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Abstract. Typical AE schemes are supposed to be secure when used
as specified. However, they can — and often do — fail miserably when
used improperly. As a partial remedy, Rogaway and Shrimpton proposed
(nonce-)misuse-resistant AE (MRAE) and the first MRAE scheme SIV
(“Synthetic Initialization Vector”). This paper proposes RIV (“Robust
Initialization Vector”), which extends the generic SIV construction by
an additional call to the internal PRF. RIV inherits the full security
assurance from SIV, but unlike SIV and other MRAE schemes, RIV is
also provably secure when releasing unverified plaintexts. This follows a
recent line of research on “Robust Authenticated Encryption”, similar to
the CAESAR candidate AEZ.

An AES-based instantiation of RIV runs at less than 1.5 cpb on
current x64 processors. Unlike the proposed instantiation of AEZ, which
gains speed by relying on reduced-round AES, our instantiation of RIV
is provably secure under the single assumption of the AES being secure.

Keywords: Robustness *+ Subtle authenticated encryption * Provable
security

1 Introduction

Authenticated Encryption. A secure authenticated encryption (AE) scheme
generates ciphertexts that can not be efficiently distinguished from random bit-
strings of the same length as the ciphertext and are infeasible to forge. Typical
AFE schemes are nonce-based [45], i.e., the user is responsible to supply an addi-
tional input that must be unique for every encryption. If a nonce ever repeats,
the scheme’s security may fully forfeit. While the concept of unique nonces is
simple in theory, it is hard to ensure in practice [19], which led to severe secu-
rity breaches in the past. Rogaway and Shrimpton [46] defined (nonce-)misuse-
resistant AE (MRAE) as notion with the goal of providing full authenticity, and
privacy up to the detection of repeated encryptions of the same associated data
and message under the same nonce and key. Since then, the topic received signif-
icant attention by the community, resulting in a large corpus of MRAE schemes,
e.g., [6,10,16,20,22,27-30,33,43,46].
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Robustness aspects of AE are not limited to nonce reuse. “One shortcoming
of AE as commonly understood is its idealized, all-or-nothing decryption” [7].
Leaking any information about the message before its authentication has been
verified breaks this assumption. At least five noteworthy recent works strength-
ened the existing security definitions of robustness.! Boldyreva et al. [15] (BDPS)
studied the effects when multiple distinct error messages are distinguishable in
probabilistic or stateful schemes. Andreeva et al. [4] formalized notions that cap-
ture the remaining security under release of unverified plaintexts (RUP). Hoang
et al. [24] defined robust AE (RAE) as a notion for the best achievable security
of an AE scheme with a user-chosen ciphertext expansion. Badertscher et al. [5]
investigated RAE with the frameworks by Maurer and Renner [38,39]. Barwell
et al. [7] defined subtle AE (SAE) as a reference framework for the BDPS, RUP,
and RAE notions. The SAE definitions comprise leakage beyond information
about the invalid plaintext, which allows to model leakage as a property of the
decryption implementation rather than as a property of the scheme.

Previous Robust AE Schemes. In spite of so much progress regarding stricter
security definitions, the portfolio of dedicated robust AE schemes remains still
modest. Among the 57 CAESAR submissions, only four candidates consider
robustness against leakage of invalid plaintexts: Julius [6] lacks a security proof;
POET [1] and APE [3] concern on-line confidentiality, which cannot provide
nonce-misuse resistance in the strong sense of Rogaway and Shrimpton, as has
been criticized, e.g., by [25]. Only AEZ [24] provides robust AE. Though, AEZ
follows a “proof-then-prune” approach: while the security proof assumes a strong
block cipher, the performant instantiation employs four-round AES instead.
Since AEZ also defines a key schedule, it appears more as a primitive of its
own right than as a block-cipher-based AE scheme.

Beyond CAESAR, Bertoni et al. [12] proposed MR. MONSTER BURRITO,
a four-round Feistel network with the round-reduced KECCAK-f permuta-
tion in duplex-wrap mode, and the sponge in counter mode for encryption.
Shrimpton and Terashima [47] proposed Protected IV (PIV), a framework of
strong tweakable ciphers (STPRPs), which generalized the ¥3 construction by
Coron et al. [17]. PIV is fast (comparable with the construction proposed in
this work); though, it requires the block-cipher inverse for decryption. Note that
theoretically, more robust AE schemes could be constructed. Hoang et al. [24]
showed that the well-known Encode-then-Encipher (EtE) [9] approach achieves
RAE security when (a hash of) nonce and associated data are used as tweak.
In theory, this implies that a secure STPRP can be transformed into a robust
AE scheme, which allows to choose from the schemes that have been developed
over the previous decade, e.g., in the domains of full-disk and format-preserving
encryption.

Contribution. This work proposes a modular framework, called Robust IV
(RIV), which provides provable SAE security. RIV is an extension of SIV [26,46]

! By robustness, we mean resistance against both nonce misuse and decryption leakage
beyond the single error information.
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that inherits both the simplicity and the naturally strong security properties of
SIV and adds robustness against leakage of invalid plaintexts. We propose an
instantiation which runs at less than 1.5 clock cycles per byte (cpb) on current
x64 processors.

Outline. The remainder of this work is structured as follows: after Sect. 2 recalls
the preliminaries, Sect. 3 describes the generic RIV framework. Section 4 recalls
the relevant notions. Section 5 summarizes our formal security analysis. Section 6
details our instantiation, and Sect.7 concludes this work.

2 Preliminaries

We use lowercase letters x,y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X', ) for sets. By
€ we denote the empty string. We denote the concatenation of binary strings X
and Y by X ||Y and the result of their bitwise XOR by X @ Y. We indicate
the length of X in bits by |X]|, and write X; for the i-th block, X[i] for the
i-th most significant bit of X, and X[i..j] for the bit sequence X[i],..., X[j].
X « X denotes that X is chosen uniformly at random from the set X. We
define two sets of particular interest: Perm(X’) be the set of all permutations
on X and Func(X,)) the set of all functions F' : X — Y. A uniform random
function p : X — Y with domain X and range ) is a random variable uniformly
distributed over Func(X,)). We define by X,..., X; &£ X the injective splitting
of the string X into x-bit blocks such that X = X; || --- || X, with | X;| = z for
1<i<j—1,and | X;| <z

For an event E, we denote by Pr[E] the probability of E. We write (z),,
for the binary m-bit-string representation of an integer x and (z) for the binary
n-bit-string representation of z for an integer n that is clear from the context.
If not stated otherwise, we assume representations to be encoded in big-endian
manner, i.e., the decimal (135) is encoded to the n-bit string 000..010000111.

Universal Hashing. Universal hash functions are well-known components for
compressing a message while guaranteeing maximal probabilities about output
relations. We briefly recall the definitions that are relevant in this work.

Definition 1 (e-Almost-(XOR-)Universal Hash Functions). Let X', C
{0,1}*. Let H={H | H : X — Y} denote a family of hash functions. H is called
e-almost-universal (e-AU) iff for all distinct elements X, X' € X, it holds that
Prgn [H(X)=H(X")] < e. H is called e-almost-XOR-universal (e-AXU) iff
for all distinct elements X, X' € X and Y € Y, it holds that Pry.n[H(X) &
H(X')=Y] <e.

Theorem 1 (Theorem 3 from [14]). Let X, C {0,1}*. Further, let H =
{H|H : X — Y} be a family of e-AXU hash functions. Then, the family H' =
(H'|H : X xY — Y} with H'(X,Y) := H(X) @Y, is e-AU.
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Nonce-Based Encryption Schemes. A nonce-based encryption scheme [45]
is a tuple I = (£,D) of deterministic encryption and decryption algorithms
EKXNXM—CandD: K xN xC— M, with associated non-empty key
space K, non-empty nonce space A/, and M,C C {0,1}* denoting message and
ciphertext space, respectively. We often write EX (M) and DY (C) as short forms
of E(K,N, M) and D(K,N,C). An adversary that never repeats a nonce over
its encryption queries is called nonce-respecting, and nonce-ignoring otherwise.
We assume for all K € K, N e N, M € M, and C € C length-preservation,
ie., |EX(M)| = |M]|, correctness, i.e., DX(EN(M)) = M, and tidiness, i.e.,
EN(DY(C)) = C. We call a nonce-based encryption scheme IT = (€, D) nonce-
keystream-based iff its encryption algorithm derives a keystream sy C {0,1}*,
with |ky| = |M], from the given nonce N and computes the ciphertext as C' «—
kN @ M. Naturally, the decryption algorithm of such an encryption scheme is
identical to its encryption algorithm, i.e., EN (M) = DX (M) for all K € K,
NeN,and M € M.

Nonce-Based AE Schemes. A nonce-based authenticated encryption scheme
(with associated data) [44] is a tuple IT = (£,D) of a deterministic encryption
algorithm E:KxNxHxM — CxT,and a deterministic decryption algorithm
D:KxNxHxCxT — MU{L}, with associated non-empty key space K, non-
empty nonce space N/, and H, M, C C {0,1}* denote the header, message, and
ciphertext space, respectively. We define a tag space 7 = {0, 1}" for a fixed 7 > 0.
We often write ggH(M) and ﬁg’H(C, T) as short forms of (K, N, H, M) and
5([(, N,H,C,T). If a given tuple (N, H,C,T) is valid, 5?{7’11(6’, T) returns the
corresponding plaintext M, and L otherwise. We assume that for all K € K, N €
N, H e H, and M € M holds stretch-preservation: if 5;(V’H(M) = (C,T), then
|C| = |M]| and |T| = 7, correctness: if gII(VH(M) = (C,T), then 1511\(7’}[(0, T) =
M, and tidiness: if 5%’H(C7 T) = M # 1, then ggH(M) = (C,T), for all
C € Cand T € 7. Note that some notions (e.g., [41]) regard an authenticated
ciphertext C' with |C| = |M| + 7 instead of an explicitly separated tuple (C,T).

Subtle AE Schemes. Barwell et al. defined a subtle AE scheme II = (£, D, A)
as a tuple of deterministic encryption and decryption algorithms & and D as
above?, and an additional deterministic leakage algorithm A : K x A x H x
Cx7T — {T}UL, with a non-empty leakage space £ and a symbol T ¢ L to
indicate a valid input. This means, for all K € K, N e N, H € H, C € C, and
T € T holds: if A%’H(C, T) =T, then DQ’H(C, T) # 1; moreover, it holds that
it AR (C,T) # T, then Dy™(C,T) = L.

3 Definition of RIV

Definition 2 (RIV). Let d,n,7 > 1. Let K1, Ko, and K = K1 x Ko be non-
empty key sets, N' a mon-empty monce space, {O,l}d the non-empty domain

2 Though, their definitions denote the authenticated ciphertext (C,T) as C.
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1: function 5}(1,;{2 (N,H, M)
2t IV « Fj, (N,H, M)

3 C+«+ Ek,(IV, M)

4 T+ F (N,H,C)aIV
FL B 5. return (C,T)

11: function 5K1,K2(N, H,C,T)
122 IV« Fg (N,H,C)&T

13: M < Dk, (IV,C)

Enzy 1V 14: IV’<—F}(1(N,H,]W)

15:  if IV = IV’ then return M
16: return L

M [N o]

S 21: function Ak, x,(N,H,C,T)
Fk, D 22: IV « F% (N,H,C)®T
23: M « Di,(IV,C)

24: IV’ «+ Fi (N,H, M)

25: if IV = IV’ then return T
[ ¢ ] [T ] 2o roturn 1

Fig. 1. Left: Schematic illustration of the encryption of RIVg 7 with a PRF F and
a nonce-based encryption scheme II = (£€,D). Right: Definition of encryption and
decryption algorithms of RIVp, 7, and definition of a plaintext-leaking oracle A that
will be used in our security analysis.

space, and H,M,C C {0,1}* header, message, and ciphertext spaces, respec-
tively, and T = {0,1}7 a tag space. Let further F : Ky x {0, 1} x N'x H x M —
{0,1}" be a function and IT = (€, D) a nonce-based encryption scheme with asso-
ciated key space Ko and nonce space {0,1}7. Let Fi(-,-,-) denote Fg ({i)a,-,",").
Then, we define the AE scheme RIVp = (g, 75) with encryption algorithm
EKXNXxHxM — CxT and decryption algorithm D : K x N x HxCxT —
MU{L}, as given in Fig. 1.

Definition 3 (ﬁﬁ/) We define the SAE scheme F{I\VF’U = (£,D, A) with an
additional deterministic leakage algorithm A : K X N X HXC X T — M x {T},
as given in Fig. 1.

Feistel Structure and Encode-then-Encipher (EtE). RIV can be seen as
an application of the EtE [9] approach by Bellare et al. EtE can generically be
used for constructing a robust AE scheme from a tweakable cipher, assuming its
enciphering resists chosen-plaintext and chosen-ciphertext attacks [24]. The RIV
cipher, however, is essentially an unbalanced three-round Feistel-network.? It is
well-known that such ciphers are secure against chosen-plaintext, but vulnerable
to chosen-ciphertext attacks [35] (see also [2,36,42]). RIV is robust in spite of
its weak enciphering scheme, because its encoding operation has been chosen to
specifically cover this weakness.

3 If the used encryption scheme IT = (€, D) is nonce-keystream-based, the RIV cipher
is a three-round Feistel network.
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4 Security Notions

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We
use the notation A for the class of all computationally bounded adversaries
and A© for the output of A after interacting with some oracle ©. We write
AA(OL;0F) = suppe, | Pr[AoL = 1] - Pr[AoR = 1]| for the advantage of
A to distinguish between oracles O and OF. All probabilities are defined over
the random coins of the oracles and those of the adversary, if any. We write
Adv3 (g, 0,t) = maxaca{Advy (A)} to refer to the maximal advantage over all
X-adversaries A on a given function F that run in time at most ¢ and pose at
most g queries consisting of at most ¢ blocks in total to the available oracles. If A
shall distinguish between two sets of oracles (OF, ..., OF) and (OF,... , OF), we
refer to the i-th oracle that A interacts with by O; € {OF, OF}. By 0; — 0;,
we denote that A first queries O; and later O; with the output of ©;. Wlog.,
we assume that A never asks queries to which it already knows the answer. In
the case when A has access to multiple oracles Oy, ..., O, we denote by ¢; the
number of queries and by ¢; the maximal number of blocks that A poses at most
to oracle O0;, 1 <i < k.

If O; and Oj represent a family of algorithms indexed by inputs, the indices
must match, e.g., when ggH(M ) and 5?(”{(6’) represent encryption and decryp-
tion algorithms with a fixed key K and indexed by N and H, then Ex — Dg
says that A first queries EQ’H(M) and later DZ’H(C).

We define 1, when in place of an oracle, to always return the invalid
symbol L. We denote by $© an oracle that, given an input X, computes
Y — O(X), chooses uniformly at random a value Y’ from the space of all
possible outputs with |Y’| = |Y|, and returns Y’. We assume that $© performs
lazy sampling, i.e., $©(X) returns the same value when queried with the same

input X. We often omit the key for brevity, e.g., $5(X) will be short for $5x (X).

4.1 Security Definitions for Encryption Schemes

Definition 4 (PRF Advantage). Let F': K x X — Y be a function with non-
empty key space K, and A a computationally bounded adversary with access to
an oracle, where K « K and p « Func(X,Y). Then, the PRF advantage of A
on F is defined as AdvERT (A) := Aa(Fk;p).

Definition 5 (PRP Advantage). Let n,k > 1 be fized. Let E : {0,1}* x
{0,1}™ — {0,1}" be a block cipher and A a computationally bounded adversary
with access to an oracle. Further, let K « {0,1}* and 7 « Perm({0,1}"). Then,
the PRP advantage of A on E is defined as Advy™ (A) := Aa(Ex;m).

Stinson [48] showed that one can construct an (e; + €2)-AU family of hash
functions from the consecutive application of an €;-AU and an e3-AU family of
hash functions. From that we can derive the following theorem.
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Theorem 2. Let X, Y, Z C {0,1}* and let K be a non-empty set. Further, let
H={H:X — Y} be a family of e-AU hash functions and let G : KxY — Z be a
function. Then, we can define Fx(X) := Gx(H (X)), with independent K « K
and H « H. Let A be a PRF adversary on F that asks at most q queries of
at most £ blocks in total, and runs in time at most t. Then, there exists a PRF
adversary Ay on G that asks at most q queries and runs in time O(t) such that

AdviRF(A) < AdvERT(AL) +€-¢2/2.

Theorem 2 follows from the fact, that the PRF advantage of F' is upper
bounded by the maximal PRF advantage on G plus the maximal probability of
output collisions of the form H(X) = H(X') over g queries.

Definition 6 (nE Advantage [41]). Let II = (£, D) be a nonce-based encryp-
tion scheme and K « K. Let A be a nonce-respecting adversary with access to
an oracle. Then, the NE advantage of A on II is defined as Adv?jE(A) =
AA (5}(; $£)

We adapt the definition of indistinguishability from random bits from [23]
for nonce-based encryption schemes. Note that we strengthen it to adversaries
that do not repeat nonces over all encryption and decryption queries.

Definition 7 (SRND Advantage). Let be I = (£,D) a nonce-based encryp-
tion scheme and K « K. Let A be a nonce-respecting adversary with access to
two oracles O1 and Oz, s.t. A never asks for O1 — Oy and never repeats a

nonce over all its encryption and decryption queries. Then, we define the SRND
advantage of A on II as Advir P (A) := Aa(Ek, Dk; $¢,$7).

4.2 Security Definitions for Nonce-Based AE Schemes

For this subsection, let II = (5 , 5) be a nonce-based AE scheme, K « K, and
A be a computationally bounded adversary on I1.

Definition 8 (IND-CPA Advantage). Let A have access to an encryption
oracle. Then, the IND-CPA advantage of A with respect to II is defined as
AdvEPCPA(A) == AN (Ek; $9).

Definition 9 (INT-CTXT Advantage). Let A have access to two oracles Oy
and Os such that A never queries O — Os. Theq, t@e INT-CTXT advantage
of A on I is defined as Adv%\IT‘CTXT (A) := Pr[AfxPx forges], where “forges”
means that Dy returns anything other than L for a query of A.

Definition 10 (nAE Advantage [41]). Let A have access to two oracles O
and Oy such that A never queries O; < Os. Then, the NAE advantage of A on
11 is defined as Adv*"(A) := Aa(Ex, D $°, 1).

Bellare and Namprempre showed for probabilistic AE that chosen-ciphertext
security results from IND-CPA and INT-CTXT security [8]. Fleischmann
et al. proved in [19] a generalized theorem for nonce-based AE.



30 F. Abed et al.

Theorem 3 (Theorem 1 in [19]). Let A be a computationally bounded NAE
adversary on IT with access to two oracles 01 and Oy such that A never queries
01 — Oz; A makes at most g queries of total length of at most £ blocks and
runs in time at most ¢. Then, there exist an IND-CPA adversary A; on IT and
an INT-CTXT adversary As on IT, both making at most g queries of at most
¢ blocks and running in time O(t) each, such that

AdvEE(A) < AdvEPOPA(AL) + AdviETOTT(A).

4.3 Security Definitions for Subtle AE Schemes

Subtle AE (SAE) defines a compound security notion that provides guarantees
for privacy and authenticity under the existence of a leakage oracle. It comprises
the notions IND-CPA, INT-CTXT, and an additional notion ERR-CCA.

For this subsection, let IT = (£,D,A) be an SAE scheme, K, K’ « K x K
independent keys, and A a deterministic adversary with access to three oracles
01,05, and O3 such that A neither queries O; < Oy nor 07 — Os.

Definition 11 (ERR-CCA Advantage). The ERR-CCA advantage of A
on II is defined as Adv%RR"CCA(A) = Aa(€x, Dk, Ak; €k, Di, Ar).

Definition 12 (SAE Advantage). The SAE advantage of A on I is defined

as Adv%AE(A) = AA(gNK,ﬁKvAK§$gaJ-aAK’)'

In the full version of [7], Barwell et al. prove a statement equivalent to
Theorem 4. We apply Theorem 3 to decompose their AE security advantage
term into the separate advantages for IND-CPA and INT-CTXT.

Theorem 4. Let A run in time at most t and ask at most q queries of at most £
blocks to its respective oracles. Then, there exist computationally bounded IND-
CPA, INT-CTXT, and ERR-CCA adversaries Ay, Az, and Az, respectively,
on II such that

Adv%AE(A) < Adv%\TDfCPA(Al) + Adv%\TT—CTXT(Az) + AdV%RRfCCA (Ag),

where Ay, As, and Az each make at most q queries of at most £ blocks and run
in time O(t) each.

Since [4] omitted a compound notion for their security under release of unver-
ified plaintexts, Barwell et al. defined RUPAE as AA(gK,YSK, Vi; $5,25K/, 1)
[7, Theorem 3, Corollary 2]. They showed that the maximal SAE advantage on an
AE scheme IT is, with a reduction term, also equivalent to the maximal RUPAE
advantage. Moreover, they showed that — again with a reduction term - it is also
equivalent to the maximal robust-AE advantage on II with fixed stretch .
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5 Security Results for Generic RIV

This section summarizes our security results. For the remainder of this section,
let d,n,7 > 1 be integers, K1, K2 be non-empty key spaces, and K, Ko «
K1 x Ko be independent keys, F : K1 x {0,1}4 x N' x H x M — {0,1}", and
IT = (£,D) be a nonce-based encryption scheme with associated key space Ka.

Theorem 5. Let A be a computationally bounded SAE adversary on P{I\Vpﬂ
which asks at most q queries of at most £ blocks in total and runs in time at
most t. Then, there exists a computationally bounded PRF adversary A; on F
that asks at most 2q queries of at most 2(d + nt) bits and runs in time O(t),
and a computationally bounded SRND adversary Ao on II that asks at most q
queries of at most £ blocks in total and runs in time O(t) such that

2
< 8q” + 3¢q

SAE
AdVES  (A) < =0

RIV 1 +4- (AdVEﬂRF(Aﬂ + Adv%RND(A2)> .

Due to space limitations, the proof can be found in the full version of this
paper®. We can derive the following corollary for the NAE advantage on RIV g ;1
in the absence of a plaintext-leaking oracle.

Corollary 1. Let A be a computationally bounded NAE adversary on RIV g 1
which asks at most q queries of at most £ blocks in total and runs in time at
most t. Then, there exist a computationally bounded PRF adversary Ay on F
that asks at most 2q queries of at most 2(d + nl) bits and runs in time O(t),
and a computationally bounded SRND adversary As on II that asks at most q
queries of at most £ blocks in total and runs in time O(t), such that

2 2
AdviAE (A) < 2 +ta

<L +2-(AdngF(A1)+Adv§YRND(A2)).

The proof can be found can be found in the full version of this paper.

Proof Ideas. The intuition of our proofs is the following: in encryption direction,
for every fresh tuple of nonce, header, and message, I’ will produce a fresh
IV «— FL(N, H, M) that has not occurred before with overwhelming probability.
Since IT is SRND-secure, £ will produce a randomly chosen ciphertext. The
second invocation of F' with a fresh ciphertext then produces a random tag.
To determine the privacy advantage of the scheme, we have to bound only the
PRF-advantage on F', the SRND-security of £, and the probabilities of random
collisions of IV's from the birthday paradox.

In decryption direction, whenever the nonce, header, or ciphertext changes,
IV «— F%(N, H,C) will be a random value up to the birthday bound. Since I7 is
SRND-secure, a fresh IV (regarded over all encryption and decryption queries)
will produce a fresh pseudorandom plaintext. Thus, even when the adversary
learns the decrypted (invalid) message, M will provide it with no information

4 The full version of this paper will soon appear on ePrint.
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about other plaintexts as long as the IV does not repeat. When an adversary
changes N, H, or C and manages to cancel the difference by a fresh tag, the
second call to Fj (N, H, M) will yield a random IV’ that differs from IV with
probability close to 1/2™. Thus, a similar argumentation as for the encryption
also applies to the inverse direction. Finally, the domain separation from the
first parameter to F' protects against choices of (N, H, M) = (N, H,C).

6 Instantiation

Pseudo-Dot-Product Hashing. Let n,m > 1 with even m and let X =
UZ/12{071}2M. Given a set of m pair-wise independent key words K =
(K1, ..., Kpn) and an m-word input M = (My, ..., M,,), with M;, K; € {0,1}",
1 < i < m, a pseudo-dot-product (PDP) family of hash functions H = {H :
X x X — {0,1}?"} is defined as

m/2

Hi (M) := (Mai_y + Kai_1) - (Ma; + K;).

i=1

Bernstein [11] credits it to Winograd [51] and classifies it as (m, [m/2])-design,
i.e., it requires m independent key words and [m /2] multiplications to process m
message words. If modular additions and multiplications are performed within
the rings Zon and Zgzn, the construction is known as NH, to be 1/2"-AU, and
is used in variants in UMAC [13], VMAC [18,32], and HS1 [33]. All these con-
structions employ a multi-stage hashing process: the input is first compressed
with NH, before the results are used as inputs in a usual polynomial hash (and
optionally further processed by an inner-product hash). To obtain a slightly
higher security margin and efficiency, we consider a recently proposed variant,
called CLHASH.

6.1 CLHASH

CLHASH [34] is a family of multi-stage hash functions that produces 64-bit
hashes and employs a PDP family of hash functions CLNH, which resembles
NH, but replaces modular additions and multiplications with XORs and carry-
less multiplications in GF(25%)/p(x) with the irreducible polynomial p(x) = x%4+
x* +x% 4+ x + 1. Therefore, CLNH can exploit the vpclmulqdq instruction for
64-bit carry-less multiplication which was originally introduced for boosting the
performance of GCM [21].

CLHASH[m)] splits a given message M into (64m)-bit blocks (M, ..., Ms),
and pads the final block with zeroes such that its length becomes a multiple of
128 bits. Each block M; is compressed with CLNH to a 128-bit value A;. If
the message consists of only a single block, the message length |M]| is multiplied
with an independent key K € {0,1}%* and XORed to the result; the result is
reduced to a 64-bit value modulo p(x) = x5 + x* + x3 + x + 1 and returned.
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Algorithm 1. Definition of CLHASH' [m, t] with a hash length of 64t bits, a
block length of m/8 bytes, and ¢ Toeplitz iterations.

101: function CLHASH" [m, t]x (M) 301: function KEYGEN(K)
102: (Kn,Kp,Ka,Kr) — KEYGEN(K) 3020 &k« 64(m+ 2t — 2)
103: s« max([64-|M|/m],1) 303: Ky «— KJ[1..K]
104: (M, ..., M,) S oar 304: Kp «— K[(k+1)..(k + 128t)]
105:  Ms « PAD12s(M5) 305: K« k+ 128t
106: for i« 1tot do 306:  Ka — K[(k+1)..(k + 1281)]
107: for j < 1 to s do 307: Kk« K+ 128t
108: K; — KN(@i-1).m+26i-1) 308: K «— K[(k+1)..(k + 64t)]
109: A; « CLNH[m]x, (M;) 309:  return (Kn,Kp,Ka, K1)
110: if s =1 then 401: function PoLyk, (A1,...,As)
111: Hy — Ay 402: return @S, A; - Kp'
112: else 403: mod(2128 +4+2)
113: Kp; < Kp; mod 2'%° 501: function HASHLENg, (H;,|M|)
114: Oi — PoLYkp, (A1, ..., As) 502: return (H; ® (K - |M]))
115: Hi — CLNH[Q]KAi (Ol) 503: mod(264 + 27)
116: Hi « HasHLENk,; (Hs, |M]) 601: function PAD,(X)
117: return (Hy | --- || He) 602: if (|]X| mod n =0) then
201: function CLNH[m]x, (M) 603: return X

: . n—|X| mod n
202: return ;- (Mj2i71 P Kj2i—1) 604: return X ||0
203: '(MjQi@KjQi)

For longer messages, the values A; are processed by a polynomial hash with
an independent key Kp € {0,1}!?® and reduced modulo ¢(x) = x'?7 + x + 1.
For efficiency, the two most significant bits of Kp are fixed to zero, and a lazy
reduction modulo x'28 + x2 + x is used instead without affecting security.

The 128-bit result of the polynomial hash is then reduced to a 64-bit value
by another application of CLNH with two further independent key words
Ka,,Ka, € {0,1}54. The result H is finally XORed with the hashed length
to account for inputs of variable lengths, and is reduced to a 64-bit value.

In [34], the authors show that CLHASH is XOR-universal for messages of
up to b = 8m bytes, and e-AXU for messages of up to N bytes.

Theorem 6 (Lemma 9 in [34]). Let N > 1 denote the mazimal message
length in bytes, m > 2 be even, and b = 8m the key size of CLNH. Then,
CLHASH as defined above is e-AXU with

1 N/b—1 1
€ < €CLNH[m] + €Pory + €CLNH[2] < 561 + —oiz6 T e

where the terms stem from the facts that CLNH[m] is an ecinupm)-AU, and the
polynomial hash an epoy-AXU family of hash functions.

The recommended values N < 24 and b = 1024 yield € < 2.004/27%4. The
construction requires b+ 40 bytes of key material: b bytes for CLNH, a 16-byte
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value Kp for the polynomial hash, two eight-byte values K4[1], K 4[2] for the
final call to CLNH, and an eight-byte value K, for hashing the input length.

Toeplitz Extension. To obtain a hash function with 128-bit security, one can
process the same message twice under independent keys and concatenate the
results. Doubling the key lengths of Kp, K4, and K, increases their keys to 80
bytes. Since doubling the key length for CLNH would absurdly increase the key
material, we use the Toeplitz extension [31,37] instead. Let K; ; be short for
K;,...,K;,1<i<j. Given an e-AU family of hash functions H : {0,1}"" x
{0,1}™" — {0, 1}™ which compresses an m-word input with an m-word key, one
can derive a hash function H*: {0,1}(m+2t=2n » {0, 1} — {0,1}'™ by

H;(L.(,,,#zf,m (M) = HK1..m (M) ” HK&,(erz) (M) ” T ” HK(2£—1),.(7VL+2t72) (M)

So, the i-th call to H employs the key shifted by 2i—2 words. In total, the key size
increases slightly from m to m 4 2(t — 1) words. We refer to the Toeplitz version
of CLNH by CLNH[m,], and to that of CLHASH[m] by CLHASH [m, t].
Algorithm 1 provides a specification. In total, CLHASH' [m, t] requires (8m +
56t — 16) bytes of key material, which corresponds to (8m + 96) bytes for ¢ = 2.

Definition 13 (Toeplitz CLHASH). Letn = 64, ¢t > 1, m > 2 be even.
Let X = 20, 1}2m Let further Ky = {0,1}64m+1280=1) ", — {0, 1}128¢

Ka = {0, 1}128t ={0,1}% and K = Ky x Kp x K4 x K. The family
of keyed hash functions CLHASH [m,t] : K x X — {0,1}%% is defined in
Algorithm 1.

Theorem 7. For any fized n,t > 1, and even m > 2, CLNHT[m,t] is 27M-AU
on equal-length strings.

The proof of Theorem 7 can be found in the full version of this paper.

Theorem 8. Let N < 254 be the mazimal message length in bytes, t > 1, m > 2
be even, and b = 8m the key length for CLNH in bytes. Then, CLHASH[m, 1]
is an €' -AXU family of hash functions with

1 NWb-1 1 _ 3
€ < €cLNH[m] T €Powy F €cLNn) = 57 515 T 5e1 = e

The proof of Theorem 8 follows from Theorem 7 and the fact that the keys for
the individual iterations of polynomial, inner-product, and length hashing steps
are chosen uniformly from their respective spaces and pairwise independently
for each iteration. We can derive that CLHASH[m, 2] is e-AXU for € < 9/2'28
when m > 2.

6.2 Constructing a PRF

Let n,d > 1, and A, H, M be as in Sect.3. For brevity, we define ) :=
{0,1}4 x N x H x M. Let ENCODE : J) — {0,1}* define an injective encod-
ing function. Then, we can construct a PRF from the composition of ENCODE,
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Algorithm 2. Encryption of nonce-based XOR-CTR, instantiated with a block
cipher E : {0,1}* x {0,1}" — {0,1}", with n,k > 1.

1: function XOR-CTR[E].EX (M)
2: IV « Ex(N)

3: m o [|[M]|/n]
4.
5

k= Ex(IV o (O) [ - | Ex(IV & (m — 1))
return C — M @ klfirst | M| bits]

a family of e-AU hash functions H' = {H'|H’ : {0,1}* — {0,1}"}, and a block
cipher E : K3 x {0,1}"™ — {0,1}", with independent keys K; € K; determin-
ing the hash function, and Ks € K5 for the cipher. We call the construction
EHE[ENCODE, H', E] : Y — {0,1}" (for Encode-Hash-Encrypt) and define it as

EHE[ENCODE, H', E]k, k,(D,N,H,M) := Eg,(H, (ENCODE(D, N, H, M))).

We write EHE[H', E] or even EHE as short forms of EHE[ENCODE, H’, E]
when the components are clear from the context. The injective encoding excludes
collisions between distinct inputs. From Theorem 2, and applying the PRF/PRP
switching lemma, we can derive the following theorem.

Theorem 9. Let m « Perm({0,1}"). Further, let EHE[ENCODE, H', 7|, H’,
and ENCODE be defined as above. Let A be a computationally bounded adversary
that asks at most q queries of at most £ blocks and runs in time at most t. Then

q 1
AdVEEE[ENC()DE,'H’,ﬂ] (A) < <2> ’ (2" + 6) :

6.3 Encryption

When starting counter-mode encryption from a random value and incrementing
by modular addition, one has to either consider potential carry bits or to reduce
the security by fixing a maximal message length. Wang et al. [50] proposed
to replace modular addition by XOR, which avoids the need for concerning
carry bits. Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher. We define
XOR-CTRIE] = (€, D) as the nonce-based encryption scheme with encryption
algorithm XOR-CTRIE].E : {0,1}F x N x {0,1}* — {0,1}* and associated
non-empty nonce-space N, as defined in Algorithm 2.

We denote by XOR-CTR|r,n’] a version of XOR-CTR with two indepen-
dent n-bit permutations 7 and 7', where 7 is used for encrypting the nonce
and 7’ for producing the keystream. Then, XOR-CTR|[r,n’] is almost identi-
cal to the CTR2[r, 7] construction in [45], with the difference that the former
replaces the addition of IV and counter modulo 2" by XOR. Since this change
does not affect the probability of block-cipher inputs to repeat, the NE advan-
tage of XOR-CTR is given by Theorem 10, which adapts Theorem 3 in [45].
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Theorem 10. Let m, 7' « Perm({0,1}") x Perm({0,1}"™) be independent per-
mutations and A be a nonce-respecting NE adversary, which runs in time at
most t and poses at most q queries to its oracles with at most £ blocks. Then

EQ
Advg{%R—CTR[w,ﬂ’](A) < on”

From the fact that encryption and decryption of XOR-CTR|[r, '] are iden-
tical operations, we can derive the following theorem.

Theorem 11. There exists a reduction of a nonce-respecting SRND adversary
A with access to two oracles on XOR-CTRI[m, 7] to a nonce-respecting NE
adversary A’ on XOR-CTR[m, 7'] such that
SR
AdvYOReTRpr ) (A) < AAVXOR oTRir ] (AT),
where both A and A’ ask at most q queries of at most £ blocks to their available
oracle(s) and run in time O(t).

6.4 Instantiation of RIV

We instantiate RIV r ;7 with EHE[ENCODE, H’, E] for F, with CLHASH [m, 2]
as family of universal hash functions H’, and XOR-CTR[E] for II, with the
AES-128 as E. Algorithm 3 provides a specification. Our instantiation RIV g 17
expects a 128-bit user-supplied secret key SK, from which the remaining key
material is derived by calling Es (+) iteratively in counter mode. The secret key
is not used further. RIV uses n = 7 = 128, i.e., n-bit tags, and n-bit IV's for the
counter mode. Moreover, the nonce space is fixed to 128 bits: N' = {0,1}". For
F, it employs a four-bit domain separation, i.e., d = 4, and an injective encoding
function ENCODE : {0,1}¢ x N x H x M — {0,1}*, as defined in Algorithm 3.
Header and message lengths are restricted to multiple of eight bits. The maximal
number of header and message bytes to be encrypted under the same key are
260 bytes each. So, the maximal number of bytes for RIV is less than 262 bytes.
We recommend that at most 2°° bytes be encrypted under the same key.

Using a Single Key for the Block Cipher. There are four uses of the block
cipher E in RIV: in the first invocation of EHE, for encrypting the IV, for
generating the keystream in XOR-CTRI[E], and in the second invocation of
EHE. If four more calls to the AES key schedule would be tolerable, one could
use four independent keys. Alternatively, we use a single key for the uses of F,
and have to consider the security impact in the following theorem. Its proof can
be found in the full version of this paper.

Theorem 12. Let RIV g 1 be defined as in Algorithm 3. Let K1, Ky « K be
independent keys. We replace the calls to E by independent random permutations
71,2, T3, s « Perm({0,1}™)%. Let A be a computationally bounded adversary
that has access to three oracles O1, Oz, and O3z for encryption, decryption, and
leakage, respectively. A shall distinguish between a real setting of RIVp iz as
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Algorithm 3. Definition of our instantiation RIV g ;. Message and header
lengths are restricted to multiple of eight bits, and nonces/IVs/tags are 128
bits: n = 7 = 128, and d = 4. Here, we leave the key size of CLHASH [m, 2],
m, as a parameter to study its impact on performance later.

101: function ESK(N, H, M) 501: function ﬁSK(N, H,C,T)
102: (K., K2) — KEYGEN(SK) 502: (K1, K32) «— KEYGEN(SK)
103: IV « EHEj, g, (N, H, M) 503: IV « EHE%, x,(N,H,C) &

T
104: C «— XOR-CTR[E].€k,(IV,M) 504: M «— XOR-CTR[E].Dk,(IV,C)
105: T« EHE%, k,(N,H,C)® 1V  505: IV'«— EHEj, r,(N,H, M)
106: return (C,T) 506: if (JV =1IV’) then

201: function KEYGEN(SK) 507: return M
202:  Ks «— Esk({0)) 508: return L

203: K — (8m + 96)/16 601: function EncODE(D, N, H, X)
204: K1« Esx({(1)) || -+ || Esx((x)) 002 H — PAD12s(H)
205: return (K, K3) 603: X < PAD12g(X)

604: L (D)all{|H|/8)60 |l (|X]/8)6s

. . D —L==_ 1
301: function EHER x, (N, H, X) 605: return (H | N||X|I)

302: Y <« ENcopg(D, N, H, X) ,
303: return Ex,(H, (Y)) 701: function M, (X)

. 702: return CLHASH[m, 2]k, (X)
401: function PAD,(X)

402: if (|X| mod n = 0) then 801: function Ei, (X)
403: return X 802: return AES-128k, (X)

404: return X || on—IX| mod n

above with a single-keyed block cipher E, and RIV g which uses four indepen-

dent uniformly chosen permutations w*, 7%, 73, 74 « Perm({0,1}") with m! used

in EHE', 72 used in EHE?, and 7°, n* used for XOR-CTR[x?,7%]. A asks
at most q queries of at most £ blocks and runs in time at most t. Then, we can
upper bound the distinguishing advantage of A by

16.5¢% - max {e,1/2"} + AdvY (0 + 3¢, O(t)).

Theorem 13. Let d =4, n =7 =128, and m > 2 be even. Let RIVE 1 be as
given in Algorithm 3 and let A1, As, Az be computationally bounded IND-CPA,
INT-CTXT, and ERR-CCA adversaries on RIV g 17, respectively, which run
each in time at most t and ask at most q queries of at most £ blocks in total.
Then, it holds that

2 g2
<2q +/
- 271/

2 2
<2q +q+L
N

2 2
qu +§g+2€

Adviiy, n(A) + ¢+ g,

AdviNVEIXT(A) +q’e+ 0,
Adviys (oM (A) +2¢%e + 65,

where g = 16.50% - € + Advi, " (£ + 3¢, O(t)) and e < 9/2'28.
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The proof follows from Theorems 5, 8, 9, and 11, and those of the lemmata
from Sect. 5 that can be found in the full version of this paper.

6.5 Performance of RIV

We implemented reference and optimized versions of RIV in C.? Since the
default key length for one iteration CLNH of b = 1024 bytes (which corre-
sponds to CLHASHT[128,2]) appeared high, we tested also a variant with a
smaller key size of b = 256 bytes for CLNH (CLHASH'[32,2]). Table 1 sum-
marizes the results of our benchmarks. Our code was compiled using gecc v4.9.3
with options -03 -maes -mavx2 -mpclmul -march=native, and run on (1) an
Intel Core i5-4200M (Haswell) at 2.50 GHz, and (2) on an Intel i5-5200 (Broad-
well) at 2.20 GHz, both with the TurboBoost, SpeedStep, and HyperThreading
technologies disabled. For measuring, we used the median of 10000 encryptions,
omitting the cost for key setup, using the rdtsc instruction.

Our results show that RIV can run at less than 1.5 cpb on Haswell. Interest-
ingly, a SIV-like reduced version of RIV, which is an easily obtained byproduct
that simply omits the second call to F', represents a performant MRAE scheme
with < 1.04 cpb. This is slightly faster than the 4867/4096 ~ 1.17 c¢pb reported
for the manually assembly-optimized AES-GCM-SIV [22] and 1.06 cpb for the
version of MRO with four-round BLAKE2b in [20], concerning messages of at
least four KiB length on Haswell. Clearly, the reported performance of AEZv4
of about 0.7 ¢pb is unrivaled. Though, our construction provides a slightly higher
security margin. Moreover, the security of AEZv4 bases on heuristic assump-
tions on four-round AES.

Table 1. Performance results on Intel Haswell and Broadwell, respectively, in cycles
per byte for the encryption with optimized implementations of RIV and a reduced
version, which omits the second call to F'. b denotes the key length for CLNH in bytes.
Details regarding our setup are provided in the text.

Message length (bytes)

Platform |Instance b 128 | 256 | 512 1024|2048 | 4096 | 8192 | 16384
Haswell | RIV 256(3.812.782.14/1.81 |1.62 ' 1.48 |1.40 |1.37
RIV 1024 13.53|2.13|1.81|1.49 |1.37 |1.29 |1.25 ' 1.22

RIV (2-pass)| 256 |1.71|1.40|1.26 1.14 |1.08 | 1.04 | 1.01 | 0.99
RIV (2-pass) | 1024 | 2.20 | 1.60 | 1.17|1.08 | 1.01 | 0.97 | 0.94 | 0.92
Broadwell | RIV 256{3.16]2.41/1.84/1.49 |1.38 | 1.26 |1.20 |1.15
RIV 1024 13.13|2.11|1.56|1.34 |1.16 |1.09 |1.04 '1.02
RIV (2-pass)| 256 |2.16 |1.67|1.301.09 |1.03 | 0.95 | 0.92 | 0.90
RIV (2-pass) | 1024 2.191.50|1.14 | 1.01 1 0.92 | 0.86 |0.84 | 0.82

5 Our code is open to the public domain: https://github.com/medsec/riv.
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7 Conclusion

This work described a modular framework RIV for the construction of provably
secure subtle AE schemes by extending the SIV framework from two to three
passes. The obvious strength of RIV resides in the simplicity of its structure: it
allows a straight-forward transformation of existing SIV-based constructions into
subtle AE schemes. We proved the security in the standard model under notions
that strive for ideal security goals; a further step could be to prove achievable
security in the RAE setting with fixed stretch. Moreover, since the generic RIV
construction bases only on PRF assumptions, this leaves open the possibility
for proofs in the indifferentiability setting [40]. RIV is slightly less efficient than
earlier STPRP constructions, i.e., it employs three additional calls to an n-bit
PRP, compared to e.g., a single call in HCTR-based [50] constructions. Since
the use of a nonce-based encryption scheme (£, D) poses only the requirement on
the I'V to be a nonce, it might look to be sufficient to have two calls to universal
hash functions instead of to calls to a PRF F. Yet, at least the outputs from
the first invocation of F, F}(1(~, -,+) must be unpredictable in order to prevent
leaking information about the message in the tag. A potential future work can
be to further study reductions of the design to target even higher efficiency.
Nevertheless, we proposed an instantiation that is highly efficient on current x64
platforms and avoids the weak-key issues that were reported for GHASH-based
polynomials in HCTR instantiations [49].
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