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Abstract. The 45 diagonal triangles of the six-dimensional polytopér2presenting the
45 tritangent planes of the cubic surface) are the vertex figures of 45 gut®snscribed
in the seven-dimensional polytope; 3which has 56 vertices. Since 4556 = 8 x 315,
there are altogether 315 such cubes. They are the vertex figures of 315 specimens of the
four-dimensional polytop€3, 4, 3}, which has 24 vertices. Since 3¥R40= 24 x 3150,
there are altogether 3158, 4, 3}’s inscribed in the eight-dimensional polytopg 4They
are the vertex figures of 3150 four-dimensional honeycofB3bs, 4, 3} inscribed in the
eight-dimensional honeycomb5In other words, each point of tHes lattice belongs to
3150 inscribed, lattices of minimal size.

Analogously, in unitary 4-space there are 3150 regular complex polygdy&iscribed
in the Witting polytope 83}3{3}3(3}3.

1. Introduction

A polygon is said to ba@niformif it is regular, and a polytope is said to be uniform if all

its facets are uniform while its symmetry group is transitive on its vertices [7, p. 41]. It
follows that all the vertices of an-dimensional polytope lie on am — 1)-sphere, the
circumsphereof radiusp, and that all the edges have the same length, which we take
to be 1. Thus the farther ends of all the edges at one vertex lie in the hyperplane that
contains the intersection of tw@ — 1)-spheres: the circumsphere and the unit sphere
whose center is the “one vertex.” The section of the polytope by this hyperplane is called
thevertex figurd11, p. 292]. For instance, the vertex figure of the cube is an equilateral
triangle with sides/2, and the vertex figure of the uniform triangular prism (with square
side-faces) is an isosceles triangle with sideg'2, v/2.
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2. Successive Vertex Figures

Schifli discovered two infinite sequences of regular polytopes such that each polytope
is the vertex figure of the next: the regular simplices

a1=1{}, a2=1{3}, a3=1{3,3}, 4={3,3,3}, ...,
whose numbers of vertices are

2, 3, 4, 5, e
and thecross polytopes

B2=1{4, B:3=1{3,4}, Bs=1{3,34} ...,
whose numbers of vertices are
4! 61 8!

[11, p. 37]. It would be natural to allow the latter sequence to begin itha line
segment of length/2, since this is the vertex figure of the squaie,

There is also éinite sequence of the same kind, beginning with an equilateral triangle
of side+/2, continuing with the cubgs = {4, 3} and the 24-cel3, 4, 3}, and ending
with the honeycomb of 16-cell§3, 3, 4, 3} [11, p. 300]. In this case, the numbers of
vertices are

8, 24, 0.

Abandoning the restriction teegular figures, Gosset discovered another such finite
sequence of polytopes, beginning with the isosceles triangle mentioned at the end of
Section 1, continuing with the uniform triangular prism and “new” polytopesin 4, 5, 6,

7, and 8 dimensions, and ending with a honeycombgsf and 8g’s [8, pp. 156, 203;
11, pp. 230, 294, 332]. The numbers of vertices of

(—Dor=az x a1, O =tioa, La=hys, 21, 31, 41, 521,
are
6, 10, 16, 27, 56, 240 oo.

By calling the triangular prism, x a1, we are expressing it as the Cartesian product
of the trianglex, with the line segment;. In four dimensions there is an analogous
“prism” (—1)31 = a3 x a1, based on the regular tetrahedien This provides a third
“finite sequence”

(=131, Oz =tias, 131 =hys, 2a, 3a1
[11, p. 337], whose numbers of vertices are

8, 15, 32, 126, oo.
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Another Cartesian product is the four-dimensional “double-prieat),; = a2 X a,
which provides a fourth finite sequence

(D22, Oz=toas, 122, 222
[11, pp. 332, 333], whose numbers of vertices are

9, 20, 72, oo.

3. Circumradii

The circumradiug of a Cartesian product is related to the circumradi@&ndp” of its
factors by the Pythagorean relation

p?=p?+p"

[3, p. 351].
A simple geometric construction [2, p. 31] shows that the circumragdia$ any
uniform polytope is related to the circumradiuf its vertex figure by the formula

1
2
2= g
which makes it easy to write down the value gf°Xor each member of a “sequence”
of polytopes as soon as this property is known for the initial member: we just subtract
from 2 and reciprocate.
For the sequence of regular simpliagg beginning with the unit line-segmeat,
we have

o1, o, o3, 04, ..., Op!
1 2 3 4 n
27 3 4° 59 ceey —n+1_

For the sequence of cross polytogfs beginning with the longer line-segmegit, we
have

ﬁlﬂ /327 1337 1341 ) IBH:
1, 1, 1, 1, ..., 1L

For the four finite sequences, beginning withx «1, we have

(=121, 021, 13, 221, 31, 41, Sor

2,1_17 6 5 4 3

3t2=% 5 @ 3 5.2 oo
(=131, 031, 131, 231, 331

4 3
2 55 2, Q.

(=122, 022, 12, 2
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For instance, the valuego? = % for 3,1 shows that this seven-dimensional polytope has

the same circumradiusy/3 as the ordinary cube.
These computations provide the easiest way to establish infinite order for each of the
groups [$27], [3%31], and [321].

4. The Six-Dimensional Polytope 2

The 27 vertices

a,...,as by,...,be Cip ..., Co6

of 2,1 form a 2-distance set [6, p. 465]: any 2 of them form either an edge (distance 1) or a
diagonal (distance’2). Infact, the(3) pairs of vertices form 15 15+ 6+60+60+60 =
216edges

Q1dy, ...; bibo, ... by, ... a1C3, ... D1C3, ... C12C13,s ...,
and 30+ 30+ 30+ 45 = 135diagonals
by, ...; a1C12, ...; b1Cio, ... C12Caa, .. ..
The 135 diagonals are the sides of-8A5 = 45 diagonal triangles
a1bpCip, ... C12C34Cse, - . . .

Itis remarkable [1, p. 15] that nine of these 45 triangles can be chosen so as to use each
of the 27 vertices just once. The enneagonal projectiondb2p. 460, Fig. 3] instantly
provides two examples of such a set of nine diagonal triangles. One, namely

a106C16, AgbsCse, @D3C23, 83D4C34, B4D2Co4, A5D1C15, C12C35C46, C13C26Ca5, C14C25C36,

comes from the three sets of three equilateral triangles inscribed in the three concentric
enneagons. The other, namely,

a104C14, @2b1C12, C13C24C56, C16C25C34, A5D3C35, Aabs5Cas, 83DsC36, C15C23Ca6, A6D2Co6,

comes from the nine diameters.

5. The Seven-Dimensional Polytope,3

When 2 is considered as the vertex figure of 3ts 45 diagonal triangles (of sidg2)
are the vertex figures of 45 cubgg 3}, all sharing two antipodal vertices 0$:3[11,

p. 340]. Since 3, has 56 vertices, while 45 56 = 8 x 315, there are altogether 315
such inscribed cubes. When the-2&8 verticequs, U, ..., Ug) are given, in the 7-flat
> u, =0, as the permutations of

(3,3, -1,-1,-1,-1,-1,-1) and (1, 1,1,1,1,1 -3 -3),
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the 3-flats containing the 315 cubes consist of 105 such as
Ui = Uy, Uz = Uy, Us = Us, U7 = Ug, (5.1
and 210 such as
Uy —Ux+Uz—Ug =0, Us = Ug = U7 = Ug. (5.2

Different coordinates were describeddaleidoscopefl 1, p. 339], but an unfortunate
misprint mars the table of 14-gons at the top of page 341: the row beginning with 013
repeats alternate entries of the row beginning with; 1@stead, it should have been

013 450 124561 235602 346 013 450124 561235 602 346.

In terms of the plane quartic curve of genus 3, whose 28 bitangents correspond to the
28 diameters of g [10, p. 354], each of the 315 cubes represents one of Dickson’s 315
conics, whose eight points of intersection with the quartic curve are the points of contact
of four bitangents. It was observed by Patrick DuVal [5, p. 186] that seven of these 315
conics can be chosen so as to use each of the 28 bitangents just once, in agreement with
the fact that the 56 vertices of;3can be distributed into seven sets of eight belonging
to inscribed cubes [11, p. 340].

6. The Eight-Dimensional Polytope 4;

When 3; is considered as the vertex figure gf dits 315 inscribed cubefl, 3} are
the vertex figures of 315 24-cell8, 4, 3}, all sharing two antipodal vertices ob#4
The 240= 112+ 128 vertices of a 4 (of edge 2/2) are conveniently given by the
permutations of

(£2,£2,0,0,0,0,0,0)
along with
(1, £1, +1, £1, +1, £1, +1, +1),

where the number of minus signs is even.

Since the 24 vertices of &, 4, 3} of edge 2 are given by the permutations of
(£2, 0,0, 0) along with(+1, +1, +1, +1), one such inscribed 24-cell lies in the 4-flat
(5.1): we simply use the coordinates

(U2, Ua, Us, Ug).

It is not too laborious to verify that another is given by (5.2). And, of course, there are
many more. The most obvious is tf®& 4, 3} that lies in the 4-flat

Us =Ug =U7 =ug=0. (6.1)

Since 41 has 240 vertices, while 3156 240= 24 x 3150, there are altogether 3150
such inscribed 24-cells. Among them:

Ten can be chosen so as to use each oR#@vertices just once
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To verify this statement, consider any one of the 3184, 3}'s, say (6.1), and
transform it by the cyclic grougig generated by the isomety = R®, where

R = RiRRsR4RsRsR7Rs

is the product (in any order) of the eight reflections which generate the symmetry group
[3421] of 4,1 [11, pp. 159, 207—221]. The result is a set of fi@e4, 3)'s: five, not ten,
because the isomet@® = R¥®is the central inversion [11, p. 163], which is a symmetry
operation of both 4 and{3, 4, 3}. Now choose another inscribg¢g, 4, 3} that has no
common vertex with any of those five, and apply the same géagpClearly, the new
set of five must complete the desired set of ten.

An intriguing question remains: What kind of arrangement of 120 points is formed
by the 120 vertices of either set &ifre {3, 4, 3}'s? We recall that a different set of
five {3, 4, 3}'s have together the same 120 vertices as the regular 60Q3c8ll5} [8,
p. 270]; and the ten-dimensional coordinates farréveal that its 240 vertices fall into
two congruent sets of 120, each set projecting orthogonally into the 120 vertices of a
600-cell [11, p. 349]. (IrKaleidoscopespage 350, line 5, the page number 578 should
be 298.) Clearly, then, the desired 120 points have the coordinates

(+/5, 0,0, 0, —/5; 74/5, 0, 0, 0, —7+/5), 20

(—7t72, =12, 1,1, 1; 28 7%, —1, -1, —1), 20
(™t Y -1, -1, 2 72, 2, -1, —1, —21), 30
(-2, 1, 1, —t71 127,01, 1, —72, —rz), 30
(=1, =1, =1, 72, 7%, 1, 7, , =T, —19), 20

wherer = (v/5+ 1)/2 and itis understood that the twenty or thirty permutations of the
five coordinates before and after each semicolon are always the same.

7. The Eight-Dimensional Honeycomb 5

We recall that the 24-ce{B, 4, 3} is the vertex figure of Schfli’'s honeycomHt3, 3, 4, 3}
of 16-cells, whose vertices constitute tBy lattice [11, p. 287]. These points have
coordinates which are all the sets of four integers whose sum is even [3, pp. 9, 117-119].
(Conway and Sloane call this “tHa, lattice,” but our tilde avoids confusion with the
use elsewhere db, as a symbol for the group 3-1].)
Analogously, the polytopex is the vertex figure of Gosset'’s eight-dimensional hon-
eycomb 5; of ag’s andg's, whose vertices constitute the famdts lattice [3, pp. V,
10, 48, 90, 119, 123]. These points have coordinates which are all sets of eight integers,
mutually congruent modulo 2, whose sum is a multiple of 4 [4, pp. 385, 393] or, equally
well, all sets of nine integers, mutually congruent modulo 3, whose sumis 0[11, p. 344].
The 315(3, 4, 3}'sinscribed in 4, are the vertex figures of 3138, 3, 4, 3}'s sharing
one vertex of 5; and having for all their vertices a subset of its vertices. In other words:

Each point of theEg lattice belongs t@150inscribed Dy, lattices of minimal size



Seven Cubes and Ten 24-Cells 157

There are, of course, infinitely many su@ 3, 4, 3}’s inscribed in 3;. Among them,
an infinite subset, using each vertex just once, can be obtained by takifg, @nd, 3}
and translating it by integer distances along the £2I2 edge directions that occur in
5,1, but not in the chosefs, 3, 4, 3}.

8. Concluding Remark

For regular 24-cells 3; inscribed in the eight-dimensional uniform polytopg,4he
complex counterpart is regular polygon@® inscribed in the four-dimensional regular
Witting polytope 33}3{3}3{3}3 [9, pp. 47, 133, and Frontispiece].
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