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Abstract. Active learning differs from "learning from examples" in that the learning algorithm assumes at least 
some control over what part of the input domain it receives information about. In some situations, active learning 
is provably more powerful than learning from examples alone, giving better generalization for a fixed number 
of training examples. 

In this article, we consider the problem of learning a binary concept in the absence of noise. We describe a 
formalism for active concept learning called selective sampling and show how it may be approximately implemented 
by a neural network. In selective sampling, a learner receives distribution information from the environment 
and queries an oracle on parts of the domain it considers "useful." We test our implementation, called an SG- 
network, on three domains and observe significant improvement in generalization. 
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1. Introduction: Random sampling vs. active learning 

Most neural network generalization problems are studied only with respect to random sam- 

piing: the training examples are chosen at random, and the network is simply a passive 
learner. This approach is generally referred to as "learning from examples." Baum and 

Haussler (1989) examine the problem analytically for neural networks; Cohn and Tesauro 

(1992) provide an empirical study of neural network generalization when learning from 
examples. There have also been a number of empirical efforts, such as those of Le Cun 
et al. (1990), aimed at improving neural network generalization when learning from 
examples. 

Learning from examples is not, however, a universally applicable paradigm. Many natural 

learning systems are not simply passive, but instead make use of at least some form of 
active learning to examine the problem domain. By active learning, we mean any form 

of learning in which the learning program has some control over the inputs on which it 

*A preliminary version of this article appears as Cohn et al. (1990). 
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trains. In natural systems (such as humans), this phenomenon is exhibited at both high 
levels (e.g., active examination of objects) and low, subconscious levels (e.g., Fernald and 
Kuhl's (1987) work on infant reactions to "Motherese" speech). 

Within the broad definition of active learning, we will restrict our attention to the simple 
and intuitive form of concept learning via membership queries. In a membership query, 
the learner queries a point in the input domain and an oracle returns the classification of 
that point. Much work in formal learning theory has been directed to the study of queries 
(see, e.g., Angluin 1986; Valiant, 1984), but only very recently have queries been exam- 
ined with respect to their role in improving generalization behavior. 

In many formal problems, active learning is provably more powerful than passive learn- 
ing from randomly given examples. A simple example is that of locating a boundary on 
the unit line interval. In order to achieve an expected position error of less than e, one 
would need to draw O ~ ± In ~-L ~ random training examples. If one is allowed to make 
membership queries seciuentia.l~y,_)_thenC c JJ binary search is possible and, assuming a uniform 
distribution, a position error o re  may be reached with O I l n  I l l l  queries. 

One can imagine any number of algorithms for employing mem15ership queries to do 
active learning. We have been studying the problem of learning binary concepts in an error- 
free environment. For such problems, a learner may proceed by examining the informa- 
tion already given and determining a region of uncertainty, an area in the domain where 
it believes misclassification is still possible. The learner then asks for examples exclusively 
from that region. This article discusses a formalization of this simple approach, which 
we call selective sampling. 

In section 2, we describe the concept-learning problem in detail and give a formal defini- 
tion of selective sampling, describing the conditions necessary for the approach to be useful. 
In section 3 we describe the SG-network, a neural network implementation of this tech- 
nique inspired by version-space search (Mitchell, 1982). Section 4 contains the results of 
testing this implementation on several different problem domains, and section 5 discusses 
some of the limitations of the selective sampling approach. Sections 6 and 7 contain reference 
to related work in the field and a concluding discussion. 

2. Concept learning and selective sampling 

Given an arbitrary domain X, we define a concept c to be some subset of points in the 
domain. For example, X might be a two-dimensional space, and c might be the set of all 
points lying inside a fixed rectangle in the plane. We classify a point x E X by its member- 
ship in concept c: we write c(x) = 1 i f x  ~ c, and c(x) = 0 otherwise. A popular use 
of artificial neural networks is as concept classifiers: x is presented as the input to an ap- 
propriately trained network, which then activates a designated output node above some 
threshold if and only i fx  ~ c, that is, i fx  is an instance of concept c. Formally, a concept 
class C is a set of concepts, usually described by some description language. In the above 
example, our class C may be the set of all two-dimensional, axis-parallel rectangles (see 
figure 1). In the case of neural networks, the concept class is usually the set of all concepts 
that the network may be trained to classify. 
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Figure 1. A concept class defined as the set of all axis-parallel rectangles in two dimensions. Several positive 
and negative examples are depicted, as are several consistent concepts in the class. 

2.1. Generalization 

For target concept t, a training example is a pair (x, t (x)) consisting of a point x (usually 
drawn from some distribution (P), and the point's classification t(x). I f  x E t, then t(x) 
= 1, and we say that (x, t(x)) is a positive example. Otherwise, t(x) = 0, and (x, t(x)) 
is a negative example. A concept c is consistent with an example (x, t(x)) if c(x) = t(x), 
that is, if the concept produces the same classification of point x as the target. The error 
of c, with respect to t and distribution (P, is the probability that c and t will disagree on 
a random example drawn from (P. We write this as 

e(c, t, (P) = Pr[c(x) ~ t(x)], for x drawn randomly according to (P. 

The generalization problem is posed as follows: for a given concept class C, an unknown 
target t, an arbitrary error rate e, and confidence 6, how many examples do we have to 
draw and classify from an arbitrary distribution (P in order to find a concept c E C consis- 
tent with the examples such that e(c, t, ~ )  _< e with confidence at least 1 - 6? This prob- 
lem was formalized by Valiant (1984) and has been studied for neural networks by Baum 
and Haussler (1989) and by Haussler (1992). 

2.2. The region of  uncertainty 

I f  we consider a concept class C and a set S m of m examples, the classification of some 
regions of the domain may be implicitly determined (figure 2): all concepts in C that are 
consistent with all the examples must agree in these parts. What we are interested in here 
are the areas that are not determined by available information--what we define to be the 
region of uncertainty: 

(~(S m) = {x : 3Cl,  c 2 E C,  c1, c 2 a r e  c o n s i s t e n t  w i t h  a l l  s E a m, a n d  Cl(X ) ~ c2(x)} .  
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Figure 2. The region of uncertainty, (R(sm), is the set of all points x in the domain such that there are two con- 
cepts that are consistent with all training examples in S m and yet disagree on the classification ofx. Here, 6t(S m) 
is shaded. 

For an arbitrary distribution (P, we can define the size of this region as c~ = Pr[x E 
(R(sm)]. Ideally, in an incremental learning procedure, as we classify and train on more 
examples, ot will be monotonically non-increasing. A point that falls outside (R(S m) will 
leave it unchanged; a point inside will further restrict the region. Thus, a is the probability 
that a new, random point from (P will reduce our uncertainty. 

As such, (R(S m) serves as an envelope for consistent concepts; any disagreement be- 
tween those concepts must lie within (R(sm). Because of this, (R(S m) also bounds the 
potential error of any consistent hypothesis we choose. I f  the error of our current hypothesis 
is e, then e < or. Since we have no basis for changing our current hypothesis without a 
contradicting point, ot is also a bound on the probability of an additional point reducing 
our error. 

2.3. Selective sampling is active learning 

Let us consider learning as a sequential process, drawing examples one after another, and 
determine how much information each successive example gives us. If  we draw at random 
over the whole domain, then the probability that an individual sample will reduce our er- 
ror is or, as defined above, which decreases to zero as we draw more and more examples. 
This means that the efficiency of the learning process also approaches zero; eventually, 
most example we draw will provide us with no information about the concept we are trying 
to learn. 

Now consider what happens if we recalculate (R(sm), the region of uncertainty after each 
new example, and draw examples only from within (R(Sm). Then each example will reduce 
tR(sm), and will reduce our uncertainty, with no decrease in efficiency as we draw more 
and more examples. We call this process selective sampling. 

If  the distribution (P is known (e.g., (P is uniform), then we perform selective sampling 
directly by randomly querying points (according to (P) that lie strictly inside (R(Sm). Fre- 
quently, however, the sample distribution, as well as the target concept, is unknown. In 
this case, we cannot choose points from our domain with impunity or we risk assuming 
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a distribution that differs greatly from the actual underlying (P. In many problems, though, 
we can still make use of distribution information without having to pay the full cost of 
drawing and classifying an example. Rather than assuming that the drawing of a classified 
example is an atomic operation (see Valiant, 1984; Blumer et al., 1988), we may divide 
the operation into two steps: first, drawing an unclassified example from the distribution, 
and second, querying the classification of that point. If the cost of drawing a point from 
our distribution is small compared to the cost of finding the point's proper classification, 
we can "filter" points drawn from our distribution, drawing at random, but only selecting, 
classifying, and training on those that fall in fit(sm). This approach is well suited to prob- 
lems such as speech recognition, where unlabeled speech data are plentiful, but the classi- 
fying (labeling) of speech segments is a laborious process. 

Since calculating fit(S m) can be computationaUy expensive, we may want to perform 
selective sampling in batches. On the first pass, we draw an initial batch of training ex- 
amples S~' from (P, train on it, and determine the initial fit(sm). We then define a new 
distribution (P' to sample from that is zero outside fit(S~), but that maintains the relative 
distribution of 6 ) inside fit(Sb~). We can then make a second pass, drawing a second batch 
of training examples S~', adding it to the first, and determining a new, smaller fit(S~' U 
S'~). The smaller the batch size is, and the more passes are made, the more efficiently 
the algorithm will draw training examples (see figure 3). However, since fit(S m) is 
recalculated on each pass, this advantage must be weighed against the added computational 
cost incurred in this calculation. 

2.4. Approximations to selective sampling 

Even for simple concept classes, such as the set of all axis-parallel rectangles in two dimen- 
sions, it may be difficult or computationally expensive to represent the region of uncer- 
tainty exactly. For the class of rectangles, negative examples that lie along the corners of 
the region can add complexity by causing "nicks" in the outer comers of fit(S m) (as in 
figure 2). With more realistic, complicated classes, representing fit(S m) exactly can easily 
become a difficult, if not impossible, task. Using a good approximation of fit(S m) may, 
however, be sufficient to allow selective sampling, Practical implementations of selective 
sampling are possible with a number of approximations to the process, including main- 
taining a close superset or subset of fit(Sin). 

Assume we are able to maintain a superset fit+(S m) _~ (~(sm). Since any point in (~(S m) 
will also be in the superset, we can selectively sample inside fit + (S m) and be assured that 
we will not exclude any part of the domain of interest. The penalty we pay is that of 
efficiency: we may also train on some points that are not of interest. The efficiency of 
this approach, as compared with pure selective sampling, can be measured as the ratio 
Pr[x E fit(sm)]/Pr[x E fit+(Sm)]. 

If we are only able to maintain a subset fit- (S m) c fit(Sin), our sampling and training 
algorithm must take additional precautions. On any given iteration, some part of fit(S m) 
will be excluded from sampling. Because of this, we will need to ensure that on successive 
iterations we will choose subsets that cover the entire region of uncertainty (an example 
of this technique will be discussed in the next section). We will also need to keep the number 
of examples on each iteration small to prevent oversampling of one part of the domain. 
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Figure 3. As the batch size in selective sampling approaches one, the process yields diminishing improvements 
for the added computational costs. This figure plots error vs. training set size for selective sampling, using dif- 
ferent batch sizes for learning an axis-parallel rectangle in two dimensions. 

For the remainder of  this article, we will denote an arbitrary algorithm's approximation 
to the true region of  uncertainty as ~ *  (sm). 

3. Neural  ne tworks  for selective sampl ing  

The selective sampling approach holds promise for improved generalization in many trainable 
classifiers. The remainder of  this article is concerned with demonstrating how an approx- 
imation of  selective sampling may be implemented using a feedforward neural network 
trained with error backpropagation. 

The backpropagation algorithm (Rurnelhart et al., 1986) is a supervised neural network 
learning technique, in that the network is presented with a training set of  input/output pairs 
(x, t(x)) and learns to output t(x) when given input x. To train a neural network using stan- 
dard backpropagation, we take the training example (x, t(x)) and copy x into the input nodes 
of  the network (as in figure 4).1 We then calculate the individual neuron outputs layer by 
layer, beginning at the first "hidden" layer and proceeding through the output layer. The 
output of  neuron j is computed as 
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Figure 4. A simple feedforward neural network. Each node computes the weighted sum of its inputs, passes that 
sum through a sigmoidal "squashing" function, and passes the result on as its output, 

Oj(X)-~" t7 I ~ i  Oi(X) " Wj,i~ , 

where wj, i is the connection weight to neuronj from neuron i, and a(a) = 1/(1 + exp(-a)) 
is a sigmoidal "squashing" function that produces neuron outputs in the range [0, 1]. We 
define the error of the output node n as 6n(x ) = (On(X) - t(x)) 2. This error value is prop- 
agated back through the network (see Rumelhart et al. (1986) for details), so that each 
neuron j has an error term 6j(x). The connection weights wj,i are then adjusted by adding 

AWji(X ) ~- ~)j(X)Oj(X), (1) 

where ~ is a constant "learning rate." 
This adjustment incrementally, decreases the error of the network on example (x, t(x)).  

By presenting each training example in turn, a sufficiently large network will generally 
converge to a set of weights where the network has acceptably small error on each training 
example. In the concept-learning model, the target values of training examples are 1 or 0, 
depending on whether or not the input is an instance of the concept being learned. Patterns 
are trained on until their error is less than some threshold. 

At this point, we need to draw attention to the distinction between a neural network's 
architecture and its configuration, z The architecture of a neural network refers to those 
parameters of the network that do not change during training; in our case, these will be 
the network's topology and transfer functions. The configuration of a network refers to 
the network parameters that do change during training: in this case, the weights given to 
each of the connections between the neurons. Although there are network-training algorithms 
that involve changing a network's topology during training (e.g., Ash, 1989), we consider 
here only those with fixed topologies that train by weight adjustment. The theory and 
methods described here should, with some modification, be equally applicable to other 
trainable classifiers. 

For a neural network architecture with a single output node, the concept class C is specified 
by the set of all configurations that the network can take on. Each of these configurations 
implements a mapping from an input x to an output in [0, 1], and many configurations 
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may implement the same mapping. If we set a threshold (such as 0.5) on the output, then 
we may say that a particular configuration ? represents a concept c such that x E c if and 
only if ?(x) > 0.5 (see figure 5). Having trained on training set S m, we can say that the 
network configuration ~ implements a concept c that is consistent with training set Sm. 
We will use c to denote both the concept c and the network ~ that implements it. 

Below, we consider a naive algorithm for selective sampling with neural networks and 
examine its shortcomings. We then describe the SG-net, based on the version-space paradigm 
(Mitchell, 1982) that overcomes these difficulties. 

3.1. A naive neural network querying algorithm 

The observation that a neural network implementation of a concept learner may produce 
a real-valued ouptut that is thresholded suggests a naive algorithm for defining a region 
of uncertainty. When a network is trained with these tolerances, we can divide all points 
in the domain into one of three classifications: 'T '  (0.9 or greater), "0" (0.1 or less), and 
"uncertain" (between 0.1 and 0.9). We may say that this last category corresponds to a 
region where the network is uncertain, and may thus define it to be (R* (sm), our approx- 
imation to the region of uncertainty (figure 6). 

The problem with applying this approach is that it measures only the uncertainty of that 
particular configuration, not the uncertainty among configurations possible given the ar- 
chitecture. While it is in fact a part of 0t(sm), the full region is composed of the dif- 
ferences between all possible consistent network configurations. 

@ 

0 

111 
° 

0 
I I I ~ T I I 

Figure 5. The thresholded output of the trained neural network ~ serves as a classifier representing a concept 
c that is (hopefully) similar to the unknown target concept. 
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Figure 6 A naive approach to representing the region of uncertainty: we can use the network's transition area 
between 0 and 1 to represent the part of the domain where the network is "uncertain?' 

This limitation is exacerbated by the inductive bias of some learning algorithms, including 
backpropagation. The backpropagation algorithm, when it attempts to classify a set of points, 
tends to draw sharp distinctions and become "overly confident" in regions that are still 
unknown. As a result, the (R* (S 'n) chosen by this method will in general be a very small 
subset of the true region of uncertainty. 

A pathological example of this behavior is exhibited in figures 7a and 7b. In figure 7a, 
the initial random sampling has failed to yield any positive examples in the triangle on 
the right. Training by backpropagation on the examples yields a region of uncertainty (be- 
tween the two contours) that concentrates on the left half of the domain, completely to 
the exclusion of the right. The final result of 10 iterations of querying and learning is shown 
in figure 7b. This strategy (and related ones) is prone to failure of this form whenever 
there are regions of detail in the target concept that are not discovered in the initial random- 
sampling stage. 

3.2. Version space 

Mitchell (1982) describes a learning procedure based on the partial ordering in generality 
of the concepts being learned. Some concept cl is "more general" than another c2 if and 
only if c2 C Cl. If c 1 ~ c 2 and c 2 (E c 1, then the two concepts are incomparable. For 
a concept class C and a set of examples S m, the version space is the subset Cs m = {c ~ C, 
such that c is consistent with all s e s'n}. To bound the concepts in the version space, 
we can maintain two subsets, S, G c Cs m. S is the set of all "most specific" consistent 
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Figure 7. A pathological example of naive network querying. (a) An initial random sample has failed to detect 
the second, disjoint region of the target concept; (b) after 10 successive iterations, the naive querying algorithm 
has ignored that region and concentrated on the region where it has seen examples. The dotted line denotes the 
true boundary of the unknown target concept. 

concepts, that is, S = {c E Cs,,, ~ c' E Cs,,, c '  C c}. Similarly, G = {c E Cs,,, ~ c' E Csm, 
c'  D c} is the set of "most general" concepts. For any consistent concept c, it must be 
the case tha ts  c_ c c_ g f o r s o m e s E  S a n d g E  G. 

One may do active learning with a version space by examining instances that fall in the 
"difference" of S and G, that is, the region SAG = tO {sAg : s E S, g E G} (where A 
is the symmetric difference operator). If  an instance in this region proves positive, then 
some s in S will have to generalize to accommodate the new information; if it proves negative, 
some g in G will have to be modified to exclude it. In either case, the version space, the 
space of plausible hypotheses, is reduced with every query. 

3.3. Implementing an active version-space search 

Since an entire neural network configuration represents a single concept, a complete ver- 
sion space cannot be directly represented by any single neural network. In fact, Haussler 
(1987) pointed out that the size of the S and G sets could grow exponentially in the size 
of the training set. Representing these sets completely would require keeping track of and 
manipulating an exponential number of network configurations. 

We can, however, modify the version-space search to make the problem tractable if we 
impose, according to the distribution (P, a strict index of ordering on all concepts in the 
class. We will define a concept c I to be "more general" than concept c2 if and only if 
for a random point x drawn from (P, Pr[x E cl] > Pr[x E c2]. Under this definition, the 
generality of all concepts in the class is comparable, and it makes sense to speak of an 
ordering in which we can represent a single "most general" concept g and a single "most 
specific" concept s. There may still be many concepts with the same generality, but this 
is no impediment. We need only know that there are no concepts, in the "most general" 
case, with a greater generality than the concept g we have chosen. 
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By maintaining these two concepts, we have a window into our version space: (~*(S m) 
= sag will be a subset of SAG. Thus, a point x ~ (R* (S m) is guaranteed to reduce the 
size of our version space. If positive, it will invalidate s and leave us with another s, either 
a more general one or an equally specific one that includes the new point. Similarly, if 
the new point is classified as negative, it will invalidate g. By proceeding in this fashion, 
we can approximate a step-by-step traversal of the S and G sets using a fixed representation 
size. 

3.4. The SG-net: a neural network version-space search algorithm 

Since we are interested in selecting examples that improve the generalization behavior of 
some given neural network architecture N, we define the concept class in question to be 
the set of concepts learnable by N with its learning algorithm. If we can manage to obtain 
network configurations that represent the s and g concepts described above, then it is a 
simple matter to implement the modified version-space search. In the following two subsec- 
tions, we first describe how one may learn a "most specific" or "most general" concept 
associated with a network and then describe how these two networks may be used to selec- 
tively sample the 6~* (S m) defined by regions where they disagree. 

3.4.1. Implementing a "most  specific/general" network 

Below, we describe how one may learn s, a "most specific" concept consistent with some 
given data. The case for learning g, a "most general" concept, is analogous. 

A most specific network for a set of examples S m (according to distribution (P), is one 
that classifies as positive those example points that are in fact positive and classifies as 
negative as much as possible of the rest of the domain. This requirement amounts to choosing 
a c consistent with S m that minimizes Pr[x E c]. Such a network may be arrived at by 
employing an inductive bias. An inductive bias is a predisposition of a learning algorithm 
for some solutions over others. Most learning algorithms inherently have at least some 
form of an inductive bias, whether it is a preference for simple solutions over complex 
ones, or a tendency to choose solutions where the absolute values of the parameters remain 
small? 

What we will do is explicitly add a new inductive bias to the backpropagation algorithm: 
by penalizing the network for any part of the domain that it classifies as positive, we add 
a bias that prefers specific concepts over general ones. The weight of this penalty must 
be carefully adjusted: if it is large enough to outweigh the training examples, the network 
will not converge on the training data. The penalty must, however, be large enough to 
outweigh any other inductive bias in the learning algorithm and to force the algorithm to 
find a most specific configuration consistent with Sm. 

This "negative" bias may be implemented by drawing unclassified points from (P (or 
creating them in the case where (P is known), and arbitrarily labeling them as negative 
examples. We then add these "background" examples to the training set (figure 8). This 
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Figure & Training on a large number of "background" points in addition to the regular training data forces the 

network into a "mos t  specific" configuration. 

creates a background bias over the domain that is weighted by the input distribution (P: 
the networks that have the least error on these background patterns will be the ones that 
are the most specific according to (P. 

In order to allow the network to converge on the actual training examples in spite of 
the background examples, we must balance the influence of background examples against 
that of the training data. As the network learns training example x, the error term 8j(x) 
in equation (1) will approach zero, while the error term of an arbitrary background exam- 
ple y may remain constant. Unless the "push" that the random background example exerts 
on the network weights (Awji(Y)) is decreased to match that of the normal training ex- 
amples (Awji(x)), the background examples will dominate, and the network will not con- 
verge on a solution. 

We achieve balance by using different learning rates for training examples and background 
examples. We dynamically decrease the background learning rate as a function of the net- 
work's error on the training set. Each time we present a training example x, we calculate 
a new background learning rate 7' = 3"~(x)~/, where 8(x) is the error of the network on 
x, and 0 < 3' < 1 is a constant. We then train on a single background example using 
this value of ~/' and repeat. Formally, the algorithm is as follows: 
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1. Initialize network to random configuration c. 
2. If for all actual training examples (x, t(x)) E S m, ((c(x) - t(x)) 2 < threshold, stop. 
3. Otherwise, select next actual training example (x, t(x)). 
4. Calculate the output error of network c on input x, 5(x) = (c(x) - t(x)) 2, and 

backpropagate through the network, adjusting weights according to 

AwjAx) = n6j(x)oj(x). 

5. Calculate new background learning rate ~/' = 3"b(x)~7. 
6. Draw a point y from (P and create background example (y, 0). 
7. Calculate the output error 6(y) = (c(yk)) 2, and backpropagate through the network, ad- 

justing weights according to the modified equation 

A w j i ( Y  ) -~- ~ t ~ j ( y ) o j ( y ) .  

8. Go to step 2. 

Optimally, 3' should be set such that the weight update on the background patterns is 
always infinitesimally smaller than the weight update on the actual training patterns, allowing 
the network to "anneal" to a most specific configuration. This however, requires a pro- 
hibitive amount of training time. Empirically, we have found that setting 3' = 0.75 pro- 
vides an adequate bias and still allows convergence in a reasonable number of iterations. 

A similar procedure can be used to produce a "most general" network, adding a positive 
inductive bias by classifying all background points drawn from (P as positive. 

3.4.2. Implementing active learning with an SG-net 

Once we can represent concepts s and g, it is a simple matter to test a point x for member- 
ship in 6t*(S m) by determining if s(x) # g(x). Selective sampling may then be im- 
plemented as follows: if a point drawn from the distribution is not in sag (if the two net- 
works agree on their classification of it), then the point is discarded. If point is in sAg, 
then its true classification is queried, and it is added to the training set. In practice, we 
can merge the inputs of the s and g networks, as illustrated in figure 9, and train both together. 
XX It is important to note that this technique is somewhat robust, in that its failure modes 
degrade the efficiency of a single sampling iteration rather than causing overall failure of 
the learning process. If either the s or g networks fail to converge on the training data, 
the points that failed to converge will be contained in sAg, and that region will be eligible 
for additional sampling on the next iteration. In most cases, we have found that these addi- 
tional examples will suffice to "push" the network out of its local minimum. 

If the network does converge on the training set, but settles on solutions that are not 
near the most specific/general networks consistent with the data, the examples gleaned in 
the next iteration are still useful. Since they were chosen by virtue of lying in areas where 
the two networks disagreed, the points will settle discrepancies between the two. This may 
lead to some oversampling of the region, but will not, in and of itself, cause the technique 
to fail. 
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typical network 
architecture 

G . ±o i 
split into separate 
s and g networks 

Figure 9. Construction of an SG-network equivalent to the original. 

The effects of these two failure modes can be minimized by keeping the number of ex- 
amples taken on each iteration small. This increases the efficiency of the learning process 
in terms of the number of examples classified, but as we have observed, there is a tradeoff 
in the computational resources required. Each time new data are added to the training set, 
the network may have to completely readjust itself to incorporate the new information. 
We have found that in practice, with large training set sizes, it is often most efficient imply 
to retrain the entire network from scratch when new examples are added. Recent work 
by Pratt (1993) offers hope that this retraining may be made more efficient by use of "in- 
formation transfer" strategies between iterations. 

4. Experimental results 

Experiments using selective sampling were run on three types of problems: solving a sim- 
ple boundary-recognition problem in two dimensions, learning a 25-input real-valued 
threshold function, and recognizing the secure region of a small power system. 

4.1. The triangle learner 

A two-input network with two hidden layers of eight and three units and a single output 
was trained on a uniform distribution of examples that were positive inside a pair of triangles 
and negative elsewhere. This task was chosen because of its intuitive visual appeal and 
because it requires learning a non-connected concept--a task that demands more from the 
training algorithm (and sample selection scheme) than a simple convex shape. 

The baseline case consisted of 12 networks trained on randomly drawn examples with 
training set sizes from 10 to 150 points in increments of 10 examples. Eight test cases 
were run on the same architecture with data selected by four runs of an SG-network using 
15 selective sampling iterations of 10 examples each (figures 10a and 10b). Additionally, 
12 runs of the naive querying algorithm described in section 3.1 were run for comparison. 

The networks trained on the selectively sampled data showed marked, consistent im- 
provement over both the randomly sampled networks and the ones trained with naive query- 
ing (figure 11). The naive querying algorithm displayed much more erratic performance 
than the other two algorithms, possibly due to the pathological nature of its failure modes. 
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Figure 10. The triangle learner problem, (a) when learned by 150 random examples, and (b) when learned by 
150 examples drawn in 15 passes of selective sampling. The dotted line denotes the true boundary of the unknown 
target concept. 
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Figure 11. Generalization error vs. training set size for random sampling, naive querying, and selective sam- 
piing. The irregularity of the naive querying algorithm's error may be due to its intermittent failure to find both 
triangles in the initial random sample. 
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4.2. Real-valued threshold function 

We use the 25-bit real-valued threshold problem as a quantitative measure of network per- 
formance on a simple but higher-dimensional problem. Six runs of selective sampling, 
using iterations of 10 examples per iteration, were trained on the problem and compared 
to 12 identical networks trained with randomly sampled data. The results (figure 12) in- 
dicate a much steeper learning curve for selective sampling. 

Plotting the generalization error against the number of training examples m, networks 
trained on the randomly sampled data exhibited a roughly polynomial curve, as would be 
expected following Blumer et al. (1988). Using simple linear regression on 1, the error 
data fit e = (a" m + b) -1 (for a = 0.0514 and b = -0.076) with a coefficient of deter- 
mination (r 2) of 0.987. Networks trained on the selectively sampled data, by comparison, 
fit e = (a • m + b) -1 with r 2 = 0.937, indicating that the fit to the polynomial was not 
as good. 

Visually, the selectively sampled networks exhibited a steeper drop in the generalization 
error, as would be expected from an active learning method. Using linear regression on 
the natural logarithm of the errors, the selectively sampled networks exhibited a decrease 

Error 

random sampling 
i ~ selective sampllng 

0.4 

0.2 

0.04 

0.02 - 

0 50 i00 150 200 250 300 

Training set size 

Figure 12. Generalization error vs. training set size for random sampling and selective sampling. Standard devia- 
tion of error averages 0.00265 for the random case and 0.00116 for the selectively sampled case. 
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in generalization error matching e - - -  e a'm+b for a = -0 .0218 and b = 0.071 with r 2 = 
0.995 (up until the error drops below 1.5 %), indicating a good fit to the exponential curve. 
By comparison, the randomly sampled networks' fit to e = e a'm+° achieved only r 2 = 
0.981. 

In this domain, the SG-network appears to provide an almost exponential improvement 
in generalization with increasing training-set size, much as one would expect from an active 
learning algorithm. This suggests that the SG-network represents a good approximation 
to the region of uncertainty (in this domain) and thus implements a good approximation 
of selective sampling. 

Additional experiments, run using 2, 3, 4, and 20 iterations, indicate than the error 
decreases as the sampling process is broken up into smaller, more frequent iterations. This 
observation is consistent with an increased efficiency of sampling as new information is 
incorporated earlier into the sampling process. 

4.3. Power system security analysis 

If various load parameters of an electrical power system are within a certain range, the 
system is secure. Otherwise it risks thermal overload and brownout. Previous research (Ag- 
goune et al., 1989) determined that this problem was amenable to neural network learn- 
ing, but that random sampling of the problem domain was inefficient in terms of examples 
needed. The range of parameters over which the system will be run is known, so distribu- 
tion information is readily available. For each set of parameters (each point in the domain), 
one can analytically determine whether the sysem is secure, but this must be done by solv- 
ing a time-consuming system of equations. Thus, since the classification of a point is much 
more expensive than the determination of an input distribution, the problem is amenable 
to solution by selective sampling. 

The baseline case of random sampling in four dimensions studied by Hwang et al. (1990) 
was used for comparison. In our experiments, we ran six sets of networks on the initial, 
random training sets (with 500 data points) and added a single iteration of selective sam- 
piing. Networks were trained on a small second iteration of 300 points (for a total of 800) 
as well as a large second iteration of 2000 (for a total of 2500 points). These results were 
compared to the baseline cases of 800 and 2500 points of randomly sampled data. 

We estimated the network errors by testing on 14,979 randomly drawn test points. The 
improvement that the single extra iteration of selective sampling yielded for the small set 
was over 10.7% of the total error (5.17% instead of 5.47%), while on the large set it resulted 
in an improvement of 12.6 % of total (4.21% instead of 4.82 %). This difference is signifi- 
cant with greater than 90% confidence. 

5. Limitations of the selective sampling approach 

There are a number of limitations to the selective sampling approach: some are practical, 
as mentioned in the previous section discussing implementations of the technique, while 
others are more theoretical. 
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5.1. Practical limitations 

As discussed earlier in this article, an exact implementation of selective sampling is prac- 
tical only for relatively simple concept classes. As the class becomes more complex, it 
becomes difficult to compute and maintain an accurate approximation of (R(Sm). 

In the case of maintaining a superset, increased concept complexity seems to lead to 
cases where ~R + (S m) effectively contains the entire domain, reducing the efficiency of 
selective sampling to that of random sampling. The example in section 2.4 illustrates this 
nicely: while a bounding box suffices as an approximation for rectangles in two dimen- 
sions, the "nicks" in such a box bounding a 20-dimensional figure could conceivably re- 
quire the approximation to contain most of the input space. 

In the case of maintaining a subset, increased concept complexity leads to an extreme 
where 61- (S 'n) contains only a very small subset of 6{(sm). In these cases, oversampling 
of regions becomes a critical problem, and due to the inductive bias of the training algorithm, 
even a training-set size of only one may omit large regions of the domain. 

5.2. Theoretical limitations 

Selective sampling draws its power from the ability to differentiate a region of uncertainty 
from the bulk of the domain. In cases where the representational complexity of the con- 
cept is large (as in a neural network with many hidden units), however, (R(S m) can extend 
over the whole domain until the concept is already well learned. In other words, even though 
the maximum error may be small, due to the number of places that this error may arise, 
the total uncertainty may remain large. Thus, depending on the desired final error rate, 
selective sampling may not come into effect until it is no longer needed. Similarly, if the 
input dimension is very large, the bulk of the domain may be uncertain, even for simple 
concepts. One method for avoiding this problem is the use of Bayesian probabilities to 
measure the degree of utility in querying various parts of the region of uncertainty. This 
approach has recently been studied by David MacKay (1991) and is discussed briefly in 
the following section. 

6. Related work 

The work described in this article is an extension of results published by Cohn et al. (1990). 
Prior to that work, and since then, there have been many related results in active learning. 
There is a large body of work studying the effects of queries from the strict learning-theory 
viewpoint, primarily with respect to learning formal concepts such as Boolean expressions 
and finite-state automata. Angluin (1986) showed that while minimal finite-state automata 
were not polynomiaUy learnable (in the Valiant sense) from examples alone, they could 
be learned using a polynomial number of queries to an oracle that provides eounterexamples. 
Valiant (1984) considers various classes that are learnable using a variety of forms of directed 
learning. Work by Eisenberg and Rivest (1990) puts bounds on the degree to which member- 
ship query examples can help generalization when the underlying distribution is unknown. 
Additionally, given certain smoothness constraints on the distribution, these authors describe 
how queries may be used to learn the class of initial segments on the unit line. 
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Seung et al. (1992) independently proposed an approach to selecting queries similar to 
ours, basing it on a lack of consensus in a "committee" of learners. Freund et al. (1993) 
showed that as the size of the committee increases beyond the two learners used in selec- 
tive sampling, the accuracy of one's "utility" estimate increases sharply. 

Actual implementations of querying systems for learning have only recently been ex- 
plored. Work done by Hwang et al. (1990) implements querying for neural networks by 
means of inverting the activation of a trained network to determine where it is uncertain. 
This approach shows promise for concept learning in cases with relatively compact con- 
nected concepts and has already produced impressive results on the power system static 
security problem. It is, however, susceptible to the pathology discussed in section 3.1. An 
algorithm due to Baum and Lang (1991) uses queries to reduce the computational costs 
of training a single hidden-layer neural network. Their algorithm makes queries that allow 
the network to efficiently determine the connection weights from the input layer to the 
hidden layer. 

Work by David MacKay (1991) pursues a related approach to dataselectionusing Baye- 
sian analysis. By assigning prior probabilities to each concept (or each network configura- 
tion), one can determine the utility of querying various parts of (R(sm). The fact that a 
point lies within (R(S m) means that there are consistent configurations that disagree on 
the classification of that point. If that point is on the edge of (R(Sm), however, it may be 
that only a very few configurations disagree, and querying the point will only decrease 
the size of 6~(S '~) by an infinitesimally small amount. Using Bayesian analysis, one may, 
in effect, determine the "number" of configurations that disagree on a given point, and 
thus determine what parts of 6/(S m) are "most" uncertain. 

7. Conclusion 

In this article, we have presented a theory of selective sampling, described a neural net- 
work implementation of the theory, and examined the performance of the resulting system 
in several domains. 

Selective sampling is a very rudimentary form of active learning, but it has the benefit 
of a formal grounding in learning theory. In the neural network implementation tested, 
selective sampling demonstrates significant improvement over passive, random sampling 
techniques on a number of simple problems. 

The paradigm is suited for concept-learning problems where the relevant input distribu- 
tion is known or where the cost of obtaining an unlabeled example from the input distribu- 
tion is small compared with the cost of labeling that example. While the limitations of 
selective sampling become apparent on more complex problem domains, the approach opens 
the door to the study of more sophisticated techniques for querying and learning by the 
natural and intuitive means of active learning. 
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Notes 

1. We assume that all inputs have been normalized to the range [0, 1]. 
2. The terminology is that of Judd (1988). 
3. The inductive biases inherent in baekpropagatlon have not been well studied, but there appears to be a ten- 

dency to fit the data using the smallest number of units possible. 
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