
Discrete Comput Geom 19:151–157 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Seven Cubes and Ten 24-Cells
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Abstract. The 45 diagonal triangles of the six-dimensional polytope 221 (representing the
45 tritangent planes of the cubic surface) are the vertex figures of 45 cubes{4, 3} inscribed
in the seven-dimensional polytope 321, which has 56 vertices. Since 45× 56 = 8× 315,
there are altogether 315 such cubes. They are the vertex figures of 315 specimens of the
four-dimensional polytope{3, 4, 3}, which has 24 vertices. Since 315× 240= 24× 3150,
there are altogether 3150{3, 4, 3}’s inscribed in the eight-dimensional polytope 421. They
are the vertex figures of 3150 four-dimensional honeycombs{3, 3, 4, 3} inscribed in the
eight-dimensional honeycomb 521. In other words, each point of thẽE8 lattice belongs to
3150 inscribedD̃4 lattices of minimal size.

Analogously, in unitary 4-space there are 3150 regular complex polygons 3{4}3 inscribed
in the Witting polytope 3{3}3{3}3{3}3.

1. Introduction

A polygon is said to beuniformif it is regular, and a polytope is said to be uniform if all
its facets are uniform while its symmetry group is transitive on its vertices [7, p. 41]. It
follows that all the vertices of ann-dimensional polytope lie on an(n− 1)-sphere, the
circumsphere, of radiusρ, and that all the edges have the same length, which we take
to be 1. Thus the farther ends of all the edges at one vertex lie in the hyperplane that
contains the intersection of two(n − 1)-spheres: the circumsphere and the unit sphere
whose center is the “one vertex.” The section of the polytope by this hyperplane is called
thevertex figure[11, p. 292]. For instance, the vertex figure of the cube is an equilateral
triangle with sides

√
2, and the vertex figure of the uniform triangular prism (with square

side-faces) is an isosceles triangle with sides 1,
√

2,
√

2.



152 H. S. M. Coxeter

2. Successive Vertex Figures

Schläfli discovered two infinite sequences of regular polytopes such that each polytope
is the vertex figure of the next: the regular simplices

α1 = { }, α2 = {3}, α3 = {3, 3}, α4 = {3, 3, 3}, . . . ,

whose numbers of vertices are

2, 3, 4, 5, . . . ,

and thecross polytopes

β2 = {4}, β3 = {3, 4}, β4 = {3, 3, 4}, . . . ,

whose numbers of vertices are

4, 6, 8, . . .

[11, p. 37]. It would be natural to allow the latter sequence to begin withβ1, a line
segment of length

√
2, since this is the vertex figure of the square,β2.

There is also afinitesequence of the same kind, beginning with an equilateral triangle
of side

√
2, continuing with the cubeγ3 = {4, 3} and the 24-cell{3, 4, 3}, and ending

with the honeycomb of 16-cells{3, 3, 4, 3} [11, p. 300]. In this case, the numbers of
vertices are

8, 24, ∞.

Abandoning the restriction toregular figures, Gosset discovered another such finite
sequence of polytopes, beginning with the isosceles triangle mentioned at the end of
Section 1, continuing with the uniform triangular prism and “new” polytopes in 4, 5, 6,
7, and 8 dimensions, and ending with a honeycomb ofα8’s andβ8’s [8, pp. 156, 203;
11, pp. 230, 294, 332]. The numbers of vertices of

(−1)21 = α2× α1, 021 = t1α4, 121 = hγ5, 221, 321, 421, 521,

are
6, 10, 16, 27, 56, 240, ∞.

By calling the triangular prismα2×α1, we are expressing it as the Cartesian product
of the triangleα2 with the line segmentα1. In four dimensions there is an analogous
“prism” (−1)31 = α3 × α1, based on the regular tetrahedronα3. This provides a third
“finite sequence”

(−1)31, 031 = t1α5, 131 = hγ6, 231, 331

[11, p. 337], whose numbers of vertices are

8, 15, 32, 126, ∞.



Seven Cubes and Ten 24-Cells 153

Another Cartesian product is the four-dimensional “double-prism”(−1)22 = α2×α2,
which provides a fourth finite sequence

(−1)22, 022 = t2α5, 122, 222

[11, pp. 332, 333], whose numbers of vertices are

9, 20, 72, ∞.

3. Circumradii

The circumradiusρ of a Cartesian product is related to the circumradiiρ ′ andρ ′′ of its
factors by the Pythagorean relation

ρ2 = ρ ′2+ ρ ′′2

[3, p. 351].
A simple geometric construction [2, p. 31] shows that the circumradiusρ of any

uniform polytope is related to the circumradiusσ of its vertex figure by the formula

2ρ2 = 1

2− 2σ 2
,

which makes it easy to write down the value of 2ρ2 for each member of a “sequence”
of polytopes as soon as this property is known for the initial member: we just subtract
from 2 and reciprocate.

For the sequence of regular simplicesαn, beginning with the unit line-segmentα1,
we have

α1, α2, α3, α4, . . . , αn:
1
2,

2
3,

3
4,

4
5, . . . , n

n+1.

For the sequence of cross polytopesβn, beginning with the longer line-segmentβ1, we
have

β1, β2, β3, β4, . . . , βn:
1, 1, 1, 1, . . . , 1.

For the four finite sequences, beginning withα2× α1, we have

(−1)21, 021, 121, 221, 321, 421, 521:

2
3 + 1

2 = 7
6,

6
5,

5
4,

4
3,

3
2, 2, ∞.

(−1)31, 031, 131, 231, 331:

3
4 + 1

2 = 5
4,

4
3,

3
2, 2, ∞.

(−1)22, 022, 122, 222:

2
3 + 2

3 = 4
3,

3
2, 2, ∞.
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For instance, the value 2ρ2 = 3
2 for 321 shows that this seven-dimensional polytope has

the same circumradius12
√

3 as the ordinary cube.
These computations provide the easiest way to establish infinite order for each of the

groups [32,2,2], [33,3,1], and [35,2,1].

4. The Six-Dimensional Polytope 221

The 27 vertices

a1, . . . ,a6; b1, . . . ,b6; c12, . . . , c56

of 221 form a 2-distance set [6, p. 465]: any 2 of them form either an edge (distance 1) or a
diagonal (distance

√
2). In fact, the

(27
2

)
pairs of vertices form 15+15+6+60+60+60=

216edges

a1a2, . . . ; b1b2, . . . ; a1b1, . . . ; a1c23, . . . ; b1c23, . . . ; c12c13, . . . ,

and 30+ 30+ 30+ 45= 135diagonals

a1b2, . . . ; a1c12, . . . ; b1c12, . . . ; c12c34, . . . .

The 135 diagonals are the sides of 30+ 15= 45diagonal triangles

a1b2c12, . . . ; c12c34c56, . . . .

It is remarkable [1, p. 15] that nine of these 45 triangles can be chosen so as to use each
of the 27 vertices just once. The enneagonal projection of 221 [6, p. 460, Fig. 3] instantly
provides two examples of such a set of nine diagonal triangles. One, namely

a1b6c16,a6b5c56,a2b3c23,a3b4c34,a4b2c24,a5b1c15, c12c35c46, c13c26c45, c14c25c36,

comes from the three sets of three equilateral triangles inscribed in the three concentric
enneagons. The other, namely,

a1b4c14,a2b1c12, c13c24c56, c16c25c34,a5b3c35,a4b5c45,a3b6c36, c15c23c46,a6b2c26,

comes from the nine diameters.

5. The Seven-Dimensional Polytope 321

When 221 is considered as the vertex figure of 321, its 45 diagonal triangles (of side
√

2)
are the vertex figures of 45 cubes{4, 3}, all sharing two antipodal vertices of 321 [11,
p. 340]. Since 321 has 56 vertices, while 45× 56 = 8× 315, there are altogether 315
such inscribed cubes. When the 28+ 28 vertices(u1, u2, . . . ,u8) are given, in the 7-flat∑

uν = 0, as the permutations of

(3, 3,−1,−1,−1,−1,−1,−1) and (1, 1, 1, 1, 1, 1,−3,−3),
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the 3-flats containing the 315 cubes consist of 105 such as

u1 = u2, u3 = u4, u5 = u6, u7 = u8, (5.1)

and 210 such as

u1− u2+ u3− u4 = 0, u5 = u6 = u7 = u8. (5.2)

Different coordinates were described inKaleidoscopes[11, p. 339], but an unfortunate
misprint mars the table of 14-gons at the top of page 341: the row beginning with 013
repeats alternate entries of the row beginning with 124; instead, it should have been

013 450 124561 235602 346 013 450124 561235 602 346.

In terms of the plane quartic curve of genus 3, whose 28 bitangents correspond to the
28 diameters of 321 [10, p. 354], each of the 315 cubes represents one of Dickson’s 315
conics, whose eight points of intersection with the quartic curve are the points of contact
of four bitangents. It was observed by Patrick DuVal [5, p. 186] that seven of these 315
conics can be chosen so as to use each of the 28 bitangents just once, in agreement with
the fact that the 56 vertices of 321 can be distributed into seven sets of eight belonging
to inscribed cubes [11, p. 340].

6. The Eight-Dimensional Polytope 421

When 321 is considered as the vertex figure of 421, its 315 inscribed cubes{4, 3} are
the vertex figures of 315 24-cells{3, 4, 3}, all sharing two antipodal vertices of 421.
The 240= 112+ 128 vertices of a 421 (of edge 2

√
2) are conveniently given by the

permutations of

(±2,±2, 0, 0, 0, 0, 0, 0)

along with

(±1,±1,±1,±1,±1,±1,±1,±1),

where the number of minus signs is even.
Since the 24 vertices of a{3, 4, 3} of edge 2 are given by the permutations of

(±2, 0, 0, 0) along with(±1,±1,±1,±1), one such inscribed 24-cell lies in the 4-flat
(5.1): we simply use the coordinates

(u2, u4, u6, u8).

It is not too laborious to verify that another is given by (5.2). And, of course, there are
many more. The most obvious is the{3, 4, 3} that lies in the 4-flat

u5 = u6 = u7 = u8 = 0. (6.1)

Since 421 has 240 vertices, while 315× 240= 24× 3150, there are altogether 3150
such inscribed 24-cells. Among them:

Ten can be chosen so as to use each of the240vertices just once.
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To verify this statement, consider any one of the 3150{3, 4, 3}’s, say (6.1), and
transform it by the cyclic groupC10 generated by the isometryQ = R3, where

R= R1R2R3R4R5R6R7R8

is the product (in any order) of the eight reflections which generate the symmetry group
[34,2,1] of 421 [11, pp. 159, 207–221]. The result is a set of five{3, 4, 3}’s: five, not ten,
because the isometryQ5 = R15 is the central inversion [11, p. 163], which is a symmetry
operation of both 421 and{3, 4, 3}. Now choose another inscribed{3, 4, 3} that has no
common vertex with any of those five, and apply the same groupC10. Clearly, the new
set of five must complete the desired set of ten.

An intriguing question remains: What kind of arrangement of 120 points is formed
by the 120 vertices of either set offive {3, 4, 3}’s? We recall that a different set of
five {3, 4, 3}’s have together the same 120 vertices as the regular 600-cell{3, 3, 5} [8,
p. 270]; and the ten-dimensional coordinates for 421 reveal that its 240 vertices fall into
two congruent sets of 120, each set projecting orthogonally into the 120 vertices of a
600-cell [11, p. 349]. (InKaleidoscopes, page 350, line 5, the page number 578 should
be 298.) Clearly, then, the desired 120 points have the coordinates

(
√

5, 0, 0, 0, −√5; τ√5, 0, 0, 0, −τ√5), 20

(−τ−2, −τ 2, 1, 1, 1; τ 3, τ−1, −τ, −τ, −τ), 20

(τ−1, τ−1, −τ, −τ, 2; τ 2, τ 2, −1, −1, −2τ), 30

(−2, τ, τ, −τ−1, −τ−1; 2τ, 1, 1, −τ 2, −τ 2), 30

(−1, −1, −1, τ 2, τ−2; τ, τ, τ, −τ−1, −τ 3), 20

120

whereτ = (√5+ 1)/2 and it is understood that the twenty or thirty permutations of the
five coordinates before and after each semicolon are always the same.

7. The Eight-Dimensional Honeycomb 521

We recall that the 24-cell{3, 4, 3} is the vertex figure of Schl¨afli’s honeycomb{3, 3, 4, 3}
of 16-cells, whose vertices constitute theD̃4 lattice [11, p. 287]. These points have
coordinates which are all the sets of four integers whose sum is even [3, pp. 9, 117–119].
(Conway and Sloane call this “theD4 lattice,” but our tilde avoids confusion with the
use elsewhere ofD4 as a symbol for the group [31,1,1].)

Analogously, the polytope 421 is the vertex figure of Gosset’s eight-dimensional hon-
eycomb 521 of α8’s andβ8’s, whose vertices constitute the famousẼ8 lattice [3, pp. v,
10, 48, 90, 119, 123]. These points have coordinates which are all sets of eight integers,
mutually congruent modulo 2, whose sum is a multiple of 4 [4, pp. 385, 393] or, equally
well, all sets of nine integers, mutually congruent modulo 3, whose sum is 0 [11, p. 344].

The 3150{3, 4, 3}’s inscribed in 421 are the vertex figures of 3150{3, 3, 4, 3}’s sharing
one vertex of 521 and having for all their vertices a subset of its vertices. In other words:

Each point of theẼ8 lattice belongs to3150inscribedD̃4 lattices of minimal size.
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There are, of course, infinitely many such{3, 3, 4, 3}’s inscribed in 521. Among them,
an infinite subset, using each vertex just once, can be obtained by taking one{3, 3, 4, 3}
and translating it by integer distances along the 120− 12 edge directions that occur in
521, but not in the chosen{3, 3, 4, 3}.

8. Concluding Remark

For regular 24-cells 0111 inscribed in the eight-dimensional uniform polytope 421, the
complex counterpart is regular polygons 3{4}3 inscribed in the four-dimensional regular
Witting polytope 3{3}3{3}3{3}3 [9, pp. 47, 133, and Frontispiece].

References

1. H. F. Baker,Principles of Geometry, vol. VI, Cambridge University Press, London, 1933.
2. T. Bisztriczky, P. MacMullen, R. Schneider, and A. Ivi´c Weiss,Polytopes, NATO ASI Series C, No. 440,

Kluwer Academic, Dordrecht, 1994.
3. J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, 2nd edn., Springer-Verlag, New

York, 1993.
4. H. S. M. Coxeter, The polytopes with regular-prismatic vertex figures I,Phil. Trans. Roy. Soc. London

A229 (1931), 329–425.
5. H. S. M. Coxeter, The polytopes with regular-prismatic vertex figures II,Proc. London. Math. Soc. (2),34

(1932), 126–189.
6. H. S. M. Coxeter, The polytope 221, whose 27 vertices correspond to lines on the general cubic surface,

Amer. J. Math. 62 (1940), 457–486.
7. H. S. M. Coxeter,Twelve Geometric Essays, Southern Illinois University Press, Carbondale, IL, 1968.
8. H. S. M. Coxeter,Regular Polytopes, 3rd edn., Dover, New York, 1973.
9. H. S. M. Coxeter,Regular Complex Polytopes, 2nd edn., Cambridge University Press, New York, 1990.

10. G. A. Miller, H. F. Blichfeldt, and L. E. Dickson,Theory and Applications of Finite Groups, Wiley, New
York, 1916.

11. F. A. Sherk, P. McMullen, A. C. Thompson, and Asia Ivi´c Weiss,Kaleidoscopes: Selected Writings of
H. S. M. Coxeter, Wiley, New York, 1995.

Received March12, 1996,and in revised form May17, 1996.


