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Abstract. In this paper we consider the following fundamental problem:
What is the simplest possible construction of a block cipher which is
provably secure in some formal sense? This problem motivated Even and
Mansour to develop their scheme in 1991, but its exact security remained
open for more than 20 years in the sense that the lower bound proof
considered known plaintexts, whereas the best published attack (which
was based on differential cryptanalysis) required chosen plaintexts. In
this paper we solve this open problem by describing the new Slidex attack
which matches the T = Ω(2n/D) lower bound on the time T for any
number of known plaintexts D. Once we obtain this tight bound, we can
show that the original two-key Even-Mansour scheme is not minimal in
the sense that it can be simplified into a single key scheme with half as
many key bits which provides exactly the same security, and which can
be argued to be the simplest conceivable provably secure block cipher.
We then show that there can be no comparable lower bound on the
memory requirements of such attacks, by developing a new memoryless
attack which can be applied with the same time complexity but only in
the special case of D = 2n/2. In the last part of the paper we analyze the
security of several other variants of the Even-Mansour scheme, showing
that some of them provide the same level of security while in others the
lower bound proof fails for very delicate reasons.

Keywords: Even-Mansour block cipher, whitening keys, minimalism,
provable security, tight security bounds, slide attacks, slidex attack.

1 Introduction

A major theme in cryptographic research over the last thirty years was the
analysis of minimal constructions. For example, many papers were published on
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the minimal cryptographic assumptions which are necessary and sufficient in
order to construct various types of secure primitives. Other examples analyzed
the smallest number of rounds required to make Feistel structures with truly
random functions secure, the smallest possible size of shares in various types of
secret sharing schemes, and the simplest way to transform one primitive into
another by using an appropriate mode of operation. Since the vague notion
of conceptual simplicity only partially orders all the possible schemes, in many
cases we have to consider minimal schemes (which are local minima that become
insecure when we eliminate any one of their elements) rather than minimum
schemes (which are global minima among all the possible constructions).

In the case of stream ciphers, one can argue that the simplest possible secure
scheme is the one-time pad, since any encryption algorithm requires a secret key,
and XORing is the simplest conceivable way to mix it with the plaintext bits.
The question we address in this paper is its dual: What is the simplest possible
construction of a block cipher which has a formal proof of security?

This problem was first addressed by Even and Mansour [8,9] in 1991. They
were motivated by the DESX construction proposed by Ron Rivest in 1984 [15],
in which he proposed to protect DES against exhaustive search attacks by XOR-
ing two independent prewhitening and postwhitening keys to the plaintext and
ciphertext (respectively). The resultant scheme increased the key size from 56 to
184 bits without changing the definition of DES and with almost no additional
complexity. The Even-Mansour scheme used such whitening keys but eliminated
the keyed block cipher in the middle, replacing it with a fixed random permu-
tation that everyone can share. The resultant scheme is extremely simple: To
encrypt a plaintext, XOR it with one key, apply to it a publicly known permu-
tation, and XOR the result with a second key.

To argue that the Even-Mansour scheme is minimal, its designers noted in [9]
that eliminating either one of the two XORed keys makes it easy to invert the
known effect of the permutation on the plaintext or ciphertext, and thus to
recover the other key from a single known plaintext/ciphertext pair. Eliminating
the permutation is also disastrous, since it makes the scheme completely linear.
In fact, the two-key EM block cipher is not minimal in the sense that it can be
further simplified into a single-key variant with half as many key bits which has
exactly the same security.

To compare various variants of the Even-Mansour scheme, we need tight
bounds on the exact level of security they provide. Unfortunately, all the bounds
published so far are not tight in the sense that the lower bound allows known
message attacks whereas the best known upper bounds require either chosen
plaintexts or an extremely large number of known plaintexts.

One of the main tools used in previous attacks was the slide attack [3]. Origi-
nally, slide attacks were developed in order to break iterated cryptosystems with
an arbitrarily large number of rounds by exploiting their self similarity under
small shifts. The attack searched the given data for a slid pair of encryptions
which have identical values along their common part (see Section 3.2 for formal
definitions). For each candidate pair, the attack uses the two known plaintexts
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and two known ciphertexts to analyze the two short non-common parts in order
to verify the assumption that the two encryptions are indeed a slid pair, and if so
to derive some key material. A different variant of this attack, called slide with a
twist [4], tries to find a slid pair consisting of one encryption and one decryption,
which have identical values along their common parts (i.e., the attack considers
both shifts and reversals of the encryption rounds). In both cases, the existence
of slid pairs is a random event which is expected to have a sharp threshold: Re-
gardless of whether we use known or chosen messages, we do not expect to find
any slid pairs if we are given fewer than 2n/2 encryptions where n is the size of
the internal state.1 Consequently, we cannot apply the regular or twisted slide
attack unless we are given a sufficiently large number of encryptions, even if we
are willing to trade off the lower amount of data with higher time and space
complexities.

In this paper we propose the slidex attack, which is a new extended version of
the slide attack that can efficiently use any amount of given data, even when it
is well below the 2n/2 threshold for the existence of slid pairs. Its main novelty
is that we no longer require equality between the values along the common part,
but only the existence of some known relationship between these values. By
using this new attack, we can finally close the gap between the upper and lower
bounds on the security of the Even-Mansour scheme.

To demonstrate the usefulness and versatility of the new slidex attack, we
apply it to several additional schemes which are unrelated to Even-Mansour. In
particular, we show how to break 20 rounds of GOST using 233 known plain-
texts in 277 time. In the extended version of this paper [7] we show several
additional attacks, such as how to use the complementation property of DES in
order to attack it with a slide attack even when it is surrounded by Vaudenay’s
decorrelation modules.

The paper is organized as follows. In Section 2 we introduce the Even-Mansour
scheme, describe its formal proof of security, and survey all the previously pub-
lished attacks on the scheme. In Section 3 we describe the known types of slide
attacks, and explain why they cannot efficiently exploit a small number of known
plaintexts. We then introduce our new Slidex attack, and use it to develop a new
upper bound for the security of the Even-Mansour scheme which matches the
proven lower bound for any number of known plaintexts. In Section 4 we describe
the single-key variant of the Even-Mansour scheme, which is strictly simpler but
has the same level of provable security. In Section 5 we analyze the security
of several other variants of the Even-Mansour scheme, demonstrating both the
generality and the fragility of its formal proof of security. Another limitation of
the proof technique is described in Section 6, where we show that no comparable
lower bound on the memory complexity of our attacks can exist. Finally, in the
Appendix we describe the mirror slide attack, which is a generalization of the
slidex attack.

1 We note that for specific block cipher structures, e.g., Feistel networks, a dedicated
slide attack can require fewer than 2n/2 plaintexts. However, there is no such method
that works for general structures.
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2 The Even-Mansour Scheme

In this section we present the Even-Mansour (EM) scheme, review its security
proof given in [9] and describe previous attacks on it presented in [5] and [4].

2.1 Definition of the EM Scheme and Its Notation

The Even-Mansour scheme is a block cipher which consists of a single pub-
licly known permutation F over n-bit strings, preceded and followed by n-bit
whitening keys K1 and K2, respectively, i.e.,

EMF
K1,K2

(P ) = F(P ⊕K1)⊕K2.

It is assumed that the adversary is allowed to perform two types of queries:

– Queries to a full encryption/decryption oracle, called an E-oracle, that
computes either E(P ) = EMF

K1,K2
(P ) or D(C) = (EMF

K1,K2
)−1(C).

– Queries to an F -oracle, that computes either F(x) or F−1(y).

The designers of EM considered two types of attacks. In the first type, called
existential forgery attack, the adversary tries to find a new pair (P,C) such that
E(P ) = C. The second type is the more standard security game, where the
adversary tries to decrypt a message C, i.e., to find P for which E(P ) = C.2

The data complexity of an attack on the scheme is determined by the number D
of queries to the E-oracle and their type (i.e., known/chosen/adaptively chosen
etc.), and the time complexity of the attack is lower bounded by the number T of
queries to the F -oracle.3 The success probability of an attack is the probability
that the single guess it produces (either a pair (P,C) for the first type of attack,
or a plaintext P for the second type) is correct.

2.2 The Lower Bound Security Proof

The main rigorously proven result in [9] was an upper bound of O(DT/2n) on
the success probability of any cryptanalytic attack (of either type) on EM that
uses at most D queries to the E-oracle and T queries to the F -oracle. This
result implies that in order to attack EM with a constant probability of success,
we must have DT = Ω(2n). Since this security proof is crucial for some of our
results, we briefly describe its main steps.

2 These security notions are significantly different than the indistinguishability no-
tions of [12] which proved similar lower bounds on the inability of the adversary
to distinguish the given instance of the cipher from a random permutation. Find-
ing the actual keys not only allows distinguishing the construction from a random
permutation, but also allows winning the two security games considered in [9].

3 In concrete implementations, this oracle is usually replaced by some publicly known
program which the attacker can run on its own. In this case the type of query (e.g.,
whether the inputs are adaptively chosen or not) can determine whether the attack
can be parallelized on multiple processors, but we ignore such low level details in
our analysis.
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The proof requires several definitions. Consider a cryptanalytic attack on EM,
and assume that at some stage of the attack, the adversary already performed
s queries to the E-oracle and t queries to the F -oracle, and obtained sets S and
T of E-pairs and F -pairs, respectively, i.e.,

D = {(Pi, Ci)}i=1,...,d, and T = {(Xj, Yj)}j=1,...,t.

We say that the key K1 is bad with respect to the sets of queries D and T ,
if there exist i, j such that Pi ⊕ K1 = Xj . Otherwise, K1 is good with respect
to D, T . Intuitively, a good key is one whose feasibility can not be deduced
from the available data, whereas a bad key is one whose feasibility has to be
analyzed further (but not necessarily discarded). Similarly, K2 is bad w.r.t. D, T
if there exist i, j such that Yj ⊕ K2 = Ci, and K2 is good otherwise. The key
K = (K1,K2) is good with respect to D, T if both K1 and K2 are good. It is easy
to show that the number of good keys w.r.t. D and T is at least 22n− 2st ·2n. A
pair (K = (K1,K2),F) is consistent w.r.t.D and T if for any pair (Pi, Ci) ∈ D we
have Ci = K2⊕F(Pi⊕K1), and for any pair (Xj , Yj) ∈ T , we have F(Xj) = Yj .

The proof consists of two main steps.

1. The first step shows that all good keys are, in some sense, equally likely to
be the correct key. Formally, if the probability over the keys and over the
permutations is uniform, then for all D, T , the probability

Pr
K,F

[
K = k

∣∣∣(K,F) is consistent with D, T
]

is the same for any key k ∈ {0, 1}2n that is good with respect to D, T .
We present the proof of this step, since it will be crucial in the sequel. It
follows from Bayes’ formula that it suffices to prove that the probability

p = Pr
K,F

[
(K,F) is consistent with D, T

∣∣∣K = k
]

(1)

is the same for all good keys. Given a good key k = (k1, k2), it is possible
to transform the set D of E-pairs to an equivalent set D′ of F -pairs by
transforming the E-pair (Pi, Ci) to the F -pair (Pi ⊕ k1, Ci ⊕ k2). Since the
key k is good, the pairs in D′ and T do not overlap, and hence p is simply
the probability of consistency of a random permutation F with d + t given
distinct input/output pairs. This probability clearly does not depend on k,
which proves the assertion.

2. The second step shows that the success probability of any attack is bounded
by the sum of the probability that in some step of the attack, the right key
becomes a bad key, and the probability that the adversary can successfully
generate a “new” consistent E-pair (P,C) if the right key is still amongst
the good keys. The first probability can be bounded by 4DT/(2n − 2DT ),
and the second probability can be bounded by 1/(2n −D − T ). Hence, the
total success probability of the attack is bounded by O(DT/2n). We omit
the proof of this step since it is not used in the sequel.
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We note that obtaining non-trivial information about the key (e.g., that the least
significant bit of the K1 is zero, or the value of K1 ⊕ K2), is also covered by this
proof. Hence, throughout the paper we treat such leakage of information as a
“problem” in the security of the construction (even if the exact keys are not found).

Finally, we note that in [12] a slightly different model is considered. The an-
alyzed construction is a one where besides the pre-/post-whitening keys, the
internal permutation F is keyed with a k-bit key. For such a construction, Kil-
ian and Rogaway prove that given D queries to the construction and time T
evaluations of F , one cannot succeed in distinguishing the construction from a
random permutation with probability higher than DT/2n+k−1. Obviously, when
k = 0, i.e., the internal permutation is fixed, one can view this as a proof that
indeed the Even-Mansour is indistinguishable from a random permutation with
success rate over DT/2n−1. Note that in this paper we consider the stronger
notion of attack (namely, finding the actual keys) and the thus the results are
not identical.

2.3 Previous Attacks on the Even-Mansour Scheme

The first proposed attack on the Even-Mansour scheme was published by Joan
Daemen at Asiacrypt 1991 [5]. Daemen used the framework of differential crypt-
analysis [2] to develop a chosen plaintext attack whichmatched the Even-Mansour
lower bound for any amount of given data. The approach is to pickD pairs of cho-
sen plaintexts whose XOR difference is some nonzero constant Δ. This plaintext
difference is preserved by the XOR with the prewhitening key K1, and simi-
larly, the ciphertext difference is preserved by the XOR with the postwhitening
key K2. For a known permutation F , most combinations of input and output
differences suggest only a small number of possible input and output values,
but it is not easy to find them. To carry out the attack, all we have to do is
to sample 2n/D pairs of inputs to F whose difference is Δ, and with constant
non-negligible probability we can find an output difference which already exists
among the chosen data pairs. This equality suggests actual input and output
values to/from F for that pair, and thus recovers the two keys. We note that a
similar chosen-plaintext attack was suggested in [12] for constructions where F
is keyed (where DT ≥ 2n+k−1 for a k-bit keyed F).

This attack matches the time/data relationship of the lower bound, but it
is not tight since it requires chosen plaintexts, whereas the lower bound allows
known plaintexts. This discrepancy was handled ten years later by a new at-
tack called slide with a twist which was developed by Alex Biryukov and David
Wagner, and presented at Eurocrypt 2000 [4]. By taking two Even-Mansour
encryptions, sliding one of them and reversing the other, they showed how to
attack the scheme with known instead of chosen plaintexts.4 However, in or-
der to find at least one slid pair, their attack requires at least Ω(2n/2) known
plaintext/ciphertext pairs, and thus it could not be applied with a reasonable
probability of success given any smaller number of known pairs.

4 The slide with a twist attack on EM is described in detail in Section 3.1.
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These two cryptanalytic attacks were thus complementary: One of them
matched the full time/data tradeoff curve but required chosen plaintexts, while
the other could use known plaintexts but only if at least Ω(2n/2) of them were
given. In the next section we present the new slidex technique that closes this
gap: it allows to use any number of known plaintexts with the same time/data
tradeoff as in the lower bound proof, thus providing an optimal attack on the
Even-Mansour scheme.

3 The Slidex Attack and a Tight Bound on the Security
of the Even-Mansour Scheme

In this section we present the new Slidex attack and use it to obtain a tight bound
on the security of the Even-Mansour scheme. We start with a description of the
slide with a twist attack on EM [4] which serves as a basis for our attack, and
then we present the slidex technique and apply it to EM. For more information
on slide attacks, we refer the reader to [1,3,4].

3.1 The Slide with a Twist Attack

The main idea of the slide with a twist attack on EM is as follows. Assume that
two plaintexts P, P ∗ satisfy

P ⊕ P ∗ = K1.

In such a case, we have

E(P ) = F(P ⊕K1)⊕K2 = F(P ∗)⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1)⊕K2 = F(P )⊕K2

(see Figure 1(a)). Hence,

E(P )⊕ E(P ∗) = F(P )⊕F(P ∗),

or equivalently,

E(P )⊕F(P ) = E(P ∗)⊕F(P ∗).

This relation allows to mount the following attack:

1. Query both the E-oracle and the F -oracle at the same 2(n+1)/2 known values
P1, P2, . . ..

5 Store in a hash table the pairs (E(Pi)⊕F(Pi)), i), sorted by the
first coordinate.

2. For each collision in the table, i.e., E(Pi) ⊕ F(Pi) = E(Pj) ⊕ F(Pj), check
the guess K1 = Pi ⊕ Pj and K2 = E(Pi)⊕F(Pj).

5 Formally, the adversary obtains known plaintext/ciphertext pairs (Pi, E(Pi)) and
queries the F-oracle at the value Pi.
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By the birthday paradox, it is expected that the data set contains a slid pair,
i.e., a pair satisfying Pi ⊕ Pj = K1, with a non-negligible constant probability.
For a random pair (Pi, Pj), the probability that E(Pi)⊕F(Pi) = E(Pj)⊕F(Pj)
is 2−n, and thus, only a few collisions are expected in the table. These collisions
include the collision induced by the slid pair, which suggests the correct values of
K1 and K2. The data complexity of the attack is D = 2(n+1)/2 known plaintexts,
and the number of queries to F it requires is T = 2(n+1)/2. Thus, DT = 2n+1,
which matches the lower bound up to a constant factor of 2.

3.2 The New Slidex Attack

The slidex attack is an enhancement of the slide with a twist technique, which
makes it possible to use a smaller number of known plaintexts (i.e., queries to
the E-oracle), in exchange for a higher number of queries to the F -oracle. The
basic idea of the attack is as follows: Assume that a pair of plaintexts P, P ∗

satisfies
P ⊕ P ∗ = K1 ⊕Δ,

for some Δ ∈ {0, 1}n. In such a case,

E(P ) = F(P ⊕K1)⊕K2 = F(P ∗ ⊕Δ)⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1)⊕K2 = F(P ⊕Δ)⊕K2

(see Figure 1(b)). Hence,

E(P )⊕ E(P ∗) = F(P ∗ ⊕Δ)⊕F(P ⊕Δ),

or equivalently,

E(P )⊕F(P ⊕Δ) = E(P ∗)⊕F(P ∗ ⊕Δ).

This allows to mount the following attack, for any d ≤ n:

1. Query the E-oracle at 2(d+1)/2 arbitrary values (i.e., known plaintexts)
P1, P2, . . ..

2. Choose 2n−d arbitrary values Δ1, Δ2, . . . of Δ. For each Δ�, query the
F -oracle at the values {Pi ⊕ Δ�}i=1,2,...,2(d+1)/2 , store in a hash table the
pairs (E(Pi)⊕F(Pi ⊕Δ�)), i), sorted by the first coordinate, and search for
a collision.

3. For each collision in any of the hash tables, i.e., when Pi, Pj for which
E(Pi) ⊕ F(Pi ⊕ Δ�) = E(Pj) ⊕ F(Pj ⊕ Δ�) are detected, check the guess
K1 = Pi ⊕ Pj ⊕Δ� and K2 = E(Pi)⊕F(Pj ⊕Δ�).

For each triplet (Pi, Pj , Δ�), the probability that Pi ⊕ Pj ⊕ Δ� = K1 is 2−n.
Since the data contains 2d · 2n−d = 2n such triplets, it is expected that with a
non-negligible constant probability the data contains at least one slidex triplet
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(b)(a)

F F

K2 K2

⊕ ⊕

C C∗

V V ∗

⊕ ⊕
K1 K1

P P ∗

Δ Δ

F F

K2 K2

⊕ ⊕

C C∗

P ∗ P

⊕ ⊕
K1 K1

P P ∗

Fig. 1. (a) A twisted-slid pair; (b) A slidex pair

Table 1. Comparison of Results on the Even-Mansour scheme

Known Plaintext Attacks

Attack Data Time Memory Tradeoff

Guess and determine [9] 2 2n 2 —

Slide with a twist [4] 2n/2 2n/2 2n/2 —
Slidex (Sect. 3.2) D T D DT = 2n

Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Differential [5] D T D DT = 2n

Adaptive Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Slide (Sect. 6) D T 1 DT = 2n, D ≥ 2n/2

(i.e., a triplet for which Pi ⊕ Pj ⊕ Δ� = K1). On the other hand, since the
probability of a collision in each hash table is 2d−n and there are 2n−d tables, it
is expected that only a few collisions occur, and one of them suggests the correct
key guess.

The number of queries to the E-oracle in the attack is D = 2(d+1)/2, and the
number of queries to the F -oracle is T = 2n−(d−1)/2. Thus, DT = 2n+1, which
matches the lower bound of [9] up to a constant factor of 2.

A summary of the complexities of all the old and new attacks on the
Even-Mansour scheme appears in Table 1.

4 The Single-Key Even-Mansour Scheme

In this section we analyze the single-key variant of the Even-Mansour scheme
(abbreviated in the sequel as “SEM”), which has the same level of security while
using only n secret key bits (compared to 2n bits in EM).6 First, we define the

6 Kurosawa uses such SEMs in his constructions [13], where in each block the
pre-/post-whitening keys are changed.
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scheme and show that the security proof of [9] can be adapted to yield a similar
lower bound on its security. Then, we present a simple attack on the new scheme
which matches the lower bound, thus proving its optimality.

4.1 Definition of the Scheme and Its Security Proof

Given a publicly known permutation F over n-bit strings and an n-bit secret
key K, the Single-Key Even-Mansour (SEM) scheme is defined as follows:

SEMF
K (P ) = F(P ⊕K)⊕K.

The attack model is the same as in the EM scheme. That is, the adversary can
query an encryption/decryption E-oracle and an F -oracle, and the complexity
of an attack is determined by the number D of queries to the E-oracle and their
type (known/chosen etc.), and the number T of queries to the F -oracle.

Surprisingly, the security proof of the EM scheme [9] holds almost without a
change when we apply it to the single-key SEM variant. The only modification
we have to make is to define a key K as bad with respect to sets of oracle queries
S and T if there exist i, j such that either Pi ⊕ K = Xj or Ci ⊕ K = Yj , and
K as good otherwise. It is easy to see that if |S| = s and |T | = t, then at least
2n−2st keys are still “good” keys. Exactly the same proof as for EM shows that
all the good keys are equally likely to be the right key, and the bounds on the
success probability of an attack apply without change for SEM.7

Therefore, for any successful attack on SEM, we must have DT = Ω(2n),
which means that SEM provides the same security as EM, using only half as
many key bits.

4.2 A Simple Optimal Attack on SEM

The slidex attack presented in Section 3 applies also to SEM, and is optimal
since it uses only known plaintexts and matches everywhere the tradeoff curve
of the security proof.

However, in the case of SEM, there is an even simpler attack (though, with
the same complexity). Consider an encryption of a plaintext P through SEM,
and denote the intermediate values in the encryption process by:

x = P, y = P ⊕K, z = F(P ⊕K), w = E(P ) = F(P ⊕K)⊕K.

Note that x ⊕ w = y ⊕ z. This allows to mount the following simple attack,
applicable for any D ≤ 2n:

1. Query the E-oracle at D arbitrary values P1, P2, . . . , PD and store in a hash
table the values (Pi ⊕ E(Pi), i), sorted by the first coordinate.

7 We note that the indistinguishability of this construction was also studied in [12],
and it was shown that also the indistinguishability of SEM is the same as regular
EM.
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2. Query the F -oracle at 2n/D arbitrary values X1, X2, . . . , X2n/D, insert the
values Xj ⊕F(Xj) to the hash table and search for a match.

3. If a match is found, i.e., Pi ⊕ E(Pi) = Xj ⊕ F(Xj), check the guess
K = Pi ⊕Xj.

The analysis of the attack is exactly the same as that of the slide with a twist
attack (see Section 3.1).

5 The Security of Other Variants of the Even-Mansour
Scheme

In this section we consider two natural variants of the Even-Mansour scheme,
and analyze their security.

The first variant replaces the XOR operations with modular additions, which
are not involutions and are thus immune to standard slide-type attacks. However,
we show that a new addition slidex attack can break it with the same complexity
as that of the slidex attack on the original EM scheme.

The second variant considers the case in which the mapping F is chosen as an
involution. This is motivated by the fact that in many “real-life” implementations
of the EM scheme we would like to instantiate F by a keyless variant of a block ci-
pher. Since in Feistel structures andmany other schemes (e.g., KHAZAD, Anubis,
Noekeon) the only difference between the encryption and decryption processes is
the key schedule, such schemes become involutions when wemake them keyless. In
this section we show that this seemingly mild weakness of F can be used to mount
a devastating attack on the EM scheme. In particular, we show that even when
F is chosen uniformly at random among the set of all the possible involutions on
n-bit strings, the adversary can recover the value K1 ⊕K2 with O(2n/2) queries
to the E-oracle and no queries at all (!) to the F -oracle. This clearly violates the
lower bound proof that no significant information about the key can be obtained
unless DT = Ω(2n) (which was proven for random permutations but seems to be
equally applicable to random involutions), and is achieved by a new variant of the
slide attack, which we call the mirror slide attack.

5.1 Even-Mansour with Addition

Consider the following scheme:

AEMF
K1,K2

(P ) = F(P +K1) +K2,

where F is a publicly known permutation over n-bit strings, and ‘+’ denotes
modular addition in the additive group Z2n . In the sequel, we call it “Addition
Even-Mansour” (AEM).

It is clear that the lower bound security proof of EM holds without any change
for AEM. Similarly, it is easy to see that Daemen’s differential attack on EM [5]
can be easily adapted to AEM, by replacing XOR differences with modular
differences.
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It may seem that the new variant has better security with respect to slide-type
attacks. As noted in [4], ordinary slide attacks can be applied only for ciphers
in which the secret key is inserted through a symmetric operation such as XOR,
and not through modular addition. In the specific case of EM, the slide with a
twist attack relies on the observation that if for two plaintexts P, P ∗, we have
P ∗ = P ⊕K1, then surely, P = P ∗⊕K1 as well. This observation fails for AEM:
If P ∗ = P +K1, then P ∗ +K1 = P + 2K1 �= P (unless K1 = 0 or K = 2n−1).
The slidex attack presented in Section 3.2 fails against AEM for the same reason.
Hence, it seems that none of the previously known attacks can break AEM in
the known plaintext model.

We present an extension of the slidex attack, which we call addition slidex,
which can break AEM with data complexity of D known plaintexts and time
complexity of T F -oracle queries, for anyD,T such thatDT = 2n, hence showing
that the security of AEM is identical to that of EM.

The basic idea of the attack is as follows: Assume that a pair of plain-
texts P, P ∗ satisfies P + P ∗ = −K1 + Δ. (Note that somewhat counter intu-
itive, we consider the modular sum of the plaintexts rather than their modular
difference!). In such a case,

E(P ) = F(P +K1) +K2 = F(−P ∗ +Δ) +K2,

and similarly,

E(P ∗) = F(P ∗ +K1) +K2 = F(−P +Δ) +K2.

Hence,
E(P )− E(P ∗) = F(−P ∗ +Δ)−F(−P +Δ),

or equivalently,

E(P ) + F(−P +Δ) = E(P ∗) + F(−P ∗ +Δ). (2)

Equation (2) allows us to mount an attack similar to the slidex attack, with the
only change that instead of the values (E(Pi) ⊕ F(Pi ⊕ Δ)), i), the adversary
stores in the hash table the values (E(Pi) + F(−Pi +Δ)), i).

We note that actually, the slidex attack can be considered as a special case
of the addition slidex attack, since the addition slidex attack clearly applies to
modular addition in any group, and the XOR operation corresponds to addition
in the group Z2.

5.2 Even-Mansour with a Random Involution as the Permutation

Let Involutional Even-Mansour (IEM) be the following scheme:

IEMI
K1,K2

(P ) = I(P ⊕K1)⊕K2,
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where I is chosen uniformly at random amongst the set of involutions on n-bit
strings. We present a new technique, which we call mirror slide, that allows to
recover the value K1⊕K2 using 2n/2 queries to the E-oracle, and with no queries
to the I-oracle.

The idea of the technique is as follows. Consider two input/output pairs
(P,C), (P ∗, C∗) for IEM. Assume that we have

P ⊕ C∗ = K1 ⊕K2. (3)

In such case,
P ⊕K1 = C∗ ⊕K2,

and hence, since I is an involution,

I(P ⊕K1) = I−1(C∗ ⊕K2).

However, by the construction we have

C = I(P ⊕K1)⊕K2, and P ∗ = I−1(C∗ ⊕K2)⊕K1,

and thus,
C ⊕K2 = P ∗ ⊕K1,

or equivalently,
P ∗ ⊕ C = K1 ⊕K2 = P ⊕ C∗,

where the last equality follows from Equation (3). Therefore, assuming that
P ⊕ C∗ = K1 ⊕K2, we must have:

P ⊕ C = P ∗ ⊕ C∗.

This allows to mount a simple attack, similar to the slide with a twist attack.
In the attack, the adversary queries the E-oracle at 2(n+1)/2 arbitrary values
P1, P2, . . ., and stores in a hash table the pairs (E(Pi) ⊕ Pi, i), sorted by the
first coordinate. It is expected that only a few collisions exist, and that with
a non-negligible probability, one of them results from a pair (Pi, Pj), for which
Pi ⊕ E(Pj) = K1 ⊕K2.

Therefore, the attack supplies the adversary with only a few possible values
of K1 ⊕ K2, after performing 2(n+1)/2 queries to the E-oracle and no queries
at all to the I-oracle. As we show later, the adversary cannot obtain K1 or
K2 themselves (without additional effort or data), but at the same time, the
adversary does learn a nontrivial information about the key, which contradicts
the security proof of the original EM scheme.

We note that this is an example for the gap between the indistinguishability
security notion and the cost of finding a key. Obviously, when K1 = K2 is known
(or when K1⊕K2 is known), one can easily distinguish the single-key involution
Even-Mansour (ISEM) from a random permutation using two adaptive queries
with extremely high probability. At the same time, the lower bounds of the
Even-Mansour security proof assure us that it is impossible to decrypt a cipher-
text C encrypted by single-key involution Even-Mansour without first obtaining
DT = O(2n) (similar result holds with respect to the existential forgery attack
of producing another valid plaintext/ciphertext pair).
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Where the Security Proof Fails. One may wonder, which part of the formal
security proof fails when F is an involution. It turns out that the only part that
fails is the argument in the first step of the proof showing that all good keys are
equally likely to be the right key. Recall that in order to show this, one has to
show that the probability

p = Pr
K,F

[(K,F) is consistent with D, T |K = k]

is the same for all good keys. In the case of EM, p is shown to be the probability
of consistence of a random permutation F with d+ t given distinct input/output
pairs, which indeed does not depend on k (since such pairs are independent). In
the case of IEM, the input/output pairs may be dependent, since it may occur
that an encryption query to the E-oracle results in querying I at some value x,
while a decryption query to the E-oracle results in querying I−1 at the same
value x. Since I is an involution, these queries are not independent and thus,
the probability p depends on whether such dependency has occurred, and this
event does depend on k. An examination of the mirror slide attack shows that
this property is exactly the one exploited by the attack.

It is interesting to note that in the single-key case (i.e., for SEM where F
is an involution, which we denote by ISEM), such event cannot occur, as in
order to query I and I−1 at the same value, one must query E and E−1 at the
same value. Since in the single-key case, the entire construction is an involution,
such two queries result in the same answer for any value of the secret key, and
hence, do not create dependence on the key. It can be shown, indeed, that the
security proof does hold for ISEM and yields the same security bound, thus
showing that in the case of involutions, the single-key variant is even stronger
than the original two-key variant! Moreover, it can be noticed that in the case
of EM, after the adversary recovers the value K1 ⊕K2, the encryption scheme
becomes equivalent to a single-key Even-Mansour scheme with the key K1, i.e.,
E′(P ) = I(P ⊕K1)⊕K1. Thus, using two different keys in this case is totally
obsolete, and also creates a security flaw which can be deployed by an adversary
if the keys K1 and K2 are used also in other systems.

5.3 Addition Even-Mansour with an Involution as the Permutation

In this subsection we consider a combination of the two variants discussed in the
previous subsections, i.e., AEM where F is a random involution. We abbreviate
this variant as AIEM.

It can be easily shown that the mirror slide attack can be adapted to the case
of AIEM, by modifying the assumption to C∗−P = K1+K2, and the conclusion
to P +C = P ∗ +C∗. The attack allows to recover the value K1 +K2, and then
the scheme becomes equivalent to a conjugation EM scheme with a single key:
CISEM(P ) = I(P +K1)−K1, and it can be shown that the security proof of
EM applies also to CISEM. Thus, the security of AEM under the assumption
that F is an involution is identical to that of the original EM.
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An interesting phenomenon is that in the involution case, the security of
single-key AEM (which we denote by AISEM) is much worse than that of AIEM.
Indeed, the mirror slide attack allows to recover K1 +K1 = 2K1, and hence to
find K1 (up to the value of the MSB), which breaks the scheme completely. This
suggests that in the case of addition, the “natural” variant of single-key AEM
is the conjugation variant, i.e., CSEM(P ) = F(P + K1) − K1, for which the
security proof of EM indeed applies even if F is an involution, as mentioned
above.

In the extended version of this paper, available at [7], we consider all 12
variants of Even-Mansour (single key/two keys, random permutation/random
involution, and whether the keys are XORed, added, or conjugated).

6 Memoryless Attacks on the Even-Mansour Scheme

All previous papers on the Even-Mansour scheme, including the lower bounds
proved by the designers [9], Daemen’s attack [5], and Biryukov-Wagner’s slide
attack [4], considered only the data and time complexities of attacks, but not the
memory complexity. Analysis of the previously proposed attacks shows that in all
of them, the memory complexity is min{D,T }, where D is the data complexity
(i.e., the number of E-queries) and T is the time complexity (i.e., the number of
F -queries). Thus, it is natural to ask whether the memory complexity can also be
inserted into the lower bound security proofs, e.g., in the form M ≥ min(D,T ).

In this section we show that such a general lower bound can not exist, by
constructing an attack with the particular data and time complexities ofO(2n/2),
and with only a constant memory complexity. The attack is a memoryless variant
of the slide with a twist attack described in Section 3.1. Recall that the main
step of the slide with a twist attack is to find collisions of the form E(P )⊕F(P )
= E(P ∗)⊕F(P ∗).

We observe that such collisions can be found in a memoryless manner. We
treat the function

G : P → E(P )⊕F(P )

as a random function, and apply Floyd’s cycle finding algorithm [10] (or any of
its variants, such as Nivasch’s algorithm [14]) to find a collision in G. The attack
algorithm is as follows:

1. Query the E-oracle at a sequence of O(2n/2) adaptively chosen values
P1, P2, . . ., such that P1 is arbitrary and for k > 1, Pk = E(Pk−1)⊕F(Pk−1).
(Here, after each query to the E-oracle, the adversary queries the F -oracle
at the same value and uses its answer in choosing the next query to the
E-oracle).

2. Use Floyd’s cycle finding algorithm to find Pi, Pj such that E(Pi) ⊕ F(Pi)
= E(Pj)⊕F(Pj).

3. For each colliding pair, check the guess K1 = Pi ⊕ Pj and K2 = E(Pi) ⊕
F(Pj).
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The analysis of the attack is identical to the analysis of the slide with a twist
attack. The memory complexity is negligible, and the data and time complexities
remain O(2n/2). As the attack algorithm succeeds once a pair Pi, Pj satisfying
E(Pi) ⊕ F(Pi) = E(Pj) ⊕ F(Pj) is found, the expected number of queries is
determined by the random function G’s graph. The analysis of graphs induced
by random functions such as G shows that the expected number of queries in
the tail (the steps until entering the cycle) is πm/8 and the length of the cycle
itself is πm/8 [14]. We note that these incur a small overhead in terms of query
complexity (up to a factor of 5 in the case of Floyd’s algorithm or 2 in the case
Nivasch’s cycle finding algorithm of [14] is used in exchange for a logarithmic
memory). The only downside of this algorithm is the fact that the queries to the
E-oracle are chosen adaptively, whereas in the slide with a twist attack we could
choose arbitrary queries to the E-oracle.

7 Open Problems

If the amount of available E-oracle queries is smaller than 2n/2, the adversary
can still apply the slidex attack described in Section 3.2, but there seems to be
no way to convert it into a memoryless attack by using the strategy described
above. The main obstacle is that the adversary has to reuse the data many times
in order to construct the hash tables for different values of Δ, which can be done
only if the data is stored somewhere rather than used in an on-line manner which
discards it after computing the next plaintext. This leads to the following open
problem:

Problem 1. Does there exist a memoryless attack on the Even-Mansour scheme
with D E-oracle queries and 2n/D F -oracle queries, where D � 2n/2?

A similar question can be asked with respect to the Single-Key Even-Mansour
scheme, where in addition to the slidex attack, the simple attack presented in
Section 4.2 can also break the scheme when D � 2n/2. The attack of Section 4.2
can also be transformed to a memoryless attack, by defining a random function:

H(X) =

{
X ⊕ E(X), LSB(X) = 1
X ⊕F(X), LSB(X) = 0,

and using Floyd’s cycle finding algorithm to find a collision of H. In the case
when D and T are both close to 2n/2, with a constant probability such collision
yields a pair (X1, X2) such that X1 ⊕ E(X1) = X2 ⊕ F(X2), concluding the
attack. The problem is that if D � 2n/2, then with overwhelming probability, a
collision in H is of the form X1 ⊕F(X1) = X2 ⊕F(X2), which is not useful to
the adversary. Therefore, we state an additional open problem:

Problem 2. Does there exist a memoryless attack on the Single-Key
Even-Mansour scheme with D E-oracle queries and 2n/D F -oracle queries,
where D � 2n/2?
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If such memoryless attack can be found only for Single-Key EM and not for
the ordinary EM, this will show that at least in some respect, the use of an
additional key in EM does make the scheme stronger.
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A The Mirror Slide Attack

In this section we present the general framework of the mirror slide attack,
that was presented in Section 5.2 in the special case of the Even-Mansour
scheme. We show that the mirror slide attack generalizes the slide with a twist
attack [4]. We apply the new technique to a 20-round variant of the block cipher
GOST [16], other variants of the attack are considered in the extended version of
the paper [7].
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A.1 The General Framework

The mirror slide attack applies to block ciphers that can be decomposed as a
cascade of three sub-ciphers: E = E2 ◦E1 ◦E0, where the middle layer E1 is an
involution, i.e., E1 = (E1)

−1.8

Let E be such a cipher, and assume that for two plaintext/ciphertext pairs
(P,C), (P ∗, C∗), we have

E0(P ) = E−1
2 (C∗). (4)

In such case, since E1 is an involution,

E1(E0(P )) = E−1
1 (E−1

2 (C∗)).

By the construction, this implies:

E−1
2 (C) = E1(E0(P )) = E−1

1 (E−1
2 (C∗)) = E0(P

∗). (5)

If Equation (4) holds (and thus, Equation (5) also holds, the pair (P, P ∗) is
called a mirror slid pair.

The way to exploit mirror slid pairs in a cryptanalytic attack is similar to stan-
dard slide-type attacks [3,4]: The adversary asks for the encryption of 2(n+1)/2

known plaintexts P1, P2, . . . (where n is the block size of E) and denotes the
corresponding ciphertexts by C1, C2, . . .. For each pair (Pi, Pj), the adversary
assumes that it is a mirror slid pair and tries to solve the system of equations:

{
Cj = E2(E0(Pi)),
Ci = E2(E0(Pj))

(which is equivalent to Equations (4) and (5) ). If E0 and E2 are “simple enough”,
the adversary can solve the system efficiently and recover the key material used
in E0 and E2.

If the amount of subkey material used in E0 and E2 is at most n bits (in
total), it is expected that at most a few of the systems of equations generated
by the 2n plaintext pairs are consistent (since the equation system is a 2n-bit
condition). One of them is the system generated by the mirror slid pair, which
is expected to exist in the data with a constant probability since the probability
of a random pair to be a mirror slid pair is 2−n. Hence, the adversary obtains
only a few suggestions for the key, which contain the right key with a constant
probability. If the amount of key material used in E0 and E2 is bigger than n
bits, the adversary can still find the right key, by enlarging the data set by a
small factor and using key ranking techniques (exploiting the fact that the right
key is suggested by all mirror slid pairs, while the other pairs suggest “random”
keys).

The data complexity of the attack is O(2n/2) known plaintexts, and its time
complexity is O(2n) (assuming that the system of equations can be solved within
constant time).

8 We note that the attack can be applied also if E1 has some other symmetry proper-
ties, as shown in the extended version of the paper.
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We note that the attack can be applied even when E0 and E2 are not “simple”
ciphers using a meet-in-the-middle attack. If both E0 and E2 use κ ≤ n key bits
at most, one can try and find the solutions to the above set of equations in time
min{O(2n+κ), O(2n/2+2κ)}.9

A.2 The Slide with a Twist Attack and an Application to 20-Round
GOST

The first special case of the mirror slide framework we consider is where in the
subdivision of E, we have E2 = Identity. In such case, the system of equations
presented above is simplified to:

{
Cj = E0(Pi),
Ci = E0(Pj).

(6)

It turns out that in this case, the attack is reduced exactly to the slide with a
twist attack presented in [4]! (Though, in [4] the attack is described in a different
way).

A concrete example of this case is a reduced-round variant of the block cipher
GOST [16], that consists of the last 20 of its 32 rounds. It is well-known that the
last 16 rounds of GOST compose an involution, and hence, this variant can be
represented as E = E1 ◦ E0, where E0 is 4-round GOST, and E1 (which is the
last 16 rounds of GOST) is an involution.10 As shown in [6], a 4-round variant of
GOST can be broken with two plaintext/ciphertext pairs and time complexity
of 212 encryptions. Therefore, the mirror slide attack can break this 20-round
variant of GOST with data complexity of 233 known plaintexts (since the block
size of GOST is 64 bits), and time complexity of 265 · 212 = 277 encryptions.

We note that a similar attack was described in [4] using the slide with a twist
technique, but only on a 20-round version of a modified variant of GOST called
GOST⊕ in which the key addition is replaced by XOR.

9 One can either take all plaintext/ciphertext pairs and partially encrypt the plaintext
under all 2κ keys for E0 and partially decrypt the ciphertext under all 2κ keys for E2

to find the mirror pairs. Another option is to try for each pair of plaintexts (Pi, Pj)
to solve the system {

E−1
2 (Cj) = E0(Pi),

E−1
2 (Ci) = E0(Pj)

which can be easily done in a meet-in-the-middle approach in time 2κ for each
(Pi, Pj).

10 We note that due to the Feistel structure of GOST, we do not have E1 ◦ E1 = Id,
but rather E1 ◦ swap ◦E1 = Id. This can be handled easily by inserting swap to the
left hand side of Equation (6). The same correction can be performed in the other
Feistel constructions discussed in the sequel.
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