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Abstract. We propose a simple and straightforward way of creat-
ing powerful image representations via cross-dimensional weighting and
aggregation of deep convolutional neural network layer outputs. We first
present a generalized framework that encompasses a broad family of
approaches and includes cross-dimensional pooling and weighting steps.
We then propose specific non-parametric schemes for both spatial- and
channel-wise weighting that boost the effect of highly active spatial
responses and at the same time regulate burstiness effects. We exper-
iment on different public datasets for image search and show that our
approach outperforms the current state-of-the-art for approaches based
on pre-trained networks. We also provide an easy-to-use, open source
implementation that reproduces our results.

1 Introduction

Visual image search has been evolving rapidly in recent years with hand-crafted
local features giving way to learning-based ones. Deep Convolutional Neural
Networks (CNNs) were popularized by the seminal work of Krizhevsky et al . [19]
and have been shown to “effortlessly” improve the state-of-the-art in multiple
computer vision domains [29], beating many highly optimized, domain-specific
approaches. It comes as no surprise that such features, based on deep networks,
have recently also dominated the field of visual image search [3–5,29].

Many recent image search approaches are based on deep features,
e.g., Babenko et al . [4,5] and Razavian et al . [3,29] proposed different pooling
strategies for such features and demonstrated state-of-the-art performance in
popular benchmarks for compact image representations, i.e., representations of
up to a few hundred dimensions.

Motivated by these advances, in this paper we present a simple and straightfor-
ward way of creating powerful image representations via cross-dimensional weight-
ing and aggregation. We place our approach in a general family of approaches for
multidimensional aggregation and weighting and present a specific instantiation
that we have thus far found to be most effective on benchmark tasks.

We base our cross-dimensional weighted features on a generic deep convolu-
tional neural network. Since we aggregate outputs of convolutional layers before
the fully connected ones, the data layer can be of arbitrary size [20]. We there-
fore avoid resizing and cropping the input image, allowing images of different
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aspect ratios to keep their spatial characteristics intact. After extracting deep
convolutional features from the last spatial layer of a CNN, we apply weighting
both spatially and per channel before sum-pooling to create a final aggregation.
We denote features derived after such cross-dimensional weighting and pooling
as CroW features.

Our contributions can be summarized as follows:

– We present a generalized framework that sketches a family of approaches for
aggregation of convolutional features, including cross-dimensional weighting
and pooling steps.

– We propose non-parametric weighting schemes for both spatial- and channel-
wise weighting that boost the effect of highly active spatial responses and
regulate the effect of channel burstiness respectively.

– We present state-of-the-art results on three public datasets for image search
without any fine-tuning.

With a very small computational overhead, we are able to improve the state-
of-the-art in visual image search. For the popular Oxford [26] and Paris [27]
datasets, the mean average precision for our CroW feature is over 10% higher
than the previous state-of-the-art for compact visual representations. Addition-
ally, our features are trivially combined for simple query expansion, enjoying even
better performance. We provide an easy-to-use, open source implementation that
reproduces our results on GitHub1.

The paper is structured as follows: In Sect. 2 we present and discuss related
work, while in Sect. 3 we present a general framework for weighted pooling to
orient past work and our own explorations. In Sect. 4 we describe two complimen-
tary feature weighting schemes, and we present experimental results for visual
search in Sect. 5. The paper concludes with Sect. 6.

2 Related Work

Until recently, the vast majority of image search approaches were variants of
the bag-of-words model [32] and were based on local features, typically SIFT
[21]. Successful extensions include soft assignment [27], spatial matching [2,26],
query expansion [1,6,7,35], better descriptor normalization [1], feature selection
[36,38], feature burstiness [15] and very large vocabularies [22]. All the afore-
mentioned strategies perform very well for object retrieval but are very hard to
scale, as each image is represented by hundreds of patches, causing search time
and memory to suffer.

The community therefore recently turned towards global image represen-
tations. Starting from local feature aggregation strategies like VLAD [16] or
Fisher Vectors [24] multiple successful extensions have arisen [9,12,33,34], slowly
increasing the performance of such aggregated features and closing the gap
between global and bag-of-word representations for image search. Triangula-
tion embedding with democratic aggregation [17] was shown to give state-of-
the-art results for SIFT-based architectures, while handling problems related to
1 https://github.com/yahoo/crow.

https://github.com/yahoo/crow
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burstiness and interactions between unrelated descriptors prior to aggregation.
Recently, Murray and Perronnin [23] generalized max-pooling from bag-of-words
to Fisher Vector representations achieving high performance in search as well as
classification tasks.

After the seminal work of Krizhevsky et al . [19], image search, along with the
whole computer vision community, embraced the power of deep learning architec-
tures. Out-of-the-box features from pre-trained Convolutional Neural Networks
(CNNs) were shown to effortlessly give state-of-the-art results in many computer
vision tasks, including image search [29].

Among the first to more extensively study CNN-based codes for image search
were Babenko et al . [5] and Razavian et al . [3,29]. They experimented with aggre-
gation of responses from different layers of the CNN, both fully connected and
convolutional. They introduced a basic feature aggregation pipeline using max-
pooling that, in combination with proper normalization and whitening was able
to beat all aggregated local feature based approaches for low dimensional image
codes. Gong et al . [10] used orderless VLAD pooling of CNN activations on mul-
tiple scales and achieved competitive results on classification and search tasks.

Very recently Tolias et al . [37] proposed max-pooling over multiple image
regions sampled on the final convolutional layer. Their approach achieves state-of-
the-art results and is complementary to our cross-dimensional weighting. Cimpoi
et al . [8] also recently proposed using Fisher Vector aggregation of convolutional
features for texture recognition. Their approach achieves great performace, it is
however computationally demanding; PCA from 65 K dimensions alone requires
multiplication with a very large matrix. Our approach is training- and parameter-
free, with only a very small computational overhead.

In another very recent related work, Babenko and Lempitsky proposed the
SPoC features [4] with slightly different design choices from the pipeline of [5]
and sum- instead of max-pooling. As the latter approach is very related to ours,
we discuss the differences of the two approaches in the following sections and
explain SPoC in terms of the proposed aggregation framework.

The first approaches that learn features for landmark retrieval [11,28] are
presented at the current ECCV conference. Both approaches use clean annotated
data and fine-tune a deep CNN for feature extraction using a pairwise [28] or
ranking [11] loss. These approaches are now state-of-the art in the most common
benchmarks. Still, our proposed features are not far behind, without requiring
training or clean annotated data.

3 Framework for Aggregation of Convolutional Features

3.1 Framework Overview

In this section we present a simple and straightforward way of creating powerful
image representations. We start by considering a general family of approaches
that can be summarized as proceeding through the following steps. Greater
details and motivations for these steps will be given in subsequent sections,
along with the specific instantiation that we have thus far found to be most
effective on benchmark tasks.
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1: Perform spatially-local pooling. Sum-pooling or max-pooling over a spa-
tially local neighborhood within each channel of a convolutional layer, with
neighborhood size w×h and stride s. Some limiting cases include: (1) a pool-
ing neighborhood that occupies the full spatial extent of each channel (i.e.
global pooling); and (2) a 1×1 pooling neighborhood (effectively not doing
pooling at all). After pooling, we have a three-dimensional tensor of activities.

2: Compute spatial weighting factors. For each location (i, j) in the locally
pooled feature maps we assign a weight, αij , that is applied to each channel
at that location.

3: Compute channel weighting factors. For each channel k, we assign a
weight, βk that is applied to each location in that channel.

4: Perform weighted-sum aggregation. We apply the previously derived
weights location-wise and channel-wise before using a channel-wise sum to
aggregate the full tensor of activities into a single vector.

5: Perform vector normalization. The resulting vector is then normalized
and power-transformed. A variety of norms can be used here.

6: Perform dimensionality reduction. We then reduce the dimensionality of
the normed-vector. PCA is a typical choice here, and we may also choose to
perform whitening or other per-dimension scalings on entries of the dimen-
sionality reduced vector.

7: Perform final normalization. We then apply a second and final normal-
ization step.

Algorithm 1 summarises these steps as pseudocode.

Algorithm 1. Framework for Aggregation of Convolutional Features
input : 3d feature tensor X , pooling nhood size w×h, stride s, and type p, spatial weight

generation function, Ωs, channel weight generation function, Ωc, initial norm type,

a, and power scaling, b, pre-trained whitening parameters W , final feature

dimensionality K′, final norm type, c

output: K′-dimensional aggregate feature vector G = {g1, . . . , gK}
1 ˜X = pool(X ;w, h, s, p) // Initial local pooling

2 Ωs(X̃ ) → αij ∀ i, j // Spatial weighting

3 Ωc(X̃ ) → βk ∀ k // Channel weighting

4 fk =
W
∑

i=1

H
∑

j=1
αijβkXkij ∀ k

5 ̂F = pnorm(F ; a,b) // Normalize and powerscale

6 ˜F = PCA(̂F ; W , K′) // dim. reduction and whitening

7 G = norm(˜F , c) // Normalize again

3.2 Cross-Dimensional Weighting

Let X ∈ R
(K×W×H) be the 3-dimensional feature tensor from a selected layer

l, where K is the total number of channels and W , H the spatial dimensions
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X α
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X

Fig. 1. Prior to aggregation, the convolutional features can be weighted channel-wise
by a weight vector β and weighted location-wise by a weight matrix α such that X ′

kij =
αijβkXkij . The weighted features X ′ are sum-pooled to derive an aggregate feature.

of that layer. As mentioned above, the spatial dimensions may vary per image
depending on its original size, but we omit image-specific subscripts here for
clarity.

We denote the entry in X corresponding to channel k, at spatial location (i, j)
as Xkij . For notational convenience, we also denote the channel-wise matrices
of X as C(k), where C(k)

ij = Xkij . Similarly, we use λ(ij) to denote the vector of

channel responses at location (i, j), where λ
(ij)
k = Xkij .

A weighted feature tensor X ′ is produced by applying per-location weights,
αij , and per-channel weights, βk, to feature tensor X as illustrated in Fig. 1:

X ′
kij = αijβkXkij (1)

The weighted feature tensor is aggregated by sum-pooling per channel. Let
aggregated feature vector F = {f1, . . . , fk} associated with the layer l be the
vector of weight-summed activations per channel:

fk =
W∑

i=1

H∑

j=1

X ′
kij (2)

After aggregation, we follow what was shown to be the best practice
[3,29] and L2-normalize F , then whiten using parameters learnt from a sep-
arate dataset and L2-normalize again. We denote the features that are derived
from the current framework as Cross-dimensional Weighted or CroW features.

4 Feature Weighting Schemes

In this section we present our non-parametric spatial and channel weighting for
Steps 2 and 3 of the framework. We propose a spatial weighting derived from
the spatial activations of the layer outputs themselves and a channel weighting
derived from channel sparsity.



690 Y. Kalantidis et al.

4.1 Response Aggregation for Spatial Weighting

We propose a method to derive a spatial weighting based on the normalized
total response across all channels. Let S ′ ∈ R

(W×H) be the matrix of aggregated
responses from all channels per spatial location, which we compute by summing
feature maps C(k):

S ′ =
∑

k

C(k). (3)

After normalization and power-scaling we get aggregated spatial response
map S, whose value at spatial location (i, j) is given by:

Sij =

⎛

⎜⎝
S′

ij
(∑

m,n S′
mn

a
)1/a

⎞

⎟⎠

1/b

, (4)

After computing the 2d spatial aggregation mapS for feature X , we can apply
it independently on every channel, setting αij = Sij and using αij as in Eq. 1.

We experimented with different norms for normalizing the aggregate
responses S ′, i.e., L1, L2, inf, power normalization with a = 0.5 [25]. We found
that image search performance remains very high in all cases and the differences
are very small, usually less than 0.01 in mAP. We therefore choose to use the L2
norm and b = 2 for our spatial aggregation maps, before applying them to the
features.

We visualize highly weighted spatial locations in Fig. 3 with images from the
Paris [27] dataset. Our spatial weighting boosts features at locations with salient
visual content and down weights non-salient locations. Notably, similar visual
elements are boosted under our weighting despite large variation in lighting and
perspective.
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Fig. 2. Mean S̃ij plotted against channel sparsity at the corresponding location. The
correlation of channel-wise sparsity for the 55 images in the query-set of the Paris
dataset. Images are sorted by landmark class in both dimensions.
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Fig. 3. Visualization of spatial weighting by aggregate response. On the left we show
original images in the Paris dataset along with their spatial weights. On the right
we visualize the receptive fields of the 7 highest weighted locations and the 7 lowest
weighted locations for each image. The top two images are of Notre Dame and the
bottom two are of the Panthéon.

In Fig. 2a we show the relationship between our spatial weights Sij and the
sparsity of the channel responses λ(ij). We compute the spatial weight Sij of every
location in the Paris dataset and normalize each by the maximum spatial weight
for the image in which it occurs, which we denote S̃ij . The mean S̃ij for each level
of channel sparsity at the corresponding location is plotted as cyan in Fig. 2a.

It can be seen that our spatial weighting tends to boost locations for which
multiple channels are active relative to other spatial locations of the same image.
This suggests that our spatial weighting is a non-parametric and computation-
ally cheap way to favor spatial locations for which features co-occur while also
accounting for the strength of feature responses. We speculate that these loca-
tions are more discriminative as there are combinatorially more configurations
at mid-ranges of sparsity.

4.2 Sparsity Sensitive Channel Weighting

We now propose a method to derive a channel weighting based on the sparsity of
feature maps. We expect that similar images will have similar occurrence rates
for a given feature. For each channel k we find Qk, the proportion of non-zero
responses, and compute the per-channel sparsity, Ξk, as:

Ξk = 1 − Qk, (5)



692 Y. Kalantidis et al.

where Q = 1
WH

∑
ij 1[λ(ij) > 0]. In Fig. 2b we visualize the pair-wise correlation

of the vectors of channel sparsities Ξ ∈ R
K for images in the query-set of the

Paris dataset. The query-set for the Paris dataset contains 55 images total, 5
images each for 11 classes of Paris landmarks. We order the images by class. It is
apparent that channel sparsities Ξ are highly correlated for images of the same
landmark and less correlated for images of different landmarks. It appears that
the sparsity pattern of channels contains discriminative information.

Since we sum-pool features λ(ij) over spatial locations when we derive
our aggregated feature, channels with frequent feature occurrences are already
strongly activated in the aggregate feature. However, infrequently occurring fea-
tures could provide important signal if, for example, the feature consistently
occurs though only a small number of times in images of the same class. Moti-
vated by this insight, we devise a channel weighting scheme similar to the concept
of inverse document frequency. That is, we boost the contribution of rare features
in the overall response by using the per-channel weight, Ik, defined as:

Ik = log
(

Kε +
∑

h Qh

ε + Qk

)
, (6)

where ε is a small constant added for numerical stability.
Our sparsity sensitive channel weighting is also related to and motivated

by the notion of intra-image visual burstiness [15]. Channels with low sparsity
correspond to filters that give non-zero responses in many image regions. This
implies some spatially recurring visual elements in the image, that were shown
to negatively affect matching [15]. Although we don’t go as far as [17] and try to
learn a “democratic” matching kernel, our sparsity sensitive weights do down-
weight channels of such bursty convolutional filters.

To provide further insight into the effect of our sparsity-sensitive channel
weights (SSW), we visualize the receptive fields of active locations in channels
that our weights boost.

Fig. 4. Regions corresponding to locations that contribute (are non-zero) to the 10
channels with the highest sparsity-sensitive weights for the four images of Fig. 3.
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In Fig. 4 we show all receptive fields that are non-zero in (one or more) of
the channels with the highest sparsity-sensitive channel weights. As values from
these channels are increased before aggregation, our approach gives more weight
to CNN outputs that correspond to the image regions shown on the right.

4.3 Discussion

Using the framework described in Sect. 3, we can explain different approaches in
terms of their pooling, weighting and aggregation steps; we illustrate some inter-
esting cases in Table 1. For example, approaches that aggregate the output of a
max-pooling layer of the convolutional neural network are essentially performing
max-pooling in Step 1.

In terms of novelty, it is noteworty to restate that the spatial weighting
presented in Sect. 4.1 corresponds to a well known principle, and approaches
like [8,17,23] have addressed similar ideas. Our spatial weighting is notable as a
simple and strong baseline. Together with the channel weighting, the CroW fea-
tures are able to deliver state-of-the-art results at practically the same compu-
tational cost as off-the-self features.

Uniform Weighting. If we further uniformly set both spatial and channel
weights and then perform sum-pooling per channel we end up with a simpler
version of CroW features, that we denote as uniform CroW or uCroW.

Relation to SPoC [4] Features. SPoC [4] can be described in terms of our
framework as illustrated in Table 1. CroW and SPoC features differ in their
spatial pooling, spatial weighting, and channel weighting. For the first spatially-
local pooling step, CroW (and uCroW ) max-pool (we are essentially using the
outputs of the last pooling layer of the deep convolutional network rather than
the last convolutional one as in SpoC). SPoC uses a centering prior for spatial
weighting to boost features that occur near the center of the image, whereas
we propose a spatial weighting derived from the spatial activations of the layer
outputs themselves. Lastly, SPoC uses a uniform channel weighting, whereas
we propose a channel weighting derived from channel sparsity. We demonstrate
improvements for each of these design choices in Sect. 5.

Table 1. The pooling and weighting steps for three instantiations of our aggregation
framework, i.e., the proposed CroW , the simplified uCroW and SPoC [4]. SW refers
to the spatial weighting presented in 4.1, while SSW to the sparsity sensitive channel
weighting presented in Sect. 4.2.

Step SPoC [4] uCroW CroW

1: local pooling None Max Max

2: spatial weighting Centering prior Uniform SW

3: channel weighting Uniform Uniform SSW

4: aggregation Sum Sum Sum
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5 Experiments

5.1 Evaluation Protocol

Datasets. We experiment on four publicly available datasets. For image search
we report results on Oxford [26] and Paris [27], further combining them with
the Oxford100k [26] dataset as distractors. We also present results on the Holi-
days [14] dataset. For Oxford we used the common protocol as in all other meth-
ods reported, i.e. the cropped queries. We regard the cropped region as input for
the CNN and extract features. For Holidays we use the “upright” version of the
images.

Evaluation Metrics. For image search experiments on Oxford, Paris and Holi-
days we measure mean average precision (mAP) over all queries. We use the eval-
uation code provided by the authors. For deep neural networks we use Caffe2 [18]
and the publicly available pre-trained VGG16 model [31]. As usual with Caffe,
we zero-center the input image by mean pixel subtraction. In all cases, table rows
including citations present results reported in the cited papers.

Query Expansion. One can trivially use simple query expansion techniques [7]
with CroW features. Given the ranked list of database images by ascending
distance to the query, we sum the aggregated feature vectors of the top M
results, L2-normalize and re-query once again. Despite its simplicity, we show
that this consistently improves performance, although it does come at the cost
of one extra query.

5.2 Preliminary Experiments

Image Size and Layer Selection. In Fig. 5a we investigate the performance of
uCroW features when aggregating responses from different layers of the network.

Our uCroW features are in essence similar to the very recently proposed
SPoC features of [4], but have some different design choices that make them
more generic and powerful. Firstly, SPoC features are derived from the VGG19
model while our uCroW features are derived from the VGG16 model; in this
section we show that our uCroW features performs much better even if we are
using a smaller deep network. Secondly, we do not resize the input image to
586 × 586 as in [4] and instead keep it at its original size. SpoC is therefore
comparable to the dotted cyan line in Fig. 5a.

Choosing the last pooling and convolutional layers of the network signifi-
cantly improves performance over the fourth, especially as the final dimension
decreases. Moreover, the pool5 layer consistently outperforms conv5-3, showing
that max pooling in Step 1 is indeed beneficial.

Regarding image size, we see that keeping the original size of the images is
another factor that contributes to higher performance.
2 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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Fig. 5. Mean average precision on Paris. Different lines denote uCroW features from
the corresponding layers of VGG16; conv4 (conv5) corresponds to conv4 3 (conv5 3).
Solid lines denote that the original image size is kept, while for dashed lines the images
were resized to 586×586 as in [4]. Both conv4 and pool4 layers have very poor perfor-
mance in low dimensions, with 0.58 mAP for d = 128. SPoC features [4] correspond to
the dotted cyan line. Mean average precision on Paris when varying the dimensionality
of the final features.

Effect of the Final Feature Dimensionality. In Fig. 5b we present mAP on
Paris when varying the dimensionality of the final features. We present results
for all weighting combinations of the proposed approach. uCroW refers to uni-
form or no weighting. uCroW +SW refers to using the only the spatial weighting
of Sect. 4.1 on top of uCroW, uCroW +SSW to using the sparsity sensitive chan-
nel weighting of Sect. 4.2 on top of uCroW, while CroW refers to our complete
approach with both weighting schemes. As we see, the uCroW +SSW com-
bination is affected more by dimensionality reduction than the rest. This can
be interpreted as an effect of the subsequent dimensionality reduction. When
calculating the sparsity sensitive weights all dimensions are taken into account,
however, in the final reduced vector many of those were discarded.

Notes on Max-pooling. In preliminary experiments we also tested max-
pooling instead of sum pooling for feature aggregation. Consistently with [4]
we found it to be always inferior to sum-pooling when whitening was used.

Table 2. Mean average precision on Paris when learning the whitening parameters on
Oxford, Holidays and Oxford100k for different values of d.

d Oxford Holidays Oxford100k

512 uCroW 0.786 0.752 0.803

CroW 0.797 0.792 0.810

256 uCroW 0.739 0.728 0.732

CroW 0.765 0.784 0.762
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Interestingly, max pooling performs better than sum-pooling in the non-whitened
space, but mAP without whitening the features is much inferior (sometimes more
than 10% less) in all datasets tested.

Whitening. We learn the whitening parameters from a separate set of images.
In Table 2 we present results on the Paris dataset when using 3 other datasets for
whitening: the semantically related Oxford dataset, the Holidays dataset and the
larger Oxford100k dataset. As we reduce the dimensionality, we see overfitting
effects for the case where we learn on Oxford and this comes as no surprise:
as dimensions are reduced, more dimensions that are selective for buildings are

Table 3. Mean average precision on Paris, Oxford and Holidays against the state-
of-the-art for different values of d. QE denotes query expansion with the top M = 10
results. The fourth (sixth) column presents results when augmenting the Paris (Oxford)
dataset with the 100 k distractors from Oxford100k. Results in the lowest set of rows
correspond to methods with local features, followed by spatial verification.

Method d Paris +Oxf100k Oxford +Oxf100k Holidays

Tr. Embedding [17] 1024 — — 0.560 0.502 0.720

Tr. Embedding [17] 512 — — — — 0.700

Gong et al . [5] 512 — — — — 0.783

Neural Codes [5] 512 — — 0.435 0.392 —

R-MAC [37] 512 0.830 0.757 0.669 0.616 —

uCroW 512 0.786 0.710 0.697 0.641 0.839

CroW 512 0.797 0.722 0.708 0.653 0.851

Tr. Embedding [17] 256 — — — — 0.657

Neural Codes [5] 256 — — 0.435 0.392 0.749

Razavian et al . [30] 256 0.670 — 0.533 0.489 0.716

SPoC [4] 256 — — 0.531 0.501 0.802

R-MAC [37] 256 0.729 0.601 0.561 0.470 —

uCroW 256 0.739 0.658 0.667 0.612 0.815

CroW 256 0.765 0.691 0.684 0.637 0.851

Tr. Embedding [17] 128 — — 0.433 0.353 —

Neural Codes [5] 128 — — 0.433 0.384 —

uCroW 128 0.699 0.610 0.625 0.559 —

CroW 128 0.746 0.670 0.641 0.590 0.828

CroW + QE 128 0.793 0.728 0.670 0.641 —

CroW + QE 256 0.815 0.753 0.718 0.676 —

CroW + QE 512 0.848 0.794 0.749 0.706 —

Tolias et al . [34] — 0.770 — 0.804 0.750 —

Total Recall II [6] — 0.805 0.710 0.827 0.767 —

Mikulik et al . [22] — 0.824 0.773 0.849 0.795 —
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kept when we learn the reduction parameters on a semantically similar dataset
like Oxford.

To be directly comparable with related works, we learn the whitening para-
meters on Oxford when testing on Paris and vice versa, as accustomed. We use
the Oxford100k dataset for whitening on the Holidays.

5.3 Image Search

In Table 3 we present comparisons of our approach with the state-of-the-art
in image search on Paris, Oxford and Holidays. Both uCroW and CroW con-
sistently outperform all other aggregation methods for different representation
sizes, apart from R-MAC [37], which exhibits very high performance for Paris in
512 dimensions.

uCroW is a very strong baseline that gives state-of-the-art performance by
itself. It therefore makes sense that improvement over uCroW is hard to get.
CroW improves performance in all cases, with the gain increasing as the dimen-
sionality of the final features decreases. For comparison, if we apply our weighting
(instead of the centering prior) to SPoC features, the gain on Paris is around
3.9% and 4.6% for 256 and 512 dimensions respectively.

In Fig. 6 we present some interesting results using just d = 32 dimensional
features. They demonstrate the invariance of CroW features to viewpoint and
lighting variations even after heavy compression.

When further combining our approach with query expansion, we get even
better results that compare to (or surpass on Paris) far more sophisticated
approaches like [6,22,34] that are based on local features and include spatial
verification steps.

In Fig. 7 we show the top-10 results for all 55 queries on the paris dataset
using the uncompressed CroW features (d = 512). We only have 3 false
results in total for precision@10. This illuminates why query expansion is so
effective: the top ranked results are already of high quality.

Fig. 6. Sample search results using CroW features compressed to just d = 32 dimen-
sions. The query image is shown at the leftmost side with the query bounding box
marked in a red rectangle. (Color figure online)
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Fig. 7. Top-10 results returned for all 55 queries of the Paris dataset, using the 512-
dimensional CroW features (and no query expansion). The query image is shown on
the leftmost place, with the query bounding box marked with a red rectangle. Our
features produce just 3 false results in total, which are marked with an orange border.
(Color figure online)
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Although our approach is consistently better, the performance gap between
CroW and the state-of-the-art is smaller in Holidays, where it outperforms the
best competing method by about 4.9% and 1.2% for d = 256, 512, respectively.

6 Conclusions

In this paper we outline a generalized framework for aggregated deep convo-
lutional features with cross-dimensional weighting which encompasses recent
related works such as [4]. We propose simple, non-parametric weighting schemes
for spatial- and channel-wise weighting and provide insights for their behavior
by visualizing and studying the distributional properties of the layer output
responses. Using this approach, we report results that outperform the state-of-
the-art in popular image search benchmarks.

The CroW features are one instantiation of our generic aggregation frame-
work. Still, it gives the current state-of-the-art results in image retrieval with
minimal overhead and has intuitive qualities that offer insights on the nature of
convolutional layer features.

Our aggregation framework is a valuable scaffold within which to discuss
and explore new weighting schemes. The framework gave us a clear way to
investigate channel and spatial weights independently. Learning weights for a
particular task is a promising future direction. Likewise, with sufficient ground
truth data, it is possible to fine-tune the entire end-to-end process within our
proposed framework using, say, a rank-based loss as in [11,28], together with
attentional mechanisms and spatial deformations [13].
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