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Abstract. Prediction of protein structural classes for low homology proteins is a 
challenging research task in bioinformatics. A dual-layer fuzzy support vector 
machine (FSVM) network approach is proposed to predict protein structural 
classes. A protein sample can be represented by nine representation feature 
vectors: pair couple amino acid (210-D) and eight pseudo amino acid 
composition vectoers (PseAAC). Eight physicochemical properties of amino 
acids extracted from AAIndex databank are used to calculate low frequencies of 
power spectrum density of sequence-order correlation in protein sequence. In the 
first layer of FSVM network, nine FSVM classifiers are established, which are 
trained by different protein feature vectors, respectively. The outputs of the first 
layer are reclassified by FSVM classifier in 2nd layer of the network. The 
performance of proposed method is validated by low homology (average 25%) 
dataset covering 1673 proteins. The promising results indicate that the new 
method may become a useful tool for predicting not only the structural 
classification of proteins but also their other attributes. 

1   Introduction 

In structural classification of proteins databank (SCOP) [1-3], proteins are classified 
into seven structural classes: all-α, all-β, α+β, α/β, multi-domain, small protein, and 
peptide. More than 80% proteins are deposited into the former four classes. Many 
efforts were focused on the four structural classes, ie., all-α, all-β, α+β, and α/β. 

Numerous prediction methods for protein structural classes have been proposed 
based on the primary amino acid sequence [4-15], since the work of Klein and Delisi 
[4]. During the twenty years, the performance of these methods are increasing with the 
combination of new pattern recognize algorithms and effective protein sequence 
representation. Perfect accuracy rates (about 95%) have been achieved in some 
prediction methods. However, these methods were often tested on small datasets, and 
characterized by different homology of sequences. Kurgan and Homaeian [22] 
indicated that sequence homology in dataset have a significant impact on the predictive 
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accuracy. The best achieved prediction accuracy for low homology datasets is about 
57%. Wang and Yuan [17] have stated that the prediction method should aim only at 
proteins with lower 30% homology. So, it is crucial to develop the prediction methods 
or algorithms for structural classes of protein with lower homology.  

Several studies have testified that the performance of ensemble machine learning 
approaches is superior to individual learning algorithm [7, 18-21]. Recently, the 
methods of ensembles have been used in this area. Kedarisetti et al. [16] established an 
ensembles method with heterogeneous classifiers validating on the datasets of varying 
homology. Chen et al. [7] developed support vector machine fusion network algorithm.  

Compared with amino acid composition frequently used in prediction methods of 
protein structural classes, pseudo amino acid composition (PseAAC) as introduced by 
Chou [23] can incorporate more information and remarkable enhance prediction 
performance in various attribute of protein. In this study, a sample of proteins is 
represented by nine kinds of feature vectors, including pair couple amino acid 
composition (PcAA) (210-D) and eight PseAAC feature vector. Eight physicochemical 
properties extracted from AAIndex database [24] are used to calculate sequence-order 
correlation that introduced by Chou [25]. Low frequencies of power spectrum density 
of different sequence-order effect are used to construct PseAAC. A dual-layer fuzzy 
support vector machine (FSVM) network is used as prediction engine. The low 
homology dataset 25PDB, constructed by Kurgan et al. [22], is applied to verify the 
new method. Promising results obtained on self-consistent and jackknife 
cross-validating test methods show that it is effective and practical. 

2   Methods  

2.1   Protein Sequence Representation 

Pair-coupled amino acid composition (PcAA) attempts to extract the information of 
local order of amino acids in sequence. This concept has been used in protein secondary 
structure content prediction [7, 26, 27] and other attributes of protein prediction [25]. 
The PcAA is formulated as follows: 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=ℜ

)(                                          

 ...                                                

)(),...,(                         

)(),....,(),(            

)(),...,(),(),(

210

YYf

DYfDDf

CYfCDfCCf

AYfADfACfAAf

 
(1) 

where, )(ACf  is the sum of AC pair occurrence frequency and CA pair occurrence 

frequency in protein sequence. Thus, the pair-couple AA is a 210-D feature vector.  

],...,,[ 210211 xxxS =
→

 (2) 

where, )( ..., ),( ),( 21021 YYfxACfxAAfx === . The 210-D (dimensional) vector is 

normalized to meet the condition that the sum is 1. 
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Compared with conventional protein composition (20-D), the concept of PseAAC as 
originally introduced by Chou [23], which is defined in a D-)(20 λ+  features space, 

will contain much more sequence-order information. A protein sample can be 
represented by D-)(20 λ+  vectors, where the λ is the number of additional properties 

of sequence. 
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where, the fi is the normalized occurrence frequency of the 20 amino acid in the protein, 
that is amino acid composition (AA), and the Pi is the additional properties of protein 
sequence. w is weight factor of additional characteristics. In this study, the properties of 
protein sequence are the low frequencies of power spectrum density of sequence-order 
effect that introduced by Chou [25]. Protein sequence with N residues can be written as 

N21 RRRR …= . Protein sequence order effect can be reflected through Eq. (5). It is 

actually the same as Eq. (2) of  Chou [25]. 
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where, 
miiJ +,

 is the correlation factor of residue i  and mi + . m is the distance of two 

residues have correlation in sequence. In this study, 
miiJ +,

 is defined as the product of 

physicochemical properties of two residues, see Eq. (6), which is actually the same as 
Eq. (3) of Chou[25]. 

)()(, miiii RhRhJ ++ =λ  (6) 

Before substituting the properties into Eq. (6), they are normalized according to the 
Eq. (7) 
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In Eq. (7), )20,...,2,1( )(0 =iRh i  are the original physicochemical properties of 20 

amino acids. 0h  denotes that the average property values of 20 amino acids. 

)( 0hSD presents the standard deviation. 

We use standard function ‘PWELCH’ in Matlab 7.0 environment to calculate power 
spectral density of the sequence-order effect. Based on the theory of digital signal 
processing, the high-frequency components are more noisies, and hence only the 
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low-frequency components are more important. Similarly, low frequencies of Fourier 
transform of protein sequence-order correlation have been used in prediction of 
membrane protein types [28, 29]. In our previous work [30], low frequencies of energy 
spectrum density of protein sequence-order correlation are used to construct PseAAC. 
This is just like the case of protein internal motions where the low-frequency 
components are functionally more important [31, 32].  

In some prior works, hydrophobicity scale of amino acid was usually used to 
calculate sequence-order effect [7, 28-30, 33-35]. Except for hydrophobicity, some 
other physicochemical properties of amino acids are also important in the fold process, 
such as volume, polarity, average accessible surface area, and so on. Here, eight 
physicochemical properties extracted from AAIndex database [24] are used to compute 
the sequence-order correlation of protein sequence through Eq. (6) and (7), 
respectively. The physicochemical properties are listed in Table 1. Eight PseAAC 

vectors are obtained and are named as ),...,,(iS i 932 =
→

.  

Table 1. The eight physicochemical properties used in this work 

No AA Index Description 
1 PRAM900101 Hydrophobicity 
2 COSI940101 Electron-ion interaction potential values 
3 RADA880108 Mean polarity 
4 PONJ960101 Average volumes of residues 
5 KUHL950101 Hydrophilicity scale 
6 JANJ790102 Transfer free energy 
7 JANJ780101 Average accessible surface area  
8 FAUJ880103 Normalized van der Waals volume  

2.2   Fuzzy Support Vector Machine 
 

Support vector machine is a typical binary-class classifier based on the statistic learning 
theory[36]. The task of protein structural classes’ prediction is a four classes 
classification problem. There are many multi-classes SVMs methods to solve the 
problem, such as one against one, one against others, DAG, etc. However, there are 
some unclassifiable points still existing in these multi-class SVMs methods. FSVM 
algorithm as introduced by Abe [37] has capability to solve unclassifiable points 
effectively.  

Compared with conventional SVM algorithm, membership function is defined in 
FSVM algorithm. When solving k classes classification task, 2/)1( −kk  SVM 

classifiers have to be established with one against one method. Toward to the SVM 
classifier between class i  and class j , the decision function of input vector x  is  

ijijij bxwD +=  (8) 

where ijw  is the m-D vector, ijb  is a scalar, and 
jiij DD −=  
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For the input vector x  , we assemble  
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For optimal separating hyperplane )(  0 jiDij ≠= , the membership function ijm  is 

defined as below: 
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We define the class i  membership function of x  using the minimum operator: 
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The shape of the membership function is a truncated polyhedral pyramid. An unknown 
protein sequence is classified into the class with maximum membership value.  

)(maxarg
,...,1

xmi
ni=

 (13) 

In this study, six binary-class SVMs have been developed through the method of one 
against one for solving protein structural classes prediction (four classes).  
LS-SVMLab1.5 toolbox [38] in MatLab environment is selected as binary-class SVM 
classifier which is capable of searching the fittest parameters in SVM automatically. 
The Radial Basis Function (RBF) kernel is used in SVM. The membership function is 
calculated according to the Eqs (8)-(12). The output of each FSVM classifier in the first 
layer is not a rigid class label but a 4-D vector. The vector indicates that the 
membership values of protein sample belong to four strucutral classes. 

2.3   FSVM Network 
 

The SVM fusion uses the FSVM classifier to reclassify the outputs from all 
sub-classifiers. The protein sample is predicted by FSVM 1 to FSVM 8, and the output  
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Fig. 1. The work procedure of FSVM network for prediction of protein structural classes 
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of the thk −  FSVM ( 91 ≤≤ k ) is represented as 4-D vector. Then the input feature 
vector is defined as ],...,,[ 921 VVVV =  to the FSVM fusion classifier for final decision. 

The process of the new predictive method is illustrated in Fig. 1. 

2.4   Dataset and Measure Methods 
 

The dataset constructed by Kurgan and Homaeian [22] is used to validate the 
performance of the new method, which includes proteins scanned with high resolution 
and with low on average 25% homology, named as 25PDB. The dataset contains 1673 
proteins classified into four structural classes: 443 all-α, 443 all-β, 346 α/β, and 441 
α+β.  

Three indexes are applied to evaluate the prediction accuracy, that is, sensitivity 
(Sn), specificity (Sp), and Mathew’s correlation coefficient (MCC).  

FNTP

TP
Sn +

=  (14) 

FPTP
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S p +

=  (15) 
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where, TP (true positives) is the protein number of right prediction in a structure class, 
FN (false negatives) is the protein number of wrong prediction in a structure class, and 
FP (false positives) is the number of the proteins in other classes to be predicted in this 
class. TN (true negatives) is the number of proteins observed in other classes that are 
not predicted in this class. Sn represents the accuracy, and Sp represents the reliability in 
procedure of prediction. The MCC is a single parameter characterizing the matching 
extent between the observed and predicted structural classes. Self-consistency and 
jackknife test methods are used to test the performance of the new approach. The 
jackknife test is thought the most rigorous and objective one [see [39] for a 
comprehensive review in this regard], and hence has been used by more and more 
investigators in examining the power of various prediction methods. 

3   Results and Discussion 

In the first layer of the FSVM network, nine FSVM classifiers trained by different 
representation methods of protein are established. The three indexes values of each 
FSVM classier are tested under self-consistency and jackknife cross-validating test 
methods. The number of addition characteristics λ  and factor parameter w  in Eq. (4) 
are important in determining the performance of PseAAC. Different parameters },{ wλ  

in Eq. (4) are tested, and the PseAAC feature vector is input into FSVM classifier. The 
parameters },{ wλ are determined when the accuracy of jackknife test method is the 

highest. The jackknife test results of nine FSVM classifier trained by different PseAAC 
feature vectors are listed in Table 2. The highest accuracy is 55.9%, and the lowest is  
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Table 2. Performance of each FSVM classifier 

Representation 
1S
r

 2S
r

 3S
r

 4S
r

 5S
r

 6S
r

 7S
r

 8S
r

 9S
r

 

λ  - 11 11 7 9 15 11 20 3 
w  - 0.15 0.05 0.02 0.1 0.1 0.1 0.15 0.2 
Accuracy (%) 32.7 53.2 55.6 53.4 47.1 55.9 50.6 43.9 53.4 

 
32.7%. The outputs of all FSVM classifiers are combined into a vector, and used as 
input of the FSVM classifier in the second layer of the network.  

The prediction results of four structural classes on self-consistency and jackknife 
test methods are listed in Table 3. The three indexes are calculated respectively. The 
overall accuracy of self-consistency is 91.87%, and that of jackknife test is 62.9%. 
Class all-β achieves the highest accuracy (79.9%) in four structural classes, and that of 
class all-α is more than 70%. However, accuracy of class α/β is 36.7%, and that of class 
α+β is 56%. The Sp value of class all-α is 53.9%. It demonstrate that some proteins in 
other structural class are incorrect classified into class all-α. According to the concept 
of Levitt and Chothia [30], it is true that the class α+β and α/β are more complex than 
class all-α and all-β. It might be the reason to explain the phenomenon that accuracies 
of class all-α and class all-β are higher than that of class α+β and class α/β.  

Table 3. Results on self-consistency and jackknife test methods 

Self-consistency test  Jackknife test  Structural classes 
Sn Sp MCC Sn Sp MCC 

all-α 95.7% 85.3% 0.86 73.1% 53.9% 0.59 
all-β 87.8% 95.3% 0.88 79.9% 75.5% 0.53 
α/β 87.6% 94.1% 0.88 36.7% 52.0% 0.32 
α+β 95.4% 94.4% 0.93 56.0% 68.8% 0.41 
Total 1537/1673=91.87% 1052/1673=62.9% 

 
The results of proposed method are compared with that of others using the same 

dataset, 25PDB. The accuracy rates of self-consistency and jackknife test methods 
together with the protein representation are deposited in Table 4. In same measure 
method and validation dataset, proposed method obtains 4.2% and 3% improvement on 
jackknife test when compared with the results of Logistic regression method [22] and 
StackingC ensemble [16], respectively. Meanwhile, the highest accuracy is achieved on 
self-consistency test method compared with other two methods. StackingC ensemble 
algorithm uses four heterogeneous classifiers. Protein sequence is initially represented 
using comprehensive set of 122 features which is reduced to 34 features through 
application of several feature selection algorithms [16]. The proposed method use 
different protein representation and same classifier. FSVM classifier has capability to 
resolve unclassifiable region effectively. FSVM is a strong classifier with excellent 
classification performance. It is widely accepted that ensemble method can enhance 
classification performance than single classifier [31]. Multiple FSVM classifiers are 
combined into FSVM network where various physicochemical properties of amino  
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Table 4. Comparison with other prediction methods on same dataset  

Accuracy rates (%) Classification algorithm Representation 
Self-consistency Jackknife 

Logistic regression[22] 66 feature 62.2 57.1 
StackingC ensemble[16] 34 feature 87.6 59.9 
This paper Multi-feature 91.87 62.9 

acid are taken into account. The promising prediction results illuminate that the FSVM 
network incorporating various physicochemical properties of amino acid is effective 
and practical. It might become potential tool for prediction of protein structural classes 
and other attributes of protein.  

4   Conclusions 

A dual-layer FSVM network is established to predict protein structural classes. Protein 
sample is represented by nine kinds of feature vectors including pair-couple amino acid 
composition (210-D) and eight PseAAC vectors. Eight physicochemical properties 
extracted from AAIndex databank are used to calculate sequence-order correlation in 
protein sequence. Low-frequencies of power spectrum density of different 
sequence-order correlations are used to construct PseAAC vectors. In the first layer of 
FSVM network, nine FSVM classifiers are obtained which are trained by different 
feature representation methods, respectively. The low homology dataset (average about 
25% homology) is applied to verify the proposed method. The results of jackknife test 
in different structural classes illuminate that accuracies of class all-α and class all-β are 
higher than class α+β and class α/β. The phenomenon meets the truth of more 
complexity existing in class α+β and class α/β. Compared with other two methods 
tested on same dataset, the proposed methods obtain the highest accuracy. Promising 
results show the new method is effective and practical. It might become potential tool 
for protein structural class and other attribute of proteins.  
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