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Abstract. The diagnosis problem amounts to deciding whether some
specific “fault” event occurred or not in a system, given the observations
collected on a run of this system. This system is then diagnosable if the
fault can always be detected, and the active diagnosis problem consists in
controlling the system in order to ensure its diagnosability. We consider
here a stochastic framework for this problem: once a control is selected,
the system becomes a stochastic process. In this setting, the active diag-
nosis problem consists in deciding whether there exists some observation-
based strategy that makes the system diagnosable with probability one.
We prove that this problem is EXPTIME-complete, and that the active
diagnosis strategies are belief-based. The safe active diagnosis problem is
similar, but aims at enforcing diagnosability while preserving a positive
probability to non faulty runs, i.e. without enforcing the occurrence of
a fault. We prove that this problem requires non belief-based strategies,
and that it is undecidable. However, it belongs to NEXPTIME when
restricted to belief-based strategies. Our work also refines the decidabil-
ity/undecidability frontier for verification problems on partially observed
Markov decision processes.

1 Introduction

Diagnosis for discrete event systems was introduced in [11], and can be described
as follows: a labeled transition system performs a run, which may contain some
specific events called faults. Some of the transition labels are observable, so one
gets information about the performed run through its trace, i.e. its sequence of
observed labels. The diagnosis problem then amounts to determining whether a
fault event occurred or not given the observed trace. The trace is called faulty
(resp. correct) if all runs that can have produced it contain (resp. do not con-
tain) a fault. In the remaining cases the trace is called ambiguous. Along with
the diagnosis problem comes the diagnosability question: does there exist an in-
finite ambiguous trace (thus forbidding diagnosis)? For finite transition systems,
checking diagnosability was proved to have a polynomial complexity [15].
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Diagnosis and diagnosability checking have been extended to numerous models
(Petri nets [3], pushdown systems [9], etc.) and settings (centralized, decentral-
ized, distributed), and have had an impact on important application areas, e.g.
for telecommunication network failure diagnosis. Several contributions have con-
sidered enforcing the diagnosability of a system. Under the generic name of active
diagnosis, the problems take quite different shapes. They range from the selec-
tion of minimal sets of observable labels that make the system diagnosable [4], to
the design of controllers that select a diagnosable sublanguage of a system [10],
and to online aspects that either turn on and off sensors [4, 13] or modify an
action plan [5] in order to reduce the amount of ambiguity. Probabilistic sys-
tems have also received some attention [7, 12], with two essential motivations:
determining the likelihood of a fault given an observed trace and defining di-
agnosability for probabilistic systems. Two definitions have been proposed: The
A-diagnosability, which requires that the ambiguous traces have a null probabil-
ity, and the weaker AA-diagnosability, which requires that fault likelihood will
converge to one with probability one. Interestingly, the A-diagnosability does
not depend on the specific values of transition probabilities, but only on their
support: it is thus a structural property of a system, which can be checked in
polynomial time on finite state systems.

Here we address the question of active diagnosis for stochastic systems. We
elaborate on two recent contributions. The first one [8] improves the work in [10]
and designs an observation-based controller that enables a subset of actions in
the system in order to make it diagnosable while preserving its liveness. Optimal
constructions are then proposed the most relevant for our work being the char-
acterization of unambiguous traces by a deterministic Büchi automaton with
minimal size. The second one [1] considers probabilistic Büchi automata, a sub-
class of partially observed Markov decision processes (POMDP), and proves that
checking the existence of strategies that almost surely achieve a Büchi condition
on POMDP is EXPTIME-complete. The result was later extended in [2]. This
motivates the use of POMDP as semantics for the models we consider.

The first contribution of this paper is a framework for the active diagnosis
problem of probabilistic systems. The models we consider are weighted and la-
beled transition systems, where some transitions represent a fault. Some of the
transition labels are observable, and similarly some are controllable. From a given
state of the system, and given a set of enabled labels, one derives a transition
probability by normalization of transition weights. The active diagnosis prob-
lem amounts to designing a label activation strategy that enforces the stochastic
diagnosability of the system while preserving its liveness. As a second contri-
bution, this problem is proved to be decidable, and EXPTIME complete. The
resulting strategies are belief-based, i.e. they only depend on the set of possible
states of the system given past observations, regardless of the exact values of
transition weights. As a third contribution, we introduce and analyze the safe
active diagnosis problem. It extends the active diagnosis by enforcing a posi-
tive probability of correct runs. In other words, this rules out strategies that
would reach diagnosability only by enforcing the occurrence of a fault. We prove
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that safe active diagnosis may require non belief-based strategies, and that the
existence of such strategies is an undecidable problem. This result refines the
decidability/undecidability frontier for POMDP: the existence of a strategy si-
multaneously ensuring a Büchi condition almost-surely and a safety condition
with positive probability is undecidable. This may seem surprising since the ex-
istence of strategies for each objective taken separately is decidable. As a last
contribution, we prove that, restricted to belief-based strategies, the safe active
diagnosis problem becomes decidable and belongs to NEXPTIME.

The paper is organized as follows: section 2 introduces the active diagnosis
problem for probabilistic systems, and compares it with the state of the art.
Section 3 proposes resolution techniques for active diagnosis. Section 4 analyzes
the safe active diagnosis problem. Section 5 concludes this work. A long version of
this paper including proofs is available at http://hal.inria.fr/hal-00930919

2 The Active Diagnosis Problem

This section recalls diagnosis problems from the literature, and formalizes the
new problems we are interested in.

2.1 Passive (Probabilistic) Diagnosis

When dealing with stochastic discrete event systems diagnosis, systems are often
modeled using labeled transition systems.

Definition 1. A probabilistic labeled transition system (pLTS) is a tuple A =
〈Q, q0, Σ, T,P〉 where:
– Q is a set of states with q0 ∈ Q the initial state;
– Σ is a finite set of events;
– T ⊆ Q×Σ ×Q is a set of transitions;
– P is the transition matrix from T to Q≥0 fulfilling for all q ∈ Q:∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labeled transition system (LTS) equipped with
transition probabilities. The transition relation of the underlying LTS is defined
by: q

a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in q. A
run over the word σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 such that

qi
ai+1−−−→ qi+1 for all i ≥ 0, and we write q0

σ
=⇒ if such a run exists. A finite run

over w ∈ Σ∗ is defined analogously, and we write q
w
=⇒ q′ if such a run ends at

state q′. A state q is reachable if there exists a run q0
w
=⇒ q for some w ∈ Σ∗.

On the other hand, forgetting the labels and merging the transitions with same
source and target, one obtains a discrete time Markov chain (DTMC).

Definition 2 (Languages of a pLTS). Let A = 〈Q, q0, Σ, T,P〉 be a pLTS.
The finite language L∗(A) ⊆ Σ∗ of A and the infinite language Lω(A) ⊆ Σω of
A are defined by:

L∗(A) = {w ∈ Σ∗ | ∃q : q0
w
=⇒ q } Lω(A) = { σ ∈ Σω | q0 σ

=⇒}

http://hal.inria.fr/hal-00930919
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Observations. In order to formalize problems related to diagnosis, we partition
Σ into two disjoint sets Σo and Σu, the sets of observable and of unobservable
events, respectively. Moreover, we distinguish a special fault event f ∈ Σu. Let
σ be a finite word; its length is denoted |σ|. For Σ′ ⊆ Σ, define PΣ′(σ), the
projection of σ on Σ′, inductively by: PΣ′(ε) = ε; for a ∈ Σ′, PΣ′(σa) =
PΣ′(σ)a; and PΣ′(σa) = PΣ′(σ) for a /∈ Σ′. Write |σ|Σ′ for |PΣ′(σ)|, and for
a ∈ Σ, write |σ|a for |σ|{a}. When σ is an infinite word, its projection is the
limit of the projections of its finite prefixes. This projection can be either finite
or infinite. As usual the projection is extended to languages. In the rest of the
paper, we will only use PΣo , the projection onto observable events, and hence
we will drop the subscript and simply write P instead of PΣo .

With respect to the partition of Σ = Σo 
 Σu, a pLTS A is convergent if
Lω(A) ∩ Σ∗Σω

u = ∅ (i.e. there is no infinite sequence of unobservable events
from any reachable state). When A is convergent, then for all σ ∈ Lω(A), one
has P(σ) ∈ Σω

o . In the rest of the paper we assume that pLTS are convergent and
we will call a sequence a finite or infinite word over Σ, and an observed sequence
a finite or infinite sequence over Σo. Clearly, the projection of a sequence on Σo

yields an observed sequence. Intuitively, a sequence describes the behavior of a
system during an execution, and an observed sequence represents how such a run
is perceived. Now, the role of diagnosis is to decide, for any observed sequence,
whether a fault has occurred or not.

Ambiguity. A finite (resp. infinite) sequence σ is correct if it belongs to (Σ\{f})∗
(resp. (Σ \ {f})ω). Otherwise σ is called faulty. A correct sequence and a faulty
sequence may have the same observed projection, yielding ambiguity.

Definition 3 (Classification of observed sequences). Let A be a pLTS.
An observed sequence σ ∈ Σω

o is called ambiguous if there exist two sequences
σ1, σ2 ∈ Lω(A) such that P(σ1) = P(σ2) = σ, σ1 is correct and σ2 is faulty. An
observed sequence σ′ ∈ P(Lω(A)) is surely faulty if P−1(σ′)∩Lω(A) ⊆ Σ∗fΣω.
An observed sequence σ′ ∈ P(Lω(A)) is surely correct if P−1(σ′) ∩ Lω(A) ⊆
(Σ \ {f})ω. These notions are defined analogously for finite observed sequences.

Example. Consider the (convergent) pLTS to the left in Fig. 1, where Σu =
{f, u}. We assume uniform distributions so we do not represent the probability
matrix P. This pLTS contains infinite ambiguous sequences: immediately after
a is observed, an ambiguity appears, and this ambiguity remains in all infinite
observed sequences without occurrence of d and finishing with abω. Removing
the loop at q2 and/or q4 makes all infinite ambiguous sequences disappear.

In the sequel, we will use the characterization of unambiguous sequences using
deterministic Büchi automata [8].

Definition 4 (Büchi automaton). A Büchi automaton over Σ is a tuple B =
〈Q, q0, Σ, T, F 〉 with 〈Q, q0, Σ, T 〉 its underlying LTS and F ⊆ Q an acceptance
condition. A run (qi)i≥0 is accepting if qi ∈ F for infinitely many values of i.
The language L(B) consists of all words in Σω for which there exists an accepting
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Fig. 1. Two examples of pLTS (cLTS), with Σu = {f, u} and Σo = {a, b, c, d, e}

run. A Büchi automaton is deterministic if for all q, a, {q′ | q a−→ q′} is either a
singleton or the empty set.

Theorem 1 ([8]). Given a pLTS A with n states, one can build in exponential
time a deterministic Büchi automaton B with 2O(n) states whose language is the
set of unambiguous sequences of A.

We briefly sketch the structure of B. Its states are triples 〈U, V,W 〉, where
U, V,W ⊆ Q, U ∪ V ∪W �= ∅ and V ∩W = ∅, and its transitions are labeled by
events from Σo, that is B recognizes observed sequences. The initial state of B
is 〈{q0}, ∅, ∅〉. Given an observed sequence σ reaching state 〈U, V,W 〉, U is the
set of states of A reached by a correct sequence with projection σ, and V ∪W
is the set of states of A reached by a faulty sequence with projection σ. When
U = ∅, σ is the projection of faulty sequences of A. The decomposition between
V and W reflects the fact that B tries to “solve the ambiguity” between U and
W (when both are non empty), while V corresponds to a waiting room of states
reached by faulty sequences that will be examined when the current ambiguity
is resolved. Given some new observation a, a transition from 〈U, V,W 〉 to the
new state 〈U ′, V ′,W ′〉 is defined as follows. U ′ is the set of states reached from
U by a correct sequence with projection a. Let Y be the set of states reached
from U by a faulty sequence with projection a, or reached from V by a sequence
with projection a. When W is non empty then W ′ is the set of states reached
from W by a sequence with projection a and V ′ = Y . Otherwise, the faulty
sequences ending in states memorized by W cannot be extended by a sequences
with projection a, and we set V ′ = ∅ and W ′ = Y . The ambiguity between
U and W has been resolved, but new ambiguity may arise between U ′ and
W ′. Accepting states in F are triples 〈U, V,W 〉 with U = ∅ or W = ∅. Hence,
all infinite observed sequence of A passing infinitely often through F are not
ambiguous (they resolve ambiguities one after another) and are accepted by B.

We are now in position to define diagnosability. It is well-known that given a
pLTS A and a Büchi automaton B, the set of sequences of A accepted by B is
measurable [14]. So the following definition is sound.
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Definition 5 (Diagnosability). A pLTS A is diagnosable if the set of se-
quences yielding ambiguous observed sequences has null measure.
It is safely diagnosable if it is diagnosable and the set of correct sequences has
positive measure.

The notion of a safely diagnosable pLTS is introduced to ensure that fault
occurrence is not almost sure. This property is important: a diagnosable system
which is not safely diagnosable contains only faulty infinite runs. In the rest of the
paper, we will consider active diagnosis, that is, ways to force a system to become
diagnosable using a controller. If a controlled system is not safely diagnosable,
then the diagnosis solution enforced by the controller is not acceptable.

Example. Consider again the pLTS to the left in Fig. 1. The only ambiguous
observed (infinite) sequences necessarily terminate with abω. But the probability
to produce such a sequence is null, as the system will reach q5 with probability
one. In other words, ambiguity vanishes at the first occurrence of d or cb. Since cb
occurs with probability one, this pLTS is diagnosable. This pLTS is also safely
diagnosable, as it can produce correct sequences with a positive probability:
there is a positive probability to reach q5 by sequence uac. If one removes state
q5 and its connected transitions, the system remains diagnosable, but is not
safely diagnosable anymore: as the graph of the pLTS is strongly connected,
every transition will be visited (infinitely often) with probability 1 implying
that f occurs.

2.2 Active Probabilistic Diagnosis

In order to allow control over the actions of a system while preserving the pos-
sibility of a probabilistic semantic, we introduce controllable weighted labelled
transition system where probabilities are replaced by weights.

Definition 6. A controllable weighted labelled transition system (cLTS) is a
tuple C = 〈Q, q0, Σ, T 〉 where:
– Q is a finite set of states with q0 ∈ Q the initial state;
– the event alphabet Σ is partitionned into observable Σo and unobservable Σu

events, and also partitionned into controllable Σc and uncontrollable Σe (e
for environment) events;

– Σu = {f, u} contains a faulty event, and a non-faulty one;
– T : S × Σ × S → N is the transition function, labelling transitions with

integer weights.

A cLTS has an underlying LTS where the transition relation is defined by q
a−→

q′ if T (q, a, q′) > 0. All previous definitions that do not depend on probabilities
equally apply to cLTS. We denote by Ena(q) the set of events that are enabled
in q: Ena(q) = {a ∈ Σ | ∃q′, T (q, a, q′) > 0}. We assume that the cLTS is
convergent and live: for all q, Ena(q) �= ∅.
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Let C = 〈Q, q0, Σ, T 〉 be a cLTS. For q ∈ Q and Σ• ⊆ Σ, we define

GΣ•
(q) =

∑

a∈Σ•, q′∈Q

T (q, a, q′)

as the (possibly null) global outgoing weight from q restricted to Σ•-events.
Similarly, we define a normalization of the transition relation restricted to Σ•

by

TΣ•
(q, a, q′) =

{
T (q,a,q′)
GΣ• (q) if a ∈ Σ• and T (q, a, q′) > 0

0 otherwise

For a given finite set X , we define by Dist(X) the set of probabilistic distribu-
tions over X . Let x ∈ X , we denote by 1x the Dirac distribution on x. For a dis-
tribution δ ∈ Dist(X), the support of δ is the set Supp(δ) = {x ∈ X | δ(x) > 0}.

A strategy for a cLTS C is a mapping π : Σ∗
o → Dist(2Σ) such that for every

σ ∈ Σ∗
o , for every Σ′ ∈ Supp(π(σ)), Σ′ ⊇ Σe. A strategy consists in, given some

observation, randomly choosing a subset of allowed events that includes the un-
controllable events. Given a cLTS C and a strategy π, we consider configurations
of the form (σ, q,Σ•) ∈ Σ∗

o ×Q× 2Σ where σ is the observed sequence, q is the
current state and Σ• is a set of events allowed by π after observing σ. We define
inductively the set Reachπ(C) of reachable configurations under π:

– for all Σ• ∈ Supp(π(ε)), (ε, q0, Σ
•) ∈ Reachπ(C);

– for all (σ, q,Σ•) ∈ Reachπ(C), for all a ∈ Σu ∩ Σ•, such that q
a−→ q′

(σ, q′, Σ•) ∈ Reachπ(C), denoted (σ, q,Σ•) a−→π (σ, q′, Σ•);
– for all (σ, q,Σ•) ∈ Reachπ(C), for all a ∈ Σo ∩ Σ• such that q

a−→ q′ and
Σ•′ ∈ Supp(π(σa)), (σa, q′, Σ•′) ∈ Reachπ(C),
denoted (σ, q,Σ•) a−→π (σa, q′, Σ•′).

A strategy π is said to be live if for every configuration (σ, q,Σ•) ∈ Reachπ(C),
GΣ•

(q) �= 0. Live strategies are the only relevant strategies as the other strategies
introduce deadlocks. We are now in position to introduce the semantics of a
cLTS. It is defined w.r.t. to some live strategy π as a pLTS. Its set of states
is Reachπ(C) with an initial state whose goal is to randomly select w.r.t. π the
initial control. The transition probabilities are defined by TΣ•

accordingly to
the current control Σ• except that when an observable action occurs it must be
combined with the random choice (w.r.t. π) of the next control.

Definition 7. Let C be a CLTS and π be a live strategy, the pLTS Cπ induced
by strategy π on C is defined as Cπ = 〈Qπ, Σ, q0π, Tπ,Pπ〉 where:
– Qπ = {q0π} ∪ Reachπ(C);
– for all (ε, q0, Σ

•) ∈ Reachπ(C), (q0π, u, (ε, q0, Σ•)) ∈ Tπ;
– for all (σ, q,Σ•), (σ′, q′, Σ•′) ∈ Reachπ(C),(

(σ, q,Σ•), a, (σ′, q′, Σ•′)
) ∈ Tπ iff (σ, q,Σ•) a−→π (σ′, q′, Σ•′);

– for all (ε, q0, Σ
•) ∈ Reachπ(C), Pπ(q0π, u, (ε, q0, Σ

•)) = π(ε)(Σ•);
– for all ((σ, q,Σ•), a, (σ, q′, Σ•)) ∈ Tπ, for all a ∈ Σu ∩Σ•,

Pπ ((σ, q,Σ
•), a, (σ, q′, Σ•)) = TΣ•

(q, a, q′);
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– for all
(
(σ, q,Σ•), a, (σa, q′, Σ•′

)
)
∈ Tπ, for all a ∈ Σo ∩Σ•,

Pπ

(
(σ, q,Σ•), a, (σa, q′, Σ•′

)
)
= TΣ•

(q, a, q′) · π(σ.a)(Σ•′).

We can now formalize the decision problems we are interested in.

Definition 8 ((Safe) Active probabilistic diagnosis). Given a cLTS C =
〈Q, q0, Σ, T 〉, the active probabilistic diagnosis problem asks, whether there exists
a live strategy π in C such that the pLTS Cπ is diagnosable. The safe active
probabilistic diagnosis problem asks whether there exists a live strategy π in C
such that the pLTS Cπ is safely diagnosable. The synthesis problems consists in
building a live strategy π in C such that the pLTS Cπ is (safely) diagnosable.

Example. Consider the cLTS to the right in Fig. 1 with all weights equal to 1
and Σo = Σc. Without control, the system is not diagnosable as the observed
sequence aadcbω is ambiguous, and it has a positive probability. So the strategy
should disable action a for each correct observed sequence ending by ab∗. In
addition, if this strategy always forbids c, the system becomes diagnosable, but
the occurrence of a fault is enforced: so it is not safely diagnosable. Alternatively,
if the strategy always forbids e, the system becomes safely diagnosable, as we
obtain a pLTS “weakly probabilistically bisimilar” to the one on the left in Fig. 1.

3 Analysis of the Active Probabilistic Diagnosis Problem

To solve the active probabilistic diagnosis problem, we reduce it to a decid-
able problem on POMDP: namely, the existence of a strategy ensuring a Büchi
objective with probability one [1, 2].

Definition 9 (POMDP). A partially observable Markov decision process
(POMDP) is a tuple M = 〈Q, q0,Obs,Act, T 〉 where
– Q is a finite set of states with q0 the initial state;
– Obs : Q → O assigns an observation O ∈ O to each state.
– Act is a finite set of actions;
– T : Q×Act → Dist(Q) is a partial transition function. Letting Ena(q) = {a ∈

Act | T (q, a) is defined}, we assume that:

• for all q ∈ Q, Ena(q) �= ∅, and
• whenever Obs(q) = Obs(q′) = O, then Ena(q) = Ena(q′) and slightly
abusing our notation, we will denote by Ena(O) the set of events enabled
in every state with observation O.

A decision rule is an item of Dist(Act) that resolves non-determinism by ran-
domization. A strategy maps histories of observations to decision rules. For-
mally, a strategy is a function π : O+ → Dist(Act) such that for all O1 · · ·Oi,
Supp(π(O1 · · ·Oi)) ⊆ Ena(Oi). Given a strategy π and an initial distribution δ
over states, a POMDP M becomes a stochastic process that can be represented
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by a possibly infinite pLTS denoted M(π). One denotes Pδ
π(Ev) the probability

that event Ev is realized in this process.
A belief is a subset ofObs−1(O) for some observationO that corresponds to the

possible reachable states w.r.t. some sequence of observations. The initial belief
is {q0} and given a current belief B, a decision rule δ and a observation O, the
belief Δ(B, (δ,O)) obtained after δ has been applied and O has been observed
is defined by:

⋃
q∈B,a∈Supp(δ) Supp(T (q, a)) ∩ Obs−1(O). A strategy which only

depends on the current belief is called a belief-based strategy.
In order to provide a POMDP MC for the diagnosis problems of a cLTS C, we

face several difficulties. First, in a cLTS the observations are related to actions
while in a POMDP they are related to states. Fortunately all the information
related to ambiguity is included in the deterministic Büchi automaton described
in section 2. Thus (with one exception) the states are pairs of a state of the Büchi
automaton and a state of the cLTS. In C, the control is performed by allowing a
subset of events. Thus actions ofMC are subset of events that includes the uncon-
trollable events. Given some control Σ′, for defining the transition probability
of MC from (l, q) to (l′, q′), one must consider all paths in C labelled by events of
Σ′ from q to q′ such that the last event (say b) is the single observable one. The
probability of any such path is obtained by the product of the individual step
probabilities. The latter are then defined by the normalization of weights w.r.t.
Σ′. They cannot be infinite paths of unobservable events due to the convergence
of C. However some path can reach a state where no event of Σ′ is possible. In
other words, the control Σ′ applied in (l, q) has a non null probability to reach a
deadlock (i.e. the chosen decision rule leads to a non live strategy for the cLTS).
In order to capture this behaviour and to obtain a non defective probability dis-
tribution, we add an additional state lost, that corresponds to such deadlocks.
The next definition formalizes our approach.

Definition 10. The POMDP MC = 〈QM, qM0 ,Obs,Act, TM〉 derived from a
cLTS C = 〈Q, q0, Σ, T 〉 and its associated deterministic Büchi automaton B =
〈L, l0, Σo, T

B, F 〉 is defined by:

– QM = L×Q 
 {lost} with qM0 = ((l0, q0);

– the set of observations is O = L ∪ {lost}, with
Obs((l, q)) = l and Obs(lost) = lost;

– Act = {Σ′ | Σ′ ⊇ Σe};
– for all (l, q) ∈ QM and Σ′ ∈ Act, TM((l, q), Σ′) = μ where:

• μ((l′, q′)) is defined by (with qn = q when n = 0):

∑

l
b−→l′

b∈Σ′∩Σo

∑

q
a1−→q1···

an−−→qn
b−→q′

a1···an∈Σ′∩Σu

TΣ′
(q, a1, q1) ·

(n−1∏

i=1

TΣ′
(qi, ai+1, qi+1)

)
· TΣ′

(qn, b, q
′)
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• μ(lost) is defined by:

∑

q
a1−→q1···

an−−→qn
a1···an∈Σ′∩Σu

GΣ′
(qn)=0

TΣ′
(q, a1, q1) ·

n−1∏

i=1

TΣ′
(qi, ai+1, qi+1)

– TM(lost, Σ′) = 1lost for all Σ′ ∈ Act.

Given C, the construction of the Büchi automaton B is performed in expo-
nential time. The construction of MC is also done in exponential time. Indeed,
there is an exponential blowup for Act but again w.r.t. C. Finally, while the dis-
tributions μ of action effects are presented in the definition as sums over paths
of C, each one can be computed by a matrix inversion in polynomial time (as
done in discrete time Markov chains).

The next lemma is a straightforward consequence of the properties of B and
the above definition of MC . Here we use LTL notations to denote sets of paths
in a POMDP, such as �, � and �� for eventually, always and infinitely often
respectively.

Lemma 1. C is actively diagnosable if and only if there exists a strategy π in
MC such that Pq0

π (MC |= ��(W = ∅ ∨ U = ∅)) = 1.
Moreover, C is safely actively diagnosable if and only if there exists a strategy

π in MC such that Pq0
π (MC |= ��(W = ∅ ∨ U = ∅)) = 1 and Pq0

π (MC |= �(U �=
∅)) > 0 .

In the statement of Lemma 1, W = ∅ ∨ U = ∅ is a shorthand to denote the
set of states (〈U, V,W 〉, q) in MC such that either W = ∅ or U = ∅; similarly,
U �= ∅ represents the set of states (〈U, V,W 〉, q) such that U �= ∅. As a conse-
quence of Lemma 1, the active diagnosis problem for controllable LTS reduces to
the existence of an almost-sure winning strategy for a Büchi objective on some
exponential size POMDP.

Theorem 2. The active probabilistic diagnosis decision and synthesis problems
are EXPTIME-complete. There exists a family (Cn)n∈N of actively diagnosable
cLTS with the size of Cn in O(n), and such that any winning strategy for MCn

diagnosable requires at least 2Ω(n) memory-states.

The EXPTIME upper bound may seem surprising, since MC is exponential in
the size of C, and the procedure to decide whether there exists a strategy in a
POMDP to ensure a Büchi objective with probability 1 is in EXPTIME, due
to the use of beliefs. However, in the POMDP MC we consider, the information
on the belief is already contained in the state (〈U, V,W 〉, q), as U ∪ V ∪ W .
Therfore, a second exponential blowup, due to the beliefs, is avoided and the
active probabilistic diagnosis problem remains in EXPTIME.
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4 Analysis of the Safe Active Probabilistic Diagnosis
Problem

As will be shown below, the status of the active diagnosis problem changes when
the safety requirement is added. The next proposition highlights this difference
and it is the basis for the undecidability result of Theorem 3.

Proposition 1. There exists a cLTS which is safely actively diagnosable and
such that all belief-based strategies are losing.

Proof. Let us consider the cLTS of Figure 2 with Σu = {u, f} and Σe = {u, f, c},
and where all weights are equal to 1.

q0q1q2 r1 r2

r0

fu aa

a f

aa a

c

a

Fig. 2. A cLTS with only non belief-based strategies for safe diagnosis

Pick any sequence of positive integers {αi}i≥1 such that
∏

i≥1 1 − 2−αi > 0.

Define A = {a} ∪ Σe and A = {a} ∪ Σe. We claim that the strategy π that
consists in selecting, after n observations, the nth subset in the following sequence
Aα1AAα2A . . ., is winning. Observe that after an observable sequence of length
i ≤ α1, the system is either after a faulty sequence in r1 with probability 1

2 , or
after a correct sequence in q1 with probability 2−i−1, or after a correct sequence
in q2 with probability 1

2 (1 − 2−i). So, after an observable sequence of length
α1 + 1, the system is either after a faulty sequence in r2 with probability 1

2 , or
after a faulty sequence in r1 (via r0) with probability 2−α1−1, or after a correct
sequence in q1 with probability 1

2 (1−2−α1). At the next step, the faulty sequence
in r2 is then detected by the occurrence of c.
Iterating this process we conclude that:

– any fault that may occur after π is applied up to Aα1AAα2A . . . AαiA, is de-
tected after π is applied up to Aα1AAα2A . . . Aαi+1AA. So the (full) strategy
π = Aα1AAα2A . . . surely detects faults.

– the probability that there is an infinite correct sequence is equal to 1
2

∏
i≥1 1−

2−αi > 0, due to our choice of the αi’s. Therefore, correct sequences have
positive probability under π.
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Consider a belief-based strategy π. There are three possible subsets of allowed
events: A, A and Σ. The decision rule associated with belief {q0} must allow a
in order to get the possibility of a correct sequence which, in case a occurs, leads
to belief {q1, q2, r1}. We should clarify here that beliefs do not correspond to the
possible current states. They represent the possible states after the last observed
event. For instance, when the belief is {q0}, the current state may either be q0,
or q1 after action u, or r1 after fault f . Consider the (randomized) decision rule
of π associated with belief {q1, q2, r1}: pA · A + pA · A + pΣ · Σ (denoted p). If
pA = 1, then the possible first fault remains undetected, and π is losing. So a
may occur leading to belief {q1, r0, r2}.

Consider the decision rule of π associated with belief {q1, r0, r2}: p′A ·A+ p′
A
·

A+ p′Σ ·Σ (denoted p′). If p′
A
= 1, then at the next instant, there is no possible

correct sequence, and π is losing.
So p′

A
< 1 and pA < 1. Assume now that the current distribution of states

is αq1 + βr0 + (1− α− β)r2 (with belief {q1, r0, r2}). The distribution after the
next occurrence of a is defined by αp,p′αq1 + (1− αp,p′)αr0 + (1− α)r2, where
αp,p′ < 1 only depends on p and p′. A correct sequence implies an infinite
number of a; after n occurrences of a the probability of a correct sequence is
bounded by αn

p,p′ . So the probability of an infinite correct sequence is null, and
π is losing. ��
Theorem 3. The safe active diagnosis problem for cLTS is undecidable.

Proof (sketch). We perform a reduction from the following undecidable problem:
given a blind POMDP and a set F of states, does there exist a strategy that
ensures the Büchi objective ��F with positive probability. The structure of the
cLTS we construct is similar to the one of the example from Fig. 2, except that
the states q1 and q2 are replaced with two copies of the POMDP. Consistently
a and a are replaced by two copies of the alphabet of the POMDP with one of
them bared. From F states in the first copy, with a non bared action one moves
to the second one, and from any state, with bared actions, one moves back from
the second copy to the first one, or moves from the first copy to r0.

The following immediate corollary is interesting since both the existence
of a strategy achieving a Büchi objective almost surely, and the existence of
strategy achieving a safety objective with positive probability are decidable for
POMDP [2,6].

Corollary 1. The problem whether, given a POMDP M with subsets of states F
and I, there exists a strategy π with Pπ(M |= ��F ) = 1 and Pπ(M |= �I) > 0,
is undecidable.

Given that the general safe active diagnosis problem is undecidable, and that
belief-based strategies are not sufficient to achieve safe diagnosability, we con-
sider now the restriction of the safe active diagnosis problem to belief-based
strategies. Similarly to the case of active diagnosis, we reduce the safe active
probabilistic diagnosis for belief-based-strategies to some verification question
on POMDP.
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Theorem 4. The safe active probabilistic diagnosis problem restricted to belief-
based strategies is in NEXPTIME and EXPTIME-hard.

5 Conclusion

We studied the active diagnosis and safe active diagnosis problems for proba-
bilistic discrete event systems, within a unifying POMDP framework. While the
active diagnosis problem is EXPTIME-complete, the safe active diagnosis prob-
lem is undecidable in general, and belongs to NEXPTIME when restricted to
belief-based strategies. Since the lower and upper bounds do not coincide for the
latter problem, we strive to close the gap between these bounds in future work.
More generally, we will investigate the safe active diagnosis problem restricted
to finite-memory strategies. Another problem, closely related to diagnosability,
is the predictability problem: given any observation, can we detect that the oc-
currence of a fault before it happens? Last, given the tight relation probabilistic
diagnosis has with verification problems for POMDP, we plan to investigate
further POMDP problems with multiple objectives.
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