
parameters, including memory, data, and an mBG-spe-
cific quantity (Hamming-weight threshold, � ), affect the 
attack’s time-complexity. Specifically, choosing smaller 
values of � leads to faster attacks, while changing the table 
size or amount of data have only limited effects. Finally, 
we have suggested a way to estimate time-complexity 
based on a probability distribution which can be simu-
lated. Simulations validate these conclusions, and extend 

4 For example, the US National Institute of Standards and Technol-
ogy site https:// csrc. nist. gov/ Proje cts/ light weight- crypt ograp hy/ final 
ists discusses several proposals in this area, and https:// crypt olux. org/ 
index. php/ Light weight_ Crypt ograp hy compares them using several 
metrics.

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://cryptolux.org/index.php/Lightweight_Cryptography
https://cryptolux.org/index.php/Lightweight_Cryptography
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them to a wider range of parameter space than could have 
obtained from actual attacks.

Several questions about the mBG-attack and PudgyTur-
tle remain as open topics of research:

What is the distribution of the Hamming-weights of n-
bit samples of the verified sequence? The pH distribution 
has an interesting and unusual shape. An analytical expres-
sion for it remains elusive, but could lead to a closed-form 
solution for the mBG-attack’s time-complexity.

Could a better tradeoff attack be designed? Specifically, 
could some other (non-mBG) TMDT-attack reduce time-
complexity down to O(

√
N) ? Or could the mBG-attack 

itself be improved? For example, optimizing the software 
that does ’model creation’ and ’filling-in’ could speed up 
attacks which require many models, thus expanding the 
attacker’s flexibility to choose larger values of �.

Does the PudgyTurtle process itself introduce vulner-
abilities? PudgyTurtle uses keystream differently than a 
standard binary-additive stream cipher. Instead of enci-
phering plaintext by XOR’ing it with the keystream, 
PudgyTurtle uses keystream to encode the plaintext and 
to encipher the codewords. In some ways, this concept 
(using the output of an encryption algorithm in a differ-
ent way) resembles an ‘encryption mode’—like cipher-
text block chaining [CBC] for block-ciphers. The security 
of CBC-mode is linked to the security of its underlying 
block-cipher, but is PudgyTurtle’s security similarly linked 
to the security of its underlying KSG? Or does PudgyTur-
tle produce its own security problems—in the same way 
that, for example, poorly implemented CBC-mode may 
produce vulnerabilities (e.g., padding oracle, non-random, 
or repeated-IV attacks [46, 48]) despite a strong underly-
ing block-cipher.

Besides TMDT attacks, what other forms of cryptanaly-
sis would succeed against PudgyTurtle? Related to the 
above, a cipher may be secure against tradeoff attacks yet 
susceptible to other forms of cryptanalysis. For example, 
the Advanced Encryption Standard [AES] with large-
enough keys is TMDT-resistant, but may be susceptible 
to side-channel (timing) attacks if not implemented care-
fully [9, 13, 47]; and stream-ciphers may be tradeoff-
resistant but still vulnerable to slid-pair and correlation-
based attacks [17, 49]. Since non-TMDT attacks against 
PudgyTurtle will be inevitable, its apparently good perfor-
mance against a tradeoff attack is reassuring, but still only 
one aspect of an overall security evaluation.
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