
Journal of Scientific Computing (2024) 100:51
https://doi.org/10.1007/s10915-024-02597-z

Discretization of Non-uniform Rational B-Spline (NURBS)
Models for Meshless Isogeometric Analysis

Urban Duh1 · Varun Shankar2 · Gregor Kosec3

Received: 16 March 2023 / Revised: 28 February 2024 / Accepted: 25 April 2024 /
Published online: 2 July 2024
© The Author(s) 2024

Abstract
We present an algorithm for fast generation of quasi-uniform and variable-spacing nodes
on domains whose boundaries are represented as computer-aided design (CAD) models,
more specifically non-uniform rational B-splines (NURBS). This new algorithm enables the
solution of partial differential equations within the volumes enclosed by these CAD models
using (collocation-based)meshless numerical discretizations. Our hierarchical algorithmfirst
generates quasi-uniform node sets directly on the NURBS surfaces representing the domain
boundary, then uses the NURBS representation in conjunction with the surface nodes to
generate nodes within the volume enclosed by the NURBS surface. We provide evidence for
the quality of these node sets by analyzing them in terms of local regularity and separation
distances. Finally, we demonstrate that these node sets are well-suited (both in terms of accu-
racy and numerical stability) for meshless radial basis function generated finite differences
discretizations of the Poisson, Navier-Cauchy, and heat equations. Our algorithm constitutes
an important step in bridging the field of node generation for meshless discretizations with
isogeometric analysis.

Keywords Meshless · CAD · RBF-FD · Advancing front algorithms · NURBS

1 Introduction

Akey element of any numericalmethod for solving partial differential equations (PDE) is dis-
cretization of the domain. In traditional numerical methods such as the finite element method

B Gregor Kosec
gregor.kosec@ijs.si

Urban Duh
urban.duh@fmf.uni-lj.si

Varun Shankar
shankar@cs.utah.edu

1 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,
Slovenia

2 Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

3 Parallel and Distributed Systems Laboratory, “Jožef Stefan” Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02597-z&domain=pdf
http://orcid.org/0000-0002-6381-9078

51 Page 2 of 22 Journal of Scientific Computing (2024) 100 :51

(FEM), this discretization is typically performed by partitioning the domain into a mesh, i.e.,
a finite number of elements that entirely cover it. Despite substantial developments in the
field of mesh generation, the process of meshing often remains the most time consuming part
of the whole solution procedure while the mesh quality limits the accuracy and stability of
the numerical solution [20]. In contrast, meshless methods for PDEs work directly on point
clouds; in this context, points are typically referred to as “nodes”. In particular, meshless
methods based on radial basis function generated finite difference (RBF-FD) formulas allow
for high-order accurate numerical solutions of PDEs on complicated time-varying domains
[16, 32] and even manifolds [28]. The generation of suitable nodes is an area of ongoing
research, with much work in recent years [9, 11, 31, 35, 39]. In this work, we focus pri-
marily on the generation of nodes suitable for RBF-FD discretizations, although our node
generation approach is fully independent of the numerical method used. Node sets may be
generated in several different ways. For instance, one could simply generate a mesh using
an existing tool and discard the connectivity information [19]. However, such an approach
is obviously computationally expensive, not easily generalized to higher dimensions, and in
some scenarios even fails to generate node distributions of sufficient quality [31]. Another
possible approach is to use randomly-generated nodes [19, 24]; this approach has been used
(with some modifications) in areas such as compressive sensing [1] and function approxima-
tion in high dimensions [26]. Other approaches include iterative optimization [14, 17, 21],
sphere-packing [18], QR factorization [37], and repulsion [11, 39]. It is generally accepted
that quasi-uniformly-spaced node sets improve the stability of meshless methods [40]. In this
context, methods based on Poisson disk sampling are particularly appealing as they produce
quasi-uniformly spaced nodes, scale to arbitrary dimension, are computationally efficient,
and can be fully automated [9, 31, 35]. A related consideration is the quality of the domain
discretization. In the context of meshes, for instance, it is common to characterize mesh
quality using element aspect ratios or determinants of Jacobians [13, 44]. Analogously, the
node generation literature commonly characterizes node quality in terms of two measures:
the minimal spacing between any pair of nodes (the separation distance), and the maximal
empty space without nodes (the fill distance). Once again, in this context, Poisson disk sam-
pling via advancing front methods constitutes the state of the art [9, 35]. More specifically,
the DIVG algorithm [35] allows for variable spacing Poisson disk sampling on complicated
domains in arbitrary dimension, while its generalization (sDIVG) [9] allows for sampling of
arbitrary-dimensional parametric surfaces. DIVG has since been parallelized [7], distributed
as a standalone node generator [33], and is also an important component of the open-source
meshless project Medusa [36]. Despite these rapid advances in node generation for mesh-
less methods (and in meshless methods themselves), the generation of node sets on domains
whose boundaries are specified by computer-aided design (CAD)models is still in its infancy.
Consequently, the application of meshless methods in CAD supplied geometries is rare and
limited either to smooth geometries [25] or to the use of surfacemeshes [8, 12, 15]. In contrast,
mesh generation and the use of FEM in CAD geometries is a mature and well-understood
field [5, 13]. In our experience, current node generation approaches on CAD geometries
violate quasi-uniformity near the boundaries and are insufficiently robust or automated for
practical use in engineering applications.

In this work, we extend the sDIVG method to the generation of variable spacing node
sets on parametric CAD surfaces specified by non-uniform rational B-splines (NURBS).
We then utilize the variable-spacing node sets generated by sDIVG in conjunction with
the DIVG method to generate node sets in the volume enclosed by the NURBS surface.
Our new framework is automated, computationally efficient, scalable to higher dimensions,
and generates node sets that retain quasi-uniformity all the way up to the boundary. This

123

Journal of Scientific Computing (2024) 100 :51 Page 3 of 22 51

framework also inherits the quality guarantees of DIVG and sDIVG, and is consequently
well-suited for stable RBF-FD discretizations of PDEs on complicated domain geometries.

The remainder of the paper is organized as follows. The NURBS-DIVG algorithm is
presented in Sect. 2 along with analysis of specific components of the algorithm. The quality
of generated nodes is discussed in Sect. 3. Its application to the RBF-FD solution of PDEs is
shown in Sect. 4. The paper concludes in Sect. 5.

2 The NURBS-DIVG Algorithm

CAD surfaces are typically described as a union of multiple, non-overlapping, parametric
patches (curves in 2D, surfaces in 3D), positioned so that the transitions between them are
either smooth or satisfying somegeometric conditions.Apopular choice for representing each
patch is a NURBS [29], which is the focus of our work. Here, we present a NURBS-DIVG
algorithm that has three primary components:

1. First, we extend the sDIVG algorithm [9] (Sect. 2.2) for sampling parametric surfaces
to sampling individual NURBS patches and also the union of multiple NURBS patches
(Sect. 2.3.2).

2. Next, we deploy the DIVG algorithm [7, 35] in the interior of the domain using the sDIVG
generated samples as seed nodes (Sect. 2.1).

3. To ensure that DIVG generates the correct node sets in the interior of the domain whose
boundary consists of multiple parametric NURBS patches, we augment sDIVG with a
supersampling parameter (Sect. 2.3.3).

In the following subsections, we first briefly present the DIVG algorithm. We then describe
the sDIVG algorithm, which generalizes DIVG to parametric surfaces, focusing on sampling
a single NURBS surface. We then describe how the sDIVG algorithm is generalized to
surfaces consisting of multiple NURBS patches, each of which have their own boundary
curves. Finally, we describe the inside check utilized by our algorithm needed to generate
nodes within the NURBS patches, and the complications therein.

2.1 The DIVG Algorithm

Wenow describe the DIVG algorithm for generating node sets within an arbitrary domain. As
mentioned previously, this algorithm forms the foundation of the sDIVG and NURBS-DIVG
algorithms.

DIVG is an iterative algorithm that begins with a given set of nodes called “seed nodes”;
in our case, these will later be provided by the sDIVG part of the NURBS-DIVG. The seed
nodes are placed in an expansion queue. In each iteration i of the DIVG algorithm, a single
node pi is dequeued and “expanded”. Here, “expansion” means that a set Ci of n candidates
for new nodes is uniformly generated on a sphere centered at the node pi , with some radius
ri and a random rotation. Here, ri stands for target nodal spacing and can be thought of as
derived from a spacing function h, so that ri = h(pi) [34, 35]. Of course, the set Ci may
contain candidates that lie outside the domain boundary or are too close to an existing node.
Such candidates are rejected. The candidates that are not rejected are simply added to the
domain and to the expansion queue; this is illustrated in Fig. 1. The iteration continues until
the queue is empty. A full description of the DIVG algorithm can be found in [35]. Its parallel
variant is described in [7].

123

51 Page 4 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 1 The DIVG expansion scheme (left) and the sDIVG mapping scheme (right)

2.2 The sDIVG Algorithm

The sDIVG algorithm is a generalization of the DIVG algorithm to parametric surfaces.
Unlike DIVG (which fills volumes with node sets), sDIVG instead places nodes on a target
parametric surface in such a way that the spacing between nodes on the surface follows a sup-
plied spacing function.While other algorithms typically achieve this through direct Cartesian
sampling and elimination [31, 42], the sDIVG algorithm samples the parametric domain cor-
responding to the surface with an appropriately-transformed version of the supplied spacing
function. More concretely, given a domain � ⊂ R

d , sDIVG iteratively samples its boundary
∂� ⊂ R

d by sampling a parametrization � of its boundary instead. The advantage of this
approach over direct Cartesian sampling is obtained from the fact that � ⊂ R

d−1 (or Sd−1)
is a lower-dimensional representation of ∂�, leading to an increase in efficiency.

Wenowbriefly describe the spacing function transformation utilized by sDIVG to generate
a candidate set for expansion analogous to the one in DIVG.We first define a parametrization
r : � → ∂�, i.e., a map from the parametric domain � ⊂ R

d−1 to the manifold ∂� ⊂ R
d ;

the Jacobian of this function is denoted by ∇r. As in the DIVG algorithm, let h denote the
desired spacing function. Now, given a node λi ∈ �, wewish to generate a set of n candidates
for expanding λi , which we write as

Ci = {ηi, j ∈ �; j = 1, . . . , n}. (1)

It is important to note that the candidates ηi, j all lie in the parametric domain. Our goal is to
determine how far from λi must each candidate lie. From the definition of r and h, the target
spacing between the candidate ηi, j and the node being expanded λi is

‖r(ηi, j) − r(λi)‖ = h(r(λi)), (2)

for all j = 1, . . . , n. The candidates ηi, j can be thought of as lying on some manifold around
λi . This allows us to rewrite ηi, j as

ηi, j = λi + αi, j �si, j , (3)

for some constant αi, j > 0 and unit vector �si, j . Here, we must appropriately choose the unit
vectors �si, j (more on that later) and αi, j must be determined by an appropriate transformation
of h(r(λi)), i.e. the parametric distances αi, j between the candidate and the node being
expanded must be obtained by a transformation of the spacing function h specified on ∂�.

123

Journal of Scientific Computing (2024) 100 :51 Page 5 of 22 51

We may now use Eq. (3) to Taylor expand r(ηi, j) as

r(ηi, j) = r(λi + αi, j �si, j) ≈ r(λi) + αi, j∇r(λi)�si, j . (4)

We can now use the Taylor expansion in Eq. (4) to approximate the actual spacing between
λi and ηi, j in Eq. (2) to obtain the following expression for h(r(λi)) in terms of αi, j :

h(r(λi)) ≈ ‖r(λi) + αi, j∇r(λi)�si, j − r(λi)‖ = αi, j‖∇r(λi)�si, j‖. (5)

This in turn allows us to express αi, j as

αi, j = h(r(λi))
‖∇r(λi)�si, j‖ . (6)

It is important to note here that for such αi, j the target spacing defined in Eq. (2) holds only
approximately, i.e., to the first order in the Taylor series expanded in αi, j . This is not an issue
in practice, since in order to solve PDEs, we typically require node spacings that are small
compared to the curvature of the domain boundary ∂�. Higher-order approximations can also
be computed if needed.We can now use Eq. (6) within Eq. (1) to obtain an explicit expression
for the candidate set Ci purely in terms of the spacing function h and the parametrization r.
Thus, we have

Ci =
{
λi + h(r(λi))

‖∇r(λi)�si, j‖ �si, j ; �si, j ∈ Si

}
, (7)

where Si is set of n randomunit vectors on a unit ball. All other steps are identical to theDIVG
algorithm, albeit in the parametric domain �. The final set of points on ∂� is then obtained
by evaluating the function r at these parametric samples; a schematic of this is shown in Fig. 1
(right). A full description of the sDIVG algorithm and an analysis of its potential weakness
can be found in [9].

2.3 NURBS-DIVG

In principle, sDIVG can be used with any map r : � → ∂�. NURBS-DIVG, however, is
a specialization of sDIVG to surfaces comprised of NURBS patches (collections of non-
overlapping and abutting NURBS). We first describe the use of NURBS for generating the
surface representation r, then discuss the generalization to a surface containing multiple
patches.

2.3.1 An Overview of NURBS Surfaces

To define a NURBS representation, it is useful to first define the corresponding B-spline
basis in one-dimension. Given a sequence of nondecreasing real numbers T = {t0, t1, . . . , tk}
called the knot vector, the degree-p B-spline basis functions Ni,p(u) are defined recursively
as [29]

Ni,0(u) =
{
1; ti ≤ u < ti+1

0; otherwise
(8)

Ni,p(u) = u − ti
ti+p − ti

Ni,p−1(u) + ti+p+1 − u

ti+p+1 − ti+1
Ni+1,p−1(u) (9)

123

51 Page 6 of 22 Journal of Scientific Computing (2024) 100 :51

We can now use these basis function to define a NURBS curve in R
d . Given a knot vector

of the form T = {
p+1 times︷ ︸︸ ︷
a, . . . , a, tp+2, . . . , tk−p−1,

p+1 times︷ ︸︸ ︷
b, . . . , b}, n control points pi ∈ R

d and n
weights wi ∈ R, the degree-p NURBS curve is defined as [29]

s(u) =
∑n−1

i=0 Ni,p(u)wipi∑n−1
i=0 Ni,p(u)wi

, for a ≤ u ≤ b. (10)

In practice, it is convenient to evaluate s(u) ⊂ R
d as a B-spline curve in R

d+1, and then
project that curve down to R

d . For more details, see [29]. We evaluate the B-spline curve
in a numerically stable and efficient fashion using the de Boor algorithm [6], which is itself
a generalization of the well-known de Casteljau algorithm for Bezier curves [10]. It is also
important to note that derivatives of the NURBS curves with respect to u are needed for
computing surface quantities (tangents and normals, for instance, or curvature). Fortunately,
it is well-known that these parametric derivatives are also NURBS curves and can therefore
also be evaluated using the de Boor algorithm [29]. We adopt this approach in this work.

Finally, themap rwhich represents a surface of co-dimension one inRd can be represented
as a NURBS surface. This surface is obtained in a fairly standard fashion as a tensor-product
in knot space, followed by evaluation of the product space through the 1D spline maps. This
allows all NURBS surface operations to be computed via the de Boor algorithm applied to
each parametric dimension. The sDIVG algorithm can then be used to sample this surface as
desired, which in turn allows for node generation in the interior of the domain via DIVG.

2.3.2 Sampling Surfaces Consisting of Multiple NURBS Patches

Practical CAD models typically consist of multiple non-overlapping and abutting NURBS
surface patches. A NURBS patch meets another NURBS patch at a NURBS curve (the
boundary curves of the respective patches). While degenerate situations can easily arise
(such as two NURBS patches intersecting at a single point), we restrict ourselves in this
work with patches that intersect in NURBS curves. Some examples of node sets generated
by the NURBS-DIVG algorithm onCAD surfaces consisting ofmultiple NURBS patches are
shown in Fig. 2. We now describe the next piece of the NURBS-DIVG algorithm: extending
sDIVG to discretize a CADmodel that consists of several NURBS patches ∂�i . We proceed
as follows:

1. We use sDIVG to populate patch boundaries ∂(∂�i) with a set of nodes. Recall that these
patch boundaries are NURBS curves.

2. We then use these generated nodes as seed nodes within another sDIVG run, this time to
fill the NURBS surface patches ∂�i enclosed by those patch boundaries.

To populate patch boundaries, the boundary NURBS curve representation obtained from any
of the intersecting patches can be used. But, to use nodes from patch boundaries as seed
nodes in sDIVG for populating surface patches, the corresponding node from the patch’s
parametric domain� is required. However in general, nodes on intersecting patch boundaries
do not necessarily correspond to the same parametric nodes in all the respective parametric
domains of intersecting patches. Consequently, the parametric domains from intersecting
patches cannot be joined into one “global” parametric domain in a simple and efficient way.
While it is possible to determine the map � → � through a nonlinear solve, we found it
more efficient to simply populate the patch boundaries twice, once from each of the NURBS
representations obtained from intersecting patches. This produces two sets of seed nodes

123

Journal of Scientific Computing (2024) 100 :51 Page 7 of 22 51

Fig. 2 Node sets generated by NURBS-DIVG on the famous Utah Teapot (left) and a CAD model of cat
(right) based on [43]. The Utah Teapot model is made of 32 patches and has 7031 boundary nodes; the cat has
211 patches and 3439 boundary nodes

Fig. 3 Illustration of positioning nodes on a deformed sphere made of five NURBS patches. In the first step,
the boundary of the first patch is filled (first), followed by filling of that patch interior (second). Once the first
patch is processed, the boundary of the second patch is discretized (third); this process is repeated until all
patches are fully populated with nodes (fourth)

(one corresponding to each patch), but only the set from one of the representations is used
in the final discretization (it does not matter which one, since both node sets are of similar
quality). The full process is illustrated in Fig. 3.
For a given CADmodel consisting of a union of NURBS patches and a desired node spacing
h (i.e. constant spacing function), it is possible that the smallest dimension of the patch
becomes comparable to (or even smaller) than h. We now analyze the behavior of sDIVG in
this regime. To do so, we construct simple models comprising of Bezier surfaces (NURBS
with constant weights); to emulate the existence of multiple patches, we simply subdivide
the Bezier surfaces to obtain patches. In the 3D case, each subdivision is performed in a
different direction to ensure patches of similar size. The resulting surface, now a union
of non-overlapping and abutting NURBS (Bezier) patches, was then discretized with the
NURBS-DIVG algorithm using a uniform spacing of h = 10−4. We then assessed the
quality of the resulting node sets on those patches using the normalized local regularity
metric d

′
i defined in Sect. 3. The models and this metric are shown in Fig. 4. Figure4 shows

that NURBS-DIVG works as expected when h is considerably smaller than the patch size.
However, once the patch size becomes comparable to the h, the NURBS-DIVG algorithm

123

51 Page 8 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 4 The average normalized distance to c nearest neighbors (see Eq. (15) for the precise definition)
averaged over the whole domain, d ′, for a discretization of a successively subdivided Bezier curve in 2D and
an analogous Bezier surface in 3D. In 2D c = 2 and in 3D c = 3 are used. Ideally, one strives for d

′ = 1

rejects all nodes except those on the boundaries of the patch, as there is not enough space on
the patch itself for additional nodes.1 In all discussions that follow, we restrict ourselves to
the first and most natural regime where h is considerably smaller than the patch size.

2.3.3 NURBS-DIVG in the Interior of CAD Objects

As our goal is to generate node sets suitable for meshless numerical analysis in volumetric
domains, it is vital for the NURBS-DIVG algorithm to be able to generate node sets in the
interior of volumes whose boundaries are CADmodels, in turn defined as a union of NURBS
patches. While it may appear that the original DIVG algorithm is already well-suited to this
task, we encountered a problem of nodes “escaping” the domain interior when DIVG was
applied naively in the CAD setting. We now explain this problem and the NURBS-DIVG
solution more clearly.

To discretize the interior of CAD objects, we must accurately determine whether a par-
ticular node lies inside or outside the model. The choice of boundary representation can
greatly affect the technique used for such an inside/outside test. For instance, if the domain
boundary is modeled as an implicit surface (level set) of the form f (x) = 0, a node xk is
inside if f (xk) < 0 (up to some tolerance). However, in the case where the domain boundary
is modeled as a parametric surface or a collection of parametric patches (as in this work),
the analogous approach would be to instead solve a nonlinear system of equations to find

1 Of course, the figures also show that in the case where h is bigger than the average patch size, NURBS-DIVG
works well again, since this scenario is analogous to choosing which patches to place nodes in. However, this
scenario is not of practical interest.

123

Journal of Scientific Computing (2024) 100 :51 Page 9 of 22 51

Fig. 5 Demonstration of the supersampling approach for the inside/outside test in NURBS-DIVG. The figure
on the left shows nodes generated by the naive test used in theDIVGalgorithm,with nodes escaping the domain
boundary. The figure on the right shows the nodes generated using boundary supersampling in NURBS-DIVG;
all non-boundary nodes are enclosed within the volume defined by the boundary

the parameter values corresponding to xk and test if xk is inside. A simpler approach used
in recent work has been to simply find the closest point from the boundary discretization p
(with the given spacing h) to xk , and use its unit outward normal to decide if xk is inside the
domain. More concretely, if n is the unit outward normal vector at p, xk is inside the domain
� when

n · (xk − p) < 0. (11)

This is the approach used by the DIVG algorithm (and many others). However, in our
experience, this does not workwell for complex geometries with sharp edges and concavities.
For an illustration, see Fig. 5 (left); we see nodes marked as “interior” nodes that are visually
outside the convex hull of the boundary nodes.

An investigation revealed that a relatively coarse sampling of a patch near its boundary
NURBS curves could result in the closest point p and its normal vector n being a bad approx-
imation of the actual closest point and its normal on the domain �, thereby resulting in xk
being erroneously flagged as inside �. This problem is especially common on patch bound-
aries, where normal vectors do not vary smoothly. NURBS-DIVG uses a simple solution:
supersampling. More precisely, we use a secondary set of refined boundary nodes only for
the inside check with a reduced spacing ĥ given by

ĥ = h/τ, (12)

where τ > 1 is a factor that determines the extent of supersampling. Though this poten-
tially requires τ to be tuned, this solution worked well in our tests with a minimal additional
implementation complexity and computational overhead (see execution profiles for Poisson’s
equation in Sect. 4). Figure5 (right) shows the effect of setting τ = 2 in the same domain;
nodes no longer “escape” the boundary. While this approach is particularly useful for bound-
ary represented as a collection of NURBS patches, it is likely to be useful in any setting
where the boundary has sharp changes in the derivative of the normal vector (or the node
spacing h). In fact, intuitively, it seems that the greater the derivative (or the bigger the value
of h), the greater the value of τ required to prevent nodes escaping. To confirm this intuition,
we run a simple test both in 2D and 3D. In 2D, we define a parametric curve

r(t) = | cos(st)|sin(2st), t ∈ [0, 2π), (13)

123

51 Page 10 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 6 Shapes used to test the supersampling approach in NURBS-DIVG

Fig. 7 Minimal τ required to appropriately fill a model

where s is a parameter controlling the complexity of the curve (s = 1 gives 2 legs, s = 1.5
gives 3 legs, and so forth). These “legs” create sharp changes in the derivative of the normal
(notice r(t) is not smooth in t). In 3D, we simply extrude this curve in the z direction to
obtain a surface:

r = (r(t) cos(t), r(t) sin(t), z), t ∈ [0, 2π), z ∈ [−1, 1]. (14)

Both test domains are depicted in Fig. 6. We then plot the minimum value of τ required
for a successful inside check as a function of s, the parameter that controls the number of
legs, and the node spacing h. The results are shown in Fig. 7. As expected, increasing the
number of legs via s necessitates a greater degree of supersampling (τmin in the plots) in
both 2D and 3D. However, if h is sufficiently small to begin with, smaller values of τ appear
to suffice. In the tests presented in later sections, we selected h to be sufficiently small that
τ = 2 sufficed.

3 Node Quality

Although node quality in the meshfree context is not as well understood as in mesh based
methods, we can analyze local regularity by examining distance distributions to nearest
neighbors. For each node pi with nearest neighbors pi, j , j = 1, . . . c we compute

di = 1

c

c∑
j=1

||pi − pi, j ||, (15)

dmin
i = min

j=1,...,c
||pi − pi, j ||, (16)

dmax
i = max

j=1,...,c
||pi − pi, j ||. (17)

123

Journal of Scientific Computing (2024) 100 :51 Page 11 of 22 51

Fig. 8 Geometries used in the node quality analysis

Fig. 9 Mean and standard deviation (depicted as error bars) of local regularity distributions d ′
i computed over

the whole domain as a function of the number of nearest neighbors c for all three test models

In our analysis, the spacing function h is constant over the whole domain, therefore the
quantities are normalized as

d ′
i = di/h. (18)

For the analysis the following models are selected

– 2D duck with 8 patches,
– sphere with 6 patches,
– deformed sphere with 6 patches,

all depicted in Fig. 8.
Since the value of di depends on the value of c, some reasoning is needed before we

analyse our models. Sufficiently far from the boundary, one would ideally like to consider
the value of c equal to the maximal number of points that can be placed on a unit sphere with
mutual distances greater than or equal to 1 (that is 2 in 1D, 6 in 2D and 12 in 3D [4]). In
practice, however, the node distributions are not close to ideal even without the presence of
a boundary [35], which means that considering just the ideal c would fail to fairly assess the
uniformity of the distribution, especially in the case of a CAD model (where the boundary
often plays an important role). In Fig. 9, the means and standard deviations of d ′

i computed
over the whole domain (i.e. the means and averages of distributions later shown in Figs. 10
and 11) are shown as a function of c for each considered model. We see that both statistical
quantities depend on the model, the dimensionality of the domain, and if we are considering
the whole domain or only the boundary. In general, boundaries of a given model are easier
to uniformly discretize than the interior, since the boundaries have one dimension less than

123

51 Page 12 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 10 Local regularity distributions for boundary nodes in the case of a constant spacing function

Fig. 11 Local regularity distributions for boundary and interior nodes in the case of a constant spacing function

the interior. This is true despite the fact that sDIVG uses the first order Taylor expansion to
determine the appropriate spacing, which results in candidates being generated at spacing
only approximately equal to h, whereas DIVG makes no such approximation. Furthermore,
a simple argument considering only the dimensionalities cannot be sufficient for explaining
why the distributions for the 2D duck case are worse than for the 3D boundaries (which is
also a 2D object). Here, we must take into account that the duck model has more convex
vertices, where, even in the ideal case, one cannot hope to come close to the ideal number of
equidistant neighbors for the case of the empty space. Therefore, the distribution of d ′

i for a
large number of nearest neighbors c fails to fairly assess the uniformity of nodes. This effect
is also later visible in Fig. 11, where a spike just after d ′

i = 1.05 (which can be attributed
to said vertices) is visible. The boundary of both 3D objects does not itself have a boundary
∂(∂�), which means that higher values of c give a fairer estimate of node distribution quality
there. In following analyses we therefore used c = 2 for 1D objects (i.e. domain boundaries
in 2D), c = 3 for 2D objects (domain boundaries in 3D and domain interiors in 2D) and
c = 5 for 3D objects (domain interiors in 3D).

The distance distributions to nearest neighbors for boundary nodes are presented in
Figs. 10, and11 shows distributions for all nodes. The quantitative statistics are presented
in Table 1. It can be seen that the nodes are quite uniformly distributed as all distributions
are condensed near 1. In general, the uniformity of boundary node distribution is on par with
the distribution of interior nodes.

123

Journal of Scientific Computing (2024) 100 :51 Page 13 of 22 51

Ta
bl
e
1

St
at
is
tic
s
of

lo
ca
lr
eg
ul
ar
ity

di
st
ri
bu
tio

ns
sh
ow

n
in

Fi
gs
.1

0
an
d
11

m
ea
n
d̄

′ i
st
d
d̄

′ i
m
ea
n

((d
m
ax

i

) ′ −
(d

m
in

i

) ′)

B
ou

nd
ar
y
no

de
s

D
uc
k

1.
00

07
0.
01

7
0.
00

22

Sp
he
re

1.
04

0.
03

6
0.
10

D
ef
or
m
ed

sp
he
re

1.
04

0.
03

9
0.
10

B
ou

nd
ar
y
an
d
in
te
ri
or

no
de
s

D
uc
k

1.
03

6
0.
03

0
0.
10

1

Sp
he
re

1.
05

5
0.
02

9
0.
10

3

D
ef
or
m
ed

sp
he
re

1.
05

6
0.
03

0
0.
14

0

123

51 Page 14 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 12 Minimal and fill distance on the boundary with respect to different constant values of the spacing
function h

In the 2D duck case, the distribution of boundary nodes visually seems much better than
in the 3D cases. This is a consequence of the candidate generation procedure, which is
more optimal when the parametric domains are 1D. Another feature characteristic for 1D
parametric domains is that outliers with distance to nearest neighbors slightly less than 2h are
not uncommon. This happens at nodes where the advancing fronts of the sDIVG algorithm
meet and is rarely a problem in practice. For these reasons, the standard deviation for duck
case shown in Table 1 is of the same order of magnitude as the 3D cases. If we remove the
10 most extreme outliers, the standard deviation reduces by an order of magnitude. See [9]
for a deeper analysis and possible solutions.

In the 3D cases, the distribution of nodes for the deformed sphere is slightly worse, which
can be attributed to a greater complexity of the model. Nevertheless, the quality of generated
nodes is of the same order as the nodes generated by pure DIVG [35] and sDIVG [9].

Additionally, there are two quantities often considered as node quality measures, i.e.,
minimal distance between nodes (also referred to as separation distance) and fill distance
(also referred to as the maximal empty sphere radius) within the domain [14, 40]. The
minimal distance is defined for set of nodes � = {x1, . . . , xN } ⊂ � as

rmin,� = 1

2
min
i �= j

||xi − x j || (19)

and fill distance as
rmax,� = sup

x∈�

min
i

||x − xi ||. (20)

Quantity rmin,� is determined by finding the nearest neighbor for all nodes using a spatial
search structure, such as a k-d tree. A rmax,� is estimated numerically by sampling � with
higher node density and searching for the closest node among �.

The behaviour of the normalized fill distance and separation distance for all three cases
with respect to target nodal distance h is presented in Figs. 12 and 13. In all cases, rmax is
relatively stable near an acceptable value of 1 and rmin approaches the optimal value of 0.5
with decreasing h. This behaviour is consistent with previous results and the analytical bound
for rmin for sDIVG [9, 35].

123

Journal of Scientific Computing (2024) 100 :51 Page 15 of 22 51

Fig. 13 Minimal and fill distance on the whole domain with respect to different constant values of the spacing
function h

4 Solving PDEs on CAD Geometry

In this section, we focus on solving PDEs on domains discretized with scattered nodes xi
using the new NURBS-DIVG algorithm. In each node xi , the partial differential operator L
is approximated using a set of n nearest nodes, commonly referred to as support domain or
stencil, as

Lu(xi) ≈
n∑
j=1

w j u(xi, j), (21)

where index j runs over the stencil nodes of a node xi ,w areweights still to be determined and
u(xi, j) stands for the function u evaluated at the j-th stencil node of the node xi . The weights
are determined by solving a linear system resulting from enforcing the equality of the Eq. (21)
for the set of approximation basis functions. In our case, the basis consists of polyharmonic
splines (PHS) [3] that are centered at the stencil nodes, augmented with polynomials up to
order m. Such a setup corresponds to a meshless method commonly referred to as the Radial
basis function-generated finite differences (RBF-FD) [2, 3, 16, 30, 38]. For the purposes of
this work, we used the RBF-FD implementation discussed in [22, 36] with augmentation up
to order m ∈ {2, 4, 6} on n = 4

(m+2
2

)
closest nodes in 2D and n = 4

(m+3
3

)
in 3D to obtain

the mesh-free approximations of the differential operators involved.

4.1 Poisson’s Equation

First, we solve the Poisson’s equation

∇2u = f (22)

with a known closed-form solution

ua(x, y) = sin
(π

100
x
)
cos

(
2π

100
y

)
, in 2D, (23)

ua(x, y, z) = sin(πx) cos(2π y) sin(0.5π z), in 3D, (24)

using mixed Neumann-Dirichlet boundary conditions

u = ua, on 	d , (25)

∂u

∂n
= ∂ua

∂n
, on 	n, (26)

123

51 Page 16 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 14 Solution of Poisson’s equation on all three test geometries

where 	d and 	n stand for Dirichlet and Neumann boundaries. In all cases, the domain
boundary is divided into two halves, where we apply a Dirichlet boundary condition to one
half and a Neumann boundary condition to another. The numerical solution of the problem
is presented in Fig. 14.

Once the numerical solution û is obtained, we observe the convergence behaviour of the
solution through error norms defined as

e1 = ‖û − ua‖1
‖ua‖1 , ‖ua‖1 = 1

N

N∑
i=1

|uia |, (27)

e2 = ‖û − ua‖2
‖ua‖2 , ‖ua‖2 =

√√√√ 1

N

N∑
i=1

|uia |2, (28)

e∞ = ‖û − ua‖∞
‖ua‖∞

, ‖ua‖∞ = max
i=1,...,N

|uia |. (29)

In Fig. 15 we can see that for all three geometries the solution converges with the expected
order of accuracy according to the order of augmenting monomials.

Next, we assess the execution time of solving Poisson’s equation with second order mono-
mial augmentation. In Fig. 16 the execution times for all three geometries are broken down to
core modules of the solution procedure. We measure execution time for generation of nodes
using proposed NURBS-DIVG algorithm.2 The generation of stencils and the computation
of stencil weights are measured together as the RBF-FD part of the solution procedure. Sep-
arately, we also measure the cost of sparse matrix assembly (which is negligible [7]) and the
solution of the corresponding linear system; with an increasing number of nodes, this solve
ultimately dominates the execution time [7]. In the 2D duck case, the computational times
of solving the system and filling the domain are of the same order as the number of nodes is
still relatively small. However, in both 3D cases we can clearly see that the cost of solving
the linear system scales super-linearly and soon dominates the overall computational cost.
The RBF-FD part (as expected) scales almost linearly (neglecting the O(N log N) resulting
from k-d tree in stencil selection).

2 For a more in-depth analysis of computational complexity, see the DIVG [35] and sDIVG [9] papers.

123

Journal of Scientific Computing (2024) 100 :51 Page 17 of 22 51

Fig. 15 Error in the solution to Poisson’s equation with respect to the number of nodes

Fig. 16 Execution times broken down to separate solution procedure modules

123

51 Page 18 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 17 Scheme of the linear elasticity example (left) accompanied with the RBF-FD solution in terms of von
Misses stress (right). The gear model is made of 84 patches

4.2 Linear Elasticity—Navier-Cauchy Equation

In the previous section, we established confidence in the presented solution procedure by
obtaining expected convergence rates in solving Poisson’s equation on three different geome-
tries in 2D and 3D. In this section we apply NURBS-DIVG to a more realistic case from
linear elasticity, governed by the Navier-Cauchy equation

E

2 (ν + 1)

(
∇2u + 1

1 − 2ν
∇ (∇ · u)

)
= 0 (30)

where u stands for the displacement vector, and Young’s modulus E = 72.1 · 109 Pa and
Poisson’s ratio ν = 0.33 define material properties. The displacement and the stress tensor
(σ) are related via Hooke’s law

σ = E

ν + 1

(
1

1 − 2ν
tr(ε)I + ε

)
, ε = ∇u + (∇u)T

2
, (31)

with ε and I standing for strain and identity tensors. We observe a 3D gear object that is
subjected to an external torque resulting in a tangential traction t0 = 1 · 103 Pa on axis,
while the gear teeth are blocked, i.e. the displacement is zero u = 0m. The top and bottom
surfaces are free, i.e. traction free boundary conditions apply. In summary

u = 0m, on 	teeth, (32)

σ · n = 0 Pa, on 	free, (33)

σ · t = t0t, on 	axis. (34)

The case is schematically presented in Fig. 17 together with von Mises stress scatter plot.
The stress is highest near the axis where the force is applied, and gradually fades towards
blocked gear teeth. Displacement and von Mises stress are further demonstrated in Fig. 18 at
z = 0m cross section, where we see how the gear is deformed due to the applied force. All
results were computed using 41210 scattered nodes generated by NURBS-DIVG.

123

Journal of Scientific Computing (2024) 100 :51 Page 19 of 22 51

Fig. 18 The vonMises stress (left) and the displacement magnitude (right) at z = 0 cross section accompanied
with a quiver plot of the displacement field

4.3 Transient Heat Transport

The last example is focused on the transient heat equation

∂T

∂t
= λ∇2T + q, (35)

where T stands for temperature, λ for thermal conductivity, and q for the heat source. The
goal is to solve heat transport within the duck model subject to the Robin boundary condition

∂T

∂t
+ T = 0 (36)

and a heat source within the domain

q = 5e10||x−x0|| (37)

with x0 = (0, 0, 0.2), the initial temperature set to 0 throughout the domain, and λ = 2.
Time marching is performed via implicit stepping

T2 − T1
�t

= λ∇2T2 + q, (38)

where T1 and T2 stand for the temperature in the current and the next time step respectively
and �t represents the time step. The spatial discretization of the Laplace operator is done
using RBF-FD with m = 2. We used a time step of �t = 3 · 10−4 and 3000 iterations to
reach the steady state using the criterion T2 − T1 < 3 · 10−6) at t = 0.9.

Figure 19 shows the temperature scatter plot computed with RBF-FD on 21956 nodes
generated with the proposed NURBS-DIVG at two different times (first at the beginning of
the simulation and second at the steady state). In Fig. 20, the time evolution of the temperature
at five control points P1−5 is shown. Control point P1 is located at the heat source, P2−4
at the most distant points from the source, and P5 asymmetric with respect to the y-axis.
As one would expect, at the source the temperature rises immediately after the beginning of
the simulation and also reaches the highest value, while the rise is a bit delayed and lower at
the distant points that are closer to the boundary where the heat exchange with surroundings
takes place. Once the heat exchange with the surroundings matches the heat generation at
the source, the system reaches steady-state.

123

51 Page 20 of 22 Journal of Scientific Computing (2024) 100 :51

Fig. 19 Heat transport within a 3D duck. The model is based on [41] and consists of only 1 patch

Fig. 20 Time evolution of the temperature at five control points

5 Conclusions

In this paper, we presented a meshless algorithm, NURBS-DIVG, for generating quasi-
uniform nodes on domains whose boundaries are defined by CAD models consisting of
multiple NURBS patches. TheNURBS-DIVG algorithm is able to deal with complex geome-
tries with sharp edges and concavities, supports refinement, and can be generalized to higher
dimensions. We also demonstrated that node layouts generated with NURBS-DIVG are of
sufficiently high quality for meshless discretizations, first by directly assessing the quality of
these node sets, then by using RBF-FD to solve the Poisson equation with mixed Dirichlet-
Neumann boundary conditions on different domains to high-order accuracy. Finally, we
demonstrated NURBS-DIVG in conjunction with RBF-FD in tackling two more challenging
test cases: first, the stress analysis of a gear subjected to an external force governed by the
Navier-Cauchy equation; and second, a time-dependent heat transport problem inside a duck.

123

Journal of Scientific Computing (2024) 100 :51 Page 21 of 22 51

This work advances the state of the art in fully-autonomous, meshless, isogeometric analysis.
All algorithms presented in this work are implemented in C++ and included in our in-house
open-source meshfree libraryMedusa [22, 36], see theMedusa wiki [23] for usage examples.
The interface to all CAD files was implemented via Open Cascade [27].

Funding The first and third authors acknowledge the financial support from the Slovenian Research Agency
research core funding No. P2-0095, research Project J2-3048, and research Project N2-0275. The sec-
ond author was partially supported by the United States National Science Foundation (NSF) Grant CISE
CCF 1714844. Funded by National Science Centre, Poland under the OPUS call in the Weave pro-
gramme 2021/43/I/ST3/00228. This research was funded in whole or in part by National Science Centre
(2021/43/I/ST3/00228). For the purpose of Open Access, the author has applied a CC-BY public copyright
licence to any Author Accepted Manuscript (AAM) version arising from this submission.

Data availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request. For some practical examples see [23].

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adcock, B., Dexter, N., Xu, Q.: Improved recovery guarantees and sampling strategies for tvminimization
in compressive imaging. SIAM J. Imag. Sci. 14(3), 1149–1183 (2021)

2. Bayona, V.: An insight into rbf-fd approximations augmented with polynomials. Comput. Math. Appl.
77(9), 2337–2353 (2019)

3. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A.: On the role of polynomials in rbf-fd approximations:
Ii. numerical solution of elliptic pdes. J. Comput. Phys. 332, 257–273 (2017)

4. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (2010)
5. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA.

Wiley, New York (2009)
6. de Boor, C.: subroutine package for calculating with b-splines (1971). https://doi.org/10.2172/4740859,

https://www.osti.gov/biblio/4740859
7. Depolli, M., Slak, J., Kosec, G.: Parallel domain discretization algorithm for rbf-fd and other meshless

numerical methods for solving pdes. Comput. Struct. 264, 106773 (2022)
8. Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.J.: Finite pointset method for simulation of the liquid-liquid

flow field in an extractor. Comput. Chem. Eng. 32(12), 2946–2957 (2008)
9. Duh, U., Kosec, G., Slak, J.: Fast variable density node generation on parametric surfaces with application

to mesh-free methods. SIAM J. Sci. Comput. 43(2), A980–A1000 (2021)
10. Farin, G., Hansford, D.: The Essentials of CAGD. CRC Press, London (2000). https://books.google.si/

books?id=ODFRDwAAQBAJ
11. Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations.

Comput. Math. Appl. 69(7), 531–544 (2015). https://doi.org/10.1016/j.camwa.2015.01.009
12. Gerace, S., Erhart, K., Kassab, A., Divo, E.: A model-integrated localized collocation meshless method

(mims). Comput. Assist. Methods Eng. Sci. 20(3), 207–225 (2017)
13. Gokhale, N.S.: Practical finite element analysis. Finite to infinite (2008)
14. Hardin,D.P., Saff, E.B.:Discretizingmanifolds viaminimumenergy points.Not.AMS51(10), 1186–1194

(2004)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2172/4740859
https://www.osti.gov/biblio/4740859
https://books.google.si/books?id=ODFRDwAAQBAJ
https://books.google.si/books?id=ODFRDwAAQBAJ
https://doi.org/10.1016/j.camwa.2015.01.009

51 Page 22 of 22 Journal of Scientific Computing (2024) 100 :51

15. Jacquemin, T., Suchde, P., Bordas, S.P.: Smart cloud collocation: geometry-aware adaptivity directly from
cad. Comput. Aided Des. 103409 (2022)

16. Jančič, M., Slak, J., Kosec, G.: Monomial augmentation guidelines for RBF-FD from accuracy versus
computational time perspective. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-020-01401-y

17. Kosec, G.: A local numerical solution of a fluid-flow problem on an irregular domain. Adv. Eng. Softw.
120, 36–44 (2018). https://doi.org/10.1016/j.advengsoft.2016.05.010. (Publisher: Elsevier)

18. Li,X.Y., Teng, S.H.,Ungor,A.: Point placement formeshlessmethods using sphere packing and advancing
front methods. In: ICCES’00, Los Angeles (2000)

19. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, London (2002).
https://doi.org/10.1201/9781420040586

20. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Berlin
(2005)

21. Liu, Y., Nie, Y., Zhang, W., Wang, L.: Node placement method by bubble simulation and its application.
Comput. Model. Eng. Sci. CMES 55(1), 89 (2010). https://doi.org/10.3970/cmes.2010.055.089

22. Medusa library. http://e6.ijs.si/medusa/. Accessed on 15, Feb 2022
23. Medusa wiki. https://e6.ijs.si/medusa/wiki/. Accessed on 15, Dec 2022
24. Milewski, S.: Higher order schemes introduced to the meshless fdm in elliptic problems. Eng. Anal.

Bound. Elem. 131, 100–117 (2021)
25. Mirfatah, S.M., Boroomand, B., Soleimanifar, E.: On the solution of 3d problems in physics: from the

geometry definition in cad to the solution by a meshless method. J. Comput. Phys. 393, 351–374 (2019)
26. Narayan, A., Xiu, D.: Stochastic collocation methods on unstructured grids in high dimensions via

interpolation. SIAM J. Sci. Comput. 34(3), A1729–A1752 (2012)
27. Open cascade. http://www.opencascade.com. Accessed on 15 Dec, 2022
28. Petras, A., Ling, L., Ruuth, S.J.: An rbf-fd closest point method for solving pdes on surfaces. J. Comput.

Phys. 370, 43–57 (2018)
29. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (2012)
30. Sabine L.E., Borne, W.L.: Potential pitfalls in RBF-FD discretization: numerical studies on the interplay

of a multitude of parameter choices. Comput. Math. Appl. (2021)
31. Shankar, V., Kirby, R.M., Fogelson, A.L.: Robust node generation for meshfree discretizations on irreg-

ular domains and surfaces. SIAM J. Sci. Comput. 40(4), 2584–2608 (2018). https://doi.org/10.1137/
17m114090x

32. Shankar, V., Wright, G.B., Fogelson, A.L.: An efficient high-order meshless method for advection-
diffusion equations on time-varying irregular domains. J. Comput. Phys. 445, 110633 (2021)

33. Slak, J., Kosec, G.: Standalone implementation of the sequential node placing algorithm. http://e6.ijs.si/
medusa/static/PNP.zip

34. Slak, J., Kosec, G.: Adaptive radial basis function-generated finite differences method for contact
problems. Int. J. Numer. Methods Eng. 119(7), 661–686 (2019)

35. Slak, J., Kosec, G.: On generation of node distributions for meshless PDE discretizations. SIAM J. Sci.
Comput. 41(5), A3202–A3229 (2019). https://doi.org/10.1137/18M1231456

36. Slak, J., Kosec, G.: Medusa: a c++ library for solving pdes using strong form mesh-free methods. ACM
Trans. Math. Softw. (TOMS) 47(3), 1–25 (2021)

37. Suchde, P., Jacquemin, T., Davydov, O.: Point cloud generation for meshfree methods: an overview. Arch.
Comput. Methods Eng. 1–27 (2022)

38. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with
applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003). https://doi.org/10.1007/s00466-
003-0501-9

39. van der Sande, K., Fornberg, B.: Fast variable density 3-d node generation. SIAM J. Sci. Comput. 43(1),
A242–A257 (2021)

40. Wendland, H.: Scattered Data Approximation. No. 17 in CambridgeMonographs onApplied and Compu-
tational Mathematics. Cambridge University Press (2004). https://doi.org/10.1017/cbo9780511617539

41. X3D example archives: Basic, NURBS: Four ducks. https://www.web3d.org/x3d/content/examples/
Basic/NURBS/. Accessed on 14, Feb (2024)

42. Yuksel, C.: Sample elimination for generating poisson disk sample sets. In: Computer Graphics Forum,
vol. 34, pp. 25–32. Wiley (2015)

43. Zajac, A.: Cat figurine. https://www.turbosquid.com/FullPreview/905941. Accessed on 14 Feb, 2024
44. Zala, V., Shankar, V., Sastry, S.P., Kirby, R.M.: Curvilinear mesh adaptation using radial basis function

interpolation and smoothing. J. Sci. Comput. 77, 397–418 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10915-020-01401-y
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.1201/9781420040586
https://doi.org/10.3970/cmes.2010.055.089
http://e6.ijs.si/medusa/
https://e6.ijs.si/medusa/wiki/
http://www.opencascade.com
https://doi.org/10.1137/17m114090x
https://doi.org/10.1137/17m114090x
http://e6.ijs.si/medusa/static/PNP.zip
http://e6.ijs.si/medusa/static/PNP.zip
https://doi.org/10.1137/18M1231456
https://doi.org/10.1007/s00466-003-0501-9
https://doi.org/10.1007/s00466-003-0501-9
https://doi.org/10.1017/cbo9780511617539
https://www.web3d.org/x3d/content/examples/Basic/NURBS/
https://www.web3d.org/x3d/content/examples/Basic/NURBS/
https://www.turbosquid.com/FullPreview/905941

	Discretization of Non-uniform Rational B-Spline (NURBS) Models for Meshless Isogeometric Analysis
	Abstract
	1 Introduction
	2 The NURBS-DIVG Algorithm
	2.1 The DIVG Algorithm
	2.2 The sDIVG Algorithm
	2.3 NURBS-DIVG
	2.3.1 An Overview of NURBS Surfaces
	2.3.2 Sampling Surfaces Consisting of Multiple NURBS Patches
	2.3.3 NURBS-DIVG in the Interior of CAD Objects

	3 Node Quality
	4 Solving PDEs on CAD Geometry
	4.1 Poisson's Equation
	4.2 Linear Elasticity—Navier-Cauchy Equation
	4.3 Transient Heat Transport

	5 Conclusions
	References

