
Symbolic Counter Abstraction

for Concurrent Software�

Gérard Basler1, Michele Mazzucchi1, Thomas Wahl1,2, and Daniel Kroening1,2

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Computing Laboratory, Oxford University, United Kingdom

Abstract. The trend towards multi-core computing has made concur-
rent software an important target of computer-aided verification. Un-
fortunately, Model Checkers for such software suffer tremendously from
combinatorial state space explosion. We show how to apply counter ab-
straction to real-world concurrent programs to factor out redundancy
due to thread replication. The traditional global state representation as
a vector of local states is replaced by a vector of thread counters, one per
local state. In practice, straightforward implementations of this idea are
unfavorably sensitive to the number of local states. We present a novel
symbolic exploration algorithm that avoids this problem by carefully
scheduling which counters to track at any moment during the search.
Our experiments are carried out on Boolean programs, an abstraction
promoted by the Slam project. To our knowledge, this marks the first ap-
plication of counter abstraction to programs with non-trivial local state
spaces, and results in the first scalable Model Checker for concurrent
Boolean programs.

1 Introduction

Software Model Checking has been a vibrant branch of research in formal meth-
ods for many years. Predicate abstraction [1,2] is one of the most prominent
approaches in this area, promoted by the success of the Slam project at Mi-
crosoft Research. Instead of tracking the actual values of program variables, the
abstraction monitors carefully selected predicates over these variables. Predicate
abstraction results in a Boolean program [3], i.e., a program using exclusively
Boolean variables. Embedded in an automated abstraction-refinement frame-
work [4], verifiers for Boolean programs have been used successfully to increase
the reliability of system-level software such as Windows device drivers [5].

Recently, there have been attempts to extend these techniques to the ver-
ification of concurrent software [6]. The challenge is the classical state space
explosion problem: the number of reachable program states grows exponentially
with the number of concurrent threads, which renders naive exploration imprac-
tical. The authors of [6] conclude that none of the currently available tools is
able to handle device drivers of realistic size in the presence of many threads.
� This research is supported by the EU FP7 STREP MOGENTES (project ID ICT-

216679), and by the EPSRC project EP/G026254/1.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 64–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic Counter Abstraction for Concurrent Software 65

One observation that comes to the rescue is that concurrent components of
multi-threaded software are often simply replications of a template program de-
scribing the behavior of a component. The ensuant regularity in the induced
system model can be exploited to reduce the verification complexity. One tech-
nique towards this goal is counter abstraction. The idea is to record the global
state of a system as a vector of counters, one per local state, tracking how many
of the n components currently reside in the local state. This idea was proposed
as a way of achieving symmetry reduction for fixed-size systems [7], turning an
n-process model of size exponential in n into one of size polynomial in n.

Counter abstraction as proposed in [7] requires conversion of the template pro-
gram P into a local-state transition diagram, by identifying a set of local states
a component can be in, and translating the program statements into local state
changes. Such a conversion is straightforward if there are only few component
configurations, such as with certain high-level communication protocols [8]. For
concurrent software, however, P is given in a C-like language, with assignments
to variables, branches, loops, etc. A local state is then defined as a valuation of
all local variables of a thread. As a result, there are exponentially many local
states, measured in the number of local variables. Introducing a counter variable
for each local state is impractical but for tiny programs.

In this paper, we present a strategy to solve these complexity problems. Our
solution is two-fold. First, we interleave the translation of individual program
statements with the Model Checking phase. This has the advantage that the
context in which the statement is executed is known; the counters for the source
and target local states, which need to be updated, depend on this context. If the
translation is performed up-front, one has to embed each statement into all local
state contexts where the statement is enabled, which is infeasible for realistic
programs. Second, in a global state we keep counters only for those local states
that at least one thread resides in. This idea exploits a simple counting argument:
given n threads with l conceivable local states each, at most n of the correspond-
ing local state counters are non-zero at any time during execution. Since n is
typically much smaller than l, omitting the zero-valued counters results in huge
savings: the sensitivity of counter abstraction to the local state space explosion
problem mentioned in the previous paragraph is reduced from exponential in l
to exponential in min{n, l}.

Contributions. We present an efficient algorithm for BDD-based symbolic state
space exploration of Boolean programs run by a fixed number of parallel threads.
The algorithm’s primary accomplishment is to curb the local state space explo-
sion problem, the classical bottleneck in implementations of counter abstrac-
tion. We demonstrate the effectiveness of our approach on a substantial set of
Boolean program benchmarks, generated by two very different CEGAR-based
toolkits, SatAbs [9] and Slam. Since symmetry reduction, of which finitary
counter abstraction is an instance, has so far been implemented more success-
fully in explicit-state model checkers, we include an experimental comparison of
an explicit-state version of our method against classical explicit-state symmetry
reduction, using the well-known Murϕ model checker [10].

66 G. Basler et al.

We believe our algorithm marks a major step towards the solution of an ex-
igent problem in verification today, namely that of Model Checking concurrent
software. While the concepts underlying our solution are relatively straightfor-
ward, exploiting them in symbolic model checking is not. The succinctness of
state space representations that BDDs often permit is paid for by rather rigid
data manipulation mechanisms. To the best of our knowledge, our implementa-
tion is the first scalable approach to counter abstraction in symbolic verification
of concurrent software with replicated threads.

Counter abstraction has also been applied in parameterized system verifica-
tion, using truncated counters, necessarily resulting in an incomplete method
(see section on related work). We emphasize that, in this paper, we use the term
counter abstraction in the sense of exact counters. The method we propose
can be seen as an “exact abstraction”, a notion that is common in symmetry
reduction and other bisimulation-preserving reduction methods.

2 Related Work

While the principal idea of using process counters already appeared in early work
by Lubachevsky [11], generic representatives were suggested by Emerson and
Trefler [7] as a means of addressing the complexity of symmetry-reducing sym-
bolically represented systems. The term counter abstraction was actually coined
in the context of parameterized verification [12]. In contrast to the present work,
the counters are cut off at some value c, indicating that at least c components
currently reside in the corresponding local state.

Local state-space explosion was identified in [13] as the major obstacle to
using generic representatives with non-trivial symmetric programs. The paper
ameliorates this problem using a static live-variable analysis, and using an ap-
proximate but inexpensive local state reachability test. Being heuristic in nature,
this work cannot guarantee a reduced complexity of the abstract program.

We are aware of a few significant works that resulted in tools using counter
abstraction in symbolic Model Checking: [14], in the context of virtual sym-
metry [15], and [8], for probabilistic models. While valuable in their respective
domains, both approaches suffer from a limitation that makes them unsuitable
for general software: they are based on a system model (such as the GSST
of [14]) that describes the process behavior by local state changes and thus
require an up-front translation from whatever input language is used. The ex-
amples in [14,8] include communication and mutual-exclusion protocols with at
most a few dozen local states. The Beacon Model Checker [16] has been applied
to a multi-threaded memory management system with 256 local states. In our
benchmarks, threads have millions of local states (see section 5).

In [17], 0-1-∞ counter abstraction is applied to predicate-abstracted concur-
rent C programs for race detection. The counters monitor the states of context
threads. To avoid local state space explosion, each context thread is simplified to
an abstract control flow automaton (ACFA). According to [17], the ACFA has at
most a few dozen vertices and can thus be explicitly constructed. In contrast, our

Symbolic Counter Abstraction for Concurrent Software 67

goal is a general solution for arbitrary predicate abstractions, where we cannot
rely on a small number of predicates and, thus, local states. Consequently, our
work does not require first building a local state transition diagram.

Compared to canonization-based symmetry reduction approaches such as in
Murϕ [10] and Zing [18] (explicit-state) or Sviss [19] and RuleBase [20] (sym-
bolic), the model checking overhead that counter abstraction incurs reduces to
translating the program statements into local state counter updates. Sorting lo-
cal state sequences, or other representative mapping techniques, are implicit in
the translation.

Finally, the general problem of symbolically verifying multi-threaded pro-
grams has been tackled in many recent publications [21,22, and others]. None of
these address the symmetry that concurrent Boolean programs exhibit, although
some investigate partial-order based methods [23].

3 Preliminaries

3.1 Boolean Programs

Boolean programs result from applying predicate abstraction to general software.
All variables are of type Boolean, and track values of predicates over (possibly
unbounded) variables of the original program P . To enable sound verification of
reachability properties, Boolean programs are constructed to over-approximate
the behavior of P . This may permit spurious paths, which need to be detected
and eliminated, by refining the abstraction using additional predicates.

Several tools exist that translate C code into a Boolean program. Many of
the Boolean programs used in our experiments were generated by a front-end
of the SatAbs model checker, from Linux kernel C code. The code is assumed
to be free of recursion and dynamic thread creation.1 In a preprocessing step,
loops and if statements are replaced by nondeterministic gotos and assume
statements; function calls are inlined. Figure 1 shows a translation of a fragment
of the Apache webserver suite into a Boolean program.

Table 1. Semantics of fundamental Boolean program statements

Syntax Semantics

v1, . . . , vn := expr1, . . . , exprn (exprc ⇒ pc′ = pc + 1 ∧ ∀i ∈ {1, . . . , n}, v′
i = expri ∧

constrain exprc same(V \ {v1, . . . , vn})) ∧ (¬exprc ⇒ ⊥))

goto l1 . . . , ln
∨

l∈{l1,··· ,ln} pc′ = l ∧ same(V)

We roughly adopt the Boolean program syntax from [3]; Table 1 defines the
valid statements and their semantics. The symbol pc represents the program
counter, V the set of program variables. Primes represent the next-state value of
variables, and same(X) abbreviates

∧
v∈X v′ = v. Well-formed expressions are

1 Recursion, in particular, renders the concurrent verification problem undecidable,
even for Boolean programs. An option is to use overapproximations, as done in [24].

68 G. Basler et al.

(a)

for (i =0; i < ap th r p e r ch i l d ; i++) {
int s t a tu s = ap scoreboard image−>s e rv e r s [ch i l d a rgno] [i] . s t a tu s ;

i f (s t a tu s != SRV GRACEFUL && sta tu s != SRV DEAD) continue ;
a p r s t a t u s t rv = apr th r e ad c r e a t e (&threads [i] , t h r e ad a t t r ,

worker thread , my info , p ch i l d) ;
i f (rv != APR SUCCESS) {

a p l o g e r r o r (APLOG MARK, APLOG ALERT, rv ,
ap se rve r c on f , ” ap th r c r e a t e : e r r o r ”) ;

c l e a n c h i l d e x i t (CHILDSICK) ;
}
th r e ad s c r e a t ed++;

}

(b)

main () begin
decl i l t a p t h r p e r c h i l d , status eq SRV GRACEFUL ,

status eq SRV DEAD , rv eq APR SUCCESS ;

L1 : goto L2 , L5 ;
L2 : assume i l t a p t h r p e r c h i l d ;

status eq SRV GRACEFUL , status eq SRV DEAD := ∗ , ∗ ;
goto L3 , L4 ;

L3 : assume (! status eq GRACEFUL) && (! status eq SRV DEAD) ;
i l t a p t h r p e r c h i l d := ∗ ; goto L1 ;

L4 : rv eq APR SUCCESS := true ;
sk ip ;
i l t a p t h r p e r c h i l d := ∗ ; goto L1 ;

L5 : assume ! i l t a p t h r p e r c h i l d ;
end

Fig. 1. (a) A C program; (b) a possible translation into a Boolean program

the Boolean closure of constants true, false and � (representing either value),
and variable identifiers. The constructs assume expr and skip are shorthands
for v := v constrain expr and assume true, respectively.

A Boolean program P induces a concurrent system as follows. We define
Pn := �n

i=1P to be the interleaved parallel composition of n threads executing P .
Program Pn consists of each variable declared global in P , and n copies of each
variable declared local in P . A state of Pn can therefore be described in the
form (g, l1, . . . , ln), where vector g is a valuation of the global variables, and
li stands for the local state of thread i; it comprises the value of the program
counter pci and the valuation of the i-th copy of each local variable. The thread
state of thread i is the pair (g, li). Intuitively, for i ∈ {1, . . . , n}, thread i has
full access to the global variables and to the i-th copy of the local variables.
It has neither read nor write access to any other local variables. We assume a
standard asynchronous execution model for Pn: exactly one thread executes an
instruction at any time. A full formalization is given in [24].

3.2 Counter Abstraction

Counter Abstraction can be viewed as a form of symmetry reduction, as follows.
Full symmetry is the property of a Kripke model M = (S, R) of concurrent com-
ponents to be invariant under permutations of these components. This invari-
ance is traditionally formalized using permutations acting on component indices.
A permutation π on {1, . . . , n} is defined to act on a state s = (g, l1, . . . , ln) by

Symbolic Counter Abstraction for Concurrent Software 69

acting on the thread indices, i.e. π(s) = (g, lπ(1), . . . , lπ(n)). We extend π to act
on a transition (s, t) by acting point-wise on s and t.

Definition 1. Structure M is (fully) symmetric if for all r ∈ R and all
permutations π on {1, . . . , n}, π(r) ∈ R.

We observe that a concurrent Boolean program built by replicating a template
written in the syntax given in section 3.1 is (trivially) symmetric: the syntax
does not allow thread identifiers in the program text, which could potentially
break symmetry.

From a symmetric M , a reduced quotient structure M can be constructed
using standard existential abstraction. The quotient is based on the orbit relation
on states, defined as s ≡ t if there exists π such that π(s) = t. Quotient M turns
out to be bisimilar to the original model M [25,26]. Thus, verification over M
can be replaced by verification over the smaller M , without loss of precision. In
addition, M is roughly exponentially smaller than M : the equivalence classes of
≡ collapse up to n! many states of M . Symmetry reduction thus combines two
otherwise antagonistic features of abstractions – precision and compression.

Counter abstraction is an alternative formalization of symmetry, namely using
process counters. The idea is that two global states are identical up to permuta-
tions of the local states of the components exactly if, for every local state L, the
same number of components reside in L. To implement this idea, we introduce
a counter for each existing local state and translate a transition from local state
A to local state B as a decrement of the counter for A and an increment of that
for B. With some effort, this translation can actually be performed statically
on the text of a symmetric program P , before building a Kripke model. The re-
sulting counter-abstracted program P̂ gives rise to a Kripke structure M̂ whose
reachable part is isomorphic to that of the traditional quotient M and that can
be model-checked without further symmetry considerations.

Counter abstraction can be viewed as a translation that turns a state space
of potential size ln (n local states over {1, . . . , l}) to one of potential size (n+1)l

(l counters over {0, . . . , n}). The technique is thus expected to yield a reduction
whenever n � l. From a theoretical viewpoint, this is the case asymptotically if
l is a constant and n is conceptually unbounded. This view does not, however,
withstand a practical evaluation, as we shall see in the next section.

4 Symbolic Counter Abstraction

In this section, we present the contribution of this paper, a symbolic algorithm for
state space exploration of concurrent Boolean programs that achieves efficiency
through counter abstraction. Before we illustrate the data structures used to
store system states compactly, and describe our algorithm, we illustrate the
problems a naive implementation of counter abstraction will inevitably entail if
applied to practical software.

70 G. Basler et al.

4.1 Classical Counter Abstraction – Merits and Problems

Classical counter abstraction assumes that the behavior of a single process is
given as a local state transition diagram. This abstraction level is useful, for in-
stance, in high-level communication protocols implementing some form of N -T -C
mutual exclusion. In this case, counter abstraction reduces an n-process Kripke
structure of exponential size O(3n) to one of low-degree polynomial size O(n3).
The latter structure can be model-checked for hundreds if not thousands of
processes.

This approach is problematic, however, for concurrent software, where thread
behavior is given in the form of a program that manipulates local variables.
The straightforward definition of a local state as a valuation of all thread-local
variables is incompatible in practice with the idea of counter abstraction: the
number of local states generated is simply too large. Consider again the Boolean
program in Figure 1. It declares only four local Boolean variables and the PC
with range {1, . . . , 12}, giving rise to already 24 ∗ 12 = 192 local states. In ap-
plications of the magnitude we consider, concurrent Boolean programs routinely
have several dozens of thread-local variables and many dozens of program lines
(even after optimizations), resulting in many millions of local states.

Generally, as a result of this local state explosion problem, the state space of
the counter program is of size doubly-exponential in the number v of local
variables, namely Ω(n2v

). Our approach to tackling the problem is two-fold:

1. Instead of statically translating each statement s of the input program into
counter updates (which would require enumerating the many possible local
states in which s is enabled), do the translation on the fly. This way we have
to execute s only in the narrow context of a given and reachable local state.

2. Instead of storing the counter values for all local states in a global state, store
only the non-zero counters. This (obvious) idea exploits the observation that,
if l � n, in every system state most counters are zero.

As a result, the worst-case size of the Kripke structure of the counter-abstracted
program is reduced from nl to nmin{n,l}, completely eliminating the sensitivity
to the local state space explosion problem. In the rest of this section, we describe
the symbolic state-space exploration algorithm that implements this approach.

4.2 A Compact Symbolic Representation

Resulting from predicate abstractions of C code, Boolean programs make heavy
use of data-nondeterminism, in the form of the nondeterministic Boolean value � .
Enumerating all possible values an expression involving � can stand for is infeasi-
ble in practice. A better approach is to interpret the value � symbolically, as the
set {0, 1}. This interpretation is not only compatible with encodings of Boolean
programs using BDDs, but can also be combined well with counter abstraction.

Our approach to counter abstraction is to count sets of local states repre-
sented by propositional formulas, rather than individual local states. Consider
3 threads executing a Boolean program with a single local Boolean variable x,

Symbolic Counter Abstraction for Concurrent Software 71

and the global state s = (�, �, �): all threads satisfy x = �. Defining the local
state set B := {0, 1}, we can represent s compactly as the single abstract state
characterized by nB = 3, indicating that there are 3 threads whose value for x
belongs to B (all other counters are zero).

To formalize our state representation, let L be the set of conceivable local
states, i.e., |L| = l. An abstract global state takes the form of a set G of valuations
of the global variables, followed by a list of pairs of a local state set and a counter:

〈G, (L1, n1), . . . , (Lk, nk)〉 . (1)

In this notation, Li ⊆ L and ni ∈ IN. We further maintain the invariants∑k
i=1 ni = n and ni ≥ 1. The semantics of this representation is given by the set

of concrete states that expression (1) represents, namely the states of the form
(g, l1, . . . , ln) such that

(a) g ∈ G, and
(b) there exists a partition {I1, . . . , Ik} of {1, . . . , n} such that

for all i ∈ {1, . . . , k}, |Ii| = ni and for all j ∈ Ii, lj ∈ Li.
(2)

That is, an abstract state of the form (1) represents precisely the concrete states
in the Cartesian product of valuations of the global variables in G, and valuations
of the local variables satisfying the constraint (2) (b). We use separate BDDs to
represent the sets G and Li. Let Vg and Vl denote the sets of shared and local
variables in P , respectively, and pc the program counter. We represent the set G
using a predicate f over the variables in Vg, and each set Li using a predicate fi

over the variables in Vl ∪ {pc}.
This representation has a caveat: constraints between global and local vari-

ables, such as introduced by an assignment of the form global := local , cannot be
expressed, since the defining predicates for G and Li may not refer to variables
from both Vg and Vl. Clearly, however, Boolean programs can introduce such
constraints. Section 4.3 describes how our algorithm addresses this problem.

Intuitively, each pair (Li, ni) represents the ni threads such that the most
precise information on their local states is that they belong to Li. For instance,
the abstract global state 〈(x = 0, 3), (x = �, 4)〉 represents those concrete states
where 3 threads satisfy x = 0, whereas we have no information on x for the
remaining 4 threads. This example also shows that we do not require the sets Li

to be disjoint: forcing the symbolic local x = 0 to be merged into the symbolic
local state x = � would imply a loss of information, as the constraint x = 0 is
more precise.

Traditional approaches that statically counter-abstract the entire input pro-
gram often use a data structure that can be seen as a special case of (1), namely
with k = l = |L|. Such implementations do not enforce the invariant ni ≥ 1 and
thus suffer from the potential redundancy of ni being 0 for most i.

4.3 Symbolic State Space Exploration

We present a symbolic algorithm for reachability analysis of symmetric Boolean
programs for on-the-fly counter abstraction that employs the state representation

72 G. Basler et al.

Algorithm 1. Symbolic counter abstraction algorithm
1: R := {〈G0, (L0, n)〉}, insert 〈G0, (L0, n)〉 into W � n threads at location 0
2: while W 	= ∅ do
3: remove S = 〈G, F 〉, with F = {(L1, n1), . . . , (Lk, nk)}, from W
4: for i ∈ {1, . . . , k} do
5: T := 〈G, Li〉 � extract thread state from S
6: for v ∈ all valuations of SpliceVariables(T) do
7: T ′ = 〈G′, L′〉 := Image(T |v) � compute one image cofactor of T
8: if L′ 	= Li then � build new system state S′ from T ′

9: S′ := 〈G′,UpdateCounters(F , i, L′)〉
10: if S′ 	∈ R then
11: R := R ∪ S′ � store S′ as reachable, if new
12: insert S′ into W

13: procedure UpdateCounters(F , i, L′)
14: let (Li, ni) be the i-th pair in F
15: O := (ni > 1 ? {(Li, ni − 1)} : ∅) � determine if Li is abandoned
16: if ∃j. (Lj , nj) ∈ F ∧ L′ = Lj then � update or add a state-counter pair
17: F ′ := F \ {(Li, ni), (Lj , nj)} ∪ O ∪ {(L′, nj + 1)}
18: else
19: F ′ := F \ {(Li, ni)} ∪ O ∪ {(L′, 1)}
20: return F ′

described in section 4.2. The input consists of a template program P and the
number n of concurrent threads; the algorithm computes the counter-abstracted
set of states reachable from a given set of initial states.

Algorithm 1. expands unexplored system states from a worklist W , initialized
to contain the symbolic state that constrains all threads to location 0. The
loop in line 4 iterates over all pairs (Li, ni) contained in the popped state S.
To expand an individual pair, the algorithm first projects it to the ith symbolic
thread state.

The next, and crucial, step is to compute the successor thread states induced
by the Boolean program (lines 6–7). Recall from the previous section that our
Cartesian state representation does not permit constraints between global and
local variables, which can, however, be introduced by the program. Consider a
global variable a and a local b, and the statement a := b. The concrete thread
state (a′, b′) obtained after executing the statement is characterized by the con-
straint a′ ≡ b′. In order to make this constraint expressible, we must treat certain
assignments and related statements specially.

Definition 2. A splice state is a symbolic thread state given as a predicate f
over the variables in Vg ∪ Vl ∪ {pc} such that

(∃Vg . f) ∧ (∃Vl ∃pc . f) �≡ f .

A splice statement is a statement s such that there exists a thread state u
whose PC points to s and that, when executed on u, results in a splice state.
A splice variable is a global variable dependent on ∃Vg .f .

Symbolic Counter Abstraction for Concurrent Software 73

A splice statement marks a point where a thread communicates data via the
global variables, in a way that constrains its local state with the values of some
splice variables. Fortunately, statements with the potential to induce such com-
munication can be identified syntactically:

– assignments whose left-hand side is a global variable and the right-hand side
expression refers to local variables, or vice versa,

– assignments with a constrain clause whose expression refers to both global
and local variables, and

– assume statements whose expression refers to both global and local variables.

Before executing a splice statement, the current thread state is split using Shan-
non decomposition. Executing the statement on the separate cofactors yields
a symbolic successor that can be represented precisely in the form (1). That
is, if variable v is the splice variable of the statement in T , denoted by Splice
Variables(T) = {v}, we decompose Image(T) as follows:

Image(T) = Image(T |v=0) ∨ Image(T |v=1) .

The price of this expansion is an explosion worst-case exponential in the number
of splice variables. However, as we observed in our experiments (see section 5),

1. the percentage of splice statements is relatively small,
2. even within a splice statement, the number of splice variables involved is

usually very small (1 or 2),
3. a significant fraction of cofactors encountered during the exploration is ac-

tually unsatisfiable and does not result in new states.

As a result, the combinatorial explosion never materialized in our experiments.
After the image has been computed for each cofactor, the algorithm constructs

the respective system state for it (lines 8–9). The UpdateCounters function
uses the local state part L′ of the newly computed thread state to determine the
new set of (state,counter) pairs F ′. If no more threads reside in the “left” state
Li, its pair is expunged (line 15); if the new local state L′ was already present
in the system state, its counter nj is incremented, otherwise the state is added
with counter value 1 (lines 16–19).

Finally, the algorithm adds the states encountered for the first time to the set
of reachable states, and to the worklist of states to expand (lines 10–12).

Theorem 3. Let R be as computed by Algorithm 1. on termination, and let γ
be the concretization function for abstract states defined in equation (2). The set
γ(R) = {γ(r)| r ∈ R} is the set of reachable states of the concurrent system
induced by n threads executing the Boolean program P in parallel.

The proof of this theorem, and that of the termination of Algorithm 1., fol-
low from (i) the equivalent theorems for classical state space exploration under
symmetry using canonical state representatives, and (ii) the isomorphism of the
structures over such representatives and the counter representation.

74 G. Basler et al.

Errors are detected by Algorithm 1. in the form of program locations that
contain a violated assertion. We have omitted from the algorithm a description
of the standard mechanisms to trace back a reached state to the initial state, in
order to obtain error paths. Such a path is, in our case, a sequence of abstract
states in the form (1). This abstract trace can be mapped to a concrete trace,
by expanding each abstract state to a concrete one according to equation (2),
and ensuring that, in the resulting sequence, any state differs from its successor
in only one thread. Note that, as our method is exact with respect to the given
Boolean program, no spurious reachability results occur.

5 Experimental Evaluation

In addition to the symbolic version of the algorithm, we have also implemented
an explicit-state version, both in a tool called Boom (available at http://www.
cprover.org/boom). The symbolic implementation stores the sets G and Li of
global and local variable valuations as individual BDDs, such that the conjunc-
tion of G with each Li forms the thread-visible state Ti. As in most symbolic
Model Checkers for software, the program counters are stored in explicit form:
this permits partitioning the transition relation and ensures a minimum number
of splice tests.

We applied Boom to over 400 examples from two sources: a set of 208 concur-
rent Boolean programs generated by SatAbs that abstract part of the Linux ker-
nel components (available at http://www.cprover.org/boolean-programs),
and a set of 236 Boolean programs generated at Microsoft Research using Slam.
We build a concurrent out of a sequential Boolean program by instantiating n
threads that execute the main procedure. All Boolean programs involve commu-
nication among threads through global variables. The 444 benchmarks feature,
on average, 123 program locations, 21 local variables, and 12 global variables.

We compare the explicit-state implementation to Murϕ [10], a mature and
popular Model Checker with long-standing support for symmetry reduction.
Since other symbolic model checkers did not scale to interesting thread counts
(including the few tools with built-in support for symmetry), we compare the
symbolic algorithm to a reference implementation in Boom that ignores the sym-
metry. On sequential programs, the performance of the reference implementation
is similar to that of the Model Checker that ships with Slam.

The experimental setup is as follows. For each tool and benchmark, we start
full reachability analysis with n = 2 threads, and increase the thread count until
the tool times out; the timeout is set to 720 s and the memory limit to 12GB2.

Figure 2 is a scatter plot of the running times of the explicit-state version
of Boom and of Murϕ with symmetry reduction. Since Murϕ does not allow
data nondeterminism, we replace every occurrence of � in the input programs
randomly by 0 or 1, before passing them to either tool. The resulting programs
are converted into Murϕ’s input language using a Murϕ rule per statement,
2 The experiments are performed on a 3GHz Intel Xeon machine running the 64-bit

variant of Linux 2.6.

http://www.
cprover.org/boom
http://www.cprover.org/boolean-programs

Symbolic Counter Abstraction for Concurrent Software 75

1

10

100

[sec]
1000

1 10 100 1000 [sec]

M
ur

ph
i

Explicit-state Boom

8

9

10

11

12

13

14

15

5

6

7

8

5

6

7

8

6

7

8

9

10 11

4

5

4

5

6

8

9

10

11

12

13

14

15

16

4

5

6

5

6

7

8

4

5

4

5

3

4

5

6

7

8

9

10

11

6

7

8

9

10 11

6

7

8

9

10

6

7

8

9 10

5

6

7

8

9

5

6

7

8

9

5

6

7

8

5

6

7

8

5

6

7

5

6

7

4

5

6

8

9

10

11

12

13

14

15

16

9

10

11

12

13

14

15

16

17

18

19

4

5

6

4

5

6

8

9

10

11

12

13

14 15 16 17

3

4

5

9

10

11

12

13

14

15

16

17

18

4

5

6

9

10

11

12

13

14

15

16

17

18

19

4

5

6

5

6

7

3

4

5

6

7

4

5

6

3

3

4

4

5

6

7

4

5

6

4

5

6

2 4

5

6

4

5

6

4

5

6

7

2

2

3

4

5

6
3

3

4

5

4

5

4

5

3

4

3

4

3

4

4

5

4

5

6

7

8

9

10

3

3

4

5

6

4

5

6

3

4

6

7

8

9

4

5

6

6

7

8

9

10

11 12

4

5

4

5

6

5

6

7

4

5

6

3

4

4

5

9

10

11

12

13

14

15

16

17

18

4

5

3

3

4

4

5

3

2

4

5

4

5

6

4

5

3

4

3

4

5

4

5

3

4

2

3

2

4

5

6

7

2
4

5

4

5

4

5

6

4

5

4

5

4

5

6

5

6

7

8

3

4

5

6

7

8

9

3

4

5

6

7

8

5

6

7

8

4

5

6

3

4

4

5

6

4

5

6

4

5

4

5

6

4

5

4

5

4

5

6

4

5

8

9

10

11

12

13

14

15

16 17 18

5

6

7

4

5

2 22 22 32 111111

8

9

10

11

12

13

14

15

5

6

7

8

5

6

7

8

6

7

8

9

4

5

4

5

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19
20

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18 19 20

3

4

3 333 4

2

3

2

3

4

5

2

3

2

4

5

6

6

7

8

9

10

3

4

5

4

5

6

7

8

9

10

13

14

15

16

17

18

19

20

4

5

6

7

5

6

7

8

4

5

3

4

4

5

6

13

14

15

16

17

18

19

20

8

9

10

11

12

13

14

15

16 17

9

10

11

12

13

14

15

16

17

18

19 20

4

5

6

15

16

17

18

19

20

6

7

8

9

10

11

6

7

8

9

10

11

9

10

11

12

13

14

15

16

17

18

19

5

6

7

4

5

6

3

13

14

15

16

17

18

19

20

7

8

9

10

11

12

13

14 15

17

18
19

20

16

17

18

19

20

5

6

7

8

9

7

9

10

11

12

13 14 15

7

8

9

10

11

12

13 14 15

5

6

7

8

9

3

6

7

8

9

10

11

10

11

12

13

14

15

16

17

18

19

20

9

10

11

12

13

14

15

16

17

18 19 20

8

9

10

11

12

13

14

15

16 17

15

16

17

18
19

20

15

16

17

18
19

20

14

15

16

17

18

19

20

11

12

13

14

15

16

17

18

19

20

7

8

9

10

11 12

4

5

6

4

5

3

4

4

5

6

7

4

5

6

4

5

6

7

8

9

10

11

12

13

14

15

5

6

7

6

7

8

9

10

11

7

8

9

10

11

12

11

12

13

14

15

16

17

18

19

20

3

4

2

3

3

4

5

6

7

8 9

5

6

7

4

5

6

7

8

9

10

11

12

5

6

7

8

16

17

18

19

20

5

6

7

8

9

6

7

8

9

10

5

6

7

8

3

4

4

5

6

20

4

5

6

7

8

13

14

15

16

17

18

19

20

19
20

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

7

8

9

10

11

12

13

5

6

7

8

9

6

7

8

9

10

11

12 13 14

8

9

10

11

12

13

14

15 16

14

15

16

17

18

19

20

8

9

10

11

12

13

14

15 16 17

3

4

4

5

6

4

5

6

9

10

11

12

13

14

15

16

17 18 19

8

9

10

11

12

13

14

15

16

17 18 19

15

16

17

18

19
20

5

6

7

4

5

3

5

6

7

8

9

10

15

16

17

18

19
20

15

16

17

18

19
20

15

16

17

18

19
20

15

16

17

18

19
20

3

4

7

8

9

10

11

12

13

14 15

Fig. 2. Running time of explicit-state Boom vs. Murϕ, for various thread counts

guarded by the program counter value. Counter abstraction is faster than Murϕ
on 94% of the tests; on 23%, the improvement is better than one order of
magnitude. It completes successfully on a significant number of problems where
Murϕ times out (19%). In seven cases (1.2%), our tool runs out of memory.
Note that removing the data nondeterminism simplifies the programs, which is
why the explicit-state explorations often terminate for larger thread counts than
the symbolic ones.

Figure 3 summarizes the running times of the symbolic counter abstraction
implementation in Boom and the plain symbolic exploration algorithm. The
uniform distribution in the upper triangle signifies the improvement in scalability
due to counter abstraction. Those tests where traditional Model Checking is
faster feature a small number of threads, reflecting the polynomial complexity of
counter abstraction; in fact, we can verify many instances for 7 or more threads.
Overall, the symbolic counter abstraction tool is faster on 83% of all tests, and
on 96% of those running three or more threads. Among those, the speed-up is
five orders of magnitude and more.

Splice statements do not cause a blow-up in any of the benchmarks. In fact,
they amount to less than 12% of all statements, the average number of splice
variables they involve is small (in our benchmarks, mean 2.1, median 1), and
each such variable produces two valid cofactors in only 10% of the cases.

Our implementation of the last step of Algorithm 1. (lines 20–21) uses state
merging, a crucial optimization to compact sets of symbolic states. In counter
abstraction, two symbolic states can be merged iff a) they differ only in the
valuation of the global variables, or b) they differ in the local state of only

76 G. Basler et al.

0.1

1

10

100

[sec]
1000

0.1 1 10 100 1000 [sec]

P
la

in
 S

ym
bo

lic
 E

xp
lo

ra
tio

n

Symbolic Boom with Counter Abstraction

4

5

6

3

4

3

4

4

5

6

2

3

5

6

7 8 9 10 11 12

3

4 5

2

3 4

2

3

4

3

4

2

3

44 5 6

2

3

2

2

3

2

2

3

2

3

4

5 6

3

4

2

3

3

4

2

2

2

2

2
2

2
3

4

3

4

5

3

4

2 2

2

3

2
3

4

5

6

7 8 9 10 11 12 13

2

3

4

4

5

6 7

2

3

3

4

2

15 16 1718 19 20 21 22 23 24 252627 282930 31323334353637383940414243444546474849

2

2

2

3

4

5

2

3

4

3

4

6

7 8 9 10 11 12 13

7

8 9 10 11 12 13 14 15 16 17 18

3

4

5

2

6

7 8 9 10 11 12 13 14 15

2

6

7 8 9 10 11 12 13 14 15

2

5

6 7 8 9 10

3

4

2

3

16 17 18 1920 2122 2324 25262728293031323334353637383940414243444546474849

3

4

5

6 7 8 9

3

4

4

5 6

3

4

3

4 5

4

5

6 7

2

5

6 7 8 9

3

4

3

4

3

4

2

2

2

3

3

4

5

3

4

5 6

2

12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 303132333435363738394041424344

2

3

2

3

24

5

6 7 8

2

6

7 8 9 10 11 12 13

6

7 8 9 10 11 12 13

3

4

3

4

5

3

4

59 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829

2

3

4

2

5

6

7 8 9 10 11 12

3

4

3

4

5

2

23

4

4

5

6 7 8

3

2

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28293031 32333435 3637 383940 41

2

2

3

2

3

3

4

2

3

2

3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

3

4

3

4

22

3

4

2

3

2

2

1718 1920 2122 23 2425262728293031323334353637383940414243444546474849

3

4

5

6

7 8 9 10 11

2

2

3

6

7 8 9 10 11 12 13 14 15

3

4

5

2

2

2

11 12 13 14 15 16 17 18 19 20 21 2223 2425 26 272829 303132333435363738 394041424344

2

4

5

6 7 8

3

4

7

8 9 10 11 12 13 14 15 16 17

2

3

3

4

3

4

2

3

2

3

4

5

6

2

3

1415 1617 18 19 202122 232425262728293031323334353637383940414243444546474849

2

3

3

4

2

2

4

5 6 7

3

4

3

4

5

2

3

4

5 6

2

3

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26272829 30313233343536373839404142434412 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 293031323334 35363738394041424344

3

4

2

17 18 19 20 21 22 232425 262728293031323334353637383940414243444546474849

2

262728293031323334353637383940414243444546474849

22

2

3

3

2

2

3

3

4

3

4

3

2

3

2

3

3

4

2

3

4

3

4

3

4

2

3

4

5

6 7

4

5

6

2

2

6

7 8 9 10 11 12 13

2
3

48 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3

4

3

4

5

3

4

2

2

3

4

5

2

6

7 8 9 10 11 12 13

2

2

3

3

2

3

4

3

4

5

5

6 7 8 9

3

4

3

4

2

2

2

5

6

7 8 9 10 11 129 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28

3

4

3

4

2

3
2

2

2

2

3

3

4

5

6 7 8 9 10

3

412 13 14 15 16 17 18 19 20 21 22 2324 25 26 2728 293031323334353637383940414243

3

4

3

4

2

3

4

2

3

2

3

4

59 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3

4

3

4

5 6

3

4

3

4

3

4

5

3

4

3

4262728293031323334353637383940414243444546474849

3

3

4

6

7 8 9 10 11 12 13

3

4

2

3

4

5 6 7

2

3

4

4

5 6

2

2

3

3

4

3

4

3

4

2

3

4

3 2

2

3

2

2

3

4

2

2

3

3

4

5

2

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 303132333435363738394041424344

3

4

3

4

3

4

4

5

6 7 8

3

4

3

4 5

4

5

6

2

2

3

4

5 6 7 8

3

3

2

3

2

3

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5

6 7 8 9

3

4

12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 282930 3132 33343536373839404142434417 1819 20 21 22 2324 25262728 293031323334353637383940414243444546474849

3

4

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28

2

3

23

22

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

2

2

4

5

6 7

3

4

2

2

2

2

3

2

3

2

2

3

4

2

3

2

3

4

3

4

2

3

2

2

3

4

6

7 8 9 10 11

6

7 8 9 10 11 12 13

3

4

512 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

3

4

3

4

2

2

3

2

3

3

4

4

5

6 7 8

2

2

3

5

6 7 8 9 10

2

3

2

3

4

5

6 7

2

3

3

4

3

3

410 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

2

4

5

612 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

2

3

4

5

2

3

4

2

3

2

4

5 617 18 19 20 21 2223 24 25262728293031323334353637383940414243444546474849

2

3

3

4

6

7 8 9 10 11 12

2

2

3

3

4

3

4 5

3

4

3

4

2

2

4

5

6 7 812 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29303132 333435363738394041424344

33

4

2

3

4

3

3

4

3

4

4

5

6 7

2

3

3

4

3

4

3

4

6

7 8 9 10 11 12 13 14 15

2

3

4

5

6

7 8 9 10 11 12 13

2
3

4

5

6

7

8 9 10 11 12 13 14 15 16 17 18

2

2

3

4

2

3

3

2

5

6 7 8 9 10

2

3

4

2

2

2

2

3

4

2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2

3

3

2
2

3

3

4 5

2

2

3

412 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28293031323334353637383940414243

3

4

2

3

2

3

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

4

5

6 7 8

2

3

3

4

2
2

3

2

3

2

6

7 8 9 10 11 12 138 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2

5

6

7 8 9

3

4

5

4

5

6 7 8

25

6 7 8 9

22

3

4

5

2

2

3

4

3

4

5

3

4

3

412 13 14 15 16 17 18 19 20 21 22 2324 25 2627 2829 303132333435363738394041424344

2

3

5

6

7 8 9 10 11

3

4

2
3

4

5

3

3

4

3

4

3

4

5

3

4

5

6 7 8 9 10

4

5 6

2

3

5

6

7 8 9 10 11 12

2

3

2

3

3

2
3

4

5

6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2

3

4

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

6

7 8 9 10 11 12 13

3

4

2

2

2

3

4

3

4

2

2

3

2

2

3
2

2

2

2

2

3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3

3

4

2

3

4

5 6

3

4

3

4

3

4

2

3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

33

4

3

4

2

2

3

3
4

5 6

3 3

4

5 6

3

2

3

4

5 6

2

2

3

4

5 6

2

3031323334353637383940414243444546474849

2

2

3

3

4

5

7

8 9 10 11 12 13 14 15 16 17 18 19 20

2

2

3

4

2
2

3

4

3

4

3

4

5

3

4

2

3

4

5

6 7 8 9

3

4

5

2

3

417 18 19 20 21 222324 25 262728293031323334353637383940414243444546474849

2

2

3

3

2

3

2

6

7 8 9 10 11 12

4

5

6 7 8

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

7

8 9 10 11 12 13 14 15 16 17

7

8 9 10 11 12 13 14 15 16 17

4

5

6

2

6

7 8 9 10 11 12 13

2

2

3

3

4

5

3

4

3

412 13 14 15 16 17 18 19 20 21 22 2324 25 262728 29 30313233343536 37383940414243

4

5

6 7 8

5

6 7 8 9 2

2

3334353637383940414243444546474849

3

4

3

2

3
7

8 9 10 11 12 13 14 15 16 17

3

4

3

4

2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4

5 6

2

3

3

4

2

3

4

4

5

6 7 8

2

3

3

4

3

4

3

2
2

3

4

3

4

5

2

3

4

5 6

4

5

6 7 8

2

323334353637383940414243444546474849

2

2

2

3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

3

4

5 6

2

3

2

3

4

2

2

3

4

3

4

6

7 8 9 10 11 12 13

2

2

5

6 7 8 916 17 18 19 20 21 22 23 2425 26272829303132 3334353637383940414243444546474849

2

2

2

3

3

4

2

2

2

3

3

4

4

5 6 28 9 10 11 12 13 14 15 16 17 18 19 20 21 22

6

7 8 9 10 11 12 13 14

2
2

2

2

7

8 9 10 11 12 13 14 15 16 17

2

4

5 6 7

2

3

2

2

3

2

3

4

3

4

3

4

2

3

3

4

2

2

3

2

3

4

5

6 7 8 9 10

3

4

3

4

3

4

2

2

3

2

17 18 19 20 21 22 2324 25262728293031323334353637383940414243444546474849

3

4

3

2

3

4

5

3

4

2

7

8 9 10 11 12 13 14 15 16 17

2

3

4

3

4

5

3

4

2

3

3

4

4

5

6 7 8

3

4

3

2

3

4

3

4

3

4 5

5

6 7 8 9

3

4

3

4

2

3
2

2

12 13 14 15 16 17 18 19 20 2122 23 24 25 26 2728293031 32333435 3637 38394041

2

2

2

2

3

2

3

2

2

3

2

3

2

3

2
4

5 6

2

3

3

4

7

8 9 10 11 12 13 14 15 16 17 18

3

4

2

3

4

2

6

7 8 9 10 11 12 13 14 15

3

4

3

4

5

2

6

7 8 9 10 11 12 13 14 15

3

4

3

4

2

3

23

4

3

4

2

2

2
2

2

3

4

2

26

7 8 9 10 11 12 13

2

4

5

6

2

2

2

3

2

2

3

2

3

2

3
2

3

417 18 19 20 21 22 23 24 2526 27282930313233343536373839404142434445464748499 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

7

8 9 10 11 12 13 14 15 16 17 18

2

2

2

3

2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3

4

5 6

2

8 9 10 11 12 13 14 15 16 17 18 19 20 21

3

4

5

4

5

6 7

2

3

4

2

2

Fig. 3. Running time of symbolic Boom vs. plain exploration, for various thread counts

one thread. These merging rules, albeit apparently strict, provide an average
speed-up of 83% over exploration without merging.

We have also considered global state representations alternative to equa-
tion (1). In one implementation, we use a monolithic BDD to represent the
global variables and all thread states, along with their counters. In another, we
separate the counters from the BDD and keep them explicit, but use a monolithic
BDD for all other variables. Both allow us to retain the inter-thread constraints
introduced by splice statements, and thus do not require the decomposition
step. However, both do require complex manipulations for computing successor
states, especially for updating the counters. Moreover, they give rise to very com-
plex BDDs for the set of reachable states, which foils the scalability advantage
inherent in counter abstraction. On our benchmarks, the algorithm proposed
in Section 4 is at least 30% faster than all alternatives.

6 Summary

We have presented an algorithm for BDD-based symbolic state space exploration
of concurrent Boolean programs, a significant branch of the pressing problem of
concurrent software verification. The algorithm draws its efficiency from counter
abstraction as a reduction technique, without having to resort to approxima-
tion at any time. It is specifically designed to cope with large numbers of local
states and thus addresses a classical bottleneck in implementations of counter
abstraction. We showed how to avoid the local state space explosion problem
using a combination of two techniques: 1) interleaving the translation with the

Symbolic Counter Abstraction for Concurrent Software 77

state space exploration, and 2) ensuring that only non-zero counters and their
corresponding local states are kept in memory.

We have shown experimental results both for an explicit-state and, more im-
portantly, a symbolic implementation. While standard symmetry reduction is
employed in tools like Murϕ and RuleBase, we are not aware of a prior imple-
mentation of counter abstraction that is efficient on programs other than abstract
protocols with relatively few control states. We believe our model checker to be
the first with a true potential for scalability in concurrent software verification,
due to its polynomial dependence on the thread count n, while incurring little
verification time overhead.

An interesting question for future work is the relationship between our work
and partial-order reduction. The latter is generally viewed as combinable with
symmetry reduction for yet better compression. We have preliminary experi-
ments that indicate this is true for our symbolic counter abstraction algorithm
as well. We also plan to investigate how our algorithms can be combined with
other techniques to curb the local state space explosion problem, such as based
on static analysis or approximation (see [13]). Finally, we want to extend our
techniques to richer specification languages, especially Boolean programs with
dynamic thread creation.

References

1. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

2. Lahiri, S.K., Bryant, R., Cook, B.: A symbolic approach to predicate abstraction.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153.
Springer, Heidelberg (2003)

3. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for Boolean programs.
In: Model Checking of Software (SPIN) (2000)

4. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1995)

5. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys. (2006)

6. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: Automated Software Engineering (ASE) (2007)

7. Emerson, A., Trefler, R.: From asymmetry to full symmetry: New techniques for
symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)

8. Donaldson, A., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 9–23. Springer, Heidelberg (2006)

9. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

10. Melton, R., Dill, D.: Murφ Annotated Reference Manual, rel. 3.1,
http://verify.stanford.edu/dill/murphi.html

http://verify.stanford.edu/dill/murphi.html

78 G. Basler et al.

11. Lubachevsky, B.: An approach to automating the verification of compact parallel
coordination programs. Acta Informatica (1984)

12. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1,∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 107. Springer,
Heidelberg (2002)

13. Emerson, A., Wahl, T.: Efficient reduction techniques for systems with many com-
ponents. In: Brazilian Symposium on Formal Methods (SBMF) (2004)

14. Wei, O., Gurfinkel, A., Chechik, M.: Identification and counter abstraction for
full virtual symmetry. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 285–300. Springer, Heidelberg (2005)

15. Emerson, A., Havlicek, J., Trefler, R.: Virtual symmetry reduction. In: Logic in
Computer Science (LICS) (2000)

16. Ball, T., Chaki, S., Rajamani, S.: Parameterized verification of multithreaded soft-
ware libraries. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p.
158. Springer, Heidelberg (2001)

17. Henzinger, T., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Programming Language Design and Implementation (PLDI) (2004)

18. Andrews, T., Qadeer, S., Rajamani, S., Rehof, J., Xie, Y.: Zing: A model checker for
concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 484–487. Springer, Heidelberg (2004)

19. Blanc, N., Emerson, A., Wahl, T.: Sviss: Symbolic verification of symmetric sys-
tems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
459–462. Springer, Heidelberg (2008)

20. Barner, S., Grumberg, O.: Combining symmetry reduction and under-approxima-
tion for symbolic model checking. In: Formal Methods in System Design (FMSD)
(2005)

21. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous
Boolean programs. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 75–90.
Springer, Heidelberg (2005)

22. Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic Context-Bounded Anal-
ysis of Multithreaded Java Programs. In: Havelund, K., Majumdar, R., Palsberg,
J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)

23. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of Programming Languages (POPL)(2005)

24. Cook, B., Kroening, D., Sharygina, N.: Verification of Boolean programs with un-
bounded thread creation. Theoretical Computer Science (TCS) (2007)

25. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic
model checking. In: Formal Methods in System Design (FMSD) (1996)

26. Emerson, A., Sistla, P.: Symmetry and model checking. In: Formal Methods in
System Design (FMSD) (1996)

	Symbolic Counter Abstraction for Concurrent Software
	Introduction
	Related Work
	Preliminaries
	Boolean Programs
	Counter Abstraction

	Symbolic Counter Abstraction
	Classical Counter Abstraction – Merits and Problems
	A Compact Symbolic Representation
	Symbolic State Space Exploration

	Experimental Evaluation
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

