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Abstract Over the past century more than 100 indices
have been developed and used to assess bioclimatic
conditions for human beings. The majority of these
indices are used sporadically or for specific purposes.
Some are based on generalized results of measurements
(wind chill, cooling power, wet bulb temperature) and
some on the empirically observed reactions of the
human body to thermal stress (physiological strain,
effective temperature). Those indices that are based on
human heat balance considerations are referred to as
"rational indices". Several simple human heat balance
models are known and are used in research and
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practice. This paper presents a comparative analysis of
the newly developed Universal Thermal Climate Index
(UTCI), and some of the more prevalent thermal
indices. The analysis is based on three groups of data:
global data-set, synoptic datasets from Europe, and
local scale data from special measurement campaigns of
COST Action 730. We found the present indices to
express bioclimatic conditions reasonably only under
specific meteorological situations, while the UTCI
represents specific climates, weather, and locations
much better. Furthermore, similar to the human body,
the UTCI is very sensitive to changes in ambient
stimuli: temperature, solar radiation, wind and humidity.
UTCI depicts temporal variability of thermal conditions
better than other indices. The UTCI scale is able to
express even slight differences in the intensity of
meteorological stimuli.

Keywords UTCI - Bioclimatic indices - Heat stress -
Meteorological variables - Microclimatic differentiation -
Synoptic data

Introduction

Throughout the last century there has been much active
research on how to define thermal comfort and how to
grade thermal stress. These efforts have resulted in various
models attempting to describe thermal comfort and the
resultant thermal stress. A large number of indices have
been proposed, which are (or were) in use throughout the
world [about 40 indices were listed by Epstein and Moran
(2006) and there are many others].

Thermal stress indices can be divided into three
groups according to their rationale (Parsons 2003;
NIOSH 1986): (1) indices based on calculations involv-
ing the heat balance equation (“rational indices”), e.g.,
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the heat stress index (HSI) for warm weather (Belding
and Hatch 1955) or the required clothing insulations
(IREQ; Holmér 1984) for cold environments; (2) indices
based on objective and subjective strain (“empirical
indices”), e.g., the physiological strain index (PSI; Moran
et al. 1998); and (3) indices based on direct measure-
ments of environmental variables (“direct indices”); e.g.,
the apparent temperature (AT) (Steadman 1984), the
operative temperature (Blazejczyk et al. 1998) and the
wet-bulb globe temperature (WBGT) (Yaglou and Minard
1957). Obviously, indices of the first two groups are more
difficult to implement for daily use, since they depend on
many variables and some of them require invasive
measurements. The third group of indices, based on
monitoring of environmental variables, is more user-
friendly and applicable.

In 1916, Hill introduced the kata-thermometer, in which
both dry and wet temperature readings are taken. Wind-
tunnel experiments formed the empirical basis for con-
structing predictive formulas of so-called “cooling power”
to describe the rate of heat loss. Accordingly, the cooling
rate of the wet kata is dependent on wind speed and
ambient humidity while heat loss of the dry kata depends
on wind speed and ambient temperature (Hill et al. 1916).
The physical principle of the dry kata-thermometer served
also Siple and Passel (1945), who introduced the wind
chill index (WCI), which represents dry heat loss from
human skin when exposed to a rather cold environment
(lower than 10°C).

Houghton and Yaglou (1923) proposed the effective
temperature (ET) index. This index was established to
provide a method for determining the relative effects of air
temperature and humidity on comfort. Originally, this
index covered the temperature range from 1°C to 45°C
but, in reality, it was used to assess the level of heat stress.
Vernon and Warner (1932) substituted the dry-bulb
temperature with a black-globe temperature to allow
radiation to be taken into account (the “corrected effective
temperature” CET). Since then, many modifications to this
basic index were implemented, all of which were aimed to
grade heat stress.

Without claiming completeness, a set of available and
operationally applied thermal assessment procedures are

reviewed below (see also: Driscoll 1992; Fanger 1970;
Landsberg 1972; Parsons 2003). These indices are presently
being utilized by various national and local weather
services around the world, and can be evaluated easily by
potential users based on the need to describe heat load and
thermoregulatory processes.

The aim of the present paper is to compare the newly
developed index—the Universal Thermal Climate Index
(UTCI)—with some selected existing procedures. The
comparative analysis is based on three groups of data: a
global meteorological dataset, a synoptic dataset from
Freiburg (Germany) and local scale data from special
measurement campaigns of COST Action 730. The special
campaigns were carried out in various climates: arctic,
subtropical dry, subtropical wet and urban.

Essentials of existing indices
Simple indices

The first group of indices used in this comparative
study illustrates the combined effect on the human
organism of several, individual meteorological varia-
bles: air temperature, wind speed, and air humidity.
Some of these indices are based on empirical research
(e.g., ET, WCI), and some on theoretical considera-
tions. This paper considers only those indices that
provide temperature as an output value.

Heat index

The heat index (HI) is an index that combines air
temperature and relative humidity to determine an
apparent temperature—how hot it actually feels. The
HI equation (Rothfusz 1990) is derived by multiple
regression analysis in temperature and relative humidity
from the first version of Steadman’s (1979) apparent
temperature (AT). When humidity is high, the evaporation
rate of water is reduced (although relative humidity is
used in the formula, the term “relative” is misleading in
the context of the statement). This means heat is removed
from the body at a lower rate, causing it to retain more

Table 1 Assessment scale of

Possible heat disorders for people in high risk groups

heat index (HI)* Heat Index (°C)  Category
27-32 Caution
3241 Extreme caution
41-54 Danger
Source: http:/www.crh.noaa.gov > 54 Extreme danger

Fatigue possible with prolonged exposure and/or physical activity

Sunstroke, muscle cramps, and/or heat exhaustion possible with
prolonged exposure and/or physical activity

Sunstroke, muscle cramps, and/or heat exhaustion likely. Heatstroke
possible with prolonged exposure and/or physical activity

Heat stroke or sunstroke likely

(24 January 2011)
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heat than it would in dry air. HI, which is widely used in
the United States, is calculated as follows:

HI = —8.784695 4+ 1.61139411 - T 4+ 2.338549 - RH
—0.14611605- T - RH — 1.2308094 - 1072 - 7>
—1.6424828 - 1072 - RH* +2.211732- 1073 - T* - RH
+7.2546-10~*. T -RH?> —3.582-107%. T2 . RH?

(1)

where: T is air temperature in °C, and RH is relative
humidity rounded to its integer value in %.

HI is valid for air temperatures above 20°C and its
values are categorized due to possible heat disorders in
people (Table 1):

Humidex

The Humidex is a Canadian innovation, first used in 1965
and revised by Masterson and Richardson (1979). It was
devised by Canadian meteorologists to describe how hot,
humid weather is felt by the average person. The Humidex
is in use in weather forecast routine in Canada. It combines
air temperature (7, in °C) and air vapor pressure (vp, in
hPa) into one number to reflect the perceived temperature.

Humidex = T + 0.5555 - (vp — 10) (2)

where:

wp =611 RCCIC) (3)

and td is dew point temperature (in °C).

The assessment scale of Humidex provides information
regarded danger category and possible heat syndrome
(Table 2).

Effective temperature
The term “effective temperature” was first used within the

community of occupational physiologists. Houghton and
Yaglou (1923) introduced the effective temperature index

Table 2 Assessment scale of Humidex: degree of comfort®

Humidex (°C) Degree of comfort

20-29 No discomfort

30-39 Some discomfort

40-45 Great discomfort; avoid exertion
46 and over Dangerous; possible heat stroke

#Source: http://www.ec.gc.ca/meteo-weather/ (— hazardous weather—
summer weather— summer hazards— heat and humidity —humidex, 24
January 2011)

(ET). This index was originally established to provide a
method of determining the relative effects of air tempera-
ture and humidity on comfort.

Missenard (1933) developed a mathematical formula-
tion of effective temperature (“température résultante™).
The index establishes a link between the identical state of
the organism’s thermoregulatory capacity (warm and
cold perception) and differing temperature and humidity
of the surrounding environment. Using this index, it is
possible to obtain the effective temperature felt by the
human organism for certain values of meteorological
parameters such as air temperature, relative humidity of
air, and wind speed, which determine the thermal
exchange between the organism and the environment.
By considering normal atmospheric pressure and a
normal human body temperature (37°C), consideration
of the above mentioned parameters is reflected in the
suggested expression. Missenard’s ET was used widely in
East Germany, Poland, the Soviet Union, etc. The ET is
still in use in Germany, where medical check-ups for
subjects working in the heat are decided on by prevailing
levels of ET, depending on metabolic rates. Li and Chan
(2000) have adapted the Missenard formula and named it
“Normal Effective Temperature” (NET). The NET is
routinely monitored by the Hong Kong Observatory. The
original Missenard formula for ET (NET) takes the
following form:

37-T

ET=37— 1
0.68—0.0014 - RH + 17griprs

~0.29-T-(1-0.01-RH)
(4)

where: v is wind speed (in m s™') at 1.2 m above the
ground.

Several assessment scales are adapted for ET. In
central Europe the following thresholds are in use: <1°C =
very cold; 1-9 = cold; 9-17 = cool; 17-21 = fresh; 21-23 =
comfortable; 23-27 = warm; >27°C = hot. In Poland,
Baranowska and Gabryl (1981) developed an ET scale based
on 3-year’s worth of questionnaire research conducted by
meteorological station staff. The scale includes seasonal
changes of sensations resulting from the physiological
adaptation to weather and clothing habits (Fig. 1). In Hong
Kong the weather service uses NET as a warning system.
The alert procedure is a little complicated. Based on a 28-
year database, the authors calculated NET, analyzing
statistical distribution of NET values separately for summer
(May—September) and winter (November—March) seasons.
They chose a 2.5% limit of extremely high (for summer) and
extremely cold (for winter) NET values and used them to
define a so-called weather stress index (WSI). In operational
use, forecasters refer to special look-up tables that identify
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months

Fig. 1 Effective temperature (ET) thresholds at different months in
Poland (after Baranowska and Gabryl 1981)

the possible occurrence of summer and winter WSI based on
combinations of temperature, relative humidity and wind
speed.

Wet-bulb-globe-temperature

The wet-bulb globe temperature (WBGT) is the heat stress
index most widely used by far throughout the world. It was
developed by the US Navy as part of a study on heat-
related injuries during military training (Yaglou and Minard
1957). The WBGT index, which emerged from the
“corrected effective temperature” (CET) (Vernon and
Warner 1932) consists of weighting of dry-bulb tempera-
ture, natural (un-aspirated) wet-bulb temperature and black-
globe temperature. For indoor conditions, when the black-
globe temperature equals approximately ambient dry
temperature, the index consists of only wet-bulb and
black-globe temperatures.

Based on the WBGT index, the American Confer-
ence of Government Industrial Hygienists (ACGIH)
published the Permissible heat exposure threshold limits
values (TLV), which refer to those heat stress conditions
under which nearly all workers may be repeatedly
exposed without adverse health effects (ACGIH 2004).
These criteria were adopted also by the Occupational
Safety and Health Administration (OSHA, http://www.

osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html, 16 March
2011) and the American Industrial Hygiene Association
(AIHA 1975). The American College of Sports Medicine
(ACSM) and the US Army published guidelines for
exercising under various levels of heat stress (Armstrong
et al. 1996; Department of the Army 1980). Yet, the
inherent limitation of the WBGT is its limited applicabil-
ity across a broad range of potential scenarios and
environments, because of the inconvenience of measuring
T,. In many circumstances measuring 7, is cumbersome
and impractical (Moran and Pandolf 1999; NIOSH 1986).
Due to the limitations mentioned above, the present study
was based on a simplified equation of WBGT (http://
www.bom.gov.au/info/thermal_stress/, 16 March 2011).

WBGT = 0.567 - T 4 0.393 - vp + 3.94 (5)

The following ranges of WBGT indicate detailed
recommendations for outdoor activity (Table 3).

Apparent temperature

The AT is defined as the temperature at the reference
humidity level producing the same amount of discom-
fort as that experienced under the current ambient
temperature, humidity, and solar radiation (Steadman
1984). Basically, the AT is an adjustment to the ambient
temperature (7) based on the level of humidity. Absolute
humidity with a dew point of 14°C is chosen as a
reference. If humidity is higher than the reference, then
the AT will be higher than 7; if humidity is lower than the
reference, then AT will be lower than 7. The amount of
deviation is controlled by the assumptions of the Stead-
man model (Steadman 1984). AT is valid over a wide
range of temperatures. It includes the chilling effect of the
wind at lower temperatures. A simple hot weather version
of the AT is known as the heat index (HI, see above).

Two formulas for AT are in use by the Australian Bureau
of Meteorology: one includes solar radiation and the other
one does not (http://www.bom.gov.au/info/thermal stress/,
16 March 2011). For the present discussion, the “non-
radiation” version was used.

AT =T +033-vyp—0.7-v—40 (6)

Table 3 Recommendations

Recommended sporting activity

for outdoor activity at various WBGT (°C)
wet-bulb globe temperature
(WBGT) ranges® <18
18-23
23-28
*Source: http://www.bom.gov. 28-30

au/info/wbgt/wbgtrecs.shtml, 24 > 130
January 2011)

Unlimited

Keep alert for possible increases in the index and for symptoms of heat stress
Active exercise for unacclimatized persons should be curtailed

Active exercise for all but the well-acclimated should be curtailed

All training should be stopped
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Wind chill

Assessment of the effects of wind in cold environments on
exposed skin areas has long been of great interest. Siple and
Passel (1945) exposed snow-melted water in a plastic
container to combine subfreezing environmental temper-
atures and wind speeds in the Antarctic. Wind chill index
WCI (W m?) was calculated, expressing the cooling power
of the wind in complete shade and without any evaporation,
as is suggested in ISO TR 11079 (1993). This enabled
development of the wind chill temperature WCT (ASHRAE
1997), which defines an equivalent environment, of which
the cooling power is identical to that of the actual, windy
environment. The WCT was used until recently by the
weather services in North America as an essential winter
weather predictor. In the present study the WCT was used as
follows:

WCT = 13.12 4+ 0.6215 - T — 11.37 - v;o*'¢
10.3965 - T - vyo1° (7)

where vy is wind speed (in m s™') at 10 m above ground
level.

The following WCT-related health hazards can be
defined (Table 4).

The original experiments by Siple and Passel (1945)
were criticized by several investigators who stated that, in
cases of WCT, the predicted values were not reliable
(Kessler 1993; Molnar 1958; Osczevski 1995a, 2000;
Steadman 1971). Alternative wind chill indicators—exposed
skin temperature and maximum exposure times—were

proposed by Brauner and Shacham (1995). Several studies
that used a steady-state model of facial cooling were
conducted by Bluestein (1998), Bluestein and Zecher
(1999) as well as by Osczevski (1995b, 2000). Tikuisis and
Osczevski (2002, 2003) developed a different model of facial
cooling, which was solved numerically to yield imminent
freezing times. Tikuisis (2004) introduced a tissue cooling
model including the effects of blood flow for the prediction
of the onset of finger freezing. By employing a one
dimensional, steady-state cylindrical model of the head/face,
Shitzer (2006) assessed the convective heat transfer coef-
ficients on wind chill.

In 2001 the National Weather Service in the USA and
Environment Canada replaced the “old” WCT charts with a
“new” wind chill equivalent temperature WCET (OFCM
2003). Values assessed by this “new” method for combina-
tions of wind and temperature are considerably higher
(warmer) than those predicted by the old one. The
numerical model was solved iteratively. Wind chill equiv-
alent temperatures were approximated by a mathematical
regression equation based on air temperature and reported
wind speed, and presented in numerical tables. Estimates of
the risk of frostbite under various conditions were added to
the charts by Tikuisis and Osczevski (2002). In this model,
a target skin temperature of —4.8°C is used for a 5% risk of
frostbite. WCET is defined as “the air temperature of an
equivalent environment that, under calm wind conditions,
would entail the same skin surface heat loss to the
environment as in the actual, windy, environment” (Osczevski
and Bluestein 2005). For more details about the wind chill
problem, see Shitzer and Tikuisis (2011).

Table 4 Characteristics of wind chill temperature (WCT)-related health hazards®

WCT (°C) Risk of frostbite Health concern
0to -9 Low Slight increase in discomfort
-10 to =27 Low Uncomfortable. Risk of hypothermia if outside for long periods without adequate
protection
-28 to —39 Risk: exposed skin can freeze Risk of frosnip or frostbite: check face and extremities for numbness or whiteness
in 10-30 min Risk of hypothermia if outside for long periods without adequate clothing
or shelter from wind and cold
-40 to —47 High risk: exposed skin can freeze High risk of frostbite: check face and extremities for numbness or whiteness
: b
in 5-10 min Risk of hypothermia if outside for long periods without adequate clothing
or shelter from wind and cold
-48 to —54 Very high risk: exposed skin can Very high risk of frostbite: Check face and extremities frequently for numbness or

-55 and colder

freeze in 2—5 min®

Extremely high risk: exposed skin can

freeze in less than 2 min®

whiteness

Serious risk of hypothermia if outside for long periods without adequate
clothing or shelter from wind and cold

DANGER! Outdoor conditions are hazardous

#Source: http://www.ec.gc.ca/meteo-weather/ (— hazardous weather — winter weather — winter hazards — wind chill — wind chill index, 24

January 2011)

®In sustained winds over 50 km/h, frostbite can occur faster than indicated
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Indices derived from heat budget models

Heat budget models of the human body take all mecha-
nisms of heat exchange into account. Some models, such as
the required clothing insulation (IREQ; ISO TR 11079,
1993) or the predicted heat strain (PHS; ISO 7933 2004)
provide sets of output indices rather than one specific
temperature value. These indices are used as physiological
standards to assess occupational environment in the cold or
in the heat. In the present paper, selected indices derived
from different heat budget models were compared with the
UTCL

Standard effective temperature

The (rational) standard effective temperature, SET*, is
defined as the equivalent air temperature of an isothermal
environment at 50% RH in which a subject, while wearing
clothing standardized for the activity concerned, has the
same heat stress (skin temperature 7y ) and thermoregula-
tory strain (skin wettedness, w) as in the actual environ-
ment. SET* uses skin temperature and skin wettedness as
the limiting conditions. The values for 7, and w are
derived from a two-node model of human physiology
(Gagge et al. 1971, 1986). Below the lower threshold value
of w, SET* is identical with the operative temperature, i.e.,
the mean of convective and radiative sensible fluxes weighted
by their respective heat transfer coefficients. For outdoor
application, SET* has been adapted to OUT SET* (Pickup
and de Dear 2000). For SET* calculations, this paper uses a
metabolic rate set at 1.5 MET (about 90 W m 2) and intrinsic
clothing insulation of 0.50 clo. Because SET* aims
originally at an improved evaluation of warm / humid
conditions, the lowest threshold value of the assessment
scale (Table 5) is set at +17°C for cool conditions.

Predicted mean vote

Assuming that the sensation experienced by a person is a
function of the physiological strain imposed by the environ-
ment, Fanger (1970) predicted the actual thermal sensation as
the mean vote (PMV) of a large group of persons on the
ASHRAE (1997) 7-point scale of thermal sensation. This he
defined as “the difference between the internal heat
production and the heat loss to the actual environment for
a person kept at the comfort values for skin temperature and
sweat production at the actual activity level”. Fanger
calculated this extra load for people engaged in climate
chamber experiments and plotted their comfort vote against
it. Accordingly, Fanger was able to predict the comfort vote
that would arise from a given set of environmental
conditions for a given clothing insulation and metabolic rate.
The final equation for optimal thermal comfort is fairly
complex. However, ISO Standard 7730 (2005) includes a
computer programme for calculating PMV.

Physiological equivalent temperature

The physiological equivalent temperature (°C) is based on a
complete heat budget model of the human body (Hoppe 1984,
1999). PET provides the equivalent temperature of a
isothermal reference environment with a water vapor
pressure of 12 hPa (50% at 20°C) and light air (0.1 m s ),
at which the heat balance of a reference person is maintained
with core and skin temperature equal to those under the
conditions being assessed. For the reference person, a typical
indoor setting is selected with work metabolism of 80 W
added to basic metabolism and with clothing insulation of
0.9 clo. The influence of humidity on PET is restricted to
latent heat fluxes via respiration and via diffusion through
the skin. The PET assessment scale (see Table 5) is derived

Table 5 Temperature thresholds (°C) of particular thermal sensations (of alert descriptions) used in various bioclimatic indices

Thermal sensation Index

HI Humidex ET WBGT WCT SET* PET PT PST
Frosty (extreme hazard)® < =55 < -39 <-36
Very cold (very cold ')?* <1 -54 to —40 <4 -39 — =26 -36 — —16
Cold (cold)* 1-9 -39 tp —28 4-8 -26 ——13 -16—4
Cool (moderate hazard)® 9-17 -27 to —10 <17 8—18 -13-0 4-14
Comfortable (no danger)?, * <30 17-21 <18 >—10 17-30 18—23 0-20 14-24
Warm (caution)” 27-32 30-40 21-23 18-24 30-34  23-35 20-26 24-34
Hot (extreme caution)” 32-41 40-45 23-27  24-28 34-37 35-41 2632 34-44
Very hot (danger)” 41-54  45-55 >27 28-30 >37 >41 32-38 44-54
Sweltering (extreme danger)” >54 >55 >30 >38 >54

* Alert descriptions for WCT

® Alert descriptions for HI, Humidex and WBGT
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by calculating Fanger’s (1970) PMV for varying air temper-
atures in the reference environment using the settings for the
PET reference person (Matzarakis et al. 1999). Hence, PET
is comfort based.

Perceived temperature

Fanger’s (1970) PMV-equation, including Gagge’s improve-
ment of the description of latent heat fluxes (Gagge et al.
1986), is the basis for the operational thermal assessment
procedure entitled the Klima-Michel-model (Jendritzky
1990; Jendritzky et al. 1979). This is used by the German
Meteorological Service (Deutsche Wetterdienst, DWD). The
output parameter is perceived temperature (PT; °C) (VDI
2008; Staiger et al. 2011), because an equivalent temperature
makes the evaluation of thermal perception to the public
more comprehensible than PMV. PT is defined as the
equivalent temperature of an isothermal reference environ-
ment with a wind reduced to light air and a relative humidity
of 50%, where the same perception of warm or cold assessed
by PMV would occur as under the actual environment. The
reference person has a metabolic rate of 135 (W m 2) and the
clothing insulation can be varied between 0.5 clo (warm /
summer) and 1.75 clo (cold / winter) to achieve as much
thermal comfort as possible. Hence, PT is related to outdoor
conditions. Due to the PMV base, its assessment scale
(Table 5) is comfort based. The implemented enthalpy
correction (Gagge et al. 1986) increases the humidity
sensitivity of PT under warm conditions markedly compared
to Fanger’s original PMV.

At the DWD, this procedure runs operationally
taking acclimation quantitatively by a procedure termed
HeRATE (health related assessment of the thermal envi-
ronment) (Koppe and Jendritzky 2005). This procedure
has the advantage of using the index without modification
in different climate regions and at different times of the
year without the need to artificially define seasons and to
calibrate them to a particular city. Nevertheless, to date,
DWD is the only national weather service to run a
complete heat budget model (Klima-Michel-model) on a
routine basis specifically for applications in human
biometeorology.

Physiological subjective temperature and physiological
strain

The PST and PhS indices are derived from the man-
environment heat exchange (MENEX) model first published
in 1994 (Blazejczyk 1994). This model considers heat
exchange between the whole human body and its surround-
ings. Upon the last modifications of the model (Blazejczyk
2005, 2007; Blazejczyk and Matzarakis 2007), the
MENEX 2005 provides output data information on partic-

ular heat fluxes as well as several thermo-physiological
indices: physiological strain (PhS), physiological subjective
temperature (PST), water loss (SW), overheating risk (OhR)
and overcooling risk (OcR).

Physiological subjective temperature (PST) represents the
subjective sensation by persons of the thermal environment
that is derived from signals of cold and/or warm receptors in
the skin and in the nervous system. Thermal impacts of the
environment are expressed through mean radiant temperature
formed under clothing (innerTmrt). PST is defined as the
temperature that is formed around the skin surface, under
clothing, after a 15-20 min of adaptation to maintain
homeothermy. PST indicates an effect of environmental factors
and of specific physiological responses to thermal stimuli. PST
can be used in a wide range of environmental conditions. The
index is limited to wind speeds lower than 22 m s .

Physiological strain (PhS) indicates the direction and
intensity of predominant adaptation processes to cold or
warm environments. PhS is based on the Bowen Ratio and
is expressed as the ratio between evaporative and convec-
tive heat fluxes.

A set of indices derived from the MENEX 2005 model
are in operational use by the National and in Military
Weather Services for biometeorological forecasting in
Poland. They are also used in several other applications,
e.g., in epidemiology, urban climatology, climate therapy
and tourism research as well as for bioclimatic mapping
(Blazejezyk 2002).

Universal thermal climate index

The Universal Thermal Climate Index (UTCI) is expressed as
an equivalent ambient temperature (°C) of a reference
environment providing the same physiological response of a
reference person as the actual environment (for more details
see the further articles of this issue, e.g., Weihs et al. 2011).
The calculation of the physiological response to the
meteorological input is based on a multi-node model of
human thermoregulation (Fiala et al. 2001), which is
augmented with a clothing model. The passive system of
the multi-node model consists of 12 body elements
comprising 187 tissue nodes in total. The active system
predicts the thermoregulatory reactions of the central nervous
system. Static clothing insulation is adjusted to the ambient
temperature considering seasonal clothing adaptation habits
of Europeans, which notably affects human perception of the
outdoor climate. Clothing insulation, vapor resistance and
the insulation of surface air layers, are influenced heavily by
changing wind speed and body movement and will therefore
also influence physiological responses. Thus, the resultant
total insulation of the clothing is the static insulation
modified by walking speed and the wind speed in the actual
environment to which the person is exposed. Similar
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considerations were applied for the evaporative resistance of
clothing. The non-meteorological reference conditions are set
at a metabolic rate of 135 W m ? and a walking speed of
1.1 m s ". In the meteorological reference, the mean radiant
temperature equals the ambient temperature and the wind
speed observed 10 m above ground is 0.5 m s '. The
reference humidity is set at 50% for ambient temperatures of
the reference<29°C and at 20 hPa above.

The assessment scale is based on different combinations
of rectal and skin temperatures, sweat rate, shivering, etc.
that might indicate “identical” strain causing non-unique
values for single variables like rectal or mean skin
temperature in different climatic conditions with the same
value of UTCI. However, due to the high correlation of the
single variables with the calculated one-dimensional inte-
grated characteristic value of thermal strain, this variation
was limited. Furthermore, the median response to UTCI
was in good agreement with the values obtained for
reference conditions (for more details, see other articles in
this issue). Hence, the assessment scale relates to a
temperature-based physiological strain.

Overview of the indices

The selected simple and the more complex heat balance
based indices highlight the stages involved in understand-
ing the relationships between thermal environment and
human thermal perception. To summarize, the characteriza-
tion of the thermal environment in thermo-physiologically
significant terms requires application of a complete heat
budget model that takes all mechanisms of heat exchange
into account. The simple indices can never fulfil the
essential requirement that, for each index-value, there must
always be a corresponding meaningful thermo-physiological
state (strain intensity), regardless of the combination of the
meteorological input values. Thus, their use is limited, results
are often not comparable and additional features such as safety
thresholds, etc. have to be defined arbitrarily. The difficulties
in the comparative use of the various indices are illustrated in
Table 5. Particular indices provide different temperature
thresholds with the same meaning of thermal sensations or
alert descriptions, respectively.

Data and methods

To compare UTCI to selected bioclimatic indices, different
datasets of meteorological variables were used. The data
were based on various sources: the control run (1971-1980)
of the General Circulation Model ECHAM 4 has a
resolution of about 1.1° (Stendel and Roeckner 1998).
The data consisted of about 65,500 random samples that
represent wide range and combinations of meteorological
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variables. Air temperature (7) varied from —74.6°C to 47.4°C,
air vapor pressure (vp) from 0 hPa to 40.2 hPa, wind speed
(vio) from 0.5 m s' to 30 m s~'. Mean radiant temperature
(Tmrt) changed from —92.3°C to 78.7°C. The difference
between Tmrt and 7 was within the range of —18.0°C to
54.0°C.

The second data set used in these studies are synoptic
data from Freiburg from the period September 1966—
August 1985. The data provided all meteorological
parameters used to calculate UTCI and bioclimatic
indices. Freiburg is located in the upper Rhine valley in
Southwest-Germany. It shows a moderate transient
climate dominated by maritime rather than continental
air masses.

The third temporal level of comparisons refers to
microclimatic data. For the present paper, measurement
campaigns were carried out within the frame of COST
Action 730 at different locations:

—  Svalbard archipelago (in March 2008)—arctic climate,

— Negev Desert (in September 2008)—dry subtropical
climate,

— Madagascar Island (in August 2007)—wet subtropical
climate,

—  Warsaw, Poland (in October 2007)—downtown city in
a moderate, transient climate.

The following simple bioclimatic indices were compared
with UTCI: Heat index (HI), Humidex, Wet Bulb Globe
Temperature (WBGT), Wind Chill Temperature (WCT),
Effective Temperature (ET, NET). We also analyzed
relationships between UTCI and indices derived from heat
budget models: Standard Effective Temperature (SET¥),
Physiological Equivalent Temperature (PET), Perceived
Temperature (PT), Physiological Subjective Temperature
(PST). Two non-thermal indices were also used for
comparative analysis: Predicted Mean Vote (PMV) and
Physiological Strain (PhS).

UTCI and some indices (HI, AT, Humidex, WBGT,
WCT, ET, PST and PhS) were calculated using the
BioKlima 2.6 software package. PET, PMV and SET* were
calculated by Rayman software and PT by the special PT
module. The STATGRAPHICS 2.1 software package was
used for statistical analysis of compared indices.

Results and discussion

Regression analysis of UTCI vs other bioclimatic
indices—global data

The comparison between UTCI and simple meteorolog-
ical parameters—air temperature (7), mean radiant
temperature (Tmrt) and dew point temperature (Td)—
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shows that only air temperature is relatively well
correlated with UTCI. Nevertheless, the slope coefficient
of regression line is only 0.702. This indicates that UTCI
and 7T change at different rates in various ranges of
ambient conditions. In general, air temperature below
zero is significantly higher than UTCI. Weaker statistic
characteristics were found for Tmrt and Td. R* coefficients
are significant (78.76 and 84.66, respectively). However, the
slope coefficients are very low, especially for dew point
temperature (Table 6).

For simple indices addressing hot conditions (HI,
WBGT, Humidex), correlation with UTCI is very weak.
R? coefficients are below 50%. The regression lines also
differ significantly from the lines of identity. The slope
coefficients are very low (0.38-0.63). Weak similarity of
simple, hot indices with UTCI results from their philoso-
phy; they combine, in a very simple way, only two
meteorological variables, i.e., air temperature and humidity.
None of them include solar radiation and wind speed. A
significantly better fit was found for two simple indices, AT
and ET, that can be applied under a wide range of thermal
conditions. The values most similar to those of UTCI were
found for indices derived from human heat balance models,
i.e., PET, PT and SET*. These three indices take similar
approach to UTCI, i.e., they indicate equivalent tempera-
ture. The differences in specific values result from the
various structures of heat balance models and different

Table 6 Statistical characteristics of the relationships between
Universal thermal climate index (UTCI) and other indices

Index Slope R-squared (%)
HI® 0.444 39.72
WBGT ? 0.381 42.46
Humidex * 0.629 47.66
WCT ° 0.810 89.51
AT 0.716 95.35
ET (NET) 0.947 96.97
PET 0.843 96.42
PT 0.968 96.58
SET* 1.021 97.54
PST 0.559 82.24
PST© - 93.10
PhS - 94.31
PhS °© - 96.05
PMV - 98.12
T 0.702 93.04
Tmrt 0.864 78.76
Td 0.566 84.66

# Calculated for air temperature >20°C
® Calculated for air temperature <5°C

¢ Polynomial function

definitions of reference conditions (see above). The final
thermal index compared, PST, does not represent equivalent
temperature. It indicates the temperature of the thin air layer
under clothing, in the neighborhood of temperature recep-
tors in the skin. Because of this assumption, relationships
between PST and UTCI is better expressed by a polynomial
function than by a linear function (Table 6).

For non thermal indices (PMYV, PhS) the relations with
UTCI can be described by determination coefficients only.
Because of their various units, slope coefficients cannot be
analyzed. However, R coefficients show good relationships
between the compared indices. In this case, the PhS
polynomial function better expresses the relationship with
UTCI than the linear function.

Figures 2, 3, 4, 5 illustrate the general conformity
between UTCI and other thermal indices. The global data
used for comparison represent a very wide range of
meteorological variables. The aim of the analysis is to see
how similar the existing indices are in comparison to newly
developed UTCI. Figure 2 shows the statistical relation-
ships between UTCI and the simple bioclimatic indices
used in hot environments (HI, WBGT, Humidex). It is
obvious that hot environment indices are rather weakly
correlated with UTCI. R are very low, at about 40% for HI
and 42-47% for WBGT and Humidex. The slope coef-
ficients vary from 0.38 for WBGT to 0.63 for Humidex
(Table 6). The regression lines of the “heat” indices are far
from the lines of identity (Fig. 3).

For the wind chill temperature (WCT), the general
statistics are markedly higher than for “hot” indices. R* is
almost 90% and the slope coefficient is 0.81. The
regression line is relatively close to the line of identity
(Fig. 3, Table 6).

Effective temperature (ET) and apparent temperature
(AT) are indices that can be calculated for a wide range of
ambient conditions, in spite of the fact that assessment
scales represent only their positive values. When comparing
ET and AT with UTCI we found significant conformity of
their values. For ET, R* is 96.97 and for AT, 95.35. While
the correlation coefficients are similar to each other, the
slope of the regression line is higher for ET than for AT. For
ET, the regression line is very close to the line of identity
(Fig. 4, Table 6).

The group of indices based on the human heat balance is
very well correlated with UTCI. The best results were
obtained for SET* (adapted for outdoor conditions). Both
the R? coefficient (97.54) and the coefficient of the slope of
regression line (a=1.02) were best for this group of indices.
This may result from the low clothing insulation in SET*,
which coincides with relative low values of UTCI in case of
higher wind speeds. High correlation and good slope
parameters were also found for the PT. It should be noted
that the values of SET* and PST changed gradually due to
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Fig. 2 Universal thermal climate index (UTCI) vs indices used for hot climates: HI heat index, WBGT wet bulb globe temperature, Humidex.

Solid line Regression, dashed line identity

the changes of UTCI over the whole temperature range.
However, PT and PET have lower limits. PT does not fall
below —80°C while UTCI varied from —80 to —110°C. For
PET, the lowest value is about —62°C, while UTCI varied

60 = .
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-30

-60

-90
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120° |
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Fig. 3 UTCI vs wind chill temperature (WCT) index. Solid line
Regtression, dashed line identity
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from —50 to —110°C. The scattering in PT and PET
increases with decreasing UTCI, due to their fixed clothing
insulation under cold conditions compared with the season
and, especially, the wind dependent clothing insulation of
UTCI. For the PST index a polynomial function of the 3rd
order better expresses its relation with UTCI then linear
regression. The R? coefficients are 93.10 and 82.24,
respectively (Fig. 5, Table 6). In contrast to PT and PET,
the scattering in PST increases with increasing UTCIL.

The indices PMV and PhS, which are not based on
equivalent temperature, also correlate very well with UTCI,
R*=96.05 for PhS and R’=98.12 for PMV (Table 6).
However, for PhS, a polynomial function of the 3rd order
explains the best its relation with UTCI.

The discrepancy between UTCI and the other indices is
well seen while comparing the distribution of the residuals
(dT=UTCI—any index). In all cases, the range of the
residuals is very wide. The weakest agreement is observed
with AT. UTCI can be up to —47°C lower and 22°C higher
than AT. For AT, the variance was also very high at 95%
confidence levels. Relatively narrow dT ranges were found
for HI, WBGT and Humidex. However, this is due to the
range of applicability of these indices (air temperature >20°C).
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Fig. 4 UTCI vs simple bioclimatic indices. ET Effective temperature, AT apparent temperature. Solid line Regression, dashed line identity
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Fig. 5 UTCI vs indices derived from heat budget models. SET* Standardized effective temperature, PT perceived temperature, PET physiological
equivalent temperature, PST physiological subjective temperature. Solid line Regression, dashed line identity
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Table 7 Statistical

characteristics of temperature Characteristic ~ HI WBGT  Humidex WCT AT ET PT PET SET*
differences between UTCI and
other thermal indices Max 17.8 17.6 16.9 17.0 21.8 23.0 15.5 5.8 22.8
Min -17.8 -27.1 -23.9 -38.4 -47.4 -25.2 -33.6 -39.6 -25.6
Average (£) 0.4 0.2 2.8 -8.4 -4.8 44 -1.0 4.8 2.6
+0.04*  +0.06 +0.05 +0.06  +0.07 +0.04  +0.04  +0.04  +0.03
Variance (£) 30.54 40.36 34.61 67.22  130.29 4336 3732 5573  29.17
+0.33 +0.50 +0.43 +0.74  £1.07 +0.36  +0.31 +046 +0.24

2+ confidence interval

For ET and SET* the difference range is very symmetrical.
They differ from UTCI within the range of —25 to +23°C, with
average values of 3-4°C. However, variance points to better
conformity of SET* than the ET index. The deviations for PT
and PET are very asymmetric. Due to the clothing models
differing strongly from UTCI, especially under cold con-
ditions, their values are rather higher than for UTCIL
Considering all the statistics of dT, we conclude that the best
conformity with UTCI is seen with the SET* and PT indices
(Table 7).

UTCI vs other bioclimatic indices—synoptic data

One of the most relevant UTCI applications is weather
forecasting based on synoptic data. Staiger (2009, personal
communication) reported good correlations (¥=0.89-0.92)
between UTCI and PT for three German stations (Freiburg,
Warnemuende and Feldberg) based on data for the period
1966-1995.

In the present study, the concordance of UTCI with
previous indices was studied using synoptic data from
Freiburg (Germany). For detailed analysis, groups of
consecutive days (7-10 and 16-19 January 1982 as well
as 12-15 July 1982, representing winter and summer
weather, respectively) were selected. Two periods from
January were chosen, both with similar air temperature
(from =5 to 0°C). The weather from 7-10 January was
cloudy (Tmrt from —15 to 10°C) and windy (v=1-4 m/s)
and from 16—19 January the weather was sunny (Tmrt up to
35°C) and calm (v<1 m/s). During cool, cloudy weather,
the temporal course of the indices deviated significantly
between the simple indices and UTCI (Fig. 6). It seems that
UTCI is more sensitive to wind speed than WCT, AT and
ET. Comparing UTCI with the heat budget indices, we
found that they were well inter-correlated. One exception
was the PST index. Its values were significantly lower than
for the other indices, especially at weak winds (bottom right
panel of Fig. 6). During sunny days, simple indices do not
illustrate the impact of solar radiation. However, radiation
stimuli are well represented in the heat balance indices:
SET*, PT, PET and PST (Fig. 6).

In hot (7=20-30°C), windy (v=2-8 m/s) and sunny
(Tmrt up to 65°C) summer days, simple indices illustrate
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well a daily course of bioclimatic conditions. Eminent
differences between night and day air temperatures affect
these indices. Radiation stimuli, however, are well
expressed only in the heat budget indices. In most cases,
the values are similar to each other. Only the PST index has
considerably lower values during night hours and higher
values during daytime hours (Fig. 7).

The general statistics for the Freiburg data illustrate how
particular indices differ from air temperature. Two analyses
were performed. In the first, the differences between
studied bioclimatic indices and air temperature (dT*) were
calculated and grouped into 5 K dT* ranges (Table 8). The
second analysis compared the frequency of particular
classes of indices. In the case of UTCI, its values differed
from ambient temperature 7 within a very wide range, from
—46 K to +17 K. However, the majority of dT* values
represented the range from —10 to +5 K. In general, UTCI
provides values rather lower than air temperature with a
noticeable asymmetry of the distribution. For HI, Humidex,
AT, PET and PT, the majority of values only slightly
differed from 7 (from —5 to +5 K). This suggests that, for
this group of indices, their values depend mostly on
ambient temperature. WBGT values are usually higher then
T. However, ET, SET* and PST indices provided values
lower than air temperature (Table 8).

Analyzing the 20-year database from Freiburg, we
compared frequency of particular assessment classes of
UTCI with those of other indices (Fig. 8). At this site,
UTCI values represent nine classes of the possible ten
categories of heat / cold stress, and the other indices eight
out of maximal nine categories (Table 5). According to the
definition in Table 5, the number of categories is restricted
to seven for PET and five for SET* for this study. In
Freiburg, extreme cold stress occurred only twice in the
studied period. However, extreme heat stress was not
observed. The most frequent are synoptic situations varying
from moderate cold stress to no thermal stress. Extreme
thermal conditions occurred very rarely. A similar range of
conditions was also reported by the PST index. However,
the proportions between particular classes of thermal
sensations different from UTCI; PST indicated a higher
frequency of cold conditions than UTCI. ET and PET
classes of thermal sensations are moved significantly to
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Fig. 6 Temporal course of
UTCI compared to the simple
(WCT, ET, AT) and the heat
budget based (SET*, PT, PET,
PST) indices during selected
days in January 1982 in
Freiburg (Germany)
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Fig. 7 Temporal course of
UTCI compared to the simple
(WCT, ET, AT), and heat budget
based (SET*, PT, PET, PST)
indices on selected days in July 40
1982 in Freiburg (Germany)
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cold and very cold, which, at least for PET, is due to an
assessment related to a typical indoor setting concerning
clothing insulation and activity. However, PT and SET*
indicated milder conditions than UTCI and the other indices
(Fig. 8), whereas the lowest SET* category is “cool”
(Table 5) and PT is related to a typical outdoor setting for
clothing insulation and activity.

In contrast to the strong bias in the assessment scales of
the indices (Table 5), there is high correlation between the
temperature values of the indices independent from
assumptions regarding metabolic rate and clothing insula-
tion. This is not surprising because most of the equivalent
temperatures that are related to complete heat budget
models, e.g., PT, PET, SET* are derived by solving the
heat budget equation for the actual and reference environ-
ments for unchanged metabolic rate and clothing insulation.
Nevertheless, there are noticeable and significant differ-
ences in individual segments of the temperature scale, e.g.,
between PT and PET under warm conditions, because PT is
strongly influenced by skin wettedness. In contrast to e.g.,
PT, UTCI accounts additionally for a reduction in clothing
insulation caused by wind and the movement of the wearer.
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Especially in the cold, and in the case of higher wind
speeds, the clothing resistance worn in the actual environ-
ment can differ strongly from the reference environment
with calm air and thus will significantly influence the
resulting equivalent temperature.

UTCI vs other bioclimatic indices—microclimatic data

Bioclimatic indices are used widely in various microclimatic
applications and specific climates. In the present paper, some
examples of microclimatic data were analyzed. On the
Svalbard archipelago, measurements were performed on the
glacier during a study lasting 12 h, from 7.00 am to 7.00 pm
(A. Arazny Preliminary results of biometeorological observa-
tions made on Svalbard Archipelago in the winter season 2007/
2008. Data file 2009, personal communication) ). The 1st and
the last 2 h in this dataset represent indoor conditions (7=
15°C). During outdoor exposure, air temperature fluctuated
from —15 to —20°C, wind speed was 8—11 m/s, and the sun
was shining only within the hour around noon. The subjects
(five young male volunteers) reported strong and very strong
cold stress. Among the simple indices, ET had the values
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Table 8 Frequency of various ranges of differences bioclimatic index minus air temperature (dT*), Freiburg, 1966—1985. STD Standard deviation

dT* range (K) UTCI HI Humidex WBGT WCT ET AT SET* PET PT PST
<45 0.00

-45 :-40 .

-40 : -35 0.01

-35:-30 0.04

-30 :-25 0.33

-25 :-20 1.81 . . .

=20 : -15 5.51 . 0.10 0.01 0.68
-15:-10 10.15 0.14 432 0.57 6.75 0.31 . 42.39
-10: -5 19.15 17.41 32.46 13.85 0.10 75.20 0.04 37.34 . 0.42 40.60
5:0 32.59 29.50 40.59 16.94 33.41 18.04 8.67 31.52 33.42 35.09 9.13
0:5 17.71 29.35 21.07 27.21 61.54 0.00 58.80 20.16 61.42 57.18 4.46
5:10 10.59 18.71 1.45 24.94 4.95 3245 8.36 5.10 7.28 2.57
10 : 15 2.10 4.48 10.41 0.04 1.89 0.05 0.01 0.15
15:20 0.03 0.42 4.66 0.00 0.34 0.00 0.00 0.01
20:25 1.28 0.08 0.01

25:30 0.13 0.00

30:35 . . . 0.02 . . . . . . .
Min (°C) -45.9 -12.7 -16.4 -13.6 -1.2 -19.6 -8.0 -14.9 -2.6 -9.2 -17.5
Max (°C) 16.8 19.1 9.0 32.1 8.8 0.7 17.2 25.7 19.6 23.8 16.9
Avg (°C) -3.5 0.8 -3.3 3.5 1.1 -6.9 3.7 -2.0 1.0 1.0 -8.4
STD (°C) 7.4 5.4 4.1 7.0 22 2.1 2.4 5.0 1.8 2.6 4.64

closest to UTCI (Fig. 9). Among the thermo-physiological
indices, SET* had the best concordance with UTCI.
Additionally, those two indices illustrated very well the
changes in bioclimatic conditions due to fluctuations in wind
speed (Fig. 9). Similar variations of UTCI in relation to
physiological reactions of the organism in polar climates were
observed by Blazejczyk et al. (2008) in northern Finland.
Dry subtropical climate was represented by measure-
ments made on the 9 September 2008 in the Negev
Desert, in southern Israel. Data collection lasted about

Fig. 8 Frequency of particular
assessment classes of UTCI
(left panel) and classes of
thermal sensations defined by
other indices, Freiburg, Germany,
September 1966—August 1985
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3.5 h and had two phases: travelling in an air-
conditioned bus (air temperature about 25-27°C) and
walking in the desert (at temperature of 35-40°C,
humidity of 15-25% and weak wind <2 m/s). During
outdoor exposure ,microclimatic conditions were felt by
subjects (four male and two females) as high and very
high heat stress. The changes in bioclimatic conditions
due to changes in exposure (indoor—outdoor) were
indicated very well by all the heat stress measures
compared here. However, the values obtained for
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Fig. 9 Changes of UTCI and

other bioclimatic indices during 20
a 12-h experiment on Svalbard

archipelago in arctic climate on 10
23 March 2008; lower panel

course of meteorological 04
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particular indices were very different from one another.
Usually PET values were higher and ET and WBGT
lower than UTCI (Fig. 10).

In a wet subtropical climate in the central part of the
Island of Madagascar, bioclimatic conditions were con-
trolled during a 6.5-h exposure on 22 August 2007. In the
morning, the air temperature was 20°C and during midday
it rose to about 33°C. Air humidity was very high during
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the whole data collecting period (70—80%). The weather
was sunny with moderate wind. Subjects (five males and
one female) reported thermo-neutral conditions in the
morning and high to very high heat stress during the
midday hours. The closest to UTCI values (Fig. 11) were
found for AT, WBGT and PET indices. ET, SET* and PST
values were consequently lower then UTCI. However, HI,
Humidex and PT provided values significantly higher then
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Fig. 10 Changes of UTCI and
other bioclimatic indices during
3.5 h of observation in the
Negev Desert in a dry
subtropical climate, 9 September
2008; lower panel course

of meteorological variables
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UTCI. The higher PT values compared to UTCI in this  also derived from the Gagge et al. (1986) two node model,
humid subtropical climate, and lower in the dry subtropical ~ but tends to be lower than air temperature by 1-2 K. SET*
climate of Negev desert (Fig. 10) demonstrate the higher  applies a noticeable lower activity (factor 1.5) and possibly
humidity sensitivity in thermal assessment by PT. SET* is  a higher water vapor permeability of clothing than PT, and
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Fig. 11 Changes of UTCI and a

other bioclimatic indices during 60 temperature (°C)
a 6.5-h experiment on central

Madagascar in wet subtropical

climate, 22 August 2007; lower 50

panel course of meteorological
variables (7, Tmrt, v10)
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thus, the equivalent temperature is also reduced compared
to UTCIL.

Cities and urbanized areas have specific climatic
conditions. The most important features of urban climate
are: the urban heat island, reduction of wind and great
spatial differences of solar radiation penetrating to the
bottoms of street canyons. This is well illustrated by an
experiment carried out in the centre of Warsaw (Poland) on
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12 October 2007. The measurements were made in a
narrow (10 m), deep (30 m) street canyon. Due to low sun
altitude, solar rays reached street level for a very short
period (from 10.00 until 11.00 a.m. and from 1.00 until
3.00 p.m.). UTCI values were very sensitive to the temporal
changes in Tmrt and wind speed. Among the other indices
only ET and SET* simulated such fluctuations in biocli-
matic conditions. Comparing the values of various indices,
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Fig. 12 Changes of UTCI and

other bioclimatic indices in 15
Warsaw downtown, in moderate
transient climate, 12 October 10

2007; lower panel indicates
course of meteorological
variables (7, Tmrt, v10)
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WCT, AT, PT and PET were higher and PST lower then
UTCI. The closest to UTCI was SET* index (Fig. 12).
Conclusions

All the indices that were derived from various human
heat budget models (PET, PT, SET*, PST, PhS)

correlated very well with UTCI (the lowest R* coeffi-
cient was 93.1). The indices based on relatively simple
formulas (HI, AT, Humidex, WBGT, WCT) correlated
less with UTCI. An exception was ET, with an R?
coefficient of 96.7. One of the possible causes in
unconformity is the lack of radiation factor in the
equations. HI, Humidex and WCT do not have the
radiation options of formulas. However, for WBGT and
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AT, non-radiation equations are used more widely in
bioclimatic research than their radiation options.

The best relationships with UTCI were found for SET*,
ET and PT indices; they represented high correlation
coefficients with slopes of regression lines close to 1. A
high correlation was also observed for PMV and PhS
indices.

From the synoptic and microclimatic data it can be
deduced that particular indices express bioclimatic con-
ditions reasonably only in specific situations. UTCI, on the
other hand, is an index that represents various climates,
weather and locations very well. Furthermore, UTCI is very
sensitive to changes in ambient stimuli: temperature, solar
radiation, humidity and especially wind speed; in this
respect, it represents the response of the human body. In
contrast, the HI, Humidex, AT, PET and PT indices are
more closely related to air temperature, especially as their
assumptions on clothing insulation differ strongly from the
state-of-the-art clothing model used in UTCI. ET, SET* and
PST are noticeably more sensitive to the cooling effect of
the wind.

In terms of the microclimatic scale, UTCI represents the
temporal variability of thermal conditions better than the
other indices. It reflects even slight differences in the
intensity of meteorological stimuli.

In conclusion, the analyses presented in this paper
indicate the universal nature of UTCI by its ability to
represent bioclimatic conditions in terms that are applicable
to human strain under a wide range of climatic conditions.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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