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A b s t r a c t :  Discontinuities of surface properties are the most important locations in a scene; they 
are crucial for segmentation because they often coincide with object boundaries. Standard approaches 
to discontinuity detection decouple detection of disparity discontinuities from disparity computation. We 
have developed techniques for locating disparity discontinuities using information internal to the stereo 
algorithm of [2], rather than by post-processing the stereo data. The algorithm determines displacements 
by maximizing the sum, at overlapping small regions, of local comparisons. The detection methods are 
motivated by analysis of the geometry of matching and occlusion and the fact that detection is not just 
a pointwise decision. Our methods can be used in combination to produce robust performance. This 
research is part of a project to build a "Vision Machine" [7] at MIT that integrates outputs from early 
vision modules. Our techniques have been extensively tested on real images. 1 

1 Introduction 
This investigation describes a component of the MIT Vision Machine [7], which integrates outputs 
from early vision modules for tasks such as recognition and navigation. The integration stage com- 
putes maps of scene properties augmented by an exphclt representation of scene discontinuities, 
identifying their physical origin. Our major achievement in this paper is the development of tech- 
niques for locating disparity discontinuities using information internal to the stereo and motion 
modules, rather than by post-processing the output. Later processing to detect discontinuities [6] 
can then operate with substantially more information about their location. We have devised tech- 
niques for discontinuity location~ based on an analysis of patchwise matching scores internal to the 
algorithm, and based on the effects of occlusion. 

Stereo and motion both compute similar quantities - image displacements of image elements. 
We use a dense set of overlapping matchlng operators to compute displacements between the two 
images. Both stereo and motion apply uniqueness and continuity constraints. Scene geometries 
differ~ however~ and so do interpretations of ordering constraints. 

1.1 T h e  paral le l  s t e reo  algorithm 
The Drumheller-Poggio algorithm [2] served a~ an experimental testbed for the research described 
here. Stereo matching is an ill-posed problem [1] that cannot be solved without taking advantage of 
natural constraints. The continuity constraint asserts that the world consists primarily of piecewise 
smooth surfaces. If the scene contains no transparent objects~ then there can be only one match 
along the left or right lines of sight (uniqueness). The ordering constraint [11] states that any two 
points must be imaged in the same relative order in the left and right eyes. 

The specific assumption used is that the disparity of the surface is locally constant in a small 
region surrounding a pixel. It is restrictive, but may often be a satisfactory local approximation 
(it can be extended to more general surface assumptions in a straightforward way but at high 
computational cost). Let EL(x, y) and En(x, y) represent the left and right image of a stereo pair 
or some transformation of the images. We look for a discrete dispaxity d(x, y) at each location (x, y) 
in the image that minimizes 

t lEL(x, y) - ER(x + d(x, y), Y)HN(~,~) (1) 

where the norm is a summation over a local neighborhood N(x, y) centered at each location (x, y); 
d(x, y) is assumed constant in the neighborhood. The algorithm actually implemented is somewhat 
more complicated, since it involves geometric constraints (ordering and uniqueness) that affect the 
way the maximum operation is performed (see [2]). The algorithm is composed of the following 
steps: 

1This report describes research done within the Artificial Intelligence Lab at MIT as well as at UBC, supported, 
at MIT~ by DARPA under Army contract DACA76-85~010 and in part under ONR contract N00014-85-K-0124. 
Primary support for Gillett came from NIGMS Training Grant T32-GM07484, under by the MIT Dept. of Brain 
and Cognitive Sciences. This research was also supported by NSF Contract No. MIP-8814612, and by a grant from 
the Natural Sciences and Engineering Research Council of Canada. 
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1. Compute features for matching (edge detection or band-pass filtering). 
2. Compute matches scores between features. 
3: Determine the degree of continuity around each potentia ! match. 
4. Identify disparities based on the constraints of continuity, uniqueness, and ordering. 

Potential matches between features are computed as follows. The images are registered so that 
the epipolar lines are horizontal. We compute match scor e planes, one for each horizontal disparity. 
Let p( x, y, d) denote the  value of the ix, y) entry of the match score plane at disparity d. For 
edge-based tokens, the results of comparison are binary. We set p(x, y, d)= 1 if there is a token 
at (x, y) in the left image and a compatible token at (x - d, y) in the right image; otherwise set 
p(z, y, d) = 0. For brightness-based matching, the matching score continuously varies (EL and En 
vary over some finite range and the norm of their difference assumes a range of values, not just 0 
and 1 - see Equation 1). 

The value Computed by Equation 1 measures the degree of continuity around each potential 
match at (z~ y, d). For edge-based matching, the summation counts the "votes" for the disparity 

$h d in the d match plane. If the continuity constraint is satisfied near (x, y, d) then N(x, y) will 
contain many votes and the score six , y, d) will be high (see Equation 1). We mostly will discuss the 
edge-based methods in stereo and therefore will maximize the normalized correlation and will speak 
of peaks in the measured values. Finally, we select the correct matches by applying the uniqueness 
and ordering constraints. Under the uniqueness constraint, a match suppresses all other matches 
along the left and right lines of sight with weaker scores. To enforce the ordering constraint~ if two 
matches are not imaged in the same relative order in left and right views, we discard the match 
with the smaller support score. Each match suppresses matches with lower scores in its forbidden 
zone [11][81 (see Section 2.2). 

The matching scores of the stereo algorithm are valuable information. They provide a confi- 
dence level for each match that can discriminate between competing matches, as in forbidden zone 
suppression (using the ordering constraint). Matching scores are computed everywhere with no ad- 
ditional computation (because of homogeneous computation in SIMD machines), both for edge-base 
and bright.hess-based matching, producing dense information. The scores also help to suppress bad 
matches within occluded areas of the scene (Section 2.2). 

2 Disparity discontinuities 
We describe two discontinuity detection techniques, arising from analysis of the behavior of matching 
methods near occluding boundaries. One method is based on an analysis of matching scores for 
different disparities and the other arises from the effects of geometric constraints near occlusions. 

2.1 Close winners 
The close winners technique analyses matching scores. For each point p = (x, y) in the left image 
and q = (x+d, y) in the right image, the matcher computes a score s(x, y, d) indicating the likelihood 
that p matches q~ i.e., that p and q are images of the same physical point in the scene. The score 
at a point, s(x,y,d), is the sum of pointwise match scores in a region N(x,y) (see Equation 1). 
The marcher examines only disparities in the fixed interval [id, fd], where id and fd  are the initial 
and final disparities. Define the score vector v(p) = {s(id), slid + 1), ..., s(fd)},  the sequence of 
matching scores for point p. 

We begin with a simple exaraple, a random-dot stereogram (RDS) which fuses to yield the 
impression of a 192 × 192 square floating in front of the background (256 x 256). Figure 1 shows 
a schematic representation of the scene; the dark strip on the left-hand side is an occluded part 
of the background seen in the left view but not the right. Point B is located on the boundary of 
the square. The local support neighborhood of point B, Ns,  is divided between the square and the 
background. Approximately half of the edges in NB will vote for the wrong disparity, namely the 
background disparity. The graph of v(B) is bimodal, with one peak at the foreground disparity 
and another peak at the background disparity. Spoerri and Ulknan[9] use a similar observation to 
derive a different scheme for motion segmentation. Matching scores vary over possible disparities 
(displacements) and will be ma0(imal at the two displacements of the foreground and background. In 
contrast, v(A) and v(C) are unimodal, since their support regions cover constant disparity regions. 
Figure 2 shows score vectors computed for the RDS - high scores represent best matches. It is 
critical that the diameter of the support region be larger than the largest disparity gap in the image 
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Figure 1: Line drawing of scene: floating square. 
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Figure 2: Score vectors for RDS. (a) A: (128,128). (b) B: (192,128). (c) D: (85,128). 

- else t h e  two peaks will not be detected using close winners. Also, the maximum value for the 
match score at B will at most be half  that  of the score at points such as A and C; this leads to a 
method for discontinuity identification using local spatial extrema of the match score (see [4]). 

We call point B a close winner because the "winning" disparity has a close competitor; such 
points are likely to be located at disparity discontinuities. For all points p in the left image, use the 
following procedure to determine whether p is a close winner: 

1. Identify peaks in v(p) = {sid, sid+l, . . ,  sid}. 
2. If v(p) has two or more pea~s, pick the two largest, a and fl, c~ > ft. Let the margin m = (a - f l ) /a .  

If m < M (0.2 for the results here), rhea p is a close winner. 

Figure 3 shows close winners for several stereo scenes. Note that close winners can be correctly 
located for point B, but for point E, they identify locations in the center of the occluded area. 
These can be corrected by using a symmetric matching scheme, combined with mapping close 
winners into a common coordinate system. 

2.2 Suppression Using Ordering Constraint 
When one surface lies in front of another, the foreground surface occludes a portion of the back- 
ground surface. The location of the occluded region depends on the viewpoint. Since the boundary 
on the near side of an occluded region is the discontinuity contour, identifying an occluded region 
leads us directly to the associated disparity discontinuity. This technique can be used to locate 
any disparity discontinuity except extended horizontal boundaries, which are not associated with 
occlusion. 

Let  us consider right-occluded areas, i.e.~ areas visible from the left but not the right view (see 
Figure 4b). Such an area does not have a match in the right image. Every potential match is 
surrounded by an hourglass-shaped region extending through the d and x dimensions, the forbidden 
zone (see [liD, as pictured in Figure 4a. 
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Figure 3: Close winners. (a) Newspaper on wood: left view. (b) Close winners. (c) Left view of 
truck, teddy bear, and crane. (d) Close winners for teddy. 
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Figure 4: (a) The forbidden zone (shaded) for a particular potential match. (b) The shaded region 
is contained within the union of the forbidden zones for points p and q, showing that no match will 
be permitted there. 

Consider a simple step discontinuity (Figure 4b) where the portion of the surface between points 
p and q is right-occluded. The shaded region contains all points that are imaged between p and q 
in the left view. Note that the shaded region is contained entirely within the union of the forbidden 
zones for p and q: the area above the line joining p and q is in the forbidden zone for q, and the area 
below the line is in the forbidden zone for p. Therefore all possible matches in the left view between 
the images of p and q will be suppressed. Match suppression is the key to locating occluded areas. 
2.2.1 The  Mechanics of Match  Suppression 
While computing matches and applying the ordering constraint, we can keep track of suppressed 
matches. Since matching scores are computed at all points, stereo produces dense suppression of 
competing matches at occlusions. 

A point (x, y) in the left image is suppressed if, for all disparities d, the potential match at 
(x, y, d) has been suppressed. Suppressed points collectively determine regions of suppression that 
correspond to right-occluded areas. Disparity discontinuities are points on the right-hand side of 
suppressed regions, the near side in the case of right-occlusion. Others [10] have noted the connection 
between matching and identification of occlusions, but do not tie it in to the full ordering constraint. 
Figure 5 shows the suppressed regions for the newspaper scene. Some suppressed points are part 
of significant occluded regions and others result from incorrect matches or disparity quantization 
effects. As a simplemeasure to select significant regions, we threshold the width of contiguous strips 
of suppressed points. Figure 5 shows the suppressed regions and filtered suppressed regions for the 
left-occluded regions of the newspaper-on-wood scene. Left-occluded areas (visible in right image 



340 

) ) 0 
(a) (b) (c) 

Figure 5: Left-occluded regions for newspaper. (a) Filtered suppressed points (left-occlusion). (b) 
Merged discontinuities (left/right). (c) Merged discontinuities over newspaper silhouette. 

not from left image) are found by a symmetric analysis of the right image. The associated disparity 
discontinuities then lie on the left-hand side of the occlusion, and are mapped from the right into 
the left image, using the disparity value. The results of the analysis are shown in Figure 5. 

Finally , there is an additional benefit of identifying occluded areas. Knowledge of occlusion can 
improve naive interpolation. Interpolation blurs discontinuities, filling in occluded areas with depth 
data from both sides. A better  approach assumes that  an occluded area has the same disparity as 
the background, e.g., filling in right-occluded regions with disparity values from left to right [3]. 

3 C o n c l u s i o n  
We have addressed the detection of discontinuities in stereo and motion, within the context of ef- 
ficient, parallel implementation. The techniques we have examined all use information internal  to 
the correspondence process to identify discontinuities. Any later processing to determine the fig- 
ure/ground relation and to improve surface description begins with an almost complete description 
of the location of discontinuities. Further~ these techniques all can easily be implemented on a 
SIMD parallel computer and simple circuits. A detailed discussion may be found in [5]. 
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