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Abstract
Modelling human function learning has been the subject of intense research in cognitive sciences. The topic is relevant in

black-box optimization where information about the objective and/or constraints is not available and must be learned

through function evaluations. In this paper, we focus on the relation between the behaviour of humans searching for the

maximum and the probabilistic model used in Bayesian optimization. As surrogate models of the unknown function, both

Gaussian processes and random forest have been considered: the Bayesian learning paradigm is central in the development

of active learning approaches balancing exploration/exploitation in uncertain conditions towards effective generalization in

large decision spaces. In this paper, we analyse experimentally how Bayesian optimization compares to humans searching

for the maximum of an unknown 2D function. A set of controlled experiments with 60 subjects, using both surrogate

models, confirm that Bayesian optimization provides a general model to represent individual patterns of active learning in

humans.

Keywords Bayesian optimization � Cognitive models � Active learning � Search strategy

1 Introduction

We consider as reference problem the black-box opti-

mization: the objective function and/or constraints are

analytically unknown and evaluating them might be very

expensive and noisy. In black-box situations, as we cannot

assume any prior knowledge about the objective function

f xð Þ, any functional form is a priori admissible and the

value of the function at a point says nothing about the value

at other points: the only way to develop a problem specific

algorithm is to assume a model of f xð Þ and to learn through

a sample of function values.

Such an algorithm must be sample efficient because the

cost of function evaluations is the dominating cost. This

problem has been addressed in several fields under differ-

ent names, including active learning (Kruschke et al. 2008;

Griffiths et al. 2008; Wilson et al. 2015), Bayesian opti-

mization (BO) (Zhigljavsky and Zilinskas 2007; Candelieri

et al. 2018; Archetti and Candelieri 2019), hyperparameter

optimization (Eggensperger et al. 2019), Lipschitz global

optimization (Sergeyev et al. 2020a, b; Lera et al. 2021),

and others.

In BO, a probabilistic surrogate model of the objective

function is built to sum up our a priori beliefs about the

objective function and the informative value of new

observations. Two probabilistic frameworks are usually

considered: the Gaussian processes (GPs) and random

forests (RF) which offer alternative ways to update the

beliefs as new data arrives and to provide an estimate of the

expected value of the objective function and the uncer-

tainty in this estimate.

Both GP and RF provide surrogate models: the major

driver of the choice is the type of design variables: con-

tinuous ones are better dealt with GP, while integer/cate-

gorical and conditional ones with RF.

In both cases the next sampled point is chosen on the

basis of its informative value through the maximization of

an acquisition function: this choice brings up the so-called

exploration vs exploitation dilemma, where exploration

means devoting resources to know more about possible

solutions while exploitation devotes resources to improve

on solutions already identified in previous phases. The

search for the new point must strike an effective balance

between the needs of exploration and exploitation.

Communicated by Yaroslav D. Sergeyev.

& Antonio Candelieri

antonio.candelieri@unimib.it

1 University of Milano-Bicocca, 20126 Milan, Italy

123

Soft Computing (2020) 24:17771–17785
https://doi.org/10.1007/s00500-020-05398-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1431-576X
http://orcid.org/0000-0003-0117-2237
http://orcid.org/0000-0002-6065-0473
http://orcid.org/0000-0003-1131-3830
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05398-2&amp;domain=pdf
https://doi.org/10.1007/s00500-020-05398-2


Psychologists have extensively studied how humans

balance exploration and exploitation (Krusche et al. 2008;

Mehlhorn et al. 2015), with a recent attention to the links

between modern machine learning algorithms and psy-

chological processes. (Gershman 2018; Schulz et al. 2016;

Gopnik et al. 2017). Psychological research has so far

mostly focused on how people learn functions according to

a protocol in which an input is presented to participants and

they are asked to predict the corresponding output value.

Then, they observe the true output value (usually noisy) in

order to update their own ‘‘predictive model’’ that is to

adjust their internal representation of the underlying func-

tion. Psychologists have largely focused on GP: the issues

of GP regression, kernel composition for different degrees

of smoothness and safe optimization in their relation to

cognition is studied in a recent survey by Schulz et al.

(2018b). Exploration is realized by adding the so-called

uncertainty bonus to estimated values obtaining the upper

confidence bound (UCB) algorithm (Srinivas et al. 2010).

In Wu et al. (2018) the human search strategy is analysed

for rewards under limited search horizons, concluding that

GP offers the best model for generalization and UCB the

best solution of the exploration/exploitation dilemma.

A significant application of RF is given in Plonsky et al.

(2019) as a hybrid model of machine learning and decision

mechanisms. A key driver in the above research activities

is that human learners are increasingly fast at adapting to

unfamiliar environments. Psychologists are investigating

the intriguing gap between the capabilities of human and

machine learning.

Most previous research findings in human learning refer

to function learning because it is related to a probabilistic

perspective on predictability and provides a proxy to gen-

eralization capability. Contrary to function learning, opti-

mization is not yet widely considered in the literature; in

Borji and Itti (2013) a simple 1-D optimization problem

has been considered.

The approach presented in this paper has been sketched

in Candelieri et al. (2019). The present paper has been

significantly augmented and rewritten. A set of new com-

putational results are related to the use, along with the GP,

of the RF as surrogate model. The set of references has

been also enlarged, and the whole perspective has been

widened to reflect that: learning and optimization of black-

box functions are two faces of the same coin. Moreover,

other global optimization strategies have been also con-

sidered in this study, both deterministic and stochastic,

leading to the main result that BO is the one offering a

reasonable unifying framework of human function learn-

ing, active sampling and optimization.

The structure of the paper is as follows: Sect. 2 outlines

the methodological background of BO including the basis

of the two main surrogate models, GP and RF, and the

management of the exploration/exploitation dilemma.

Section 3 is devoted to the experimental set-up, and Sect. 4

reports the experimental results about the behavioural

patterns of humans in optimizing black-box functions,

compared to both BO and other five global optimization

strategies. Section 5 outlines the conclusions of this study

and the perspectives of future works.

2 Methodological background

This section provides the underlying methodological

framework of the study. The global optimization problem

we consider is defined as:

max
x2v�Rd

f xð Þ

where the search space v is generally box-bounded and

f xð Þ is black-box meaning that no gradient information is

available and that we have only access to noisy observa-

tions of f xð Þ which are computationally expensive.

2.1 Gaussian processes

GPs are a powerful nonparametric model for implementing

both regression and classification. One way to interpret a

GP is as a distribution over functions, with inference taking

place directly in the space of functions (Williams and

Rasmussen 2006). A GP, therefore, is a collection of cor-

related random variables, any finite number of which have

a joint Gaussian distribution. A GP is completely specified

by its mean function l xð Þ and covariance function

cov f xð Þ; f x0ð Þð Þ ¼ k x; x0ð Þ:
l xð Þ ¼ E f xð Þ½ �
cov f xð Þ; f x0ð Þð Þ ¼ k x; x0ð Þ ¼ E f xð Þ � l xð Þð Þ f x0ð Þ � l x0ð Þð Þ½ �

and will be denoted by: f xð Þ�GP l xð Þ; k x; x0ð Þð Þ. This

means that the behaviour of the model can be controlled

entirely through the mean and covariance.

Usually, for notational simplicity we will take the prior

of the mean function to be zero, although this is not nec-

essary. The covariance function assumes a critical role in

the GP modelling, as it specifies the distribution over

functions, depending on a sample X1:n ¼ x1; . . .; xnf g.
More precisely, f X1:nð Þ�N 0;K X1:n;X1:nð Þð Þ with

K X1:n;X1:nð Þ an n� n matrix whose entry Kij ¼ k xi; xj
� �

with k a kernel function specifying a prior about the

smoothness of the function to be approximated and

optimized.

We usually have access only to noisy function values,

denoted by y ¼ f xð Þ þ e, with e an additive independent

identically distributed Gaussian noise with variance k2.
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Let y ¼ y1; . . .; ynð Þ denote a set of n noisy function

evaluations, then the resulting covariance matrix becomes

K X1:n;X1:nð Þ þ k2I.
Let D1:n ¼ xi; yið Þf gi¼1;::;n denote the set containing both

the locations and the associated function evaluations, then

the predictive equations for GP regression are updated by

conditioning the joint Gaussian prior distribution on D1:n:

l xð Þ ¼ E f xð ÞjD1:n; x½ � ¼ k x;X1:nð Þ K X1:n;X1:nð Þ þ k2I
� ��1

y

r2 xð Þ ¼ k x; xð Þ � k x;X1:nð Þ K X1:n;X1:nð Þ þ k2I
� ��1

k X1:n; xð Þ

where k x;X1:nð Þ ¼ k x; x1ð Þ; . . .; k x; xnð Þ½ �.
The covariance function is the crucial ingredient in a GP

predictor, as it encodes assumptions about the function to

approximate: function evaluations that are near to a given

point should be informative about the prediction at that

point. Under the GP view, it is the covariance function that

defines nearness or similarity. Once the prior mean and the

kernel are chosen, they are updated with the observation of

f xð Þ to find a-posterior distribution f ðxjD1:nÞ and this

allows us to find the expected value of the function at any

point and to calculate its uncertainty through its predicted

variance.

Examples of covariance (aka kernel) functions:

Squared Exponential (SE) kernel: kSE x; x0ð Þ ¼ e�
x�x02
2‘2 :

Exponential kernel: kExp x; x0ð Þ ¼ e�
x�x0j j
‘ :

Power exponential kernel: kPowExp x; x0ð Þ ¼ e�
x�x0j j
‘

� �p

:

Mat�ern kernels: kMat x; x
0ð Þ ¼ 21�m

C mð Þ
x� x0j j

ffiffiffiffiffi
2m

p

‘

� �m

Km
x� x0j j

ffiffiffiffiffi
2m

p

‘

� �
:

The hyperparameter ‘, in all the reported kernels, is the

characteristic length-scale (updated by maximum likeli-

hood estimation). The hyperparameter v[ 0 in the Matérn

kernel governates the smoothness of the GP samples,

which are v� 1 differentiable, and where C mð Þ is the

gamma function and Km is the modified Bessel function of

the second kind. The most widely adopted versions,

specifically in the machine learning community and con-

sidered in this paper, are m ¼ 3=2 and m ¼ 5=2. The Matérn

kernel encodes the expected smoothness of the target

function explicitly.

2.2 Random forest

Random forest (RF) is an ensemble learning method, based

on decision trees, for both classification and regression

problems (Ho 1995). According to the originally proposed

implementation, RF aims at generating a multitude of

decision trees, at training time, and providing as output the

mode of the classes (classification) or the mean/median of

the predictions (regressions) of the individual trees.

Although originally designed and presented as a

machine learning algorithm, RF is also an effective and

efficient alternative to GP for implementing BO. RF con-

sists of an ensemble of different regressors (i.e. decision

trees); it is possible to compute—as for GP—both l xð Þ and
r xð Þ, simply as mean and variance of the samples of the

individual outputs provided by the regressors. Due to the

different nature of RF and GP, they result in significantly

different surrogate models. While GP is well suited to

model smooth functions in search space spanned by con-

tinuous variables, RF can also deal with discrete and

conditional variables.

Moreover, fitting an RF is computationally more effi-

cient than fitting a GP; indeed, the kernel matrix inversion

required to fit a GP is a well-known computational issue.

2.3 The acquisition functions

The acquisition function is the mechanism to implement

the trade-off between exploration and exploitation in BO.

More precisely, any acquisition function aims to guide the

search of the optimum towards points with potentially high

values of objective function either because the prediction

of f xð Þ, based on the probabilistic surrogate model, is high

or the uncertainty, also based on the same model, is high

(or both). Indeed, exploitation means to consider the area

providing more chance to improve over current solution,

while exploration means to move towards less explored

regions of the search space where predictions based on the

surrogate model are more uncertain, with higher variance.

There are many acquisition functions, we quote only those

used in this study. Probability of improvement (PI)

(Kushner 1964) and expected improvement (EI) (Mockus

1975) measure, respectively, the probability and the

expectation of the improvement over the best observed

value of f xð Þ given the predictive distribution of the

probabilistic surrogate model. More precisely, they are

defined as follows:

EI xð Þ ¼ max
x2X

0; l xð Þ � yþf g

PI xð Þ ¼ U
l xð Þ � yþ

r xð Þ

� �

with yþ the best value observed so far and U is the

cumulative density function of a normal distribution. The

next evaluation point, xnþ1, is obtained by maximizing

EI xð Þ or PI xð Þ. More recently, Upper/Lower Confidence

Bound, (Srinivas et al. 2010), denoted with UCB/LCB, is

widely used. It is an acquisition function that manages

exploration–exploitation by being optimistic in the face of

uncertainty where UCB and LCB are used, respectively,

for maximization and minimization problems:
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UCB xð Þ ¼ l xð Þ þ br xð Þ and LCB xð Þ ¼ l xð Þ � br xð Þ

where b� 0 is the parameter to manage the trade-off

between exploration and exploitation (b ¼ 0 is for pure

exploitation; on the contrary, higher values of b empha-

sizes exploration by inflating the weight of model uncer-

tainty). In Srinivas et al. (2010), a policy is provided for

updating the value of b along function evaluations,

with also a proof of convergence of such a policy. In the

case of a maximization problem, the next point is chosen

as xnþ1 ¼ argmax
x2X

UCB xð Þ while in the case of a mini-

mization problem the next point is selected as xnþ1 ¼
argmin

x2X
LCB xð Þ.

2.4 Bayesian optimization

Algorithm 1 summarizes a general BO schema where the

acquisition function, whichever it is, is denoted by

a x;D1:nð Þ. In order to maintain the schema as general as

possible we do not specify the probabilistic surrogate

model, as well as the kernel in the case of a GP.

In this study we have used both GP (considering the

kernel types presented in the previous section) and RF as

surrogate probabilistic models. The three different acqui-

sition functions previously described have been used for

both the two surrogates.

3 Experimental set-up

3.1 User interface

The software related to the game playing has been devel-

oped by implementing 15 stimuli, that are 15 different 2D

functions. Each subject was informed about the goal of the

experiment and the available number of clicks for the play,

before to start. Subjects started by clicking at any point in

the screen and getting the corresponding value; previously

clicked points and their values remained on the screen until

the end of the trial game. More specifically, points are

coloured and resized according to the associated score (i.e.

the value of f at that point), providing a visual feedback

about the distribution of the scores collected so far.

Moreover, the software has been developed to manage

three different game modalities. At the start of each game,

along with the test function, also the modality is randomly

chosen among the following.

Find a point whose associated evaluation is close to

f 	 ¼ f x	ð Þ, but without knowing f 	 a-priori. From an

optimization point of view, this means that the human

player searches for yþn ¼ max
i¼1;...;n

yi, with yi ¼ f xið Þ the value

observed for the ith location sequentially chosen by the

player. This is equivalent to optimize the simple regret

(without knowing f 	):

min
n¼1;::;N

f 	 � yþn

As in the previous game modality, the goal is to find a

point whose associated evaluation is close to f 	 but, in this

case, the human player knows f 	 before making his/her

choices. Thus, also in this case the player will optimize the

simple regret: we are interested in understanding if and

how knowledge about f 	 can modify humans’ strategies

with respect to the first game modality.

Maximize the cumulative value of all the evaluations at

the selected points, without knowing a-priori f 	. In this

case human players tries to maximize
PN

i¼1 yi, which is

equivalent to optimize the cumulative regret.
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min
XN

i¼1

f 	 � yið Þ

Our software collects all the choices made by each

player along every game play and stores data into a data-

base whose structure is summarized in Fig. 1. Into the

‘‘games’’ table, each row (i.e. record) represents a single

point, and the associated function value, in a game, along

with information about the player’s identifier, the test

function, and the game modality. The games are univocally

identified by including the timestamp relative to the end of

the game.

Figure 2 shows a frame of the game.

3.2 Procedure

For each player, at each iteration, GP and RF models are

fitted on the observed points, and then the three acquisition

functions, previously mentioned in Sect. 2.3, are used to

select the next point to query. All these points are com-

pared, via Euclidean distance, to the corresponding choice

made by the human player.

Moreover, for the GP, five kernels have been used to

consider different possibility of smoothness approximation

of the objective function.

The choices of the human player and those of the global

optimization algorithm are considered compliant, point-

wise, if the distance between the point chosen by the

human player and the ‘‘algorithmic player’’ is less than a

given ‘‘threshold’’, namely s. Finally, the strategy of the

human player is assimilated to the acquisition function

most frequently compliant, pointwise, along a trial game.

The procedures for GP-based and RF-based BO are sum-

marized in the following pseudo-codes:

Finally, for a given kernel k, the search strategy of the

participant p is compliant to the most frequent acquisition

function in the series sp;k ¼ sp;k;n
	 


n¼m:mþN
.
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Finally, the search strategy of the participant p is com-

pliant to the most frequent acquisition function in the series

sp ¼ sp;nf gn¼m:mþN .

3.3 Software resources and analysis

Software resources consist of two components developed

in R. The first component is the procedure to compute the

distance between the humans’ and global optimization

choices during each game, while the second aggregates all

the calculated distances and generates the related statistics.

More precisely, the procedure operated by the first com-

ponent is summarized in previous Algorithm 2 and Algo-

rithm 3 for GP-based and RF-based BO, respectively. Since

this study considers also other global optimization strate-

gies—detailed in the following—the first component has

been specialized for each one of the other strategies. (For

ease of reading, we do not report every single implemen-

tation, but they can be easily obtained starting from

Algorithm 3.)

Fig. 1 Entity–relation (ER)

diagram of database
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The implementations of Algorithm 2 and Algorithm 3

are based on the R package named ‘‘mlrMBO’’, which

offers both GP and RF as surrogate model along with the

acquisition functions adopted in this study. L-BFGS algo-

rithm is used to optimize the acquisition function based on

GP on a continuous search space; for RF the ‘‘focus-

search’’ algorithm (Bischl et al. 2017) is adopted: it can

handle with numeric, discrete and mixed search spaces,

also involving conditional variables. Focus-search starts

with a large set of random points where the acquisition

function is evaluated. Then, the search space is shrunk

around the current best point and a new random sampling is

performed within the ‘‘focused space’’. Shrinkage is itera-

tively performed until a maximum number of iterations,

and the entire procedure can be restarted multiple times to

mitigate the risk of convergence to a local optimum.

Finally, the best point over all restarts and iterations is

returned as the solution.

As already mentioned, we have also compared the

humans’ strategies with other deterministic and stochastic

global optimization techniques, more specifically:

• Random search (RS) we used the R package ‘‘random-

search’’ which implements a simple RS function.

• DIRECT we used the R package ‘‘nlopt’’ for nonlinear

optimization, offering, among others, DIRECT as an

optimization algorithm based on Jones et al. (1993).

• Genetic algorithm (GA) we used the R package ‘‘GA’’,

a toolbox implementing GA for stochastic optimization

(Scrucca 2013, 2016).

• Particle swarm optimization (PSO) we used the R

package ‘‘pso’’ which offers a standard PSO imple-

mentation based on Banks et al. (2007).

• Simulated annealing (SA) we used the R package

‘‘optim_sa’’ which offers an implementation of SA

based on Laarhoven and Aarts (1987).

We have then computed the distances, in terms of x,

between the best location found by the humans at the end

of each game with those provided by each one of the other

five global optimization techniques and BO. Let denote

with xþ the location found by the player (human or algo-

rithmic) such that yþ ¼ f xþð Þ is the best value observed

over a specific trial game by that user.

3.4 Participants and analytical settings

In this section, we further detail the features of the data

collected and used for this study. Initially, around 70 vol-

unteers were enrolled for the study; while they used the

software to play and collect data, their feedbacks about the

user-friendliness of the interface were also used to improve

our software. Due to this work-in-progress nature of the

game playing software, not all the games collected were

Fig. 2 An example of a game

play: each dot is a location

selected by the player. As a

feedback, the associated

numerical value is visualized,

and size and colour of the dot

are set accordingly
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well suited for the analysis. Thus, we have decided to

restrict the analysis to the largest homogeneous set, that is:

• 60 subjects

• One test function (i.e. Styblinski-Tang).

• One modality (i.e. finding a point whose evaluation is

close to f 	 ¼ f x	ð Þ, but without knowing f 	 a-priori.)

With respect to Algorithm 2 and Algorithm 3, we

declare here the values of b in the UCB equation, that is

b ¼ 0:0; 0:5; 1:0f g; and of the threshold s ¼ 0:10; 0:15f g.

4 Experimental results

4.1 Experiment 1: Gaussian process

The following figures summarize the main results related to

the comparison between human players strategies and GP-

based BO. We start with the case b ¼ 1:0 in UCB.

From Fig. 3, EI is preferred, indicating a dominant

exploitative behaviour among humans. Indeed, b ¼ 1:0 in

the UCB gives some chance to exploration, depending on

the value of r xð Þ. Statistical significance of this result was

evaluated via a Fisher’s test for each pair consisting in EI

versus another acquisition function. Given a pair of

acquisition functions, the test hypothesis is that there is not

a more compliant one. As summarized in Table 1, the

hypothesis is rejected (p value\ 0.05) for exponential and

Matérn kernels, while it is accepted for power and squared

exponential kernels.

Results reported in Fig. 4 are coherent with those pre-

viously depicted in Fig. 3. Moreover, the number of human

players whose strategy is not compliant with BO is

reduced, according to the less restrictive value of the

threshold s. We have applied a Fisher’s test to evaluate the

statistical significance of the obtained outcomes; results are

summarized in Table 2. According to the Fisher’s test, EI is

Fig. 3 Number of human players whose strategy is compliant with respect to kernel type and acquisition functions, with the threshold s set to
0.10, and b ¼ 1 in UCB. Last bar represents the number of non-compliant

Table 1 Fisher’s test p values

for each pair related to the most

frequently compliant acquisition

function in Fig. 3 (i.e. EI) and

the others

EI versus UCB EI versus PI EI versus none

Exponential \ 0.001 \ 0.001 \ 0.001

Matérn 3/2 \ 0.001 \ 0.001 \ 0.001

Matérn 5/2 \ 0.001 \ 0.001 \ 0.001

Power exponential 0.758 \ 0.001 \ 0.001

Squared exponential 0.359 0.375 0.010

The hypothesis that one acquisition function is more significantly compliant than the other is accepted with

a confidence 0.05
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always the most compliant acquisition function, except for

the squared exponential kernel.

According to the charts reported in Fig. 5, one can see

that with the reduction in b, UCB gains a larger share of

participants. Again, we have applied a Fisher’s test to

evaluate the statistical significance of the obtained out-

comes; the results are summarized in Table 3. According to

the Fisher’s test, the EI is still the most compliant acqui-

sition function, for most of the kernels, even if the p values

increases with respect to the previous cases.

Figure 6 is again a confirmation that, for human players,

‘‘greed is good’’: b ¼ 0 means no-exploration in UCB

whose fully exploitative version gets the largest share of

participants. In this case we have performed a Fisher’s test

for each pair related to UCB (instead of EI) versus the other

acquisition functions, since UCB is now the most fre-

quently compliant option. Results of the Fisher’s test are

summarized in Table 4. Although UCB with b ¼ 0 is the

most frequently compliant acquisition function, the number

of shares does not result significantly different from that of

EI. In any case this result confirms the exploitative nature

of humans, who largely adopt strategies close to EI and

‘‘pure exploitative’’ UCB acquisition functions.

Although maximizing EI or UCB with b ¼ 0 should

analytically lead to the same next location x to evaluate, the

numerical results can be quite different, due to the different

shapes of these two acquisition functions. Indeed, when

l xð Þ is lower than the best value observed so far, yþ; over a
large portion of the search space, then EI is almost com-

pletely flat, as depicted in the example of Fig. 7. Conse-

quently, whichever optimization strategy is used to

optimize EI could easily fail, leading to no improvement of

yþ over new function evaluations. On the contrary, UCB

with b ¼ 0 coincides with l xð Þ (Fig. 7): this allows to

converge towards a local optimum of l xð Þ and, in case, to

improve over yþ.

Fig. 4 Number of human players whose strategy is compliant with respect to kernel type and acquisition functions, with threshold s set to 0.15,

and b ¼ 1 in UCB. Last bar represents the number of non-compliant

Table 2 Fisher’s test p values for each pair related to the most frequently compliant acquisition function in Fig. 4 (i.e. EI) and the others. The

hypothesis that one acquisition function is more significantly compliant than the other is accepted with a confidence 0.05

EI versus UCB EI versus PI EI versus none

Exponential \ 0.001 \ 0.001 \ 0.001

Matérn 3/2 \ 0.001 \ 0.001 \ 0.001

Matérn 5/2 \ 0.001 \ 0.001 \ 0.001

Power exponential 0.010 \ 0.001 \ 0.001

Squared exponential 0.184 0.191 \ 0.001
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4.2 Experiment 2: random forest

The same analysis has been also performed by using RF as

surrogate model instead of GP. Figure 8 shows that PI, a

notoriously exploitative acquisition function, gets the lar-

ger share of compliant when UCB accounts for exploration

(b ¼ 1).

Although the exploitative nature of the human choice is

confirmed also in this case, we observed a shift from EI to

PI (that is even more exploitative than EI). This is basically

due to the combination between the type of acquisition

function and the shape of the surrogate model, that is

piecewise constant for RF and continuous for GP.

The situation changes by reducing the exploration

component in UCB, which with b ¼ 0.5 and b ¼ 0.0

dominates choices among the compliant. Summarizing,

also in the case of RF, the human’s nature appears to be

exploitative. We have performed a Fisher’s test to evaluate,

for each combination of s and b, if the BO algorithm

associated to the larger share of compliant participants can

be statistically considered the most compliant one. Results

of the Fisher’s test are reported in Table 5.

4.3 Comparison against other global
optimization techniques

In this section we consider, among all the possibilities, the

BO approach that proved to be more compliant with the

humans’ strategies, overall. Let BO** denote this specific

approach, that is: GP surrogate with Matérn 3/2 kernel, EI

as acquisition function and s ¼ 0:15: Indeed, as reported in

Fig. 4, this BO configuration is associated to the largest

share (i.e. 43) of participants compliant to an optimization

strategy.

We computed all the distances between the optimal

solutions (i.e. xþ) found by humans with those provided by

Fig. 5 Number of human players whose strategy is compliant with respect to kernel type and acquisition functions, with threshold s set to 0.15,

and b ¼ 0:5 in UCB. Last bar represents the number of non-compliant

Table 3 Fisher’s test p values

for each pair related to the most

frequently compliant acquisition

function in Fig. 5 (i.e. EI) and

the others

EI versus UCB EI versus PI EI versus None

Exponential 0.044 0.088 \ 0.001

Matérn 3/2 0.024 \ 0.001 \ 0.001

Matérn 5/2 0.024 \ 0.001 \ 0.001

Power exponential 0.055 0.016 \ 0.001

Squared exponential 1.000 0.350 0.001

The hypothesis that one acquisition function is more significantly compliant than the other is accepted with

a confidence 0.05
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BO** and the other 5 global optimization techniques cited

in Sect. 3.3 (i.e. RS, DIRECT, GA, PSO and SA).

According to the boxplot reported in Fig. 9, optimal

solutions provided by BO** are, on average, closer to the

humans’ ones compared to the other techniques.

More interestingly, the density plot in Fig. 10 shows that

the distributions of the distances are basically bimodal, for

all the global optimization techniques but BO**. Indeed,

for BO** the density associated with small values of the

distance is around twice that related to other global opti-

mization techniques, proving that BO** is closer to the

strategies applied by the human players.

Beyond the visual representation in Fig. 10, a further

confirmation that BO is closer to human search comes from

statistical tests. Since distances do not show a normal

distribution, we could not apply ANOVA and, therefore,

we used nonparametric tests. According to the Friedman’s

test, distance values result significantly different among all

the techniques (p value\ 0.001). To better investigate

these differences, we have then performed a pairwise

Wilcoxon test obtaining that:

• distance values related to RS, GA, PSO and SA are,

pairwise, significantly similar (p value[ 0.192).

• distance values related to DIRECT are, pairwise,

significantly different from those related to all the

other techniques (p value\ 0.05) except for RS

(p value = 0.106). This occurs because the peaks in

the distributions of both DIRECT and RS correspond to

distance values slightly greater than those of the other

techniques.

• distance values related to BO** are, pairwise, signif-

icantly different from DIRECT and RS

(p value\ 0.001). Although BO**, in Fig. 10, is

clearly different from every other optimization tech-

niques, Wilcoxon test suggests that the hypothesis that

they are similar must be accepted for GA, SA and PSO,

Fig. 6 Number of human players whose strategy is compliant with respect to kernel type and acquisition functions, with threshold s set to 0.15,

and b ¼ 0 in UCB. Last bar represents the number of non-compliant

Table 4 Fisher’s test p values

for each pair related to the most

frequently compliant acquisition

function in Fig. 6 (i.e. UCB)

and the others

UCB versus EI UCB versus PI UCB versus none

Exponential 1.000 1.000 0.020

Matérn 3/2 0.156 0.005 \ 0.001

Matérn 5/2 0.408 0.063 \ 0.001

Power exponential 0.408 0.030 \ 0.001

Squared exponential 0.054 0.027 \ 0.001

The hypothesis that one acquisition function is more significantly compliant than the other is accepted with

a confidence 0.05
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even if with a very poor statistical significance level:

p value = 0.062 for BO** versus GA and SA, and

p value = 0.073 for BO** versus PSO. This is mainly

because BO**, GA, SA and PSO have their highest

peak around the same value of distance, even if the

height of the BO**’s peak is higher than the others.

5 Conclusions

It is important to remark that the aim of the analysis per-

formed in this study is not to compare the effectiveness of

different techniques in solving the global optimization

problem but to compare human search strategies with those

Fig. 7 An example of the reason

why maximizing EI and UCB

with b ¼ 0 might numerically

lead to different solutions. Since

EI is almost completely flat over

the search space, whichever

optimization algorithm could

easily fail in maximizing it,

contrary to UCB with b ¼ 0

Fig. 8 Number of human players whose strategy is compliant with respect to different acquisition functions, with RF as surrogate model, in

different settings of threshold s and b values of UCB
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embodied in global optimization algorithms. Results

proved that BO is closer to human search strategy and

therefore provides a valuable insight about how humans

deal with the trade-off between immediate rewards (ex-

ploitation) and risk propension (exploration). This can be

explained by two major factors: first, the most coherent

model for learning is provided by Bayesian learning, as

recognized in the cognitive sciences community. There-

fore, BO as a model-based active learning is revealed by

the humans’ reward driven sampling behaviour and

embodies underlying decision-making strategies. Second,

the flexibility of BO, as recognized also in the machine

learning community, is larger than in other optimization

techniques and is given by the freedom to choose the

probabilistic surrogate model (GP or RF)—and the kernel

in the case of GP—and the acquisition function.

Since the flexibility in BO is structural, while in the

other optimization techniques considered it is just para-

metric, BO can naturally model better the internal repre-

sentation of the function that humans maintain when they

search for the optimum. In this paper this conclusion is

supported by a wide set of statistical tests: the number of

BO compliant participants is very high (less than 10% of

participants resulted non-compliant to all models and

acquisition functions). This result is also visually captured

by the results depicted in Figs. 9 and 10. Moreover, non-

parametric statistical testing provides meaningful out-

comes. The authors admit that their statistical significance

should be improved: indeed, the analysis is being extended,

by the use of the Amazon Mechanical Turk, to a larger

sample of participants, each one performing all the stimuli

and game modalities developed in the game playing

software.

An interesting result comes from the analysis of which

space model, that is GP’s kernel, is implied by human

search: based on the limited set of results presented in this

paper, kernel is not a major factor in determining compli-

ance to GP-based BO. On the other hand, the main drivers

for compliance is the acquisition function, and its

parametrization for UCB: the value of b significantly

affects the relative importance of UCB over the search

processes performed by the compliant participants. Then,

we can conclude that exploitation-oriented acquisition

functions get a consistently larger share, meaning that

Table 5 Fisher’s test p values for each pair related to the most fre-

quently compliant acquisition function in Fig. 7, for the four cases

related to the values of the threshold s and UCB’s b

s b Most compliant

acquisition function

p values

0.1 1 PI 0.547 (PI vs UCB)

0.004 (PI vs EI)

0.004 (PI vs None)

0.15 1 PI 0.697 (PI vs UCB)

0.004 (PI vs EI)

\ 0.001 (PI vs None)

0.15 0.5 UCB \ 0.001 (UCB vs EI)

0.005 (UCB vs PI)

0.006 (UCB vs None)

0.15 0 UCB \ 0.001 (UCB vs EI)

0.029 (UCB vs PI)

0.025 (UCB vs None)

The hypothesis that one acquisition function is more significantly

compliant than the other is accepted with a confidence 0.05

Fig. 9 Distances between the best solutions found by the humans and

those provided by each global optimization strategy. BO** denotes

the overall most compliant BO algorithm (i.e. GP surrogate with

Matérn 3/2 kernel, EI acquisition function, from Fig. 4)

Fig. 10 Density plot of the distances between the best solutions found

by the humans and those provided by each global optimization

strategy
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‘‘greed is good’’, that is the human behaviour when looking

for rewards in black-box situations is dominantly

exploitative.
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