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Abstract We redevelop persistent homology (topological persistence) from a cate-
gorical point of view. The main objects of study are (R,≤)-indexed diagrams in some
target category. A set of such diagrams has an interleaving distance, which we show
generalizes the previously studied bottleneck distance. To illustrate the utility of this
approach, we generalize previous stability results for persistence, extended persis-
tence, and kernel, image, and cokernel persistence. We give a natural construction of
a category of ε-interleavings of (R,≤)-indexed diagrams in some target category and
show that if the target category is abelian, so is this category of interleavings.

Keywords Applied topology · Persistent topology · Topological persistence ·
Diagrams indexed by the poset of real numbers · Interleaving distance

1 Introduction

The ideas of topological persistence [13] and persistent homology [21] have had a
great impact on computational geometry and the newer field of applied topology.
This method applies geometric and algebraic constructions to input from applica-
tions, followed by clever modifications of tools from algebraic topology. It has found
many uses, and the results can be global qualitative descriptions inaccessible to other
methods. Subsequent theoretical work in this subject has given stronger results and
adapted the basic constructions so that they might be applied in more diverse situa-
tions. For surveys and books on this subject, see [3, 11, 12, 15, 20].
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1.1 Motivation

Throughout its history, algebraic topology has frequently undergone a process in
which previous results were redeveloped from a more abstract point of view. This
has had two main advantages. First, abstraction clarified the key ideas and proofs.
Second, and more importantly, the more abstract setting allowed previous results to
be vastly generalized and applied in ways never considered in the original. The de-
velopment and use of category theory has been a critical part of this process.

The main motivation of this paper is to subject the ideas and results of topological
persistence to this process.

1.2 Prior Work

In the descriptions below, we will make anachronistic use of this paper’s point of
view, in particular, its focus on diagrams (see (1) and Sect. 2.1).

Two foundational papers in this subject are [13] and [21]. In the first, Edelsbrunner,
Letscher, and Zomorodian define persistent homology for (Z+,≤)-indexed diagrams
of finite-dimensional vector spaces that are obtained from filtered finite simplicial
complexes by taking simplicial homology with coefficients in a field. In the second,
Zomorodian and Carlsson take a purely algebraic point of view. They define per-
sistent homology for tame (Z+,≤)-indexed diagrams of finite-dimensional vector
spaces and prove a bijection between isomorphism classes of such tame diagrams
and finite barcodes whose endpoints lie in Z+ ∪ {∞}. (Z+,≤)-indexed diagrams of
finite-dimensional vector spaces are called persistence modules.

These papers are rounded out by [7], where Cohen-Steiner, Edelsbrunner, and
Harer prove that persistent homology is useful in applications by showing that it is
stable in the following sense. Let f,g : X → R be continuous functions on a triangu-
lable space. Define an (R,≤)-indexed diagram of topological spaces, F , by setting
F(a) = f −1(−∞, a] and letting F(a ≤ b) be given by inclusion. Define G simi-
larly using g. Let H be the singular homology functor with coefficients in a field.
Assume that HF and HG are diagrams of finite-dimensional vector spaces and that
they are tame. Then the bottleneck distance between HF and HG is bounded by the
supremum norm between f and g.

This stability result is significantly strengthened by Chazal, Cohen-Steiner, Glisse,
Guibas, and Oudot in [5]. They drop the assumptions that X be triangulable, that f,g

be continuous, and that HF and HG be tame. Their approach is crucial to this pa-
per. They explicitly work with (R,≤)-indexed diagrams, though they consider them
from an algebraic, not categorical, point of view. They define the interleaving dis-
tance, d , between such diagrams, and define the bottleneck distance, dB , between
such diagrams using limits of discretizations, and show that dB ≤ d .

The basic idea of persistent homology has been extended in numerous ways.
Here we focus on two particularly useful extensions, given in [8] and [9]. In the
first, Cohen-Steiner, Edelsbrunner, and Harer define extended persistence for finite-
dimensional simplicial complexes with a finite filtration and homology with coeffi-
cients in Z/2Z. They show that in this case the stability result of [7] applies. In the
second, Cohen-Steiner, Edelsbrunner, Harer, and Morozov consider a triangulated
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space X with subcomplex Y and maps f,f ′ : X → R and g,g′ : Y →R such that for
all y ∈ Y , f (y) ≤ g(y) and f ′(y) ≤ g′(y). They assume that f,f ′, g, g′ are contin-
uous and tame. Then there are maps of the corresponding (R,≤)-indexed diagrams
HG → HF and HG′ → HF ′. Let ε = max{‖f − f ′‖∞,‖g − g′‖∞}. The authors
show that the bottleneck distances between the kernels, images, and cokernels, re-
spectively, of these maps are each bounded above by ε.

An early categorical approach to persistence can be found in [2].

1.3 Our Contributions

We redevelop persistent homology from a categorical point of view. In particular, we
consider diagrams indexed by (R,≤) to be the main objects of study. An (R,≤)-
indexed diagram consists of a set of objects X(a) for each a ∈ R and morphisms

X(a) → X(b) (1)

for each a ≤ b, satisfying certain composition and unit axioms (see Sect. 2.1). The
objects and morphisms lie in some fixed category, such as topological spaces and
continuous maps, or finite-dimensional vector spaces and linear transformations. In
Sect. 2.2, we show that the basic constructions of persistent homology are special
cases of this construction. We will show that in this setting, functoriality provides
concise and powerful results.

In Sect. 3, we define an ε-interleaving for (R,≤)-indexed diagrams (Defini-
tion 3.1) and show that this induces a metric (Theorem 3.3 and Corollary 3.5).

We specialize to (R,≤)-indexed diagrams of finite-dimensional vector spaces in
Sect. 4. These are also called (real) persistence modules. We study barcodes, persis-
tence diagrams, and the bottleneck and interleaving distances. We define finite type
diagrams to be direct sums of certain indecomposable diagrams (Definition 4.1). We
show that these are exactly the tame diagrams (Theorem 4.6). Furthermore, we show
that they satisfy a Krull–(Remak–)Schmidt theorem. That is, the direct sum decom-
position is essentially unique (Corollary 4.7). We show that the metric space of finite
barcodes together with the bottleneck distance embeds isometrically into the metric
space of (R,≤)-indexed diagrams of finite-dimensional vector spaces with the inter-
leaving distance (Theorem 4.16). This result justifies our assertion that our stability
theorems, which use the interleaving distance, are generalizations of previously es-
tablished stability theorems, which use the bottleneck distance.

In Sect. 5, we give a simple formal argument for a stability theorem for the in-
terleaving distance. By the previous work identifying the interleaving and bottleneck
distances, this allows us to both remove assumptions and to significantly generalize,
the stability result of [7]. Given any functions f,g : X → R on any topological space
X and any functor H on topological spaces, we show that the interleaving distance
of HF and HG is bounded above by the supremum norm between f and g (Theo-
rem 5.1).

We generalize the extended persistence construction of [8] in Sect. 6. For any (not
necessarily continuous) map f : X → (−∞,M] ⊂ R, we define an (R,≤)-indexed
diagram of pairs of topological spaces. We prove a stability theorem for extended
persistence. Given f,g : X → (−∞,M] and corresponding diagrams F and G of
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pairs of spaces, and any functor H on pairs of spaces, the interleaving distance be-
tween HF and HG is bounded above by the supremum norm between f and g

(Theorem 6.1).
In Sect. 7, we define a category of interleavings of (R,≤)-indexed diagrams in a

given base category (Definition 7.1). We show that in the case that the base category
is an abelian category, then so is this category of interleavings (Theorem 7.10). As a
result, this category has direct sums, kernels, images, and cokernels. As an applica-
tion, we generalize the stability theorem of [9], dropping the assumptions that X and
Y are triangulated, that f,f ′, g, g′ are continuous and tame, replacing the subcom-
plex condition with a continuous map Y → X and replacing singular homology with
coefficients in Z/2Z, with any functor from topological spaces to an abelian cate-
gory (Theorem 7.13). We also give a version of this theorem for extended persistence
(Theorem 7.14).

1.4 Comparison with Other Recent Work

The material in Sect. 4 has been studied in greater detail in the algebraic setting by
Lesnick [17] and by Chazal, de Silva, Glisse, and Oudot [6]. In particular, Lesnick
proves a more general Isometry Theorem [17, Theorem 2.4.2], removing the condi-
tion that the persistence modules have finite type from our Theorem 4.16. This is fur-
ther generalized to q-tame persistence modules in [6, Theorem 4.11]. We also remark
that one of the directions in our isometry theorem is due to [5]. Crawley-Boevey [10]
has shown that any (R,≤)-indexed diagram of finite-dimensional vector spaces is a
direct sum of interval modules. In light of this result, it may be possible to generalize
some of our work in Sect. 4.

Our Stability Theorem (Theorem 5.1) is quite general and once the categorical
machinery has been set up, has a very simple proof. However it applies to persistence
modules, not for their corresponding persistence diagrams. In the language of [1], it
is a soft stability theorem. Hard stability theorems [5–7] giving stability for persis-
tence diagrams require more detailed analysis. For example, an Isometry Theorem
can be used to show that soft stability implies hard stability. On the other hand, our
Stability Theorem is more general in that it applies to functors to arbitrary categories.
For a simple example, consider homology with integer coefficients. It also clarifies
what part of stability is purely formal and what part requires detailed analysis. This
viewpoint is expanded upon in [1].

2 Background

In Sect. 2.1, we give the basic definitions of category theory that we will use through-
out the paper. In Sect. 2.2, we show how the standard constructions of persistent ho-
mology fit within our categorical approach. The last two sections give more special-
ized background. In Sect. 2.3, we define abelian categories, which we use in Sect. 7.
In Sect. 2.4, we give some algebraic definitions used in the proof of Theorem 4.6.
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2.1 Categorical Terminology

A category, C, consists of a class of objects, C0, and for each pair of objects X,Y ∈
C0, a set of morphisms, C(X,Y ). We often write f : X → Y if f ∈ C(X,Y ). For
every triple X,Y,Z ∈ C0, there is a set mapping,

C(Y,Z) × C(X,Y ) → C(X,Z), (g,f ) 
→ gf,

called composition. Composition must be associative, in the sense that (hg)f =
h(gf ). Finally, for all X ∈ C, there is an identity morphism, IdX : X → X, that sat-
isfies IdX f = f and g IdX = g for all f : W → X and all g : X → Y . The iden-
tity morphism is unique. We will regularly abuse notation and write X ∈ C to mean
X ∈ C0.

A category C is called small if C0 is a set rather than a proper class.

Example 2.1 Let Top be the category whose objects are all topological spaces and
whose morphisms are all continuous maps. Here, composition is the composition of
mappings, and the identity morphisms are what one would expect.

A related category is Pair, whose objects are pairs (X,A), where X is a topologi-
cal space, and A is a subspace of X. A morphism from (X,A) to (Y,B) is a contin-
uous map f : X → Y such that f (A) ⊂ B . We express this condition by saying that
the diagram

A
f |A

jA

B

jB

X
f

Y

commutes, where jA and jB are the canonical inclusions, and f |A is f restricted
to A.

Example 2.2 Let Vec be the category of finite-dimensional vector spaces over a fixed
ground field F, along with the linear transformations between them. Again, compo-
sition is that of mappings, and the identities are simply the identity mappings.

A graded vector space is a collection V∗ = {Vn}n∈Z with each Vn ∈ Vec. A mor-
phism, f∗ : V∗ → W∗, of graded vector spaces is a sequence, f∗ = {fn : Vn → Wn}.
Denote by grVec the category of graded vector spaces and their morphisms.

A reflexive, antisymmetric, and transitive relation ≤ on a set P is called a partial
order. A set P equipped with a partial order is called a poset. We identify each poset
P with the small category P that has P0 = P , and P(x, y) has precisely one element
if x ≤ y and is otherwise empty. Conversely, let P be a small category in which each
set of morphisms contains at most one element, and if P(x, y) and P(y, x) are both
nonempty, then x = y. Then P0 is a poset, with partial ordering defined by x ≤ y if
and only if P(x, y) �= ∅.
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Example 2.3 The set of real numbers, R, with its usual ordering is a poset. The set
of integers, Z, of nonnegative integers Z+, and [n] = {0, . . . , n}, are subposets. For a
partial order that is not a total order, consider the set Rn with n > 1 and the ordering
(x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for all i = 1, . . . , n.

Two objects X,Y ∈ C0 are said to be isomorphic if there exist morphisms
f : X → Y and g : Y → X such that gf = IdX and fg = IdY . In this case, f and
g are called isomorphisms. Clearly, isomorphism is an equivalence relation. In Top,
isomorphism becomes homeomorphism.

The notion of functor expresses relationships between categories. Let A and C be
categories. A functor, F : A → C, consists of a mapping F : A0 → C0, and for each
pair X,Y ∈ A0, a mapping F : A(X,Y ) → C(F (X),F (Y )). These mappings must
be compatible with the composition and identity structure of the categories, in the
sense that if f : X → Y and g : Y → Z, then F(gf ) = F(g)F (f ), and if X ∈ A0,
then F(IdX) = IdF(X).

Example 2.4 Denote by H∗(−) singular homology with coefficients in some fixed
field, F. Then H∗(X) is a graded F-vector space for all X ∈ Top0. Furthermore,
if f : X → Y is continuous, then we get the induced homomorphism, H∗(f ) :
H∗(X) → H∗(Y ). Since H∗(gf ) = H∗(g)H∗(f ), singular homology defines a func-
tor H∗ : Top → grVec. If we consider only homology in degree k, then we get a
functor Hk : Top → Vec.

Let F,G : A → C be functors. A natural transformation η : F ⇒ G consists of,
for all A ∈ A0, a morphism ηA : F(A) → G(A) in C such that whenever ϕ : A → A′
is a morphism, the diagram

F(A)
ηA

F(ϕ)

G(A)

G(ϕ)

F (A′)
ηA′

G(A′)

(2)

commutes. If for all A ∈ A0, ηA is an isomorphism, then η is called a natural isomor-
phism, and we write F ∼= G.

Example 2.5 Consider the poset (R,≤), and let ε ≥ 0. Define Tε : (R,≤) → (R,≤)

by Tε(x) = x + ε. If x ≤ y, then x + ε ≤ y + ε, so Tε defines a functor to (R,≤) to
itself. We call Tε translation by ε. Since ε ≥ 0 and x ≤ x + ε for all x ∈ R, we get a
natural transformation η : I ⇒ Tε , where I :R →R is the identity functor.

The collection of all small categories, and the functors between them, itself forms
a category, denoted by Cat.

Let C and D be categories with C small. A functor, F : C → D, is called a diagram
in D indexed by C. The collection of all such functors, and natural transformations
between them, forms a category, DC.
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Example 2.6 Let C be the discrete category whose objects are the integers; the only
morphisms are the identity morphisms. Then VecC = grVec.

Example 2.7 A diagram F in a category D indexed by (Z+,≤) is a sequence of
morphisms in D:

F(0) → F(1) → F(2) → ·· · .

If D = Top, then each F(n) is a topological space, and the morphisms are continu-
ous maps. If D = Vec, then each F(n) is a finite-dimensional vector space, and the
morphisms are linear maps.

Indexed by (Z,≤), the diagram extends in both directions:

· · · → F(−2) → F(−1) → F(0) → F(1) → F(2) → ·· · .

If the indexing category is (R,≤), then we have objects F(a) for all a ∈ R, and for
each a ≤ b, a morphism F(a) → F(b).

Given two natural transformations ϕ : F ⇒ G and ψ : G ⇒ H , their (vertical)
composition ψ ◦ ϕ is the natural transformation given by the composition of mor-

phisms F(A)
ϕA−→ G(A)

ψA−→ H(A) and the composition of the corresponding com-
mutative squares (2).

For i = 1,2, let Fi,Gi : Ai → Ai+1 be functors, and let ϕi : Fi ⇒ Gi be a natural
transformation. The (horizontal) composition of ϕ1 and ϕ2 is the natural transforma-
tion, ϕ2ϕ1 : F2F1 ⇒ G2G1, defined on morphisms by (ϕ2ϕ1)(f ) = ϕ2(ϕ1(f )). For
every functor H , there is the identity natural isomorphism IdH : H ⇒ H . We abuse
notation and refer to the horizontal composition of a natural transformation ϕ with
IdH as the composition of ϕ with H .

2.2 Categorical Persistent Homology

In this section, we consider two prototypical examples in which persistent homology
is applied and show how they fit into our categorical framework. We also show how
diagrams indexed by [n], (Z+,≤), and (Z,≤) are special cases of diagrams indexed
by (R,≤). Finally, we define persistent homology.

2.2.1 Filtered Simplicial Complexes

First, let K be a finite simplicial complex with filtration

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

Then this gives an [n]-indexed diagram of topological spaces, i.e., K ∈ Top[n], with
K(i) = Ki and K(i ≤ j) given by inclusion.

Let Hk be the degree k simplicial homology functor with coefficients in a field F.
Then HkK is an [n]-indexed diagram of finite-dimensional vector spaces. That is,
HkK(i) = Hk(Ki,F) and HkK(i ≤ j) is the map induced on homology by the inclu-
sion Ki ↪→ Kj . So HkK ∈ Vec[n].

We can sum homology in all degrees to get HF ∈ Vec[n], given by HF(i) =⊕
k Hk(Ki,F).
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2.2.2 Sublevel Sets

Second, let X be a topological space, and let f : X → R be a not necessarily con-
tinuous real-valued function on X. Let a ∈ R. We consider the sublevel set (or lower
excursion set, also called a half space)

f −1((−∞, a]) = {
x ∈ X | f (x) ≤ a

}
.

For simplicity, we will usually write f −1(−∞, a]. We consider it as a topologi-
cal space using the subspace topology. Notice that if a ≤ b, then f −1(−∞, a] ⊆
f −1(−∞, b], and this inclusion is a continuous map.

This data can be assembled into an (R,≤)-indexed diagram of topological spaces,
F ∈ Top(R,≤). For a ∈ R, we define F(a) = f −1(−∞, a]. For a ≤ b, we define
F(a ≤ b) to be the inclusion f −1(−∞, a] ↪→ f −1(−∞, b]. It is easy to check that
this defines a functor F : (R,≤) → Top.

Let Hk be the kth singular homology functor with coefficients in some field F.
Then HkF is an (R,≤)-indexed diagram of (not necessarily finite-dimensional) vec-
tor spaces. That is, HkF(a) = Hk(f

−1(−∞, a],F), and for a ≤ b, HkF(a ≤ b) is
the map induced on homology by the inclusion f −1(−∞, a] ↪→ f −1(−∞, b]. If f

has the property that for all a ∈R, Hk(f
−1(−∞, a],F) is a finite-dimensional vector

space, then HkF ∈ Vec(R,≤).
If f has the property that for all a ∈ R, H∗(f −1(∞, a],F) is finite-dimensional,

then HF ∈ Vec(R,≤) is given by HF(a) = ⊕
k Hk(f

−1(−∞, a],F).

2.2.3 Diagrams by [n], (Z+,≤), and (Z,≤)

In this paper, we will only consider the indexing category (R,≤). However, this case
also includes the cases [n], (Z+,≤), and (Z,≤), by the following observation. Con-
sider F ∈ Top[n]. Then we can extend F to an (R,≤)-indexed diagram as follows.
The inclusion functor i : [n] → (R,≤) given by i(j) = j has a retraction functor
r : (R,≤) → [n] given by

r(a) =

⎧
⎪⎨

⎪⎩

0 if a ≤ 0,

�a� if 0 < a < n,

n if a ≥ n.

Thus, the composite functor F r is an element of Top(R,≤), and F ri = F . There are
similarly defined retraction functors to (Z+,≤) and to (Z,≤).

2.2.4 Persistent Homology

Given a diagram F ∈ Top(R,≤), we define the p-persistent kth homology group of
F(a) to be the image of the map HkF(a ≤ a + p).

2.2.5 Persistence Modules

Diagrams in Vec[n], Vec(Z+,≤), and Vec(R,≤) are often called persistence modules.
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2.3 Abelian Categories

In this section, we recall standard definitions from category theory that we will use in
Sect. 7. Details can be found in, for example, [18]. Throughout this section, C denotes
a category.

2.3.1 Initial, Terminal, and Final Objects

We say that an object ∅ of C is initial if, for every object X in C, there is a unique
morphism ∅ → X. An object ∗ is terminal if, for every object X, there is a unique
morphism X → ∗. It follows from these definitions that initial and terminal objects,
if they exist, are unique up to canonical isomorphism. If an object is both initial and
terminal, we say that it is zero and denote it by 0. In the presence of a zero object, for
every pair of objects X,Y ∈ C, we can define the zero morphism 0 : X → Y to be the
composite of the unique morphisms, X → 0 → Y . It follows by uniqueness that if f

is any morphism, then f 0 = 0f = 0.

2.3.2 Monomorphisms, Epimorphisms, Kernels, and Cokernels

Let f : X → Y be a morphism. We say that f is a monomorphism if, whenever
g,h : W → X are morphisms such that fg = f h, we have that g = h. Dually, f is
an epimorphism if, whenever k, � : Y → Z are morphisms such that kf = �f , then
k = �. An isomorphism class of monomorphisms to Y is called a subobject of Y .
Dually, isomorphism classes of epimorphisms are called quotient objects.

Suppose that C has a zero object, 0. Let f : X → Y be a morphism in C. The
kernel of f is the equalizer of f and 0 : X → Y . That is, the kernel is a morphism,
j : kerf → X, such that fj = 0 and that is “universal” in the sense that whenever g :
W → X is a morphism satisfying fg = 0, then there is a unique morphism g̃ : W →
kerf such that j g̃ = g. Since j is an equalizer, it follows that j is a monomorphism.
So kerf represents a subobject of X. Thus, the kernel is the appropriate categorical
notion for the part of X that f sends to 0. We use the word “kernel” to mean both the
object kerf and the universal morphism, kerf → X, according to the context. We
remark that it follows from the definition that all such universal objects are unique up
to unique isomorphism. That is, if g : W → X and g′ : W ′ → X are both kernels of
f : X → Y , then there is a unique isomorphism g̃ : W → W ′ such that g′g̃ = g.

Dually, the cokernel of f : X → Y is the coequalizer of f and 0. That is, the coker-
nel is a universal morphism q : Y → cokerf , such that whenever h : Y → Z satisfies
hf = 0, there exists a unique morphism h̃ : cokerf → Z such that h̃q = h. Again, we
sometimes abuse notation and use “cokernel” to refer to the object, cokerf . Since q

is a coequalizer, it is an epimorphism, and cokerf represents a quotient object of Y .
Again, cokernels, if they exist, are unique up to canonical isomorphism.

2.3.3 Products, Coproducts, Pull-Backs, and Push-Outs

Let X,Y ∈ C. The product of X and Y , if it exists in C, is an object denoted by
X × Y , along with morphisms pX : X × Y → X and pY : X × Y → Y satisfying the
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following universal property. For every object W together with a pair of morphisms
fX : W → X and fY : W → Y , there is a unique morphism f : W → X × Y such
that fX = pXf and fY = pY f . The product, if it exists, is unique up to canonical
isomorphism.

Dually, the coproduct of X and Y , if it exists in C, is an object X ⊕ Y , along with
morphisms jX : X → X ⊕ Y and jY : Y → X ⊕ Y satisfying the following univer-
sal property. For every object U together with a pair of morphisms gX : X → U

and gY : Y → U , there is a unique morphism g : X ⊕ Y → U such that gX =
gjX and gY = gjY . The coproduct, if it exists, is unique up to canonical isomor-
phism.

Consider the diagram X
f−→ Z

g←− Y . The pull-back of f and g consists of an object

P and morphisms X
pX←− P

pY−→ Y satisfying fpX = gpY and the following universal
property. For each diagram

W

hY

hX
P

pY

pX

Y

g

X
f

Z

where the outer paths commute, there is a unique morphism W → P that makes
the entire diagram commute. The pull-back is unique up to canonical isomorphism
and is denoted by P = X ×Z Y when there can be no ambiguity concerning f

and g.

Dually, the push-out of the diagram Y
f←− X

g−→ Z consists of an object Q along

with universal morphisms Y
jY−→ Q

jZ←− Z satisfying jY f = jZg and the following
universal property. Whenever the outer paths in the diagram

X
g

f

Z

jZ

kZY
jY

kY

Q

U

commute, there is a unique morphism k : Q → U making the entire diagram com-
mute. The push-out is unique up to canonical isomorphism, and is denoted by
Q = Y

⊕
X Z.
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2.3.4 Abelian Categories

An abelian category is a category that contains a zero object and all products and co-
products, in which every morphism has a kernel and cokernel, every monomorphism
is a kernel, and every epimorphism is a cokernel. By Freyd [14], every abelian cate-
gory, A, is preadditive, that is, it is naturally enriched in abelian groups. This means
that for all pairs of objects X and Y , the set of morphisms A(X,Y ) is an abelian
group, and composition is bilinear. Furthermore, binary products and coproducts co-
incide, in the sense that the natural morphism X ⊕ Y → X × Y is an isomorphism.

We say that an object X of an abelian category is indecomposable if whenever
X ∼= U ⊕ V , either U ∼= 0 or V ∼= 0.

Example 2.8 Let Vec be the category of finite-dimensional vector spaces over some
fixed field, F. The morphisms are linear transformations. The zero object is (an ele-
ment of the isomorphism class of) the trivial vector space, 0 = {0}. The product of
V and W is the Cartesian (direct) product, V × W . The coproduct is the direct sum,
V ⊕ W , which is canonically isomorphic to the direct product.

If f : V → W is linear, we set kerf = {v ∈ V | f (v) = 0}, f (V ) = {f (v) |
v ∈ V }, and cokerf = W/f (V ). It is a straightforward exercise to show that
monomorphisms are simply injective linear transformations and that if f is injec-
tive, then V ∼= f (V ), and so V is (isomorphic to) the kernel of the quotient map,
W → cokerf . Similarly, epimorphisms are surjective linear transformations, and by
the First Homomorphism Theorem, if f : V → W is surjective, then W is the coker-
nel of kerf → V . Thus, Vec is an abelian category.

2.4 Algebra

We will need the following definitions in Lemma 4.5, which we use in the proof of
Theorem 4.6.

A (nonnegatively) graded ring is a ring, R, along with a direct-sum decomposi-
tion, R = ⊕∞

n=0 Rn, such that 1 ∈ R0, and if a ∈ Rm and b ∈ Rn, then ab ∈ Rm+n.
Our primary example will be the polynomial ring F[t] for a field F that is graded by
degree.

A graded F[t]-module is an F[t]-module, M , with a decomposition M =⊕∞
n=0 Mn that satisfies tmx ∈ Mm+n whenever x ∈ Mn. We say that M has finite

type if each Mn is finite dimensional over F.
We will also make use of the following structure theorem for finitely generated

modules over a principal ideal domain.

Theorem 2.9 [16, Theorem 6.12(ii), p. 225] Let A be a finitely generated module
over a principal ideal domain R. Then A is the direct sum of a free submodule E of
finite rank and a finite number of cyclic torsion modules. The cyclic torsion summands
(if any) are of orders p

s1
1 , . . . , p

sk
k , where p1, . . . , pk are (not necessarily distinct)

positive integers. The rank of E and the list of ideals (p
s1
1 ), . . . , (p

sk
k ) are uniquely

determined by A (except for the order of the pi ).
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3 Interleavings of Diagrams

In this section, we define ε-interleavings for (R,≤)-indexed diagrams and show that
they induce a metric on a set of (R,≤)-indexed diagrams. Our definition is a categor-
ical version of the definition in [5].

We consider the category (R,≤) whose objects are the real numbers and the set of
morphisms from a to b consists of a single morphism if a ≤ b and is otherwise empty.
For b ≥ 0, define Tb : (R,≤) → (R,≤) to be the functor given by Tb(a) = a + b, and
define ηb : Id(R,≤) ⇒ Tb to be the natural transformation given by ηb(a) : a ≤ a + b.
Note that TbTc = Tb+c and that ηbηc = ηb+c .

Let D be any category, and let ε ≥ 0. Let F,G ∈ D(R,≤).

Definition 3.1 An ε-interleaving of F and G consists of natural transformations
ϕ : F ⇒ GTε and ψ : G ⇒ FTε , i.e.,

(R,≤)
Tε

F
ϕ⇒

(R,≤)

G

Tε

ψ⇒
(R,≤)

F

D D D

such that

(ψTε)ϕ = Fη2ε and (ϕTε)ψ = Gη2ε. (3)

If (F,G,ϕ,ψ) is an ε-interleaving, then we say that F and G are ε-interleaved.

The existence of the natural transformations ϕ and ψ implies that we have the
following commutative diagrams for all a ≤ b:

F(a)

ϕ(a)

F (b)
ϕ(b)

G(a + ε) G(b + ε)

F (a + ε) F (b + ε)

G(a)

ψ(a)

G(b)
ψ(b)

Identities (3) imply that the following diagrams commute for all a:

F(a)

ϕ(a)

F (a + 2ε)

G(a + ε)
ψ(a+ε)

F (a + ε)
ϕ(a+ε)

G(a)

ψ(a)

G(a + 2ε)

Definition 3.2 Say that d(F,G) ≤ ε if F and G are ε-interleaved. Explicitly,

d(F,G) = inf{ε ≥ 0 | F and G are ε-interleaved},
where we set d(F,G) = ∞ if F and G are not ε-interleaved for any ε ≥ 0.
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We will show that this function d is a generalized metric. It fails to be a metric
because it can take the value ∞ and d(F,G) = 0 does not imply that F ∼= G. Notice
that if F and G are 0-interleaved, then F ∼= G. However, d(F,G) = 0 only implies
that F and G are ε-interleaved for all ε > 0. This does not imply that F ∼= G. For
an example, consider F,G ∈ Vec(R,≤) where F = 0 and G(a) is the ground field for
a = 0 but is otherwise 0. However, it does satisfy the other conditions of a metric, so
it is an extended pseudometric.

Theorem 3.3 The function d defined above is an extended pseudometric on any sub-
set of the class of (R,≤)-indexed diagrams in D.

To prove the theorem, we will need the following lemma, which shows that the set
of ε for which two diagrams are ε-interleaved form a ray.

Lemma 3.4 If the (R,≤)-indexed diagrams F and G are ε-interleaved, then they
are also ε′-interleaved for any ε′ ≥ ε.

Proof Let ϕ : F ⇒ GTε and ψ : G ⇒ FTε be such that (ψTε)ϕ = Fη2ε and
(ϕTε)ψ = Gη2ε .

Let ε′ ≥ ε and set ε̄ = ε′ − ε. Recall that we have the natural transformation, ηε̄ :
Id(R,≤) ⇒ Tε̄ , and thus, ηε̄Tε : Tε ⇒ Tε̄Tε = Tε′ . Therefore, Gηε̄Tε : GTε ⇒ GTε′ .
Define ϕ̂ = (Gηε̄Tε)ϕ. For example,

ϕ̂(a) : F(a)
ϕ(a)−−→ G(a + ε)

Gηε̄Tε(a)−−−−−→ G
(
a + ε′).

Similarly, define ψ̂ = (Fηε̄Tε)ψ .
We see that (ψ̂Tε′)ϕ̂ = Fη2ε′ from the following commutative diagram:

F(a)

ϕa

Fη2εa

F (a + 2ε)
Fηε̄T2εa

F (a + ε′ + ε)

Fηε̄Tε+ε′a
F (a + 2ε′)

G(a + ε)

ψTεa

Gηε̄Tεa

G(a + ε′)
ψTε′a

Similarly, one can check that (ϕ̂Tε′)ψ̂ = Gη2ε′ . �

Proof of Theorem 3.3 The identity natural transformation shows that d(F,F ) = 0
for any diagram F . By the symmetry of the definition of ε-interleaving, we see that
d(F,G) = d(G,F ) for any diagrams F and G. It remains to show the triangle in-
equality.

Consider diagrams F , G, and H . Let a = d(F,G) and b = d(G,H). Let ε > 0.
Then by Lemma 3.4 and the definition of infimum, F and G are (a + ε)-interleaved,
and G and H are (b + ε)-interleaved. Let ϕ′ : F ⇒ GTa+ε and ψ ′ : G ⇒ FTa+ε and
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ϕ′′ : G ⇒ HTb+ε and ψ ′′ : H ⇒ GTb+ε be the corresponding natural transforma-
tions. We will show that composing these natural transformations gives the desired
natural transformations for an interleaving of F and H .

Let ϕ = (ϕ′′Ta+ε)ϕ
′ : F ⇒ HTb+εTa+ε = HTa+b+2ε and ψ = (ψ ′Tb+ε)ψ

′′ :
H ⇒ FTa+εTb+ε = FTa+b+2ε . The first composition comes from the following dia-
gram. The second is similar.

(R,≤)
Ta+ε

F
ϕ′⇒

(R,≤)

G

Tb+ε

ϕ′′⇒
(R,≤)

H

D D D

We claim that (ψTa+b+2ε)ϕ = Fη2(a+b+2ε) and (ϕTa+b+2ε)ψ = Hη2(a+b+2ε).
The first identity comes from the following diagram. The second is similar.

(R,≤)
Ta+ε

F
ϕ′⇒

(R,≤)
Tb+ε

G
ϕ′′⇒

(R,≤)

H

Tb+ε

ψ ′′⇒
(R,≤)

G

Ta+ε

ψ ′⇒
(R,≤)

F

D D D D D

Thus, F and H are (a + b + 2ε)-interleaved for all ε > 0. Therefore d(F,H) ≤
a + b. �

Let us declare F equivalent to G if d(F,G) = 0; this is an equivalence relation,
and we obtain the following corollary.

Corollary 3.5 If we identify diagrams whose interleaving distance is 0, then d is an
extended metric on this set of equivalence classes.

One of the mostly useful aspects of the categorical view of interleavings is that
if we apply a functor to ε-interleaved diagrams, then the resulting diagrams are also
ε-interleaved. That is,

Proposition 3.6 Let F,G : (R,≤) → D and H : D → E. If F and G are ε-inter-
leaved, then so are HF and HG. Thus,

d(HF,HG) ≤ d(F,G).

Proof Assume that F and G are ε-interleaved. Let ϕ : F ⇒ GTε , ψ : G ⇒ FTε be
the corresponding natural transformations. Then by functoriality, Hϕ : HF ⇒ HGTε

and Hψ : HG ⇒ HFTε , and (HψTε)(Hϕ) = (HF)η2ε and (HϕTε)(Hψ) =
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(HG)η2ε , as pictured in the following diagram:

(R,≤)
Tε

F
ϕ⇒

(R,≤)

G

Tε

ψ⇒
(R,≤)

F

D

H =
D

H =
D

H

E E E

Therefore, HF and HG are ε-interleaved. �

4 Diagrams of Vector Spaces

From our categorical point of view, persistent homology calculations are done on
diagrams in the category Vec of finite-dimensional vector spaces over a fixed ground
field F. In this section, we study (R,≤)-indexed diagrams in Vec and define some of
the usual characters in topological persistence in this setting: barcodes, persistence
diagrams, and the bottleneck distance. Our main result is an isometric embedding
of the set of finite barcodes with the bottleneck distance into the set of objects of
Vec(R,≤) with the interleaving distance.

The category Vec is one of the motivating examples of an abelian category. If
the target category in a diagram category is an abelian category, then the diagram
category inherits this structure. The necessary constructions are done objectwise. In
particular, Vec(R,≤) is an abelian category.

4.1 Finite-Type Diagrams

In this section we define finite-type and tame diagrams in Vec(R,≤) and show that the
two conditions are equivalent. As a corollary, we obtain a Krull–Schmidt theorem.

Definition 4.1 Given an interval I ⊆ R, define the diagram χI ∈ Vec(R,≤) by

χI (a) =
{
F if a ∈ I,

0 otherwise,
χI (a ≤ b) =

{
IdF if a, b ∈ I,

0 otherwise.

We say that a diagram F ∈ Vec(R,≤) has finite type if F ∼= ⊕N
k=1 χIk

.

We remark that χR and χ∅ are the constant functors F and 0, respectively.

Lemma 4.2 For an interval I ⊆ R, the diagram χI is indecomposable.
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Proof Assume that χI
∼= P ⊕ Q. If there is some c /∈ I , then P(c) ⊕ Q(c) ∼=

χI (c) = 0, and therefore P(c) = Q(c) = 0.
Let a ∈ I . Then P(a) ⊕ Q(a) ∼= χI (a) ∼= F. Without loss of generality, assume

that P(a) ∼= F and Q(a) = 0. Let a ≤ b ∈ I . Since Q(a) = 0, Q(a ≤ b) = 0. Thus,
it follows from P(a ≤ b) ⊕ Q(a ≤ b) = (P ⊕ Q)(a ≤ b) ∼= χI (a ≤ b) = IdF that
P(a ≤ b) ∼= IdF. Hence, from P(b) ⊕ Q(b) ∼= χI (b) ∼= F we get that P(b) ∼= F

and Q(b) = 0. Similarly, if d ≤ a ∈ I , we get that Q(d ≤ a) = 0, P(d ≤ a) ∼= IdF,
P(d) ∼= F and Q(d) = 0.

We have shown that P ∼= χI and Q = 0. Therefore, χI is indecomposable. �

The following definitions are variations of those in [7].

Definition 4.3 Let F ∈ Vec(R,≤). Let I ⊆ R be an interval. Say that F is constant
on I if for all a ≤ b ∈ I , F(a ≤ b) is an isomorphism. We call a ∈ R a regular value
of F if there is some open interval I � a such that F is constant on I . Otherwise,
we call a a critical value of F .1 We call F tame if it has a finite number of critical
values.

Lemma 4.4 (Critical Value Lemma) If an interval I does not contain any critical
values of F , then F is constant on I .

Proof Let a ≤ b ∈ I . By assumption, for all c ∈ [a, b], there exists an interval Ic � c

such that F is constant on Ic. Since [a, b] is compact, the cover {Ic | c ∈ [a, b]} has a
finite subcover {Ic1, . . . , Icn}. Choose a sequence a = d0 ≤ d1 ≤ · · · ≤ dm+1 = b such
that for all 0 ≤ k ≤ m, dk, dk+1 ∈ Icj

for some 1 ≤ j ≤ n. Then F(dk ≤ dk+1) is an
isomorphism for 0 ≤ k ≤ m, and thus F(a ≤ b) is an isomorphism. �

We will need the following lemma in the proof of Theorem 4.6. We refer the reader
to Sect. 2.4 for the definition of a finite-type graded F[t]-module.

Lemma 4.5 The category Vec(Z,≤) is isomorphic to the category of finite-type graded
F[t]-modules.

Proof To each diagram F ∈ Vec(Z,≤), we can assign the finite-type graded F[t]-
module M , where for k ∈ Z, Mk = F(k), and for a ∈ Mk , t · a = F(k ≤ k + 1)(a).

To each finite-type graded F[t]-module M , we can assign the diagram F ∈
Vec(Z,≤) given by F(k) = Mk and whose morphisms are generated by F(k ≤
k + 1)(a) = t · a for a ∈ F(k).

Both composites of these two functors are equal to the identity functor. �

Theorem 4.6 A diagram in Vec(R,≤) is tame if and only if it has finite type.

1Even if F is induced by sublevel sets, it is inadequate to define a ∈ R to be a critical value of F if for all
sufficiently small ε > 0, the map F(a − ε ≤ a + ε) is not an isomorphism [7]. Consider the example X =
{(x, y) ∈ R

2 | 0 ≤ x ≤ 1, 0 < y ≤ 1} and f (x, y) equal to 0 if x = 0, −1 if x = 1, and y otherwise. Then
0 is not a critical value under this stricter definition, but the map H0(f −1(−∞,0]) → H0(f −1(−∞,1])
induced by inclusion is not an isomorphism, contradicting the Critical Value Lemma.
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Proof To prove the “if” statement, we consider an interval I ⊆ R. By definition,
a ∈ R is a critical value of χI if and only if a is an endpoint of I . Let F ∈ Vec(R,≤)

such that F ∼= ⊕N
k=1 χIk

. Then a ∈ R is a critical value of F if and only if it is an
endpoint of one of the intervals Ik , and so F is tame.

The remainder of the proof is devoted to establishing the “only if” statement. As-
sume that F ∈ Vec(R,≤) has critical values a1 < a2 < · · · < an. Choose b0, . . . , bn

such that b0 < a1 for k ∈ {1, . . . , n − 1}, ak < bk < ak+1, and an < bn. For conve-
nience, set a0 = −∞, an+1 = ∞ and F(a0) = F(b0), F(an+1) = F(bn). We have
the ordered sequence

−∞ = a0 < b0 < a1 < b1 < a2 < · · · < bn−1 < an < bn < an+1 = ∞.

We now identify the finite-valued part of this sequence with the integers from 0 to 2n.
More precisely, we define a functor i : [2n] → (R,≤) given by

k 
→
{

b k
2

if k is even,

a k+1
2

if k is odd.

We also define a functor r : (R,≤) → [2n] given by

c 
→
{

2k − 1 if c = ak, k ∈ {1, . . . , n},
2k if ak < c < ak+1, k ∈ {0, . . . , n}.

Then we have the composite functor ir : (R,≤) → (R,≤) given by

c 
→
{

ak if c = ak, k ∈ {1, . . . , n},
bk if ak < c < ak+1, k ∈ {0, . . . , n}.

Precomposing F with this functor gives us an induced functor (ir)∗F ∈ Vec(R,≤).
That is, (ir)∗F(c) = F(irc).2 Notice that by Lemma 4.4, F(irc) ∼= F(c) for all
c ∈R. Thus, (ir)∗ : F 
→ (ir)∗F is a natural isomorphism.

Next, i∗F : [2n] → Vec can be extended to a functor i∗F : (Z,≤) → Vec by set-
ting (i∗F)(k) = (i∗F)(0) for k < 0, with i∗F(k ≤ 0) the identity, and for k > 2n,
setting (i∗F)(k) = (i∗F)(2n) with i∗F(2n ≤ k) the identity. By Lemma 4.5, we can
consider i∗F to be a graded F[t]-module. Note that by assumption, i∗F is a finitely
generated graded F[t]-module.

By the structure theorem for finitely generated graded modules over a principal
ideal domain (Theorem 2.9), there is a unique decomposition,

i∗F ∼=
(

n1⊕

i=1

tciF[t]
)

⊕
(

n2⊕

j=1

tdj
(
F[t]/(tej

))
)

.

2Our notation comes from category theory; an arrow f : x → y defines a natural map f ∗ : Hom(y, z) →
Hom(x, z) obtained by precomposing a given arrow y → z with f .
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It follows that as elements of Vec(Z,≤),

i∗F ∼=
(

n1⊕

i=1

χ[ci ,∞)

)

⊕
(

n2⊕

j=1

χ[dj ,dj +ej )

)

.

Therefore,

F ∼= (ir)∗F = r∗i∗F ∼=
(

n1⊕

i=1

r∗χ[ci ,∞)

)

⊕
(

n2⊕

j=1

r∗χ[dj ,dj +ej )

)

,

where

r∗χ[k,∞) =
⎧
⎨

⎩

χ[a k+1
2

,∞) if k odd,

χ(a k
2
,∞) if keven,

and

r∗χ[k,�) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

χ[a k+1
2

,a �+1
2

) if k, � odd,

χ[a k+1
2

,a �
2
] if k odd, � even,

χ(a k
2
,a �+1

2
) if k even, � odd,

χ(a k
2
,a �+1

2
] if k, l even.

Thus, F has finite type. �

By the uniqueness of the decomposition in the structure theorem for graded mod-
ules over a graded PID in the previous proof, we get that finite-type diagrams in
Vec(R,≤) satisfy the following Krull–Schmidt theorem. Compare this with [4, Propo-
sition 2.2].

Corollary 4.7 (Krull–Schmidt) If F ∼= ⊕n
k=1 χIk

and F ∼= ⊕m
j=1 χI ′

j
, then n = m

and the sequences I1, . . . , In and I ′
1, . . . , I

′
m are the same up to reordering.

4.2 Barcodes and Persistence Diagrams

Here we define barcodes and persistence diagrams for finite-type diagrams in
Vec(R,≤). We observe that finite-type diagrams in Vec(R,≤) are a categorification of
finite barcodes.

Definition 4.8 Assume that F ∈ Vec(R,≤) has finite type. A barcode is a multiset of
intervals. The barcode of F is the multiset {Ik}nk=1 where F ∼= ⊕n

k=1 χIk
. This is well

defined by Corollary 4.7, which follows from Theorem 4.6.
A persistence diagram is a multiset of increasing pairs of extended real num-

bers. The persistence diagram of F is the multiset {(ak, bk)}nk=1, where ak ≤ bk and
{ak, bk} are the endpoints of Ik , with F ∼= ⊕n

k=1 χIk
. Again, this is well defined by

Corollary 4.7.
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By Corollary 4.7, we immediately have the following. Compare with [21, Corol-
lary 3.1] and [12, Persistence Equivalence Theorem]. Note that a finite barcode is a
finite multiset of intervals, not a multiset of finite intervals.

Corollary 4.9 (Categorification of Barcodes) There is a bijection between isomor-
phism classes of finite-type diagrams in Vec(R,≤) and finite barcodes.

4.3 Bottleneck Distance

In this section, we define the bottleneck distance between two barcodes in terms of the
interleaving distance. We show that this results in the usual definition of [7]. We end
by proving an isometric embedding of the set of finite barcodes with the bottleneck
distance into the set of (R,≤)-indexed diagrams in Vec with the interleaving distance.

Definition 4.10 Given multisets A and B , define the multiset AB to be the disjoint
union of A and the multiset containing the empty interval ∅ with cardinality |B|.
A stable bijection or partial matching between two multisets A and B is a bijection,
f : AB → BA. Write f : A � B .

Definition 4.11 Let B and B ′ be two barcodes. Define the bottleneck distance be-
tween B and B ′ by

dB

(
B,B ′) = inf

f :B�B ′ sup
I∈domf

d(χI ,χf (I)). (4)

On the right-hand side of (4) we have the interleaving distance. It follows from the
following two propositions that this definition of bottleneck distance is equivalent to
that in [7].

Proposition 4.12 Let I and I ′ be two finite intervals.

(1) If I = I ′ = ∅, then d(χI ,χI ′) = 0.
(2) If I ′ = ∅ and I has endpoints a and b, then d(χI ,χI ′) = b−a

2 .
(3) If I and I ′ have endpoints a, b and a′, b′, respectively, then

d(χI ,χI ′) = min

(

max
(∣
∣a − a′∣∣,

∣
∣b − b′∣∣),max

(
b − a

2
,
b′ − a′

2

))

.

Proposition 4.13 Let I and I ′ be two intervals, at least one of which is infinite.

(1) If I = I ′ = R, then d(χI ,χI ′) = 0.
(2) If inf(I ) = inf(I ′) = −∞ and I and I ′ have right endpoints b and b′, then

d(χI ,χI ′) = |b − b′|.
(3) If sup(I ) = sup(I ′) = ∞ and I and I ′ have left endpoints a and a′, then

d(χI ,χI ′) = |a − a′|.
(4) In all other cases, d(χI ,χI ′) = ∞.
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Propositions 4.12 and 4.13 follow from the following two lemmas. The proofs are
technical yet straightforward, and we leave them to the motivated reader.

Assume that the intervals I and I ′ are finite. Let h and h′ each denote half the
length of the interval I and I ′, respectively, where the length of ∅ is 0. If I and I ′ are
nonempty, let m and m′ denote their respective midpoints.

Lemma 4.14 Assume that I and I ′ are finite intervals. d(χI ,χI ′) ≤ max(h,h′).

Proof Let ε > max(h,h′). Then χIη2ε = 0 = χI ′η2ε . Let ϕ = 0 and ψ = 0. Then ϕ

and ψ give an ε-interleaving of χI and χI ′ . �

Lemma 4.15 Assume that I and I ′ are finite intervals. If m /∈ I ′, then d(χI ,χI ′) ≥ h.

Proof Let ε < h. Then [m − ε,m + ε] ⊂ I . Thus, χIη2ε(m − ε) = IdF. Suppose
m /∈ I ′. Assume that there exists an ε-interleaving (ϕ, ψ ) of χI and χI ′ . Then
(ψTε)ϕ(m − ε) = IdF. But ϕ(m − ε) ∈ χI ′(m) = 0. Therefore, (ψTε)ϕ(m − ε) = 0,
which is a contradiction. Thus, d(χI ,χI ′) ≥ h. �

In the statement of the following theorem, we abuse notation slightly by using
Vec(R,≤) to denote the set of objects in the category Vec(R,≤).

Theorem 4.16 (Categorification of the Metric Space of Persistence Diagrams) Let
B be the set of finite barcodes, dB the bottleneck distance, and d the interleaving
distance. The mapping χ defined by χ({Ik}nk=1) = ⊕n

k=1 χIk
gives an isometric em-

bedding of metric spaces

χ : (B, dB) ↪→ (
Vec(R,≤), d

)
.

Proof Let B,B ′ ∈ B. By [5, Theorem 4.4], we know that dB(B,B ′) ≤ d(χ(B),

χ(B ′)). It remains to show that

d
(
χ(B),χ

(
B ′)) ≤ dB

(
B,B ′).

If dB(B,B ′) = ∞, then this is trivial. Assume that dB(B,B ′) < ∞.
Let f : B � B ′ such that supI∈dom(f ) d(χI ,χf (I)) < ∞. Choose ε >

supI∈dom(f ) d(χI ,χf (I)). By Lemma 3.4, for each I ∈ dom(f ), χI and χf (I) are
ε-interleaved. By Corollary 7.11, χ(B) and χ(B ′) are ε-interleaved.

Thus, χ(B) and χ(B ′) are ε-interleaved for all ε > dB(B,B ′). It follows that
d(χ(B),χ(B ′)) ≤ dB(B,B ′). �

5 Stability

In [7], Cohen-Steiner, Edelsbrunner, and Harer prove that persistent homology of
sublevel sets of a function is stable with respect to perturbations of the function as
measured by the supremum norm. In this section, we use our categorical framework
to generalize this Stability Theorem, as well as its generalization in [5].
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Let X ∈ Top. Assume that f,g : X → R. Note that we do not require that f and
g be continuous. Let F ∈ Top(R,≤) be defined by F(a) = f −1(∞, a] for a ∈ R and
F(a ≤ b) is given by inclusion. Define G similarly using g. Let H : Top → D be any
functor, e.g., singular homology with coefficients in a field F, or rational homotopy
groups. Recall that ‖f − g‖∞ = supx∈X|f (x) − g(x)|.

Theorem 5.1 (Stability Theorem)

d(HF,HG) ≤ ‖f − g‖∞.

Proof Let ε = ‖f − g‖∞. First, we observe that by the assumption,

F(a) = f −1(−∞, a] ⊆ g−1(−∞, a + ε] = G(a + ε),

and similarly, G(a) ⊆ F(a + ε). Thus, F and G are ε-interleaved. It follows that HF

and HG are ε-interleaved (Proposition 3.6), and thus

d(HF,HG) ≤ ‖f − g‖∞. �

6 Extended Persistence

In [8], Cohen-Steiner, Edelsbrunner, and Harer, define extended persistence to obtain
a sequence of vector spaces in which the homology classes of the total space do not
live forever. Given a simplicial complex K on n ordered vertices, let Ki be the sub-
complex spanned by the first i vertices, and let Li be the subcomplex spanned by the
last i vertices. Let Hk denote degree k relative simplicial homology with coefficients
in the field Z/2Z. Then they construct the sequence

0 = Hk(K0,∅) → Hk(K1,∅) → ·· · → Hk(Kn,∅)

= Hk(K,L0) → Hk(K,L1) → ·· · → Hk(K,Ln) = 0.

They show that the Stability Theorem of [7] can be applied in this case. Here we give
a generalization of this construction and the corresponding stability theorem.

Let X ∈ Top. Assume that f : X → R, where f need not be continuous, and there
exists an M ∈ R such that f (x) ≤ M for all x ∈ X. Let s > 0 be an arbitrary amount
to space out the upward and downward filtrations. Define the (R,≤)-indexed diagram
of pairs of topological spaces, F ∈ Pair(R,≤), as follows.

For c < M + s, let F(c) = (f −1(−∞, c],∅). For c ≥ M + s, let F(c) =
(X,f −1[2M + s − c,∞)). Notice that for M ≤ c < M + s, F(c) = (X,∅), and
F(M + s) = (X,f −1(M)).

For c ≤ d , F(c ≤ d) is given by inclusion. Indeed, if c ≤ d < M + s, we have
(f −1(−∞, c],∅) ⊆ (f −1(−∞, d],∅), if M + s ≤ c ≤ d , then (X,f −1[2M + s −
c,∞)) ⊆ (X,f −1[2M + s − d,∞)), and if c < M + s ≤ d , then (f −1(−∞, c],∅) ⊆
(X,f −1[2M + s − d,∞)).

In the special case that there exists an m ∈ R such that f (x) ≥ m for all x ∈ X,
then for c < m, F(c) = (∅,∅), and for c ≥ M + s + (M −m) = 2M + s −m, F(c) =
(X,X).
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Now assume that we also have another (not necessarily continuous) map g : X →
(−∞,M]. Define G ∈ Pair(R,≤) similarly. Let H : Pair → D be any functor, e.g.,
relative homology with coefficients in some field F.

Theorem 6.1 (Stability Theorem for Extended Persistence)

d(HF,HG) ≤ ‖f − g‖∞.

Proof Let ε = ‖f − g‖∞. Let c ∈ R. Then by assumption, (f −1(−∞, c],∅) ⊆
(g−1(−∞, c + ε],∅), (X,f −1[2M + s − c,∞)) ⊆ (X,g−1[2M + s − (c + ε),∞)),
and (f −1(−∞, c],∅) ⊆ (X,g−1[2M + s − (c + ε),∞)). Also, by assumption, we
have the same relations with f and g switched. Thus, F and G are ε-interleaved. It
follows that HF and HG are ε-interleaved (Proposition 3.6), and thus

d(HF,HG) ≤ d(F,G) ≤ ‖f − g‖∞. �

7 Abelian Structure of Interleavings

Let D be a category, and let ε ≥ 0. In this section, we consider the category Intε(D)

of ε-interleavings of diagrams in D(R,≤), which we define below. We will show that
this construction is functorial and that if D is an abelian category, then so is Intε(D).
As a corollary, we obtain stability theorems for kernels, images, and cokernels in
persistence and extended persistence.

First, let us recall that the functor Tε : R → R, Tε(x) = x + ε, Tε(x ≤ y) = x +
ε ≤ y + ε, comes equipped with a “unit” natural transformation, ηε : Id ⇒ Tε , since
x ≤ x + ε. We will write η2

ε for the iteration Id ⇒ Tε ⇒ T 2
ε .

Definition 7.1 The objects of Intε(D) are ε-interleavings, (F,G,ϕ,ψ), where ϕ :
F ⇒ GTε , ψ : G ⇒ FTε , such that (ψTε)ϕ = Fη2

ε and (ϕTε)ψ = Gη2
ε (Defini-

tion 3.1). A morphism (α,β) : (F,G,ϕ,ψ) ⇒ (F ′,G′, ϕ′,ψ ′) consists of a pair of
natural transformations, α : F ⇒ F ′ and β : G → G′, such that the diagrams

F
ϕ

α

GTε

βTε

F ′
ϕ′

G′Tε

and

G
ψ

β

FTε

αTε

G′
ψ ′

F ′Tε

commute.

Let us also verify the naturality of the above construction.

Proposition 7.2 Definition 7.1 of Intε(D) is functorial in ε and in D.
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Proof Let ε ≤ ε′. The functor, Intε(D) → Intε′(D), is defined on objects by
Lemma 3.4. To be precise, we have (F,G,ϕ,ψ) 
→ (F,G, ϕ̂, ψ̂), where ϕ̂ =
(Gηε′−εTε)ϕ, and ψ̂ = (Fηε′−εTε)ψ . Let (α,β) : (F,G,ϕ,ψ) → (F ′,G′, ϕ′,ψ ′) ∈
Intε(D). Then the commutative diagram

F

α

ϕ

GTε

βTε

Gηε′−εTε

GTε′

βTε′

F ′
ϕ′

G′Tε
G′ηε′−εTε

G′Tε′

and a similar one show that (α,β) : (F,G, ϕ̂, ψ̂) → (F ′,G′, ϕ̂′, ψ̂ ′) ∈ Intε′(D). From
this it follows that Intε(D) is functorial in ε.

Now consider a functor H : D → D′. The induced functor Intε(D) → Intε(D′) is
defined by composition with H (for the details of the definition on objects, see the
proof of Proposition 3.6). It follows that Intε(D) is functorial in D. �

Let A be an abelian category. Then, as discussed at the start of Sect. 4, so is A(R,≤).
We claim that Intε(A) is also an abelian category. Recall (Sect. 2.3.4) that a category
is abelian if it has a zero object, all finite products and coproducts, every morphism
has a kernel and a cokernel, and all monomorphisms and epimorphisms are kernels
and cokernels, respectively.

Lemma 7.3 The category Intε(A) has a zero object.

Proof The zero object of Intε(A) comes from the zero object, 0, of A. The diagram
category Vec(R,≤) then inherits the constant zero diagram, Ox = 0 for all x ∈ R,
with the identity morphism Ox → Oy for x ≤ y. In turn, we define the trivial ε-
interleaving, (O,O,ω,ω), where ωx : Ox → Ox+ε is again the identity. It is easy to
see that (O,O,ω,ω) is the desired zero object. Indeed, to see that it is initial, we
note that for every interleaving (F,G,ϕ,ψ) and for every x ∈ R, there are unique
morphisms Ox → Fx and Ox → Gx because Ox is initial in A, and the appropriate
diagrams commute. Similarly, (O,O,ω,ω) is final, and hence the desired zero object
in Intε(A). �

In particular, for any objects X,Y ∈ Intε(A), we now have the zero morphism
0 : X → Y , that is, the composite X → O → Y .

Lemma 7.4 The category Intε(A) has all pull-backs and push-outs, and their com-
ponents in A(R,≤) are given by the respective pull-backs and push-outs in A(R,≤).

Proof We show that Intε(A) has all pull-backs. The arguments and constructions for
push-outs are dual.
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Consider the diagram

(
F ′,G′, ϕ′,ψ ′) (α′,β ′)−−−−→ (F,G,ϕ,ψ)

(α′′,β ′′)←−−−− (
F ′′,G′′, ϕ′′,ψ ′′).

The category A(R,≤) is abelian. Thus, we may form the pull-back functors,

F ′ ×F F ′′
π ′

F

π ′′
F

F ′

α′

F ′′
α′′

F

and

G ×G G′′
π ′

G

π ′′
G

G′

β ′

G′′
α′′

F

To simplify the notation, let T = Tε and η = ηε . Observe that

G′T ×GT G′′T = (
G′ ×G G′′)T ,

and so from the universal property of pull-backs we obtain the natural transformation

Φ = ϕ′ ×ϕ ϕ′′ : F ′ ×F F ′′ → (
G′ ×G G′′)T .

Similarly, we get a natural transformation

Ψ = ψ ′ ×ψ ψ ′′ : G′ ×G G′′ → (
F ′ ×F F ′′)T .

We need to check that (F ′ ×F F ′′,G′ ×G G′′,Φ,Ψ ) is an ε-interleaving that is indeed
the relevant pull-back.

To see that we have an interleaving, it only remains to show that (ΦT )Ψ = (G′ ×G

G′′)η2 and (Ψ T )Φ = (F ′ ×F F ′′)η2. We prove the second identity. The verification
of the first is symmetric.

We observe that (Ψ T )Φ is one morphism F ′ ×F F ′′ → (F ′ ×F F ′′)T 2 that pro-
vides the unique dotted arrow (by the universal property of the pull-back) making the
diagram

F ′ ×F F ′′
π ′

F

π ′′
F

F ′
(ψ ′T )ϕ′

=F ′η2

α′

(F ′ ×F F ′′)T 2
π ′

F T 2

π ′′
F T 2

F ′T 2

α′T 2

F ′′T 2

α′′T 2
FT 2

F ′′
α′′

(ψ ′′T )ϕ′′

=F ′′η2

F

(ψT )ϕ

=Fη2
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commute. Since (F ′ ×F F ′′)η2 also fits the diagram, by uniqueness, (Ψ T )Φ =
(F ′ ×F F ′′)η2. �

Corollary 7.5 The category Intε(A) has all finite products and coproducts. Every
morphism in Intε(A) has a kernel and a cokernel.

Proof Since Intε(A) has a terminal object and pull-backs, it has finite prod-
ucts. Since the category has an initial object and push-outs, it has finite coprod-
ucts. Since Intε(A) has a zero object and pull-backs, and the kernel of (α,β) :
(F,G,ϕ,ψ) → (F ′,G′, ϕ′,ψ ′) can be obtained by pulling back along the initial
morphism (O,O,ω,ω) → (F ′,G′, ϕ′,ψ ′), every morphism has a kernel. Similarly,
every morphism has a cokernel since Intε(A) has a zero object and push-outs. �

It remains to show that every monomorphism is a kernel and that every epi-
morphism is a cokernel. Before doing so, we show that in a preadditive category,
monomorphisms and epimorphisms are characterized by their trivial kernels and cok-
ernels, respectively.

Lemma 7.6 [19] Let C be a category with zero object, kernels, and cokernels. If
f : X → Y is a monomorphism in C, then kerf = 0. Dually, if f is an epimorphism,
then cokerf = 0.

If the category is preadditive, then we have the following converse for Lemma 7.6.

Lemma 7.7 Let C be a preadditive category with zero object, kernels, and cokernels.
If f : X → Y is a morphism in C with trivial kernel, then f is a monomorphism.
Dually, if f has trivial cokernel, then f is an epimorphism.

Proof Suppose that kerf = 0 and that g,h : W → X are morphisms that satisfy
fg = f h. Then using the preadditive structure of C, we find that f (g − h) = 0, and
so g − h factors through kerf = 0. It follows that g − h = 0, so g = h. Therefore, f

is a monomorphism.
The proof of the dual statement is dual. �

Next, we show that the above characterization of monomorphisms and epimor-
phisms applies to our setting.

Lemma 7.8 The category Intε(A) is preadditive.

Proof Let X = (F,G,ϕ,ψ) and X′ = (F ′,G′, ϕ,ψ) be ε-interleavings. By defi-
nition, Intε(A)(X,Y ) ⊂ A(R,≤)(F,F ′) × A(R,≤)(G,G′), which is itself an abelian
group. One can readily verify that (0,0) ∈ Intε(A)(X,Y ). Since A(R,≤) is pread-
ditive, composition distributes over the addition of morphisms. If (α,β), (α′, β ′) ∈
Intε(A)(X,Y ), then ϕ′(α +α′) = ϕ′α +ϕ′α′ = (βT )ϕ + (β ′T )ϕ = ((β +β ′)T )ϕ, so
(α + α′, β + β ′) ∈ Intε(A)(X,Y ). Finally, we verify that if (α,β) ∈ Intε(A)(X,Y ),
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then so is its additive inverse. Since A(R,≤) is preadditive, we have natural trans-
formations −α and −β . Since 0 = ϕ′0 = ϕ′(α + (−α)) = ϕ′α + ϕ′(−α), it fol-
lows that ϕ′(−α) = −ϕ′α. Similarly, (−β)ϕ = −βϕ. It follows that (−α,−β) ∈
Intε(A)(X,Y ). Since (α,β)+ (−α,−β) = (0,0), Intε(A)(X,Y ) is an abelian group.

Composition is bilinear since it is the restriction of composition in the additive
category A(R,≤) × A(R,≤). �

Lemma 7.9 In Intε(A), every monomorphism is a kernel, and every epimorphism is
a cokernel.

Proof Let (α,β) : (F,G,ϕ,ψ) → (F ′,G′, ϕ,ψ) be a monomorphism in Intε(A).
We will show that (α,β) is the kernel of the natural morphism

π : (F ′,G′, ϕ,ψ
) → coker(α,β).

First, we calculate ker(α,β) in terms of kerα and kerβ . If we pull back the morphism
(α,β) : (F,G,ϕ,ψ) → (F ′,G′, ϕ′,ψ ′) along the initial morphism (O,O,ω,ω) →
(F ′,G′, ϕ′,ψ ′), we obtain the interleaving (kerα,kerβ,Φ,Ψ ) constructed in the
proof of Lemma 7.4.

Cokernels are obtained in a dual manner; we have that coker(α,β) = (cokerα,

cokerβ, Φ̄, Ψ̄ ).
By Lemma 7.6, every monomorphism has trivial kernel. Thus, ker(α,β) =

(kerα,kerβ,Φ,Ψ ) = (O,O,ω,ω). This means, in particular, that kerα =
kerβ = O . It follows from Lemmas 7.7 and 7.8 that α and β are monomorphisms.
Since A(R,≤) is abelian, α is the kernel of the quotient map, F ′ → cokerα, and like-
wise β is the kernel of G′ → cokerβ . It then follows that (α,β) is the kernel of the
natural morphism, (F ′,G′,Φ,Ψ ) → (cokerα, cokerβ, Φ̄, Ψ̄ ).

The dual statement follows from the dual proof. �

Combining Lemma 7.3, Corollary 7.5, and Lemma 7.9, we have the following.

Theorem 7.10 Given an abelian category A and ε ≥ 0, the category Intε(A) of ε-
interleavings in A is an abelian category.

From Theorem 7.10 and Lemma 7.4 we immediately have the following two ap-
plications.

Corollary 7.11 If the two pairs of diagrams (F,G) and (F ′,G′) in A(R,≤) are ε-
interleaved, then so is the pair (F ⊕ F ′,G ⊕ G′).

Corollary 7.12 Let (α,β) be a morphism in Intε(A). Then each of the following
three pairs of diagrams in A(R,≤) are ε-interleaved: (kerα,kerβ), (imα, imβ), and
(cokerα, cokerβ).

As an application of Corollary 7.12, we get the following generalization of the
Stability Theorem of [9].
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Theorem 7.13 (Stability Theorem for Kernels, Images, and Cokernels) Let h : Y →
X be a continuous map of topological spaces. Let f,f ′ : X → R and g,g′ : Y → R

be (not necessarily continuous) maps such that

for all y ∈ Y, f h(y) ≤ g(y), and f ′h(y) ≤ g′(y). (5)

Let F ∈ Top(R,≤) be given by F(a) = f −1(−∞, a] and inclusion. Define F ′, G, and
G′ similarly. By (5), h induces maps α : G → F and β : G′ → F ′ in Top(R,≤). Let A
be an abelian category and H : Top → A be some functor. Let ε = max{‖f − f ′‖∞,

‖g − g′‖∞}. Then

d(kerHα,kerHβ), d(imHα, imHβ), d(cokerHα, cokerHβ) ≤ ε.

Proof By the definition of ε, F ↪→ F ′Tε , F ′ ↪→ FTε , G ↪→ G′Tε , and G′ ↪→ GTε in
Top(R,≤). Since α and β are both induced by h, the diagrams

G

α

G′Tε

βTε

F F ′Tε

and

G′

β

GTε

αTε

F ′ FTε

commute, and thus (α,β) ∈ Intε(Top). By functoriality (Hα,Hβ) ∈ Intε(A) (see
Proposition 7.2). Apply Corollary 7.12 and Definition 3.2 to obtain the desired re-
sult. �

Strengthening (5), we obtain an extended persistence version of this theorem. It
has essentially the same proof, so we omit it.

Theorem 7.14 (Stability Theorem for Kernels, Images, and Cokernels in Extended
Persistence) Let h : Y → X be a continuous map of topological spaces. Let f,f ′ :
X → (−∞,M] be (not necessarily continuous) maps. Let g = f h and g′ = f ′h.
Let s > 0. Let F ∈ Pair(R,≤) be given by F(c) = (f −1(−∞, c],∅) if c < b + s and
F(c) = (X,f −1[2b + s − c,∞)) if c ≥ b + s, and inclusion. Define F ′, G, and G′
similarly. Then h induces maps α : G → F and β : G′ → F ′ in Pair(R,≤). Let A be
an abelian category, and H : Pair → A be some functor. Then

d(kerHα,kerHβ), d(imHα, imHβ),

d(cokerHα, cokerHβ) ≤ ∥
∥f − f ′∥∥∞.

8 Future Work

In this paper, we have studied persistence by considering diagrams indexed by (R,≤).
However, there are versions of persistence in which the objects of study can be viewed
as diagrams with more general indexing categories. For example, we would like to
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be able to consider diagrams indexed by (Rn,≤) for multidimensional persistence,
S1 for circle-valued persistence, and the category · → · ← · → · · · ← · for zig-zag
persistence. This generalization will be presented in [1].

It would be nice to have a categorical definition of bottleneck distance arbitrary
(R,≤)-indexed diagrams of vector spaces and to have a corresponding Isometry The-
orem.
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