
Christoph Benzmüller
Marijn J. H. Heule
Renate A. Schmidt (Eds.)

 123

LN
AI

 1
47

39

12th International Joint Conference, IJCAR 2024
Nancy, France, July 3–6, 2024
Proceedings, Part I

Automated Reasoning

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14739
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Christoph Benzmüller · Marijn J. H. Heule ·
Renate A. Schmidt
Editors

Automated Reasoning
12th International Joint Conference, IJCAR 2024
Nancy, France, July 3–6, 2024
Proceedings, Part I

Editors
Christoph Benzmüller
Otto-Friedrich-Universität Bamberg
Bamberg, Germany

Renate A. Schmidt
University of Manchester
Manchester, UK

Marijn J. H. Heule
Carnegie Mellon University
Pittsburgh, PA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-63497-0 ISBN 978-3-031-63498-7 (eBook)
https://doi.org/10.1007/978-3-031-63498-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3392-3093
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.1007/978-3-031-63498-7
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers of the 12th International Joint Conference on Auto-
mated Reasoning (IJCAR) held in Nancy, France, during July 3–6, 2024. IJCAR is the
premier international joint conference on all aspects of automated reasoning, including
foundations, implementations, and applications, comprising several leading conferences
and workshops. IJCAR 2024 brought together the Conference on Automated Deduction
(CADE), the International Symposium on Frontiers of Combining Systems (FroCoS),
and the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX).

Previous IJCAR conferences were held in Siena, Italy (2001), Cork, Ireland (2004),
Seattle, USA (2006), Sydney, Australia (2008), Edinburgh, UK (2010), Manchester, UK
(2012), Vienna, Austria (2014), Coimbra, Portugal (2016), Oxford, UK (2018), Paris,
France (2020, virtual), and Haifa, Israel (2022).

IJCAR 2024 received 115 submissions (130 abstracts) out of which 45 papers were
accepted (with an overall acceptance rate of 39%): 39 regular papers (out of 96 regular
papers submitted, resulting in a regular paper acceptance rate of 41%) and 6 short
papers (out of 19 short papers submitted, resulting in a short paper acceptance rate of
31%). Each submission was assigned to at least three Program Committee members and
was reviewed in single-blind mode. All submissions were evaluated according to the
following criteria: relevance, originality, significance, correctness, and readability. The
review process included a feedback/rebuttal period, during which authors had the option
to respond to reviewer comments.

In addition to the accepted papers, the IJCAR 2024 program included three invited
talks:

• Jeremy Avigad (Carnegie Mellon University, USA) on “Automated Reasoning for
Mathematics”,

• Laura Kovács (TU Wien, Austria) on “Induction in Saturation”, and
• Geoff Sutcliffe (University ofMiami, USA) on “Stepping Stones in the TPTPWorld”.

This year marks the 30th anniversary of the CADE ATP System Competition
(CASC), which was conceived in 1994 after CADE-12 in Nancy, France, when Christian
Suttner and Geoff Sutcliffe were sitting on a bench under a tree in Parc de la Pépinière. In
the 28 competitions since then, CASC has been a catalyst for research and development,
providing an inspiring environment for personal interaction between ATP researchers
and users. A special event took place to celebrate this anniversary.

In addition to the main programme, IJCAR 2024 hosted ten workshops, which
took place on July 1–2, and two systems competitions (CASC and Termination). The
SAT/SMT/AR 2024 Summer School was held in Nancy the week prior to IJCAR 2024.

The Best Paper Award of IJCAR 2024 went to Hugo Férée, Iris van der Giessen,
Sam van Gool, and Ian Shillito for the paper “Mechanised Uniform Interpolation for

vi Preface

Modal Logics K, GL, and iSL”. The Best Student Paper Award went to Johannes Nieder-
hauser (with Chad E. Brown and Cezary Kaliszyk) for the paper entitled “Tableaux for
Automated Reasoning in Dependently-Typed Higher-Order Logic”.

Another highlight of the conference was the presentation of the 2024 Herbrand
Award for DistinguishedContributions toAutomatedReasoning toArminBiere (Albert-
Ludwigs-University Freiburg, Germany) in recognition of “his outstanding contributions
to satisfiability solving, including innovative applications, methods for formula pre- and
in-processing and proof generation, and a series of award-winning solvers, with deep
impact on model checking and verification.”

The 2024 Bill McCune PhD Award was given to Katherine Kosaian for the PhD
thesis “Formally Verifying Algorithms for Real Quantifier Elimination”, completed at
Carnegie Mellon University, USA, in 2023.

The main institutions supporting IJCAR 2024 were the University of Lorraine and
the Inria research center at the University of Lorraine. We also thank as sponsors: the
research laboratory for computer science in Nancy (LORIA), a joint research unit of the
University of Lorraine,CNRS, and Inria, its FormalMethodsDepartment, andMétropole
du Grand Nancy. For hosting the conference, we thank IDMC Nancy.

We would also like to acknowledge the generous sponsorship of Springer and Iman-
dra Inc., and the support by EasyChair. Finally, we are indebted to the entire IJCAR 2024
OrganizingTeam for their assistancewith the local organization andgeneralmanagement
of the conference, especially Didier Galmiche, Stephan Merz, Christophe Ringeissen
(Conference Co-Chairs), Sophie Tourret (Workshop, Tutorial and Competition Chair),
Peter Lammich (PublicityChair) andAnne-LiseCharbonnier andSabrinaLemaire (main
administrative support).

May 2024 Christoph Benzmüller
Marijn J. H. Heule
Renate A. Schmidt

Organization

Conference Chairs

Didier Galmiche University of Lorraine, France
Stephan Merz Inria, University of Lorraine, France
Christophe Ringeissen Inria, University of Lorraine, France

Program Committee Chairs

Christoph Benzmüller Otto-Friedrich-Universität Bamberg and FU
Berlin, Germany

Marijn J. H. Heule Carnegie Mellon University, USA
Renate A. Schmidt University of Manchester, UK

Workshop, Tutorial and Competition Chair

Sophie Tourret Inria, France and Max Planck Institute for
Informatics, Germany

Publicity Chair

Peter Lammich University of Twente, The Netherlands

Local Arrangements

Anne-Lise Charbonnier Inria, France
Sabrina Lemaire Inria, France

Steering Committee

Arnon Avron Tel-Aviv University, Israel
Franz Baader TU Dresden, Germany
Jürgen Giesl RWTH Aachen University, Germany
Marijn J. H. Heule Carnegie Mellon University, USA

viii Organization

Lawrence Paulson University of Cambridge, UK
Elaine Pimentel University College London, UK
Christophe Ringeissen Inria, University of Lorraine, France
Renate A. Schmidt University of Manchester, UK

Program Committee

Franz Baader TU Dresden, Germany
Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Christoph Benzmüller Otto-Friedrich-Universität Bamberg and FU

Berlin, Germany
Armin Biere University of Freiburg, Germany
Nikolaj Bjørner Microsoft, USA
Jasmin Blanchette Ludwig-Maximilians-Universität München,

Germany
Maria Paola Bonacina Università degli Studi di Verona, Italy
Florent Capelli Université d’Artois, France
Agata Ciabattoni TU Wien, Austria
Clare Dixon University of Manchester, UK
Pascal Fontaine Université de Liège, Belgium
Carsten Fuhs Birkbeck, University of London, UK
Didier Galmiche University of Lorraine, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen University, Germany
Arie Gurfinkel University of Waterloo, Canada
Marijn J. H. Heule Carnegie Mellon University, USA
Andrzej Indrzejczak University of Lodz, Poland
Moa Johansson Chalmers University of Technology, Sweden
Daniela Kaufmann TU Wien, Austria
Patrick Koopmann Vrije Universiteit Amsterdam, The Netherlands
Konstantin Korovin University of Manchester, UK
Peter Lammich University of Twente, The Netherlands
Martin Lange University of Kassel, Germany
Tim Lyon Technische Universität Dresden, Germany
Kuldeep S. Meel University of Toronto, Canada
Stephan Merz Inria, University of Lorraine, France
Cláudia Nalon University of Brasília, Brazil
Aina Niemetz Stanford University, USA
Albert Oliveras Universitat Politècnica de Catalunya, Spain
Xavier Parent TU Wien, Austria
Nicolas Peltier CNRS, Laboratory of Informatics of Grenoble,

France

Organization ix

Rafael Peñaloza University of Milano-Bicocca, Italy
Elaine Pimentel University College London, UK
André Platzer Karlsruhe Institute of Technology, Germany
Andrei Popescu University of Sheffield, UK
Florian Rabe FAU Erlangen-Nürnberg, Germany
Giles Reger Amazon Web Services, USA and University of

Manchester, UK
Giselle Reis Carnegie Mellon University, Qatar
Andrew Reynolds University of Iowa, USA
Christophe Ringeissen Inria, University of Lorraine, France
Philipp Rümmer University of Regensburg, Germany
Uli Sattler University of Manchester, UK
Tanja Schindler University of Basel, Switzerland
Renate A. Schmidt University of Manchester. UK
Claudia Schon Hochschule Trier, Germany
Stephan Schulz DHBW Stuttgart, Germany
Roberto Sebastiani University of Trento, Italy
Martina Seidl Johannes Kepler University Linz, Austria
Viorica Sofronie-Stokkermans University of Koblenz, Germany
Alexander Steen University of Greifswald, Germany
Martin Suda Czech Technical University in Prague, Czech

Republic
Yong Kiam Tan Institute for Infocomm Research, A*STAR,

Singapore
Sophie Tourret Inria, France and Max Planck Institute for

Informatics, Germany
Josef Urban Czech Technical University in Prague, Czech

Republic
Uwe Waldmann Max Planck Institute for Informatics, Germany
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Sarah Winkler Free University of Bozen-Bolzano, Italy
Yoni Zohar Bar-Ilan University, Israel

Additional Reviewers

Noah Abou El Wafa
Takahito Aoto
Martin Avanzini
Philippe Balbiani
Lasse Blaauwbroek
Frédéric Blanqui
Thierry Boy de La Tour

Marvin Brieger
Martin Bromberger
James Brotherston
Chad E. Brown
Florian Bruse
Filip Bártek
Julie Cailler

x Organization

Cameron Calk
Christophe Chareton
Jiaoyan Chen
Karel Chvalovský
Tiziano Dalmonte
Anupam Das
Martin Desharnais
Paulius Dilkas
Marie Duflot
Yotam Dvir
Chelsea Edmonds
Sólrún Halla Einarsdóttir
Clemens Eisenhofer
Zafer Esen
Camillo Fiorentini
Mathias Fleury
Stef Frijters
Florian Frohn
Nikolaos Galatos
Alessandro Gianola
Matt Griffin
Alberto Griggio
Liye Guo
Raúl Gutiérrez
Xavier Généreux
Hans-Dieter Hiep
Jochen Hoenicke
Jonathan Huerta y Munive
Ullrich Hustadt
Cezary Kaliszyk
Jan-Christoph Kassing
Michael Kinyon
Lydia Kondylidou
Boris Konev
George Kourtis
Francesco Kriegel
Falko Kötter
Timo Lang
Jonathan Laurent
Daniel Le Berre
Jannis Limperg
Xinghan Liu

Anela Lolic
Etienne Lozes
Salvador Lucas
Andreas Lööw
Kenji Maillard
Sérgio Marcelino
Andrew M. Marshall
Gabriele Masina
Marcel Moosbrugger
Barbara Morawska
Johannes Oetsch
Eugenio Orlandelli
Jens Otten
Adam Pease
Bartosz Piotrowski
Enguerrand Prebet
Siddharth Priya
Long Qian
Jakob Rath
Colin Rothgang
Reuben Rowe
Jan Frederik Schaefer
Johannes Schoisswohl
Marcel Schütz
Florian Sextl
Ian Shillito
Nicholas Smallbone
Giuseppe Spallitta
Sergei Stepanenko
Georg Struth
Matteo Tesi
Guilherme Toledo
Patrick Trentin
Hari Govind Vediramana Krishnan
Laurent Vigneron
Renaud Vilmart
Dominik Wehr
Tobias Winkler
Frank Wolter
Akihisa Yamada
Michal Zawidzki

Contents – Part I

Invited Contributions

Automated Reasoning for Mathematics . 3
Jeremy Avigad

Induction in Saturation . 21
Laura Kovács, Petra Hozzová, Márton Hajdu, and Andrei Voronkov

Stepping Stones in the TPTP World . 30
Geoff Sutcliffe

Theorem Proving and Tools

An Empirical Assessment of Progress in Automated Theorem Proving 53
Geoff Sutcliffe, Christian Suttner, Lars Kotthoff, C. Raymond Perrault,
and Zain Khalid

A Higher-Order Vampire (Short Paper) . 75
Ahmed Bhayat and Martin Suda

Tableaux for Automated Reasoning in Dependently-Typed Higher-Order
Logic . 86

Johannes Niederhauser, Chad E. Brown, and Cezary Kaliszyk

The Naproche-ZF Theorem Prover (Short Paper) . 105
Adrian De Lon

Reducibility Constraints in Superposition . 115
Márton Hajdu, Laura Kovács, Michael Rawson, and Andrei Voronkov

First-Order Automatic Literal Model Generation . 133
Martin Bromberger, Florent Krasnopol, Sibylle Möhle,
and Christoph Weidenbach

Synthesis of Recursive Programs in Saturation . 154
Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács,
Andrei Voronkov, and Eva Maria Wagner

xii Contents – Part I

Synthesizing Strongly Equivalent Logic Programs: Beth Definability
for Answer Set Programs via Craig Interpolation in First-Order Logic 172

Jan Heuer and Christoph Wernhard

Regularization in Spider-Style Strategy Discovery and Schedule
Construction . 194

Filip Bártek, Karel Chvalovský, and Martin Suda

Lemma Discovery and Strategies for Automated Induction 214
Sólrún Halla Einarsdóttir, Márton Hajdu, Moa Johansson,
Nicholas Smallbone, and Martin Suda

Control-Flow Refinement for Complexity Analysis of Probabilistic
Programs in KoAT (Short Paper) . 233

Nils Lommen, Éléanore Meyer, and Jürgen Giesl

On the (In-)Completeness of Destructive Equality Resolution
in the Superposition Calculus . 244

Uwe Waldmann

SAT, SMT and Quantifier Elimination

Model Completeness for Rational Trees . 265
Silvio Ghilardi and Lia M. Poidomani

Certifying Phase Abstraction . 284
Nils Froleyks, Emily Yu, Armin Biere, and Keijo Heljanko

Verifying a Realistic Mutable Hash Table: Case Study (Short Paper) 304
Samuel Chassot and Viktor Kunčak

Booleguru, the Propositional Polyglot (Short Paper) . 315
Maximilian Heisinger, Simone Heisinger, and Martina Seidl

Quantifier Shifting for Quantified Boolean Formulas Revisited 325
Simone Heisinger, Maximilian Heisinger, Adrian Rebola-Pardo,
and Martina Seidl

Satisfiability Modulo Exponential Integer Arithmetic . 344
Florian Frohn and Jürgen Giesl

SAT-Based Learning of Computation Tree Logic . 366
Adrien Pommellet, Daniel Stan, and Simon Scatton

Contents – Part I xiii

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver (Short
Paper) . 386

Thomas Hader, Daniela Kaufmann, Ahmed Irfan,
Stéphane Graham-Lengrand, and Laura Kovács

Certified MaxSAT Preprocessing . 396
Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg,
Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström

A Formal Model to Prove Instantiation Termination for E-matching-Based
Axiomatisations . 419

Rui Ge, Ronald Garcia, and Alexander J. Summers

Fast and Verified UNSAT Certificate Checking . 439
Peter Lammich

Generalized Optimization Modulo Theories . 458
Nestan Tsiskaridze, Clark Barrett, and Cesare Tinelli

Author Index . 481

Contents – Part II

Intuitionistic Logics and Modal Logics

Model Construction for Modal Clauses . 3
Ullrich Hustadt, Fabio Papacchini, Cláudia Nalon, and Clare Dixon

A Terminating Sequent Calculus for Intuitionistic Strong Löb Logic
with the Subformula Property . 24

Camillo Fiorentini and Mauro Ferrari

Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL 43
Hugo Férée, Iris van der Giessen, Sam van Gool, and Ian Shillito

Skolemisation for Intuitionistic Linear Logic . 61
Alessandro Bruni, Eike Ritter, and Carsten Schürmann

Local Intuitionistic Modal Logics and Their Calculi . 78
Philippe Balbiani, Han Gao, Çiğdem Gencer, and Nicola Olivetti

Non-iterative Modal Resolution Calculi . 97
Dirk Pattinson and Cláudia Nalon

A Logic for Repair and State Recovery in Byzantine Fault-Tolerant
Multi-agent Systems . 114

Hans van Ditmarsch, Krisztina Fruzsa, Roman Kuznets,
and Ulrich Schmid

Calculi, Proof Theory and Decision Procedures

A Decision Method for First-Order Stream Logic . 137
Harald Ruess

What Is Decidable in Separation Logic Beyond Progress, Connectivity
and Establishment? . 157

Tanguy Bozec, Nicolas Peltier, Quentin Petitjean, and Mihaela Sighireanu

Sequents vs Hypersequents for Åqvist Systems . 176
Agata Ciabattoni and Matteo Tesi

Uniform Substitution for Differential Refinement Logic . 196
Enguerrand Prebet and André Platzer

xvi Contents – Part II

Sequent Systems on Undirected Graphs . 216
Matteo Acclavio

A Proof Theory of (ω-)Context-Free Languages, via Non-wellfounded
Proofs . 237

Anupam Das and Abhishek De

A Cyclic Proof System for Guarded Kleene Algebra with Tests 257
Jan Rooduijn, Dexter Kozen, and Alexandra Silva

Unification, Rewriting and Computational Models

Unification in the Description Logic ELHR+ Without the Top Concept
Modulo Cycle-Restricted Ontologies . 279

Franz Baader and Oliver Fernández Gil

Confluence of Logically Constrained Rewrite Systems Revisited 298
Jonas Schöpf, Fabian Mitterwallner, and Aart Middeldorp

Equational Anti-unification over Absorption Theories . 317
Mauricio Ayala-Rincón, David M. Cerna,
Andrés Felipe González Barragán, and Temur Kutsia

The Benefits of Diligence . 338
Victor Arrial, Giulio Guerrieri, and Delia Kesner

A Dependency Pair Framework for Relative Termination of Term Rewriting . . . 360
Jan-Christoph Kassing, Grigory Vartanyan, and Jürgen Giesl

Solving Quantitative Equations . 381
Georg Ehling and Temur Kutsia

Equivalence Checking of Quantum Circuits by Model Counting 401
Jingyi Mei, Tim Coopmans, Marcello Bonsangue, and Alfons Laarman

Author Index . 423

Invited Contributions

Automated Reasoning for Mathematics

Jeremy Avigad(B)

Carnegie Mellon University, Pittsburgh, PA 15213, USA
avigad@cmu.edu

Abstract. Throughout the history of automated reasoning, mathemat-
ics has been viewed as a prototypical domain of application. It is therefore
surprising that the technology has had almost no impact on mathemat-
ics to date and plays almost no role in the subject today. This article
presents an optimistic view that the situation is about to change. It
describes some recent developments in the Lean programming language
and proof assistant that support this optimism, and it reflects on the
role that automated reasoning can and should play in mathematics in
the years to come.

1 The Origins and Foundations of Automated Reasoning

The fact that IJCAR is celebrating the 30th anniversary of the CADE ATP Sys-
tem Competition (CASC) is a reminder that, at least by the standards of com-
puter science, automated reasoning has a long and venerable history. Some date
the field to 1956, when Allen Newell, Herbert Simon, and Cliff Shaw introduced
the Logic Theorist, a program that used heuristic methods to prove theorems in
propositional logic. Two years earlier, however, Martin Davis had implemented
Presburger’s decision procedure for integer arithmetic on a computer at the
Institute for Advanced Study. Davis admitted that the program did not per-
form well but he reported that it succeeded in proving that the sum of two even
numbers is even. In 1960, Henry Gelernter, J. R. Hansen, and Donald Loveland
published an article on the Geometry Machine, a program that could prove non-
trivial theorems in elementary Euclidean plane geometry. The resolution rule
for propositional logic was introduced by Davis and Hilary Putnam in 1960, and
John Alan Robinson’s introduction of a unification algorithm in 1965 established
resolution theorem proving as a powerful method for first-order logic.1

The theoretical foundations of automated reasoning predate even the intro-
duction of the first electronic computers. In contemporary terms, Kurt Gödel’s
first incompleteness theorem says that there is no complete, consistent, com-
putably axiomatized theory that contains (or interprets) a modicum of arith-
metic. In his 1931 paper, Gödel explained that the theorem, as he stated it,

1 All of the articles mentioned in this paragraph are found in a collection edited
by Siegmann and Wrightson [50]. See also the survey by Mackenzie [36] and the
references there.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-63498-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_1&domain=pdf
http://orcid.org/0000-0003-1275-315X
https://doi.org/10.1007/978-3-031-63498-7_1

4 J. Avigad

is not in any way due to the special nature of the systems that have
been set up, but holds for a wide class of formal systems; among these, in
particular, are all systems that result from the two just mentioned through
the addition of a finite number of axioms . . . [21,22]

It is interesting to see Gödel struggling to say “computably axiomatized theory”
for the simple reason that, at the time, there was no mathematical concept of
computability available. He then presented a tentative definition of computabil-
ity in lectures that he gave at the Institute for Advanced Study in Princeton in
1932 precisely so that he could state the incompleteness theorems in their proper
generality. Alan Turing gave his own celebrated definition of computability a few
years later and titled the paper “On computable numbers, with an application
to the Entscheidungsproblem,” providing a negative answer to Hilbert’s ques-
tion as to whether there is a decision procedure for first-order logic. Gödel had
expressed uncertainty as to whether his definition exhausts the general notion
of computability, but he took Turing’s analysis to settle the matter definitively:

In consequence of later advances, in particular of the fact that, due to
A. M. Turing’s work, a precise and unquestionably adequate definition of
the general concept of a formal system can now be given, the existence of
undecidable arithmetical propositions and the non-demonstrability of the
consistency of a system in the same system can now be proved rigorously
for every consistent formal system containing a certain amount of finitary
number theory. (quoted in [17])

The emphasis is by Gödel, who took the phrase “formal system” to mean a
system with computably checkable axioms and rules.

Turing pointed out in his paper that the first incompleteness theorem is a
consequence of the undecidability of theories of arithmetic, because if there were
a complete, computably axiomatized theory of arithmetic one could decide the
provability of a formula by simultaneously searching for a proof of the formula
and its negation. Alonzo Church gave an independent proof of the undecidability
of arithmetic in 1936, and Stephen Kleene, another key player in developing
the modern theory of computability, was also keenly interested in applications
to logic and the foundations of mathematics. So logicians were thinking about
computable proof systems and proof search even before the arrival of the first
digital electronic computers in the 1940 s.

Fundamental decision procedures for logic and arithmetic also predate the
electronic computer. As early as 1915, Leopold Löwenheim gave a decision proce-
dure for monadic first-order logic. (The introduction to Börger et al. [11] provides
an excellent overview of early work on the decidability of fragments of first-order
reasoning.) Mojżesz Presburger’s paper on a decision procedure for arithmetic,
based on Thoralf Skolem’s method of eliminating quantifiers, was published in
1929. (Presburger never earned a doctorate for that work; Andrzej Mostowski
reported [15] that Alfred Tarski thought the result was too simple, a straight-
forward application of Thoralf Skolem’s method of elimination of quantifiers.)
In 1930, Tarski obtained a decision procedure for real-closed fields, that is, the

Automated Reasoning for Mathematics 5

first-order theory of the real numbers as an ordered field, though the result was
not published until 1948. So logicians were also interested in decision proce-
dures for aspects of mathematical reasoning even before there were computers
to implement them.

2 Taking Stock

We have seen that the early history of automated reasoning was rooted in the
foundations of mathematics and that many of its early pioneers were mathemati-
cians. Even those who were not mathematicians took mathematical reasoning to
be a primary target of the technology. Now, almost a century after Presburger’s
discovery of a decision procedure for arithmetic and almost three quarters of a
century after the implementation of the Logic Theorist, it seems reasonable to
ask where we stand. What has automated reasoning done for mathematics, and
how is it used in mathematics today?

The answer is disappointingly negative. Automated reasoning has had almost
no impact at all on mathematics and plays almost no role in the subject today.
Few working mathematicians have ever touched an automated reasoning tool,
let alone use automated reasoning in their daily work. The technology has con-
tributed to very few mathematical discoveries, even minor ones.

This is surprising. One would think, as the pioneers of the subject clearly
did, that mathematical reasoning is ideally suited to automation. To be sure,
mathematics requires creativity, intuition, experience, and insight, but it also
requires long chains of precise and sometimes tedious reasoning, and it’s hard to
get the details right. Computers can carry out small inferential steps much more
quickly and accurately than we can, so we would expect them to be helpful for
exploring and verifying mathematical results. Numeric and symbolic computa-
tion have revolutionized the sciences, even though science involves a lot more
than computation. Why hasn’t automated reasoning had a similar impact on
mathematics?

This question is not meant as a criticism. Automated reasoning has made
remarkable progress over the past 70 years, and the tools are now quite sophis-
ticated. They have had a significant impact in several important areas, such as
hardware and software verification, AI, planning, databases, knowledge repre-
sentation, program synthesis, and natural language processing. Automated rea-
soning does not have to look to mathematics for justification. Moreover, the fact
that there have been few applications to mathematics doesn’t mean that there
haven’t been any, and the successes are worth celebrating. Finally, the fact that
it has been difficult to automate mathematical reasoning is largely a reflection
of the fact that mathematics isn’t easy to mechanize, and those of us who love
the subject wouldn’t want it any other way. So my goal here is rather to review
some of the successes of automated reasoning for mathematics, understand the
challenges, and reflect on the role that automated reasoning can and should play
in mathematics in the years to come.

In 2019, I gave a joint talk at FroCoS and TABLEAUX titled “Automated
Reasoning for the Working Mathematician.” In that talk, I surveyed the use of

6 J. Avigad

automated reasoning with interactive proof assistants in the hopes of extracting
lessons that I could convey to the automated reasoning community. This article
draws on that talk as well as unpublished notes, data, and experiments that I
prepared at the time.2 See also my article, “The Mechanization of Mathematics”
[1], and an article by Michael Beeson with the same title [6], for additional
examples of applications of automated reasoning to mathematics.

3 A Personal History

As a mathematician who has been using automated reasoning tools for more
than two decades, my interest in the subject is personal. I first experimented with
Isabelle and Coq in the late 1990 s, and when I started using Isabelle in earnest
in 2002, the automation was surprisingly mature. There were a conditional term
rewriter, simp [44], variations on a general tableau prover (auto, force, and
clarify [45]), and a decision procedure for linear arithmetic (arith). Work-
ing with students at Carnegie Mellon, I completed a proof of the Hadamard–de
la Vallée-Poussin prime number theorem in September of 2004 [2]. A couple of
months later, Georges Gonthier announced the verification of the four-color the-
orem in Coq [24], and soon after that Thomas Hales announced the verification
of the Jordan curve theorem in HOL Light [26]. These were early landmarks,
providing evidence that substantial mathematical theorems could be formalized.

Many of the challenges in formalizing the prime number theorem stemmed
from the fact that Isabelle’s libraries were young and incomplete. The automa-
tion, however, was remarkably helpful. For example, in the 4,000 lines contained
in the last file in the proof, there are 390 invocations of simp, 397 invocations of
auto and friends, and 246 invocations of arith. Even now, twenty years later, I
have yet to have a better experience with automation.

I spent a sabbatical year in France with Gonthier and his team in 2009–
2010, working on the formalization of the Feit–Thompson theorem, using the
SSReflect proof language and Coq [25]. In designing and managing the project,
Georges made the conscious decision to avoid automation entirely, other than
the built-in foundational reduction of Coq expressions, which is fundamental
to the methodology of SSReflect. He was skeptical that black-box automation
would scale and had more faith in the power of good language design to make
formalization manageable.

When I returned from France, I was ready to leave interactive theorem prov-
ing behind and turn to automated reasoning. But a talented undergraduate at
Carnegie Mellon, Luke Serafin, managed to convince me to work on a project to
verify the central limit theorem in Isabelle [3], and I was seduced by the excite-
ment around homotopy type theory at the time to work on another verification
project in Coq [4].

What really pulled me back to the world of proof assistants, however, was
Leonardo de Moura’s decision, in 2013, to launch the Lean project. Leo convinced

2 https://github.com/avigad/arwm.

https://github.com/avigad/arwm

Automated Reasoning for Mathematics 7

me that even if one is primarily interested in automation for mathematics, one
should build it on top of a secure, expressive foundation, not just to ensure
that the automation is reliable, but to have a meaningful specification of what
the results mean. For several years, Lean’s web pages described the aim of the
project as follows:

to bridge the gap between interactive and automated theorem proving, by
situating automated tools and methods in a framework that supports user
interaction and the construction of fully specified axiomatic proofs.

I don’t think Leo anticipated the amount of work he would have to put into
implementing an elaborator for dependent type theory and supporting all the
features that are needed to make that foundation usable. Work also went into
the implementation of a tactic framework, in Lean 2, and the implementation
of a metaprogramming language, in Lean 3, that users could use to write their
own tactics [18,39]. Lean 4 is a complete rewrite of the system, most of which
is now implemented in Lean 4 itself [38]. Leo and Sebastian Ullrich have put a
lot of effort into making Lean 4 an efficient programming (and metaprogram-
ming) language, and treating syntax as first-class objects, making the syntactic
framework as powerful, flexible, and extensible as the tactic framework.

We are now beginning to see automation for Lean 4 that is written in Lean
4, as well as Lean-based experiments on applications of machine learning to
mathematical reasoning. Thus, a decade into the Lean project, we are now in an
especially good position to realize the initial vision of making it a powerful means
of combining automation with user interaction. In the sections that follow, I will
discuss prospects for automated reasoning for mathematics in general, but I will
also focus specifically on opportunities based on recent developments in Lean.

4 Domain-General Reasoning for Verification

To prepare for the talk at FroCoS and TABLEAUX, I sent a questionnaire to
colleagues who had worked on formalization of mathematics to learn about their
experiences with automation. One of the interesting findings was that most of
the people who I considered to be the best at formalization—people who had for-
malized vast amounts of interesting mathematics efficiently and with very high
quality—used very little automation at all. (Larry Paulson was a notable excep-
tion; he has spoken eloquently of the power of automation in enabling him to
port large amounts of measure theory and analysis from HOL Light to Isabelle.)
The best explanation I could come up with is that even if automation were
much better than it is now, serious users would still have to fill in some infer-
ences by hand, which would inevitably require them to learn the library inside
out and become skillful at writing explicit proofs. So even when automation is
available, power users generally come to know the library and proof language
well enough that they don’t need to use automation to do what they want to
do. If that analysis is correct, it highlights the challenge of scaling the use of
formal methods to a broader mathematical audience. Even now, I get frustrated

8 J. Avigad

when I have to struggle with an unfamiliar part of the library to carry out an
inference that seems painfully obvious. The lack of automation limits the utility
of formalization to all but the most determined and dedicated practitioners.

Let me clarify that when I talk about domain-general reasoning, I am set-
ting aside equational rewriting and simplification. It’s not clear how to classify
such methods. On the one hand, there is nothing more general than the equality
relation: wherever there are expressions that denote objects, there are equations
that govern them. On the other hand, equational rewriters handle only a small
fragment of logical reasoning and the task they perform is focused and specific.
If we take domain-general reasoning to encompass problems that, in full gener-
ality, are equivalent to the halting problem, it makes sense to exclude equational
rewriters, which are designed to reduce expressions to canonical forms in a finite
number of steps. In any case, they are incredibly useful. Tools like Isabelle’s
simp can simplify a formula to True and hence prove more than just equations.
They can also carry out conditional rewriting and use backchaining to dispel
side conditions. Users can add facts to the rewrite database as they develop new
theories. As far as I know, any proof assistant that takes automation seriously
has some sort of rewrite engine. Lean’s version of simp was one of the first tactics
that was implemented in that system.

To prepare for the talk at FroCoS and TABLEAUX, I also carried out some
experiments with Isabelle’s Sledgehammer [46]. This is a tool that, given a proof
goal, uses a relevance filter to select a couple of hundred potentially useful the-
orems from the library, sends the problem to external provers, and then tries to
use the information they return to reconstruct a proof internally. I set myself the
task of determining the extent to which I could formalize theorems by writing a
proof sketch, calling only Sledgehammer and auto, and then refining the sketch
as needed. I formalized three theorems in this way—the mutilated chessboard
problem, the intermediate value theorem, and the existence of infinitely many
primes congruent to three modulo four—and I took detailed notes as I went.
The data, which is still available in the GitHub repository, is not very rigorous,
but it helped me understand better some of the places where the automation
fell short. In particular, two of the theorems required mild forms of second-order
reasoning, such as identities governing the summation of functions over finite
sets or reasoning about membership in sets defined by explicit predicates. Now,
provers like Vampire, Zipperposition, and E can handle higher-order reasoning
natively [7,8,53], which is likely to help.

One method of proof reconstruction involves harvesting nothing more than
the list of theorems the external prover needed to establish the goal and call-
ing internal, proof-producing automation to redo the search. Isabelle uses a tool
called Metis for that [31]. Joshua Clune, Yicheng Qian, and Alexander Ben-
tkamp have written a proof-producing superposition theorem prover for Lean
called Duper to serve a similar purpose, as well as to serve as generic internal
automation. They invested considerable effort in adapting conventional resolu-
tion methods to dependent type theory. For example, in dependent type theory,

Automated Reasoning for Mathematics 9

a data type might not have any elements, and Skolemization and other compo-
nents of the search calculus have to be adapted to avoid introducing unsoundness.
Duper can instantiate generic type variables on the fly but that introduces addi-
tional technical complications, as does adapting unification procedures to the
depedently typed setting. Because it is modeled on Zipperposition, Duper can
also handle higher-order inferences, and because it operates on Lean expressions
directly (rather than via translation), it is possible to handle other rules tailored
specifically to dependent type theory. Testing on standard benchmarks shows
that Duper’s performance is roughly comparable to Metis’, offering hope that
we will have a Sledgehammer for Lean before long. Lean is starting to catch up
with Isabelle in other respects as well, with an automated reasoner called Aesop
[33], inspired by Isabelle’s auto, as well as tools like Coq’s eauto and PVS’s
grind.

When we consider the way that mathematicians use proof assistants, it
becomes clear that support for reasoning about algebraic structures is essen-
tial. I have sometimes heard computer scientists say that there is no need to use
dependent type theory because anything that can be done there can be done just
as well in set theory or simple type theory. In principle, any reasonable founda-
tion can interpret any other, possibly modulo a few axiomatic extensions, but
generally speaking, the remark fails to appreciate the extent to which algebraic
language and thought pervade contemporary mathematics. Any undergraduate
student of mathematics can talk about the ring of n×n matrices of polynomials
over Z/pZ for a prime number p. Moreover, that student knows that multi-
plication is commutative on the polynomials and their coefficients but not on
the matrices, and that nonzero elements of Z/pZ have multiplicative inverses
while the polynomials and matrices generally don’t. In other words, mathemati-
cians easily name complex structures and use generic notation, and they know
what properties elements of those structures have. The structures themselves
are mathematical objects on par with numbers, functions, and circles, yet at the
same time they serve as data types, constraining what can meaningfully be said
about their elements. I find it remarkable that Lean and Mathlib are so good
at making a vast network of structures available to users without collapsing
under the technical requirements. Doing so requires a carefully designed system
of type class inference and efficient means of elaborating and unifying the com-
plex expressions that describe the structures and their elements. Dependent type
theory may not be the only possible solution, but it is the only one implemented
so far that can do anything close to what mathematicians need.

Reasoning about a rich algebraic hierarchy is a challenge for automated rea-
soning for at least two reasons: first, because instantiating generic theorems
requires determining whether the types in question are instances of the relevant
algebraic structures, and, second, because carrying out unification with expres-
sions that have algebraic components requires determining the identity of objects
that have been described in different ways. Both of these tasks are too expen-
sive to be carried out in the midst of an automated search, but, fortunately,

10 J. Avigad

we generally don’t expect them to be: mathematicians are usually careful to
establish the relevant algebraic context explicitly. Duper manages algebraic rea-
soning using a remarkable preprocessing tool by Qian called Lean-Auto, which
heuristically instantiates generic theorems, infers the relevant algebraic struc-
tures, and chooses canonical representations of expressions, all before the search
begins.

Sledgehammers generally work by translating the source language to a sim-
pler one and using tools optimized for equational reasoning, propositional rea-
soning, and quantifier instantiation. Another approach to automating dependent
type theory is to search systematically in dependent type theory itself. There
are tools for Coq [16] and Agda [34,51] that take this approach, without making
any attempt at completeness. At Carnegie Mellon, Chase Norman has imple-
mented a procedure for a minimal but fully expressive dependent type theory
that provides a complete solution to both the unification and type inhabitation
problems, generalizing Huet’s unification procedure for higher-order logic [30].
The framework is flexible enough to instantiate various heuristics to carry out the
search, and the implementation performs well on examples. It will be interesting
to see whether such an approach will provide automation that complements the
strengths of a sledgehammer.

5 Domain-Specific Reasoning for Verification

Talking about domain-general automation reminds me of a quip that I once
heard attributed to Sidney Morgenbesser that philosophers are people who know
something about everything but nothing about anything. In an ornery mood, I
might complain that first-order theorem provers are good at reasoning about
everything but not so good at reasoning about anything in particular. At the
opposite end of the spectrum are domain-specific automated reasoning tools
that carry out more deterministic and focused tasks, such as reasoning about
arithmetic, establishing algebraic identities, reasoning about linear and nonlinear
inequalities, and so on.

Tools like these are extremely useful. Lean has benefited from the availability
of a metaprogramming language, introduced in Lean 3 [18] and made vastly more
powerful in Lean 4 [38], that allows users to write tactics within Lean. The ability
to attract mathematical users from 2017 on was bolstered by the fact that users
like Mario Carneiro were able to quickly provide them with the tactics they
needed. As mathematicians gained expertise with the system, they could design
tactics that would help them in their daily work. For example, Heather Macbeth,
with the help of Carneiro, wrote tactics gcongr and positivity to help with
common calculations, and then could easily shorten a proof like this:
calc ‖wp - wq‖ * ‖wp - wq‖

_ = 2 * (‖a‖ * ‖a‖ + ‖b‖ * ‖b‖) - 4 * ‖u - half · (wq + wp)‖ *
‖u - half · (wq + wp)‖ := by rw [← this]; simp

_ ≤ 2 * (‖a‖ * ‖a‖ + ‖b‖ * ‖b‖) - 4 * δ * δ :=
(sub_le_sub_left eq1 _)

_ ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) -

Automated Reasoning for Mathematics 11

4 * δ * δ :=
(sub_le_sub_right (mul_le_mul_of_nonneg_left

(add_le_add eq1 eq2 ’) (by norm_num)) _)
_ = 8 * δ * div + 4 * div * div := by ring

exact
add_nonneg (mul_nonneg (mul_nonneg (by norm_num) zero_le_δ)

(le_of_lt Nat.one_div_pos_of_nat))
(mul_nonneg (mul_nonneg (by norm_num)

Nat.one_div_pos_of_nat .le) Nat.one_div_pos_of_nat .le)

to this:
calc ‖wp - wq‖ * ‖wp - wq‖

_ = 2 * (‖a‖ * ‖a‖ + ‖b‖ * ‖b‖) - 4 * ‖u - half · (wq + wp)‖ *
‖u - half · (wq + wp)‖ := by simp [← this]

_ ≤ 2 * (‖a‖ * ‖a‖ + ‖b‖ * ‖b‖) - 4 * δ * δ := by gcongr
_ ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) -

4 * δ * δ := by gcongr
_ = 8 * δ * div + 4 * div * div := by ring

positivity

Tomáš Skřivan recently contributed a tactic, fun_prop, that effectively estab-
lishes properties like continuity, differentiability, and measurability of functions.

I am grateful to Adam Topaz for writing a small Lean metaprogram to extract
tactic usage statistics from a recent version of Mathlib. The data is messy because
tactic variants are listed separately when they are called under separate wrap-
pers, including variants that were written to support the port of the library from
Lean 3 but are otherwise superseded by newer versions. It is also misleading in
that some tactics have been around much longer than others, so the numbers
do not reflect the current utility. Nor does the data say anything about the
role of domain-specific automation outside of Mathlib. Finally, some tactics are
used transiently and are then eliminated from the final proof document, such
as those that help find theorems, display information, or write proofs. These do
not appear in the list.

Nonetheless, the data is informative. Tactics used to apply theorems are most
common (apply, exact, refine, etc., with about 60K instances in all). After
that, the vast majority of tactic calls, by far, are used for equational reasoning,
with more than 52K invocations of Lean’s rw tactic, which does manual term
rewriting, and more than 60K invocations of Lean’s simplifier (simp, simpa,
dsimp, and simp-rw). About 25K invocations are used to decompose data and
existential assertions (obtain, rintro, rcases, cases, etc.), and there are about
5K calls to tactics that carry out proof by induction.

More specialized automation still manages to carry its weight. The linarith
tactic is called more than 1,100 times; split_ifs, which splits a goal to simplify
conditional expressions, and ring, which carries out ring calculations, are each
called more than 1,000 times; filter_upwards, a simple tactic that helps reason
about filters in measure theory and analysis is called almost 900 times; norm_num,
which does numeric calculations, is called more than 800 times; a specialization
of Aesop for use with category theory, aesop_cat, is called almost 800 times;
positivity, a relative newcomer, is called more than 600 times; and norm_cast,

12 J. Avigad

a tactic to help mediate casts between numeric domains, and gcongr are each
called more than 500 times.

Lean’s metaprogramming language also provides flexible ways to support
better interactions with automation, both domain-general and domain-specific.
Lean’s Widgets framework [42] allows users to install custom Javascript-driven
displays of objects and information in Lean’s “infoview” window in VS Code,
and allows user interactions with these graphical displays to communicate infor-
mation and actions back to Lean and the editor. When the user puts the cursor
at the beginning of a tactic invocation in a proof, the infoview window high-
lights the part of the state that is about to change, and when the cursor is on
or at the end of the invocation, it highlights what has just changed. Users can
hover over constants in the infoview window to see documentation, they can
click on expressions to see their types, and they can control-click on identifiers
to jump to their definitions. Users can trace class inference to diagnose failures,
and expand or collapse nodes of the search tree in the infoview window. In Lean,
automation can return structured error messages that can be explored. Ideally,
whenever automation fails, users should have the means to diagnose the prob-
lem and come up with suitable interventions to fix it. Developers of automation
should keep user interfaces in mind both as targets for automated reasoning and
as means for using automation more effectively.

Finally, it is worth mentioning that tools that help users find theorems and
explore the library are also essential. Lean provides internal tactics like apply?,
exact?, and rw? that suggest atomic proof steps. There is also a good symbolic
search engine, Loogle, and there is another search tool, Moogle, that uses a large
language model to answer natural-language queries.

6 Automation for the Discovery of New Theorems

To this point, we have focused on the use of automated reasoning to verify math-
ematical results that were discovered by conventional means. Mathematicians,
however, tend to be much more excited about methods that help with the dis-
covery of new mathematics. The automated reasoning community is justifiably
proud of William McCune’s use of his theorem prover, EQP, to settle to Robbins
conjecture in 1996 [37]. The result, which shows that a certain set of equations
can be taken as an alternative axiomatization of Boolean algebras, made the
pages of the New York Times. Since then, there has also been a small industry
in using automated theorem provers to prove theorems about other algebraic
structures, like loops and quasigroups. One can think of a loop as like a group
except without the associativity axiom, and one can think of a quasigroup as a
loop without an identity. First-order theorem provers have been used to estab-
lish consequences of these and related axioms, an industry nicely surveyed by
Phillips and Stanovský [47].

I have heard mathematicians express annoyance, however, at the suggestion
that these results have anything to do with real mathematics. Few mathemati-
cians have heard of the Robbins conjecture or have any interest in quasigroups.

Automated Reasoning for Mathematics 13

More to the point, mathematicians chafe at the implication that modern algebra
is about deriving first-order consequences of axioms. Algebraists are interested in
classification theorems, which characterize structures in terms of key invariants,
structure theorems, which provide means of understanding structures in terms
of subobjects and morphisms to other structures, and representation theorems.
They are interested in introducing new structures and new spaces of structures,
with applications that explain and simplify past results and provide powerful
tools for future research. All these involve reasoning about structures within the
context of a rich mathematical theory, rather than reasoning deductively from
the axioms. As a result, to most mathematicians, the applications of automated
reasoning to algebra so far are little more than recreational curiosities.

Applications of SAT solvers to mathematics fare better. For example, in 1912,
Issai Schur proved that given any finite coloring of the positive integers, there is a
monochromatic solution to the equation x+y = z. Today, this is recognized as a
seminal result in both Ramsey theory and additive number theory. The theorem
raises the question as to whether one can compute the largest initial segment
of the positive integers {1, 2, . . . , S(k)} such that there is a k-coloring with no
such monochromatic solution. It’s not hard to establish S(1) = 1, S(2) = 4,
and S(3) = 13. In 1965, Golomb and Baumert computed S(4) = 44 in a paper
that contains other interesting examples of backtracking search [23]. The value
S(5) = 160 was computed by Heule in 2017 using a SAT solver [28], a result
which has drawn praise from the mathematical community. The value of S(6) is
still unknown.

Most mathematicians aren’t interested in calculating Schur numbers, but the
problem is considered at least interesting by association, given that they recog-
nize Schur’s theorem as an important theorem. The case is similar with respect
to a theorem that Paul Erdős dubbed the “happy ending problem” because it
led to the marriage of George Szekeres and Esther Klein. The general version of
the theorem says that for every positive integer n, any sufficiently large finite
set of points in general position in the plane contains a convex n-gon. Let f(n)
denote the smallest number of points in general position that provides such a
guarantee; the value of f(n) is known only for n ≤ 6. A related problem asks
for the smallest number of points in general position that guarantees the exis-
tence of an empty convex n-gon, that is, one without any points in its interior.
There are infinite sets of points without a convex 7-gon, but Nicolás [43] and
Gerken [20] proved independently that every sufficiently large set of points in
general position contains an empty convex hexagon. Using a SAT solver, Heule
and Scheucher [29] recently showed that 30 is the smallest number of points that
provides that guarantee.

When SAT solvers are used to solve mathematical problems, it is important
to have guarantees that the results are correct. Students at Carnegie Mellon are
working on a SAT library for Lean that addresses that concern. Joshua Clune
has written an LRAT checker that is currently in use at Amazon Web Services;
Wojciech Nawrocki has verified a checker for knowledge compilation, a technol-
ogy that, in particular, can provide precise counts of the number of satisfying

14 J. Avigad

assignments to a propositional formula [12]; and Cayden Codel has written a
verified checker for SR, a strong proof format for SAT solvers that incorporates
symmetries in “without loss of generality” reductions [13]. Perhaps the more seri-
ous concern is to verify that a problem that is sent to a SAT solver is a correct
representation of the intended problem. This is pressing because the reduction of
an ordinary mathematical statement to a SAT problem often relies on complex
encodings as well as symmetry breaking and other reductions, and the gen-
eration of the propositional formula is further subject to subtle programming
errors. Codel, Nawrocki, and James Gallicchio have been working on aspects
of the library that address that problem as well [14]. Bernardo Subercaseaux,
Nawrocki, Gallicchio, Codel, Carneiro, and Heule have verified the correctness
of the encoding used to compute the empty hexagon number [52].

Mathematicians have yet to explore the use of automated reasoning tools
to find objects of mathematical interests. SAT solvers, SMT solvers, constraint
solvers, and model finders are all designed to find objects and structures satis-
fying given constraints. A popular Isabelle tool called Nitpick [10] uses a model
finder to look for counterexamples to purported theorems, in order to prevent
them from investing time and energy in trying to prove a statement that is false.

Bespoke decision procedures can also aid the process of discovery. An auto-
mated reasoning tool called Walnut [40,49] implements a decision procedure for
an extension of Presburger arithmetic that can express properties of automatic
sequences, which are, roughly, sequences generated by finite state automata.
Consider the question as to whether there is an infinite binary sequence with
no subsequence of the form xxxR, where x is a finite sequence and xR is its
reversal. It is not hard to see that the sequence 01010101 . . . has that property,
but is it possible to find one that is aperiodic? A paper by Mousavi, Schaeffer,
and Shallit [41] explains how Walnut helped them construct such a sequence.

I believe that mathematicians’ general habit of dismissing “finite problems”
as not properly mathematical will change over time. The entire edifice of infini-
tary mathematics bears on our everyday experience only through measurement
and observation, and discrete problems from computer science have already
begun to influence mathematical research. It also seems likely that mathemati-
cians will find creative ways to solve infinitary problems by devising represen-
tations and reductions that are amenable to automation. The main challenge is
that automated reasoning is unfamiliar to them. The history of Lean suggests
that mathematicians will go to extraordinary lengths to learn a new technology
once they decide that it is interesting and aligns with their goals. To facilitate
adoption, it helps to have documentation and expository materials that are writ-
ten with them in mind. The incentive structures in mathematics and computer
science are not good at encouraging that kind of cross-disciplinary outreach,
but once the door is open, it is only a matter of time before a new technology
becomes part of the mathematical mainstream.

Automated Reasoning for Mathematics 15

7 Machine Learning and Symbolic AI

It’s impossible to write about the prospects of automated reasoning for mathe-
matics today without saying something about machine learning. Machine learn-
ing and symbolic AI have complementary strengths: ML is good at synthesizing
vast amounts of data but isn’t good at getting details right, whereas symbolic
methods are good at getting the details right but are overwhelmed by combina-
torial explosion in a search space. A central challenge for AI is to design systems
that get the best of both worlds by combining the two approaches, and math-
ematics, where the problems are especially clear and well-defined, is an ideal
place to make progress.

It is therefore not surprising that there is growing interest in applications
of machine learning to mathematics. Researchers have long explored the use
of machine learning techniques to guide symbolic search and to select premises
for a sledgehammer, and with the advent of deep learning, there has been a
surge of interest in using neural networks to prove theorems in conjunction with
an interactive proof assistant. A recent “brief survey” of machine learning in
automated reasoning by Blaauwbroek et al. [9] has 168 references, and surveys
of deep learning for mathematical reasoning by Lu et al. [35] and by Li et al.
[32] have well over 200 references each.

Lean is becoming recognized as an ideal platform for such work. There have
been at least two projects on using machine learning for premise selection for
Lean [19,48], there are tactics and code pilots based on Lean [27,54,55], and there
are tools that support data extraction and interaction with Lean for machine
learning experiments, including one developed by Kaiyu Yang and coauthors
[55] and two developed by Kim Morrison.3 The MiniF2F problem benchmark
[56] includes versions for Lean 3, and the ProofNet benchmarks [5] have recently
been ported to Lean 4 by Abhijit Chakrborty and Rahul Vishwakarma.4 The
features that make Lean a good platform for automated reasoning also make it a
good platform for machine learning and support a synthesis of the two. The size
and sophistication of Lean’s mathematical library, Mathlib, and the involvement
of the mathematical community provide powerful opportunities for progress.

8 Conclusions

Although I began with a disappointing assessment of the current state of auto-
mated reasoning for mathematics, I hope I have conveyed good reasons for opti-
mism. Mathematicians are beginning to warm to the use of formal methods,
opening up new avenues for progress. As the technology improves, the number
of mathematicians making use of the automated reasoning tools will increase,
providing greater incentives for computer scientists to focus on mathematical
applications. This, in turn, will increase the number of mathematicians who use
3 https://github.com/semorrison/lean-training-data

https://github.com/leanprover-community/repl.
4 https://github.com/rahul3613/ProofNet-lean4.

https://github.com/semorrison/lean-training-data
https://github.com/leanprover-community/repl
https://github.com/rahul3613/ProofNet-lean4

16 J. Avigad

the technology and can therefore provide feedback and even contribute to its
development. In short, I expect that we are on the cusp of a virtuous cycle
whereby technological improvements lead to more users, which, in turn, lead to
further improvements.

In this article, I have tried to identify some of the key challenges to develop-
ing better automation for mathematics, and I have suggested specific approaches
that I find promising. The biggest challenges, however, may be sociological rather
than technical. Making automation useful for mathematics will require mathe-
maticians and computer scientists working together, and neither discipline will
get far on its own. Mathematicians and computer scientists have very different
attitudes and outlooks. Computer scientists focus on disseminating information
quickly in conference publications, and their success is measured by the number
of citations they receive. With the weight of centuries behind them, mathemati-
cians can’t be rushed, are mistrustful of academic fads, and tend to look to the
leading experts in their fields to determine what is important. Whereas computer
scientists value measurable impact in the short term, mathematicians answer to
less clear-cut assessments of the quality and depth of their work. It’s not that
one discipline’s standards are better than the other; each has its advantages and
problems. It’s just that the disparity of outlooks often makes communication
difficult.

I’d like to suggest to computer scientists reading this article that it might
be nice to adopt a mathematical attitude every once in a while. Imagine think-
ing about something because you find it interesting, without caring what others
think. Imagine exploring ideas to see where they take you, without worrying
about whether that will result in a conference publication by the next round of
deadlines. Imagine working on a problem just for the joy of taking up the chal-
lenge. If all that sounds good to you, you’ll find mathematicians to be excellent
companions. I am not suggesting that you should turn your back on computer
science; of course, you will still have bills to pay. But I am confident that one
day, when you look back over your career, any contributions you have made to
mathematics will be among the things that you are most proud of, and among
those that are closest to your heart. So I invite you to come to the Lean Zulip
channel and start talking to mathematicians about the things that automation
can do for them. I promise, you won’t regret it.

References

1. Avigad, J.: The mechanization of mathematics. Notices Amer. Math. Soc. 65(6),
681–690 (2018). https://doi.org/10.1090/noti1688

2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Trans. Comput. Log. 9(1), 2 (2007). https://doi.org/10.
1145/1297658.1297660

3. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the central limit the-
orem. J. Autom. Reason. 59(4), 389–423 (2017). https://doi.org/10.1007/S10817-
017-9404-X

https://doi.org/10.1090/noti1688
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1007/S10817-017-9404-X
https://doi.org/10.1007/S10817-017-9404-X

Automated Reasoning for Mathematics 17

4. Avigad, J., Kapulkin, K., Lumsdaine, P.L.: Homotopy limits in type theory.
Math. Struct. Comput. Sci. 25(5), 1040–1070 (2015). https://doi.org/10.1017/
S0960129514000498

5. Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E.W., Radev, D., Avigad, J.:
Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
CoRR arXiv: 2302.12433 (2023). https://doi.org/10.48550/ARXIV.2302.12433

6. Beeson, M.J.: The mechanization of mathematics. In: Alan Turing: life and legacy
of a great thinker, pp. 77–134. Springer, Berlin (2004)

7. Bentkamp, A., Blanchette, J., Nummelin, V., Tourret, S., Vukmirovic, P., Wald-
mann, U.: Mechanical mathematicians. Commun. ACM 66(4), 80–90 (2023).
https://doi.org/10.1145/3557998

8. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for higher-
order logic. J. Autom. Reasoning 67(1) (2023). https://doi.org/10.1007/s10817-
022-09649-9

9. Blaauwbroek, L., et al.: Learning guided automated reasoning: a brief survey.
CoRR arXiv: 2403.04017 (2024)

10. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5_11

11. Börger, E., Grädel, E., Gurevich, Y.: The classical decision problem. Universitext.
Springer-Verlag, Berlin (2001), reprint of the 1997 original

12. Bryant, R.E., Nawrocki, W., Avigad, J., Heule, M.J.H.: Certified knowledge com-
pilation with application to verified model counting. In: Mahajan, M., Slivovsky,
F. (eds.) 26th International Conference on Theory and Applications of Satisfia-
bility Testing, SAT 2023, 4-8 July 2023, Alghero, Italy. LIPIcs, vol. 271, pp. 6:1–
6:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/
10.4230/LIPICS.SAT.2023.6

13. Buss, S., Thapen, N.: DRAT and propagation redundancy proofs without new vari-
ables. Log. Methods Comput. Sci. 17(2) (2021). https://doi.org/10.23638/LMCS-
17(2:12)2021

14. Codel, C.R., Avigad, J., Heule, M.J.H.: Verified encodings for SAT solvers.
In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods in Computer-Aided Design,
FMCAD 2023, Ames, IA, USA, 24-27 October 2023, pp. 141–151. IEEE (2023).
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_22

15. Crossley, J.N.: Reminiscences of logicians. In: Crossley, J.N. (ed.) Algebra and
Logic, pp. 1–62. Springer, Berlin (1975)

16. Czajka, Ł: Practical proof search for coq by type inhabitation. In: Peltier, N.,
Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 28–
57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_3

17. Davis, M.: The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems, and Computable Functions. Dover Publications, revised edition edn.
(2004)

18. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. Proc. ACM Program. Lang. 1(ICFP), 34:1–34:29
(2017). https://doi.org/10.1145/3110278

19. Geesing, A.: Premise Selection for Lean 4. Master’s thesis, Vrije Universiteit Ams-
terdam (2023)

20. Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom.
39(1–3), 239–272 (2008). https://doi.org/10.1007/s00454-007-9018-x

https://doi.org/10.1017/S0960129514000498
https://doi.org/10.1017/S0960129514000498
http://arxiv.org/abs/2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.1145/3557998
https://doi.org/10.1007/s10817-022-09649-9
https://doi.org/10.1007/s10817-022-09649-9
http://arxiv.org/abs/2403.04017
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.4230/LIPICS.SAT.2023.6
https://doi.org/10.4230/LIPICS.SAT.2023.6
https://doi.org/10.23638/LMCS-17(2:12)2021
https://doi.org/10.23638/LMCS-17(2:12)2021
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_22
https://doi.org/10.1007/978-3-030-51054-1_3
https://doi.org/10.1145/3110278
https://doi.org/10.1007/s00454-007-9018-x

18 J. Avigad

21. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatsh. Math. Phys. 38(1), 173–198 (1931). https://doi.
org/10.1007/BF01700692, English translation in [22]

22. Gödel, K.: Collected works. Vol. I. Oxford University Press, New York (1986),
edited by Feferman, S., Dawson Jr., J.W., Kleene, S.C., Moore, G.H., Solovay,
R.M., van Heijenoort, J

23. Golomb, S.W., Baumert, L.D.: Backtrack programming. J. Assoc. Comput. Mach.
12, 516–524 (1965). https://doi.org/10.1145/321296.321300

24. Gonthier, G.: Formal proof–the four-color theorem. Notices Amer. Math. Soc.
55(11), 1382–1393 (2008)

25. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14

26. Hales, T.C.: The Jordan curve theorem, formally and informally. Amer.
Math. Monthly 114(10), 882–894 (2007). https://doi.org/10.1080/00029890.2007.
11920481

27. Han, J.M., Rute, J., Wu, Y., Ayers, E.W., Polu, S.: Proof artifact co-training for
theorem proving with language models. In: The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, 25-29 April 2022. OpenRe-
view.net (2022), https://openreview.net/forum?id=rpxJc9j04U

28. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI 2018), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI
2018), New Orleans, Louisiana, USA, 2-7 February 2018, pp. 6598–6606. AAAI
Press (2018). https://doi.org/10.1609/AAAI.V32I1.12209

29. Heule, M.J.H., Scheucher, M.: Happy ending: An empty hexagon in every set of 30
points (2024), to appear in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) 2024

30. Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.
Sci. 1(1), 27–57 (1975). https://doi.org/10.1016/0304-3975(75)90011-0

31. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Design
and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), pp.
56–68 (2003). http://www.gilith.com/papers

32. Li, Z., et al.: A survey on deep learning for theorem proving. CoRR (2024). https://
doi.org/10.48550/arXiv.2404.09939

33. Limperg, J., From, A.H.: Aesop: White-box best-first proof search for Lean. In:
Krebbers, R., Traytel, D., Pientka, B., Zdancewic, S. (eds.) Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2023, Boston, MA, USA, 16-17 January 2023, pp. 253–266. ACM (2023).
https://doi.org/10.1145/3573105.3575671

34. Lindblad, F., Benke, M.: A tool for automated theorem proving in Agda. In: Fil-
liâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839,
pp. 154–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11617990_10

35. Lu, P., Qiu, L., Yu, W., Welleck, S., Chang, K.: A survey of deep learning for
mathematical reasoning. In: Rogers, A., Boyd-Graber, J.L., Okazaki, N. (eds.)
Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, 9-14 July 2023,
pp. 14605–14631. Association for Computational Linguistics (2023). https://doi.
org/10.18653/V1/2023.ACL-LONG.817

https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692
https://doi.org/10.1145/321296.321300
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1080/00029890.2007.11920481
https://doi.org/10.1080/00029890.2007.11920481
https://openreview.net/forum?id=rpxJc9j04U
https://doi.org/10.1609/AAAI.V32I1.12209
https://doi.org/10.1016/0304-3975(75)90011-0
http://www.gilith.com/papers
https://doi.org/10.48550/arXiv.2404.09939
https://doi.org/10.48550/arXiv.2404.09939
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1007/11617990_10
https://doi.org/10.18653/V1/2023.ACL-LONG.817
https://doi.org/10.18653/V1/2023.ACL-LONG.817

Automated Reasoning for Mathematics 19

36. Mackenzie, D.: The automation of proof: a historical and sociological exploration.
IEEE Ann. Hist. Comput. 17(3), 7–29 (1995). https://doi.org/10.1109/85.397057

37. McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19(3), 263–276
(1997). https://doi.org/10.1023/A:1005843212881

38. Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

39. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

40. Mousavi, H.: Automatic theorem proving in Walnut. CoRR (2016). https://doi.
org/10.48550/arXiv.1603.06017

41. Mousavi, H., Schaeffer, L., Shallit, J.O.: Decision algorithms for Fibonacci-
automatic words, I: basic results. RAIRO Theor. Informatics Appl. 50(1), 39–66
(2016). https://doi.org/10.1051/ITA/2016010

42. Nawrocki, W., Ayers, E.W., Ebner, G.: An extensible user interface for Lean 4. In:
Naumowicz, A., Thiemann, R. (eds.) 14th International Conference on Interactive
Theorem Proving, ITP 2023, 31 July to 4 August 2023, Białystok, Poland. LIPIcs,
vol. 268, pp. 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPICS.ITP.2023.24

43. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38(2), 389–
397 (2007). https://doi.org/10.1007/s00454-007-1343-6

44. Nipkow, T.: Term rewriting and beyond - theorem proving in Isabelle. Formal
Aspects Comput. 1(4), 320–338 (1989). https://doi.org/10.1007/BF01887212

45. Paulson, L.C.: A generic tableau prover and its integration with Isabelle. J. Univers.
Comput. Sci. 5(3), 73–87 (1999). https://doi.org/10.3217/JUCS-005-03-0073

46. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) The 8th International Workshop on the Implemen-
tation of Logics, IWIL 2010, Yogyakarta, Indonesia, 9 October 2011. EPiC Series
in Computing, vol. 2, pp. 1–11. EasyChair (2010). https://doi.org/10.29007/36DT

47. Phillips, J.D., Stanovský, D.: Automated theorem proving in quasigroup and loop
theory. AI Commun. 23(2–3), 267–283 (2010). https://doi.org/10.3233/AIC-2010-
0460

48. Piotrowski, B., Mir, R.F., Ayers, E.W.: Machine-learned premise selection for
Lean. In: Ramanayake, R., Urban, J. (eds.) Automated Reasoning with Analytic
Tableaux and Related Methods - 32nd International Conference, TABLEAUX
2023. LNCS, vol. 14278, pp. 175–186. Springer (2023). https://doi.org/10.1007/
978-3-031-43513-3_10

49. Shallit, J.: The logical approach to automatic sequences—exploring combina-
torics on words with Walnut, London Mathematical Society Lecture Note Series,
vol. 482. Cambridge University Press, Cambridge (2023). https://doi.org/10.1017/
9781108775267

50. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning 1. Springer, Berlin
(1983)

51. Skystedt, L.: A New Synthesis Tool for Agda. Master’s thesis, University of Gothen-
burg and Chalmers University of Technology (2022)

52. Subercaseaux, B., Nawrocki, W., Gallicchio, J., Codel, C., Carneiro, M., Heule,
M.J.H.: Formal verification of the empty hexagon number (2024). https://arxiv.
org/abs/2403.17370

https://doi.org/10.1109/85.397057
https://doi.org/10.1023/A:1005843212881
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.1051/ITA/2016010
https://doi.org/10.4230/LIPICS.ITP.2023.24
https://doi.org/10.1007/s00454-007-1343-6
https://doi.org/10.1007/BF01887212
https://doi.org/10.3217/JUCS-005-03-0073
https://doi.org/10.29007/36DT
https://doi.org/10.3233/AIC-2010-0460
https://doi.org/10.3233/AIC-2010-0460
https://doi.org/10.1007/978-3-031-43513-3_10
https://doi.org/10.1007/978-3-031-43513-3_10
https://doi.org/10.1017/9781108775267
https://doi.org/10.1017/9781108775267
https://arxiv.org/abs/2403.17370
https://arxiv.org/abs/2403.17370

20 J. Avigad

53. Vukmirovic, P., Blanchette, J., Schulz, S.: Extending a high-performance prover
to higher-order logic. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Part II. LNCS, vol. 13994, pp.
111–129. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_10

54. Welleck, S., Saha, R.: LLMSTEP: LLM proofstep suggestions in Lean. CoRR
arXiv: abs/2310.18457 (2023). https://doi.org/10.48550/arxiv.2310.18457

55. Yang, K., et al.: Leandojo: theorem proving with retrieval-augmented language
models. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S.
(eds.) Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, 10 - 16 December (2023). http://papers.nips.cc/paper_files/paper/2023/
hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.
html

56. Zheng, K., Han, J.M., Polu, S.: MiniF2F: a cross-system benchmark for formal
Olympiad-level mathematics. In: The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, 25-29 April 2022. OpenReview.net
(2022). https://openreview.net/forum?id=9ZPegFuFTFv

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-30820-8_10
http://arxiv.org/2310.18457
https://doi.org/10.48550/arxiv.2310.18457
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=9ZPegFuFTFv
http://creativecommons.org/licenses/by/4.0/

Induction in Saturation

Laura Kovács1(B) , Petra Hozzová1 , Márton Hajdu1 ,
and Andrei Voronkov2,3

1 TU Wien, Vienna, Austria
laura.kovacs@tuwien.ac.at

2 University of Manchester, Manchester, UK
3 EasyChair, Manchester, UK

Abstract. Proof by induction is commonplace in modern mathematics
and computational logic. This paper overviews and discusses our recent
results in turning saturation-based first-order theorem proving into a
powerful framework for automating inductive reasoning. We formalize
applications of induction as new inference rules of the saturation process,
add instances of appropriate induction schemata to the search space, and
use these rules and instances immediately upon their addition for the
purpose of guiding induction. Our results show, for example, that many
problems from formal verification and mathematical theories can now be
solved completely automatically using a first-order theorem prover.

1 Introduction

Proof by induction is commonplace in modern mathematics and computational
logic. Many number-theoretic arguments rely upon mathematical induction over
the natural numbers, while showing correctness of software systems typically
requires structural induction over inductively-defined data types, to only name
two examples. The wider automation of mathematics, logic, verification and
other efforts therefore demands automating induction.

Induction can be automated by reducing goals to subgoals [1,11], so that
proving a goal ∀x.F (x) can be proved by induction on x. However, splitting
goals into subgoals and organizing proof search accordingly requires expert guid-
ance. As an alternative, inductive reasoning has recently appeared in SMT
solvers [13] and first-order theorem provers [3,12,14], complementing strong
support for reasoning with theories and quantifiers. These approaches do not
reduce goals to subgoals but instead implement tailored instantiations of induc-
tion schemas [3,12,14], adjust the underlying calculus with inductive generaliza-
tions [4] and function rewriting [6], extend theory reasoning for proving induc-
tive formulas [8], and integrate induction with rewriting for generating auxiliary
inductive properties during proof search [5].

This paper describes our recent efforts in these directions, entering new
grounds in the automation of inductive reasoning. The distinctive feature of
our work comes with mechanizing mathematical induction in saturation-based
first-order theorem proving, turning thus saturation-based proof search into a
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 21–29, 2024.
https://doi.org/10.1007/978-3-031-63498-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_2&domain=pdf
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8273-2613
https://doi.org/10.1007/978-3-031-63498-7_2

22 L. Kovács et al.

powerful framework to reason about software technologies, in particular about
inductive properties of functional and imperative programs.

2 Induction in Saturation - In a Nutshell

Our work combines very efficient superposition-based equational reasoning with
inductive reasoning, by extending superposition with new inference rules cap-
turing inductive steps within saturation. We refer to these inference rules as
induction rules and consider them in addition to superposition inferences dur-
ing proof-search. Following the approach of [12], we capture the application of
induction via the following general induction rule:

L[t] ∨ C

F → ∀x.L[x]
(Ind),

where L[t] is a ground literal, C is a clause, and F → ∀x.L[x] is a valid induction
schema. Further, L[t] denotes the negation of L[t].

In our work, we consider extensions and variants of the induction rule Ind, in
order to add instances of appropriate induction schemata over inductive formulas
to be proved. We call these instances induction axioms and automate induction
in saturation via the following two, inter-connected steps:

(i) devise new induction rules;
(ii) optimize the saturation process with induction.

For step (i), we pick up a formula G in the search space and use induction
rules to add new induction axioms Ax to the search space, aiming at proving
¬G, or sometimes a formula more general than ¬G. While our inference rules
implement inductive reasoning upon G using Ax, adding only these inference
rules to superposition-based proof search would be insufficient for efficient the-
orem proving. Modern saturation-based theorem provers are very powerful not
just because of the logical calculi they are based on, such as superposition. What
makes them powerful and efficient are redundancy criteria and pruning of the
search space; strategies for directing proof search, mainly by clause and inference
selection; and theory-specific reasoning, for built-in support for data types [8].
Therefore, in addition to devising new induction rules in (i), in (ii) we bring
redundancy elimination, proof search options and theory axioms/rules to satu-
ration with induction.

As a result of the combined efforts of (i)–(ii), induction in saturation main-
tains efficiency of standard saturation and is not limited to induction over specific
(well-founded) theories. Such a genericity is particularly important for applying
our results in the formal analysis of system requirements. For example, proving
that every element in the computer memory is initialized or that no execution of
a user request interferes with another user request, typically requires inductive
reasoning with integers and arrays.

In the rest of the paper, we illustrate the automation of induction in satura-
tion within the following three use-cases:

Induction in Saturation 23

Fig. 1. Inductive reasoning with integers.

– proving arithmetical properties in Sect. 3;
– enforcing safety assertions of array-manipulating programs in Sect. 4;
– reasoning about the functional correctness of programs over lists in Sect. 5.

3 Induction and Arithmetic

We first discuss our work in proving inductive properties over (sums of) integers.
While integers with the standard <-ordering are not well-founded, we show that
we can apply, and automate, induction over any integer interval with a finite
bound [7].

In the sequel, we assume a distinguished integer sort, denoted by Z. When we
use standard integer predicates <, ≤, >, ≥, functions +,−, . . . and constants
0, 1, 2, . . . , we assume that they denote the corresponding interpreted integer
predicates and functions with their standard interpretations. All other symbols
are uninterpreted. We will write quantifiers like ∀x ∈ Z to denote that x has the
integer sort.

Example of Induction over Integers. Consider the recursive function sum of
Fig. 1(a), computing the sum of the integers from the integer interval [0, n]. We
aim to prove the assertion of Fig. 1(a), denoted via assert and stating that the
value computed by sum is the closed-form expression describing the sum of the
first n positive integers.

In order to prove the assertion of Fig. 1(a) within saturation-based proof
search, we proceed as follows. We convert the function definition of sum into
first-order axioms and negate the assertion of Fig. 1(a), skolemizing n as σ. We
obtain the following unit clauses, with each clause being implicitly universally
quantified:

sum(0) = 0 (1)
n = 0 ∨ sum(n) = n + sum(n − 1) (2)

σ ≥ 0 (3)
2 · sum(σ) �= σ · (σ + 1) (4)

Clauses (1)–(2) result from the functional definition of sum, whereas clauses (3)–
(4) yield the clausified negation of the assertion of Fig. 1(a). We then continue

24 L. Kovács et al.

by applying inference rules on these clauses with the goal of refuting the negated
assertion by deriving the empty clause, corresponding to a contradiction.

Induction Rule over Integers. When considering integers, we adjust the
general induction rule Ind by considering induction over well-founded (integer)
intervals. In particular, for proving property (4) of Fig. 1(a), we use the following
extension of the Ind rule, where b is a ground term of integer sort:

L[t] ∨ C t ≥ b

L[b] ∧ ∀y.(y ≥ b ∧ L[y] → L[y + 1]) → ∀x.(x ≥ b → L[x])
(IntInd≥)

To refute the negated assertion (4), we instantiate the IntInd≥ rule with L[σ]
being 2 ·sum(σ) = σ · (σ +1) and b set to 0, deriving thus the following induction
axiom as an instance of the induction schema of IntInd≥:

(
2 · sum(0) = 0 · (0 + 1)

∧ ∀y ∈ N.(y ≥ 0 ∧ 2·sum(y) = y ·(y+1) =⇒ 2·sum(y+1) = (y+1)·((y+1)+1))
)

=⇒ ∀x ∈ N.(x ≥ 0 → 2 · sum(x) = x · (x+ 1))

(5)

Recall that saturation-based provers work with clauses, rather than with arbi-
trary formulas. Therefore, the induction axiom (5) is clausified and its clausal
normal form (CNF) given below is added to the search space, where y is skolem-
ized as σ′:

2·sum(0) �= 0·(0+1) ∨ 2·sum(σ′) = σ′ ·(σ′+1) ∨ ¬(x ≥ 0) ∨ 2·sum(x) = x·(x+1) (6)
2·sum(0) �= 0·(0+1) ∨ 2·sum(σ′+1) �= (σ′+1)·((σ′+1)+1) ∨ ¬(x ≥ 0) ∨

2·sum(x) = x·(x+1)
(7)

Optimizing Induction in Saturation. Simply instantiating IntInd≥ and
adding the corresponding induction axiom for any clause L[t] ∨ C in the search
space would however be inefficient: considering L[t]∨C just like any other clause
in saturation may trigger the application of too many inferences. Therefore, we
treat premises L[t] ∨ C of induction rules differently in order to guide the satu-
ration algorithm in two ways.

First, we ensure that an application of Ind or IntInd≥ is followed by a binary
resolution step in which the conclusion of an induction rule is resolved with (induc-
tive) premise(s). For example, to derive a refutation from (6) and (7), we apply
binary resolution on (6) and (7) with (3) and (4), resolving away the last two liter-
als of (6) and (7). Refutation of (4) is then easily derived, by using the axioms (1)–
(2) defining sum together with arithmetic reasoning over integers. For example, our
theorem prover Vampire [9] finds a refutation of (4) in almost no time1.

Second, induction can be very explosive – i.e., it may generate many conse-
quences of which few lead to refutation. Therefore, in practice, we implement
additional requirements on the premises of Ind and IntInd≥, with these require-
ments to be used during saturation. Among others, we use heuristics on whether
1 Empirical data reported in this paper have been obtained on computers with AMD
Epyc 7502 2.5GHz processors and 1TB RAM.

Induction in Saturation 25

Fig. 2. Inductive reasoning with arrays, with valA(j) denoting A[j].

the term t must contain a symbol from the conjecture we are trying to prove;
whether we apply induction on non-unit clauses; or whether (in the case of inte-
ger induction) we allow L[t] to be a comparison or equality literal, and if yes,
how many times and on which positions it can contain the term t.

Induction and Theories. We note that the sum function and the correspond-
ing assertion of Fig. 1(a) can also be encoded using natural numbers as induc-
tively defined data types. While the resulting encoding of Fig. 1(a) holds over
naturals, proving Fig. 1(a) over naturals becomes very complex in practice, as
natural numbers do not have built-in arithmetic axioms but rely on term alge-
bra axioms [8]. As a result, when proving Fig. 1(a) over naturals, we are faced
with the challenge of proving addition and multiplication properties of naturals,
which require induction as well, making efficient proof search challenging. Our
work therefore advocates the combination of inductive reasoning with theory-
specific inference rules, in the case of Fig. 1(a) this being the application of
induction over integers.

Application of induction over integers becomes especially beneficial when
proving complex, non-linear arithmetic conjectures. Figure 1(b) shows such a
use-case of a function sum evsq that recursively computes the sum of squares
of the first n positive even integers. The assertion of Fig. 1(b) is the well-known
closed form formula for the sum computed by sum evsq. Proving this assertion,
we follow a similar recipe as for Fig. 1(a): instantiate induction inferences over
integers with the equality from the assertion, resolve the conclusion of the induc-
tion axiom with the literals of the assertion, and then prove the base case and the
step case using arithmetic reasoning combined with the definition of sum evsq.
Thanks to theory-specific reasoning together with induction, Vampire proves
Fig. 1(b) in no time (in less than 1 s).

4 Induction over Arrays

We next describe applications of induction in saturation while proving the func-
tional correctness of array-manipulating programs.

26 L. Kovács et al.

Example of Induction over Arrays. Consider the imperative program of
Fig. 2, annotated with pre-condition (assume), post-condition (assert) and loop
invariant (invariant).

Given the pre-condition and the invariant, we aim to prove that, upon loop
termination, each A[j] will hold the sum of the first j positive integers. Note that
the assumed termination of the loop implies the negation of the loop condition:
¬(i < A.size). With this additional formula, the assertion of Fig. 2 clearly holds.
Yet, proving it automatically, inductive reasoning is needed.

Induction Rule over Arrays of Integers. We consider the following variant
of the IntInd≥ rule, using induction over a finite integer interval:

L[t] ∨ C t ≥ b1 t ≤ b2

L[b1] ∧ ∀x.(b1 ≤ x < b2 ∧ L[x] → L[x+ 1]) → ∀y.(b1 ≤ y ≤ b2 → L[y])
(IntInd[≥]),

where L[t] is a ground literal, and b1, b2 are ground terms. We instantiate IntInd[≥]

based on the negated, skolemized and clausified assertion of Fig. 2; for doing so,
we set L[σ] to be 2 · valA(σ) = σ · (σ + 1) and consider b1 to be 0 and b2
to be A.size − 1. We further clausify the resulting induction axiom; resolve the
clausified axiom against the premises of IntInd[≥]; and finally refute the rest of
the literals using the invariant, pre-condition and negated loop condition of Fig. 2
within integer arithmetic.

Note that, unlike in the examples of Fig. 1, one of the bounds of the interval
upon which we are applying induction is symbolic – an uninterpreted constant.
This is a powerful generalization which allows us to reason with arrays regardless
of their specific length. In practice, induction over arrays of integers in Vampire
proves the assertion of Fig. 2 (using around 1 s of time).

5 Induction over Lists

We finally present our efforts towards proving inductive properties of functional
programs, using combination of inductively defined data types. We use two
datatypes, natural numbers and lists over natural numbers, denoted respectively
by N and L. We assume that these datatypes are axiomatised by the distinctive-
ness, exhaustiveness and injectivity axioms of term algebras [8].

Example of Induction over Lists. Consider the functional program of Fig. 3.
We aim to prove the assertion (assert) expressing that reversing a list an
even number of times results in the same list; doing so, we use an assump-
tion (assume) corresponding to an inductive lemma. For proving the assertion
of Fig. 3, we translate the function definitions and assumption of Fig. 3 into first-
order axioms, negate the assertion of Fig. 3, and clausify the resulting formulas.
As a result, the following two clauses are obtained from the negated assertion,
respectively introducing Skolem constants σ1 and σ2 for n and xs:

even(σ1) (8)
revN(σ2, σ1) �= σ2 (9)

Induction in Saturation 27

Fig. 3. Inductive reasoning with natural numbers and list datatypes.

Induction Rule over Lists. A suitable induction formula that refutes
clause (9) is generated in two steps. A formula generated solely from clause (9)
may be too strong. Hence, we generate an induction formula that takes clause (8)
into account as well. Doing so, we use a generalization of the Ind rule that works
on an arbitrary number of premises. Namely, we use the following induction rule
with two premises:

L[t] ∨ C L′[t] ∨ C ′

F → ∀x.(L[x] ∨ L′[x])
(Ind′),

where L[t] and L′[t] are ground literals, C and C ′ are clauses, and F → ∀x.(L[x]∨
L′[x]) is a valid induction schema.

Second, to generate a suitable antecedent for the induction schema (i.e. F),
we notice that the recursion used in the definition of even suggests an induc-
tion principle different from standard structural induction over natural numbers.
These insights lead us to generate following induction axiom:
(
(¬even(0) ∨ revN(σ2, 0) = σ2) ∧ (¬even(s(0)) ∨ revN(σ2, s(0)) = σ2)

∧ ∀n.
(
(¬even(n) ∨ revN(σ2, n) = σ2) →

(¬even(s(s(n))) ∨ revN(σ2, s(s(n))) = σ2)
))

→ ∀m.(¬even(m) ∨ revN(σ2, m) = σ2)

After clausifying this axiom and resolving the conclusion literals with the
premises (8) and (9), a first-order refutation using the term algebra axioms and
the clausified function definitions and assumption of Fig. 3 is straightforward;
Vampire finds a refutation almost immediately.

Optimizing Induction in Saturation. Note that Fig. 3 uses an auxiliary
inductive lemma (assume), in order to prove the assertion of Fig. 3. An addi-
tional challenge in automating the proof of the assertion of Fig. 3 comes therefore
with the task of generating and proving auxiliary inductive lemmas during sat-
uration.

Proving the lemma of Fig. 3 needs further induction steps; however, the gen-
eration of a suitable induction formula is only triggered by an instance of the

28 L. Kovács et al.

respective lemma. Since the superposition calculus is optimized to avoid generat-
ing clauses unnecessary for first-order reasoning, either (i) we tweak the param-
eters of superposition such that the generation of an instance of the lemma is
necessary for first-order reasoning, or (ii) we perform additional sound inferences
(on top of superposition and induction inferences) to derive these instances.

Addressing these challenges, we develop different term ordering families (e.g.
KBO or LPO), parameterized by various symbol precedences or weight func-
tions; and devise literal selection functions to vary the inferred consequences of
a subgoal [5]. As a result, we select different inductive lemmas during satura-
tion. Further, we use function definitions not as axioms but as rewrite rules, in
order to ensure that recursively defined functions are expanded/rewritten into
their (likely much larger) definitions [6]. With such optimizations at hand, Vam-
pire proves the assertion of Fig. 3 without using the asserted inductive lemma
(assume), but by generating the respective inductive lemma of Fig. 3 completely
automatically.

6 Conclusions and Outlook

Automated reasoning about system requirements is one of the most active areas
of formal methods [2,10]. Our work addresses recent reasoning demands in the
presence of induction, needed for example in proving safety and security require-
ments over software systems or establishing mathematical conjectures. In par-
ticular, we turn saturation-based first-order theorem proving into a powerful
workhorse for automating induction. When we integrate induction in saturation,
the choice of possibilities to exploit is very large. As such, should one approach
fail to bring considerable improvements, one may quickly study and investigate
other approaches, allowing thus for further improvements and advancements in
mechanizing induction. As saturation-based first-order theorem proving is not
yet fully integrated in the tech-chain of ensuring software reliability, we believe
automating induction in saturation will bring significant further advances in the
theory and practice of both automated reasoning and formal verification.

Acknowledgements. We thank the entire developer team of the Vampire theorem
prover, and in particular Daneshvar Amrollahi, Michael Rawson, Giles Reger, and
Martin Suda, for valuable discussions. We acknowledge generous funding from the
ERC Consolidator Grant ARTIST 101002685, the TU Wien Doctoral College SecInt,
the FWF SFB project SpyCoDe F8504, the WWTF ICT22-007 grant ForSmart, and
the Amazon Research Award 2023 QuAT.

References

1. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic Press, New
York (1988)

2. Cook, B.: Formal reasoning about the security of Amazon web services. In: CAV,
pp. 38–47 (2018)

Induction in Saturation 29

3. Cruanes, S.: Superposition with structural induction. In: FroCoS (2017)
4. Hajdu, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with

generalization in superposition reasoning. In: CICM (2020)
5. Hajdu, M., Kovács, L., Rawson, M.: Rewriting and inductive reasoning. In: LPAR

(2024, to appear)
6. Hajdu, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recursive defi-

nitions in superposition. In: FMCAD (2021)
7. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. In: CADE,

pp. 361–377 (2021)
8. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.

In: POPL, pp. 260–270 (2017)
9. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: CAV

(2013)
10. O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In:

LICS, pp. 13–25 (2018)
11. Passmore, G.O., et al.: The Imandra automated reasoning system (system descrip-

tion). In: IJCAR, pp. 464–471 (2020)
12. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: CADE

(2019)
13. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: VMCAI, pp. 80–98 (2015)
14. Wand, D.: Superposition: types and induction. Ph.D. thesis, Saarland University,

Saarbrücken, Germany (2017). https://tel.archives-ouvertes.fr/tel-01592497

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://tel.archives-ouvertes.fr/tel-01592497
http://creativecommons.org/licenses/by/4.0/

Stepping Stones in the TPTP World

Geoff Sutcliffe(B)

University of Miami, Miami, USA
geoff@cs.miami.edu

Abstract. The TPTP World is a well established infrastructure that
supports research, development, and deployment of Automated Theorem
Proving (ATP) systems. There are key components that help make the
TPTP World a success: the TPTP problem library was first released in
1993, the CADE ATP System Competition (CASC) was conceived after
CADE-12 in 1994, problem difficulty ratings were added in 1997, the
current TPTP language was adopted in 2003, the SZS ontologies were
specified in 2004, the TSTP solution library was built starting around
2005, the Specialist Problem Classes (SPCs) have been used to classify
problems since 2010, the SystemOnTPTP service has been offered from
2011, the StarExec service was started in 2013, and a world of TPTP
users have helped all along. This paper reviews these stepping stones in
the development of the TPTP World.

1 Introduction

The TPTP World [38,41] (once gently referred to as the “TPTP Jungle” [3]) is a
well established infrastructure that supports research, development, and deploy-
ment of Automated Theorem Proving (ATP) systems. Salient components of
the TPTP World are the TPTP languages [47], the TPTP problem library [37],
the TSTP solution library [38], the SZS ontologies [36], the Specialist Problem
Classes (SPCs) and problem difficulty ratings [51], SystemOnTPTP [33] and
StarExec [32], and the CADE ATP System Competition (CASC) [40]. There are
dependencies between these parts of the TPTP World, as shown in Fig. 1, form-
ing a series of “stepping stones” from TPTP standards to happy users, described
in the following sections of this paper . . .

– The TPTP language (Sect. 2) is used for writing problems in the TPTP prob-
lem library and the TSTP solution library.

– The TPTP problem library (Sect. 3) is the central collection of test problems.
– The TSTP solution library (Sect. 4) is the central collection of solutions to

the TPTP library problems.
– The SZS ontologies (Sect. 5) are used to specify properties of problems and

solutions.
– The SPCs (Sect. 6) that classify problems are based on the language form and

SZS ontology values.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 30–50, 2024.
https://doi.org/10.1007/978-3-031-63498-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_3&domain=pdf
http://orcid.org/0000-0001-9120-3927
https://doi.org/10.1007/978-3-031-63498-7_3

Stepping Stones in the TPTP World 31

– The TPTP problems’ difficulty ratings (Sect. 7) are computed wrt each SPC,
using data from the TSTP solution library.

– SystemOnTPTP (Sect. 8) provides online access to ATP systems and tools.
– The StarExec computers (Sect. 8) are used to build the TSTP, and to run

CASC.
– The CADE ATP System Competition (Sect. 9) is the annual evaluation of

ATP systems - the world championship for such systems.
– Users of the TPTP World (Sect. 10) provide problems for the TPTP problem

library, and ATP systems/tools for SystemOnTPTP and StarExec.

There is a cycle of dependencies from the TPTP problem library, to the TSTP
solution library, to the problem difficulty ratings, and back to the TPTP problem
library. This cycle means that building these components, particularly building
releases of the TPTP problem library, requires iteration until stability is reached.

CASCTSTP

TPTP

Ratings

Language

SoT

SPCs
SZS

StarExec

Fig. 1. Dependencies between the Stepping Stones

Various parts of the TPTP World have been deployed in a range of applica-
tions, in both academia and industry. Since the first release of the TPTP problem
library in 1993, many researchers have used the TPTP World as an appropriate
and convenient basis for ATP system research and development. The web page
www.tptp.org provides access to all components.

2 The TPTP Language

The TPTP language [42] is one of the keys to the success of the TPTP World.
The TPTP language is used for writing both problems and solutions, which
enables convenient communication between ATP systems and tools. Originally
the TPTP World supported only first-order clause normal form (CNF) [50]. Over
the years full first-order form (FOF) [37], typed first-order form (TFF) [2,46],
typed extended first-order form (TXF) [44], typed higher-order form (THF) [12,
43], and non-classical forms (NTF) [30] have been added. The standardisation
received a significant technical boost in 2006 when the BNF definition was revised

http://www.tptp.org

32 G. Sutcliffe

so that all the language forms are quite precisely specified.1 As a result a parser
can be generated using lex/yacc [54]. A general principle of the TPTP language
is: “we provide the syntax, you provide the semantics”. As such, there is no a
priori commitment to any semantics for each of the language forms, although in
almost all cases the intended logic and semantics are well known.

Problems and solutions are built from annotated formulae of the form . . .
language(name, role, formula, source, useful_info)

The languages supported are cnf (clause normal form), fof (first-order form),
tff (typed first-order form), and thf (typed higher-order form). The role, e.g.,
axiom, lemma, conjecture, defines the use of the formula. In a formula, terms
and atoms follow Prolog conventions – functions and predicates start with a
lowercase letter or are ’single quoted’, and variables start with an uppercase
letter. The language also supports interpreted symbols that either start with a
$, e.g., the truth constants $true and $false, or are composed of non-alphabetic
characters, e.g., integer/rational/real numbers such as 27, 43/92, -99.66. The
logical connectives in the TPTP language are !, ?, �, |, &, =>, <=, <=>, and <�>,
for the mathematical connectives ∀, ∃, ¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Equality and inequality are expressed as the infix operators = and !=. The source
and useful_info are optional. Figure 2 shows an example with typed higher-order
annotated formulae.

3 The TPTP Problem Library

The first inklings of the TPTP World emerged at CADE-10 in Kaiserslautern,
Germany, in 1990, as a collaboration between Geoff Sutcliffe from the Univer-
sity of Western Australia (James Cook University from 1993), and Christian
Suttner from the Technische Universität München. At that time a large num-
ber of test problems had accumulated in the ATP community, in both hard-
copy [4,14,17,22,25,56] and electronic form [13,29].2 We observed that ATP
system developers were testing their systems, and publishing results, based on
small numbers of selected test problems. At the same time some good ideas were
seen to be abandoned because they had been tested on inappropriate selections
of test problems. These observations motivated us to start collecting ATP test
problems into what became the TPTP problem library. A comprehensive library
of test problems is necessary for meaningful system evaluations, meaningful sys-
tem comparisons, repeatability of testing, and the production of statistically
significant results. The goal was to support testing and evaluation of ATP sys-
tems, to help ensure that performance results accurately reflect the capabilities
of the ATP systems being considered.
1 But note that the BNF “syntax” is not completely strict – the BNF uses an extended

BNF form that relegates details to “strict” rules that do not have to be checked by
a parser.

2 To my knowledge, the first circulation of test problems was by Larry Wos in the late
sixties.

Stepping Stones in the TPTP World 33

Fig. 2. THF annotated formulae

Releases of the TPTP problem library are identified by numbers in the form
vV ersion.Edition.Patch. The V ersion enumerates major new releases of the
TPTP in which important new features have been added. The Edition is incre-
mented each time new problems are added to the current version. The Patch
level is incremented each time errors found in the current edition are corrected.
The first release of the TPTP problem library, v1.0.0 was made on Friday 12th
November 1993.

The problems in the library are classified into domains that reflect a natural
hierarchy, based mainly on the Dewey Decimal Classification and the Mathe-
matics Subject Classification. Seven main fields are defined: logic, mathematics,
computer science, science & engineering, social sciences, arts & humanities, and
other. Each field is subdivided into domains, each identified by a three-letter
mnemonic, e.g., the social science field has three domains: Social Choice Theory
(SCT), Management (MGT), and Geography (GEG).

Table 1 lists the versions of the TPTP up to v9.0.0, with the new feature
added, the number of problem domains, and the number of problems.3 The
number of domains indicates the diversity of the problems, while the number of
problems indicates the size of the library. The attentive reader might note that
many releases have been made in July-September. This is because the CADE
ATP System Competition (CASC - see Sect. 9), has an influence on the release
cycle of the TPTP.

3 The data for v9.0.0 is an estimate, because this paper was written before the release
was finalised.

34 G. Sutcliffe

Table 1. Overview of TPTP releases

Release Date Changes D’s P’s
v1.0.0 12/11/93 First public release, only CNF [50] 23 2295
v2.0.0 05/06/97 FOF [37] and ratings (Sect. 7) 28 3277
v3.0.0 11/11/04 New TPTP language [47] 32 7267
v4.0.0 04/07/09 TH0 (monomorphic typed higher-order) [43] 41 16512
v5.0.0 16/09/10 TF0 (monomorphic typed first-order) [46] 45 18480
v6.0.0 21/09/13 TF1 (polymophic typed first-order) [2] 48 20306
v7.0.0 24/07/17 TH1 (polymophic typed higher-order) [12] 53 21851
v8.0.0 19/04/22 TXF (typed extended first-order) [44] 54 24785
v9.0.0 ??/07/24 NTF (non-classical typed first-order) [30] 55 25598

Each TPTP problem file has three parts: a header, optional includes, and
annotated formulae. The header section contains information for users, format-
ted as comments in four parts, as shown in Fig. 3. The first part identifies and
describes the problem, the second part provides information about occurrences
of the problem in the literature and elsewhere, the third part provides semantic
and syntactic characteristics of the problem, and the last part contains comments
and bugfix information. The header fields are self-explanatory, but of particu-
lar interest are the Status field that is explained in Sect. 5, the Rating field
that is explained in Sect. 7, and the SPC field that is explained in Sect. 6. The
include section is optional, and if used contains include directives for axiom
files, which in turn have the same three-part format as problem files; see Fig. 3
for an example. Inclusion avoids the need for duplication of the formulae in com-
monly used axiomatizations. The annotated formulae are described in Sect. 2,
and Fig. 2 provides an example.

4 The TSTP Solution Library

The complement to the TPTP problem library is the TSTP solution library [35,
38]. The TSTP is built by running all the ATP systems that are available in
the TPTP World on all the problems in the TPTP problem library. The TSTP
started being built around 2005, using solutions provided by individual system
developers. From 2010 to 2013 the TSTP was generated on a small NSF funded4

cluster at the University of Miami. Since 2014 the ATP systems have been run on
StarExec (see Sect. 8), initially on the StarExec Iowa cluster, and since 2018 on
the StarExec Miami cluster. StarExec has provided stable platforms that produce
reliably consistent and comparable data in the TSTP. At the time of writing this
paper the TSTP contained the results of running 87 ATP systems and system
variants on all the problems that each system could attempt (therefore, e.g.,
4 NSF Award 0957438.

Stepping Stones in the TPTP World 35

Fig. 3. Header of problem DAT016_1.

systems that do model finding for FOF are not run on THF problems). This
produced 1091026 runs, of which 432718 (39.6%) solved the problem. One use
of the TSTP is for computing the TPTP problem difficulty ratings (see Sect. 7).

TSTP solution files have a header section and annotated formulae. The
header section has four parts, as shown in Fig. 4: the first part identifies the
ATP system, the problem, and the system’s runtime parameters; the second
part provides information about the hardware, operating system, and resource
limits; the third part provides the SZS result and output values (see Sect. 5),
and syntactic characteristics of the solution; the last part contains comments.
The solution follows in annotated formulae.

For derivations, where formulae are derived from parent formulae, e.g., in
proofs, refutations, etc., the source fields of the annotated formulae are used
to capture parent-derived formulae relationships in the derivation DAG. This
includes the source of the formula – either the problem file or an inference.
Inference data includes the name of the inference rule used, the semantic rela-
tionship between the parents and the derived formula as an SZS ontology value
(see Sect. 5), and a list of the parent annotated formulae names. Figure 5 shows
an example refutation [slightly modified, type declarations omitted] from the E
system [27] for the problem formulae in Fig. 2, and Fig. 4 shows the correspond-
ing header fields.

36 G. Sutcliffe

Fig. 4. Example derivation header

For interpretations (typically models) the annotated formulae are used to
describe the domains and symbol mappings of Tarskian interpretations, or the
formulae that induce Herbrand models. A TPTP format for interpretations with
finite domains was previously defined [47], and has served the ATP community
adequately for almost 20 years. Recently the need to represent interpretations
with infinite domains, and Kripke interpretations, has led to the development of
a new TPTP format that supports these interpretations [49]. Figure 6 shows the
problem formulae and a model that uses integers as the domain. Please read [49]
for lots more details!

Resource Limits: A common question, often based on mistaken beliefs, is whether
the resource limits used should be increased to find more solutions. Analysis
shows that increasing resource limits does not significantly affect which prob-
lems are solved by an ATP system. Figure 7 illustrates this point; it plots the
CPU times taken by several contemporary ATP systems to solve the TPTP
problems for the FOF_THM_RFO_* SPCs, in increasing order of time taken. The
data was taken from the TSTP, i.e., using the StarExec Miami computers. The
relevant feature of these plots is that each system has a point at which the time
taken to find solutions starts to increase dramatically. This point is called the
system’s Peter Principle [23] Point (PPP) – it is the point at which the system
has reached its level of incompetence. Evidently a linear increase in the compu-
tational resources beyond the PPP would not lead to the solution of significantly

Stepping Stones in the TPTP World 37

Fig. 5. Example derivation formulae

more problems. The PPP thus defines a realistic computational resource limit
for the system, and if enough CPU time is allowed for an ATP system to reach
its PPP, a usefully accurate measure of what problems it can solve is achieved.
The performance data in the TSTP is produced with adequate resource limits.

5 The SZS Ontologies

The SZS ontologies [36] (named “SZS” after the authors of the first presentation
of the ontologies [52]) provide values to specify the logical status of problems
and solutions, and to describe logical data. The Success ontology provides val-
ues for the logical status of a conjecture with respect to a set of axioms, e.g.,
a TPTP problem whose conjecture is a logical consequence of the axioms is
tagged as a Theorem (as in Fig. 3), and a model finder that establishes that

38 G. Sutcliffe

Fig. 6. Example infinite model

Fig. 7. CPU times for FOF_THM_RFO_*

Stepping Stones in the TPTP World 39

a set of axioms (with no conjecture) is consistent should report Satisfiable.
The Success ontology is also used to specify the semantic relationship between
the parent “axioms” and inferred “conjecture” of an inference, as done in the
TPTP format for derivations (see Sect. 4). The NoSuccess ontology provides
reasons why an ATP system/tool has failed, e.g., an ATP system might report
Timeout. The Dataform ontology provides values for describing logical data, as
might be output from an ATP system/tool, e.g., a model finder might output a
FiniteModel. Figure 8 shows some of the salient nodes of the ontologies. Their
expanded names and their (abbreviated) definitions are listed in Fig. 9.

Fig. 8. Extract of the SZS ontologies

The SZS standard also specifies the precise way in which the ontology values
should be presented in ATP system output, in order to facilitate easy processing.
For example, if an ATP system has established that a conjecture is not a theo-
rem of the axioms, by finding a finite countermodel of the axioms and negated
conjecture, the SZS format output would be (see Sect. 4 for the format of the
annotated formulae):

% SZS status CounterSatisfiable
% SZS output start FiniteModel
... annotated formulae for the finite model
% SZS output end FiniteModel

6 Specialist Problem Classes

The TPTP problem library is divided into Specialist Problem Classes (SPCs) –
classes of problems with the same recognizable logical, language, and syntactic
characteristics that make the problems in each SPC homogeneous wrt ATP sys-
tems. Evaluation of ATP systems within SPCs makes it possible to say which
systems work well for what types of problems. The appropriate level of subdivi-
sion for SPCs is that at which less subdivision would merge SPCs for which ATP
systems have distinguishable behaviour, and at which further subdivision would
unnecessarily split SPCs for which ATP systems have reasonably homogeneous
behaviour. Empirically, homogeneity is ensured by examining the patterns of
system performance across the problems in each SPC. The SPCs for essentially
propositional problems were motivated by the observation that SPASS [55] per-
formed differently on the ALC problems in the SYN domain of the TPTP. A
data-driven test for homogeneity is also possible [6].

40 G. Sutcliffe

Fig. 9. SZS ontology values

The characteristics currently used to define the SPCs in the TPTP are shown
in Fig. 10. Using these characteristics 223 SPCs are defined in TPTP v8.2.0. For
example, the SPC TF0_THM_NEQ_ARI contains typed monomorphic first-order
theorems that have no equality but include arithmetic. The header section of each
problem in the TPTP problem library (see Sect. 3) includes its SPC. The SPCs
are used when computing the TPTP problems difficulty ratings (see Sect. 7).

7 Problem Difficulty Ratings

Each TPTP problem has a difficulty rating that provides a well-defined measure
of how difficult the problem is for current ATP systems [51]. The ratings are
based on performance data in the TSTP solution library (see Sect. 4), and are
updated in each TPTP edition.

The TPTP tags problems that are designed specifically to be suited or ill-
suited to some ATP system, calculus, or control strategy as biased (this includes
the SYN000 problems, which are designed for testing ATP systems’ parsers).
The biased problems are excluded from the calculations. Rating is then done
separately for each SPC (see Sect. 6).

Stepping Stones in the TPTP World 41

Fig. 10. SPC characteristics

First, a partial order between systems is determined according to whether or
not a system solves a strict superset of the problems solved by another system.
If a strict superset is solved, the first system is said to subsume the second. The
union of the problems solved by the non-subsumed systems defines the state-of-
the-art – all the problems that are solved by any system. The fraction of non-
subsumed systems that fail on a problem is the difficulty rating for the problem:
problems that are solved by all of the non-subsumed systems get a rating of 0.00
(easy); problems that are solved by some of the non-subsumed systems get a
rating between 0.00 and 1.00 (difficult); problems that are solved by none of the
non-subsumed systems get a rating of 1.00 (unsolved). As additional output, the
systems are given a rating for each SPC – the fraction of difficult problems they
can solve.

The TPTP difficulty ratings provide a way to assess progress in the field – as
problems that are unchanged are not actually getting easier, decreases in their
difficulty ratings are evidence of progress in ATP systems. Figures 11 and 12 plot
the average difficulty ratings overall and for each of the four language forms in
the TPTP World (after some sensible data cleaning). Figure 11 is taken from [41],
published in 2017. It plots the average ratings for the 14527 problems that had
been unchanged and whose ratings had not been stuck at 0.00 or 1.00, from

42 G. Sutcliffe

TPTP v5.0.0 that was released in 2010 to v6.4.0 that was released in 2016.
Figure 12 is taken from [45], published in 2024. It plots the average ratings for the
16236 problems that had been unchanged and whose ratings had not been stuck
at 0.00 or 1.00, from TPTP v6.3.0 that was released in 2016 to v8.2.0 that was
released in 2023. The two figures’ plots dovetail quite well, which gives confidence
that they really are comparable (there are some minor differences caused by
slightly different data cleaning and by recent refinements to the difficulty rating
calculations). The older plots show a quite clear downward trend both overall
and for the four language forms, while the new plots do not. Possible reasons
are discussed in [45].

Fig. 11. Ratings from v5.0.0 to v6.4.0 Fig. 12. Ratings from v6.3.0 to v8.2.0

8 SystemOnTPTP and StarExec

Some of the early users of the TPTP problem library (see Sect. 3) were working
in disciplines other than computer science, e.g. (with a few exemplar references),
mathematics [16,26], logic [8,11], management [20,21], planning [28]. These users
often selected the Otter system [15] for their experiments, as it was readily avail-
able and easy enough to install. As the TPTP World evolved it was clear that
more powerful ATP systems were available, especially evident in the CADE ATP
System Competition (see Sect. 9). However, these more powerful systems were
often not as easy to obtain and install. In order to make the use of ATP easier
for non-geek users, an NSF grant was obtained5 to build the SystemOnTPTP
online service, which provides hardware and a web interface for users to sub-
mit their problems to most recent versions of a wide range of ATP systems.
SystemOnTPTP can provide recommendations for ATP systems that might be
most likely to solve a problem, based on the SPC of the user’s problem and the
system ratings for the SPC (see Sects. 6 and 7). SystemOnTPTP can also run
ATP systems (e.g., the recommended systems) in competition parallel [48]. The
core SystemOnTPTP service is supported by (i) the SystemB4TPTP service
that provides tools to prepare problems for submission to ATP systems, e.g.,

5 NSF Award 1405674.

Stepping Stones in the TPTP World 43

axiom selection [9], type checking [12], a scripting language [39], and (ii) the
SystemOnTSTP service that provides tools for analysing solutions output from
SystemOnTPTP, e.g., interactive viewing of derivations [53], proof checking [34],
identification of interesting lemmas in a proof [24]. While many users enjoy inter-
active use of the services in a web browser, it is also easy to use the services
programmatically – in fact this is where most of the use comes from. In 2023
there were 887287 requests serviced (an average of one every 36 s), from 286
countries. One heavy programmatic user is the Sledgehammer component of the
interactive theorem prover Isabelle [19].

The TPTP problem library was motivated (see Sect. 3) by the need to provide
support for meaningful ATP system evaluation. This need was also (or became)
evident in other logic solver communities, e.g., SAT [10] and SMT [5]. For many
years testing of logic solvers was done on individual developer’s computers. In
2010 a proposal for centralised hardware and software support was developed,
and in 2011 a $2.11 million NSF grant6 was obtained. This grant led to the
development and availability of StarExec Iowa [32] in 2012, and a subsequent
$1.00 million grant7 in 2017 expanded StarExec to Miami. StarExec has been
central to much progress in logic solvers over the last 10 years, supporting 16
logic solver communities, used for running many annual competitions [1], and
supporting many many users.

It was recently announced that StarExec Iowa will be decommissioned. The
maintainer of StarExec Iowa explained that “the plan is to operate StarExec
as usual for competitions Summer 2024 and Summer 2025, and then put the
system into a read-only mode for one year (Summer 2025 to Summer 2026)”.
While StarExec Miami will continue to operate while funding is available, it
will not be able to support the large number of logic solver communities that
use the larger StarExec Iowa cluster. In the long run it will be necessary for
StarExec users to transition to new environments, and several plans are (at the
time of writing) being discussed. One effort, funded by an Amazon Research
Award8, is to containerise StarExec and ATP systems so they will run in a
Kubernetes framework on Amazon Web Services [7]. This will allow communities
and individual users to run their own StarExec.

9 The CADE ATP System Competition

The CADE ATP System Competition (CASC) [40] is the annual evaluation of
fully automatic, classical logic, ATP systems - the world championship for such
systems. CASC is held at each CADE (the International Conference on Auto-
mated Deduction) and IJCAR (the International Joint Conference on Auto-
mated Reasoning) conference – the major forums for the presentation of new
6 NSF Awards 1058748 and 1058925, led by Aaron Stump and Cesare Tinelli at the

University of Iowa.
7 NSF Award 1730419.
8 Amazon Research Award “Automated Theorem Proving Community Infrastruc-

ture in the AWS Cloud”, www.amazon.science/research-awards/recipients/geoffrey-
sutcliffe.

https://www.amazon.science/research-awards/recipients/geoffrey-sutcliffe
https://www.amazon.science/research-awards/recipients/geoffrey-sutcliffe

44 G. Sutcliffe

research in all aspects of automated deduction. One purpose of CASC is to pro-
vide a public evaluation of the relative capabilities of ATP systems. Additionally,
CASC aims to stimulate ATP research, motivate development and implementa-
tion of robust ATP systems that can be easily and usefully deployed in appli-
cations, provide an inspiring environment for personal interaction between ATP
researchers, and expose ATP systems within and beyond the ATP community.
Over the years CASC has been a catalyst for impressive improvements in ATP,
stimulating both theoretical and implementation advances [18]. It has provided
a forum at which empirically successful implementation efforts are acknowledged
and applauded, and at the same time provides a focused meeting at which novice
and experienced developers exchange ideas and techniques. The first CASC was
held at CADE-13 in 1996, at DIMACS in Rutgers University, USA. The CASC
web site provides access to all the details: www.tptp.org/CASC. Of particular
interest for this IJCAR is that CASC was conceived 30 years ago in 1994 after
CADE-12 in Nancy, when Christian Suttner and I were sitting on a bench under
a tree in Parc de la Pépinière, burning time before our train departures.

CASC is run in divisions according to problem and system characteristics,
in a coarse version of the SPCs (see Sect. 6). Problems for CASC are taken from
the TPTP problem library (see Sect. 3), and some other sources. The TPTP
problem ratings (see Sect. 7) are used to select appropriately difficult problems
from the TPTP problem library. The systems are ranked according to the number
of problems solved with an acceptable proof/model output. Ties are broken
according to the average time over problems solved.

The design and organization of CASC has evolved over the years to a sophis-
ticated state. In the years from CASC-26 in 2017 to CASC-29 in 2023 the com-
petition stayed quite stable, but each year the various divisions, evaluations,
etc., were optimized (as was also the case in prior years when there were also
larger changes in the competition design). The changes in the divisions reflect
the changing demands and interest in different types of ATP problems, and deci-
sions made for CASC (in the context of the TPTP World) have had an influence
on the directions of development in ATP. Over the years 11 divisions have been
run . . .

– The Clause Normal Form (CNF) division from CASC-13 in 1996 to CASC-23
in 2011.

– The Satisfiability (SAT) division from CASC-14 in 1997 to CASC-22 in 2009.
– The First-order Form (FOF) division from CASC-15 in 1998, ongoing.
– The Effectively Propositional (EPR) division from CASC-JC in 2001 to

CASC-27 in 2019.
– The First-order Non-theorem (FNT) division from CASC-21 in 2007 to

CASC-29 in 2023.
– The Large Theory Batch (LTB) division from CASC-J4 in 2008 to CASC-J11

in 2022.
– The Typed Higher-order (THF) division from CASC-J5 in 2010, ongoing.
– The Typed First-order with Arithmetic (TFA) division from CASC-23 in

2011, ongoing.

http://www.tptp.org/CASC/

Stepping Stones in the TPTP World 45

– The Typed First-order Non-theorem (TFN) division from CASC-25 in 2015
to CASC-J8 in 2016, revived in CASC-29 in 2003, ongoing.

– The Sledgehammer (SLH) division from CASC-26 in 2017, ongoing.
– The I Challenge You (ICU) division introduced for CASC-J12 in 2024.

In the 20 CASCs so far 111 distinct ATP systems have been entered. For each
CASC the division winners of the previous CASC are automatically entered
to provide benchmarks against which progress can be judged. Some systems
have emerged as dominant in some of the divisions, with Vampire being a well-
known example. The strengths of these systems stem from four main areas: solid
theoretical foundations, significant implementation efforts (in terms of coding
and data structures), extensive testing and tuning, and an understanding of
how to optimize for CASC.

10 TPTP World Users

Over the years the TPTP World has provided a platform upon which ATP users
have presented their needs to ATP system developers, who have then adapted
their ATP systems to the users’ needs. The interplay between the TPTP problem
library (see Sect. 3) and the CADE ATP System Competition (see Sect. 9) has
been particularly effective as a conduit for ATP users to provide samples of their
problems to ATP system developers. Users’ problems that are contributed to
the TPTP are eligible for use in CASC. The problems are then exposed to ATP
system developers, who improve their systems’ performances on the problems,
in order to perform well in CASC. This completes a cycle that provides the users
with more effective tools for solving their problems.

Many people have contributed to the TPTP World, with problems, software,
advice, expertise, and enthusiasm. I am grateful to them all9 and here are just
a few who have made salient contributions (ordered roughly by date of the
contributions mentioned):

– Christian Suttner - The TPTP problem library and CASC.
– Jeff Pelletier - Early support and thoughtful advice, problem contributions.
– Stephan Schulz - Technical expertise.
– Andrei Voronkov & Vampire team - Enthusiasm and constructive feedback.
– Allen van Gelder - The TPTP language BNF and parser.
– Adam Pease and Josef Urban - Large theory problems.
– Christoph Benzüller and Chad Brown - The TH0 language.
– Koen Claessen, Peter Baumgartner, and Stephan Schulz - The TF0 language.
– Jasmin Blanchette - Linking Sledgehammer to SystemOnTPTP, the TF1 lan-

guage.
– Andrei Paskevich - The TF1 language.
– Cezary Kaliszyk and Florian Rabe - The TH1 language.
– Evgeny Kotelnikov - The TXF language.
– Christoph Benzüller and Alexander Steen - The NTF language.

Thank you!
9 See www.tptp.org/TPTP/TR/TPTPTR.shtml#Conclusion

https://www.tptp.org/TPTP/TR/TPTPTR.shtml#Conclusion

46 G. Sutcliffe

11 Conclusion

This paper has described key components of the TPTP World that help make it
a success, linking them together as “stepping stones” that lead from one compo-
nent to another. The large number of citations to work of others, and explicitly
Sect. 10, illustrate how the TPTP World has benefited, and benefited from, users
in the ATP community. I am also grateful to the many people who have donated
hard cash to the project, helping to keep it alive!

This paper has naturally focused on the successful parts of the TPTP World.
There have also been some failed developments and suboptimal (in retrospect)
decisions �. For example, in 2015 there was an attempt to develop a descrip-
tion logic form for the TPTP language. While some initial progress was made,
it ground to a halt without support from the description logic community. A
suboptimal design decision, rooted in the early days of the TPTP, is the naming
scheme used for problem files. The naming scheme uses three digits to number
the problems in each domain, thus setting a limit of 1000 problems, which failed
to anticipate the numbers of problems that would be contributed to some of the
problem domains. This has been overcome by creating multiple domain directo-
ries where necessary, but if it were to be done again, six or eight digit problem
numbers shared across all domains would be an improvement.

The maintenance and development of the TPTP World is ongoing work. The
most recent development is the languages and support for non-classical logics,
initially modal logic [30,31]. The new format for representing interpretations
(see Sect. 4) will be promulgated in the near future. As always, the ongoing suc-
cess and utility of the TPTP problem library depends on ongoing contributions
of problems – the automated reasoning community is encouraged to continue
making contributions of all types of problems.

The TPTP World would not exist without the early strategic insights of
Christian Suttner, with his willingness to let me do the organization without
interference. Maybe his most wonderful contribution (which took him over two
hours to produce when he was visiting me at James Cook University – I think he
took a nap �) is his wonderfully simple plain-language definition of automated
theorem proving: “the derivation of conclusions that follow inevitably from known
facts”.

References

1. Bartocci, E., et al.: TOOLympics 2019: an overview of competitions in formal
methods. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019.
LNCS, vol. 11429, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17502-3_1

2. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38574-2_29

https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29

Stepping Stones in the TPTP World 47

3. Blanchette, J., Urban, J. (eds.): Proceedings of the 3rd International International
Workshop on Proof Exchange for Theorem Proving. No. 14 in EPiC Series in
Computing, EasyChair Publications (2013)

4. Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.: Set theory
in first-order logic: clauses for Godel’s axioms. J. Autom. Reason. 2(3), 287–327
(1986)

5. Cok, D., Stump, A., Weber, T.: The 2013 evaluation of SMT-COMP and SMT-LIB.
J. Autom. Reason. 55(1), 61–90 (2015)

6. Fuchs, M., Sutcliffe, G.: Homogeneous sets of ATP Problems. In: Haller, S., Sim-
mons, G. (eds.) Proceedings of the 15th International FLAIRS Conference, pp.
57–61. AAAI Press (2002)

7. Fuenmayor, D., McKeown, J., Sutcliffe, G.: Towards StarExec in the cloud. In:
Rawson, M., Schulz, S., Korovin, K. (eds.) Proceedings of the 15th International
Workshop on the Implementation of Logics. p. To appear (2024)

8. Glickfield, B., Overbeek, R.: A foray into combinatory logic. J. Autom. Reason.
2(4), 419–431 (1986)

9. Hoder, K., Voronkov, A.: Sine Qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

10. Hoos, H., Stützle, T.: SATLIB: an online resource for research on SAT. In: Gent,
I., van Maaren, H., Walsh, T. (eds.) Proceedings of the 3rd Workshop on the
Satisfiability Problem, pp. 283–292. IOS Press (2000)

11. Jech, T.: Otter experiments in a system of combinatory logic. J. Autom. Reason.
14(3), 413–426 (1995)

12. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with
Rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings
of the 5th Workshop on Practical Aspects of Automated Reasoning, pp. 41–55.
No. 1635 in CEUR Workshop Proceedings (2016)

13. Laboratory, A.N.: The Argonne National Laboratory Problem Collection. http://
info.mcs.anl.gov/

14. McCharen, J., Overbeek, R., Wos, L.: Problems and experiments for and with
automated theorem-proving programs. IEEE Trans. Comput. C-25(8), 773–782
(1976)

15. McCune, W.: Otter 3.3 Reference Manual. Technical report. ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA (2003)

16. McCune, W., Padmanabhan, R.: Automated Deduction in Equational Logic and
Cubic Curves. LNAI, vol. 1095. Springer-Verlag, Heidelberg (1996). https://doi.
org/10.1007/3-540-61398-6

17. McCune, W., Wos, L.: Experiments in automated deduction with condensed
detachment. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 209–223.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_167

18. Nieuwenhuis, R.: The impact of CASC in the development of automated deduction
systems. AI Commun. 15(2–3), 77–78 (2002)

19. Paulson, L., Blanchette, J.: Three years of experience with sledgehammer, a prac-
tical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop
on the Implementation of Logics, pp. 1–11. No. 2 in EPiC Series in Computing,
EasyChair Publications (2010)

20. Peli, G., Bruggeman, J., Masuch, M., O Nuallain, B.: A Logical Approach to For-
malizing Organizational Ecology: Formalizing the Inertia-Fragment in First-Order

https://doi.org/10.1007/978-3-642-22438-6_23
http://info.mcs.anl.gov/
http://info.mcs.anl.gov/
https://doi.org/10.1007/3-540-61398-6
https://doi.org/10.1007/3-540-61398-6
https://doi.org/10.1007/3-540-55602-8_167

48 G. Sutcliffe

Logic. Technical report. CCSOM Preprint 92-74, Department of Statistics and
Methodology, University of Amsterdam (1992)

21. Peli, G., Masuch, M.: The logic of propogation strategies: axiomatizing a frag-
ment of organization ecology in first-order logic. In: Moore, D. (ed.) Academy Of
Management: Best Papers Proceedings 1994, pp. 218–222 (1994)

22. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. J.
Autom. Reason. 2(2), 191–216 (1986)

23. Peter, L., Hull, R.: The Peter Principle. Souvenir Press, Chicago (1969)
24. Puzis, Y., Gao, Y., Sutcliffe, G.: Automated generation of interesting theorems.

In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the 19th International FLAIRS
Conference, pp. 49–54. AAAI Press (2006)

25. Quaife, A.: Automated deduction in von Neumann-Bernays-Godel set theory. J.
Autom. Reason. 8(1), 91–147 (1992)

26. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers (1992)

27. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

28. Segre, A., Elkan, C.: A high-performance explanation-based learning algorithm.
Artif. Intell. 69(1–2), 1–50 (1994)

29. SPRFN: The Problem Collection Distributed with the SPRFN ATP System.
https://www.cs.unc.edu/Research/mi/mi-provers.html

30. Steen, A., Fuenmayor, D., Gleißner, T., Sutcliffe, G., Benzmüller, C.: Automated
reasoning in non-classical logics in the TPTP world. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proceedings of the 8th Workshop on Practical Aspects of Auto-
mated Reasoning. p. Online. No. 3201 in CEUR Workshop Proceedings (2022)

31. Steen, A., Sutcliffe, G.: TPTP world infrastructure for non-classical logics. In:
Nalon, C., Steen, A., Suda, M. (eds.) Proceedings of the 9th Workshop on Practical
Aspects of Automated Reasoning, p. Online. CEUR Workshop Proceedings (2024)

32. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proceedings of
the 7th International Joint Conference on Automated Reasoning. pp. 367–373.
No. 8562 in Lecture Notes in Artificial Intelligence (2014)

33. Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) Proceedings of the 17th
International Conference on Automated Deduction, pp. 406–410. No. 1831 in Lec-
ture Notes in Artificial Intelligence, Springer-Verlag (2000)

34. Sutcliffe, G.: Semantic Derivation Verification: techniques and Implementation. Int.
J. Artif. Intell. Tools 15(6), 1053–1070 (2006)

35. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A.
(eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74510-5_4

36. Sutcliffe, G.: The SZS ontologies for automated reasoning software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics, pp. 38–49.
No. 418 in CEUR Workshop Proceedings (2008)

37. Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

38. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_1

https://doi.org/10.1007/978-3-030-29436-6_29
https://www.cs.unc.edu/Research/mi/mi-provers.html
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-642-17511-4_1

Stepping Stones in the TPTP World 49

39. Sutcliffe, G.: The TPTP process instruction language, with applications. In:
Benzmüller, C., , Woltzenlogel Paleo, B. (eds.) Proceedings of the 11th Workshop
on User Interfaces for Theorem Provers, pp. 1. No. 167 in Electronic Proceedings
in Theoretical Computer Science (2014)

40. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

41. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

42. Sutcliffe, G.: The logic languages of the TPTP world. Logic J. IGPL 31(6), 1153–
1169 (2023)

43. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

44. Sutcliffe, G., Kotelnikov, E.: TFX: the TPTP extended typed first-order form. In:
Konev, B., Urban, J., Schulz, S. (eds.) Proceedings of the 6th Workshop on Prac-
tical Aspects of Automated Reasoning, pp. 72–87. No. 2162 in CEUR Workshop
Proceedings (2018)

45. Sutcliffe, G., Kotthoff, L., Perrault, C., Khalid, Z.: An empirical assessment of
progress in automated theorem proving. In: Benzmüller, C., Heule, M., Schmidt,
R. (eds.) Proceedings of the 12th International Joint Conference on Automated
Reasoning. Lecture Notes in Artificial Intelligence, p. To appear (2024)

46. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS,
vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28717-6_32

47. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for
writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814771_7

48. Sutcliffe, G., Seyfang, D.: Smart selective competition parallelism ATP. In: Kumar,
A., Russell, I. (eds.) Proceedings of the 12th International FLAIRS Conference, pp.
341–345. AAAI Press (1999)

49. Sutcliffe, G., Steen, A., Fontaine, P.: The new TPTP format for interpretations. In:
Korovin, K., Rawson, M., Schulz, S. (eds.) Proceedings of the 15th International
Workshop on the Implementation of Logics, p. Submitted confidently (2024)

50. Sutcliffe, G., Suttner, C.: The TPTP problem library: CNF release v1.2.1. J.
Autom. Reason. 21(2), 177–203 (1998)

51. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artif. Intell. 131(1–2), 39–54 (2001)

52. Sutcliffe, G., Zimmer, J., Schulz, S.: Communication formalisms for automated the-
orem proving tools. In: Sorge, V., Colton, S., Fisher, M., Gow, J. (eds.) Proceedings
of the Workshop on Agents and Automated Reasoning, pp. 52–57 (2003)

53. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. In: Autexier,
S., Benzmüller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for
Theorem Provers. Electronic Notes in Theoretical Computer Science, vol. 174, pp.
109–123 (2007)

54. Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic
with automated parser generation. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 156–161. Springer, Heidelberg (2006). https://doi.
org/10.1007/11814771_15

https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/11814771_7
https://doi.org/10.1007/11814771_15
https://doi.org/10.1007/11814771_15

50 G. Sutcliffe

55. Weidenbach, C., et al.: System description: Spass version 1.0.0. In: CADE 1999.
LNCS (LNAI), vol. 1632, pp. 378–382. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48660-7_34

56. Wilson, G., Minker, J.: Resolution, refinements, and search strategies: a compara-
tive study. IEEE Trans. Comput. C-25(8), 782–801 (1976)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-48660-7_34
https://doi.org/10.1007/3-540-48660-7_34
http://creativecommons.org/licenses/by/4.0/

Theorem Proving and Tools

An Empirical Assessment of Progress
in Automated Theorem Proving

Geoff Sutcliffe1(B) , Christian Suttner2, Lars Kotthoff3 ,
C. Raymond Perrault4 , and Zain Khalid1

1 University of Miami, Miami, USA
geoff@cs.miami.edu , zsk17@miami.edu

2 Miami, USA
3 University of Wyoming, Laramie, USA

larsko@uwyo.edu
4 SRI International, Menlo Park, USA

ray.perrault@sri.com

Abstract. The TPTP World is a well established infrastructure that
supports research, development, and deployment of Automated Theorem
Proving (ATP) systems. This work uses data in the TPTP World to
assess progress in ATP from 2015 to 2023.

Keywords: Automated Theorem Proving · Empirical Evaluation ·
Progress

1 Introduction

The TPTP World [69] (www.tptp.org) is a well established infrastructure that
supports research, development, and deployment of Automated Theorem Prov-
ing (ATP) systems. The TPTP World includes the TPTP problem library, the
TSTP solution library, standards for writing ATP problems and reporting ATP
solutions, tools and services for processing ATP problems and solutions, and it
supports the CADE ATP System Competition (CASC). This work uses data in
the TPTP World to assess progress in ATP from 2015 to 2023.

Any meaningful assessment of progress in ATP must refer to the ability of
ATP systems to solve problems. As the systems improve over time, the prob-
lems that they must solve also change to meet the demands of applications (with
a fixed set of problems the systems can simply be finely tuned to the set, with
inevitable asymptotic progress towards solving all the problems [52]). The TPTP
problem library provides an evolving set of ATP problems that reflect the needs
of ATP users, and is an appropriate basis for assessing the changing ability
of ATP systems (the library is almost monotonically growing, but occasionally
problems are removed – see Sect. 4.1). Alongside the TPTP problem library, the
TSTP solution library provides data about ATP systems’ abilities to solve the
problems in the TPTP problem library. This paper examines progress in ATP,

C. Suttner—Deceased.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 53–74, 2024.
https://doi.org/10.1007/978-3-031-63498-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_4&domain=pdf
http://orcid.org/0000-0001-9120-3927
http://orcid.org/0000-0003-4635-6873
http://orcid.org/0009-0001-1178-343X
http://orcid.org/0009-0001-2063-6933
https://www.tptp.org
https://doi.org/10.1007/978-3-031-63498-7_4

54 G. Sutcliffe et al.

based on the data from TPTP v6.3.0 released on 28th November 2015 to TPTP
v8.2.0 released on 13th June 2023. It is important to differentiate between eval-
uations at instances in time, such as provided by competitions, and evaluations
over time. At instances of time the test problems used for evaluation, the sys-
tems being evaluated, and the hardware/software platform used, are static, e.g.,
as done in [20]. That provides a clean basis for a detailed comparison between
systems. In contrast, evaluation over time is complicated by changing test prob-
lems, changing systems, and changing hardware/software. This dynamic evalua-
tion environment requires additional control to provide meaningful results. The
analyses done in this work do not explicitly factor in the resources needed to
find solutions, e.g., hardware, time limits, etc.; Sect. 3.1 explains why this makes
sense in the ATP context.

Related Work: The use of system performance data to evaluate a field of endeav-
our is common. In the realm of logic-based systems, examples include the various
competitions [6] for logic-based systems (e.g., CASC [68], the SAT Competition
[36], SMT-COMP [5], the ASP Competition [18]), longitudinal surveys of com-
petitions [20,75], the Technical Performance chapter of Stanford University’s AI
Index Annual Report [45], the use of Shapley values to evaluate algorithmic
improvements in SAT solving [25,41], comparison of algorithmic and hardware
advances (in SAT solving) [24], and other more specialized benchmarking, e.g.,
[89]. A general examination of the requirements for such benchmarking is pro-
vided by [9]. An ontology of artificial intelligence benchmarks is described in
[14]. [52] provides an insightful analysis of the global dynamics of using bench-
mark sets in computer vision and natural language processing, and the takeaway
messages are broadly applicable, including to benchmark sets for logic-based
systems. In all cases the common measures for evaluation are (i) the ability of
systems to solve problems, and (ii) the resources required by the systems to
solve the problems. In order for results to be relevant, test problems must be
representative of the problems the systems will face in applications, and the
resource measurements must be appropriate for the availability and demands of
the applications.

Summary of Findings: There has been progress in the last eight years, with
stronger progress from v6.3.0 (2015) up to v7.1.0 (2018), but then a period of
quiet until some more signs of progress in v8.2.0 (2023). There have been some
first solutions of problems that are of direct interest to humans, a quite large
number of first ATP solutions of problems from the TPTP, and some noteworthy
improvements in individual ATP systems. There has been an apparent slowing
of progress compared to the five years prior to 2015.

Paper Structure: Sections 2 and 3 provide a brief background to the TPTP
problem library and TSTP solution library, highlighting features relevant to
this work. Section 4 describes how the TPTP and TSTP data was prepared for
analysis, and describes the measures used. Section 5 is the core of the paper,
giving the results with commentary. Section 6 concludes.

Progress in ATP 55

Table 1. Overview of TPTP releases

Release Date Changes Size Analysed
v6.3.0 28/11/15 New TFO problems with arithmetic 20762 20168
v6.4.0 31/06/16 New problems 20897 20839
v7.0.0 24/07/17 First TH1 problems 21851 21310
v7.1.0 06/03/18 TXF syntax specified 22011 21893
v7.2.0 10/07/18 New problems 22026 21909
v7.3.0 02/08/19 New problems 22686 22570
v7.4.0 10/07/20 New problems 23291 23118
v7.5.0 13/07/21 New problems 24098 24027
v8.0.0 19/04/22 First TXF problems 24785 24027
v8.1.0 30/07/22 New problems 25257 25103
v8.2.0 13/06/23 New problems 25474 25325

2 The TPTP Problem Library

The core of the TPTP World is the TPTP problem library [66]; it is the de facto
standard set of test problems for classical logic ATP systems. The problems can
be browsed online1 and documentation is available2 Each release of the problem
library is identified by a number in the form version.edition.patch. The current
release at the time of writing was v8.2.0. Section 3 explains why the analyses
of progress presented in this paper start at v6.3.0. Table 1 gives some summary
data about the editions from v6.3.0 to v8.2.0. The Size column gives the number
of problems in the release at the time of the release, while the Analysed column
gives the number of problems left for analysis after the data cleaning described
in Sect. 4.1. The acronyms for problem types are given in Sect. 2.1.

Each TPTP problem file has a header section (as comments) that contains
information for users in four parts: the first part identifies and describes the
problem; the second part provides information about occurrences of the problem
in the literature and elsewhere; the third part provides semantic and syntactic
characteristics of the problem; the last part contains comments and bugfix infor-
mation. The third part is most relevant to this work. It contains the problem’s
SZS status [77] that provides the semantic status of the problem, e.g., if it is a
Theorem, a Satisfiable set of formulae, a problem whose status is Unknown,
etc. It also includes statistics about the problem’s syntax, e.g., the number of for-
mulae, the numbers of symbols, the use of equality and arithmetic, etc. The SZS
status and the syntactic characteristics are used to form the Specialist Problem
Class of the problem, as explained in Sect. 2.1.

1 www.tptp.org/cgi-bin/SeeTPTP?Category=Problems.
2 www.tptp.org/cgi-bin/SeeTPTP?Category=Documents.

https://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Documents

56 G. Sutcliffe et al.

2.1 Specialist Problem Classes

The problems in the TPTP library are divided into Specialist Problem Classes
(SPCs) – classes of problems that are homogeneous wrt recognizable logical,
language, and syntactic characteristics. Evaluation of ATP systems within SPCs
makes it possible to say which systems work well for what types of problems.
Empirically, homogeneity is ensured by examining the patterns of system perfor-
mance across the problems in each SPC. For example, the separation of “essen-
tially propositional” problems was motivated by observing that SPASS [85] per-
formed differently on the ALC problems in the SYN domain of the TPTP. A
data-driven test of homogeneity is also possible [26].

The characteristics used to define the SPCs in TPTP v8.2.0 are . . .

1. TPTP language:
CNF – Clause Normal Form FOF – First-Order Form
TF0 – Typed Monomorphic First-order form
TF1 – Typed Polymorphic First-order form
TX0 – Typed Monomorphic eXtended First-order form
TX1 – Typed Polymorphic eXtended First-order form
TH0 – Typed Monomorphic Higher-order form
TH1 – Typed Polymorphic Higher-order form

2. SZS status:
THM – Theorem CSA – CounterSAtisfiable
CAX – Contradictory AXioms (merged with THM in this work)
UNS – UNSatisfiable SAT – SATisfiable
UNK – UNKown OPN – OPeN

3. Order (for CNF and FOF):
PRP – PRoPositional
EPR – Effectively PRopositional (known to be reducible to PRP)
RFO – Real First-Order (not known to be reducible to PRP)

4. Equality:
NEQ – No EQuality EQU – EQUality (some or pure)
SEQ – Some (not pure) EQUality PEQ – Pure EQUality
UEQ – Unit EQUality CNF NUE – Non-Unit Equality CNF

5. Hornness (for CNF):
HRN – HoRN NHN – Non-HorN

6. Arithmetic (for T* languages):
NAR – No ARithmetic ARI – ARIthmetic.

Using these characteristics 223 SPCs are defined in TPTP v8.2.0. For exam-
ple, the SPC TF0_THM_NEQ_ARI contains typed monomorphic first-order the-
orems that have no equality but include arithmetic. Combinations of SPCs
are written using UNIX globbing, e.g., TF0_THM_*_NAR is the combination of
TF0_THM_EQU_NAR and TF0_THM_NEQ_NAR – typed monomorphic higher-order
theorems problems, either with or without equality, but no arithmetic.

The SPCs are used when computing the TPTP problems difficulty ratings,
as explained in Sect. 2.2.

Progress in ATP 57

2.2 TPTP Problem Ratings

Each TPTP problem has a difficulty rating that provides a well-defined measure
of how difficult the problem is for current ATP systems [76]. The ratings are
based on performance data in the TSTP (see Sect. 3), and are updated in each
TPTP edition. Rating is done separately for each SPC. First, a partial order
between systems is determined according to whether or not a system solves a
strict superset of the problems solved by another system. If a strict superset is
solved, the first system is said to subsume the second. Then the fraction of non-
subsumed systems that fail on a problem is the difficulty rating for the problem.
Problems that are solved by all of the non-subsumed systems get a rating of 0.00
(“easy”); problems that are solved by some of the non-subsumed systems get a
rating between 0.00 and 1.00 (“difficult”); problems that are solved by none of
the non-subsumed systems get a rating of 1.00 (“unsolved”).

3 The TSTP Solution Library

The complement of the problem library is the TSTP solution library [65,67].
The TSTP is built by running all the ATP systems that are available in the
TPTP World on all the problems in the TPTP problem library. At the time of
writing this paper, the TSTP contained the results of running 87 ATP systems
and system variants on all the problems in the TPTP that they could attempt.
This produced 1091026 runs, of which 432718 (39.6%) solved the problem. One
use of the TSTP is for ATP system developers to examine solutions to problems
and thus understand how they can be solved, leading to improvements to their
own systems. The use considered here is for TPTP problem ratings.

Prior to 2010 the data in the TSTP came from results submitted by ATP
system developers, who performed testing on their own hardware. From 2010 to
2013 the data was generated on the TPTP World servers at the University of
Miami. Since 2014 the ATP systems have been run on StarExec [63], initially
on the StarExec Iowa cluster, and since 2018 on the StarExec Miami cluster.
StarExec has provided stable platforms that produce reliably consistent and
comparable data in the TSTP. The analyses presented in Sect. 4 start at TPTP
v6.3.0, which was released in November 2015. By that time the problem ratings
were based on data produced on the StarExec computers.

The StarExec Iowa computers have a quad-core Intel Xeon CPU E5-2609
CPU running at 2.40GHz, 128 GiB memory, and the CentOS Linux release
7.9.2009 operating system. The StarExec Miami computers have an octa-core
Intel Xeon E5-2667 v4 CPU running at 2.10GHz, 128 GiB memory, and the
CentOS Linux release 7.4.1708 operating system. One ATP system is run on one
CPU at a time, with a 300 s CPU time limit and a 128GiB memory limit (see
Sect. 3.1). The minor differences between the Iowa and Miami configurations can
be ignored for the task of “solving problems”, as is explained in Sect. 3.1.

58 G. Sutcliffe et al.

3.1 Resource Limits

Analysis shows that increasing resource limits does not significantly affect which
problems are solved by an ATP system. Fig. 1 illustrates this point; it plots the
CPU times taken by several contemporary ATP systems to solve the TPTP
problems for the FOF_THM_RFO_* SPCs, in increasing order of time taken. The
relevant feature of these plots is that each system has a point at which the time
taken to find solutions starts to increase dramatically. This point is called the
system’s Peter Principle [55] Point (PPP), as it is the point at which the system
has reached its level of incompetence. Evidently a linear increase in the compu-
tational resources beyond the PPP would not lead to the solution of significantly
more problems. The PPP thus defines a realistic computational resource limit
for the system. Therefore, provided that enough CPU time and memory are
allowed for an ATP system to reach its PPP, a usefully accurate measure of
what problems it can solve is achieved. The performance data in the TSTP is
produced with adequate resource limits.

Fig. 1. CPU times for FOF_THM_RFO_*

4 Analysis Processes

4.1 Analysis Data

The analyses performed in this assessment use the TPTP problem ratings, and
historical data about which ATP systems solved which problems in each TPTP
release. The data was extracted from the ProblemAndSolutionStatistics file
that accompanies each TPTP release, which summarizes information from the
header fields of the TPTP problem files and corresponding TSTP solution files.
As explained in Sect. 3, TSTP data starting from TPTP v6.3.0 in November
2015 has been used, taking snapshots at each TPTP edition up to v8.2.0.

Before analysis the rating data was cleaned as follows:

Progress in ATP 59

Cleaning for Bias: The TPTP tags problems that are designed specifically to be
suited or ill-suited to some ATP system, calculus, or control strategy as biased.
The biased problems were excluded from the analyses.

Cleaning for Bugfixes: Over time some problems have had to be removed from
the TPTP because they are renamed, duplicates, wrongly formulated, etc. Such
problems in a TPTP release are thus not in subsequent releases. The removed
problems were excluded from the analyses.

Cleaning for the Past: Problems are added to the TPTP in each release, and
corresponding TSTP data is generated using the available ATP systems. As it
is not possible to run all previously available ATP systems on new problems
when they are added to the TPTP, it has been (quite reasonably) assumed that
if a problem was unsolved by the current ATP systems when it was added to
the TPTP (initial rating 1.00), then it would have been unsolved by previously
available ATP systems. The rating data was thus augmented for problems that
were added after v6.3.0 and had an initial rating of 1.00, by setting the problems’
ratings in the prior TPTP releases to 1.00. There were 1854 such problems.
This, however, can lead to an unfairly optimistic view of progress, because those
retrospectively added 1.00 ratings increase the average problem rating in the
past. For problems that were solved when they were added to the TPTP (initial
rating less than 1.00), it is unknown if the previously available ATP systems
would have been able to solve them. Augmenting the rating data by setting the
problems’ ratings in prior TPTP releases to their initial rating of less than 1.00
could lead to an optimistic or pessimistic view of progress, depending if the rating
was greater or less than the average in the past releases. In this work the rating
data was augmented for problems that were added after v6.3.0 and had an initial
rating less than 1.00, by setting the problems’ ratings in the prior TPTP releases
to their initial rating. There were 2632 such problems. The optimistic/pessimistic
effect gets stronger when rating data is augmented for problems that were added
in more recent TPTP releases. A total of 1854+2632 = 4486 problems had their
initial ratings propagated backwards, starting from the various releases over the
eight years of analysis. Overall this could have had a slightly optimistic impact
in the analyses.

Cleaning for Change: A counterintuitive feature of an individual problem’s dif-
ficulty ratings is that they sometimes increase with time. It is counterintuitive
because the problem has not changed. (This was also noted in a prior analysis
[69].) Increases are caused by new ATP systems or system versions becoming
available. If a new system is not subsumed then its TSTP data is used in the
rating process: the ratings of problems that it solves decrease, but at the same
time the ratings of problems that it does not solve increase – you have to “pay the

60 G. Sutcliffe et al.

piper”.3 A common instance of this phenomenon is a new system that can solve
some previously unsolved (rating 1.00) problems, but that cannot solve a sub-
stantial number of problems that are solved by other systems (rating less than
1.00). In this work the anomaly is resolved by additionally looking at monotonic
ratings: if a problem’s rating in a TPTP release is greater than its previous
rating, the monotonic rating is set to the previous lower rating. Monotonized
ratings make clear sense in the case of problems that were unsolved (rating 1.00)
and were later solved by a new system (the rating drops to less than 1.00) – if a
problem is solved, it cannot become unsolved – the solving system still exists in
principle. In cases where the rating is less than 1.00 monotonized ratings might
be considered to be optimistic because ratings do have to “pay the piper”.

4.2 Coherent SPC Sets

Five of the analyses performed (see Sect. 4.3) require data from sets of problems
with similar characteristics, so that the analysis results are wrt that type of
problem. The basis for such sets is the SPCs (see Sect. 2.1), which provide a
fine-grained partitioning of the TPTP problems so that each SPC is coherent.
Some SPCs that capture compatible problem characteristics can be merged to
form a coherent SPC set.

The coherent SPC sets used for the analyses are listed in Table 2. The SPC
set column lists the SPCs that are in the set, using the abbreviations given
in Sect. 2.1. Some noteworthy exclusions are: typed extended first-order prob-
lems, because they were added to the TPTP only in v8.0.0; typed polymorphic
first-order and higher-order problems, because too few systems are capable of
attempting the problems and generating the necessary TSTP data; some SPCs
that have too few problems, e.g., TF0_CSA_*_NAR and TF0_SAT_*_NAR, which
combined have only 154 problems.

4.3 Six Analyses

The cleaned TPTP problems ratings and historical TSTP data has been used
for six analyses of progress in ATP. Individual problem ratings are used for the
first analysis. The other five analyses are wrt the coherent SPC sets described
in Sect. 4.2.

First Solutions: Arguably the most successful use of ATP comes from the “ham-
mers” [15] associated with Interactive Theorem Proving (ITP) systems, where
the individual problems being solved are typically not of direct interest to the
human users who are focussed on the larger task being addressed in the ITP sys-
tem. In contrast, the use of ATP by practitioners to solve individual problems

3 Conversely, if a system that was not subsumed becomes unavailable, it no longer
contributes TSTP data for new problems. This phenomenon is rare (e.g., Isabelle
ran fine on StarExec Iowa but did not port to StarExec Miami in 2018) and has not
materially impacted the analyses of progress.

Progress in ATP 61

Table 2. Coherent SPC sets

SPC set Description
CNF_UNS_RFO_PEQ_UEQ Unsatisfiable really-first-order unit

equality clauses
CNF_UNS_RFO_NEQ_* ∪
CNF_UNS_RFO_SEQ_* ∪
CNF_UNS_RFO_PEQ_NUE

Unsatisfiable really first-order clauses
that are not unit equality

CNF_SAT_RFO_* Satisfiable really-first-order clauses
FOF_*_PRP ∪ FOF_*_EPR_* ∪
CNF_*_PRP ∪ CNF_*_EPR_*

Unsatisfiable and satisfiable
propositional and effectively
propositional clauses. Un/Satisfiable is
coherent because the problems are
decidable

FOF_THM_RFO_* Really first-order theorems, with or
without equality

FOF_CSA_RFO_* ∪
FOF_SAT_RFO_*

Really first-order non-theorems and
satisfiable sets, with and without
equality

TF0_THM_*_NAR Typed monomorphic first-order
theorems, with and without equality, no
arithmetic

TF0_THM_*_ARI Typed monomorphic first-order
theorems, with and without equality,
with arithmetic

TH0_THM_*_NAR Typed monomorphic higher-order
theorems, with and without equality, no
arithmetic

that have resisted manual approaches is less common and possibly less success-
ful, but the sparsity makes successes particularly noteworthy. First solutions of
problems that are of direct interest to humans are indications of progress. Such
problems are identifiable by (i) the rating decreasing from 1.00, and (ii) evidence
that the problem is of direct interest to some humans.

Average Difficulty Ratings: This is the average problem difficulty rating, and
the average monotonized difficulty rating. (This approach was used in [73].) As
the problems are unchanged (they are not actually getting easier), decreases are
evidence of progress in ATP systems.

Never-Solved: This is the fraction of problems that were unsolved (rating 1.00)
in all TPTP releases up to each TPTP release, relative to the number in v6.3.0.
(The converse of this is plotted in [78].) Decreases are evidence of progress.

62 G. Sutcliffe et al.

Solved: For the given system and a given TPTP release, this is . . .

ProblemSolvedInRelease − LeastSolvedAcrossAllReleases

MostSolvedAcrossAllReleases − LeastSolvedAcrossAllReleases

The releases with a 1.00 value are those in which the most problems were solved,
and those with 0.00 had the least number solved. Increases are evidence of
progress.

Always-Easy: This is the converse of Never-solved – the fraction of problems
that were easy (rating 0.00) in all TPTP releases back to each TPTP release,
relative to the number in v8.2.0. Increases are evidence of progress.

Shapley Value: A State-of-the-Art (SotA) ATP system for a TPTP release is
defined as one that solves the union of the problems solved by the individual
ATP systems, e.g., by using competition parallelism [79]. The Shapley value
[87] is the average of the marginal contributions (how much the SotA system
improves when adding each given system) over all systems added to all possible
subsets of other systems. First, temporal Shapley analysis [41] is used to measure
the SotA systems’ contributions to progress, normalized by the number of pre-
viously unsolved problems so that 0.0 means no previously unsolved problems
were solved and 1.0 means all previously unsolved problems were solved. Peaks
indicate stronger progress. Next, (non-temporal) Shapley analysis [25] is used
to measure the contributions of the individual systems in each release. Finally,
temporal Shapley analysis for all systems in all releases is used to measure the
contributions of the individual system versions when they were introduced. The
latter two analyses were used to provide insights for the commentary about the
systems’ performances (they are not plotted in Sect. 5).

5 Evidence of Progress

5.1 First Solutions

There are some nice examples of ATP systems finding first solutions to problems
that are of direct interest to humans . . .

– Model finding ATP systems were used to solve previously open problems con-
cerning the existence of quasigroups satisfying certain additional conditions
[61]. Many examples are in the GRP domain of the TPTP.

– The solution of the Robbins problem4 by the specialist ATP system EQP
[47] in 1996 was a noteworthy success, as the problem had defied the efforts
of eminent mathematicians [29]. It is ROB001-1 in the TPTP, and still has a
rating of 1.00 because it has not been solved by a non-specialist ATP system.

4 The Robbins problem was posed in personal communications between Edward
Huntington, Herbert Robbins, and Alfred Tarski. The background is given in
en.wikipedia.org/wiki/Robbins_algebra.

https://en.wikipedia.org/wiki/Robbins_algebra

Progress in ATP 63

– The first inner five-segment theorem of Tarski’s geometry [60] was first auto-
matically proved by E [58] in 2019, after being posed by Quaife in 1989 [56].
It is problem GEO033-2 in the TPTP.

– The proof of the consistency of an encoding of a large fragment of a high school
textbook on biology [19] by iProver [38] in 2021 showed how new techniques
could be used to find models in large theories. It is problem BIO001+1 in the
TPTP.

– Larry Wos’ challenge to find a “circle of pure proofs” that shows the equiva-
lence of the four Moufang identities [86] was met by careful application [81] of
Otter [48] in 2021. While those specific problems are not in the TPTP, many
related problems are in the ring theory (RNG) domain of the TPTP.

5.2 Solutions and Ratings

A total of 25325 problems were analysed over the coherent SPCs, of which 19762
(78%) were solved in TPTP v6.3.0, increasing to 20227 (80%) in v8.2.0. Of the
25325 problems, 5563 (22%) were unsolved when they were added to the TPTP,
of which 1009 (4%) were solved in some release by v8.2.0. Conversely, there were
8984 problems (35%) that had a rating of 0.00 in v8.2.0, of which 2965 (12%)
had a higher rating in some preceding release. These overall figures provide
evidence of overall progress, but the contributions vary across the coherent SPC
sets. Figures 2, 3, 4, 5, 6, 7, 8, 9 and 10 plot the values for each coherent SPC
set for the latter five analyses described in Sect. 4.3.5 The captions provide the
numbers of ‘P’roblems in TPTP v8.2.0, the number left for analysis after the
data cleaning, and the numbers of ‘N’ever-solved, ‘S’olved, and ‘A’lways-easy
problems in releases v6.3.0-v8.2.0.

Figures 2, 3 4, 5, 6 and 7 plot the values for the CNF- and FOF-based coherent
SPC sets. CNF is now the “assembly language” of most ATP systems, which
typically translate more expressive logics down to CNF. As such, progress in
CNF typically contributes to progress in other SPCs.

CNF_UNS_RFO_PEQ_UEQ showed progress in v6.4.0 due to the strong perfor-
mance of Twee 2.0 [62], which made a lot more problems always-easy by v7.0.0.
Also in v6.4.0, Waldmeister 710 [44] solved five problems that had never been
solved before. In v7.4.0 E 2.5 made a strong contribution, then in v8.1.0 Twee 2.4
made another strong contribution, alongside CSE_E 1.3 [88]. Waldmeister 710
had the highest Shapley value across all the releases, but in v8.1.0 both Twee
and CSE_E solved more problems than Waldmeister. The lowest number of
problems solved was in v7.5.0 and v8.0.0, when 23 fewer problems were solved
than in v7.4.0 – not many in the context of the 1034 solved in v7.4.0. The only
discernible common feature of those 23 problems is that they had ratings over
0.90 in v7.4.0. Apparently some changes in the ATP system versions from v7.4.0
to v7.5.0 made the problems unsolvable in v7.5.0, and further changes reversed
the situation for v8.1.0 when 1043 problems were solved.

5 Data: github.com/GeoffsPapers/ATPProgress2024/raw/master/DataForAnalysis.

https://github.com/GeoffsPapers/ATPProgress2024/raw/master/DataForAnalysis

64 G. Sutcliffe et al.

CNF_UNS_RFO_*_NUE had a small but quite consistent decline in the problem
ratings, indicating some progress. The big advances were in v7.0.0 when Vam-
pire 4.2 performed well, including solving 33 problems that had never been solved
before. In v8.2.0 SnakeForV 1.0 solved 26 problems that had never been solved
before. The biggest drop in problems solved was between v7.2.0 and v7.3.0,
when 66 fewer problems were solved. The largest increase in problems solved
was between v8.1.0 and v8.2.0, when 50 more problems were solved. SnakeForV
was again the big contributor to the increase. SnakeForV is interesting, as it is
a variant of Vampire with an independent reimplementation of Spider-style [82]
strategy discovery and schedule construction that factors in prover randomiza-
tion [64].

CNF_SAT_RFO_* had only one high point, in v6.4.0 when Vampire 4.0.5 made
a strong contribution, including solving four problems that had never been solved
before. The sudden drop in problems solved in v7.0.0 was due to Prover9 1105
[46] data not being available; the reason is lost in the mists of time, but it is
interesting to note that the older system was able to solve some problems that
other systems could not. By v7.1.0 new systems had taken up the slack. The
plots are all quite stable from v7.1.0 onwards.

{FOF,CNF}_*_EPR_* had two points of progress, the first in v7.0.0 and the
second in v7.3.0. In v7.0.0 the progress came from iProver 2.6 that had inte-
grated an abstraction-refinement framework [30], and Vampire 4.2 that had some
changes in its model building. Between them they solved five problems that had
never been solved before. In v7.3.0 iProver 3.0 integrated superposition [23].
The number of problems solved increased continuously until v8.2.0. The drop in
v8.2.0 was due to poorer performances by the new iProver 3.7, SnakeForV 1.0,
and Vampire 4.7. These systems share the same FOF to CNF translator, which
might have been the source of the common change.

FOF_THM_RFO_* is the best known of the FOF-based SPCs, with the most
ATP systems able to attempt the problems, and is the target of most new sys-
tems. The problem difficulty ratings are quite flat, but the number of problems
solved increased quite regularly, from 6086 in v6.3.0 to 6235 in v8.2.0. The largest
step of progress came in v7.0.0 when Vampire 4.2 solved 72 problems that had
never been solved before, thanks to improvements in preprocessing. ET 0.2 [37]
also contributed to the progress in v7.0.0. In v7.4.0 Enigma 0.4 [32,33] was a
new system that made a strong contribution to progress. Vampire 4.5 also con-
tributed to progress in v7.4.0, with a new layered clause selection approach [27]
and a new subsumption demodulation rule [28].

FOF_{CSA,SAT}_RFO_* is also well known, and along with its typed first-order
counterpart (not analysed due to insufficient data) is important for applications,
e.g., [22]. The largest sign of progress was in v6.4.0. The main contributors were
Vampire 4.0.5 with improvements to its satisfiability checking, and iProver 2.5
with restructured core data structures and improved preprocessing including
predicated elimination. Vampire 4.0.5 solved 10 problems that had never been
solved before. There is a drop of 10 problems solved from v8.0.0 to v8.2.0. As
in CNF_UNS_RFO_PEQ_UEQ, there is no discernible common feature of those 10

Progress in ATP 65

problems, and their ratings were at most 0.75. This again shows that the set of
problems solved by evolving versions of systems does not grow monotonically.

Figures 8, 9 and 10 plot the values for the TFF- and THF-based coherent
SPC sets. TF0_THM_*_NAR uses the simplest of the typed TPTP languages. In
v7.0.0 there was progress thanks to Vampire 4.2 and CVC4 1.5.2 [4]. In v8.2.0
there was progress thanks to SnakeForV 1.0. In between those points of progress
there was a drop in the number of problems solved, from 282 in v7.4.0 down
to 260 in v7.5.0, apparently due to poorer performance of CVC4 1.9 in v7.5.0
compared to that of CVC4 1.7 in v7.4.0.

TF0_THM_*_ARI is important because it uses the simplest TPTP language
that includes arithmetic, which occurs naturally in application areas [16,39,53].
There was clearly some significant progress in v6.4.0 as many problems were
solved for the first time by Vampire 4.0.5, which had integrated Z3 [50] since
Vampire 4.0. This contributed to the increase in the number of problems solved,
from 915 in v6.3.0 to 1009 in v6.4.0. CVC4 1.5 [4] and Princess 150706 [57] also
performed well.

TH0_THM_*_NAR uses typed higher-order logic, and despite using a more
expressive language than the TF0_* SPCs, has been the focus of ATP system
development longer [70,74]. The problem ratings declined moderately, and there
were bursts of progress in v7.0.0 and v7.5.0. The progress in v7.0.0 was largely
thanks to Satallax 3.2 [17], which included a SInE-like [31] procedure for premise
selection that enabled it to solve some large problems that were previously out
of reach. That progress increased the number of always-easy problems by v7.1.0.
In v7.5.0 Zipperposition 2.0 [8] improved over the previous version, and solved
18 problems that had never been solved before.

Fig. 2. CNF_UNS_RFO_PEQ_UEQ P:1140-
1140N:120-86 S:1020-1049A:38-233

Fig. 3. CNF_UNS_RFO_*_NUE P:4445-4441
N:569-391 S:3873-3966 A:1004-1780

Figure 11 was presented (verbatim) in a prior analysis done at TPTP release
v6.4.0 [69]. The figure plotted the average ratings for the 14527 problems that
were unchanged in the TPTP since v5.0.0, and whose ratings had not been stuck
at 0.00 or 1.00 since v5.0.0. It was noted in [69]: “The ratings generally show a
downward trend - there has been progress!”. Figure 12 shows the same done at
TPTP release v8.2.0, for the 16236 problems that were unchanged in the TPTP
since v6.3.0, and whose ratings have not been stuck at 0.00 or 1.00 since v6.3.0.

66 G. Sutcliffe et al.

Fig. 4. CNF_SAT_RFO_* P:1044-1042N:
155-147 S:887-889A:476-598

Fig. 5. {FOF,CNF}_*_EPR_* P:1457-
1425N:78-43 S:1347-1360A:1027-1311

Fig. 6. FOF_THM_RFO_* P:7204-7202N:
1116-818 S:6086-6235A:696-971

Fig. 7. FOF_{CSA,SAT}_RFO_* P:1329-
1028N:282-256 S:746-753A:481-709

The two figures’ plots dovetail quite well, which gives confidence that they really
are comparable (there are some minor differences caused by the data cleaning
done for this work, and recent refinements to the rating calculations [71,72]).
The older plots show a quite clear downward trend both overall and for the four
types of problems, while the new plots do not. Possible reasons are discussed in
the conclusion (Sect. 6).

Fig. 8. TF0_THM_*_NAR P:400-397N:120-
103 S:277-268A:117-123

Fig. 9. TF0_THM_*_ARI P:1176-1087N:
172-58 S:915-1022A:763-785

Progress in ATP 67

Fig. 10. TH0_THM_*_NAR PA:3189-3183N:461-305 S:2722-2814A:617-1244

Fig. 11. Ratings from v5.0.0 to v6.4.0 Fig. 12. Ratings from v6.3.0 to v8.2.0

6 Conclusion

This paper has presented an empirical assessment of progress in ATP, using
data from the TPTP World in TPTP v6.3.0 in 2015 to v8.2.0 in 2023. The
assessment has been in terms of six measures, divided into nine coherent SPC sets
of problems that are reasonably homogeneous for ATP systems. The assessment
shows that there has been progress in the last eight years, with stronger progress
from v6.3.0 (2015) up to v7.1.0 (2018), but then a period of quiet until some
more signs of progress in v8.2.0 (2023). There have been some first solutions
of problems that are of direct interest to humans, and a quite large number of
first ATP solutions of problems from the TPTP. The coherent SPCs with the
strongest signs of progress were CNF_UNS_RFO_PEQ_UEQ and TH0_THM_*_NAR.

In addition to overall trends, it is worth noting some of the salient improve-
ments in individual ATP systems, extracted from Sect. 5 . . .

– The development of EQP leading to the solution of the Robbins problem in
1996.

– The release of Waldmeister in 1997 (before the period of analysis), which
dominated UEQ problem solving until the arrival of Twee 2.4 in 2021.

– The release of Satallax 2.8 in 2015 with strong performance on THF problems,
improving up to Satallax 3.2 in 2017.

– The release of Vampire 4.0.5 in 2016, with arithmetic capability included.
– The release of Vampire 4.2 in 2017 with significantly improved performance

on many types of problems, including NUE, EPR, FOF, and TF0_NAR.

68 G. Sutcliffe et al.

– The release of iProver versions 2.5 to 2.8 between 2016 and 2018, with strong
performance on EPR problems.

– the release of Zipperposition 2.0 in 2020, with strong performance on THF
problems.

– The release of the Vampire-based SnakeForV 1.0 in 2022, which outperformed
Vampire on many types of problems.

In terms of problem difficulty ratings, the monotonized ratings necessarily
went down but the trend was not dramatic, and the raw ratings were generally
stable. This is in contrast to the clearly decreasing ratings from 2011 to 2016.
The reasons for that apparent slowing of progress are not definitely known, but
we have thought of the following possible reasons:

– System developers have expended effort adding breadth of capability at the
expense of depth, e.g., E – processed only CNF and FOF up to 2015, added
TF0 in 2017 [59], TX0 and TH0 in 2019 [83]; iProver – processed only CNF
and FOF up to 2015, added TF0 with arithmetic in 2021 (unpublished);
Vampire – processed only CNF, FOF, and TF0 up to 2015, added TX0 in
2016 [40], TF1 and TX1 in 2020 [13], and THF in several incarnations from
2019 to 2023 [10–12].

– The entry barrier to building new high-performance ATP systems is high,
because top systems dominate the field and attract the best developer talent.
In Maria Paola Bonacina’s welcoming address at the Dagstuhl Seminar “The
Next Generation of Deduction Systems: from Composition to Composition-
ality”6 she referred to this as a “crisis of growth”.

– New systems that take new approaches that solve different subsets of SPCs
have an impact on problem difficulty ratings. For examples: CSE_E [88] was
new in 2018, combining the S-CS calculus with E; Zipperposition [7] was new
in 2019, extending superposition to higher-order logic; Twee [62] was new in
2018, solving CNF and FOF problems by transformation to UEQ.

– Time spent on machine learning based techniques, for axiom selection, e.g.,
[42,80], given clause selection, e.g., [1,21,34,49]), learning for large problem
corpora, e.g., [3,35,43], and use of large language models to improve ATP
performance [2,84], is focussed largely on sets of many quite similar problems
over one fixed signature. The progress made in that usage does not contribute
directly to general progress in solving individual problems with different sig-
natures, as measured in this work.

– SMT solvers have been in existence since the late 1970s [51], blossomed fully
in the early 2000s, and has attracted ever-increasing interest since then. Some
ATP systems have been adapted to solving SMT problems, e.g., Vampire has
been entered into SMT-COMP since 2016, and iProver since 2021. This is all
good work, but has possibly diverted developer energy from ATP to SMT.

– The divisions of CASC cause developers to put extra effort into solving the
types of problems in the division. For examples, the Effectively Propositional
(EPR) division was run from CASC-JC in 2001 to CASC-27 in 2019, and

6 www.dagstuhl.de/23471.

https://www.dagstuhl.de/23471

Progress in ATP 69

during those years several ATP systems were optimized for EPR problems,
most notably iProver. Putting a division on hiatus leads to less development
in that aspect of ATP.

– In [72] it was noted that CASC might be causing incremental development
of ATP systems. This concern has been expressed as far back as CASC-JC
in 2001 [54]. In response to this concern CASC-J12 will have a new ICU (I
Challenge yoU) division that focusses on solving hard problems rather than
solving more problems, hoping to stimulate new developments and progress.

This assessment of progress is based on ATP systems’ abilities to solve prob-
lems. Evaluation of other performance measures would be interesting, e.g., sta-
bility of proof search modulo perturbations of the input, and some have been
done in other evaluations of logic-based systems. These include measures such as
resource usage and verifiability of proofs/models. Evaluation of non-performance
measures is often ignored, but for users might be just as necessary. These include
measures such as the range of logics covered, ease of building and deploying,
portability to different hardware and operating system environments, availabil-
ity of source code, quality of source code and its documentation, licensing that
permits a required level of use or modification, availability of user documenta-
tion, and (maybe most importantly!) developer support. These are topics for
future assessments.

References

1. Aygün, E., et al.: Proving theorems using incremental learning and hindsight expe-
rience replay. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine
Learning, pp. 1198–1210. No. 162 in Proceedings of Machine Learning Research
(2022)

2. Azerbayev, Z., et al.: Llemma: An Open Language Model For Mathematics (2023).
arXiv:2310.10631

3. Bansal, K., Loos, S., Szegedy, C., Wilcox, S.: HOList: an environment for machine
learning of higher-order theorem proving. In: Chaudhuri, K., Salakhutdinov, R.
(eds.) Proceedings of the 36th International Conference on Machine Learning, pp.
454–463 (2019)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

5. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories
competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 20–23. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_4

6. Bartocci, E., et al.: TOOLympics 2019: an overview of competitions in formal
methods. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019.
LNCS, vol. 11429, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17502-3_1

7. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full
higher-order logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI),
vol. 12699, pp. 396–412. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79876-5_23

http://arxiv.org/abs/2310.10631
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/11513988_4
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-030-79876-5_23
https://doi.org/10.1007/978-3-030-79876-5_23

70 G. Sutcliffe et al.

8. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superpo-
sition with lambdas. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716,
pp. 55–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_4

9. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21, 1–29 (2019)

10. Bhayat, A.: Automated theorem proving in higher-order logic. Ph.D. thesis, Fac-
ulty of Science and Engineering, University of Manchester, Manchester, United
Kingdom (2020)

11. Bhayat, A., Rawson, M., Schoisswohl, J.: Superposition with delayed unification.
In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS, vol. 14132, pp. 23–40.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_2

12. Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.)
CADE 2019. LNCS (LNAI), vol. 11716, pp. 74–93. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29436-6_5

13. Bhayat, A., Reger, G.: A polymorphic vampire. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 361–368.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_21

14. Blagec, K., Barbosa-Silva, A., Ott, S., Samwald, M.: A curated, ontology-based,
large-scale knowledge graph of artificial intelligence tasks and benchmarks. Sci.
Data 9(322), 1–10 (2022)

15. Blanchette, J., Kaliszyk, C., Paulson, L., Urban, J.: Hammering towards QED. J.
Formaliz. Reason. 9(1), 101–148 (2016)

16. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with why3.
Int. J. Softw. Tools Technol. Transfer 17(6), 709–727 (2015)

17. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

18. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming
competition. AI Mag. 33(4), 114 (2012)

19. Chaudri, V., Dinesh, N., Inclezan, D.: Three lessons in creating a knowledge base
to enable explanation, reasoning and dialog. In: Klenk, M., Laird, J. (eds.) Pro-
ceedings of the 2nd Annual Conference on Advances in Cognitive Systems, pp.
187–203 (2013)

20. Cok, D., Stump, A., Weber, T.: The 2013 evaluation of SMT-COMP and SMT-LIB.
J. Autom. Reason. 55(1), 61–90 (2015)

21. Crouse, M., et al.: A deep reinforcement learning approach to first-order logic
theorem proving. In: Leyton-Brown, K., Mausam (eds.) Proceedings of the 35th
AAAI Conference on Artificial Intelligence, vol. 35, no. 7, pp. 6279–6287. AAAI
Press (2021)

22. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

23. Duarte, A., Korovin, K.: Implementing superposition in iprover (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_24

24. Fichte, J.K., Hecher, M., Szeider, S.: A time leap challenge for SAT-solving. In:
Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 267–285. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58475-7_16

https://doi.org/10.1007/978-3-030-29436-6_4
https://doi.org/10.1007/978-3-031-38499-8_2
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/978-3-030-51054-1_21
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-58475-7_16

Progress in ATP 71

25. Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H., Leyton-Brown, K.:
Using the shapley value to analyze algorithm portfolios. In: Schuurmans, D., Well-
man, M. (eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence,
pp. 3397–3403. AAAI Press (2016)

26. Fuchs, M., Sutcliffe, G.: Homogeneous sets of ATP problems. In: Haller, S., Sim-
mons, G. (eds.) Proceedings of the 15th International FLAIRS Conference, pp.
57–61. AAAI Press (2002)

27. Gleiss, B., Suda, M.: Layered clause selection for theory reasoning. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp.
402–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_23

28. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 297–315. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9_17

29. Henkin, L., Monk, J., Tarski, A.: Cylindrical Algebras, vol. Part 1. North-Holland
(1971)

30. Hernandez, J., Korovin, K.: Towards an abstraction-refinement framework for rea-
soning with large theories. In: Eiter, T., Sands, D., Schulz, S., Urban, J., Sutcliffe,
G., Voronkov, A. (eds.) Proceedings of the IWIL Workshop and LPAR Short Pre-
sentations. No. 1 in Kalpa Publications in Computing (2017)

31. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

32. Jakubův, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1_29

33. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of Certified Programs
and Proofs 2017, pp. 43–52. ACM (2017)

34. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

35. Jakubuv, J., Urban, J.: Hammering mizar by learning clause guidance. In: Proceed-
ings of the 10th International Conference on Interactive Theorem Proving. Leibniz
International Proceedings in Informatics, Dagstuhl Publishing (2019)

36. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Mag. 33(1), 89–92 (2012)

37. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In:
Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–
398. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_27

38. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_24

39. Korovin, K., Kovac, L., Reger, G., J., S., Voronkov, A.: ALASCA: Reasoning in
Quantified Linear Arithmetic (Extended Version) (2023). https://easychair.org/
publications/preprint/KJX2

https://doi.org/10.1007/978-3-030-51074-9_23
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-642-22438-6_23
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-21401-6_27
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://easychair.org/publications/preprint/KJX2
https://easychair.org/publications/preprint/KJX2

72 G. Sutcliffe et al.

40. Kotelnikov, E., Kovacs, L., Reger, G., Voronkov, A.: The vampire and the FOOL.
In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, pp. 37–48. ACM (2016)

41. Kotthoff, L., Fréchette, A., Michalak, T., Rahwan, T., Hoos, H., Leyton-Brown, K.:
Quantifying algorithmic improvements over time. In: Lang, J. (ed.) Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pp. 5165–5171
(2018)

42. Külwein, D., Blanchette, J.: A survey of axiom selection as a machine learning
problem. In: Geschke, S. (ed.) Computability and Metamathematics: Festschrift
Celebrating the 60th birthdays of Peter Koepke and Philip Welch, pp. 1–15. College
Publications (2014)

43. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: Sewell, P. (ed.) Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 179–191. ACM Press
(2014)

44. Loechner, B., Hillenbrand, T.: A phytography of waldmeister. AI Commun.
15(2/3), 127–133 (2002)

45. Maslej, N., et al.: The AI Index 2023 Annual Report. Institute for Human-Centered
AI, Stanford University (2023)

46. McCune, W.: Prover9. http://www.cs.unm.edu/~mccune/prover9/
47. McCune, W.: Solution of the robbins problem. J. Autom. Reason. 19(3), 263–276

(1997)
48. McCune, W.: Otter 3.3 reference manual. Technical report, ANL/MSC-TM-263,

Argonne National Laboratory, Argonne, USA (2003)
49. McKeown, J., Sutcliffe, G.: Reinforcement learning for guiding the e theorem

prover. In: Ae Chun, A., Franklin, M. (eds.) Proceedings of the 36th International
FLAIRS Conference (2023). https://doi.org/10.32473/flairs.36.133334

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

51. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

52. Ott, S., Barbosa-Silva, A., Blagec, K., Brauner, J., Samwald, M.: Mapping global
dynamics of benchmark creation and saturation in artificial intelligence. Nat. Com-
mun. 13(6793), 1–11 (2022)

53. Paulson, L., Blanchette, J.: Three years of experience with sledgehammer, a prac-
tical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop
on the Implementation of Logics, pp. 1–11. No. 2 in EPiC Series in Computing,
EasyChair Publications (2010)

54. Pelletier, F., Sutcliffe, G., Suttner, C.: The development of CASC. AI Commun.
15(2–3), 79–90 (2002)

55. Peter, L., Hull, R.: The Peter Principle. Souvenir Press (1969)
56. Quaife, A.: Automated development of Tarski’s geometry. J. Autom. Reason. 5(1),

97–118 (1989)
57. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer

arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_20

http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.32473/flairs.36.133334
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20

Progress in ATP 73

58. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5_49

59. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

60. Schwabbauser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in
der Geometrie. Springer, Heidelberg (1983)

61. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
quasigroup existence problems. Comput. Math. Appl. 29(2), 115–132 (1995)

62. Smallbone, N.: Twee: an equational theorem prover. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 602–613. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_35

63. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6_28

64. Suda, M.: Vampire getting noisy: will random bits help conquer chaos? (system
description). In: Blanchette, J., Kovacs, L., Pattinson, D. (eds.) IJCAR 2022.
LNCS, vol. 13385, pp. 659–667. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-10769-6_38

65. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A.
(eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74510-5_4

66. Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

67. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_1

68. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

69. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

70. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

71. Sutcliffe, G., Desharnais, M.: The 11th IJCAR automated theorem proving system
competition - CASC-J11. AI Commun. 36(2), 73–91 (2023)

72. Sutcliffe, G., Desharnais, M.: The CADE-29 automated theorem proving system
competition - CASC-29. AI Commun. (2024, to appear)

73. Sutcliffe, G., Fuchs, M., Suttner, C.: Progress in automated theorem proving, 1997-
2001. In: Hoos, H., Stützle, T. (eds.) Proceedings of the IJCAI’01 Workshop on
Empirical Methods in Artificial Intelligence, pp. 53–60 (2001)

74. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS,
vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28717-6_32

75. Sutcliffe, G., Suttner, C.: The state of CASC. AI Commun. 19(1), 35–48 (2006)
76. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving

systems. Artif. Intell. 131(1–2), 39–54 (2001)

https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-540-74510-5_4
https://doi.org/10.1007/978-3-642-17511-4_1
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32

74 G. Sutcliffe et al.

77. Sutcliffe, G., Zimmer, J., Schulz, S.: Communication formalisms for automated the-
orem proving tools. In: Sorge, V., Colton, S., Fisher, M., Gow, J. (eds.) Proceedings
of the Workshop on Agents and Automated Reasoning, pp. 52–57 (2003)

78. Suttner, C., Sutcliffe, G., Perrault, R.: Technical performance of automated theo-
rem proving (ATP). In: Zhang, D., et al. (eds.) The AI Index 2021 Annual Report,
pp. 34–35. Human-Centered AI Institute, Stanford University (2021)

79. Suttner, C., Schumann, J.: Parallel automated theorem proving. In: Kanal, L.,
Kumar, V., Kitano, H., Suttner, C. (eds.) Parallel Processing for Artificial Intelli-
gence 1, pp. 209–257. Elsevier Science (1994)

80. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1-2), 21–43 (2006)

81. Veroff, R.: A Wos challenge met. J. Autom. Reason. 66, 565–574 (2022)
82. Voronkov, A.: Spider: Learning in the Sea of Options (2023). https://easychair.

org/smart-program/Vampire23/2023-07-05.html
83. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac

prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 192–210. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0_11

84. Wang, H., et al.: LEGO-Prover: Neural Theorem Proving with Growing Libraries
(2023). arXiv:2310.00656

85. Weidenbach, C., et al.: System description: Spass version 1.0.0. In: Ganzinger,
H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 378–382. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48660-7_34

86. Wos, L.: From the AAR President, Larry Wos. AAR Newsletter 129-2019-10 (2019)
87. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver

contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8_18

88. Xu, Y., Liu, J., Chen, S., Zhong, X., He, X.: Contradiction separation based
dynamic multi-clause synergized automated deduction. Inf. Sci. 462, 93–113 (2018)

89. Zheng, K., Han, J., Polu, S.: miniF2F: a cross-system benchmark for formal
olympiad-level mathematics. In: Liu, Y., Finn, C., Choi, Y., Deisenroth, M. (eds.)
Proceedings of the 10th International Conference on Learning Representations
(2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://easychair.org/smart-program/Vampire23/2023-07-05.html
https://easychair.org/smart-program/Vampire23/2023-07-05.html
https://doi.org/10.1007/978-3-030-17462-0_11
https://doi.org/10.1007/978-3-030-17462-0_11
http://arxiv.org/abs/2310.00656
https://doi.org/10.1007/3-540-48660-7_34
https://doi.org/10.1007/978-3-642-31612-8_18
http://creativecommons.org/licenses/by/4.0/

A Higher-Order Vampire (Short Paper)

Ahmed Bhayat1 and Martin Suda2(B)

1 Leicester, UK
ahmed_bhayat@hotmail.com

2 Czech Technical University in Prague, Prague, Czech Republic
martin.suda@cvut.cz

Abstract. The support for higher-order reasoning in the Vampire theo-
rem prover has recently been completely reworked. This rework consists
of new theoretical ideas, a new implementation, and a dedicated strategy
schedule. The theoretical ideas are still under development, so we discuss
them at a high level in this paper. We also describe the implementation
of the calculus in the Vampire theorem prover, the strategy schedule
construction and several empirical performance statistics.

Keywords: Vampire · Higher-Order · Strategy Scheduling

1 Introduction

The Vampire prover [15] has supported higher-order reasoning since 2019 [6].
Until recently, this support was via a translation from higher-order logic (HOL)
to polymorphic first-order logic using combinators. The approach had positives,
specifically it avoided the need for higher-order unification. However, our expe-
rience suggested that for problems requiring complex unifiers, the approach was
not competitive with calculi that do rely on higher-order unification. This intu-
ition was supported by results at the CASC system competition [25].

Due to this, we recently devised an entirely new higher-order superposition
calculus. This time we based our calculus on a standard presentation of HOL.
The key idea behind our calculus is that rather than using full higher-order unifi-
cation, we use a depth-bounded version. That is, when searching for higher-order
unifiers, when some predefined number of projection and imitation steps have
taken place, the search is backtracked. The crucial difference in our approach
to similar approaches is that rather than failing on reaching the depth limit, we
turn the set of remaining unification pairs into negative constraint literals which
are returned along with the substitution formed until that point. This is similar
to recent developments in the field of theory reasoning [5].

The new calculus has now been implemented in Vampire along with a dedi-
cated strategy schedule. Together these developments propelled Vampire to first

A. Bhayat—Independent Scholar.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 75–85, 2024.
https://doi.org/10.1007/978-3-031-63498-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_5&domain=pdf
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0003-0989-5800
https://doi.org/10.1007/978-3-031-63498-7_5

76 A. Bhayat and M. Suda

place in the THF division of the 2023 edition of the CASC competition.1 As the
completeness of the calculus is an open question which we are working on, we
have to date not published a description of the calculus.

In this paper, we describe the calculus, discuss its implementation in Vampire
and also provide some details of the strategy schedule and its formation.

2 Preliminaries

We assume familiarity with higher-order logic and higher-order unification.
Detailed presentations of these can be found in recent literature [2,4,29]

We work with a rank-1 polymorphic, clausal, higher-order logic. For the syn-
tax of the logic we follow a more-or-less standard presentation such as that of
Bentkamp et al. [2]. Higher-order applications such as f a c contain subterms
with no first-order equivalents such as f and f a. We refer to these as prefix sub-
terms. We represent term variables with x, y, z, function symbols with f, g, h, and
terms with s and t. To keep the presentation simple, we omit typing information
from our terms.

A substitution is a mapping of variables to terms. Unification is the process
of finding a substitution σ for terms t1 and t2 such that t1σ ≈ t2σ for some
definition of equality (≈) of interest. It is well known that first-order syntactic
unification is decidable and unique most general unifiers exists. For the higher-
order case, unification is not decidable, and the set of incomparable unifiers
is potentially infinite. A commonly used higher-order unification procedure for
enumerating unifiers is Huet’s preunification routine [13]. Unlike full higher-order
unification, preunification does not attempt to unify terms if both have variable
head symbols. Thus, preunification does not require infinitely branching rules
unlike full higher-order unification [29].

The two main rules that extend first-order unification in Huet’s procedure are
projection and imitation. We provide a flavour of these via an example. Consider
unifying terms s = x a and s′ = a. In searching for a suitable instantiation of
the variable x, we can either attempt to copy the head symbol of s′ leading to
the substitution x → λy. a, or we can bring one of x’s arguments to the head
position leading to the substitution x → λy. y. The first is known as imitation
and the second as projection.

We use the concept of a depthn unifier. We do not define the term formally,
but provide an intuitive understanding. Consider a higher-order preunification
algorithm. Any substitution formed by following a path of the unification tree,
starting from the root, that contains exactly n imitation and projection steps,
or reaches a leaf using fewer than n such steps, is a depthn unifier. For terms s
and t, let Un(s, t) be the set of all depthn unifiers of s and t. Note that this set is
finite as we are assuming preunification and hence the tree is finitely branching.

For terms s and t, for each depthn unifier σ ∈ Un(s, t), we associate a set of
negative equality literals Cσ formed by turning the unification pairs that remain

1 https://tptp.org/CASC/29/WWWFiles/DivisionSummary1.html.

https://tptp.org/CASC/29/WWWFiles/DivisionSummary1.html

A Higher-Order Vampire (Short Paper) 77

when the depth limit is reached into negative equalities. In the case σ is an actual
unifier of s and t, Cσ is of course the empty set.

To make this clearer, consider the unification tree presented in Fig. 1. There
are two depth2 unifiers labelled σ1 and σ2 in the figure. Related to these, we
have Cσ1 = Cσ2 = {x2 a b �≈ b}. There are four depth3 unifiers (not shown in
the figure) and zero depthn unifiers for for n > 3.

Fig. 1. Unification tree for terms x a b and f b a

3 Calculus

Our calculus is parameterised by a selection function and an ordering �. Together
these give rise to the concept of literals being (strictly) �-eligible with respect
to a substitution σ [2]. When discussing eligibility we drop � and σ and rely on
the context to make these clear. We call a literal s �≈ t, where both s and t have
variable heads, a flex-flex literal. Such a literal is never selected in the calculus.
We present the primary inference rule, Sup, below.

D′ ∨ t ≈ t′ C ′ ∨ s〈u 〉 ≈̇ s′
Sup

(C ′ ∨ D′ ∨ s〈 t′ 〉 ≈̇ s′ ∨ Cσ)σ

In the rule above, we use ≈̇ to denote either a positive or negative equality. We
use s〈u 〉 to denote that u is a first-order subterm of s. That is, a non-prefix
subterm that is not below a lambda. The side conditions of the inference are σ ∈
Un(t, u), u is not a variable, t ≈ t′ is strictly eligible in the left premise, s〈u 〉 ≈̇ s′

is eligible in the right premise, and the other standard ordering conditions. The
remaining core inference rules are EqRes and EqFact.

C ′ ∨ t ≈ t′ ∨ s ≈ s′
EqFact

(C ′ ∨ t′ �≈ s′ ∨ s ≈ s′ ∨ Cσ)σ
C ′ ∨ s �≈ t′

EqRes

(C ′ ∨ Cσ)σ

78 A. Bhayat and M. Suda

For both rules, σ ∈ Un(t, s). For EqFact, s ≈ s′ is eligible in the premise and
for EqRes s �≈ s′ is eligble. We also include inferences ArgCong (see [3]), and
FlexFlexSimp which derives the empty clause, ⊥, from a clause containing
only flex-flex literals.

C ′ ∨ s ≈ s′
ArgCong

C ′σ ∨ (sσ)x ≈ (s′σ)x
x1 sn �≈ x2 rm ∨ · · ·

FlexFlexSimp⊥
For ArgCong, s ≈ s′ is eligible in the premise, σ is the type unifier of s and s′

and x is a fresh variable. In our implementation, the depth parameter n is set
via a user option. In the case it is set to 0, the following pair of inferences are
added to the calculus.

C ′ ∨ x sn �≈ f tm
Imitate

(C ′ ∨ x sn �≈ f tm){x → λyn. f (zj yn)m}

C ′ ∨ x sn �≈ f tm
Project

(C ′ ∨ x sn �≈ f tm){x → λyn. yi (zj yn)p}
Where j ranges from 1 to m in Imitate and 1 to p in Project, and each
zj is a fresh variable. The literals x sn �≈ f tm are eligible in the premises and
p is the arity of yi, the projected variable. The idea behind introducing these
rules is to facilitate the instantiation of head variables with suitable lambda
terms when this is not being done as part of unification. Our intuition is that by
intertwining the unification and calculus rules in the spirit of the EP calculus [21],
the need for explosive rules (such as FluidSup [2]) that simulate superposition
underneath variables is removed. The examples we present below support this
intuition. Besides the core inference rules, the calculus has a set of rules to
handle reasoning about Boolean terms. These are similar to rules discussed in
the literature [20,30]. Extensionality is supported either via an axiom or by using
unification with abstraction as described by Bhayat [4]. Similarly, Hilbert choice
can be supported via a lightweight inference in the manner of Leo-III [20] or via
the addition of the Skolemized choice axiom. The calculus also contains various
well-known simplification rules such as Demodulation and Subsumption.

Soundness and Completeness. The soundness of the calculus described above
is relatively straightforward to show. On the other hand, the completeness of the
calculus with respect to Henkin semantics is an open question. We hypothesise
that given the right ordering, and with tuning of inference side conditions, the
depth0 variant of the calculus (with the Imitate and Project rules) is refuta-
tionally complete. A proof is unlikely to be straightforward due to the fact that
we do not select flex-flex literals.

Example 1. Consider the following unsatisfiable clause set. Assume a depth of
1. Selected literals are underlined.

C = x a b �≈ f b a ∨ x c d �≈ f b a

A Higher-Order Vampire (Short Paper) 79

An EqRes binds x to λy, z.f(x1 a b)(x2 a b) and results in C1 = f (x1 a b)(x2 a b)
�≈ f b a∨f (x1 c d)(x2 c d) �≈ f b a. An EqRes on C1 binds x1 to λy, z.b and results
in C2 = x2 a b �≈ a ∨ f b (x2 c d) �≈ f b a. A final EqRes on C2 binds x2 to λy, z.a
and results in f b a �≈ f b a from which it is trivial to obtain the empty clause ⊥.

Example 2 (Example 1 of Bentkamp et al. [3]). Consider the following unsatisfi-
able clause set. Assume the depth0 version of the calculus.

C1 = f a ≈ c C2 = h (y b) (y a) �≈ h (g (f b)) (g c)

An EqRes inference on C2 results in C3 = y b �≈ g (f b)∨ y a �≈ g c. An Imitate

inference on the first literal of C3 followed by the application of the substitution
and some β-reduction results in C4 = g (z b) �≈ g (f b) ∨ g (z a) �≈ g c. A further
double application of EqRes gives us C5 = z b �≈ f b ∨ z a �≈ c. We again
carry out Imitate on the first literal followed by an EqRes to leave us with
C6 = x b �≈ b ∨ f (x a) �≈ c. We can now carry out a Sup inference between C1

and C6 resulting in C7 = x b �≈ b ∨ c �≈ c ∨ x a �≈ a from which it is simple to
derive ⊥ via an application of Imitate on either the first or the third literal.
Note, that the empty clause was derived without the need for an inference that
simulates superposition underneath variables, unlike in [3].

4 Implementation

The calculus described above, along with a dedicated strategy schedule, has
been implemented in the Vampire theorem prover.2 Vampire natively supports
rank-1 polymorphic first-order logic. Therefore, we translate higher-order terms
into polymorphic first-order terms using the well known applicative encoding.
Note, that we use the symbol �→, in a first-order type, to separate the argument
types from the return type. It should not be confused with the binary, higher-
order function type constructor → that we assume to be in the type signature.
Application is represented by a polymorphic symbol app : Πα1, α2.(α1 → α2 ×
α1) �→ α2. Lambda terms are stored internally using De Bruijn indices. A lambda
is represented by a polymorphic symbol lam : Πα1, α2. α2 �→ (α1 → α2). De
Bruijn indices are represented by a family of polymorphic symbols di : Πα. α
for i ∈ N. Thus, the term λx : τ. x is represented internally as lam(τ, τ, d0(τ)).
The term λx. f(λz.x) is represented internally (now ignoring type arguments)
as lam(app(f, lam(d1))).

Some of the most important options available are: hol_unif_depth to control
the depth unification proceeds to, funx_ext to control how function extension-
ality is handled, cnf_on_the_fly to control how eager or lazy the clausification
algorithm is, and applicative_unif which replaces higher-order unification
with (applicative) first-order unification. This is surprisingly helpful in some
cases. Besides for the options listed above, there are many other higher-order
specific options as well as options that impact both higher-order and first-order
reasoning. These options can be viewed by building Vampire and running with
–help.
2 See http://bit.ly/3vBQLi4 for the release, https://bit.ly/3Hl3lES for the code.

http://bit.ly/3vBQLi4
https://bit.ly/3Hl3lES

80 A. Bhayat and M. Suda

5 Strategies and the Schedule

We generally followed the Spider [27] methodology for strategy discovery and
schedule creation. This starts with randomly sampling strategies to solve as-of-
yet unsolved problems (or improve the best known time for problems already
known to be solvable). Each newly discovered strategy is optimized with local
search to work even better on the single problem which it just solved. This is
done by trying out alternative values for each option, possibly in several rounds.
A variant of the strategy that improves the solution time or at least uses a
default value of an option is preferred. The final strategy is then evaluated on
the totality of all considered problems and the process repeats.

In our case, we sought strategies to cover the 3914 TH0 problems of the TPTP
library [24] version 8.1.2. The strategy space consisted of 87 options inherited
from first-order Vampire and 26 dedicated higher-order options. To sample a
random strategy, we considered each option separately and picked its value based
on a guess of how useful each is. (E.g., for applicative_unif we used the
relative frequencies of on: 3, off: 10.) During the strategy discovery process we
adapted the maximum running time per problem, both for the random probes
several times and for the final strategy evaluation: from the order of 1 s up to
100 s. In total, we collected 1158 strategies over the course of approximately
two weeks of continuous 60 core CPU computation. The strategies cover 2804
unsatisfiable problems, including 50 problems of TPTP rating 1.0 (which means
these problems were not officially solved by an ATP before).

Once a sufficiently rich set of strategies gets discovered and evaluated, sched-
ule building can be posed as a constraint programming task in which one seeks
to allot time slices to individual strategies to cover as many problems as possible
while not exceeding a given overall time bound T [12,19]. We had a good expe-
rience with a weighted set cover formulation and applying a greedy algorithm
[9]: starting from an empty schedule, at any point we decide to extend it by
scheduling a strategy S for additional t units of time if this step is currently the
best among all possible strategy extensions in terms of “the number of problems
that will additionally get covered divided by t”. This greedy approach does not
guarantee an optimal result, but runs in polynomial time and gives a meaningful
answer uniformly for any overall time bound T (See [8] for more details).

Our final higher-order schedule tries to cover, in this greedy sense, as many
problems as possible at several increasing time bounds: starting from 1 s, 5 s,
and 10 s bounds relevant for the impatient users, all the way up to the CASC
limit of 16min (2min on 8 cores) and further beyond. In the end, it makes use of
278 out of the 1158 available strategies and manages to cover all the known-to-
be-solvable problems in a bit less than 1 h of single core computation. We stress
that our final schedule is a single monolithic sequence and does not branch based
on any problems’ characteristics or features.3

3 One additional interesting aspect of our schedule building approach (see Appendix
A of our preprint [7] for more details) is that we employ input shuffling and prover
randomization [23] and thus treat our strategies as Las Vegas algorithms, whose
running time or even success/failure may depend on chance.

A Higher-Order Vampire (Short Paper) 81

Table 1. The most important options in terms of contribution to problem coverage

an option default # problems not solvable
without non-default

cnf_on_the_fly eager 102
applicative_unif off 56
equality_to_equiv off 24
hol_unif_depth 2 20
func_ext abstraction 12

Most Important Options: In Table 1, we list the first five options sorted in
descending order of “how many problems we would not be able to cover if the
given option could not be varied in strategies.” (In other words, as if the listed
default value was “wired-in” to the prover code.)

Based on existing research [28], it is unsurprising to see that varying clausi-
fication has a large impact. Likewise, for varying the unification depth. What is
perhaps more surprising is that replacing higher-order unification with applica-
tive first-order unification can be beneficial. equality_to_equiv turns equality
between Boolean terms into equivalence before the original clausification pass is
carried out. The effectiveness of this option is also somewhat surprising.

Table 2. Number of problems solved by a single good higher-order strategy and our
schedule at various time limit cutoffs. Run on the 3914 TH0 TPTP problems

1 s 10 s 30 s 60 s 120 s 960 s

single strategy 1811 1949 2041 2094 − −
our schedule 2067 2436 2584 2642 2691 2775

Performance Statistics: It is long known [26,31] that a strategy schedule can
improve over the performance of a single good strategy by large margin. Table 2
confirms this phenomenon for our case. For this comparison we selected one
of the best performing (at the 60 s time limit mark) single strategies that we
had previously evaluated. From the higher-order perspective, the strategy is
interesting for setting hol_unif_depth to 4 and supporting choice reasoning via
an inference rule (choice_reasoning on).4

Although our schedule has been developed on (and for) the TH0 TPTP
problems, it helps the new higher-order Vampire solve more problems of other
origin too. Of the Sledgehammer problems exported by Desharnais et al. in their
4 Otherwise, it uses Vampire’s default setting, except for relying on an incomplete

literal selection function [11] and using a relative high naming threshold [17], i.e.,
being reluctant to introduce new names for subformulas during clausification.

82 A. Bhayat and M. Suda

last prover comparison [10], namely the 5000 problems denoted in their work
TH0−, Vampire can now solve 2425 compared to 2179 obtained by Desharnais
et al. with the previous Vampire version (both under 30 s per problem).5

We remark that we also developed a different schedule specifically adapted
to Sledgehammer problems (in various TPTP dialects, i.e., not just TH0), which
is now available to the Isabelle [16] users since the September 2023 release.

6 Related Work

The idea to intertwine superposition and unification appears in earlier work,
particularly in the EP calculus implemented in Leo-III [21]. The main differences
between our calculus and EP are:

1. We do not move first-order unification to the calculus level. Hence, there are
no equivalents to the Triv, Bind and Decomp rules of EP.

2. Our Project and Imitate rules are instances of EP’s FlexRigid rule. We
do not include an equivalent to EP’s FlexFlex rule since we never select
flex-flex literals. Instead, we leave such literals until one of the head variables
becomes instantiated, or the clause only contains flex-flex literals at which
point FlexFlexSimp can be applied.

3. Our core inference rules are parameterised by a selection function and an
ordering.

4. Whilst EP always applies unification lazily, our calculus can control how lazily
unification is carried out by varying the depth bound.6

We also incorporate more recent work on higher-order superposition, mainly from
the Matryoshka project [2,28]. Of course, the use of constraints in automated
reasoning extends far beyond the realm of higher-order logic. They have been
researched in the context of theory reasoning [14,18] and basic superposition [1].

7 Conclusion

In this paper, we have presented a new higher-order superposition calculus and
discussed its implementation in Vampire. We have also described the new higher-
order schedule created. The combination of calculus, implementation and sched-
ule have already proven effective. However, we believe that there is great room
for further exploration and improvement. On the theoretical side, we wish to
prove refutational completeness of the calculus (or a variant thereof). On the
practical side, we wish to refine the implementation, most notably by adding
additional simplification rules.
5 Our experiments were run on Intel R©Xeon R©Gold 6140 CPU @ 2.3GHz, Desharnais

et al. [10] used StarExec [22] with Intel R©Xeon R©CPU E5-2609 @ 2.4GHz nodes.
6 Our understanding is that the implementation of EP in Leo-III does make use of

orderings as well as eager unification. However, eager unification does not return
unification literals, instead failing once the depth bound is reached. See [20] for
details.

A Higher-Order Vampire (Short Paper) 83

Acknowledgments. The second author was supported by project CORESENSE
no. 101070254 under the Horizon Europe programme and project RICAIP no. 857306
under the EU-H2020 programme.

References

1. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation and
superposition. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 462–476.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_185

2. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for higher-
order logic. J. Autom. Reason. 67(1), 10 (2023)

3. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superpo-
sition with lambdas. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716,
pp. 55–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_4

4. Bhayat, A.: Automated theorem proving in higher-order logic. Ph.D. thesis (2015)
5. Bhayat, A., Korovin, K., Kovács, L., Schoisswohl, J.: Refining unification with

abstraction. In: LPAR, pp. 36–47 (2023)
6. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order

logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12166, pp. 278–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51074-9_16

7. Bhayat, A., Suda, M.: A higher-order vampire (short paper). EasyChair Preprint
no. 13125 (EasyChair, 2024)

8. Bártek, F., Chvalovský, K., Suda, M.: Regularization in spider-style strategy dis-
covery and schedule construction. In: IJCAR (2024, accepted)

9. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

10. Desharnais, M., Vukmirović, P., Blanchette, J., Wenzel, M.: Seventeen provers
under the hammer. In: ITP. LIPIcs, vol. 237, pp. 8:1–8:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

11. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 313–329. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_22

12. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling for
first-order theorem proving. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM
2021. LNCS (LNAI), vol. 12833, pp. 107–123. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81097-9_8

13. Huet, G.P.: A unification algorithm for typed λ-calculus. Theoret. Comput. Sci.
1(1), 27–57 (1975)

14. Korovin, K., Kovács, L., Reger, G., Schoisswohl, J., Voronkov, A.: ALASCA: Rea-
soning in quantified linear arithmetic. In: Sankaranarayanan, S., Sharygina, N.
(eds.) TACAS. LNCS, vol. 13993, pp. 647–665. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-30823-9_33

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant For
Higher-order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

https://doi.org/10.1007/3-540-55602-8_185
https://doi.org/10.1007/978-3-030-29436-6_4
https://doi.org/10.1007/978-3-030-51074-9_16
https://doi.org/10.1007/978-3-030-51074-9_16
https://doi.org/10.1007/978-3-319-40229-1_22
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

84 A. Bhayat and M. Suda

17. Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In:
GCAI. EPiC Series in Computing, vol. 41, pp. 11–23. EasyChair (2016)

18. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory instan-
tiation in saturation-based reasoning. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10805, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2_1

19. Schurr, H.: Optimal strategy schedules for everyone. In: PAAR. CEUR Workshop
Proceedings, vol. 3201. CEUR-WS.org (2022)

20. Steen, A.: Extensional paramodulation for higher-order logic and its effective imple-
mentation Leo-III. Ph.D. thesis (2018)

21. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. J.
Autom. Reason. 65(6), 775–807 (2021)

22. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6_28

23. Suda, M.: Vampire getting noisy: will random bits help conquer chaos? (system
description). In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022.
LNCS, vol. 13385, pp. 659–667. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-10769-6_38

24. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

25. Sutcliffe, G., Suttner, C.: The state of CASC. AI Commun. 19, 35–48 (2006)
26. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)

CADE 1998. LNCS, vol. 1421, pp. 427–441. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054276

27. Voronkov, A.: Spider: learning in the sea of options. In: Vampire23: The
7th Vampire Workshop (2023, to appear). https://easychair.org/smart-program/
Vampire23/2023-07-05.html#talk:223833

28. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tour-
ret, S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
CADE 2021. LNCS (LNAI), vol. 12699, pp. 415–432. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_24

29. Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unifica-
tion. Logical Methods in Computer Science 17 (2021)

30. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: PAAR, pp. 148–166 (2020)

31. Wolf, A., Letz, R.: Strategy parallelism in automated theorem proving. In: Cook,
D.J. (ed.) FLAIRS, pp. 142–146. AAAI Press (1998)

https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/BFb0054276
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://doi.org/10.1007/978-3-030-79876-5_24

A Higher-Order Vampire (Short Paper) 85

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tableaux for Automated Reasoning
in Dependently-Typed Higher-Order Logic

Johannes Niederhauser1(B) , Chad E. Brown2, and Cezary Kaliszyk1,3

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
johannes.niederhauser@uibk.ac.at, cezarykaliszyk@gmail.com

2 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical
University in Prague, Prague, Czech Republic

3 School of Computing and Information Systems, University of Melbourne,
Melbourne, Australia

Abstract. Dependent type theory gives an expressive type system facil-
itating succinct formalizations of mathematical concepts. In practice, it
is mainly used for interactive theorem proving with intensional type theo-
ries, with PVS being a notable exception. In this paper, we present native
rules for automated reasoning in a dependently-typed version (DHOL)
of classical higher-order logic (HOL). DHOL has an extensional type the-
ory with an undecidable type checking problem which contains theorem
proving. We implemented the inference rules as well as an automatic
type checking mode in Lash, a fork of Satallax, the leading tableaux-
based prover for HOL. Our method is sound and complete with respect
to provability in DHOL. Completeness is guaranteed by the incorpora-
tion of a sound and complete translation from DHOL to HOL recently
proposed by Rothgang et al. While this translation can already be used as
a preprocessing step to any HOL prover, to achieve better performance,
our system directly works in DHOL. Moreover, experimental results show
that the DHOL version of Lash can outperform all major HOL provers
executed on the translation.

Keywords: Tableaux · Dependent Types · Higher-Order Logic

1 Introduction

Dependent types introduce the powerful concept of types depending on terms.
Lists of fixed length are an easy but interesting example. Instead of having a
simple type lst we may have a type Πn : nat. lst n which takes a natural number
as argument and returns the type of a list with length n. More generally, lambda
terms λx.s now have a dependent type Πx : A.B which makes the type of (λx.s)t
dependent on t. With that, it is possible for example to specify an unfailing ver-
sion of the tail function by declaring its type to be Πn : nat. lst(sn) → lstn. Many
interactive theorem provers for dependent type theory are available [3,10,14,16],
most of them implement intensional type theories, i.e., they distinguish between
a decidable judgmental equality (given by conversions) and provable equality
(inhabiting an identity type). Notable exceptions are PVS [19] and F� [21] which
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 86–104, 2024.
https://doi.org/10.1007/978-3-031-63498-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_6&domain=pdf
http://orcid.org/0000-0002-8662-6834
http://orcid.org/0000-0002-8273-6059
https://doi.org/10.1007/978-3-031-63498-7_6

Tableaux for Automated Reasoning in DHOL 87

implement an extensional type theory. In the context of this paper, we say a type
theory is extensional if judgmental equality and provable equality coincide, as
in [12]. The typing judgment in such type theories is usually undecidable, as
shown in [8].

The broader topic of this paper is automated reasoning support for exten-
sional type theories with dependent types. Not much has been done to this end,
but last year Rothgang et al. [17] introduced an extension of HOL to dependent
types which they dub DHOL. In contrast to dependent type theory, automated
theorem proving in HOL has a long history and led to the development of sophis-
ticated provers [2,4,20]. Rothgang et al. defined a natural extension of HOL and
equipped it with automation support by providing a sound and complete trans-
lation from DHOL into HOL. Their translation has been implemented and can
be used as a preprocessing step to any HOL prover in order to obtain an auto-
mated theorem prover for DHOL. Hence, by committing to DHOL, automated
reasoning support for extensional dependent type theories does not have to be
invented from scratch but can benefit from the achievements of the automated
theorem proving community for HOL.

In this paper, we build on top of the translation from Rothgang et al. to
develop a tableau calculus which is sound and complete for DHOL. In addition,
dedicated inference rules for DHOL are defined and their soundness is proved.
The tableau calculus is implemented as an extension of Lash [6]. The remainder
of this paper is structured as follows: Sect. 2 sets the stage by defining DHOL
and the erasure from DHOL to HOL due to Rothgang et al. before Sect. 3 defines
the tableau calculus and provides soundness and completeness proofs. The imple-
mentation is described in Sect. 4. Finally, we report on experimental results in
Sect. 5.

2 Preliminaries

2.1 HOL

We start by giving the syntax of higher-order logic (HOL) which goes back to
Church [9]. In order to allow for a graceful extension to DHOL, we define it with
a grammar based on [17].

T ::= ◦ | T, a : tp | T, x : A | T, s (theories)
Γ ::= · | Γ, x : A | Γ, s (contexts)

A,B ::= a | A → B | o (types)
s, t, u, v ::= x | λx : A.s | s t | ⊥ | ¬s | s ⇒ t | s =A t | ∀x : A.s (terms)

A theory consists of base type declarations a : tp, typed variable or constant
declarations x : A and axioms. Contexts are like theories but without base type
declarations. In the following, we will often write s ∈ T, Γ to denote that s
occurs in the combination of T and Γ . Furthermore, note that ◦ and · denote
the empty theory and context, respectively. Types are declared base types a,

88 J. Niederhauser et al.

the base type of booleans o or function types A → B. As usual, the binary
type constructor → is right-associative. Terms are simply-typed lambda-terms
(modulo α-conversion) enriched by the connectives ⊥, ¬, ⇒, =A as well as the
typed binding operator for ∀. All connectives yield terms of type o (formulas).
By convention, application associates to the left, so s t u means (s t) u with the
exception that ¬ s t always means ¬(s t). Moreover, we abbreviate ¬(s =A t) by
s �=A t and sometimes omit the type subscript of =A when it is either clear from
the context or irrelevant. We write s[x1/t1, . . . , xn/tn] to denote the simultaneous
capture-avoiding substitution of the xi’s by the ti’s. The set of free variables of
a term s is denoted by Vs.

A theory T is well-formed if all types are well-formed and axioms have type o
with respect to its base type declarations. In that case, we write 	s T Thy where
the superscript s indicates that we are in the realm of simple types. Given a
well-formed theory T , the well-formedness of a context Γ is defined in the same
way and denoted by 	s

T Γ Ctx. Given a theory T and a context Γ , we write
Γ 	s

T A tp to state that A is a well-formed type and Γ 	s
T s : A to say that

s has type A. Furthermore, Γ 	s
T s denotes that s has type o and is provable

from Γ and T in HOL. Finally, we use Γ 	s
T A ≡ B to state that A and B

are equivalent well-formed types. For HOL this is trivial as it corresponds to
syntactic equivalence, but this will change drastically in DHOL.

2.2 DHOL

The extension from HOL to DHOL consists of two crucial ingredients:

– the type constructor A → B is replaced by the constructor Πx : A.B which
potentially makes the return type B dependent on the actual argument x; we
stick to the usual arrow notation if B does not contain x

– base types a can now take term arguments; for an n-ary base type we write
a : Πx1 : A1. · · · Πxn : An. tp

Thus, the grammar defining the syntax of DHOL is given as follows:

T ::= ◦ | T, a : (Πx : A.)∗ tp | T, x : A | T, s (theories)
Γ ::= · | Γ, x : A | Γ, s (contexts)

A,B ::= a t1 . . . tn | Πx : A.B | o (types)
s, t, u, v ::= x | λx : A.s | s t | ⊥ | ¬s | s ⇒ t | s =A t | ∀x : A.s (terms)

If a base type a has arity 0, it is called a simple base type. Note that HOL is
the fragment of DHOL where all base types have arity 0. Allowing base types
to have term arguments makes type equality a highly non-trivial problem in
DHOL. For example, if Γ 	d

T s : Πx : A.B (the d in 	d indicates that we are
speaking about DHOL) and Γ 	d

T t : A′ we still want Γ 	d
T (s t) : B[x/t] to

hold if Γ 	d
T A ≡ A′, so checking whether two types are equal is a problem

which occurs frequently in DHOL. Intuitively, we have Γ 	d
T A ≡ A′ if and

only if their simply-typed skeleton consisting of arrows and base types without

Tableaux for Automated Reasoning in DHOL 89

their arguments is equal and given a base type a : Πx1 : A1. · · · Πxn : An. tp, an
occurrence a t1 . . . tn in A and its corresponding occurrence a t′1 . . . t′n in A′,
we have Γ 	d

T ti =Ai[x1/t1,...,xi−1/ti−1] t′i for all 1 � i � n. This makes DHOL an
extensional type theory where already type checking is undecidable as it requires
theorem proving. Another difference from HOL is the importance of the chosen
representation of contexts and theories: Since the well-typedness of a term may
depend on other assumptions, the order of the type declarations and formulas
in a context Γ or theory T is relevant. A formal definition of the judgments
Γ 	d

T A tp, Γ 	d
T s : A, Γ 	d

T s and Γ 	d
T A ≡ B via an inference system is given

in [17]. Since we use more primitive connectives, a minor variant is presented in
Fig. 1.

Example 1. Consider the simple base types nat : tp and elem : tp as well as the
dependent base type lst : Πx : nat. tp. The constants and functions

0 : nat s : nat → nat

nil : lst 0 cons : Πn : nat. elem → lst n → lst (s n)

provide means to represent their inhabitants. Additionally, we define functions
plus : nat → nat → nat

∀n : nat. plus 0 n =nat n ∀n,m : nat. plus (s n) m =nat s (plus n m)

and app : Πn : nat. Πm : nat. lst n → lst m → lst (plus n m):

∀n : nat, x : lst n. app 0 n nil x =lst n x

∀n,m : nat, z : elem, x : lst n, y : lst m.

app (s n) m (cons n z x) y =lst (s (plus n m)) cons (plus n m) z (app n m x y)

In the defining equations of app, we annotated the equality sign with the depen-
dent type of the term on the right-hand side. In all cases, the simply-typed
skeleton is just lst but for a type check we need to prove the two equalities

∀n : nat. plus 0 n =nat n ∀n,m : nat. plus (s n) m =nat s (plus n m)

which are exactly the corresponding axioms for plus. Type checking the conjec-
ture

∀n : nat, x : lst n. app n 0 x nil =lst n x

would require proving ∀n : nat. plus n 0 =nat n which can be achieved by induc-
tion on natural numbers if we include the Peano axioms.

2.3 Erasure

The following definition presents the translation from DHOL to HOL due to
Rothgang et al. [17]. Intuitively, the translation erases dependent types to their
simply typed skeletons by ignoring arguments of base types. The thereby lost

90 J. Niederhauser et al.

Fig. 1. Natural Deduction Calculus for DHOL

Tableaux for Automated Reasoning in DHOL 91

information on concrete base type arguments is restored with the help of a
partial equivalence relation (PER) A∗ for each type A. A PER is a symmetric,
transitive relation. The elements on which it is also reflexive are intended to
be the members of the original dependent type, i.e., Γ 	d

T s : A if and only if
Γ 	s

T
A∗ s s.

Definition 1. The translation from DHOL to HOL is given by the erasure func-
tion s as well as A∗ which computes the formula representing the corresponding
PER of a type A. The functions are mutually defined by recursion on the gram-
mar of DHOL. The erasure of a theory (context) is defined as the theory (context)
which consists of its erased components.

o = o a t1 . . . tn = a

Πx : A.B = A → B x = x

λx : A.s = λx : A. s s t = s t

⊥ = ⊥ ¬s = ¬s

s ⇒ t = s ⇒ t s =A t = A∗ s t

∀x : A.s = ∀x : A. A∗ x x ⇒ s x : A = x : A,A∗ x x

a : Πx1 : A1. · · · Πxn : An. tp = a : tp, a∗ : A1 → · · · → An → a → a → o, aper

o∗ s t = s =o t

(a t1 . . . tn)∗ s t = a∗ t1 . . . tn s t

(Πx : A.B)∗ s t = ∀x, y : A. A∗ x y ⇒ B∗ (s x) (t y)

Here, aper is defined as follows:

aper = ∀x1 : A1. . . . ∀xn : An. ∀u, v : a. a∗ x1 . . . xn u v ⇒ u =a v

Theorem 1 (Completeness [17]).

– if Γ 	d
T A : tp then Γ 	s

T
A : tp and A∗ is a PER over A

– if Γ 	d
T A ≡ B then Γ 	s

T
∀x, y : A. A∗ x y =o B∗ x y

– if Γ 	d
T s : A then Γ 	s

T
s : A and Γ 	s

T
A∗ s s

– if Γ 	d
T s then Γ 	s

T
s

Theorem 2 (Soundness [17]).

– if Γ 	d
T s : o and Γ 	s

T
s then Γ 	d

T s

– if Γ 	d
T s : A and Γ 	d

T t : A and Γ 	s
T

A∗ s t then Γ 	d
T s =A t

Note that the erasure treats simple types and dependent types in the same
way. In the following, we define a post-processing function Φ on top of the original
erasure [17] which allows us to erase to simpler but equivalent formulas. The goal
of Φ is to replace A∗ s t where A is a simple type by s =A t. As a consequence,
the guard A∗ x x in ∀x : A.s for simple types A can be removed. The following
definition gives a presentation of Φ as a pattern rewrite system [13].

92 J. Niederhauser et al.

Definition 2. Given a HOL term s, we define Φ(s) to be the HOL term which
results from applying the following pattern rewrite rules exhaustively to all sub-
terms in a bottom-up fashion:

a∗ F G → F =a G

∀x, y : A. (x =A y) ⇒ (F x =B G y) → F =A→B G

∀x : A. (x =A x) ⇒ F x → ∀x : A. F x

Here, F,G are free variables for terms, a∗ denotes the constant for the PER of
a simple base type a and A,B are placeholders for simple types. Given a HOL
theory T , there are finitely many instances for a∗ but infinite choices for A and
B, so the pattern rewrite system is infinite.

Lemma 1. Assume Γ 	d
T s : o. Γ 	d

T s if and only if Γ 	s
T

Φ(s).

Proof. Since the erasure is sound and complete (Theorem 2 and Theorem 1), it
suffices to show that Γ 	s

T
Φ(s) if and only if Γ 	s

T
s. Consider the rules from

Definition 2. Φ(s) is well-defined: Clearly, the rules terminate and confluence
follows from the lack of critical pairs [13]. Hence, it is sufficient to prove Γ 	s

T
l

if and only if Γ 	s
T

r for every rule in Definition 2. For the first rule, assume
Γ 	s

T
a∗ F G. Since aper ∈ T , we have Γ 	s

T
F =a G. Now assume Γ 	s

T
F =a G.

Since F has type a, we obtain Γ 	d
T F =a F . Completeness of the erasure yields

Γ 	s
T

a∗ F F . Now, the assumption allows us to replace equals by equals, so
we conclude Γ 	s

T
a∗ F G. The desired result for the second rule follows from

extensionality. Finally, the third rule is an easy logical simplification. ��

Given a theory T (context Γ) we write Φ(T) (Φ(Γ)) to denote its erased
version where formulas have been simplified with Φ.

Corollary 1. Assume Γ 	d
T s : o. Γ 	d

T s if and only if Φ(Γ) 	s
Φ(T)

Φ(s).

Example 2. Consider again the axiom recursively defining app from Example 1

∀n,m : nat, z : elem, x : lst n, y : lst m.

app (s n) m (cons n z x) y =lst (s (plus n m)) cons (plus n m) z (app n m x y)

which we refer to as sapp. Its post-processed erasure Φ(sapp) is given by the
following formula which is simpler than sapp:

∀n,m : nat, z : elem, x : lst. lst∗ n x x ⇒ ∀y : lst. lst∗ m y y ⇒ lst∗
(
s (plus n m)

)

(
app (s n) m (cons n z x) y

) (
cons (plus n m) z (app n m x y)

)

3 Tableau Calculus for DHOL

3.1 Rules

The tableau calculus from [1,7] is the basis of Satallax [4] and its fork Lash
[6]. We present an extension of this calculus from HOL to DHOL by extending

Tableaux for Automated Reasoning in DHOL 93

the rules to DHOL as well as providing tableau rules for the translation from
DHOL to HOL. A branch is a 3-tuple (T, Γ, Γ ′) which is well-formed if 	d T Thy,
	d

T Γ Ctx and 	s
Φ(T) Γ ′ Ctx. Intuitively, the theory contains the original problem

and remains untouched while the contexts grow by the application of rules.
Furthermore, DHOL and HOL are represented separately: For DHOL, the theory
T and context Γ are used while HOL has a separate context Γ ′ with respect
to the underlying theory Φ(T). In particular, each rule in Fig. 2 really stands
for two rules: one that operates in DHOL and the original version that operates
in HOL. Except for the erasure rules TER1 and TER2 which add formulas to the
HOL context based on information from the DHOL theory and context, the rules
always stay in DHOL or HOL, respectively. More formally, a step is an n + 1-
tuple 〈(T, Γ, Γ ′), (T, Γ1, Γ

′
1), . . . , (T, Γn, Γ ′

n)〉 of branches where ⊥ �∈ T, Γ, Γ ′ and
either Γ ⊂ Γi and Γ ′ = Γ ′

i for all 1 � i � n or Γ = Γi and Γ ′ ⊂ Γ ′
i for all

1 � i � n. Given a step 〈A,A1, . . . , An〉, the branch A is called its head and
each Ai is an alternative.

A rule is a set of steps defined by a schema. For example, the rule T⇒
from Fig. 2 indicates the set of steps 〈(T, Γ, Γ ′), (T, Γ1, Γ

′
1), (T, Γ2, Γ

′
2)〉 where

⊥ �∈ T, Γ, Γ ′ and either s ⇒ t ∈ T, Γ or s ⇒ t ∈ Φ(T), Γ ′. In the former case, we
have Γ1 = Γ,¬s and Γ2 = Γ, t as well as Γ ′ = Γ ′

1 = Γ ′
2. The latter case is the

same but with the primed and unprimed variants swapped.
In the original tableau calculus [1,7], normalization is defined with respect

to an axiomatized generic operator [·]. As one would expect, one of these axioms
states that the operator does not change the semantics of a given term. Since
there is no formal definition of DHOL semantics yet, we simply use [s] to denote
the βη-normal form of s which is in accordance with our implementation.

A rule applies to a branch A if some step in the rule has A as its head. A
tableau calculus is a set of steps. Let T be the tableau calculus defined by the
rules in Fig. 2. The side condition of freshness in T¬∀ means that for a given step
with head (T, Γ, Γ ′) there is no type A such that y : A ∈ T, Γ or y : A ∈ Φ(T), Γ ′

and we additionally require that there is no name x such that ¬[s x] ∈ T, Γ
or ¬[s x] ∈ Φ(T), Γ ′. In practice, this means that to every formula, T¬∀ can
be applied at most once. Furthermore, the side condition t : A in the rule T∀
means that either Γ 	d

T t : A or Γ ′ 	s
Φ(T) t : A depending on whether the premise

is in T, Γ or Φ(T), Γ ′. The side condition s : o in the rule TER1 means that
Γ ′ 	s

Φ(T) s : o. This is to prevent application of TER1 before the necessary type
information is obtained by applying TER2 .

The set of T -refutable branches is defined inductively: If ⊥ ∈ T, Γ, Γ ′, then
(T, Γ, Γ ′) is refutable. If 〈A,A1, . . . , An〉 is a step in T and every alternative Ai

is refutable, then A is refutable.
The rules in Fig. 2 strongly resemble the tableau calculus from [1]. In order

to support DHOL, we replaced simple types by their dependent counterparts. To
that end, we tried to remain as simple as possible by only allowing syntactically
equivalent types in T∀ and TCON: Adding a statement like A ≡ A′ as a premise
would change the tableau calculus as well as the automated proof search signif-

94 J. Niederhauser et al.

Fig. 2. Tableau rules for DHOL

icantly, so these situations are handled by the erasure for which the additional
rules TER1 , TER2 are responsible.

It is known that the restriction of T to HOL (without TER1 and TER2) is
sound and complete with respect to Henkin semantics [1,7]. Furthermore, due
to Corollary 1, the rules TER1 and TER2 define a sound and complete translation
from DHOL to HOL with respect to Rothgang et al.’s definition of provability
in DHOL [17].

3.2 Soundness and Completeness

In general, a soundness result based on the refutability of a branch (T, Γ, Γ ′) is
desirable. If there were a definition of semantics for DHOL which is a conserva-
tive extension of Henkin semantics, the proof could just refer to satisfiability of
T, Γ, Γ ′. Unfortunately, this is not the case. Note that an appropriate definition
of semantics is out of the scope of this paper: In addition to its conception, we
would have to prove soundness and completeness of 	d on top of the correspond-
ing proofs for our novel tableau calculus. Therefore, soundness and completeness
of the tableau calculus will be established with respect to provability in DHOL or
HOL. Unfortunately, this requirement complicates the proof tremendously as a
refutation can contain a mixture of DHOL, erasure and HOL rules. Therefore, we
have to consider both HOL and DHOL and need to establish a correspondence
between Γ and Γ ′ which is difficult to put succinctly and seems to be impossible
without further restricting the notion of a well-formed branch. Therefore, we
prove soundness and completeness with respect to a notion of refutability which
has three stages: At the beginning, only DHOL rules are applied, the second
stage is solely for the erasure and in the last phase, only HOL rules are applied.
Note that this notion of refutability includes the sound but incomplete strategy
of only using native DHOL rules as well as the sound and complete strategy of
exclusively working with the erasure.

Tableaux for Automated Reasoning in DHOL 95

Definition 3. A branch (T, Γ, Γ ′) is s-refutable if it is refutable with respect to
the HOL rules.

Lemma 2. A well-formed branch (T, Γ, Γ ′) is s-refutable ⇐⇒ Γ ′ 	s
Φ(T)

⊥.

Proof. Immediate from soundness and completeness of the original HOL calculus
as well as soundness and completeness of 	s. ��

Definition 4. The set of e-refutable branches is inductively defined as follows:
If (T, Γ, Γ ′) is s-refutable and Γ ′ ⊆ Φ(Γ), then it is e-refutable. If 〈A,A1〉 ∈
TER1 ∪ TER2 and A1 is e-refutable, then A is e-refutable.

Lemma 3. If (T, Γ, Γ ′) is well-formed and e-refutable then Φ(Γ) 	s
Φ(T)

⊥.

Proof. Let (T, Γ, Γ ′) be well-formed and e-refutable. We proceed by induction
on the definition of e-refutability. If (T, Γ, Γ ′) is s-refutable then Γ ′ 	s

Φ(T) ⊥ by
Lemma 2. Since Γ ′ ⊆ Φ(Γ) we also have Φ(Γ) 	s

Φ(T) ⊥. For the induction step,
let 〈(T, Γ, Γ ′), (T, Γ, Γ ′

1)〉 be a step with either TER1 or TER2 and assume that the
branch (T, Γ, Γ ′

1) is e-refutable. Since well-formedness of (T, Γ, Γ ′
1) follows from

the well-formedness of (T, Γ, Γ ′), the induction hypothesis yields Φ(Γ) 	s
Φ(T) ⊥

as desired. ��

Definition 5. The set of d-refutable branches is inductively defined as follows:
If (T, Γ, ·) is e-refutable or ⊥ ∈ T, Γ , then it is d-refutable. If 〈A,A1, . . . , An〉 ∈
T \ (TER1 ∪ TER2) and every alternative Ai is d-refutable, then A is d-refutable.

Next, we have to prove soundness of every DHOL rule. For most of the rules,
this is rather straightforward. We show soundness of TFE, TFQ and TDEC as
representative cases and start with an auxiliary lemma.

Lemma 4. Assume Γ 	d
T s : o. We have Γ 	d

T s if and only if Γ 	d
T [s].

Proof. By the beta and eta rules, we have Γ 	d
T s =o [s]. Using cong	 we obtain

the desired result in both directions. ��

Lemma 5 (TFE). Let (T, Γ, Γ ′) be a well-formed branch. Choose x such that
x �∈ Vs ∪ Vt and assume s �=Πx : A.B t ∈ T, Γ . If Γ,¬[∀x : A.sx = tx] 	d

T ⊥ then
Γ 	d

T ⊥.

Proof. From the assumptions and Lemma 4, we obtain Γ 	d
T s �=Πx : A.B t and

Γ 	d
T ∀x : A.sx =B tx. Furthermore, an application of ∀e yields Γ, x : A 	d

T

sx =B tx. Using congλ, we get Γ 	d
T (λx : A.sx) =Πx : A.B (λx : A.tx). Hence, we

can apply eta (x �∈ Vs∪Vt), sym and the admissible rule trans [18] which says that
equality is transitive to get Γ 	d

T s =Πx : A.B t and therefore Γ 	d
T ⊥. ��

Lemma 6 (TFQ). Let (T, Γ, Γ ′) be a well-formed branch. Assume s =Πx : A.B

t ∈ T, Γ and x �∈ Vs ∪ Vt. If Γ, [∀x : A.sx = tx] 	d
T ⊥ then Γ 	d

T ⊥.

96 J. Niederhauser et al.

Proof. From the assumptions, Γ 	d
T ¬[s] =o [¬s], cong	 and Lemma 4, we

obtain Γ 	d
T s =Πx : A.B t and Γ 	d

T ¬∀x : A.sx =B tx. Furthermore, we have
Γ, x : A 	d

T sx =B tx by refl and congAppl. Hence, ∀i yields Γ 	d
T ∀x : A.sx =B

tx and we conclude by an application of ¬e. ��

Lemma 7 (TDEC). Let (T, Γ, Γ ′) be a well-formed branch. Assume

x s1 . . . sn �=au1...um
x t1 . . . tn ∈ T, Γ

and Γ 	d
T x : Πy1 : A1 · · · Πyn : An.a u′

1 . . . u′
m where ui = u′

i[y1/s1 . . . yn/sn] for
1 � i � m. If Γ, si �=Ai[x1/s1,...,xi−1/si−1] ti 	d

T ⊥ for all 1 � i � n then Γ 	d
T ⊥.

Proof. From the assumptions, we obtain Γ 	d
T si =Ai[x1/s1,...,xi−1/si−1] ti for all

1 � i � n and Γ 	d
T x =Πy1 : A1···Πyn : An.au′

1...u′
m

x. Hence, n applications of the
congruence rule for application yield Γ 	d

T xs1 . . . sn =au1...um
x t1 . . . tn. Since

we also have Γ 	d
T x s1 . . . sn �=au1...um

x t1 . . . tn, we obtain Γ 	d
T ⊥. ��

Now we are ready to prove the soundness result for T .

Theorem 3. If (T, Γ, ·) is well-formed and d-refutable then Γ 	d
T ⊥.

Proof. Let (T, Γ, ·) be well-formed and d-refutable. We proceed by induction on
the definition of d-refutability. If (T, Γ, ·) is e-refutable, the result follows from
Lemma 3 together with Corollary 1. If ⊥ ∈ T, Γ then clearly Γ 	d

T ⊥. For
the inductive case, consider a step 〈(T, Γ, ·), (T, Γ1, ·), . . . , (T, Γn, ·)〉 with some
DHOL rule. Since (T, Γ, ·) is d-refutable, all alternatives must be d-refutable.
If we manage to show well-formedness of every alternative, we can apply the
induction hypothesis to obtain Γi 	d

T ⊥ for all 1 � i � n. Then, we can conclude
Γ 	d

T ⊥ by soundness of the DHOL rules. Hence, it remains to prove well-
formedness of the alternatives. In most cases, this is straightforward. We only
show one interesting case, namely TDEC.

Instead of proving Γ, si �=Ai[x1/s1,...,xi−1/si−1] ti 	d
T ⊥ for all 1 � i � n we

show that Γ 	d
T si =Ai[x1/s1,...,xi−1/si−1] ti for all 1 � i � n. Since (T, Γ, ·) is a

well-formed branch, both s1 and t1 have type A1. Hence, (T, (Γ, s1 �=A1 t1), ·) is
well-formed and our original induction hypothesis yields Γ, s1 �=A1 t1 	d

T ⊥
from which we obtain Γ 	d

T s1 =A1 t1. Now let i � n and assume we
have Γ 	d

T sj =Aj [x1/s1,...,xj−1/sj−1] tj for all j < i (∗). This is only pos-
sible if Γ 	d

T tj : Aj [x1/s1, . . . , xj−1/sj−1] for all j < i. Since (T, Γ, ·) is
a well-formed branch, it is clear that Γ 	d

T si : Ai[x1/s1, . . . , xi−1/si−1] and
Γ 	d

T ti : Ai[x1/t1, . . . , xi−1/ti−1]. From (∗), we obtain

Γ 	d
T ti : Ai[x1/s1, . . . , xi−1/si−1],

so (T, (Γ, si �=Ai[x1/s1,...,xi−1/si−1] ti), ·) is well-formed. Hence, the original induc-
tion hypothesis yields Γ 	d

T si =Ai[x1/s1,...,xi/si−1] ti as desired. ��

In the previous proof, we can see that for TDEC, well-formedness of an alterna-
tive depends on refutability of all branches to the left. Note that the same holds

Tableaux for Automated Reasoning in DHOL 97

for TMAT and T⇒. This is a distinguishing feature of DHOL as in tableaux,
branches are usually considered to be independent.

Finally, completeness is immediate from the completeness of the HOL tableau
calculus and the erasure:

Theorem 4. If Γ 	d
T ⊥ then (T, Γ, ·) is d-refutable.

Proof. Let Γ 	d
T ⊥. Using Corollary 1 and Lemma 2 we conclude s-refutability

of (T, Γ, Φ(Γ)). By definition, (T, Γ, Φ(Γ)) is also e-refutable. Furthermore, by
inspecting TER1 and TER2 we conclude that (T, Γ, ·) is also e-refutable and there-
fore d-refutable. ��

4 Implementation

We implemented the tableau calculus for DHOL as an extension of Lash [6] which
is a fork of Satallax, a successful automated theorem prover for HOL [4]. By
providing an efficient C implementation of terms with perfect sharing as well as
other important data structures and operations, Lash outperforms Satallax when
it comes to the basic ground tableau calculus which both of them implement.
However, Lash removes a lot of the additional features beyond the basic calculus
that was implemented in Satallax. Nevertheless, this was actually beneficial for
our purpose as we could concentrate on adapting the core part. Note that Lash
and Satallax do not just implement the underlying ground tableau calculus but
make heavy use of SAT-solving and a highly customizable priority queue to guide
the proof search [4,5].

For the extension of Lash to DHOL, the data structure for terms had to be
changed to support dependent function types as well as quantifiers and lambda
abstractions with dependent types. Of course, it would be possible to represent
everything in the language of DHOL but the formulation of DHOL suggests
that the prover should do as much as possible in the HOL fragment and only use
“proper” DHOL when it is really necessary. With this in mind, the parser first
always tries to produce simply-typed terms and only resorts to dependent types
when it is unavoidable. Therefore, the input problem often looks like a mixture
of HOL and DHOL even though everything is included in DHOL. A nice side
effect of this design decision is that our extension of Lash works exactly like
the original version on the HOL fragment except for the fact that it is expected
to be slower due to the numerous case distinctions between simple types and
dependent types which are needed in this setting.

Although DHOL is not officially part of TPTP THF, it can be expressed
due to the existence of the !>-symbol which is used for polymorphism. Hence,
a type Πx : A.B is represented as !>[X:A]:B. For simplicity and efficiency rea-
sons, we did not implement dependent types by distinguishing base types from
their term arguments but represent the whole dependent type as a term. When
parsing a base type a, Lash automatically creates an eponymous constant of
type tp to be used in dependent types as well as a simple base type a0 for
the erasure and a constant a∗ for its PER. The flags DHOL_RULES_ONLY and

98 J. Niederhauser et al.

DHOL_ERASURE_ONLY control the availability of the erasure as well as the native
DHOL rules, respectively. Note that the implementation is not restricted to d-
refutability but allows for arbitrary refutations. In the standard flag setting,
however, only the native DHOL rules are used. Clearly, this constitutes a sound
strategy. It is incomplete since the confrontation rule only considers equations
with syntactically equivalent types. We have more to say about this in Sect. 4.2.

4.1 Type Checking

By default, problems are only type-checked with respect to their simply-typed
skeleton. If the option exactdholtypecheck is set, type constraints stemming
from the term arguments of dependent base types are generated and added to the
conjecture. The option typecheckonly discards the original conjecture, so Lash
just tries to prove the type constraints. Since performing the type check involves
proper theorem proving, we added the new SZS ontology statuses TypeCheck
and InexactTypecheck to the standardized output of Lash. Here, the former
one means that a problem type checks while the latter one just states that it
type checks with respect to the simply-typed skeleton.

For the generation of type constraints, each formula of the problem is tra-
versed like in normal type checking. In addition, every time a type condition
a t1 . . . tn ≡ a s1 . . . sn comes up and there is some i such that si and ti are not
syntactically equivalent, a constraint stating that si = ti is provable is added
to the set of type constraints. Note that it does not always suffice to just add
si = ti as this equation may contain bound variables or only hold in the con-
text in which the constraint appears. To that end, we keep relevant information
about the term context when generating these constraints. Whenever a forall
quantifier or lambda abstraction comes up, it is translated to a corresponding
forall quantifier in the context since we want the constraint to hold in any case.
While details like applications can be ignored, it is important to keep left-hand
sides of implications in the context as it may be crucial for the constraint to be
met. In general, any axiom may contribute to the typechecking proof.

Example 3. The conjecture

∀n : nat, x : lst n. n =nat 0 ⇒ app n n x x = x

is well-typed if the type constraint

∀n : nat, x : lst n. n =nat 0 ⇒ plus n n =nat n

is provable. Lash can generate this constraint and finds a proof quickly using the
axiom ∀n : nat. plus 0 n =nat n.

Since conjunctions and disjunctions are internally translated to implications,
it is important to note that we process formulas from left to right, i.e. for x : lstn
and y : lstm, the proposition m �= n ∨ x = y type checks because we can assume
m = n to process x = y. Consequently, x = y ∨ m �= n does not type check.

Tableaux for Automated Reasoning in DHOL 99

As formulas are usually read from left to right, this is a natural adaption of
short-circuit evaluation in programming languages. Furthermore, it is in accor-
dance with the presentation of Rothgang et al. [17] as well as the corresponding
implementation in PVS [19]. As a matter of fact, PVS handles its undecidable
type checking problem in essentially the same way as our new version of Lash
by generating so called type correctness conditions (TCCs).

4.2 Implementation of the Rules

Given the appropriate infrastructure for dependent types, the implementation
of most rules in Fig. 2 is a straightforward extension of the original HOL imple-
mentation. For T∀, the side condition Γ 	d

T t : A is undecidable in general. It
has been chosen to provide a simple characterization of the tableau calculus.
Furthermore, it emphasizes that we do not instantiate with terms whose type
does not literally match with the type of the quantified variable. In the imple-
mentation, we keep a pool of possible instantiations for types A which occur
in the problem. The pool gets populated by terms of which we know that they
have a given type because this information was available during parsing or proof
search. Hence, we only instantiate with terms t for which we already know that
Γ 	d

T t : A holds.
Given an equation s =A t, there are many candidate representations of A

modulo type equality. When we build an equation in the implementation, we usu-
ally use the type of the left-hand side. Since all native DHOL rules of the tableau
calculus enforce syntactically equivalent types, the ambiguity with respect to the
type of an equation leads to problems. For example, consider a situation where
Γ 	d

T s : A, Γ 	d
T t : B and Γ 	d

T s =A t which implies Γ 	d
T A ≡ B. During

proof search, it could be that Γ 	d
T t �= s is established. Clearly, this is a contra-

diction which leads to a refutation, but usually the inequality annotated with
the type B which makes the refutation inaccessible for our native DHOL rules.
Therefore, we implemented rules along the lines of

TSYMCAST1

s =A t

t =B s
t : B TSYMCAST2

s �=A t

t �=B s
t : B

which do not only apply symmetry but also change the type of the equality in
a sound way. Like in T∀, the side condition should be read as Γ 	d

T t : B which
makes it undecidable. However, in practice, we can compute a representative of
the type of t given the available type information. While experimenting with the
new DHOL version of Lash, the implementation of these rules proved to be very
beneficial for refutations which only work with the DHOL rules. For the future,
it is important to note that TSYMCAST1 and TSYMCAST2 are not sound for the
extension of DHOL to predicate subtypes as Γ 	d

T s =A t and Γ 	d
T t : B do not

imply Γ 	d
T A ≡ B anymore.

4.3 Generating Instantiations

Since Lash implements a ground tableau calculus, it does not support higher-
order unification. Therefore, the generation of suitable instantiations is a major

100 J. Niederhauser et al.

issue. In the case of DHOL, it is actually beneficial that Lash already implements
other means of generating instantiations since the availability of unification for
DHOL is questionable: There exist unification procedures for dependent type
theories (see for example [11]) but for DHOL such a procedure would also have
to address the undecidable type equality problem.

For simple base types, it suffices to consider so-called discriminating terms
to remain complete [1]. A term s of simple base type a is discriminating in
a branch A if s �=a t ∈ A or t �=a s ∈ A for some term t. For function
terms, completeness is guaranteed by enumerating all possible terms of a given
type. Of course, this is highly impractical, and there is the important flag
INITIAL_SUBTERMS_AS_INSTANTIATIONS which adds all subterms of the initial
problem as instantiations. This heuristic works very well in many cases.

For dependent types, we do not check for type equality when instantiating
quantifiers but only use instantiations with the exact same type (c.f. T∀ in Fig. 2)
and let the erasure handle the remaining cases.

An interesting feature of this new version of Lash is the possibility to auto-
matically generate instantiations for induction axioms. Given the constraints of
the original implementation, the easiest way to sneak a term into the pool of
instantiations is to include it into an easily provable lemma and then use the
flag INITIAL_SUBTERMS_AS_INSTANTIATIONS. However, this adds unnecessary
proof obligations, so we modified the implementation such that initial subterms
as instantiations also include lambda-abstractions corresponding to forall quan-
tifiers.

Example 4. Consider the induction axiom for lists:

∀p : (Πn : nat. lst n → o). p 0 nil

⇒ (∀n : nat, x : elem, y : lst n. p n y ⇒ p (s n) (cons n x y))
⇒ (∀n : nat, x : lst n. p n x)

Even though it works for arbitrary predicates p, it is very hard for an ATP
system to guess the correct instance for a given problem without unification in
general. However, given the conjecture ∀n : nat, x : lst n. app n 0 x nil =lst n x we
can easily read off the correct instantiation for p where ∀ is replaced by λ.

5 Case Study: List Reversal Is an Involution

Consider the following equational definition of the list reversal function rev:

rev 0 nil =lst 0 nil

∀n : nat, x : elem, y : lst n.

rev (s n) (cons n x y) =lst (sn) app n (s 0) (rev n y) (cons 0 x nil)

The conjecture

∀n : nat, x : lst n. rev n (rev n x) =lst n x (rev-invol)

Tableaux for Automated Reasoning in DHOL 101

Table 1. Amount of problem files per (intermediate) goal

Goal Number of Problem Files

app-nil 4
app-assoc 8

app-assoc-m1 5
rev-invol-lem 12

rev-invol 5

is very easy to state, but turns out to be hard to prove automatically. The proof
is based on the equational definitions of plus and app given in Example 1 as
well as several induction proofs on lists using the axiom from Example 4. In
particular, some intermediate goals are needed to succeed:

∀n : nat, x : lst n. app n 0 x nil =lst n x (app-nil)

∀n1 : nat, x1 : lst n1, n2 : nat, x2 : lst n2, n3 : nat, x3 : lst n3. (app-assoc)
app n1 (plus n2 n3) x1 (app n2 n3 x2 x3)

= app (plus n1 n2) n3 (app n1 n2 x1 x2) x3

∀n : nat, x : lst n, y : elem,m : nat, z : lst m. (app-assoc-m1)
app (plus n (s 0)) m (app n (s 0) x (cons 0 y nil)) z = app n (s m) x (cons m y z)

∀n : nat, x : lst n,m : nat, y : lst m. (rev-invol-lem)
rev (plus n m) (app n m (rev n x) y) = app m n (rev m y) x

Note that for polymorphic lists, this is a standard example of an induction proof
with lemmas (see e.g. [15, Section 2.2]). In the dependently-typed case, however,
many intermediate equations would be ill-typed in interactive theorem provers
like Coq or Lean. In order to succeed in automatically proving these problems,
we had to break them down into separate problems for the instantiation of the
induction axiom, the base case and the step case of the induction proofs. Often,
we further needed to organize these subproblems in manageable steps. Overall,
we created 34 TPTP problem files which are distributed over the intermediate
goals as shown in Table 1. Note that already type checking these intermediate
problems is not trivial: All type constraints are arithmetic equations, and given
the Peano axioms, many of them need to be proven by induction themselves.
Since we are mainly interested in the dependently-typed part, we added the
needed arithmetical facts as axioms. Overall, the problem files have up to 18
axioms including the Peano axioms, selected arithmetical results, the defining
equations of plus, app and rev as well as the list induction axiom. We left out
unnecessary axioms in many problem files to make the proof search feasible.

102 J. Niederhauser et al.

With our new modes for DHOL which solely work with the native DHOL
rules, Lash can type check and prove all problems easily. If we turn off the native
DHOL rules and only work with the erasure using the otherwise same modes
with a 60 s timeout, Lash can still typecheck all problems but it only manages to
prove 7 out of 34 problems. In order to further evaluate the effectiveness of our
new implementation, we translated all problems from DHOL to HOL using the
Logic Embedding Tool1, which performs the erasure from [17]. We then tested
16 other HOL provers available on SystemOnTPTP2 on the translated problems
with a 60 s timeout (without type checking). We found that 5 of the 34 problems
could only be solved by the DHOL version of Lash, including one problem where
it only needs 5 inference steps. Detailed results as well as means to reproduce
them are available on Lash’s website3 together with its source code.

6 Conclusion

Starting from the erasure from DHOL to HOL by Rothgang et al. [17], we devel-
oped a sound and complete tableau calculus for DHOL which we implemented in
Lash. To the best of our knowledge, this makes it the first standalone automated
theorem prover for DHOL. According to the experimental results, configurations
where the erasure is performed as a preprocessing step for a HOL theorem prover
can be outperformed by our new prover by solely using the native DHOL rules.
We hope that this development will raise further interest in DHOL. Possible fur-
ther work includes theoretical investigations such as the incorporation of choice
operators into the erasure as well as a definition of the semantics of DHOL. Fur-
thermore, it is desirable to officially define the TPTP syntax for DHOL which
then opens the possibility of establishing a problem data set on which current
and future tools can be compared. Finally, we would like to extend Lash to
support predicate subtypes. Rothgang et al. already incorporated this into the
erasure but there is no corresponding syntactic support in TPTP yet. In partic-
ular, this would get us much closer to powerful automation support for systems
like PVS.

Acknowledgments. The results were supported by the Ministry of Education, Youth
and Sports within the dedicated program ERC CZ under the project POSTMAN
no. LL1902. This work has also received funding from the European Union’s Hori-
zon Europe research and innovation programme under grant agreement no. 101070254
CORESENSE as well as the ERC PoC grant no. 101156734 FormalWeb3. Views and
opinions expressed are however those of the authors only and do not necessarily reflect
those of the European Union or the Horizon Europe programme. Neither the European
Union nor the granting authority can be held responsible for them.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
1 https://github.com/leoprover/logic-embedding.
2 https://tptp.org/cgi-bin/SystemOnTPTP.
3 http://cl-informatik.uibk.ac.at/software/lash-dhol/.

https://github.com/leoprover/logic-embedding
https://tptp.org/cgi-bin/SystemOnTPTP
http://cl-informatik.uibk.ac.at/software/lash-dhol/

Tableaux for Automated Reasoning in DHOL 103

References

1. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J.
Autom. Reason. 47, 451–479 (2011). https://doi.org/10.1007/s10817-011-9233-2

2. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for higher-
order logic. J. Autom. Reason. 67, 10 (2023). https://doi.org/10.1007/s10817-022-
09649-9

3. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9_6

4. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

5. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT prob-
lems. J. Autom. Reason. 51, 57–77 (2013). https://doi.org/10.1007/s10817-013-
9283-8

6. Brown, C.E., Kaliszyk, C.: Lash 1.0 (system description). In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNAI, vol. 13385, pp. 350–358.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6_21

7. Brown, C.E., Smolka, G.: Analytic tableaux for simple type theory and its first-
order fragment. Log. Methods Comput. Sci. 6(2), 1–33 (2010). https://doi.org/10.
2168/LMCS-6(2:3)2010

8. Castellan, S., Clairambault, P., Dybjer, P.: Undecidability of equality in the free
locally cartesian closed category (extended version). Log. Methods Comput. Sci.
13(4), 1–38 (2017). https://doi.org/10.23638/LMCS-13(4:22)2017

9. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940). https://doi.org/10.2307/2266170

10. Coq Development Team: The Coq Reference Manual, Release 8.18.0 (2023)
11. Elliott, C.M.: Higher-order unification with dependent function types. In: Der-

showitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 121–136. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51081-8_104

12. Martin-Löf, P.: Constructive mathematics and computer programming. Philos.
Trans. Royal Soc. Lond. A Math. Phys. Sci. 312, 501–518 (1984). https://doi.
org/10.1098/rsta.1984.0073

13. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.
Comput. Sci. 192(1), 3–29 (1998). https://doi.org/10.1016/S0304-3975(97)00143-
6

14. Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

16. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical frame-
work for deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7_14

17. Rothgang, C., Rabe, F., Benzmüller, C.: Theorem proving in dependently-typed
higher-order logic. In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNAI, vol. 14132,
pp. 438–455. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-
8_25

https://doi.org/10.1007/s10817-011-9233-2
https://doi.org/10.1007/s10817-022-09649-9
https://doi.org/10.1007/s10817-022-09649-9
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/s10817-013-9283-8
https://doi.org/10.1007/s10817-013-9283-8
https://doi.org/10.1007/978-3-031-10769-6_21
https://doi.org/10.2168/LMCS-6(2:3)2010
https://doi.org/10.2168/LMCS-6(2:3)2010
https://doi.org/10.23638/LMCS-13(4:22)2017
https://doi.org/10.2307/2266170
https://doi.org/10.1007/3-540-51081-8_104
https://doi.org/10.1098/rsta.1984.0073
https://doi.org/10.1098/rsta.1984.0073
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-031-38499-8_25
https://doi.org/10.1007/978-3-031-38499-8_25

104 J. Niederhauser et al.

18. Rothgang, C., Rabe, F., Benzmüller, C.: Theorem proving in dependently-typed
higher-order logic – extended preprint (2023). https://doi.org/10.48550/arXiv.
2305.15382

19. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping
in PVS. IEEE Trans. Software Eng. 24(9), 709–720 (1998). https://doi.org/10.
1109/32.713327

20. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. J.
Autom. Reason. 65, 775–807 (2021). https://doi.org/10.1007/s10817-021-09588-x

21. Swamy, N., et al.: Dependent types and multi-monadic effects in F�. In: Bodik, R.,
Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 256–270 (2016). https://
doi.org/10.1145/2837614.2837655

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.48550/arXiv.2305.15382
https://doi.org/10.48550/arXiv.2305.15382
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
http://creativecommons.org/licenses/by/4.0/

The Naproche-ZF Theorem Prover
(Short Paper)

Adrian De Lon(B)

University of Bonn, Bonn, Germany
adelon@uni-bonn.de

Abstract. Naproche-ZF is a new experimental open-source natural the-
orem prover based on set theory; formalizations in Naproche-ZF are writ-
ten in a controlled natural language embedded into LATEX and proof gaps
are filled in with automated theorem provers. Naproche-ZF aims to scale
natural theorem proving beyond chapter-sized formalizations. In contrast
to the Naproche system, the new system uses an extensible grammar-
based approach, has more efficient proof automation, and enables larger
interconnected formalizations based on a standard library.

1 Introduction

Despite significant progress in theorem provers and successful formalizations
of research-level mathematics [17], theorem provers have not yet enjoyed broad
adoption among mathematicians [12,29,40]. A common criticism levelled against
theorem provers by mathematicians is that formalizations are hard to write and
read: they are written in unfamiliar languages, contain clutter that is irrelevant
to the core mathematical ideas, may require knowledge of various specialized
proof tactics, and are simply longer overall (see de Bruijn factor [39]).

Natural theorem provers are a direct answer to this critique; they aim to check
texts as written by mathematicians: in natural language and with many proof
gaps. Similar ambitions can already be found in the work of pioneers in theorem
proving, such as P. Abrahams’s 1960s Proofchecker [1], which was intended to
check the reasoning of textbooks as-is. Some theorem provers are partly natu-
ral, such as the influential Mizar system [16] which uses a quasi-natural input
language and allows obvious inferences [34] as proof gaps. There are significant
challenges to the natural approach, both in the processing of natural language
and in the high degree of proof automation required to fill proof gaps. However,
advances in automated theorem proving and computer hardware have made this
approach more feasible.

Naproche [9,26] is a natural theorem prover based on A. Paskevich’s imple-
mentation of SAD [27,38], extending it with, e.g., set-theoretic primitives, more
efficient checking, and an integrated development environment. Students have
completed formalizations in Naproche in various areas of mathematics, such as
analysis, axiomatic set theory, representation theory, and combinatorics. How-
ever, typical formalizations in Naproche use ad hoc axiomatic preliminaries and
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 105–114, 2024.
https://doi.org/10.1007/978-3-031-63498-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_7&domain=pdf
http://orcid.org/0000-0002-2697-7253
https://doi.org/10.1007/978-3-031-63498-7_7

106 A. De Lon

struggle to scale beyond chapter-length. Medium-sized formalizations of around
3000 lines can take half an hour to check and proving new theorems becomes
increasingly difficult.

Naproche-ZF1 is a reimplementation of key ideas in Naproche with larger for-
malizations in mind. We shall compare the two systems throughout this paper.
Naproche-ZF is developed in tandem with a growing modular standard library
(see Footnote 1) containing formalizations of foundational material on sets, rela-
tions, functions, orders, ordinals, algebraic structures, topological spaces, and
more.

2 Controlled Natural Language

The input language of Naproche-ZF is a new controlled natural language (CNL):
it is a carefully chosen and formally specified subset of mathematical English that
is embedded into LATEX for mathematical notation and document structuring.
Most mathematicians are familiar with LATEX, which makes the language easier
to learn. Ideally formalizing in a CNL should feel like writing with a strict style
guide. The following example shows a theorem formalized in Naproche-ZF, first
the LATEX source and then the rendering after typesetting.

\begin{theorem}[Burali-Forti antimony]\label{burali_forti}

There exists no set Ω such that for all α

we have $\alpha\in\Omega$ iff α is an ordinal.

\end{theorem}

\begin{proof}

Suppose not. Consider Ω such that for all α we have

$\alpha\in\Omega$ iff α is an ordinal.

For all x, y such that $x\in y\in\Omega$ we have $x\in\Omega$.

So Ω is \in-transitive. Thus Ω is an ordinal.

Hence $\Omega\in\Omega$. Contradiction.

\end{proof}

Theorem (Burali-Forti antimony). There exists no set Ω such that for all α we have α ∈ Ω

iff α is an ordinal.

Proof. Suppose not. Consider Ω such that for all α we have α ∈ Ω iff α is an ordinal. For

all x, y such that x ∈ y ∈ Ω we have x ∈ Ω. So Ω is ∈-transitive. Thus Ω is an ordinal.

Hence Ω ∈ Ω. Contradiction. �

Naproche-ZF treats everything outside of fixed formal environments such as
definition, theorem, and proof, as comments. This facilitates writing literate
formalizations that mix informal commentary and formal mathematics in the
same document (e.g. [8], cf. literate programming [21]). Other theorem provers
also support literate formalization or advanced typesetting; examples include
Literate Agda, Isabelle’s documents, and a Mizar-to-LATEX translator [2]. An
advantage of CNLs in literate formalization is that it is rarely necessary to restate
theorems and proofs steps, since the formal statement is already readable.
1 Available at https://adelon.net/naproche-zf under an open-source license together

with its standard library.

https://adelon.net/naproche-zf

The Naproche-ZF Theorem Prover 107

Parsing. Natural mathematical language is dynamic: definitions introduce new
lexical items, which can be symbols, words, or phrases. Dynamism complicates
the processing of mathematical language. Naproche and Naproche-ZF take dif-
ferent approaches to parsing their input languages and modelling dynamism.

Naproche’s parser is defined with monadic parser combinators [18]. It state-
fully modifies itself as it encounters definitions and translates to an internal
formula representation on the fly. Such tight coupling makes it harder to extend
its CNL. There are also cases where parsing takes exponential time.

Naproche-ZF splits this process into phases. First it finds all lexical items
using a scanner written with applicative regex combinators [7]. For nouns and
verbs it then guesses the plural forms with basic smart paradigms [10] in the
sense of GF [31]. The resulting lexicon becomes a parameter for the grammar
of the CNL. Using the Earley [13] Haskell library, the CNL is specified as a
context-free grammar in an embedded domain-specific language and the derived
Earley parser [11] parses in cubic time in the worst-case or in quadratic time
if the grammar is unambiguous. This grammar-oriented approach makes the
initial design and future extensions of a CNL easier compared to parser com-
binators: new rules can be stated declaratively and there is no need to worry
about exponential parsing times or eliminating left-recursion in the grammar.

Accuracy. Naproche supports a plain text dialect [28] and a LATEX dialect.
Naproche-ZF drops support for the plain text format and uses LATEX markup in
its CNL to avoid ambiguities. For instance, “a” can be ambiguous in Naproche
(variable vs. determiner), but is clarified by distinguishing “a” (“a”) from
“a” (“a”). Such distinctions and avoidance of the backtracking behaviour of com-
binator parsers significantly improve error specificity and locality. For instance,
Naproche often mistakes an unexpected word as a new variable name and will
usually offer nonspecific and mislocated error messages along the lines of an
“unexpected "."”, whereas Naproche-ZF can reliably offer a list of valid tokens
at the location of the error. Naproche-ZF uses a stateful tokenizer to handle
nested math and text modes, to support, e.g., “\text{...} ” within set com-
prehensions.

Naproche accommodates grammatical number via a synonym instruction.
For example, one uses “[synonym number/-s]” to identify “natural number”
and “natural numbers”. Thus Naproche accepts ungrammatical sentences such
as “x,y is natural numbers”. Naproche-ZF guesses plural forms via smart
paradigms and requires number agreement. Overall, the grammar of Naproche-
ZF is stricter with the aim of avoiding ambiguity, ungrammaticality, as well as
pitfalls observed in formalizations written by students, where statements had
unintuitive meanings in Naproche.

Naproche-ZF supports various idioms. For example, binary relations can be
chained and multiple terms can be related to each other (“a, b < c < d”), they
can appear in bounded quantifiers (“For all x ∈ X ...”), and sets can be used as
binary relations (“x R y”). Naproche-ZF also models some pragmatic phenomena
[32,35]: for example, an existential claim in a proof implicitly introduces a local
constant, the same way that the “Consider ...” step does.

108 A. De Lon

3 Semantics and Proof Checking

Translation. Naproche-ZF translates from its CNL to a set theory in higher-
order logic (HOL) with Henkin semantics [5], using generalized de Bruijn indices
[19,20] to handle quantifiers and other binders. However, the system emphasizes
reasoning within the first-order fragment where possible to use the strength of
mature first-order automated theorem provers (ATPs).

Adjectives, verbs, and nouns are translated as predicates. Bounding phrases
in quantifications are translated to type guards. For instance, “Every natural
number is an ordinal” is translated to “∀n. natural number(n) → ordinal(n)”.

Proof automation is currently first-order only, using strong first-order ATPs
such as E [36] and Vampire [22,33]. Every nontrivial proof step or intermediate
claim leads to a proof task that is exported to an ATP. By default an ATP is
given 10 s per tasks, but most tasks can be solved within fractions of a second.
Naproche-ZF will also integrate with ATPs supporting HOL via TPTP THF0
[4]. For an impression of how ATPs are used, consider the step “Then B ∈ 2A”
in the following formalization of Cantor’s theorem.

Theorem (Cantor). There exists no surjection from A to 2A.

Proof. Suppose not. Take a surjection f from A to 2A. Let B = {a ∈ A | a /∈ f(a)}.

Then B ∈ 2A. There exists a′ ∈ A such that f(a′) = B by the definition

of surjectivity. Now a′ ∈ B iff a′ /∈ f(a′) = B. Contradiction.

This step leads to a proof task in which all preceding first-order definitions
and theorems, as well as all local assumptions, definitions, and claims can be
used as premises. Here the exported TPTP [37] problem contains a few hundred
premises, shown below with the conjecture and recent theorems at the top, along
with local premises at the bottom. Note that Naproche-ZF transformed the local
definition of B via set comprehension into the first-order premise cantor1 by an
automatic application of the axiom of separation.

fof(cantor,conjecture,in(fB,pow(fA))).
[...]
fof(powerset_intro,axiom,![XA,XB]:(subseteq(XA,XB)=>in(XA,pow(XB)))).
[...]
fof(subseteq,axiom,![XA,XB]:(subseteq(XA,XB)<=>![Xa]:(in(Xa,XA)=>in(Xa,XB)))).
[...]
fof(cantor1,axiom,![Xa]:(in(Xa,fB)<=>(in(Xa,fA)&~in(Xa,apply(ff,Xa))))).
fof(cantor2,axiom,in(ff,surj(fA,pow(fA)))).
fof(cantor3,axiom,~~?[X5]:in(X5,surj(fA,pow(fA)))).

Sets. Naproche-ZF’s built-in constructs are geared towards higher-order set the-
ories [5,15] extending Zermelo–Fraenkel (ZF) set theory. ZF with the axiom of
choice (ZFC) is the de facto foundation of informal mathematics, but addi-
tional axioms such as the universe axiom of Tarski–Grothendieck set theory
(TG) can be convenient for, e.g., category theory. Variants of TG are used by
Mizar, Egal, and Megalodon [6]. Second-order axioms of ZF have corresponding
built-in syntax or proof steps in Naproche-ZF that make it possible to use them

The Naproche-ZF Theorem Prover 109

with first-order proof automation. As we have seen in Cantor’s theorem above,
set comprehensions are automatically eliminated in some situations using the
axioms of separation or n-ary replacement. Naproche-ZF has a built-in proof
method for ∈-induction and will also feature a mechanism for defining one’s own
induction principles (proved as higher-order theorems). There is potential for
interoperability or integration with systems based on set theory, such as Mizar,
Isabelle/ZF, and Megalodon. Naproche-ZF has an experimental export feature
that translates theorem statements to Megalodon.

Structures. Naproche has no dedicated features for mathematical structures,
which means that users have to set up structures themselves. Dealing with nota-
tion becomes cumbersome, as you have to explicitly annotate which structure an
operation belongs to. In Naproche-ZF one can define structures directly. They
are encoded as record datatypes in set theory, with structure operations acting as
field projections. The noun phrase of a structure is translated as a predicate and
structure axioms are translated to first-order introduction and elimination rules.
This first-order encoding enables structures subtyping and multiple inheritance.
In the example below, topological spaces inherit from the built-in onesorted
structure, which has only a projection “|−|” to the carrier set as an operation
and has no axioms.

Definition. A topological space X is a onesorted structure equipped with OX s.t.

1. OX is a family of subsets of |X|.
2. ∅, |X| ∈ OX .

3. For all A, B ∈ OX we have A ∩ B ∈ OX .

4. For all F ⊆ OX we have
⋃

F ∈ OX .

Structure operations are typeset using LATEX macros that take the structure as
an optional argument. In theorems and proofs the structure argument may be
omitted when a suitable structure was instantiated beforehand. For example, if
a theorem statement has a premise of the form “Let X be a topological space”,
one can subsequently write O (\opens) for OX ($\opens[X]$). When mul-
tiple structures with the same operation are instantiated, the last instantiation
shadows the previous ones.

Imports. The import mechanism of Naproche works similar to an include direc-
tive, which led to redundant checking of shared imports. Naproche-ZF tracks
imports in a graph to avoid this. The import mechanism in Naproche-ZF uses
the command “\import{<file>} ” which may be hidden in the rendered docu-
ment.

Proofs. The simplest way of proving a theorem in Naproche-ZF is to leave it
entirely to the ATP by not writing an explicit proof. One can also provide a
proof of the form “Follows by 〈justification〉”, where

〈justification〉 = “set extensionality” | “assumption” | “definition” | 〈ref〉.
The justification “by set extensionality” splits an atomic equation into two goals
expressing mutual set inclusion, which is convenient when the ATP is reluc-
tant about using extensionality. Next, “by assumption” and “by definition” each

110 A. De Lon

restrict the available premises for the ATP to just the local assumptions or pre-
vious definition, respectively. Finally, a 〈ref〉 is an explicit reference to previous
theorems, reusing commonly used LATEX citation commands, such as \cref
from the Cleveref package. Only these explicitly cited theorems are then used
as premises for the ATP, together with the local assumptions and relevant defi-
nitions. Most other proof steps can also be justified in this manner, but we will
disregard justifications below for the sake of brevity.

Next, one can state intermediate claims using one of many equivalent phrases
such as “We have Φ” or “Thus Φ”. This creates an ATP task for the claim and
then adds the claim as an additional assumption for the remainder of the proof.
Claims may be justified by a subproof.

One can also perform goal-directed proof steps, similar to many other for-
malization languages. There are straightforward proof steps like “Assume Φ”,
“Suppose not”, and case distinctions. One can obtain witness with “Consider
x, y, z ∼ X such that Φ” or simplify universal goals with “Fix x, y, z ∼ X such
that Φ”, where both the bound by an arbitrary relation symbol ∼ and the such-
that refinement are optional.

A proof step of the form “It suffices to show Φ” creates a proof task of
showing that Φ implies the current goal, and then sets Φ as the new goal.

Naproche-ZF supports calculational reasoning in the align* environment:
each equation may be followed by an \explanation with a citation. Currently
calculational reasoning works with equations and biconditionals. Other systems
such as Lean and Isabelle have similar features that also support inequalities [3].
We will extend calculational reasoning as needed alongside future formalizations.

Premise Selection. Irrelevant premises make it harder for ATPs to find proofs.
Premise selection [24] is a process that attempts to identify the relevant premises
in a problem. Naproche lacks premise selection, which is a major barrier to scal-
ing beyond chapter-sized formalizations. Work is in progress to add premise selec-
tion to Naproche-ZF similar to the premise selection of Sledgehammer [23,30].
The checker already includes a basic MePo-like [25] filter. There is also exper-
imental premise selection using graph neural networks (GNNs), thanks to the
help of Mirek Oľsák and Josef Urban. The first-order problems exported by
Naproche-ZF are structurally similar to the Mizar corpus on which GNN-based
filters have performed well [14]. Training data for the GNN can be extracted from
explicitly justified proof steps (those that use “by 〈ref〉”). We also expect that
premise selection trained on the Mizar corpus would perform well for Naproche-
ZF. GNN-based premise selection is experimental and not yet integrated into the
checker. We plan to scale up premise selection as we slowly grow the standard
library.

Performance. An apples-to-apples performance comparison of Naproche and
Naproche-ZF is difficult since there are no exactly parallel formalizations in the
two systems. Naproche-ZF processes texts faster overall, in part due to having
a parser with better asymptotic behaviour. The total checking time however is
dominated by proof searches in external ATPs. ATP tasks are single-threaded
in Naproche, whereas Naproche-ZF uses a thread pool to make use of modern

The Naproche-ZF Theorem Prover 111

multi-core CPUs. Moreover, when an ATP task fails in Naproche, it retries
the task after unfolding definitions. When developing large formalizations, this
behaviour can lead to sudden explosions in checking time, as proofs that used
to be fast suddenly become slow because they are retried multiple times. This
behaviour dates back to SAD, where it was useful in the context of smaller for-
malizations and weaker ATPs. Naproche-ZF calls the ATP once per problem
(but does use portfolio modes of ATPs). The standard library of Naproche-ZF is
currently at a modest 4600 lines (excl. comments and blank lines). Using Vam-
pire as the ATP, it takes less than 10 s to check on an Intel i7-13700K and less
than 22 s on an Apple M1. In comparison, Naproche can take over 10 times as
long when checking formalizations of similar length.

Naproche-ZF optionally caches the initial segment of successful ATP proofs
between runs, resuming checking at the first failed proof, which saves time during
proof writing. The cache of a proof is invalidated if the premises differ to avoid
reproducibility problems: we do not use monotonicity of entailment since adding
irrelevant premises can make ATP proofs fail.

4 Conclusion and Future Work

Even in its early state, Naproche-ZF is a new theorem prover that shows that
natural theorem provers can scale beyond chapter-sized formalizations. It fea-
tures an extensible grammar-based approach to natural language, familiar set-
theoretical foundation in higher-order logic, and proof automation powered by
strong first-order ATPs. Use of concurrency, more control over the proof search
process, premise selection, faster parsing, a module system, and other refine-
ments result in a performance improvement by an order of magnitude compared
to its predecessor Naproche.

Naproche-ZF is still experimental research-quality software and requires more
features, grammar refinement, bug fixes, user testing, and documentation to
become user friendly software. Naproche-ZF’s checker is a command line tool
and lacks an integrated development environment (IDE), which would make
the system more user friendly. Currently, user interaction with the ATP within
Naproche-ZF is limited: failed or slow proofs sometimes require digging through
large logs and experimenting with the ATP on the command line. An IDE for
Naproche-ZF should also facilitate better interaction with the ATP, e.g. by giving
Sledgehammer-like suggestions after finding proofs.

Naproche-ZF would also benefit from improvements to general purpose proof
automation (e.g. better premise selection) and from including special-purpose
proof automation, e.g. for arithmetic.

The included standard library is still fairly small and it would be nice to
update student formalizations completed in older versions of Naproche to also
work in Naproche-ZF.

Currently the LATEX files are typeset as-is. It would be worthwhile to generate
richer HTML (with MathML) or PDF documents, by, e.g., linking lexical items
to their definition or enabling progressive disclosure of more complicated proofs.

112 A. De Lon

References

1. Abrahams, P.: The Proofchecker, MIT AI Memo (1961). https://dspace.mit.edu/
handle/1721.1/6068

2. Bancerek, G., Naumowicz, A., Urban, J.: System description: XSL-based translator
of Mizar to LaTeX. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.)
CICM 2018. LNCS (LNAI), vol. 11006, pp. 1–6. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96812-4 1

3. Bauer, G., Wenzel, M.: Calculational reasoning revisited an Isabelle/Isar experi-
ence. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp.
75–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44755-5 7

4. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language
for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 41

5. Brown, C.E., Kaliszyk, C., P ↪ak, K.: Higher-order Tarski–Grothendieck as a foun-
dation for formal proof. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) ITP 2019
(2019)

6. Brown, C.E., P ↪ak, K.: A tale of two set theories. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 44–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 4

7. Cheplyaka, R.: regex-applicative (2020). https://hackage.haskell.org/package/
regex-applicative

8. De Lon, A., Koepke, P., Lorenzen, A.: A natural formalization of the muti-
lated checkerboard problem in Naproche. In: Cohen, L., Kaliszyk, C. (eds.)
12th International Conference on Interactive Theorem Proving (ITP 2021).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 193, pp. 16:1–
16:11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITP.2021.16, https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITP.2021.16

9. De Lon, A., Koepke, P., Lorenzen, A., Marti, A., Schütz, M., Wenzel, M.: The
Isabelle/Naproche natural language proof assistant. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 614–624. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5 36

10. Détrez, G., Ranta, A.: Smart paradigms and the predictability and complexity of
inflectional morphology. In: Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 645–653 (2012)

11. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970). https://doi.org/10.1145/362007.362035

12. Farmer, W.M.: Formal mathematics for the masses. In: Workshop Papers of the
14th Conference on Intelligent Computer Mathematics (CICM 2021): Workshop
on Natural Formal Mathematics (NatFoM 2021). CEUR Workshop Proceedings
(2022). https://ceur-ws.org/Vol-3377/natfom3.pdf

13. Fredriksson, O.: Earley (2019). https://hackage.haskell.org/package/Earley
14. Goertzel, Z.A., Jakub̊uv, J., Kaliszyk, C., Oľsák, M., Piepenbrock, J., Urban, J.:

The Isabelle ENIGMA. In: 13th International Conference on Interactive Theo-
rem Proving (ITP 2022) (2022). https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.ITP.2022.16

15. Gordon, M.: Set theory, higher order logic or both? In: Goos, G., Hartmanis, J.,
van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996.

https://dspace.mit.edu/handle/1721.1/6068
https://dspace.mit.edu/handle/1721.1/6068
https://doi.org/10.1007/978-3-319-96812-4_1
https://doi.org/10.1007/978-3-319-96812-4_1
https://doi.org/10.1007/3-540-44755-5_7
https://doi.org/10.1007/978-3-540-71070-7_41
https://doi.org/10.1007/978-3-540-71070-7_41
https://doi.org/10.1007/978-3-030-23250-4_4
https://hackage.haskell.org/package/regex-applicative
https://hackage.haskell.org/package/regex-applicative
https://doi.org/10.4230/LIPIcs.ITP.2021.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.16
https://doi.org/10.1007/978-3-030-79876-5_36
https://doi.org/10.1145/362007.362035
https://ceur-ws.org/Vol-3377/natfom3.pdf
https://hackage.haskell.org/package/Earley
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.16

The Naproche-ZF Theorem Prover 113

LNCS, vol. 1125, pp. 191–201. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0105405

16. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. 3(2), 153–245 (2010)

17. Harrison, J., Urban, J., Wiedijk, F.: History of Interactive Theorem Proving, vol. 9,
pp. 135–214. North-Holland (2014). https://doi.org/10.1016/B978-0-444-51624-4.
50004-6

18. Hutton, G., Meijer, E.: Monadic parser combinators. J. Funct. Program. 8(4),
437–444 (1998)

19. Kmett, E.: Bound (2015). https://www.schoolofhaskell.com/user/edwardk/bound
20. Kmett, E., Scott, R., Grenrus, O.: Bound: Making de Bruijn succ less (2023).

https://hackage.haskell.org/package/bound
21. Knuth, D.E.: Literate programming. Stanford University Center for the Study of

Language and Information (1992)
22. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-

gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

23. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39634-2 6

24. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 378–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 30

25. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-
generated resolution problems. J. Appl. Log. 7(1), 41–57 (2009). https://doi.
org/10.1016/j.jal.2007.07.004. https://www.sciencedirect.com/science/article/pii/
S1570868307000626. Special Issue: Empirically Successful Computerized Reason-
ing

26. Naproche contributors: Naproche. https://naproche.github.io/
27. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements

mathématiques: aspects appliqués et théoriques. Ph.D. thesis, Université Paris 12
(2007)

28. Paskevich, A.: The syntax and semantics of the ForTheL language (2007)
29. Paulson, L.C.: ALEXANDRIA: large-scale formal proof for the working mathe-

matician (2018). https://www.cl.cam.ac.uk/∼lp15/Grants/Alexandria/
30. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a

practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL 2010. The 8th International Workshop on the
Implementation of Logics. EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair
(2012). https://doi.org/10.29007/36dt, https://easychair.org/publications/paper/
wV

31. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

32. Ranta, A.: Some remarks on pragmatics in the language of mathematics: comments
to the paper “at least one black sheep: Pragmatics and mathematical language”
by luca san mauro, marco ruffino and giorgio venturi. J. Pragmat. 160, 120–122
(2020). https://doi.org/10.1016/j.pragma.2020.02.001. https://www.sciencedirect.
com/science/article/pii/S0378216620300321

https://doi.org/10.1007/BFb0105405
https://doi.org/10.1007/BFb0105405
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://www.schoolofhaskell.com/user/edwardk/bound
https://hackage.haskell.org/package/bound
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-642-31365-3_30
https://doi.org/10.1007/978-3-642-31365-3_30
https://doi.org/10.1016/j.jal.2007.07.004
https://doi.org/10.1016/j.jal.2007.07.004
https://www.sciencedirect.com/science/article/pii/S1570868307000626
https://www.sciencedirect.com/science/article/pii/S1570868307000626
https://naproche.github.io/
https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
https://doi.org/10.29007/36dt
https://easychair.org/publications/paper/wV
https://easychair.org/publications/paper/wV
https://doi.org/10.1016/j.pragma.2020.02.001
https://www.sciencedirect.com/science/article/pii/S0378216620300321
https://www.sciencedirect.com/science/article/pii/S0378216620300321

114 A. De Lon

33. Reger, G., et al.: Vampire 4.7-SMT system description. In: SMT-COMP 2022
(2022). https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf

34. Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3, 383–393 (1987).https://
doi.org/10.1007/BF00247436

35. Ruffino, M., San Mauro, L., Venturi, G.: At least one black sheep: pragmatics
and mathematical language. J. Pragmat. 160 (2020). https://doi.org/10.1016/j.
pragma.2020.01.011

36. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

37. Sutcliffe, G., Suttner, C., Yemenis, T.: The TPTP problem library. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814, pp. 252–266. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58156-1 18

38. Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction
(SAD): a tool for proof verification. In: Automated Deduction–CADE-21, pp. 398–
403 (2007)

39. Wiedijk, F.: The de Bruijn factor. Presented at a poster session at TPHOLs 2000
(2000). https://www.cs.ru.nl/∼freek/factor

40. Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof, Festschrift
in Honour of Andrzej Trybulec, pp. 121–133 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf
https://doi.org/10.1007/BF00247436
https://doi.org/10.1007/BF00247436
https://doi.org/10.1016/j.pragma.2020.01.011
https://doi.org/10.1016/j.pragma.2020.01.011
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/3-540-58156-1_18
https://www.cs.ru.nl/~freek/factor
http://creativecommons.org/licenses/by/4.0/

Reducibility Constraints in Superposition

Márton Hajdu1(B) , Laura Kovács1 , Michael Rawson1 ,
and Andrei Voronkov2,3

1 TU Wien, Vienna, Austria
marton.hajdu@tuwien.ac.at

2 University of Manchester, Manchester, UK
3 EasyChair, Manchester, UK

Abstract. Modern superposition inference systems aim at reducing the
search space by introducing redundancy criteria on clauses and infer-
ences. This paper focuses on reducing the number of superposition infer-
ences with a single clause by blocking inferences into some terms, pro-
vided there were previously made inferences of a certain form performed
with predecessors of this clause. Other calculi based on blocking infer-
ences, for example basic superposition, rely on variable abstraction or
equality constraints to express irreducibility of terms, resulting however
in blocking inferences with all subterms of the respective terms. Here
we introduce reducibility constraints in superposition to enable a more
expressive blocking mechanism for inferences. We show that our calcu-
lus remains (refutationally) complete and present redundancy notions.
Our implementation in the theorem prover Vampire demonstrates a con-
siderable reduction in the size of the search space when using our new
calculus.

Keywords: Saturation · Superposition · Redundancy · Reducibility
constraints

1 Introduction

Automated reasoners in first-order logic with equality commonly rely on the
superposition calculus [5,25]. This calculus has been extended with various
improvements in order to reduce the search space. For instance, avoiding super-
position into variables and ordering literals and clauses are common practices in
modern theorem provers [21,29,34].

To reduce generation of redundant clauses in equational reasoning, the “basic-
ness” restriction [16] was introduced at the term level. This idea aided, for exam-
ple, in finding the proof of the Robbins problem [24]. This restriction blocks
superposition (rewriting) inferences into terms resulting from (quantifier) instan-
tiations, considering such terms irreducible in further proof steps. This approach
was further generalised to block superposition into terms above variable positions
in basic superposition/paramodulation [7,26], while preserving refutational com-
pleteness. However, blocking and applying different rewrite steps among equal
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 115–132, 2024.
https://doi.org/10.1007/978-3-031-63498-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_8&domain=pdf
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-7834-1567
https://doi.org/10.1007/978-3-031-63498-7_8

116 M. Hajdu et al.

Fig. 1. Possible superposition sequences into 4 .

terms impacts proof search. In this paper, we propose a number of different
ways to block inferences, so that the resulting calculus remains complete. The
effect of these restrictions resembles some strategies from term rewriting, such
as innermost and outermost strategies.

Motivating Example. Consider the following satisfiable set C of clauses:

C =
{

1 g(x, b) � a, 2 f(x, b) � x,
3 g(a, x) � x, 4 P (g(x, y), f(g(x, b), z))

}

where x, y are variables, a, b constants, f, g function symbols, and P is a predicate
symbol. In this paper � denotes equality. Figure 1 shows some derivations of
P (a, a) by consecutively superposing into 4 with 1 and 2 . It also shows a
derivation of P (a, b) by superposing into 4 with 1 , then with 3 and 2 .
Note that Fig. 1 contains many redundant clauses. For example, 4 is redundant
w.r.t. 6 and 1 , as it is a logical consequence of (smaller) 6 and 1 . Similarly,
7 is redundant w.r.t. 11 and 1 .

Many derivations of Fig. 1 could however be avoided by using a rewrite order
between the inferences. For example, a leftmost-innermost rewrite order on infer-
ences derives 13 along the path 4 – 5 – 9 – 13 . Whenever we would deviate from
the leftmost-innermost rewrite order when rewriting a term t, we enforce the
order by requiring that any term t′ that is to the left of or inside t is irreducible
in further derivations. In other words, we block further inferences with t′. With
such a restriction, we cannot rewrite g(x, y) in clause 6 , as g(x, y) was to the
left of the previously rewritten term f(g(x, b), z). Hence, when using a leftmost-
innermost rewrite upon in Fig. 1, 9 is only generated by the derivation path
4 – 5 – 9 . Similarly, 11 cannot be derived from 7 but can be derived from 6 .

Our Contributions. We introduce a new superposition calculus that enables
various ways to block (rewrite) inferences during proof search. Key to our cal-
culus are reducibility constraints to restrict the order of superposition inferences
(Sect. 3). Our approach supports and generalizes, among others, the leftmost-

Reducibility Constraints in Superposition 117

innermost rewrite orders mentioned in the motivating example by means of irre-
ducibility constraints, allowing us to reduce the number of generated clauses.
Furthermore, in our motivating example the derivation 5 – 8 – 12 of Fig. 1 is not
needed for the following reason. By superposing into 2 with 3 , we derive a � b,
which makes one of 12 and 13 redundant w.r.t. the other. As 1 was used to
rewrite g(x, b) in Fig. 1 and derive 5 , we block superposition into g(x, b) with
all clauses except 1 in further derivations. We express this requirement via a
one-step reducibility constraint (Definition 1), resulting in the BLINC – BLocked
INference Calculus. As such, BLINC is parameterized by a rewrite ordering and
(ir)reducibility constraints.

We prove1 that our BLINC calculus is refutationally complete, for which we
use a model construction technique (Sect. 4) with new features introduced to
take care of constraints. We extend our calculus with redundancy elimination
(Sect. 5). When evaluating the BLINC calculus implemented in the Vampire the-
orem prover, our experiments show that reducibility constraints significantly
reduce the search space (Sect. 6).

2 Preliminaries

We work in standard first-order logic with equality, where equality is denoted
by �. We use variables x, y, z, v, w and terms s, t, u, l, r, all possibly with
indices. A term is ground if it contains no variables. A literal is an unordered
pair of terms with polarity, i.e. an equality s � t or a disequality s �� t. We write
s �� t for either an equality or a disequality. A clause is a multiset of literals. We
denote clauses by B,C,D and denote by � the empty clause that is logically
equivalent to ⊥.

An expression E is a term, literal or clause. We will also consider as expres-
sions constraints and constrained clauses introduced later. An expression is called
ground if it contains no variables. We write E[s] to state that the expression E
contains a distinguished occurrence of the term s at some position. Further,
E[s �→ t] denotes that this occurrence of s is replaced with t; when s is clear
from the context, we simply write E[t]. We say that t is a subterm of s[t],
denoted by t � s[t]; and a strict subterm if additionally t �= s[t], denoted by
t � s[t]. A substitution σ is a mapping from variables to terms, such that the
set of variables {x | σ(x) �= x} is finite. We denote substitutions by θ, σ, ρ,
μ, η. The application of a substitution θ on an expression E is denoted Eθ.
A substitution θ is called grounding for an expression E if Eθ is ground. We
denote the set of grounding substitutions for an expression E by GSubs, that is
GSubs(E) = {θ | Eθ is ground}. We denote the empty substitution by ε.

A substitution θ is more general than a substitution σ if θη = σ for some
substitution η. A substitution θ is a unifier of two terms s and t if sθ = tθ, and
is a most general unifier, denoted mgu(s, t), if for every unifier η of s and t, there
exists a substitution μ s.t. η = θμ. We assume that the most-general unifiers of
terms are idempotent [2].
1 detailed proofs are in the full version of this paper [15].

118 M. Hajdu et al.

A binary relation → over the set of terms is a rewrite relation if (i) l → r ⇒
lθ → rθ and (ii) l → r ⇒ s[l] → s[r] for any term l, r, s and substitution θ. The
reflexive and transitive closure of a relations → is denoted by →∗. We write ←
to denote the inverse of →. Two terms are joinable, denoted by s ↓ t, if there
exists a term u s.t. s →∗ u ←∗ t. A rewrite system R is a set of rewrite rules. A
term l is irreducible in R if there is no r s.t. l → r ∈ R. Joinability w.r.t. R will
be denoted by s ↓R t. A rewrite ordering is a strict rewrite relation. A reduction
ordering is a well-founded rewrite ordering. In this paper we consider reduction
orderings which are total on ground terms, that is they satisfy s � t ⇒ s � t;
such orderings are also called simplification orderings.

We use the standard definition of a bag extension of an ordering [12]. An
ordering � on terms induces an ordering on literals, by identifying s � t with
the multiset {s, t} and s �� t with the multiset {s, s, t, t}, and using the bag
extension of �. We denote this induced ordering on literals also with �. Likewise,
the ordering � on literals induces the ordering on clauses by using the bag
extension of �. Again, we denote this induced ordering on clauses also with �.
The induced relations � on literals and clauses are well-founded (resp. total) if
so is the original relation � on terms. In examples used in this paper, we assume
a KBO simplification ordering with constant weight [19].

Many first-order theorem provers work with clauses [21,29,34]. Let S be a
set of clauses. Often, systems saturate S by computing all logical consequences
of S with respect to a sound inference system I. The process of saturating S is
called saturation. An inference system I is a set of inference rules of the form

C1 . . . Cn ,
C

where C1, . . . , Cn are the premises and C is the conclusion of the inference.
The inference rule is sound if its conclusion is the logical consequence of its
premises, that is C1, . . . , Cn |= C. The inference is reductive w.r.t. an ordering
� if C � Ci, for some i = 1, . . . , n. An inference system I is sound if all its
inferences are sound. An inference system I is refutationally complete if for
every unsatisfiable clause set S, there is a derivation of the empty clause in I.
An interpretation I is a model of an expression E if E is true in I. A clause
C that is false in an interpretation I is a counterexample for I. If a clause set
contains a counterexample, then it also contain a minimal counterexample w.r.t.
a simplification ordering � [6].

3 Reducibility Constraints

This section presents a new blocking calculus, called BLINC (BLocked INference
Calculus). This calculus uses specific constraints to block inferences.

Definition 1 (Constraints). Let l be a non-variable term and r a term. We
call the expression l � r a one-step reducibility constraint, and the expression
↓l an irreducibility constraint. A constraint is one of the two. �

Reducibility Constraints in Superposition 119

Fig. 2. The BLINC calculus

Now let us define the semantics of these constraints.

Definition 2 (Satisfied Constraints, Violated Constraints). Let R be a
rewrite system. We say that R satisfies l � r if l → r ∈ R and satisfies ↓l if l is
irreducible in R. We say that R violates a constraint if it does not satisfy it. �
An expression C | Γ is a constrained clause, where C is a clause and Γ a finite
set of constraints. A constrained clause C | Γ is true iff C is true. We denote
constrained clauses C, D, possibly with indices.

Definition 3 (Blocked Constrained Clause, Blocked Inference). Let C =
C | Γ be a constrained clause. We call the constraint l � r ∈ Γ active in C if
s � l for some term s in C. Likewise, we call ↓l ∈ Γ active in C if s � l for
some term s in C. We call C blocked if either it contains two active constraints
l � r and l � r′ such that r and r′ are not unifiable, or it contains two active
constraints l � r and ↓l. An inference is blocked if its conclusion is blocked. �
Our superposition calculus BLINC uses constrained clauses and bans inferences
with blocked conclusions. For that, we attach constraints to clauses, as follows.

Definition 4 (S-ordering). An S-ordering is a partial strict well-order � on
terms that is stable under substitutions. We use the function B� defined below
to attach constraints to clauses.

B�(s, l) := {↓u | u � l, u is non-variable and u � s}

�
BLINC is shown in Fig. 2. We assume a literal selection function satisfying the
standard condition on � and underline selected literals. The next example illus-
trates blocked BLINC inferences.

Example 1. We use the order � on terms as the S-ordering. A Sup� inference
of BLINC into 4 with 2 from our motivating example from page 2 results in

120 M. Hajdu et al.

Fig. 3. Inferences from Fig. 1 with blocked inferences in BLINC removed. Figure 3 illus-
trates the effectiveness of reducibility constraints when compared to Fig. 1: we removed
arcs corresponding to inferences blocked when the order � is used as the S-ordering.
Of the 14 original inferences as in Fig. 1, only 7 are not blocked in Fig. 3.

f(x, b) � x P (g(x, y), f(g(x, b), z)) .
P (g(x, y), g(x, b)) | {↓b, ↓g(x, y), ↓g(x, b), f(g(x, b), b) � g(x, b)}

Note that the conclusion is a constrained variant of clause 7 of Fig. 1. Now, the
superposition of 1 into g(x, y), and hence the following variant of clause 10 of
Fig. 1, is blocked:

g(x, b) � a P (g(x, y), g(x, b)) | {↓g(x, y), ↓g(x, b), f(g(x, b), b) � g(x, b)}
P (a, g(x, b)) | {↓b, ↓g(x, b), f(g(x, b), b) � g(x, b), g(x, b) � a}

Note that the conclusion is blocked by the active constraints g(x, b) � a and
↓g(x, b). Figure 3 shows the modified version of Fig. 1, when using the inference
rules of BLINC to generate fewer clauses than in Fig. 1. �
Example 2. Consider now a sequence of superposition inferences into 4 by 1

and then by 3 . That is, we consider the derivation 4 – 5 – 8 from Fig. 1 as:

g(a, x) � x

g(x, b) � a P (g(x, y), f(g(x, b), z))
P (a, f(g(x, b), z)) | {↓b, g(x, b) � a}

P (a, f(b, z)) | {↓a, ↓b, g(a, b) � a, g(a, b) � b}
The resulting conclusion is constrained and blocked, as we have two active con-
straints g(a, b) � a and g(a, b) � b. As such and as shown in Fig. 3, clause 8

(and also clause 12) will not be generated by BLINC, in contrast to Fig. 1. �

4 Model Construction in BLINC

This section shows completeness of BLINC, with a proof which resembles that of
Duarte and Korovin [13]. We start by adjusting terminology to our setting and
discussing key differences compared with standard completeness proofs.

Reducibility Constraints in Superposition 121

Definition 5 (Closure). Let C = C | Γ be a constrained clause and θ a sub-
stitution. The pair C · θ is called a closure and is logically equivalent to Cθ. A
closure (C | Γ) · θ is ground if Cθ | Γθ is ground, in which case we say that θ is
grounding for C | Γ and call (C | Γ) · θ a ground instance of C | Γ .

The set of all ground instances of C is denoted C∗. We will denote ground
closures by C, D, maybe with indexes. If N is a set of constrained clauses, then
N∗ is defined as

⋃
C∈N C∗. If C � D, we write C | Γ � D | Δ. Similarly, if

Cθ | Γθ � Dσ | Δσ, then we write (C | Γ) · θ � (D | Δ) · σ. �
A crucial part in the completeness proof of BLINC is reducing minimal coun-
terexamples to smaller ones. However, due to blocked inference conditions (5) in
Sup�, (2) in EqRes�, and (3) in EqFac�, such a counterexample reduction may
not be possible. We solve this problem in three steps:

1. Given a saturated set of clauses N , we construct a model for a subset of its
closures U(N) ⊆ N∗, namely, for so-called unblocked closures (Definition 6).

2. We show that if the empty clause � is not in U(N), then the model satisfies
each closure in U(N) (Theorem 1). That is, we show that counterexamples
in U(N) can be reduced to smaller counterexamples that are also in U(N).
This avoids the aforementioned problem with blocked inferences.

3. We then show that the model also satisfies all closures in N∗ (Theorem 2).

Definition 6 (Partial/Total Models, Blocked/Productive Closures).
Let N be a set of constrained clauses. We will define, for every closure C ∈ N∗,
the rewrite system RC and refer to all such rewrite systems as partial models.
The definition will be made by induction on the relation � on ground closures.
In parallel to defining RC, we also define the rewrite system

R≺C =
⋃
D≺C

RD.

The partial model RC will either be the same as R≺C, or obtained from R≺C by
adding a single rewrite rule. In the latter case will call the closure C productive.

The reduced closure of a ground closure C ·θ is defined as the closure C ·θ′ such
that for each variable x occurring in C, we have that θ′(x) is the normal form
of θ(x) in R≺C·θ. We call a ground closure reduced if its reduced form coincides
with this closure. Let C · θ be a ground closure and C · θ′ be its reduced form. We
say that C · θ is blocked w.r.t. N if R≺C·θ′ violates some constraint in Γθ′ that
is active in Cθ′. A closure that is not blocked w.r.t. N is called unblocked w.r.t.
N . Let C = (l � r ∨ C ′) | Γ . The closure C · θ is called productive if

(i) C · θ is false in R≺C·θ,
(ii) lθ � rθ is strictly maximal in Cθ,
(iii) lθ � rθ,
(iv) C ′θ is false in R≺C·θ ∪ {lθ → rθ},
(v) lθ is irreducible in R≺C·θ,
(vi) C · θ is unblocked w.r.t N .

122 M. Hajdu et al.

Now we define

RC·θ =
{

R≺C·θ ∪ {lθ → rθ}, if C · θ is productive;
R≺C·θ, otherwise.

R∞ =
⋃

C∈N∗ RC

Finally, we call R∞ the total model and define U(N) as the set of all closures in
N∗ unblocked w.r.t. N . �
This construction has two standard properties that we will use in our proofs:

1. RC |= C if and only if for all D � C we have RD |= C, if and only if R∞ |= C.
2. R∞ is non-overlapping, terminating and hence canonical.

The crucial difference between our model construction and the standard model
construction is the condition on productive closures to be unblocked w.r.t. N .
Let us now define our redundancy notions based on U(N) as follows.

Definition 7 (Redundant Clause/Inference). A constrained clause C is
redundant w.r.t. N if every ground instance of C is either blocked w.r.t. N , or
follows from smaller ground closures in U(N). An inference C1, ..., Cn � D is
redundant w.r.t. N if for each θ grounding for C1, . . . , Cn and D either

(i) one of C1 · θ, ..., Cn · θ,D · θ is blocked w.r.t. N , or
(ii) D · θ follows from the set of ground closures

{C | C ∈ U(N) and Ci · θ � C for some i}. �
Definition 8 (Saturation up to Redundancy). A set of constrained clauses
N is saturated up to redundancy if, given non-redundant constrained clauses
C1, ..., Cn ∈ N , any BLINC inference C1, ..., Cn � D is redundant w.r.t. N . �
From now on, let N be an arbitrary but fixed set of constrained clauses. We will
formulate a sequence of lemmas used in the completeness proof, whose proofs
are included in the the full version of the paper [15]. The following lemma is used
to show that unary inferences with an unblocked premise result in an unblocked
conclusion.

Lemma 1. (Unblocking Inferences) Suppose C,D ∈ N and θ and σ are
substitutions irreducible in R≺C·θ and in R≺D·σ, respectively. If C · θ � D · σ,
Γθ ⊇ Δσ and C · θ is unblocked w.r.t. N , then D · σ is unblocked w.r.t. N .

We next prove that the conclusion of a blocked inference is redundant, that is,
the conditions that block inferences in BLINC are correct.

Lemma 2. (Redundancy with Blocked Clauses) Let C be a constrained
clause. If C is blocked, then all ground instances of C are blocked w.r.t. N .

The next lemma resembles the standard lemma on counterexample reduction.

Lemma 3 (Unblocked Sup�). Suppose that (a) D = s �� t ∨ D | Γ is a
constrained clause in N , (b) D · θ a ground closure unblocked w.r.t. N , (c) θ is
irreducible in R≺D·θ, (d) sθ � tθ, (e) sθ is reducible in R≺D·θ.

Then there exist a constrained clause (l � r ∨ C | Π) ∈ N , a Sup�-inference

Reducibility Constraints in Superposition 123

l � r ∨ C | Π s[u] �� t ∨ D | Γ
(Sup�)

(s[r] �� t ∨ C ∨ D)σ | Δ

and a substitution τ such that (i) Dστ = Dθ, (ii) l � r∨C | Π ·στ is productive,
and (s[r] �� t ∨ C ∨ D)σ | Δ · στ is unblocked w.r.t. N .

We are now ready to show completeness of BLINC, starting with the following.

Theorem 1 (Model of U(N)). Let N be saturated up to redundancy and
� /∈ N . Then for each C ∈ U(N) we have RC |= C.

When RC |= C, we will simply say that C is true. Note that this implies that
RD |= C for all D � C, and also R∞ |= C. We say that C is false if it not true.

Here, we only prove a few representative cases and refer to [15] for complete
argumentation. Assume, by contradiction, that U(N) contains a ground closure
C such that RC �|= C. Since � is well-founded, then N∗ contains a minimal
unblocked closure C · θ such that RC·θ �|= C · θ.
Case 1. C is redundant w.r.t. N .

Proof. The closure C·θ is unblocked, so it follows from smaller closures C1, . . . , Cn

in U(N). Then there is some Ci which is false too, and we are done. �
Case 2. C contains a variable x such that xθ is reducible in R≺C·θ.

Proof. The reduced closure C · θ′ of C · θ is unblocked w.r.t. N , so C · θ′ ∈ U(N).
Since xθ � xθ′ and for all variables y different from x we have yθ � yθ′, we have
C · θ � C · θ′, then C · θ′ is true. Since yθ = yθ′ is true in R∞ for all variables y,
we also have that C · θ′ is equivalent to C · θ in R∞, hence C · θ is true and we
obtain a contradiction. �
Case 3. There is a reductive inference C1, . . . , Cn � D with C1, . . . , Cn ∈ N
which is redundant w.r.t. N such that (a) {C1 · θ, . . . , Cn · θ} ⊆ U(N), (b) D · θ
is unblocked w.r.t. N , (c) C · θ = max{C1 · θ, . . . , Cn · θ}, and (d) D · θ |= C · θ.
Proof. D · θ is implied by ground closures in U(N) smaller than C · θ. These
ground closures are then true in RC·θ, so D · θ is true, and hence C · θ is also true
in RC·θ, contradiction. �
Case 4. None of the previous cases apply, and a negative literal s �� t is selected
in C, i.e. C = s �� t ∨ C | Γ .

Proof. C · θ is false in RC·θ, so sθ ↓RC·θ tθ. W.l.o.g., assume sθ � tθ.

Subcase 4.1. sθ = tθ.

Proof. Then s and t are unifiable. Consider the EqRes� inference

s �� t ∨ C | Γ

Cσ | Γσ

124 M. Hajdu et al.

where σ = mgu(s, t). Take any ground instance D · ρ = (Cσ | Γσ) · ρ such that
σρ = θ; by the idempotence of σ, we have D · ρ = D · θ. Clearly, C · θ � D · θ and
D · θ implies C · θ. As C · θ � D · θ and Γσρ = Γσθ = Γθ, Lemma 1 implies that
D · θ is unblocked w.r.t. N . By Case 1, D is not redundant, hence D ∈ N . But
then D · θ is a false closure in U(N), which is strictly smaller than C · θ, so we
obtain a contradiction. �
Subcase 4.2. sθ � tθ.

Proof. By conditions on the literal selection, we assume that sθ � tθ is maximal
in C. By Lemma 3, there is a Sup� inference into sθ with a ground closure
such that the result C′ · θ is unblocked w.r.t. N . This closure is of the form
D · θ = (l � r ∨ D | Π) · θ and we have the following Sup� inference

l � r ∨ D | Π s[l′] �� t ∨ C | Γ

(s[r] �� t ∨ C ∨ D)σ | Δ

where σ = mgu(l, l′). Note that C′ = s[r] �� t ∨ C ∨ D and C′ · ρ = C′ · θ. Then,
C ·θ � C′ ·θ and D·θ and C′ ·θ imply C ·θ. Since C′ ·θ is unblocked w.r.t. N , using
Lemma 2, we get that C′ is not blocked w.r.t. N , and condition (5) of Sup� is
satisfied. Similarly to Case 4.1, we have that the conclusion is a smaller false
unblocked closure, so we obtain a contradiction. �
Next we show that for a saturated set of clauses N , if R∞ is a model for U(N),
then it is also a model of N∗, that is, R∞ satisfies also all blocked closures in
N∗. This follows from the next theorem.

Theorem 2 (Model of N∗). Let N be a saturated set of clauses. Every blocked
closure C · θ ∈ N∗ follows from U(N).

Using Theorems 1–2, we obtain completeness of BLINC.

Corollary 1 (Completeness of BLINC). Let N be saturated up to redun-
dancy. If N does not contain �, then N is satisfiable.

We conclude with a remark on constraint inheritance in BLINC. Note that in
the Sup� inference rule of Fig. 2, constraints are inherited only from the right
premise. It is possible to block more inferences without losing refutational com-
pleteness of BLINC, by allowing constraint inheritance from the left premise in
the Sup� rule as well. However, we cannot propagate constraints that are non-
active in the left premise, as they may become active in the conclusion, making
the inference blocked. This effect is illustrated in the following example.

Example 3. Consider a superposition into 1 with 3

g(x, b) � a g(a, x) � x

a � b | {↓a, ↓b, g(a, b) � a}
If b � a, then ↓a is the only active constraint in the conclusion. Consider a
superposition with 4 where constraints are inherited from both premises:

Reducibility Constraints in Superposition 125

a � b | {↓a, ↓b, g(a, b) � a} P (g(x, y), f(g(x, b), z))
P (g(x, y), f(g(x, a), z)) | {↓a, ↓b, g(a, b) � a, b � a}

In the conclusion, ↓b and b � a are both active, which blocks the inference. �

5 Redundancy Detection in BLINC

In this section we discuss redundancy detection in BLINC. We give sufficient
conditions for a clause to be redundant when inferences of a specific form are
applied. As usual, we call a simplifying inference, or simplification, any inference
such that one of the premises becomes redundant after the conclusion is added
to the current set of clauses. Inference rules whose instances are simplifications
are called simplification rules. When we display a simplification rule, we will
denote clauses that become redundant by drawing a line through them.

Definition 7 gives rise to two kinds of simplification criteria: (i) based on
blocking, and (ii) when one of the premises C ·θ follows from smaller constrained
clauses. The following definition captures the first redundancy criterion.

Definition 9 (Closure/Clause Blocked Relative to Closure/Clause).
A ground closure C is blocked relative to a ground closure D if for every set of
constrained clauses N , if D is blocked w.r.t. N∗, then C is blocked w.r.t. N∗

too. A constrained clause C is blocked relative to a constrained clause D, if every
ground instance of C is blocked relative to some ground instance of D. �
This notion will be used for defining simplification rules. We will next present
sufficient conditions for checking that a constrained clause is blocked relative to
another constrained clause. For example, each ground closure of a clause C | ∅ is
unblocked w.r.t. any set N , hence everything is blocked relative to that ground
closure. Further, each ground closure with a reducible substitution is blocked
relative to its reduced closure.

Definition 10 (Well-Behaved Constrained Clause). Let C = C | Γ be a
constrained clause. We say that C is well-behaved if (i) all constraints in Γ are
active in C, and for each γ ∈ Γ , (ii) if γ = ↓l, then ↓u ∈ Γ for all u � l, and (iii)
if γ = l � r, then ↓u ∈ Γ for all u � l and l contains all variables of r. �
Example 4. The clause P (a, f(b, z)) | {↓a, g(a, b) � a} is not well-behaved but
P (a, f(b, z)) | {↓a, ↓b, g(a, b) � a} is. The clause a � b | {↓a, ↓b, g(a, b) � a} is
not well-behaved since it contains constraints not active in the clause. �
Lemma 4. (Relatively Blocked Well-Behavedness) Let C = C | Γ and
D = D | Δ be well-behaved constrained clauses, and σ a substitution. Then C is
blocked relative to D if C � Dσ and Γ ⊇ Δσ.

In the sequel, we assume that each constrained clause is well-behaved. We next
adjust two standard simplifications within superposition [14], namely demodula-
tion in Theorem 3 and subsumption in Theorem 4. Our analogue of demodulation
is the following special case of Sup� in BLINC:

126 M. Hajdu et al.

l � r | Δ �����C[lσ] | Γ
(Dem�)

C[rσ] | Γ
where

(1) lσ � rσ,
(2) C[lσ] � (l � r)σ,
(3) Δσ ⊆ Γ .

Theorem 3. (BLINC Demodulation) Dem� is a simplification rule. That is,
C[lσ] | Γ is redundant w.r.t. any constrained clause set that contains l � r | Δ
and C[rσ] | Γ .

In addition to simplification rules, we will also consider deletion rules. These
rules delete a (redundant) constrained clause from N provided that N contains
another constrained clause or set of constrained clauses. The below deletion rule
is our analogue of subsumption:

D | Δ ���C | Γ
(Subs�) where (1) Dσ � C, for some substitution σ.

(2) Δσ ⊆ Γ ,

Theorem 4. (BLINC Subsumption) Subs� is a deletion rule. That is, C | Γ
is redundant w.r.t. any constrained clause set that contains D | Δ.

We also introduce two deletion rules based on properties of the constraints of
a clause. Namely, in Theorem 5 we introduce a deletion rule resembling “basic
blocking” [25], whereas Theorem 6 exploits deletion based on rewrite orders.
Consider therefore the following rule:

l � r | Δ ���C | Γ
(Block�) where

(1) C � (l � r)σ and lσ � rσ,
(2) Δσ ⊆ Γ ,
(3) either (i) ↓lσ ∈ Γ

or (ii) lσ � r′ ∈ Γ and r′ � rσ.

Theorem 5. (BLINC Blocking) Block� is a deletion rule. That is, C | Γ is
redundant w.r.t. any constrained clause that contains l � r | Δ.

Our last deletion inference relies on the fact that all rewrite rules in any partial
model have to be oriented left-to-right according to �. That is,

��������
C | Γ ∪ {l � r}

(Orient�) where (1) r � l,
(2) C � (l � r).

Theorem 6. (BLINC Orientation) Orient� is a deletion rule. That is, C |
Γ ∪ {l � r} is redundant w.r.t. any constrained clause set.

We illustrate the above simplification and deletion rules with the following
example.

Example 5. Consider the following well-behaved constrained clauses:

(1) P (g(a, x), b) | {↓b, f(x, b) � b}, (2) P (g(y, z), w) | {f(z, w) � b}
(3) g(a, z) � b | {↓b}, (4) f(x, y) � a | ∅

By Theorem 4, clause (2) subsumes clause (1). By Theorem 3, clause (1) can
be simplified with clause (3) into P (b, b) | {↓b, f(x, b) � a}. Finally, assuming
b � a, clauses (1) and (2) are redundant w.r.t. clause (4) by Theorem 5. �

Reducibility Constraints in Superposition 127

Remark 1. (Simplification Heuristics via Unblocking) We note that fur-
ther simplifications (and heuristics) can be implemented by removing constraints
from constrained clauses. This process of removing constraints is captured via
the following rule:

���C | Γ
(Unblock)

C | Δ
where Δ ⊂ Γ .

Clearly, Unblock is a simplification rule, as removing constraints from a con-
strained clause preserves completeness in BLINC. �
We note that using the general notion of well-behaved clauses and Lemma 4, any
further redundancy elimination technique can be adapted to BLINC. We conclude
this section by showing that Theorems 3–6 can be adjusted and combined using
the ground redundancy of Definition 7. This results in stronger redundancy
detection, as the following example illustrates.

Example 6. Consider the following Sup� inference:

g(f(v, w), a) � g(w, a) | ∅ f(g(f(x, y), z), f(y, x)) � z | ∅
σ =

⎧⎨
⎩

v �→ x,
w �→ y,
z �→ a

⎫⎬
⎭ ,

f(g(y, a), f(y, x)) � a | Δ

where Δ = {↓f(x, y), ↓f(y, x), ↓a, g(f(x, y), a) � g(y, a)}. Note that the conclu-
sion is a well-behaved constrained clause. The conclusion cannot be simplified
by clauses

(1) f(x, y) � f(y, x) and (2) f(x, x) � x,

using any of Theorems 3–6. However, using similar conditions as in the Block�
deletion rule, we can do the following. Let θ be a substitution that makes the
conclusion ground. By a comparative case distinction on xθ and yθ,

(i) if xθ � yθ, then using clause (1), by ↓f(x, y) ∈ Δ and f(x, y)θ � f(y, x)θ;
(ii) if xθ = yθ, then using clause (2) by ↓f(x, y) ∈ Δ (or ↓f(y, x) ∈ Δ),

f(x, y)θ = f(x, x)θ � xθ (or f(y, x)θ = f(x, x)θ � xθ); and
(iii) if xθ ≺ yθ, then using clause (1) again, by ↓f(y, x) ∈ Δ and f(y, x)θ �

f(x, y)θ;

we conclude that the ground closure (f(g(y, a), f(y, x)) � a | Δ) · θ is redundant
in all cases, hence the conclusion is redundant w.r.t. clauses (1) and (2). �

Fig. 4. Experimental comparison using variants BLINC in Vampire, using 1455 UEQ
problems and 2422 PEQ problems.

128 M. Hajdu et al.

6 Evaluation

We implemented2 BLINC in Vampire [21], together with the simplification rules
of Sect. 5. We have also implemented a redundancy check called orderedness that
eagerly checks if the result of a superposition can be deleted. We experimented
with several variants of BLINC with redundancy elimination (all techniques dis-
cussed in Sect. 5), using different heuristics for removing constraints from clauses
via Unblock: (i) blinc1 does not use Unblock; (ii) blinc2 uses Unblock to remove
constraints inherited from premises, hence only conclusions of Sup� will contain
constraints; (iii) blinc3 uses Unblock occasionally on the clause that would sim-
plify the most clauses in the search space when unconstrained; (iv) blinc4 uses
Unblock on all clauses at activation. We compare these to standard superposition
(baseline).

Solving unit equality (UEQ) problems is still very hard for superposition-
based theorem provers, a claim substantiated by results in the CADE ATP
System Competition (CASC) [30]. For this reason, our evaluation focused on
the UEQ domain of the TPTP benchmark suite, version 8.1.2 [31]. Since our
work does not consider (variants of) resolution, but proper superposition, we
also restricted further evaluation to the pure equality (PEQ) benchmarks of
TPTP. As a result, our experiments use all benchmarks of the unit equality
(UEQ) and pure equality (PEQ) divisions from TPTP version 8.1.2 [31].

All our experiments are based on a Discount saturation loop [11] and a
Knuth-Bendix ordering, with a timeout of 100 s and without AVATAR [32]. Our
results are summarized in Fig. 4. The results show that blinc1 performs poorly
compared to baseline, blinc3 and blinc4, and that blinc2 performs only
slightly better than blinc1. The variant blinc3 performs much better than
blinc1 and blinc2 but it is still does not solve any new problems. The variant
blinc4 performs comparably to the state-of-the-art baseline but solves differ-
ent problems, 28 uniquely. Our preliminary results are therefore encouraging
for complementing state-of-the-art superposition proving with BLINC reasoning,
possibly in a portfolio solver.

We also analysed the impact of BLINC variants on skipping superposition
inferences during proof search. Figure 5 shows the distribution of benchmarks
by percentage of skipped superposition inferences among all superposition infer-
ences during our runs for blinc variants. blinc1 skips more than half of super-
position inferences in a significant number of benchmarks, while the least restric-
tive blinc4 still reduces the number of superposition inferences by a significant
amount in most benchmarks.

2 https://github.com/vprover/vampire/commit/9c42b448996947e8.

https://github.com/vprover/vampire/commit/9c42b448996947e8

Reducibility Constraints in Superposition 129

Fig. 5. Distribution of UEQ (top) and PEQ (bottom) benchmarks by ratio of skipped
superpositions to all superpositions, showing also average (avg) and median (mdn).
For example, using blinc1, on average 30.2%, resp. 26.0% of superpositions can be
skipped in UEQ, resp. PEQ benchmarks.

7 Related Work

The basicness restriction [16,27] was extended to first-order logic, for exam-
ple, in basic superposition [26] and basic paramodulation [7]. The former uses
ground unification, the latter closures and variable abstraction to capture irre-
ducibility constraints. In basic paramodulation, redex orderings are used simi-
larly to S-orderings in our framework. BLINC expresses more fine-grained block-
ing, for example, distinguishing between different superpositions on the same
term. Related notions in basic superposition have also been formalized [33].

Several critical pair criteria in completion-based theorem proving use irre-
ducibility notions. Blocking [4] is similar to basicness, while compositeness [4,17]
forbids any superpositions into terms with reducible subterms. General superpo-
sition [35,36] avoids superpositions when more general ones or ones symmetric
in variables have been performed. Our BLINC framework handles all such restric-
tions. These criteria are instances of the connectedness criterion [3], which has
been also explored in ground joinability [1], ground reducibility [22] and ground
connectedness [13].

More general irreducibility constraints were considered in completion [23] and
in superposition [18], the latter using a semantic tree method for completeness.
Ordering constraints [9,10,20] and unification constraints [8,28] have also been
considered, usually moving them to the calculus level. Extending and generaliz-
ing our BLINC framework with such constraints is a future challenge.

130 M. Hajdu et al.

8 Conclusions

We introduce reducibility constraints to block inferences during superposi-
tion reasoning. Our resulting BLINC calculus is refutationally complete and is
extended with redundancy elimination, allowing us to maintain efficient rea-
soning when compared to state-of-the-art superposition proving. Integrating our
approach with further inference-blocking constraints, such as blocking more gen-
eral or outermost superpositions, is an interesting line for future work. Adapting
our framework to domain-specific inference rules, e.g. in linear arithmetic or
higher-order superposition, is another line for future work.

Other interesting directions are (i) the use of a stronger semantics of con-
straints, as in Definition 10, and (ii) a “hybrid calculus”, improving on blinc3,
where we still use constraints for blocking generating inferences but relax them
whenever they prevent us from applying a simplification or a deletion rule.

Acknowledgements. We thank Konstantin Korovin for fruitful discussions. We
acknowledge funding from the ERC Consolidator Grant ARTIST 101002685, the TU
Wien SecInt Doctoral College, the FWF SFB project SpyCoDe F8504, the WWTF
ICT22-007 grant ForSmart, and the Amazon Research Award 2023 QuAT.

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations
in equational theorem proving. J. Symb. Comput. 36(1), 217–233 (2003). https://
doi.org/10.1016/S0747-7171(03)00024-5

2. Baader, F., Nipkow, T.: Equational problems. In: Term Rewriting and All
That, p. 58-92. Cambridge University Press (1998). https://doi.org/10.1017/
CBO9781139172752

3. Bachmair, L.: Canonical Equational Proofs. Progress in theoretical computer sci-
ence, Birkhäuser (1991). https://doi.org/10.1007/978-1-4684-7118-2

4. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Com-
put. 6(1), 1–18 (1988). https://doi.org/10.1016/S0747-7171(88)80018-X

5. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem
proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction: A Basis for
Applications, vol. I, chap. 11, pp. 353–397. Springer (1998). https://doi.org/10.
1007/978-94-017-0437-3

6. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19–99. Elsevier and MIT Press (2001). https://doi.org/10.
1016/B978-044450813-3/50004-7

7. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation and
superposition. In: CADE, pp. 462–476 (1992). https://doi.org/10.1007/3-540-
55602-8 185

8. Bhayat, A., Schoisswohl, J., Rawson, M.: Superposition with delayed unification.
In: CADE, pp. 23–40 (2023). https://doi.org/10.1007/978-3-031-38499-8 2

9. Comon, H.: Solving symbolic ordering constraints. Int. J. Found. Comput. Sci.
01(04), 387–411 (1990). https://doi.org/10.1142/S0129054190000278

10. Comon, H., Nieuwenhuis, R., Rubio, A.: Orderings, AC-theories and symbolic con-
straint solving (extended abstract). In: Annual IEEE Symposium on Logic in Com-
puter Science, pp. 375–385 (1995). https://doi.org/10.1109/LICS.1995.523272

https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-1-4684-7118-2
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1007/978-94-017-0437-3
https://doi.org/10.1007/978-94-017-0437-3
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1007/3-540-55602-8_185
https://doi.org/10.1007/3-540-55602-8_185
https://doi.org/10.1007/978-3-031-38499-8_2
https://doi.org/10.1142/S0129054190000278
https://doi.org/10.1109/LICS.1995.523272

Reducibility Constraints in Superposition 131

11. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT - a distributed and learning
equational prover. J. Autom. Reason. 18(2), 189–198 (1997). https://doi.org/10.
1023/A:1005879229581

12. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465-476 (1979). https://doi.org/10.1145/359138.359142

13. Duarte, A., Korovin, K.: Ground joinability and connectedness in the superposi-
tion calculus. In: IJCAR, pp. 169–187 (2022). https://doi.org/10.1007/978-3-031-
10769-6 11

14. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: IJCAR, pp. 297–315 (2020). https://doi.org/10.1007/978-3-030-
51074-9 17

15. Hajdu, M., Kovács, L., Rawson, M., Voronkov, A.: Reducibility constraints in
superposition. EasyChair Preprint no. 12142 (EasyChair, 2024)

16. Hullot, J.M.: Canonical forms and unification. In: CADE, pp. 318–334 (1980).
https://doi.org/10.1007/3-540-10009-1 25

17. Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be con-
sidered in the knuth-bendix completion procedure. J. Symb. Comput. 6(1), 19–36
(1988). https://doi.org/10.1016/S0747-7171(88)80019-1

18. Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with Symbolic Constraints.
Research Report RR-1358, INRIA (1990)

19. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970,
pp. 342–376. Springer (1983). https://doi.org/10.1007/978-3-642-81955-1 23

20. Korovin, K., Voronkov, A.: Knuth-bendix constraint solving Is NP-complete. In:
Automata, Languages and Programming. pp. 979–992 (2001). https://doi.org/10.
1007/3-540-48224-5 79

21. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: CAV, pp.
1–35 (2013). https://doi.org/10.1007/978-3-642-39799-8 1

22. Löchner, B.: A redundancy criterion based on ground reducibility by ordered
rewriting. In: IJCAR, pp. 45–59 (2004). https://doi.org/10.1007/978-3-540-25984-
8 2

23. Lynch, C., Snyder, W.: Redundancy criteria for constrained completion. In: RTA,
pp. 2–16 (1993). https://doi.org/10.1007/978-3-662-21551-7 2

24. McCune, W.: Solution of the robbins problem. J. Autom. Reason. 19, 263–276
(1997). https://doi.org/10.1023/A:1005843212881

25. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. in: handbook
of automated reasoning, vol. I, chap. 7, pp. 371–443. Elsevier and MIT Press (2001).
https://doi.org/10.1016/B978-044450813-3/50009-6

26. Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: ESOP, pp. 371–
389 (1992). https://doi.org/10.1007/3-540-55253-7 22

27. Nutt, W., Réty, P., Smolka, G.: Basic narrowing revisited. J. Symb. Comput. 7(3–
4), 295–317 (1989). https://doi.org/10.1016/S0747-7171(89)80014-8

28. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory instan-
tiation in saturation-based reasoning. In: TACAS, pp. 3–22 (2018). https://doi.
org/10.1007/978-3-319-89960-2 1

29. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: CADE,
pp. 495–507 (2019). https://doi.org/10.1007/978-3-030-29436-6 29

30. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

31. Sutcliffe, G.: The logic languages of the TPTP world. Logic J. IGPL (2022).
https://doi.org/10.1093/jigpal/jzac068

https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1145/359138.359142
https://doi.org/10.1007/978-3-031-10769-6_11
https://doi.org/10.1007/978-3-031-10769-6_11
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1016/S0747-7171(88)80019-1
https://doi.org/10.1007/978-3-642-81955-1_23
https://doi.org/10.1007/3-540-48224-5_79
https://doi.org/10.1007/3-540-48224-5_79
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-540-25984-8_2
https://doi.org/10.1007/978-3-540-25984-8_2
https://doi.org/10.1007/978-3-662-21551-7_2
https://doi.org/10.1023/A:1005843212881
https://doi.org/10.1016/B978-044450813-3/50009-6
https://doi.org/10.1007/3-540-55253-7_22
https://doi.org/10.1016/S0747-7171(89)80014-8
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1093/jigpal/jzac068

132 M. Hajdu et al.

32. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: CAV,
pp. 696–710 (2014). https://doi.org/10.1007/978-3-319-08867-9 46

33. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-
work for saturation theorem proving. J. Autom. Reason. 66(4), 499–539 (2022).
https://doi.org/10.1007/S10817-022-09621-7

34. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS Version 3.5. In: CADE, pp. 140–145 (2009). https://doi.org/10.1007/978-
3-642-02959-2 10

35. Zhang, H., Kapur, D.: Consider only general superpositions in completion proce-
dures. In: RTA, pp. 513–527 (1989). https://doi.org/10.1007/3-540-51081-8 129

36. Zhang, H., Kapur, D.: Unnecessary inferences in associative-commutative com-
pletion procedures. In: Mathematical Systems Theory (1990). https://doi.org/10.
1007/BF02090774

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/S10817-022-09621-7
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/3-540-51081-8_129
https://doi.org/10.1007/BF02090774
https://doi.org/10.1007/BF02090774
http://creativecommons.org/licenses/by/4.0/

First-Order Automatic Literal Model
Generation

Martin Bromberger1, Florent Krasnopol1,2, Sibylle Möhle1,
and Christoph Weidenbach1(B)

1 Max Planck Institute for Informatics, Saarbrucken, Germany
{mbromber,fkrasnopol,smoehle,weidenbach}@mpi-inf.mpg.de

2 École Normale Supérieure, Paris-Saclay, France

Abstract. Given a finite consistent set of ground literals, we present
an algorithm that generates a complete first-order logic interpretation,
i.e., an interpretation for all ground literals over the signature and not
just those in the input set, that is also a model for the input set. The
interpretation is represented by first-order linear literals. It can be effec-
tively used to evaluate clauses. A particular application are SCL stuck
states. The SCL (Simple Clause Learning) calculus always computes with
respect to a finite number of ground literals. It then finds either a con-
tradiction or a stuck state being a model with respect to the considered
ground literals. Our algorithm builds a complete literal interpretation
out of such a stuck state model that can then be used to evaluate the
clause set. If all clauses are satisfied an overall model has been found. If it
does not satisfy some clause, this information can be effectively explored
to extend the scope of ground literals considered by SCL.

1 Introduction

Explicit and effective model representations as well as model building out of a
set of first-order clauses have a long tradition [3,10,12,16,20,24,32,41,48,50,51].
In addition, they naturally arise out of decision procedures for decidable first-
order clause set fragments [1–3,11,14,15,18,19,22,25–31,33,36,38,39,43,44,46,
52–55]. The problem we are studying here is to the best of our knowledge new:
given a finite set of consistent ground literals, find a finite representation of an
overall, typically infinite Herbrand style interpretation, satisfying those ground
literals. Of course, there are trivial solutions to this problem, e.g., by assigning
any missing ground literal to true or false. Projecting the results of [23] to first-
order logic results in such a trivial solution. However such a solution will not
fit our motivating application: the family of SCL calculi [6,7,9,21,37] where
we here concentrate on the case of first-order logic without equality. Similar to
CDCL [40], SCL computes resolution inferences with respect to a partial ground
model, i.e., a consistent sequence of first-order ground literals. The number of
ground literals considered by SCL is finite at any point in time, thanks to an
upper bound ground literal β with respect to a well-founded (quasi)-ordering.
For the purpose of this paper we simply consider the number of symbols in a
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 133–153, 2024.
https://doi.org/10.1007/978-3-031-63498-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-63498-7_9

134 M. Bromberger et al.

literal with respect to ≤. In this context SCL either produces the empty clause
with respect to β or a partial model satisfying all first-order clause instances
smaller than β. In case of such a partial model we want to extend it to an overall
interpretation for the clause set and then check whether this interpretation is a
model for the first-order clause set considered, or, if not, find a suitable extension
to β that then covers false clauses with respect to the generated interpretation.
So all considered ground literals are instances of existing literals from some
clause set. Therefore, we look for a solution that respects the term structure
of the ground literals. Our approach starts with a universal relation and then
refines it according to the term structure of the considered ground literals until
it fits all ground literals,

For illustration, consider the following very simple example. For the three
first-order clauses

¬P (x) ∨ P (g(g(x)) P (a)
¬P (g(g(g(g(a)))))

an SCL run with β = P (g(g(g(a)))), i.e., exclusively atoms smaller or equal
P (g(g(g(a)))) are dealt with, where for the ordering we simply count symbols,
a partial model generated by SCL could be

[P (a), P (g(g(a))), P (g(a))1, P (g(g(g(a))))]

where the third literal is decided and the others are propagated from the above
clauses. It is a model for all ground instances with literals smaller or equal
P (g(g(g(a)))), hence, excluding ¬P (g(g(g(g(a))))). Our model building calculus
would start with state

({P (a), P (g(g(a))), P (g(a)), P (g(g(g(a))))}; ∅; {P (x)}; ∅)

meaning that the initial model assumption for P is the universal relation, i.e., P
holds on all ground terms. Processed ground literals are moved from the first to
the second component of the state and final literal interpretation literals from
the third to the fourth component by the algorithm. Thus finally, all processed
ground literals are moved to the second component and the final literal model is
contained in the fourth component while the other two are empty. One applica-
tion of rule Solve, see page 7, immediately establishes the model P (x), because
it satisfies all ground literals. Of course, this interpretation does not satisfy the
three clauses without the restriction to instances bounded by β. Still, we can
use our interpretation to find the smallest clause instance falsified by it, in our
example ¬P (g(g(g(g(a))))), and use the maximal literal in that clause as our
new β = P (g(g(g(g(a))))). Running SCL with the new β will immediately yield
the contradiction. Now consider a small modification of the three clauses where
we replace the final unit clause by a disjunction.

¬P (x) ∨ P (g(g(x)) P (a)
¬P (g(g(g(g(a))))) ∨ ¬P (g(g(g(a))))

Running SCL on this clause set with β = P (g(g(g(a)))) may yield the same
partial model as before and hence the same overall interpretation P (x). Again

First-Order Automatic Literal Model Generation 135

the final clause is falsified by the interpretation yielding a new minimal β =
P (g(g(g(g(a))))). Running SCL again with this β yields a final partial model

[P (a), P (g(g(a))), P (g(g(g(g(a))))),¬P (g(g(g(a)))),¬P (g(a))1]

and now starting with this ground model

({P (a), P (g(g(a))), P (g(g(g(g(a))))),¬P (g(g(g(a)))),¬P (g(a))}; ∅; {P (x)}; ∅)

the initial candidate interpretation P (x) needs to be refined, because it has pos-
itive and negative instances among the set of ground literals. Refining means, we
exhaustively instantiate P (x) until no model candidate atom has both positive
and negative instances by rule Refine, see page 6. This eventually yields

(∅; {P (a), P (g(g(a))), P (g(g(g(g(a))))),¬P (g(g(g(a)))),¬P (g(a))};
∅; {P (a),¬P (g(a)), P (g(g(a))),¬P (g(g(g(a)))), P (g(g(g(g(x)))))})

which in fact covers all ground literals and constitutes a model for the three
clauses.

The paper is now organized as follows: after fixing some notions and notation
in Sect. 2, and a short introduction to SCL, Sect. 3, our contributions are con-
tained in Sect. 4. Important results are: (i) out of a set of ground literals we can
generate in polynomial time an overall interpretation, Lemma 4, Lemma 8 and
Lemma 5; (ii) our literal model representation satisfies the well-known require-
ments for explicit model representations [10], in particular supports effective
clause evaluation, see page 13; (iii) the literal model representation can effec-
tively be used to find a new minimal β in case it does not satisfy the clause set,
Lemma 13. The paper ends with a discussion of the obtained results and further
research directions, Sect. 5.

2 Preliminaries

We assume a first-order language without equality over a signature Σ = (Ω,Π)
of operator symbols and predicates, respectively. All signature symbols come
with a fixed arity. Terms, atoms, literals, clauses and clause sets are defined
as usual, where in particular clauses are identified both as disjunctions and
multisets of literals. Then N denotes a clause set; C,D denote clauses; L,K,H
denote literals; A,B denote atoms; P,Q,R denote predicates; t, s terms; f, g, h
function symbols; a, b, c constants; and x, y, z variables. We write f/1 or R/2
for a function symbol of arity 1 or predicate symbol of arity 2, respectively. The
complement of a literal is denoted by the function comp. The atom of a literal by
the function atom, i.e., atom(¬A) = A and atom(A) = A. Semantic entailment
|= is defined as usual where variables in clauses are assumed to be universally
quantified. Substitutions σ, τ are total mappings from variables to terms, where
dom(σ) := {x | xσ �= x} is finite and codom(σ) := {t | xσ = t, x ∈ dom(σ)}.
Their application is extended to literals, clauses, and sets of such objects in the

136 M. Bromberger et al.

usual way. A term, atom, clause, or a set of these objects is ground if it does
not contain any variable. A substitution σ is ground if codom(σ) is ground.
A substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. A literal L is an atom instance of a literal K if atom(K)σ =
atom(L) for some σ. A term, literal is called linear if any variable occurs at most
once in the term, literal. The function mgu denotes the most general unifier of
two terms, atoms, literals. We assume that any mgu of two terms or literals does
not introduce any fresh variables and is idempotent.

A position is a word over the naturals with empty word ε. The set of
positions of a term, atom is inductively defined by: pos(x) = {ε} if x is a
variable, pos(f(t1, . . . , tn)) = {ε} ∪ ⋃n

i=1{ip | p ∈ pos(ti)} for terms, and
pos(P (t1, . . . , tn)) = {ε} ∪ ⋃n

i=1{ip | p ∈ pos(ti)} for atoms. For a position
p ∈ pos(t) we define t|p = t if p = ε and f(t1, . . . , tn)|p = ti|p′ if p = ip′. More-
over, we define by t[s]p the term, atom one receives by replacing the subterm t|p
at position p of t with the term s. The size of a term t, atom A is defined by
size(t) = |pos(t)| or size(A) = |pos(A)|. The size of a substitution σ is defined
by size(σ) =

∑
x∈dom(σ) size(xσ). The size of a set of terms, atoms, substitution

is the sum of the size of its members. A position p ∈ pos(t) is maximal in t
if for any other position q ∈ pos(t) we have |q| ≤ |p|. The depth of a position
p is 0 if p = ε and |p| otherwise. The depth of a term t, atom A is the max-
imal depth of any position in t, A, i.e., depth(t) = max{|p| | p ∈ pos(t)} and
depth(A) = max{|p| | p ∈ pos(A)}, respectively. The depth of a term s in a term
t is the depth of a maximal position p such that t|p = s.

Two literals are inconsistent if they have different sign and their atoms are
unifiable. A set of literals is consistent if it does not contain a pair of inconsistent
literals. A literal interpretation M is a finite set of consistent literals. A literal
interpretation I is complete with respect to a signature Σ if for any Σ ground
atom A there is a literal K ∈ I such that atom(K)σ = A for some σ. A literal
interpretation I satisfies a ground literal K, I |= K if there is an L ∈ I such
that Lσ = K for some σ. It satisfies a non-ground literal K if it satisfies all
groundings of K.

We overload notation for sets where “,” is overloaded for disjoint union, and
disjoint addition, e.g., “Γ1, Γ2” stands for Γ1 ∪ Γ2 and Γ1, L stands for the set
Γ1 ∪ {L}.

3 SCL: Clause Learning from Simple Models

The family of SCL calculi (short “Simple Clause Learning”) [6,9,21,37] lifts
CDCL (Conflict-Driven Clause Learning) from propositional logic [34,42,49] to
variants of first-order logic. The idea is to have superposition-style resolutions on
non-ground, first-order clauses but instead of the usual static order that guides
them, SCL uses as its guide ground partial models Γ , i.e., sequences of ground
literals, also called trails. A trail for a clause set N is constructed/extended by
guessing literals via so called Decisions and by propagating literals based on the
current trail and the current clauses in N [9]. This construction continues until

First-Order Automatic Literal Model Generation 137

we determine that Γ falsifies a ground instance Cσ of a clause C ∈ N . The
conflict between Γ and C is then resolved by applying Resolution to C and the
clauses used for propagation during the construction of Γ . At the end of these
resolutions, SCL learns a new clause D and a prefix Γ ′ of Γ from which D can
be propagated to start the construction of the next trail, which is guaranteed to
never encounter the same conflict due to D. Furthermore D is not redundant,
in particular, not subsumed by any clause.

The maximal length of the trail is always finitely bounded by all literals
being smaller than a fixed ground literal β. In case all ground literals have been
explored and not clause is falsified this constitutes a so called stuck state. In a
stuck state the trail is model for all ground clause instantiations smaller β, but
not in general.

In its first, original version [21], the focus of the SCL calculus is on deciding
the Bernays-Schoenfinkel class without equality. Moreover, the original version is
already a sound and refutationally complete semi-decision procedure for general
first-order logic without equality that guarantees non-redundant clause learning.
Subsequently, SCL has been extended to handle theories [6] and first-order logic
with equality [37].

In the meantime, there exists a refined version [9] unifying and extending
the previous versions [6,37] for first-order logic called SCL(FOL). In particular,
this version introduces a refined Backtrack rule and a refined reasonable strat-
egy criterion. In parallel we proved correctness and soundness of SCL(FOL) in
Isabelle [5]. The Isabelle SCL(FOL) version relaxes some of the original require-
ments. SCL computations are performed with respect to a quasi-ordering � on
ground atoms where the strict part is well-founded. We adopt this setting also
in this paper by instantiating � with symbol counting and ≤. SCL(FOL) is only
allowed to add literals L to the trail Γ with atom(L) � β for some atom β. Note
that the bounding atom β may grow, but only if we reach a stuck state, where
Γ |= gnd�β(N) and where the function gnd�β computes the set of all ground
instances of a clause set where the grounding is restricted to produce literals L
with atom(L) � β. This guarantees that SCL(FOL) (with a reasonable strategy)
will always find a refutation if the input clause set is unsatisfiable. Moreover, for
a fixed β, SCL(FOL) turns into a decision procedure for gnd�β(N). And even
if we allow β to grow, SCL(FOL) regularly visits partial models Γ that at least
satisfy gnd�β(N), that may even be extendable to full models for N , or at least
guide the selection for our next bounding literal β′ [8].

4 Generating Models

A motivation for our model generating algorithm is the extension of SCL ground
trail Γ out of a stuck state to a complete literal interpretations. Such an inter-
pretation either satisfies the considered clause set, or it falsifies some clause. The
latter information can then be used to extend the SCL search for a model or a
contradiction. Our extension from Γ is not trivial, e.g., by assigning all atoms
beyond Γ to true. Instead, it respects the literal structure in Γ and naturally
extends it to a complete literal interpretation.

138 M. Bromberger et al.

The starting point is simply a set of ground literals and the finite signature
used to build the set. The algorithm is presented by three abstract rewrite rules
operating on a state in a non-deterministic way. The state is a tuple (Γ ;Δ; I;M)
where Γ , Δ are consistent sets of ground literals, M is a set of linear literals
that defines a partial interpretation such that M |= L for each L ∈ Δ and M
does not have any conflict with Γ ; I is a set of linear atoms such that I ∪ M
represents a complete literal interpretation; initially M is empty and I the set
{P (x1, . . . , xn)} for some predicate P and linear atom P (x1, . . . , xn), denoting
the universal relation for P . Processed literals/atoms are moved by the rewrite
rules from Γ to Δ and I to M , respectively. The rewrite calculus then builds an
overall interpretation of P according to Γ where we assume that Γ only contains
P literals. So given a set of ground literals for each occurring predicate a separate
run starting with the respective literals is needed.

The start state is (Γ ; ∅; {P (x1, . . . , xn)}; ∅) for a finite consistent set of ground
literals Γ over P and linear atom P (x1, . . . , xn) and a final state is (∅;Δ; ∅;M)
where we will show M |= Γ . We assume a finite signature Σ.

The first rule Refine covers the situation where some atom A in I has both
positive and negative instances in Γ . Since Γ is consistent, the atom A can be
split into instances Ai of itself and each of the resulting instances is guaranteed
to eventually have only positive or negative instances in Γ . Note that this may
require repeated applications of the rule Refine.

Refine (Γ ;Δ; I, P (t1, . . . , tn);M)
⇒mod (Γ ;Δ; I,∪fi/k∈Ω{P (t1, . . . , tn){x
→ fi(yi1 , . . . , yki

)}};M)
provided P (t1, . . . , tn)|p = x, fi are all function symbols (including constants)
from Ω and ki denotes their respective arity, all variables in fi(yi1 , . . . , yki

) are
fresh, different variables, and p is a minimal variable position in P (t1, . . . , tn) for
which there exist literals P (l1, . . . , ln) and ¬P (r1, . . . , rn) in Γ such that both are
atom instances of P (t1, . . . , tn), and the atoms P (l1, . . . , ln)|p and P (r1, . . . , rn)|p
are not unifiable

Due to refinement and the construction of the final complete literal interpretation
it may happen that certain atoms in I do not have any instances in Γ . They are
then moved to the final representation of the interpretation by rule Clean.

Clean (Γ ;Δ; I, P (t1, . . . , tn);M)
⇒mod (Γ ;Δ; I;M,P (t1, . . . , tn))

provided P (t1, . . . , tn) has no atom instance in Γ

Actually, the atom P (t1, . . . , tn) could be added positively or negatively to the
final literal interpretation. In favor of Theorem 12 we stick here to adding all
literals without instances positively. If all instances of some atom in I from Γ
have an identical sign, they are solved and both the atom and the instances can
be removed from I and Γ by rule Solve, respectively.

Solve (Γ ;Γ ′;Δ; I, P (t1, . . . , tn);M)
⇒mod (Γ ;Δ,Γ ′; I;M,#P (t1, . . . , tn))

First-Order Automatic Literal Model Generation 139

provided Γ ′, Γ ′ �= ∅, consists only of positive literal instances of P (t1, . . . , tn) or
only of negative literal instances; Γ contains no literal instances of P (t1, . . . , tn);
= ¬ if the literals in Γ ′ are negative and # is empty otherwise

Example 1. Let Σ = ({a/0, f/1, g/1}, {P/3}) be a signature. Now consider Γ =
{K,L} where K = P (a, f(a), a), L = ¬P (a, g(a), a) over the signature Σ. An
execution trace of ⇒mod is as follows:

1 : ({K,L}; ∅; {P (x1, x2, x3)}; ∅)
2 : ⇒Refine

mod ({K,L}; ∅; {P (x1, a, x3), P (x1, f(y1), x3), P (x1, g(y2), x3)}; ∅)
3 : ⇒Clean

mod ({K,L}; ∅; {P (x1, f(y1), x3), P (x1, g(y2), x3)}; {P (x1, a, x3)})
4 : ⇒Solve

mod ({L}; {K}; {P (x1, g(y2), x3)}; {P (x1, a, x3), P (x1, f(y1), x3)})
5 : ⇒Solve

mod (∅; {K,L}; ∅; {P (x1, a, x3), P (x1, f(y1), x3),¬P (x1, g(y2), x3)})

Step 1: The initial state (Γ ;Δ; I;M) consists of the set Γ = {K,L}, the empty
set Δ, the set I containing only P (x1, x2, x3) which generalizes all literals over
Σ with predicate P , and the empty set of literals M .

Step 2: Both K and L are atom instances of P (x1, x2, x3), but with opposite
signs. Moreover, the terms K|2 = f(a) and L|2 = g(a) are not unifiable, and
the position p = 2 is the minimal variable position in P (x1, x2, x3) for which
this is the case, and the preconditions of rule Refine are met. A refinement of
P (x1, x2, x3) in position 2 takes place and P (x1, x2, x3) is replaced by literals
differing from it only in position 2 by replacing x2 by every constant and function
symbol occurring in Σ. The resulting atoms are P (x1, a, x3), P (x1, f(y1), x3),
and P (x1, g(y2), x3) and they cover again all P ground instances.

Step 3: The literal P (x1, a, x3) ∈ I has no atom instance on Γ and is moved to
M by means of rule Clean.

Step 4: The positive literal K is the only instance of P (x1, f(y1), x3) on Γ , and
the preconditions of rule Solve are met. The literal K is moved from Γ to Δ,
and P (x1, f(y1), x3) is moved from I to M .

Step 5: The negative literal L is the only atom instance of P (x1, g(y2), x3)
with negative sign, and the preconditions of rule Solve are met. The literal L is
moved from Γ to Δ, whereas P (x1, g(y2), x3) is removed from I and added to M
with negative sign. Now both Γ and I are empty, and the execution stops with
the linear complete literal interpretation M = {P (x1, a, x3), P (x1, f(y1), x3),
¬P (x1, g(y2), x3)}.

Next we prove that ⇒mod always computes an overall interpretation and
model of the initial Γ . The basis for these results is the notion of a sound state
below. We then show by induction on the length of a ⇒mod derivation that the
initial state is sound and any follower state is sound assuming its start state is
sound.

Definition 2 (Sound State). A state (Γ ;Δ; I;M) is sound, if the following
invariants hold:

140 M. Bromberger et al.

1. All literals in I ∪ M are linear.
2. The atoms of any two different literals from I ∪ M are not unifiable.
3. For any ground atom A over P there is an atom B in I∪M such that A = Bσ

for some σ.
4. Any literal L ∈ Δ is an instance of a literal K ∈ M .
5. Any literal L ∈ Γ is an atom instance of a literal K ∈ I.
6. The maximal depth of an atom in I ∪ M is at most one larger than the

maximal depth of a ground atom in Γ ∪ Δ.

Lemma 3 (Soundness of Initial State). The initial state (Γ ; ∅; {P (x1, . . . ,
xn)}; ∅) is sound.

Proof. Invariants 1 to 6 given in Definition 2 hold in the initial state:
1. Only P (x1, . . . , xn) ∈ I ∪ M which is linear by definition.
2. Holds trivially, because I ∪ M contains only P (x1, . . . , xn).
3. The atom P (x1, . . . , xn) ∈ I ∪ M generalizes all ground atoms over Σ with
predicate P .
4. Holds trivially, because Δ = ∅.
5. The atom B of P (x1, . . . , xn) ∈ I generalizes all ground atoms over Σ with
predicate P , and any atom(L) ∈ Γ is one of those.
6. Holds trivially, because the maximal depth of P (x1, . . . , xn) ∈ I is equal to
one. �
Lemma 4. (Soundness of ⇒mod Rules). The rules of ⇒mod preserve state
soundness.

Proof. The proof is carried out by induction over the number of rule applications.
By the induction hypothesis, we assume Invariants 1 to 6 given in Definition 2
hold in a state (Γ ′;Δ′; I ′;M ′) and show that after the application of any rule
they are still met in the resulting state (Γ ;Δ; I;M).

Rule Refine. The literal L = P (t1, . . . , tn) ∈ I ′ is replaced by literals Li differing
from L solely in the position p, which now contains either a constant symbol or
a function symbol whose arguments are fresh different variables.
1. The literal L is linear by the induction hypothesis. The variables introduced
in the literals Li are fresh and different, hence all literals Li are linear, too. The
literals in M ′ are linear by the induction hypothesis and M ′ remains unaffected.
Therefore, all literals in I ∪ M are linear as well.
2. By the induction hypothesis, no two atoms in I ′ ∪M ′ are unifiable. This holds
in particular for the atom of L and any other atom in I ′∪M ′. The terms Li|p are
not unifiable by the definition of rule Refine, hence their atoms are not unifiable.
Since the literals Li are instances of L, their atoms are not unifiable with any
atom in (I ′ ∪ M ′) \ {L} and thus of I ∪ M . Moreover, the atoms I ′ ∪ M ′ \ {L}
are by induction hypothesis not unifiable with each other.
3. Let A be any ground atom. By the induction hypothesis, there exists a literal K
in I ′ ∪M ′ such that A is an instance of atom(K), i.e., there exists a substitution
σ such that A = atom(K)σ. If K is not the literal L that is refined, then K is

First-Order Automatic Literal Model Generation 141

still in I ∪ M and so the property holds for atom A. If K is the literal L that
is refined on position p with x = L|p, then we know that atom A has a term
A|p = fi(s1, . . . , ski

) at position p. This means A is also an instance of the literal
Li = P (t1, . . . , tn){x
→ fi(yi1 , . . . , yki

)} that was newly added to I such that
A = atom(Li)σi, where σi = σ ∪ {yi1
→ s1, . . . , yki

→ ski
}. Hence the property

holds for all ground atoms.
4. Both Δ′ and M ′ remain unaffected, and Invariant 4 still holds.
5. The set Γ ′ remains unaffected by rule Refine, and its atoms are ground atoms
over P . By the induction hypothesis, for any atom A in Γ ′ there exist a literal
K in I ′ with atom(K) = B′ and a σ such that B′σ = A. If K is not the literal
L that is refined, then K is still in I and so the property holds for atom A. If
K is the literal L that is refined at position p with x = L|p, then we know that
atom A has a term A|p = fi(s1, . . . , ski

) at position p. This means A is also an
instance of the literal Li = P (t1, . . . , tn){x
→ fi(yi1 , . . . , yki

)} that was newly
added to I such that A = atom(Li)σi where σi = σ ∪ {yi1
→ s1, . . . , yki

→ ski
}.

Hence the property holds for all atoms A in Γ .
6. By the definition of rule Refine, the depth of any literal Li added to I ′ can
be at most the depth of P (t1, . . . , tn) plus one, due to the introduction of a
function symbol at position p. Therefore, the maximal depth of the literals in I ′

may increase at most by one. However, the depth of any atom in Γ ′ which is an
instance of P (t1, . . . , tn) is at least equal to the one of P (t1, . . . , tn). Furthermore,
Γ ′, Δ′, and M ′ remain unaltered, and therefore Invariant 6 still holds after the
application of rule Refine.

Rule Clean.
1–3,5,6. The sets Γ ′ and Δ′ remain unaltered. The literal P (t1, . . . , tn) in I ′ is
moved from I ′ to I. It remains unaffected, just as any other literal in I ′ ∪ M ′,
and by the induction hypothesis, Invariants 1–3, 5, and 6 hold.
4. The ground set Δ′ remains unchanged, and no literal is removed from M ′,
therefore Invariant 4 still holds after executing rule Clean.

Rule Solve.
1–3,6. The literal P (t1, . . . , tn) is moved from I ′ to M , either with positive or
negative sign. Its atom remains unaffected, just as any other literal in I ′ ∪ M ′,
and by the induction hypothesis, Invariants 1–3, and 6 hold.
4. The literals added to Δ are ground instances of #P (t1, . . . , tn) added to M ,
and Invariant 4 is met after the application of rule Solve.
5. The literals removed from Γ ′ are ground instances of #P (t1, . . . , tn) and
P (t1, . . . , tn) is removed from I ′. Therefore, Invariant 5 still holds after applying
rule Solve.
6. The removal of P (t1, . . . , tn) from I ′ and the addition of #P (t1, . . . , tn) to M
do not affect the maximal depth of the atoms in I ′ ∪ M ′, and Γ ′ ∪ Δ′ remains
unaffected. Therefore, Invariant 6 still holds after applying rule Solve. �

Next we show termination and that ⇒mod does not get stuck and always
ends in a final state. From now on we only consider sound states.

142 M. Bromberger et al.

Lemma 5 (Termination and Runtime). ⇒mod terminates in polynomial
time O(size(Γ)2) with respect to the size of Γ .

Proof. For a state ({L1, . . . , Ln};Δ; I;M) let I ′ be a multiset of literals {K1,
. . ., Kn} out of literals from I such that atom(Li) = atom(Ki)σi for some σi.
Note that for a given {L1, . . . , Ln} and I the multiset I ′ is unique. This is a
result of a sound state and Invariant 2.2. Let

δ({L1, . . . , Ln}, {K1, . . . , Kn}) =
∑

1≤i≤n

size(σi).

Now the measure (δ({L1, . . . , Ln}, {K1, . . . , Kn}), |I|) with >lex strictly
decreases with each rule application: The rules Clean and Solve strictly decrease
the number of Li and/or |I|. For the rule Refine the atom P (t1, . . . , tn) has at
least two different instances among the Li and after application of the rule the
respective σi for all those instances decrease in size by one.

There are at most size(Γ) many applications of Refine possible and for each
of these applications at most size(Γ) many applications of Clean or Solve are
possible, resulting in the above upper bound. Please recall that the number of
symbols in Ω is also bound by size(Γ). �
Lemma 6 (No Stuck States). If for a state (Γ ;Δ; I;M) we have Γ �= ∅ or
I �= ∅ then at least one ⇒mod rule is applicable.

Proof. Suppose Γ �= ∅ and L ∈ Γ . By soundness, Definition 2.5, there exists a
literal K ∈ I such that atom(L) is an instance of K. If in addition I contains
a literal H of sign opposite to the one of L where atom(H) is an instance of
K and a minimal variable position p in K such that atom(L)|p and atom(H)|p
are not unifiable, the preconditions of rule Refine are met. If instead all literals
H ∈ Γ , whose atoms are an instance of K, have the same sign as L, rule Solve
can be applied. By Definition 2.5, it can not happen that Γ �= ∅ and I = ∅. Now
assume Γ = ∅ and I �= ∅ and let L be a literal in I. No atom instance of L is
contained in Γ , and the preconditions of rule Clean are met. �

A consequence of Lemma 6 is that ⇒mod always makes progress, i.e., in any
non-terminal state, a rule is applicable. Finally, we prove that ⇒mod in fact
produces an overall interpretation satisfying the literals from the initial state.

Lemma 7 (All Literals are Considered). Let (Γ0; ∅; {P (x1, . . . , xn)}; ∅) be
an initial state. Then for any (possibly non-final) state (Γ ;Δ; I;M) obtained
during the execution of ⇒mod on the initial state, it holds that Γ ∪ Δ = Γ0.

Proof. In the initial state (Γ0;Δ0; {P (x1, . . . , xn)}; ∅), this is obviously the case
since Δ0 = ∅. For proving that this property holds throughout the execution of
⇒mod, we assume that it holds in a state (Γ ′;Δ′; I ′;M ′) and show that after
applying one rule, it is still met in the resulting state (Γ ;Δ; I;M).
Refine, Clean. Both Γ ′ and Δ′ remain unaltered, hence Γ ∪ Δ = Γ0.
Solve. Literals are moved from Γ0 to Δ, hence Γ ∪ Δ = Γ0 ∪ Δ0 = Γ0. �

First-Order Automatic Literal Model Generation 143

Lemma 8 (Complete Linear Literal Model). Let (Γ0; ∅; {P (x1, . . . ,
xn)}; ∅) be an initial state and (∅;Δ; ∅;M) a final state generated by executing
⇒mod on it. Then M is a complete linear literal model of Γ0.

Proof. M is a complete linear literal interpretation by Definition 2.1-3, Lemma 4.
By Lemma 7, we have Δ = Γ0. By Definition 2.4, the literals in M generalize
all literals in Δ and hence in Γ0. This proves that M is a model of Γ0. �

Our rules are not deterministic, and several factors affect the model obtained
by running ⇒mod with the same initial state (Γ0; ∅;P (x1, . . . , xn); ∅). If the pre-
conditions of multiple rules are met in a non-final state (Γ ;Δ; I;M), we are free
to choose the order in which we execute them. If there are literals L,K ∈ I
meeting the preconditions of Refine with respect to the same minimal variable
position p, either may be chosen. Thus applying ⇒mod to the same trail twice
might give us two literal interpretations of different size as shown by an example.

Example 9 (Model Size). Consider the signature Σ = ({a/0, g/1}, {R/2})
and Γ0 = {L1, L2, L3, L4, L5, L6} where L1 = ¬R(a, a), L2 = R(a, g(a)),
L3 = R(g(a), g(g(a))), L4 = R(a, g(g(a))), L5 = ¬R(g(a), g(a)), and L6 =
¬R(g(a), a)}. A possible run is shown below. The variables or literals we refine
in the next step or apply Solve or Clean to, respectively, are underlined.

0 : (Γ0; ∅; {R(x, y)}; ∅)
1 : ⇒Refine

mod (Γ0; ∅; {R(a, y), R(g(z), y)}; ∅)
2 : ⇒Refine

mod (Γ0; ∅; {R(a, a), R(a, g(u)), R(g(z), y)}; ∅)
3 : ⇒Solve*

mod (Γ1;Δ1; {R(g(z), y)};M1)
4 : ⇒Refine

mod (Γ1;Δ1; {R(g(z), a), R(g(z), g(v))};M1)
5 : ⇒Solve

mod (Γ2;Δ2; {R(g(z), g(v))};M2)
6 : ⇒Refine

mod (Γ2;Δ2; {R(g(z), g(a)), R(g(z), g(g(w)))};M2)
7 : ⇒Solve*

mod (Γ3;Δ3; ∅;M3)

The initial state is given by (Γ0; ∅; {R(x, y)}; ∅) (step 0). We choose to refine x at
position p = 1 in R(x, y), since L1 and L3 are instances of its atom with differing
signs and L1|1 and L3|1 are not unifiable. Rule Refine replaces R(x, y) by R(a, y)
and R(g(z), y) (step 1). Similarly, we refine the variable y at position p = 2 in
R(a, y), since L1 and L2 are instances of it having different sign and L1|2 and
L2|2 are not unifiable (step 2). Then rule Solve can be applied twice, namely
to R(a, a) and its negative instance L1 ∈ Γ0, and to R(a, g(u)) and its positive
instances L2, L4 ∈ Γ0. We obtain Γ1 = Γ0 \ {L1, L2, L4}, Δ1 = {L1, L2, L4},
and M1 = {¬R(a, a), R(a, g(u))} (step 3). Next, the variable y at position p = 2
in R(g(z), y) is refined, since L3 and L5 are instances of it having opposite
sign and their subterms at position 2 are not unifiable. The literal R(g(z), y)
is replaced by R(g(z), a) and R(g(z), g(v)) (step 4). Since Γ1 contains only a
positive instance of R(g(z), a), namely L6, rule Solve is applied resulting in
Γ2 = Γ1\{L6}, Δ2 = Δ1∪{L6}, and M2 = M1∪{¬R(g(z), a)} (step 5). The trail
Γ2 contains instances L3 and L5 of R(g(z), g(v)) with different sign. Variable v
at position 2 1 is chosen for refinement, since L3|2 1 and L5|2 1 are not unifiable,

144 M. Bromberger et al.

and R(g(z), g(v)) is replaced by R(g(z), g(a)) and R(g(z), g(g(w))) (step 6).
Now Γ2 contains only a positive instance of R(g(z), g(a)) and a negative one of
R(g(z), g(g(w))), and rule Solve is applicable. This gives us Γ3 = Γ2 \{L3, L5} =
∅, Δ3 = Δ2 ∪ {L3, L5} = Γ0, and M3 = M2 ∪ {¬R(g(z), g(a)), R(g(z), g(g(w)))}
with 5 literals (step 7).

The choice of the variable to be refined in step 1 is not deterministic, and
the following steps might lead to a different model. A different run for Γ ′

0 = Γ0

could be as follows:

0 : (Γ ′
0; ∅; {R(x, y)}; ∅)

1 : ⇒Refine
mod (Γ ′

0; ∅; {R(x, a), R(x, g(z))}; ∅)
2 : ⇒Solve

mod (Γ ′
1;Δ

′
1; {R(x, g(z))};M ′

1)
3 : ⇒Refine

mod (Γ ′
1;Δ

′
1; {R(a, g(z)), R(g(u), g(z))};M ′

1)
4 : ⇒Solve

mod (Γ ′
2;Δ

′
2; {R(g(u), g(z))};M ′

2)
5 : ⇒Refine

mod (Γ ′
2;Δ

′
2; {R(g(u), g(a)), R(g(u), g(g(v)))};M ′

2)
6 : ⇒Solve*

mod (Γ ′
3;Δ

′
3; ∅;M ′

3)

The first refinement step involves p = 2, y = R(x, y)|2 motivated by L1 and
L2 (step 1). Now we can execute Solve on R(x, y) since it has only negative
instances on Γ ′

0, which are L1 and L6 obtaining Γ ′
1 = Γ0 \ {L1, L6}, Δ′

1 =
Δ0 ∪ {L1, L6}, and M ′

1 = {¬R(x, a)} (step 2). The variable x at position 1
of R(x, g(z)) is refined, since L2 and L5 are a positive and negative instance,
respectively, of R(g(u), g(z)) and their subterms at position 1 are not unifiable,
by replacing R(x, g(z)) by R(a, g(z)) and R(g(u), g(z)) (step 3). Now rule Solve
can be executed on R(a, g(z)), which generalizes L2 and L4, which are both
positive. This results in Γ ′

2 = Γ ′
1 \ {L2, L4}, Δ′

2 = Δ′
1 ∪ {L2, L4}, and M ′

2 =
M ′

1∪{R(a, g(z))} (step 4). Next, a Refine step on z at position 2 1 in R(g(u), g(z))
is executed due to L3 and L5, which are instances of R(g(u), g(z)) of opposite sign
and whose subterms at position 2 1 are not unifiable. The literal R(g(u), g(z)) is
replaced by R(g(u), g(a)) and R(g(u), g(g(v))) (step 5), which have one instance
each in Γ ′

2. Rule Solve is applied twice, resulting in Γ ′
3 = Γ ′

2 \ {L3, L5} = ∅,
Δ′

3 = Δ′
2 ∪ {L3, L5} = Γ ′

0, and M ′
3 = M ′

2 ∪ {¬R(g(u), g(a)), R(g(u), g(g(v)))}
with 4 literals.

So M3 and M ′
3 not only differ syntactically, but also contain a different

number of literals. Refining x before y led to ¬R(a, a),¬R(g(z), a) ∈ M3, whereas
refining y before x resulted in ¬R(x, a) ∈ M ′

3, which generalizes both ¬R(a, a)
and ¬R(g(z), a).

In summary, ⇒mod computes an overall interpretation out of the initial finite
set of consistent ground literals in polynomial time. We shortly compare our
model representation formalism with the long standing literature, in particular
[10,17]. They suggested four postulates which should ideally be met by any
model representation formalism:

– Uniqueness. Each model representation M specifies a single interpretation
over Σ.

First-Order Automatic Literal Model Generation 145

– Atom Test. There exists a fast procedure to evaluate arbitrary ground
atoms over the signature Σ in M .

– Formula Evaluation. There exists an algorithm deciding the truth value
of an arbitrary formula over Σ in M .

– Equivalence Test. There exists an algorithm deciding whether two repre-
sentations M and M ′ over Σ describe the same interpretation.

The model M obtained by ⇒mod is a complete linear literal interpretation.
Our representation formalism is therefore a special case of an atomic represen-
tation (ARM) [10] if we leave out negative literals which are implicit for ARMs.
The validity of the four model building postulates has been shown for ARMs [10].
So the models computed by ⇒mod satisfy the four model building postulates.
Clause evaluation for our linear literal models M is straightforward: a clause C
is valid iff there is no substitution σ such that for each L ∈ C there is a literal
K ∈ M such that Lσ and Kσ are complementary. Recall that this is a conse-
quence of the fact that our literal interpretations are explicit and complete: for
any ground atom A over Σ there is a literal K in M such that A is a literal
instance of K. The respective procedure for ARMs is more involved [45], whereas
in our case established techniques for hyper-resolution apply [35,47,56].

Finally, we show consequences out of our model building procedure for non-
ground literals and the SCL calculus: if the computed interpretation does not
satisfy all clauses, then it can be used to effectively compute a minimal extension
to the ground literal restriction of the SCL calculus.

Theorem 10 (Non-ground Guarantees). Let Γ be a set of consistent
ground literals. Let M be a model generated by ⇒mod from Γ . Let L be a
(potentially non-ground,) linear literal with depth(atom(L)) = d. Let ε = 1
if L has a position p of depth d (i.e., |p| = d) such that L|p is a constant. Oth-
erwise, ε = 0. Let Γ contain all ground instances Lσ of L (i.e., Lσ ∈ Γ) with
depth(atom(Lσ)) ≤ d + ε. Let Γ contain no ground instance of comp(L), i.e.,
for all K ∈ Γ it holds that K is not unifiable with comp(L). Then M |= L.

Proof. Proof by contradiction. We assume that all our assumptions hold, but
that M �|= L. By Definition 2.3 and Lemmas 3 and 4, M �|= L if there exists a
K ∈ M that is unifiable with comp(L). Moreover, Γ contains no ground instances
of comp(L) by assumption. We will now prove by induction that we can only
reach states (Γ ′;Δ; I;M) where A ∈ I is unifiable with atom(L) if A has depth
≤ d+ ε and Γ ′ contains all ground instances Lσ of L such that atom(Lσ) is also
a ground instance of A and depth(atom(Lσ)) ≤ d + ε. (Note that there always
exists at least one such ground instance because A has depth ≤ d + ε.) This
property guarantees that Clean can never be applied to an atom A ∈ I that
is unifiable with atom(L) and that Solve is only applicable to an atom A ∈ I
that is unifiable with atom(L) if there is also an instance atom(Lσ) of A in
Γ ′ that ensures that we assign A with the correct polarity. The induction base
holds trivially because in the state (Γ ; ∅; {P (x1, . . . , xn)}; ∅) the only atom in I
is P (x1, . . . , xn) and it has the minimal depth 1 and Γ contains by assumption
all ground instances of L with depth ≤ d + ε. For the induction step, we assume

146 M. Bromberger et al.

that (Γ ′;Δ; I;M) is a sound state that satisfies our property and prove that any
direct successor state (Γ ′′;Δ′; I ′;M ′) must again satisfy our property. We prove
this by case distinction:

1) Clean and Solve only remove elements A from I and all positive and
negative instances of A from Γ ′′. This together with Definition 2.2 guarantees
that the literals removed from Γ ′′ do not match with any of the remaining
elements of I ′. Therefore, the property still holds.

2) Refine on A, but A is not unifiable with atom(L). Trivial, because any of
the new elements in I ′ will also not be unifiable with L.

3) Refine on A, A is unifiable with atom(L), and depth(A) ≤ d + ε, and the
position p of the refined variable has depth |p| < d + ε. This means by induction
that Γ ′ = Γ ′′ contains all ground instances Lσ of L such that atom(Lσ) is also
a ground instance of A and depth(atom(Lσ)) ≤ d + ε. Moreover, any new atom
A′ ∈ I ′ \ I has at most depth |p| + 1 so still ≤ d + ε. And lastly, since A′ is an
instance of A, Γ ′ contains all ground instances Lσ of L such that atom(Lσ) is
also a ground instance of A′ and depth(atom(Lσ)) ≤ d + ε.

4) Refine on A, A is unifiable with atom(L), depth(A) = d + ε, and the
position p of the refined variable has depth |p| = d+ε. Let A∗ = mgu(A, atom(L))
as well as L∗ = A∗ and L′ = A if L is positive or else L∗ = ¬A∗ and L′ =
¬A. This means by induction that Γ ′ = Γ ′′ contains all ground instances L∗σ
with depth(atom(L∗σ)) ≤ d + ε and that they all have the same polarity as
L. Moreover, any variable in A has either a position q with depth |q| = d +
ε or there exist no (Aτ), (¬Aτ ′) ∈ Γ ′ such that (Aτ)|q and (Aτ ′)|q are not
unifiable. However, this means we also know that any ground instance (L∗[xq]q)σ
of (L∗[xq]q) must be in Γ ′ = Γ ′′ if q is the variable position of xq in A with
|q| < d+ε. Note that due to linearity of L and A (and assuming disjoint variables)
A∗|q �= A|q if and only if there exist q′, q′′ such that q = q′q′′, A|q′ is the position
of a variable xq′ , |q′| < d+ ε, L|q′ is defined and not a variable, and A∗|q′ = L|q′ .
This means that we get L′/A if we replace all positions q in L∗/A∗ with A|q if
A|q = xq and |q| < d + ε. If we use this together with the previous fact for all
variable positions |q| < d + ε, then we get that any ground instance L′σ of L′

must be in Γ ′ = Γ ′′ and therefore Refine is not applicable. A contradiction.
5) Refine on A, A is unifiable with atom(L), and depth(A) > d+ ε. This case

is impossible by induction hypothesis! �
The preconditions of Theorem 10 may look unrelated to its conlusion at first

sight. The first example shows why Γ needs to contain all ground instances Lσ
of L of depth depth(L). The reason is that Refine may lead to an atom K in I
that is unifiable with comp(L) but Γ contains no ground instances of comp(K).
In our example this is P (x, f(y)). The second example shows why Γ needs to
contain all ground instances Lσ of L of depth depth(L) + 1 if L has a constant
at a position p with depth d = depth(L). The reason is that an application of
Refine may lead to an atom K in I that is unifiable with comp(L) but has no
ground instances of comp(K). In our example this is P (f(x), y).

Example 11. (1) Let Γ = {¬P (a, a),¬P (f(a), a), P (a, f(a))} with signature
Σ = ({a/0, f/1}, {P}). Then for the input state (Γ ; ∅;P (x, y); ∅) the calculus

First-Order Automatic Literal Model Generation 147

returns the model M = {¬P (x, a), P (x, f(y))} because we first need to apply
Refine to position 2. Although for ¬P (f(x), y) there is no inconsistent atom in
Γ , M �|= ¬P (f(x), y).
(2) Let Γ = {¬P (a, a),¬P (a, b),¬P (b, a), P (b, b)} with signature Σ = ({a/0,
b/0, f/1}, {P}). Then for the input state (Γ ; ∅;P (x, y); ∅) the calculus can return
the model M = {¬P (a, y), P (f(x), y),¬P (b, a), P (b, b), P (b, f(y))} if we first
apply Refine to position 1. And although for ¬P (x, a) there is no inconsistent
atom in Γ , M �|= ¬P (x, a).

Theorem 12 (Non-ground Guarantees by Clean). Let Γ be a consistent
set of ground literals. Let M be a model generated by ⇒mod from Γ . Let d be
the maximal depth of any negative literal in Γ . Let A be a linear atom with
depth(A) ≤ d. Let Γ contain all ground instances of Aσ with depth(Aσ) ≤ d.
Then M |= A.

Proof. Note that the most general unifier of any two linear literals K,K ′ has
depth depth(K mgu(K,K ′)) = max(depth(K),depth(K ′)). Firstly, we show
that rule Solve can never add a negative literal ¬B to the model that is unifiable
with ¬A. In this case, Solve is only applicable if Γ contains a ground instance
¬Bσ and no ground instance Bσ. The first condition implies depth(¬B) ≤ d and
if B and A are unifiable Amgu(A,B) has depth ≤ d. However, since Γ contains
all ground instances of A with depth ≤ d this also means Γ contains all ground
instances of Amgu(A,B) with depth ≤ d. This means that our assumptions
guarantee that the second condition for Solve is not satisfied if ¬B is unifiable
with ¬A. So Solve will not add a literal ¬B that is unifiable with ¬A. Secondly,
in addition to Solve, only Clean adds literals to M . All literals added by Clean
are atoms, so they cannot unify with ¬A. Hence, M |= L. �
Lemma 13 (Lower Bound for SCL Refutations). Let Γ be the ground
partial model of an SCL stuck state for the input clause set N and bounded by
� and β. This means in particular that (i) every literal L ∈ Γ is ground and
bounded by � and β (i.e., L � β), (ii) every ground atom A � β is defined by Γ
(i.e., A ∈ Γ or ¬A ∈ Γ), and (iii) for every clause C ∈ N and every grounding
σ of C either Γ |= Cσ or there exists a literal L ∈ Cσ such that L �� β. Let M be
a complete interpretation (i.e., for every ground atom A, M |= A or M |= ¬A)
that models Γ (i.e., M |= Γ) but not the clause set N (i.e., M �|= N). Let β′ be
a smallest ground literal according to � such that there exists a clause C ∈ N ,
a grounding τ , where L � β′ holds for any literal L ∈ Cτ , and M �|= Cτ . Then
there exists no β∗ ≺ β′ such that an SCL run on N and bounded by ≺ and β∗

finds a refutation.

Proof. The assumptions for β′ and the completeness of M imply that M |= Cσ
for all clauses C ∈ N and all groundings σ, where L � β∗ for any literal L ∈ Cσ.
This means one valid SCL run for N , �, and β∗ can simply decide all ground
atoms A � β∗ according to M , i.e., according to whether M |= A or M |= ¬A,
without encountering any conflicts and ending in a stuck state with a set Γ ′

such that Γ ′ |= gnd�β∗
(N), where the function gnd�β∗

computes the set of all

148 M. Bromberger et al.

ground instances of a clause set where the grounding is restricted to produce
literals L with L � β∗. The existence of this stuck state proves that gnd�β∗

N
is satisfiable and that there exists no refutation for it. Hence, no SCL run for N ,
�, and β∗ can find a refutation. �

5 Conclusion and Future Work

Explicit model building is always a compromise between the expressivity of the
used language, its computational properties and the effort to actually compute
the model. Satisfiability of first-order logic clause sets is not even semi-decidable,
so there cannot be a general solution. In the context of SCL, efficient model
building and efficient clause evaluation are important aspects and our quite
simple model building language, namely complete linear literal interpretations,
nicely serves these two purposes. Still there may be room for improvement. For
example, the three clauses

¬R(x, x) R(x, g(x))
¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)

do not have a finite model. Linear literal interpretations have the finite model
property so there cannot be a finite representation of a model within this lan-
guage. It needs a more expressive language. For example, assuming an additional
constant a and a bound β = R(g(a), g(g(a))) a partial model computed by SCL
would be

[¬R(a, a), R(a, g(a)), R(g(a), g(g(a))), R(a, g(g(a))),¬R(g(a), g(a)),¬R(g(a), a)1]

The respective overall model could be represented by the linear Horn clause set

¬R(a, a) R(a, g(a))
¬R(x, y) → ¬R(g(x), y) R(x, y) → R(x, g(y))

¬R(x, y) → ¬R(g(x), g(y)) R(x, y) → R(g(x), g(y))

or by terms with exponents and constraints [4,13]

i ≥ j ‖ ¬R(gi(a), gj(a)) i < j ‖ R(gi(a), gj(a)) .

However, it is an open question how such representations can be actually com-
puted out of a set of ground literals and how they can be used to efficiently test
validity of clauses.

The rule Clean may actually add the respective literal wither positively or
negatively to M . In practice, such literals could be marked in M . Then in case
of starting from an SCL stuck trail where M is not a model for the clause set, a
small but useful extension is to check whether flipping the sign of some of these
literals turn M into a model.

In summary, we have presented an algorithm that computes in polynomial
time out of a finite consistent set of ground literals Γ a complete linear literal

First-Order Automatic Literal Model Generation 149

interpretation M such that M |= Γ . Furthermore, M can be effectively used
to evaluate clauses and to determine a minimal extension to the ground literal
restriction β out of an SCL stuck state.

Acknowledgements. We thank our anonymous reviewers for their constructive
comments.

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Logic 10(1), 4:1–4:51 (2009)

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch,
A., Mundici, D. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0022557

3. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. J. Appl. Log. 7(1), 58–74 (2009)

4. Bensaid, H., Peltier, N.: A complete superposition calculus for primal grammars.
J. Autom. Reason. 53(4), 317–350 (2014)

5. Bromberger, M., Desharnais, M., Weidenbach, C.: An Isabelle/HOL formalization
of the SCL(FOL) calculus. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction
- CADE 29 - 29th International Conference on Automated Deduction. LNCS, vol.
14132, pp. 116–133. Springer (2023). https://doi.org/10.1007/978-3-031-38499-8 7

6. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 23

7. Bromberger, M., Schwarz, S., Weidenbach, C.: Exploring partial models with SCL.
In: Konev, B., Schon, C., Steen, A. (eds.) Proceedings of the Workshop on Practical
Aspects of Automated Reasoning Co-located with the 11th International Joint
Conference on Automated Reasoning (FLoC/IJCAR 2022), Haifa, Israel, 11 - 12
August 2022. CEUR Workshop Proceedings, vol. 3201 (2022)

8. Bromberger, M., Schwarz, S., Weidenbach, C.: Exploring partial models with SCL.
In: Piskac, R., Voronkov, A. (eds.) Proceedings of 24th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in
Computing, vol. 94, pp. 48–72. EasyChair (2023). https://doi.org/10.29007/8br1

9. Bromberger, M., Schwarz, S., Weidenbach, C.: SCL(FOL) revisited (2023). https://
doi.org/10.48550/ARXIV.2302.05954, https://arxiv.org/abs/2302.05954

10. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, Applied Logic
Series, vol. 31. Kluwer (2004)

11. Cantone, D., Cutello, V.: A decidable fragment of the elementary theory of relations
and some applications. In: Watanabe, S., Nagata, M. (eds.) Symbolic and Algebraic
Computation, Proceedings of the International Symposium, Tokyo, Japan, pp. 24–
29. ACM Press (August 1990)

12. Claessen, K., Soerensson, N.: New techniques that improve MACE-style finite
model finding. In: Proceedings of the CADE-19 Workshop: Model Computation
- Principles, Algorithms, Applications (2003)

https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/978-3-031-38499-8_7
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.29007/8br1
https://doi.org/10.48550/ARXIV.2302.05954
https://doi.org/10.48550/ARXIV.2302.05954
https://arxiv.org/abs/2302.05954

150 M. Bromberger et al.

13. Comon, H.: On unification of terms with integer exponents. Math. Syst. Theory
28(1), 67–88 (1995)

14. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order
logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA
2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-44881-0 12

15. Fermüller, C.: A resolution variant deciding some classes of clause sets. In: Börger,
E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990. LNCS,
vol. 533, pp. 128–144. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
54487-9 56

16. Fermüller, C.G., Leitsch, A.: Model building by resolution. In: Börger, E., Jäger, G.,
Kleine Büning, H., Martini, S., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp.
134–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56992-8 10

17. Fermüller, C.G., Leitsch, A.: Hyperresolution and automated model building. J.
Log. Comput. 6(2), 173–203 (1996)

18. Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
vol. II, chap. 25, pp. 1791–1849. Elsevier (2001)

19. Fermüller, C., Leitsch, A., Tammet, T., Zamov, N. (eds.): Resolution Methods for
the Decision Problem. LNCS, vol. 679. Springer, Heidelberg (1993). https://doi.
org/10.1007/3-540-56732-1

20. Fermüller, C.G., Pichler, R.: Model representation over finite and infinite signa-
tures. J. Log. Comput. 17(3), 453–477 (2007)

21. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P.
(ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 233–249. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29436-6 14

22. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: LICS, pp. 295–304 (1999)

23. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

24. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming
based system for finite model computation. AI Commun. 24(2), 195–212 (2011)

25. Georgieva, L., Hustadt, U., Schmidt, R.A.: A new clausal class decidable by hyper-
resolution. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 260–
274. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1 21

26. Goubault-Larrecq, J.: Deciding H1 by resolution. In: Information Processing Let-
ters, pp. 401–408 (2005)

27. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 68–100. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36675-8 4

28. Horbach, M., Weidenbach, C.: Decidability results for saturation-based model
building. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 404–
420. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 30

29. Hustadt, U., Schmidt, R.A.: On evaluating decision procedures for modal logics.
In: Proceedings of 15th International Joint Conference on Artificial Intelligence,
IJCAI-97, pp. 202–207 (1997)

30. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order frag-
ments and description logics. J. Relational Methods Comput. Sci. 1, 251–276 (2004)

https://doi.org/10.1007/3-540-44881-0_12
https://doi.org/10.1007/3-540-44881-0_12
https://doi.org/10.1007/3-540-54487-9_56
https://doi.org/10.1007/3-540-54487-9_56
https://doi.org/10.1007/3-540-56992-8_10
https://doi.org/10.1007/3-540-56732-1
https://doi.org/10.1007/3-540-56732-1
https://doi.org/10.1007/978-3-030-29436-6_14
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/3-540-45620-1_21
https://doi.org/10.1007/978-3-642-36675-8_4
https://doi.org/10.1007/978-3-642-36675-8_4
https://doi.org/10.1007/978-3-642-02959-2_30

First-Order Automatic Literal Model Generation 151

31. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in extensions of shallow
equational theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052362

32. Janota, M., Suda, M.: Towards smarter MACE-style model finders. In: Barthe, G.,
Sutcliffe, G., Veanes, M. (eds.) LPAR-22. 22nd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21
November 2018. EPiC Series in Computing, vol. 57, pp. 454–470. EasyChair (2018)

33. Joyner, W.H., Jr.: Resolution strategies as decision procedures. J. ACM 23(3),
398–417 (1976)

34. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve real-world SAT
instances. In: Kuipers, B., Webber, B.L. (eds.) Proceedings of the Fourteenth
National Conference on Artificial Intelligence and Ninth Innovative Applications of
Artificial Intelligence Conference, AAAI 97, IAAI 97, 27-31 July 1997, Providence,
Rhode Island, USA, pp. 203–208 (1997)

35. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

36. Lamotte-Schubert, M., Weidenbach, C.: BDI: a new decidable clause class. J. Log.
Comput. 27(2), 441–468 (2017)

37. Leidinger, H., Weidenbach, C.: SCL(EQ): SCL for first-order logic with equality. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th Inter-
national Joint Conference, IJCAR 2022. LNCS, vol. 13385, pp. 228–247. Springer
(2022). https://doi.org/10.1007/978-3-031-10769-6 14

38. Leitsch, A.: Deciding Horn classes by hyperresolution. In: Börger, E., Büning, H.K.,
Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 225–241. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52753-2 42

39. Lynch, C.: Schematic saturation for decision and unification problems. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 427–441. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45085-6 37

40. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
pp. 133–182. IOS Press (2021)

41. McCune, W.: Mace4 reference manual and guide. CoRR cs.SC/0310055 (2003)
42. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-

ing an efficient SAT solver. In: Design Automation Conference 2001. Proceedings,
pp. 530–535. ACM (2001)

43. Nieuwenhuis, R.: Basic paramodulation and decidable theories (extended abstract).
In: Proceedings 11th IEEE Symposium on Logic in Computer Science, LICS 1996,
pp. 473–482. IEEE Computer Society Press (1996)

44. de Nivelle, H., de Rijke, M.: Deciding the guarded fragments by resolution. J.
Symb. Comput. 35(1), 21–58 (2003)

45. Pichler, R.: Algorithms on atomic representations of herbrand models. In: Dix,
J., del Cerro, L.F., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp.
199–215. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49545-2 14

46. Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp.
345–391. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-
1 15

https://doi.org/10.1007/BFb0052362
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-031-10769-6_14
https://doi.org/10.1007/3-540-52753-2_42
https://doi.org/10.1007/978-3-540-45085-6_37
https://doi.org/10.1007/3-540-49545-2_14
https://doi.org/10.1007/978-3-642-37651-1_15
https://doi.org/10.1007/978-3-642-37651-1_15

152 M. Bromberger et al.

47. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

48. Shumsky, O., Wilkerson, R.W., McCune, W., Erçal, F.: Direct finite first-order
model generation with negative constraint propagation heuristic. In: Bryant, B.R.,
Carroll, J.H., Oppenheim, D., Hightower, J., George, K.M. (eds.) Proceedings of
the 1997 ACM symposium on Applied Computing, SAC 1997, San Jose, CA, USA,
28 February - 1 March, pp. 25–29. ACM (1997)

49. Silva, J.P.M., Sakallah, K.A.: Grasp - a new search algorithm for satisfiability. In:
International Conference on Computer Aided Design, ICCAD, pp. 220–227. IEEE
Computer Society Press (1996)

50. Slaney, J.: FINDER: finite domain enumerator system description. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814, pp. 798–801. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58156-1 63

51. Slaney, J.K., Surendonk, T.: Combining finite model generation with theorem prov-
ing: Problems and prospects. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Com-
bining Systems, First International Workshop FroCoS 1996, Munich, Germany,
26-29 March 1996, Proceedings. Applied Logic Series, vol. 3, pp. 141–155. Kluwer
Academic Publishers (1996)

52. Sturm, T., Voigt, M., Weidenbach, C.: Deciding first-order satisfiability when uni-
versal and existential variables are separated. In: Grohe, M., Koskinen, E., Shankar,
N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2016, New York, USA, 5-8 July 2016, pp. 86–95. ACM (2016)

53. Suda, M., Weidenbach, C., Wischnewski, P.: On the saturation of YAGO. In: Giesl,
J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 441–456. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 38

54. Teucke, A., Weidenbach, C.: Decidability of the monadic shallow linear first-order
fragment with straight dismatching constraints. In: de Moura, L. (ed.) CADE 2017.
LNCS (LNAI), vol. 10395, pp. 202–219. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63046-5 13

55. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48660-7 29

56. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 10

https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/3-540-58156-1_63
https://doi.org/10.1007/978-3-642-14203-1_38
https://doi.org/10.1007/978-3-319-63046-5_13
https://doi.org/10.1007/978-3-319-63046-5_13
https://doi.org/10.1007/3-540-48660-7_29
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10

First-Order Automatic Literal Model Generation 153

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Synthesis of Recursive Programs
in Saturation

Petra Hozzová1(B) , Daneshvar Amrollahi2 , Márton Hajdu1 ,
Laura Kovács1 , Andrei Voronkov1,3,4, and Eva Maria Wagner1

1 TU Wien, Vienna, Austria
petra.hozzova@tuwien.ac.at

2 Stanford University, Stanford, USA
3 University of Manchester, Manchester, UK

4 EasyChair, Manchester, UK

Abstract. We turn saturation-based theorem proving into an auto-
mated framework for recursive program synthesis. We introduce magic
axioms as valid induction axioms and use them together with answer
literals in saturation. We introduce new inference rules for induction in
saturation and use answer literals to synthesize recursive functions from
these proof steps. Our proof-of-concept implementation in the Vampire
theorem prover constructs recursive functions over algebraic data types,
while proving inductive properties over these types.

Keywords: Program Synthesis · Saturation · Superposition ·
Induction · Recursion · Theorem Proving

1 Introduction

Program synthesis is the task of constructing a program P satisfying a given
specification F , ensuring that P is correct by design [20]. In this paper we work
with a functional specification F of the input-output relation of a program P ,
where F is given as a ∀∃ formula in first-order logic [1,20]. Validity of a specifi-
cation formula F ensures that for every input value there exists an output value
satisfying F , and therefore there is a function which for every input value gives
such an output value. Our goal is to automatically find a (possibly recursive)
program that P computes the output, while preserving F .

As a complementary approach to formal verification, synthesis is inherently
more complex [28]. The complexity is further compounded when we consider
reasoning about – and synthesizing – programs using recursion. As a remedy, in
this paper we advocate for using automated first-order theorem proving as the
reasoning back-end to (recursive) program synthesis.

The work [8] extended the saturation-based first-order theorem proving frame-
work to saturation-based synthesis framework. The approach (i) uses saturation-
based reasoning to prove that a specification F is valid; (ii) tracks the constructive
parts of the proof of F ; (iii) and uses them to synthesize a program P satisfying
F . In this paper we complement [8] with support for recursive program synthesis.
We use recent developments on automating induction in saturation [5,7,9,25] and
construct recursive programs based on applications of induction.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 154–171, 2024.
https://doi.org/10.1007/978-3-031-63498-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_10&domain=pdf
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0003-0954-7881
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-63498-7_10

Synthesis of Recursive Programs in Saturation 155

Fig. 1. Axioms of half and the ∀∃-specification for the function computing double.

Illustrative Example. Consider the specification (SD) of Fig. 1, which
describes the inverse of the half function over natural numbers. Given the axiom-
atization of half in Fig. 1, our approach synthesizes the recursive function double
as a solution of (SD), defined as:

double(0) � 0

∀x. double(s(x)) � s(s(double(x)))
(1)

The framework of [8] fails to synthesize a solution of (SD), as double is a recursive
program. To the best of our knowledge, there exists no automated approach sup-
porting recursive function synthesis from functional input-output specifications
in full first-order logic.

This paper provides a solution in this respect by exploiting the constructive
nature of induction. Intuitively, each case of an induction axiom tells us how
to construct the desired program for the next recursive step using the program
for the previous recursive step. We capture this construction recipe contained
in the applications of induction in saturation-based proof search, by utilizing
answer literals ans(r) [4]. When we use an induction axiom in the proof, we
introduce a special term into the answer literal, serving for tracking the program
corresponding to the induction axiom. As we prove the cases of the induction
axiom, we capture their corresponding programs in the answer literal. Finally,
when we derive a clause C ∨ ans(r), where C only contains symbols allowed in
a program, we convert the special tracker terms from r into recursive functions,
and obtain a program for the initial specification conditioned on ¬C.

Contributions. We extend saturation-based first-order theorem proving with
recursive program synthesis and bring the following contributions1:

– We introduce induction axioms, dubbed magic axioms, which capture the
constructive nature of induction (Sect. 5).

– We convert the magic axioms into formulas used by a saturation-based frame-
work to derive programs using recursion over algebraic data types, i.e., special
cases of term algebras. We state necessary requirements for the calculus used
in saturation and prove correctness of synthesized programs (Sect. 6).

– We present an extension of the superposition calculus that fulfills our nec-
essary requirement and advocate for superposition reasoning for recursive
function synthesis (Sect. 7).

1 Proofs are given in the extended version [10] of our paper.

156 P. Hozzová et al.

– We show that our approach, illustrated initially for natural numbers, natu-
rally extends to programs over arbitrary term algebras (Sect. 8).

– We implement our work in the Vampire prover [16] and survey challenging
examples it can synthesize (Sect. 9).

2 Preliminaries

We assume familiarity with standard multi-sorted first-order logic (FOL) with
equality. We denote variables by x, y, z, w, u, terms by s, t, r, atoms by A, literals
by L, clauses by C,D, formulas by F,G, all possibly with indices. Further, we
write σ for Skolem constants. We reserve the symbol � for the empty clause
which is logically equivalent to ⊥. We write L for the literal complementary
to L. By � we denote the equality predicate and write t �� s as a shorthand
for ¬t � s. We include a conditional term constructor if − then− else in the
language, as follows: given a formula F and terms s, t of the same sort, we write
if F then s else t to denote the term s if F is true and t otherwise. An expression
is a term, literal, clause or formula. We write E[t] to denote that the expression
E contains the term t. For simplicity, E[s] denotes the expression E where all
occurrences of t are replaced by the term s. Formulas with free variables are
considered implicitly universally quantified, that is we consider closed formulas.

We use the standard semantics for FOL. For an interpretation function I,
we denote the interpretation of a variable x, function symbol f and a predicate
symbol p by xI , f I , pI , respectively. We use the notation eI , F I also for the inter-
pretation of expressions e and formulas F , respectively. Further, for a variable or
a constant a and a value v, we denote by I{a �→ v} the interpretation function
I ′ such that aI′

= v and bI′
= bI for any constant or variable b �= a. We write

F1, . . . , Fn
 G1, . . . , Gm to denote that F1 ∧ . . . ∧ Fn → G1 ∨ . . . ∨ Gm is valid,
and extend the notation also to validity modulo a theory T .

We recall the standard notion of λ-expressions. Let t be a term and x a
variable. Then λx.t denotes a λ-expression. For any interpretation I, we define
(λx.t)I as the function f given by f(v) = tI{x�→v} for any value v. Moreover, we
extend the notation of λ-expressions to also bind constants. Let c be a constant,
then λc.t also denotes a λ-expression, and its interpretation (λc.t)I is the function
f given by f(v) = tI{c �→v} for any value v.

A substitution θ is a mapping from variables to terms. A substitution θ is
a unifier of two expressions E and E′ if Eθ = E′θ; θ is a most general unifier
(mgu) if for every unifier η of E and E′, there exists a substitution μ such that
η = θμ. We denote the mgu of E and E′ with mgu(E,E′).

We work with term algebras [27], in particular with the special classes of the
algebraically defined data types of the natural numbers N, lists L, and binary
trees BT. 2 We denote the sorts of symbols and terms by : (colon), e.g., f : τ → α
is a function symbol with domain τ and range α. To emphasize the sort τ of a
quantified variable x, we write ∀x ∈ τ or ∃x ∈ τ . For a term algebra sort τ , we
denote its constructors with Στ . We fix an arbitrary ordering on the constructors,
2 Definitions of these term algebras are in the extended version [10] of this paper.

Synthesis of Recursive Programs in Saturation 157

Fig. 2. Simplified superposition calculus Sup.

and denote the i-th constructor in the order by ci, i.e., Στ = {c1, . . . , c|Στ |}. For
each ci, we denote its arity with nci

. We denote with Pci
the set of argument posi-

tions of ci of the sort τ . We only consider the standard models of term algebras.
Programs we synthesize may contain terminating recursive functions f : τ → α,
where τ is a term algebra type. We define such function f by providing a set of
equalities {f(c(x)) � t[x, f(xj1), . . . , f(xj|Pc|)]}c∈Στ

, where Pc = {j1, . . . , j|Pc|},
and t contains no occurrences of f except for the distinguished ones. An example
of such a definition is (1).

Saturation and Superposition. Saturation-based proof search implements
proving by refutation [16]: validity of F is proved by establishing unsatisfiability
of ¬F . Saturation-based first-order theorem provers work with clauses, rather
than with arbitrary formulas. To prove a formula F , the provers negate F and
further skolemize it and convert it to clausal normal form (CNF). The CNF of
¬F is denoted by cnf(¬F), resulting in a set S of initial clauses. For example,
the CNF of the negated and skolemized (SD) is

half(y) �� σ, (2)

where σ is a fresh constant used for skolemizing x, and y is implicitly universally
quantified. Saturation provers saturate S by computing logical consequences of
S with respect to a sound inference system I. Whenever the empty clause � is
derived, the set S of clauses is unsatisfiable and F is valid. We may extend the
initial set S with additional clauses C1, . . . , Cn. If C is derived from this extended
set, we say C is derived from S under additional assumptions C1, . . . , Cn.

The superposition calculus Sup [22] is the most common inference system
for first-order logic with equality. Figure 2 shows a simplified version of Sup.
The Sup calculus is sound (if � is derived from F , then F is unsatisfiable) and
refutationally complete (if F is unsatisfiable, then � can be derived from it).

158 P. Hozzová et al.

3 Recent Developments in Saturation

In this section we summarize recent results relevant to our work.

Program Synthesis in Saturation. Synthesizing (non-recursive) programs
in saturation has been initiated in [8]. Here, computable and uncomputable sym-
bols in the signature are distinguished. Intuitively, computable symbols are those
which are allowed to appear in a synthesized program. An expression is com-
putable if all symbols it contains are computable. A symbol or an expression is
uncomputable if it is not computable.

Let A1, . . . , An be closed formulas. Then

A1 ∧ . . . ∧ An → ∀x∃y.F [x, y] (3)

is a (synthesis) specification with inputs x and output y.
Consider a computable term r[x] such that A1 ∧ . . . ∧ An → ∀x.F [x, r[x]]

holds. Such an r[x] is called a program for (3) and a witness for y in (3). If
A1 ∧ . . . ∧ An → ∀x.(F1 ∧ . . . ∧ Fn → F [x, r[x]]) holds for computable formulas
F1, . . . , Fn, then 〈r[x]

∧n
i=1 Fi〉 is a program with conditions F1, . . . , Fn for (3).

Saturation-based theorem proving was extended in [8] to a saturation-based
program synthesis framework. To this end, the clausified negated specification (3)
is extended by an answer literal ans:

A1 ∧ . . . ∧ An ∧ ∀y.(cnf(¬F [σ, y]) ∨ ans(y)) (4)

The set of clauses (4) is then saturated. During saturation, upon deriving a
clause C[σ] ∨ ans(r[σ]), where r[σ] is computable and C[σ] is computable and
does not contain ans, the program 〈r[x]¬C[x]〉 with conditions for (3) is recorded
and the clause is replaced by C[σ]. This step is called answer literal removal
within saturation. Once saturation terminates by deriving the empty clause �,
the final program for (3) is constructed by composing the relevant recorded
programs with conditions in a nested if−then−else. To support derivation of such
clauses C[σ]∨ ans(r[σ]) and to ensure that answer literals only have computable
arguments, the work of [8] extended the superposition calculus Sup with new
inference rules.

Induction in Saturation. Inductive reasoning has been integrated in satu-
ration [5–7,9,25]. The main idea in this body of work is to apply induction by
theory lemma generation: based on already derived formulas, generate a suit-
able induction axiom and add it to the search space. To this end, the following
induction rule is used:

L[t] ∨ C

F → ∀x.L[x]
(Ind),

where L[t] is a ground literal, C is a clause, and F → ∀x.L[x] is a valid induction
axiom. The conclusion of the Ind rule is clausified, yielding cnf(¬F) ∨ L[x]. This

Synthesis of Recursive Programs in Saturation 159

clause is resolved with the premise L[t] ∨ C immediately after applying the Ind
rule and the resulting clause cnf(¬F) ∨ C is added to the search space.

An example of a valid induction schema is the structural induction axiom for
natural numbers, where G[x] is any closed formula:

(
G[0] ∧ ∀y.(G[y] → G[s(y)])

) → ∀x.G[x] (5)

When we instantiate the schema with G[x] := L[x], we obtain an axiom that
can be used in Ind. Since the rule requires L[t] to be ground, this instance of Ind
cannot be applied on (2) and thus is not sufficient for proving (SD) of Fig. 1. To
prove formulas with a free variable by induction, we extend Ind in Sect. 5.

Note that we can also use a complex formula G[t] in place of the literal L[t]
in Ind, obtaining a more involved rule, possibly with multiple premises, similarly
to a mutli-clause induction rule [7] or a induction with arbitrary formulas [6].

4 Saturation with Induction in Constructive Logic

We first summarize the key challenges our work resolves towards recursive syn-
thesis in saturation, and then present our synthesis approach in Sects. 5–8.

The idea of extracting programs from proofs originates from results in con-
structive (intuitionistic) logic, starting with Kleene’s realizability [14]. In con-
structive logic, provability of a formula ∀x∃y.F [x, y] implies that there is an
algorithm which, given values for x, outputs a value for y satisfying F [x, y].

We note that the structural induction axiom (5) over natural numbers has
computational content, as follows. The program r for ∀x.G[x] can be built from
a program r0 for G[0] and a program rs for ∀y.(G[y] → G[s(y)]) as:

r(0) � r0

r(s(y)) � rs(r(y))

For this to be useful, we need to first prove G[0], then prove ∀x.(G[y] → G[s(y)]),
and then use the induction axiom to derive ∀x.G[x]. Such an approach towards
constructing programs does not however work in saturation-based theorem prov-
ing, as saturation does not reduce goals to subgoals [2]. Rather, we add the
induction axiom as a theory lemma to the proof search and continue saturation,
so we do not have proofs of either G[0] or ∀y.(G[y] → G[s(y)]). Constructing
programs during saturation becomes even more complex when using answer lit-
erals, because clauses generated during saturation may contain these literals.
For example, if we try to extract a proof of G[0], we may find a proof with an
answer literal in it.

To capture the constructive nature of induction and address the above chal-
lenges of program synthesis in saturation, we use the following trick. We modify
the induction axiom so that it indirectly stores information about the programs
for G[0] and ∀y.(G[y] → G[s(y)]). To do this, instead of adding the induction
axiom (5), in Sect. 5 we add what we call a magic axiom for (5), where G has an
additional argument for storing the program. In Sect. 6 we further convert our
magic axioms into formulas to be used to derive recursive programs in saturation.

160 P. Hozzová et al.

5 Induction with Magic Formulas

We first present our approach to proving formulas with a free variable by induc-
tion. We further extend this approach to synthesis in Sect. 6. While our approach
works the same way with arbitrary term algebras, for the sake of clarity we first
introduce our work for natural numbers and then for general term algebras in
Sect. 8.

We use the following magic axiom:
(
∃u0.G[0, u0] ∧ ∀y.

(∃w.G[y, w] → ∃us.G[s(y), us]
)) → ∀z.∃x.G[z, x] (6)

Note that all magic axioms are valid, as they are instances of the structural
induction axiom (5) with the quantified formula ∃x.G[t, x] in place of G[t]. The
magicalness of (6) stems from its simple, yet powerful expressiveness: when used
in proof search, the variables u0, us in the antecedent capture the programs
for the base and step cases, allowing us to construct a program for x in the
consequent.

Using axiom (6), we introduce the following variant of the Ind rule:

L[t, x] ∨ C
(
∃u0.L[0, u0] ∧ ∀y.

(∃w.L[y, w] → ∃us.L[s(y), us]
)) → ∀z.∃x.L[z, x]

(MagInd)

where the only free variable of L[t, x] is x and C does not contain x.

Example 1. Consider the specification (SD) from Fig. 1. To prove it using super-
position, and not yet synthesize the function satisfying (SD) , we use the follow-
ing magic axiom:
(
∃u0.half(u0)�0∧∀y.

(∃w.half(w)�y → ∃us.half(us)�s(y)
)) → ∀z.∃x.half(x)�z (7)

To use (7) in saturation, we clausify it and skolemize the variables y, w, x as
σy, σw, σx(z), respectively. The following is a refutational proof of (SD) :

1. half(y) �� σ [negated and skolemized specification (SD)]
2. half(u0) �� 0 ∨ half(σw) � σy ∨ half(σx(z)) � z [MagInd with (7)]
3. half(u0) �� 0 ∨ half(us) �� s(σy) ∨ half(σx(z)) � z [MagInd with (7)]
4. half(u0) �� 0 ∨ half(σw) � σy [BR 1, 2]
5. half(u0) �� 0 ∨ half(us) �� s(σy) [BR 1, 3]
6. half(u0) �� 0 ∨ half(us) �� s(half(σw)) [Sup 4, 5]
7. half(u0) �� 0 ∨ half(us) �� half(s(s(σw))) [Sup (H3), 6]
8. half(u0) �� 0 [ER 7]
9. � [BR 8, (H2)]

Hence, the magic axiom (6) is sufficient to prove (SD) . However, (6) does not
suffice to synthesize the program for (SD) from the above proof. Similarly to [8],
for synthesis we would use

half(y) �� σ ∨ ans(y) (8)

Synthesis of Recursive Programs in Saturation 161

instead of clause 1 and obtain a derivation similar to the one above, but with the
answer literal ans(σx(σ)). As σx is a fresh skolem function, it is uncomputable
and not allowed in answer literals. Therefore, simply following the approach of [8]
fails to synthesize a recursive program from the proof of (SD) . We address the
challenge of program construction for the skolem function σx in Sect. 6. ��

6 Programs with Primitive Recursion

We now construct recursive programs for proofs using induction over natural
numbers (6). As mentioned in Sect. 4, the antecedent of the induction axiom
gives us a recipe for constructing the program for the consequent. To capture this
dependence of the consequent program x on the antecedent programs u0, us, we
convert the magic axiom (6) to its equivalent prenex normal form where ∀u0, us

precedes ∃x:

∃y, w.∀u0, us, z.∃x.
((

G[0, u0] ∧ (G[y, w] → G[s(y), us])
) → G[z, x]

)
(9)

The prenex form (9) of the magic axiom (6) allows us to record the depen-
dency on the programs resulting from the base and step cases of induction. For
that, we introduce a recursive operator to be used for constructing programs.

Definition 1 (Primitive Recursion Operator). Let f1 : α, and f2 : N×α →
α. The primitive recursion operator R for natural numbers and α is:

R(f1, f2)(0) � f1

R(f1, f2)(s(y)) � f2(y,R(f1, f2)(y))

Lemma 2 (Recursive Witness). The expression R(u0, λy, w.us)(z) is a wit-
ness for the variable x in (9).

Lemma 2 ensures that we can construct a program for the consequent of
the magic axiom given programs for the base case and the step case. We next
integrate this construction into our synthesis framework using answer literals.
For that we take a close look at the skolemization of induction axiom (9), and
define skolem symbols, denoted via rec, for the variable x, capturing the recursive
program.

Definition 3 (rec-Symbols). Consider formulas G[t, x] with a single free vari-
able x : α containing a term t : N. For each such formula we introduce a distinct
computable function symbol recG[t,x] : α×α×N → α. We will refer to such sym-
bols recG[t,x] as rec-symbols. When the formula G[t, x] is clear from the context
or unimportant for the context, we will simply write rec instead of recG[t,x].

A term with a rec-symbol as the top-level functor is called a rec-term.

Definition 4 (Magic Formula). The magic formula for G[t, x] is:

∀u0, us, z.
((

G[0, u0] ∧ (G[σy, σw] → G[s(σy), us])
) → G[z, recG[t,x](u0, us, z)]

) (10)

162 P. Hozzová et al.

It is easy to see that magic formula (10) is obtained by skolemizing the prenex
normal form of magic axiom (9), where we replace the variables y, w by fresh
constants σy, σw, and the variable x by a fresh recG[t,x]-symbol. The constants
σy, σw introduced in (10) are said to be associated with the recG[t,x]-term. An
occurrence of any skolem constant σy, σw is considered computable if it is an
occurrence in the second argument of a recG[t,x]-term which it is associated with.

We introduce additional requirements for reasoning with rec-terms to ensure
that they always represent the recursive function to be synthesized.

Definition 5 (rec-Compliance). An inference system I is rec-compliant if:

1. I only introduces rec-terms in the instances of the magic formula (10),
2. I does not introduce uncomputable symbols into arguments of rec-terms in

clauses it derives.

Using a rec-compliant inference system I, we derive clauses containing rec-terms.
These terms correspond to functions constructed using the operator R.

Definition 6 (Recursive Function Term). Let σy, σw be associated with
rec(s1, s2, t). Then we call the term R(s1, λσy, σw.s2)(t) the recursive function
term corresponding to rec(s1, s2, t).

For a term r, we denote by rR the expression obtained from r by iteratively
replacing all rec-terms by their corresponding recursive function terms, starting
from the innermost ones. Similarly, formula FR denotes the formula F in which
we replace all rec-terms by their corresponding recursive function terms.

Lemma 7 (Recursive Witness for Magic Formulas). Consider the formula
obtained from (10) by replacing recG[t,x](u0, us, z) by its corresponding recursive
function term R(u0, λσy, σw.us)(z):

∀u0, us, z.
((

G[0, u0] ∧ (G[σy, σw] → G[s(σy), us])
) → G[z,R(u0, λσy, σw.us)(z)]

) (11)

For every interpretation I, there exists a mapping of skolem constants to values
{σy �→ vy, σw �→ vw} such that I extended by this mapping is a model of (11).
As a consequence, formula (11) is satisfiable.

Lemma 7 implies that we can use formula (11) instead of (10) in derivation,
while preserving the soundness of the derivations. Soundness of our approach to
recursive program synthesis is given next.

Theorem 8 (Semantics of Clauses with Answer Literals and rec-
terms). Let C1, . . . , Cm be clauses and F a formula containing no answer lit-
erals and no rec-symbols. Let C be a clause containing no answer literals. Let
M1, . . . ,Ml be magic formulas. Assume that using a sound rec-compliant infer-
ence system I, we derive C ∨ ans(r[σ]), where r[σ] is computable, from the set
of clauses

{ C1, . . . , Cm, M1, . . . ,Ml, cnf(¬F [σ, y] ∨ ans(y)) }.

Synthesis of Recursive Programs in Saturation 163

Then
MR

1 , . . . ,MR
l , C1, . . . , Cm
 CR, F [σ, rR[σ]].

That is, under the assumptions MR
1 , . . . ,MR

l , C1, . . . , Cm,¬CR, the computable
expression rR[x] is a witness for y in ∀x∃y.F [x, y].

Based on Theorem 8, if the CNF of A1, . . . , An is among C1, . . . , Cm, then
rR[x] is a witness for y in (3) under the assumptions MR

1 , . . . ,MR
l , C1, . . . ,

Cm,¬CR. The following ensures that we can construct recursive programs with
conditions.

Theorem 9 (Recursive Programs). Let r[σ] be a computable term, and
C[σ], C1[σ], . . . , Cm[σ] be ground computable clauses containing no answer lit-
erals and no rec-symbols. Assume that using a sound rec-compliant inference
system I, we derive the clause C[σ] ∨ ans(r[σ]) from the CNF of

{ A1, . . . , An, C1[σ], . . . , Cm[σ], M1, . . . ,Ml, ¬F [σ, y] ∨ ans(y) }
where M1, . . . ,Ml are magic formulas. Then,

〈rR[x]
m∧

j=1

Cj [x] ∧ ¬C[x]〉

is a program with conditions for (3).

From Theorem 9 we obtain the following key result on program synthesis.

Theorem 10 (Recursive Program Synthesis). Let P1[x], . . . , Pk[x], where
Pi[x] = 〈rR

i [x]
∧i−1

j=1 Cj [x] ∧ ¬Ci[x]〉, be programs with conditions for (3), such

that
∧n

i=1 Ai ∧ ∧k
i=1 Ci[x] is unsatisfiable. Then the program P [x] defined as

P [x] := if ¬C1[x] then rR
1 [x]

else if ¬C2[x] then rR
2 [x]

. . .

else if ¬Ck−1[x] then rR
k−1[x]

else rR
k [x],

is a program for (3).

7 Recursive Synthesis in Saturation

This section integrates the proving and synthesis steps of Sects. 5–6 into satu-
ration. The crux of our approach is that instead of adding standard induction
formulas to the search space, we add magic formulas.

Theorems 9–10 imply that to derive recursive programs, we can use any
rec-compliant calculus, as long as the calculus supports derivation of clauses

164 P. Hozzová et al.

C ∨ans(r), where r is computable and C is ground, computable, and contains no
rec-terms nor answer literals. In our work we rely on the extended Sup calculus
of [8], which we (i) further extend by adding magic formulas alongside standard
induction formulas, (ii) make rec-compliant by disallowing inferences contain-
ing uncomputable rec-terms, and (iii) extend by adding more complex rules for
introducing conditions into rec-terms3. We illustrate these steps by our running
example.

Example 2. Using the extended Sup calculus, we synthesize the program for the
specification of Fig. 1. With the magic formula corresponding to (7) ,

∀u0, us, z.((
half(u0)�0 ∧ (half(σw)�σy → half(us)�s(σy))

) → half(rec(u0, us, z))�z
)
,

(12)

we obtain the following derivation4:

1. half(y) �� σ ∨ ans(y) [negated, skolemized specification with answer literal]
2. half(u0) �� 0 ∨ half(σw) � σy ∨ half(σx(z)) � z [MagInd with (12)]
3. half(u0) �� 0 ∨ half(us) �� s(σy) ∨ half(σx(z)) � z [MagInd with (12)]
4. half(u0) �� 0 ∨ half(σw) � σy ∨ ans(rec(u0, us, σ)) [BR 1, 2]
5. half(u0) �� 0 ∨ half(us) �� s(σy) ∨ ans(rec(u0, us, σ)) [BR 1, 3]
6. half(u0) �� 0 ∨ half(us) �� s(half(σw)) ∨ ans(rec(u0, us, σ)) [Sup 4, 5]
7. half(u0) �� 0 ∨ half(us) �� half(s(s(σw))) ∨ ans(rec(u0, us, σ)) [Sup (H3) , 6]
8. half(u0) �� 0 ∨ ans(rec(u0, s(s(σw)), σ)) [ER 7]
9. ans(rec(s(0), s(s(σw)), σ)) [BR 8, (H2)]

10. � [answer literal removal 9]

The program recorded in step 10 of the proof is rec(s(0), s(s(σw)), x)R =
R(s(0), λσw.s(s(σw)))(x) = f(x), where f is defined as:

f(0) � s(0)
f(s(n)) � s(s(f(n)))

Note that while the synthesized program satisfies the specification (SD) , it
does not match the expected definition of the double function from (1). Since
the half function is rounding down, and the specification does not require the
synthesized function to produce even results, the base case was resolved in step
9 with (H2) , leading to f(0) � s(0). As a result, we have f(n) = s(double(n))
for any n. ��

Example 2 demonstrates that specification (SD) has multiple solutions and
saturation can find a solution different from the intended one. In the next exam-
ple we modify the specification to have a single solution and synthesize it.

3 The rules can be found in the extended version of this paper [10].
4 For the fully detailed derivation, see [10].

Synthesis of Recursive Programs in Saturation 165

Example 3. To synthesize the double function, we modify the specification:

additional axioms: even(0) (E1)
¬even(s(0)) (E2)
∀x. (even(s(s(x))) ↔ even(x)) (E3)

new specification: ∀x∃y. (half(y) � x ∧ even(y)) (SD’)

After negating and skolemizing (SD’) and adding the answer literal, we
obtain:

half(y) �� σ ∨ ¬even(y) ∨ ans(y) (13)

In this case we use the magic axiom for the conjunction G[t, x] := half(x) �
t ∧ even(x):

(
∃u0.(half(u0) � 0 ∧ even(u0))∧

∀y.
(∃w.(half(w) � y ∧ even(w)) → ∃us.(half(us) � s(y) ∧ even(us))

))

→ ∀z.∃x.(half(x) � z ∧ even(x))
(14)

We clausify the magic formula corresponding to (14), and further resolve it with
the premise (13) to obtain:

half(u0) �� 0 ∨ ¬even(u0) ∨ half(σw) � σy ∨ ans(rec(u0, us, σ))
half(u0) �� 0 ∨ ¬even(u0) ∨ even(σw) ∨ ans(rec(u0, us, σ))

half(u0) ��0 ∨ ¬even(u0) ∨ half(us) ��s(σy) ∨ ¬even(us) ∨ ans(rec(u0, us, σ))

The refutation of these clauses follows a similar course to the proof in Exam-
ple 2. However, u0 occurring in the literal ¬even(u0) forces the proof to
use (H1) instead of (H2) , and thus the final derived answer literal will be
rec(0, s(s(σw)), σ), corresponding exactly to the function definition of double
from (1). Note that a derivation of this program in this case requires a satu-
ration prover to apply induction on conjunctions of literals. ��

8 Generalization to Arbitrary Term Algebras

Our approach from Sects. 5– 7 generalizes naturally to arbitrary term algebras.
This section summarizes the key parts of this generalization. 5

Let τ be a (possibly polymorphic) term algebra with constructors
{c1, . . . , cn}, where we denote the sort of each ci by τi,1 × · · · × τi,nci

→ τ ,

5 We state all definitions, lemmas and theorems in the appendix of the extended
version of our paper [10].

166 P. Hozzová et al.

and Pci
= {j1, . . . , j|Pci

|} for each i = 1, . . . , n. Let α be any sort. The magic
axiom for G[t, x], where t : τ, x : α, is:

(∧
c∈Στ

∀nc
i=1yc,i.

(
(

∧
j∈Pc

∃wc,j .G[yc,j , wc,j]) → ∃uc.G[c(yc), uc]
)) → ∀z.∃x.G[z, x] (15)

The corresponding magic formula uses the skolem function recG[t,x] : αnc × τ →
α:

∀c∈Στ uc.∀z.
(∧

c∈Στ

(∧
j∈Pc

G[σyc,j , σwc,j] → G[c(σyc), uc]
) → G[z, recG[t,x](u, z)]

)
(16)

Note that each σyci,j
, σwci,j

introduced in (16) is considered computable only in
the ith argument of its associated rec-term. We define the recursion operator R
for τ and α analogously to Definition 1:

R(f1, . . . , fn)(c1(x)) � f1(x1, . . . , xnc1
,R(f1, . . . , fn)(xj1), . . . ,R(f1, . . . , fn)(xj|Pc1|))

· · ·
R(f1, . . . , fn)(cn(x)) � fn(x1, . . . , xncn

,R(f1, . . . , fn)(xj1), . . . ,R(f1, . . . , fn)(xj|Pcn|))

where for each i we have fi : τi,1 × · · · × τi,nci
× α|Pci

| → α. Using R, we state
an analogue of Lemma 7:

Lemma 11 (Recursive Witness for Magic Formulas Using τ). Consider
the formula obtained from (16) by replacing recG[t,x](u, z) by its corresponding
recursive function term:

∀c∈Στ uc.∀z.
(∧

c∈Στ

(∧
j∈Pc

G[σyc,j , σwc,j] → G[c(σyc), uc]
)

→ G[z,R(λ
nc1
i=1σyc1,i

.λk∈Pc1
σwc1,k

. uc1 , . . . , λ
ncn
i=1 σycn,i .λk∈Pcn

σwcn,k . ucn)(z)]
) (17)

For every interpretation, there exists its extension by some {σyc,i
�→vy,c,i, σwc,k

�→
vw,c,k}c∈Στ ,i∈{1,...,nc},k∈Pc

such that the extension is a model of (17). As a con-
sequence, formula (17) is satisfiable.

Using Lemma 11, we derive the analogues of Theorems 8–10 for an arbitrary
term algebra τ . We then employ magic formulas (16) in MagInd when in the
premise L[t, x] ∨ C ∨ ans(r[x]) we have t : τ . We finally note that our synthe-
sis method generalizes also to sorts other than term algebras, as long as the
induction axiom used for the sort carries the constructive meaning described in
Sect. 4.

9 Implementation and Examples

Implementation. We extended the first-order theorem prover Vampire [16]
with a proof-of-concept implementation of our method for recursive program

Synthesis of Recursive Programs in Saturation 167

synthesis in saturation. Our implementation consists of approximately 1,100 lines
of C++ code and is available online at https://github.com/vprover/vampire/
tree/synthesis-recursive.

We implemented the MagInd rule as well as a version of MagInd using a magic
axiom with base case s(0) for natural numbers and cons(a, nil) for any a for lists.
To support synthesis requiring induction on specifications ¬F [t, x], where F [t, x]
is an arbitrary formula with the only free variable x, we use an encoding as
follows. We change the specification ∀x∃y.F [x, y] to ∀x∃y.p(x, y), where p is a
fresh uncomputable predicate, and we add an axiom ∀x, y.(p(x, y) ↔ F [x, y]).

Table 1. Synthesis examples using natural numbers N, lists L and binary trees BT.
The x-variables in the program and synthesized definitions are the inputs. While our
framework synthesizes all these examples, our implementation in Vampire only syn-
thesizes those marked with “✓”. Note that for “Length of 2 concatenated lists” we
consider ++ to be uncomputable.

Specification Program Synthesized definitions Vampire

Double:

∀x ∈ N.∃y ∈ N.
(half(y) 	 x ∧ even(y))

f(x)
f(0) 	 0

f(s(n)) 	 s(s(f(n)))
✓

Associativity of addition:

∀x1, x2, x3 ∈ N.∃y ∈ N.
(x1 + x2) + x3 	 x1 + y

f(x3)
f(0) 	 x2

f(s(n)) 	 s(f(n))
✓

Subtraction with condition:

∀x1, x2 ∈ N.∃y ∈ N.
(x2 < x1 → x2 + y 	 x1)

f(x2)
f(0) 	 x1

f(s(n)) 	 p(f(n))
✓

Floored square root:

∀x ∈ N.∃y ∈ N.
(y · y ≤ x ∧ x < s(y) · s(y))

f(x)

f(0) 	 0

f(s(n)) 	 if s(n)	 s(f(n))·s(f(n))

then s(f(n)) else f(n)

✗

Floored division:

∀x1, x2 ∈ N.∃y ∈ N.(x2 �	 0 →
(y · x2 ≤ x1 ∧ x1 < s(y) · x2))

f(x1)

f(0) 	 0

f(s(n)) 	 if s(n)	 s(f(n))·x2

then s(f(n)) else f(n)

✗

Length of 2 concatenated lists:

∀x1, x2 ∈ L.∃y ∈ N.
y 	 len(x1x2)

f(x1)
f(nil) 	 len(x2)

f(cons(n,l)) 	 s(f(l))
✓

Last element of a list:

∀x ∈ L.∃y ∈ N.(x �	 nil →
∃z ∈ L.x 	 zcons(y, nil))

f(x)
f(cons(n,nil)) 	 n

l �	 nil → f(cons(n,l)) 	 f(l)
✓

Prefix of a list given its suffix:

∀x1, x2 ∈ L.∃y ∈ L.
(suff(x2, x1) → x1 	 yx2)

f(x2)

f(nil) 	 x1

f(cons(n,l)) 	 g(f(l))

g(cons(n,nil)) 	 nil

l �	 nil → g(cons(n,l)) 	 cons(n,g(l))

✗

Maximum element of a list:

∀x ∈ L.∃y ∈ N.(x �	nil →
(in(y,x)∧∀k∈N.(in(k,x)→k≤y))

f(x)

f(cons(n,nil)) 	 n

l �	 nil → f(cons(n,l)) 	 if f(l) < n

then n else f(l)

✗

Maximum element of a tree:

∀x ∈ BT.∃y ∈ N.
(in(y,x)∧∀k∈N.(in(k,x)→k≤y)

f(x)

f(leaf(n)) 	 n

f(bt(l,n,r)) 	
if f(l) < f(r) then

if f(l) < n then

if f(r) < n then n else f(r)

else f(r)

else if f(r) < n then

if f(l) < n then n else f(l)

else f(l)

✗

https://github.com/vprover/vampire/tree/synthesis-recursive
https://github.com/vprover/vampire/tree/synthesis-recursive

168 P. Hozzová et al.

Examples. Our implementation can synthesize the programs for the specifi-
cations (SD) and (SD’). We also synthesize further examples over the term
algebras6 of natural numbers N, lists L, and binary trees BT. We display the
specifications alongside the programs synthesized by our framework in Table 1.
Our framework synthesizes programs for each of the examples7 , yet our imple-
mentation supports so far only a limited set of magic formulas; therefore, the
“Vampire” column of Table 1 lists which examples are solved in practice.

Experimental Comparison. To the best of our knowledge, no other app-
roach in program synthesis supports the setting we consider: functional relational
specifications of recursive programs, given in full first-order logic, without user-
defined templates. For this reason, we could not compare the practical aspects
of our work with other techniques, but overview related works in Sect. 10. In
particular, we note that the tools surveyed in overview in Sect. 10 support a
more restrictive/decidable logic than the the full first-order setting exploited in
our approach. As such, the benchmarks of Table 1 cannot be translated into the
input languages of techniques surveyed in Sect. 10.

10 Related Work

Our approach is conceptually different from existing methods in recursive pro-
gram synthesis, as we are not restricted to decidable logical fragments, nor to
user-defined program templates. Our work supports program specifications in
full first-order logic (with theories) and does not require syntactic templates for
the programs to be synthesized. In the sequel, we only discuss related approaches
that support full automation in program synthesis, without templates or user
guidance.

We extend the recursion-free synthesis framework of [8], while exploiting
ideas from deductive synthesis [17,20,29] using answer literals [4]. We bring
recursive program synthesis into the landscape of saturation-based proving and
construct programs from saturation proofs with magic axioms. Unlike our set-
ting, the works of [19,29] construct recursive programs from proofs by induc-
tion, by reducing the program specification to subgoals corresponding to the
cases of the induction axiom. Modern first-order theorem provers mostly imple-
ment saturation-based proof search, which however does not support a goal-
subgoal architecture. Our approach integrates induction directly into saturation
and enables automated reasoning with term algebras.

6 See the extended version of this paper [10] for term algebra constructors and signa-
tures, and for axiomatization and lemmas for the used predicates and functions.

7 We provide the full derivations of the synthesized programs in [10].

Synthesis of Recursive Programs in Saturation 169

Fully automated methods supporting recursive program synthesis include
Synquid [23], Leon [15], Jennisys [18], SuSLik [24], Cypress [12],
Burst [21], and Syntrec [11]. Except for Burst and Syntrec, all these
works decompose goals into subgoals. Our work complements these methods,
by turning saturation into a recursive synthesis framework over first-order the-
ories. As such, our work also differs from Synquid, where term enumeration
combined with type checking is used over program specifications within decid-
able logics. Leon uses recursive schemas corresponding to our recursive opera-
tor R, instantiates them by candidate program terms, and checks if they satisfy
the specification. Unlike Leon, we support a complete handling of quantifiers
via superposition reasoning. Jennisys uses a verifier to generate input-output
examples, which differs from our setting of using inductive formulas as logical
specifications. Burst generates programs by composition from existing ones,
using quantifier-free fragments of first-order logic. Contrarily to this, we sup-
port full first-order logic and induction, without using subgoal proof strategies.
Finally, we note that Syntrec guarantees bounded/relative correctness of the
synthesized programs (using syntactic program templates), while our approach
proves correctness of the synthesized program without further restrictions.

The syntax-guided synthesis (SyGuS) framework [1] supports specifications
for recursive functions and can encode our examples from Sect. 9. However, to
the best of our knowledge, SyGuS methods, including the SMT-based approach
of [26], do not support recursive synthesis. While the semantics-guided synthesis
framework [13] also supports recursive functions, its (to the best of our knowl-
edge) only solvers Messy [13] and Messy-Enum [3] synthesize programs from
input-output examples and using grammars, respectively, rather than purely
from logical specifications.

11 Conclusions

We extend saturation-based framework to recursive program synthesis by utiliz-
ing the constructive nature of induction axioms. We introduce magic axioms as
a tracking mechanism and seamlessly integrate these axioms into saturation. We
then construct correct recursive programs using answer literals in saturation, as
also demonstrated by our proof-of-concept implementation. Extending our work
with tailored handling of (more general) magic axioms, and respective superposi-
tion inferences, is an interesting line for future work. Devising and implementing
further, and potentially more general, synthesis rules and induction schemes is
another task for future research, allowing us to further strengthen the practical
use of our work.

Acknowledgements. We acknowledge funding from the ERC Consolidator Grant
ARTIST 101002685, the TU Wien SecInt Doctoral College, the FWF SFB project
SpyCoDe F8504, the WWTF ICT22-007 grant ForSmart, and the Amazon Research
Award 2023 QuAT.

170 P. Hozzová et al.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, pp. 1–25 (2015)

2. Bonacina, M.P.: A Taxonomy of theorem-proving strategies. In: Artificial Intelli-
gence Today: Recent Trends and Developments, pp. 43–84 (1999). https://doi.org/
10.1007/3-540-48317-9 3

3. D’Antoni, L., Hu, Q., Kim, J., Reps, T.: Programmable program synthesis. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 84–109. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 4

4. Green, C.: Theorem-proving by resolution as a basis for question-answering sys-
tems. Mach. Intell. 4, 183–205 (1969)

5. Hajdu, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
Generalization in Superposition Reasoning. In: CICM, pp. 123–137 (2020) https://
doi.org/10.1007/978-3-030-53518-6 8

6. Hajdu, M., Kovács, L., Rawson, M., Voronkov, A.: The Vampire Approach to
Induction. In: Practical Aspects of Automated Reasoning (2022)

7. Hajdu, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recursive defi-
nitions in superposition. In: FMCAD, pp. 1–10 (2021). https://doi.org/10.34727/
2021/isbn.978-3-85448-046-4 34

8. Hozzová, P., Kovács, L., Norman, C., Voronkov, A.: Program synthesis in satura-
tion. In: CADE, pp. 307–324 (2023)

9. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. In: CADE,
pp. 361–377 (2021)

10. Hozzová, P., Amrollahi, D., Hajdu, M., Kovács, L., Voronkov, A., Wagner, E.M.:
Synthesis of Recursive Programs in Saturation. EasyChair Preprint no. 12145,
EasyChair (2024)

11. Inala, J.P., Polikarpova, N., Qiu, X., Lerner, B.S., Solar-Lezama, A.: Synthesis of
recursive ADT transformations from reusable templates. In: TACAS, pp. 247–263
(2017). https://doi.org/10.1007/978-3-662-54577-5 14

12. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Cyclic program
synthesis. In: PLDI, pp. 944–959 (2021). https://doi.org/10.1145/3453483.3454087

13. Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proc. ACM
Program. Lang. 5(POPL), 1–32 (2021). https://doi.org/10.1145/3434311

14. Kleene, S.: On the interpretation of intuitionistic number theory. J. Symb. Log.
10, 109–124 (1945)

15. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA, pp. 407–426 (2013). https://doi.org/10.1145/2509136.2509555

16. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: CAV,
pp. 1–35 (2013)

17. Lee, R.C.T., Waldinger, R.J., Chang, C.L.: An improved program-synthesizing
algorithm and its correctness. Commun. ACM 4, 211–217 (1974). https://doi.org/
10.1145/360924.360967

18. Leino, K.R.M., Milicevic, A.: Program extrapolation with Jennisys. In: OOPSLA,
pp. 411–430. OOPSLA ’12 (2012). https://doi.org/10.1145/2384616.2384646

19. Manna, Z., Waldinger, R.: Fundamentals of deductive program synthesis. IEEE
Trans. Softw. Eng. 18(8), 674–704 (1992). https://doi.org/10.1109/32.153379

20. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACMTrans.
Program. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/357084.357090

https://doi.org/10.1007/3-540-48317-9_3
https://doi.org/10.1007/3-540-48317-9_3
https://doi.org/10.1007/978-3-030-81685-8_4
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.1007/978-3-662-54577-5_14
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3434311
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/360924.360967
https://doi.org/10.1145/360924.360967
https://doi.org/10.1145/2384616.2384646
https://doi.org/10.1109/32.153379
https://doi.org/10.1145/357084.357090

Synthesis of Recursive Programs in Saturation 171

21. Miltner, A., Nuñez, A.T., Brendel, A., Chaudhuri, S., Dillig, I.: Bottom-up Syn-
thesis of Recursive Functional Programs using Angelic Execution. 6(POPL), 1–29
(2022). https://doi.org/10.1145/3498682

22. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Hand-
book of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)

23. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. ACM SIGPLAN Notices 51(6), 522–538 (2016). https://doi.org/
10.1145/2980983.2908093

24. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating pro-
grams. 3(POPL), 1–30 (2019). https://doi.org/10.1145/3290385

25. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: CADE,
pp. 477–494 (2019)

26. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C.W., Deters, M.: Refutation-based
synthesis in SMT. Formal Methods Syst. Des. 55(2), 73–102 (2019). https://doi.
org/10.1007/S10703-017-0270-2

27. Rybina, T., Voronkov, A.: A decision procedure for term algebras with queues.
ACM Trans. Comput. Log. 2(2), 155–181 (2001). https://doi.org/10.1145/371316.
371494

28. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: POPL, pp. 313–326 (2010). https://doi.org/10.1145/1706299.1706337

29. Tammet, T.: Completeness of resolution for definite answers. J. Logic Comput.
5(4), 449–471 (1995)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3498682
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1007/S10703-017-0270-2
https://doi.org/10.1007/S10703-017-0270-2
https://doi.org/10.1145/371316.371494
https://doi.org/10.1145/371316.371494
https://doi.org/10.1145/1706299.1706337
http://creativecommons.org/licenses/by/4.0/

Synthesizing Strongly Equivalent Logic
Programs: Beth Definability for Answer
Set Programs via Craig Interpolation

in First-Order Logic

Jan Heuer and Christoph Wernhard(B)

University of Potsdam, Potsdam, Germany
{jan.heuer,christoph.wernhard}@uni-potsdam.de

Abstract. We show a projective Beth definability theorem for logic pro-
grams under the stable model semantics: For given programs P and Q
and vocabulary V (set of predicates) the existence of a program R in V
such that P ∪ R and P ∪ Q are strongly equivalent can be expressed as
a first-order entailment. Moreover, our result is effective: A program R
can be constructed from a Craig interpolant for this entailment, using a
known first-order encoding for testing strong equivalence, which we apply
in reverse to extract programs from formulas. As a further perspective,
this allows transforming logic programs via transforming their first-order
encodings. In a prototypical implementation, the Craig interpolation is
performed by first-order provers based on clausal tableaux or resolu-
tion calculi. Our work shows how definability and interpolation, which
underlie modern logic-based approaches to advanced tasks in knowledge
representation, transfer to answer set programming.

1 Introduction

Answer set programming [3,35,50,57,60] is one of the major paradigms in knowl-
edge representation. A problem is expressed declaratively as a logic program, a
set of rules in the form of implications. An answer set solver returns represen-
tations of its answer sets or stable models [36,49]. That is, minimal Herbrand
models, where models with facts not properly justified in a non-circular way are
excluded. Modern answer set solvers such as clingo [34] are advanced tools that
integrate SAT technology.

Two logic programs can be considered as equivalent if and only if they have
the same answer sets. However, if two equivalent programs are each combined
with some other program, the results are not necessarily equivalent. Thus, it is
of much more practical relevance to consider instead a notion of equivalence that
guarantees the same answer sets even in combination with other programs: Two
logic programs P,Q are strongly equivalent [54] if they can be exchanged in the

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 457292495.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 172–193, 2024.
https://doi.org/10.1007/978-3-031-63498-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_11&domain=pdf
http://orcid.org/0009-0004-1545-9356
http://orcid.org/0000-0002-0438-8829
https://doi.org/10.1007/978-3-031-63498-7_11

Synthesizing Strongly Equivalent Logic Programs 173

context of any other program R without affecting the answer sets of the overall
program. That is, P and Q are strongly equivalent if and only if for all logic
programs R it holds that P ∪ R and Q ∪ R have the same answer sets.

Although it has been known that strong equivalence of logic programs under
the stable model semantics can be translated into equivalence of classical logical
formulas, e.g. [55], developments in the languages of answer set programming
make this an issue of ongoing research [18,25,38,39,42,53]. The practical objec-
tive is to apply first-order provers to determine the equivalence of two logic
programs.

We now consider the situation where only a single program is given and a
strongly equivalent one is to be synthesized automatically. For the new program
the set of allowed predicates, including to some degree the position within rules
in which they are allowed, is restricted to a given vocabulary. Not just “absolute”
strong equivalence is of interest, but also strong equivalence with respect to some
background knowledge expressed as a logic program. Thus, for given programs
P and Q, and vocabulary V we want to find programs R in V such that P ∪ R
and P ∪ Q are strongly equivalent.

Our question has two aspects: characterizing the existence of a program R for
given P,Q, V and, if one exists, the effective construction of such an R. As we will
show, existence can be addressed by Beth definability [7,21] on the basis of Craig
interpolation [20] for first-order logic. The construction can then be performed
by extracting an interpolant from a proof of the first-order characterization of
existence. We realize this practically with the first-order provers CMProver [74,
75] and Prover9 [58] and an interpolation technique for clausal tableaux [76,77].

To achieve this, we start from a known representation of logic programs in
classical first-order logic for the purpose of verifying strong equality. We supple-
ment it with a formal characterization to determine whether an arbitrary given
first-order formula represents a logic program, and, if so, to extract a represented
logic program from the formula. This novel “reverse translation” also has other
potential applications in program transformation.

Beth definability and Craig interpolation play a key role for advanced tasks
in other fields of knowledge representation, in particular for query reformulation
in databases [5,6,59,66,72] and description logics as well as ontology-mediated
querying [2,16,17,73]. Our work aims to provide for these lines of research the
bridge to answer set programming.

Structure of the Paper. After providing in Sect. 2 background material on strong
equivalence as well as on interpolation and definability we develop in Sect. 3 our
technical results. Our prototypical implementation1 is then described in Sect. 4.
We conclude in Sect. 5 with discussing related work and perspectives.

1 Available from http://cs.christophwernhard.com/pie/asp as free software.

http://cs.christophwernhard.com/pie/asp

174 J. Heuer and C. Wernhard

2 Background

2.1 Notation

We map between two formalisms: logic programs and formulas of classical first-
order logic without equality (briefly formulas). In both formalisms we have atoms
p(t1, . . . , tn), where p is a predicate and t1, . . . , tn are terms built from functions,
including constants, and variables. We assume variable names as case insensi-
tive to take account of the custom to write them uppercase in logic programs
and lowercase in first-order logic. Predicates in logic programs are distinct from
those in formulas, but with a correspondence: If p is a predicate for use in logic
programs, then the two predicates p0 and p1, both with the same arity as p, are
for use in formulas. Thus, predicates in formulas are always decorated with a
0 or 1 superscript. To emphasize this, we sometimes speak of 0/1-superscripted
formulas.

A literal is an atom or a negated atom. A clause is a disjunction of literals, a
clausal formula is a conjunction of clauses. The empty disjunction is represented
by ⊥, the empty conjunction by �. On occasion we write a clause also as an
implication.

A subformula occurrence in a formula has positive (negative) polarity if it is
in the scope of an even (odd) number of possibly implicit negations. A formula
is universal if occurrences of ∀ have only positive polarity and occurrences of
∃ have only negative polarity. Semantic entailment and equivalence of formulas
are expressed by |= and ≡.

Let F be a formula. Fun(F) is the set of functions occurring in it, includ-
ing constants, and Pred(F) is the set of predicates occurring in it. Pred±(F)
is the set of pairs 〈pol , p〉, where p is a predicate and pol ∈ {+,−}, such
that an atom with predicate p occurs in F with the polarity indicated by
pol . We write 〈+, p〉 and 〈−, p〉 succinctly as +p and −p. To map from the
predicates occurring in a formula to predicates of logic programs we define
PredLP (F) def= {p | pi ∈ Pred(F), i ∈ {0, 1}}. For logic programs P , we define
Fun(P) and Pred(P) analogously as for formulas.

2.2 Strong Equivalence as First-Order Equivalence

We consider disjunctive logic programs with negation in the head [48, Sect. 5],
which provide a normal form for answer set programs [12]. A logic program is a
set of rules of the form

A1; . . . ;Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An.,

where A1, . . . , An are atoms, 0 ≤ k ≤ l ≤ m ≤ n. Recall from Sect. 2.1 that
an atom can have argument terms with functions and variables. The posi-
tive/negative head of a rule are the atoms A1, . . . , Ak and Ak+1, . . . , Al respec-
tively. Analogously the positive/negative body of a rule are Al+1, . . . , Am and
Am+1, . . . , An respectively. Answer sets with respect to the stable model seman-
tics for this class of programs are for example defined in [32].

Synthesizing Strongly Equivalent Logic Programs 175

Next we review the definition of the translation γ used to express strong
equivalence of two logic programs in classical first-order logic.2 It makes use of the
fact that strong equivalence can be expressed in the intermediate logic of here-
and-there [54], which in turn can be mapped to classical logic [62]. For details
and proofs we refer to [25,38,39]. Similar results appeared in [28,55,62,63]. As
stated in Sect. 2.1 we assume for each program predicate p two dedicated formula
predicates p0 and p1 with the same arity. If A is an atom with predicate p, then
A0 is A with p0 instead of p, and A1 is A with p1 instead of p.

Definition 1. For a rule

R = A1; . . . ;Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An.

with variables x define the first-order formulas γ0(R) and γ1(R) as

γ0(R) def= ∀x (
∧m

i=l+1 A0
i ∧ ∧n

i=m+1 ¬A1
i → ∨k

i=1 A0
i ∨ ∨l

i=k+1 ¬A1
i),

γ1(R) def= ∀x (
∧m

i=l+1 A1
i ∧ ∧n

i=m+1 ¬A1
i → ∨k

i=1 A1
i ∨ ∨l

i=k+1 ¬A1
i).

For a logic program P define the first-order formula γ(P) as

γ(P) def=
∧

R∈P γ0(R) ∧ ∧
R∈P γ1(R).

and define the first-order formula SP as

SP
def=

∧
p∈Pred(P) ∀x (p0(x) → p1(x)),

where variables x match the arity of p.

Using the transformation γ and the formula SP we can express strong equiv-
alence as an equivalence in first-order logic.

Proposition 2 ([38]). Under the stable model semantics two logic programs P
and Q are strongly equivalent iff the following equivalence holds in classical first-
order logic SP∪Q ∧ γ(P) ≡ SP∪Q ∧ γ(Q).

2.3 Definition Synthesis with Craig Interpolation

A formula Q(x) is implicitly definable in terms of a vocabulary (set of predicate
and function symbols) V within a sentence F if, whenever two models of F
agree on values of symbols in V , then they agree on the extension of Q, i.e., on
the tuples of domain members that satisfy Q. In the special case where Q has
no free variables, this means that they agree on the truth value of Q. Implicit
definability can be expressed as

F ∧ F ′ |= ∀x (Q(x) ↔ Q′(x)), (i)
2 With the notation γ we follow [25]. In [38,39] σ∗ is used for the same translation.

176 J. Heuer and C. Wernhard

where F ′ and Q′ are copies of F and Q with all symbols not in V replaced by
fresh symbols. This semantic notion contrasts with the syntactic one of explicit
definability : A formula Q(x) is explicitly definable in terms of a vocabulary V
within a sentence F if there exists a formula R(x) in the vocabulary V such that

F |= ∀x (R(x) ↔ Q(x)). (ii)

The “Beth property” [7] states equivalence of both notions and applies to first-
order logic. “Craig interpolation” is a tool that can be applied to prove the “Beth
property” [21], and, moreover to construct formulas R from given F,Q, V from a
proof of implicit definability. Craig’s interpolation theorem [20] applies to first-
order logic and states that if a formula F entails a formula G (or, equivalently,
that F → G is valid), then there exists a formula H, a Craig interpolant of F
and G, with the properties that F |= H, H |= G, and the vocabulary of H (predi-
cate and function symbols as well as free variables) is in the common vocabulary
of F and G. Craig’s theorem can be strengthened to the existence of Craig-
Lyndon interpolants [56] that satisfy the additional property that predicates in
H occur only in polarities in which they occur in both F and G. In our technical
framework this condition is expressed as Pred±(H) ⊆ Pred±(F) ∩ Pred±(G).

Craig’s interpolation theorem can be proven by constructing H from a
proof of F |= G. This works on the basis of sequent calculi [68,71] and ana-
lytic tableaux [29]. For calculi from automated first-order reasoning various
approaches have been considered [10,40,44,67,76,77]. A method [76] for clausal
tableaux [46] performs Craig-Lyndon interpolation and operates on proofs emit-
ted by a general first-order prover, without need to modify the prover for inter-
polation, and inheriting completeness for full first-order logic from it. Indirectly
that method also works on resolution proofs expanded into trees [77].

Observe that the characterization of implicit definability (i) can also be
expressed as F ∧ Q(x) |= F ′ → Q′(x). An “explicit” definiens R(x) can now be
constructed from given F , Q(x) and V just as a Craig interpolant of F ∧ Q(x)
and F ′ → Q′(x). The synthesis of definitions by Craig interpolation was rec-
ognized as a logic-based core technique for view-based query reformulation in
relational databases [5,59,66,72]. Often strengthened variations of Craig-Lyndon
interpolation are used there that preserve criteria for domain independence, e.g.,
through relativized quantifiers [5] or range-restriction [77].

3 Variations of Craig Interpolation and Beth Definability
for Logic Programs

We synthesize logic programs according to a variation of Beth’s theorem justified
by a variation of Craig-Lyndon interpolation. Craig-Lyndon interpolation “out of
the box” is not sufficient for our purposes: To obtain logic programs as definientia
we need as a basis a stronger form of interpolation where the interpolant is not
just a first-order formula but, moreover, is the first-order encoding of a logic
program, permitting to actually extract the program.

Synthesizing Strongly Equivalent Logic Programs 177

3.1 Extracting Logic Programs from a First-Order Encoding

We address the questions of how to abstractly characterize first-order formulas
that encode a logic program, and how to extract the program from a first-
order formula that meets the characterization. As specified in Sect. 2.1, we
assume first-order formulas over predicates superscripted with 0 and 1. The
notation SP (Definition 1) is now overloaded for 0/1-superscripted formulas F
as SF

def=
∧

p∈PredLP (F) ∀x (p0(x) → p1(x)), where variables x match the arity of
p. We introduce a convenient notation for the result of systematically renaming
all 0-superscripted predicates to their 1-superscripted correspondence.

Definition 3. For 0/1-superscripted first-order formulas F define rename0 �→1(F)
as F with all occurrences of 0-superscripted predicates p0 replaced by the corre-
sponding 1-superscripted predicate p1.

Obviously rename0 �→1 can be moved over logic operators, e.g.,
rename0 �→1(F ∧ G) ≡ rename0 �→1(F) ∧ rename0 �→1(G), and rename0 �→1(∀xF) ≡
∀x rename0 �→1(F). Semantically, rename0 �→1 preserves entailment and thus also
equivalence.

Proposition 4. For 0/1-superscripted first-order formulas F and G it holds
that (i) If F |= G, then rename0 �→1(F) |= rename0 �→1(G). (ii) If F ≡ G, then
rename0 �→1(F) ≡ rename0 �→1(G).

Observe that for all rules R it holds that γ1(R) = rename0 �→1(γ0(R)) and for
all logic programs P it holds that γ(P) |= rename0 �→1(γ(P)). On the basis of
rename0 �→1 we define a first-order criterion for a formula encoding a logic pro-
gram, that is, a first-order entailment that holds if and only if a given first-order
formula encodes a logic program.

Definition 5. A 0/1-superscripted first-order formula F is said to encode a logic
program iff F is universal and SF ∧ F |= rename0 �→1(F).

This criterion adequately characterizes that the formula represents a logic pro-
gram on the basis of the translation γ. The following theorem justifies this.

Theorem 6 (Formulas Encoding a Logic Program). (i) For all logic pro-
grams P it holds that γ(P) is a 0/1-superscripted first-order formula that encodes
a logic program. (ii) If a 0/1-superscripted first-order formula F encodes a logic
program, then there exists a logic program P such that SF |= γ(P) ↔ F ,
Pred(P) ⊆ PredLP (F) and Fun(P) ⊆ Fun(F). Moreover, such a program P
can be effectively constructed from F .

Proof. (6.i) Immediate from the definition of γ. (6.ii) Procedure 7 specified below
and proven correct in Proposition 8 shows the construction of a suitable program.

��
Theorem 6.ii claims that the vocabulary of the program is only included in the
respective vocabulary of the formula. This gives for the formula the freedom of a
larger vocabulary with symbols that may be eliminated, e.g., by simplifications.

178 J. Heuer and C. Wernhard

Procedure 7 (Decoding an Encoding of a Logic Program).
Input: A 0/1-superscripted first-order formula F that encodes a logic program.

Method:

1. Bring F into conjunctive normal form matching ∀x (M0 ∧ M1), where M0

and M1 are clausal formulas such that in all clauses of M0 there is a literal
whose predicate has superscript 0 and in all clauses of M1 the predicates of
all literals have superscript 1.

2. Partition M1 into two clausal formulas M ′
1 and M ′′

1 such that

∀x rename0 �→1(M0) |= ∀xM ′′
1 .

A possibility is to take M ′
1 = M1 and M ′′

1 = �. Another possibility that
often leads to a smaller M ′ is to consider each clause C in M1 and place it
into M ′′

1 or M ′
1 depending on whether there is a clause D in M0 such that

rename0 �→1(D) subsumes C.
3. Let P be the set of rules

A1; . . . ;Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An

for each clause
∧m

i=l+1 A0
i ∧∧n

i=m+1¬A1
i → ∨k

i=0 A0
i ∨∨l

i=k+1¬A1
i in M0∧M ′

1.

Output: Return P , a logic program such that SP |= γ(P) ↔ F , Pred(P) ⊆
PredLP (F) and Fun(P) ⊆ Fun(F).

Proposition 8. Procedure 7 is correct.

Proof. For an input formula F and output program P the syntactic requirements
Pred(P) ⊆ PredLP (F) and Fun(P) ⊆ Fun(F) are easy to see from the construc-
tion of P by the procedure. To prove the semantic requirement SF |= γ(P) ↔ F
we first note the following assumptions, which follow straightforwardly from the
specification of the procedure.

(1) SF ∧ F |= rename0 �→1(F).
(2) F ≡ ∀x (M0 ∧ M ′

1 ∧ M ′′
1).

(3) rename0 �→1(∀xM0) |= ∀xM ′′
1 .

(4) γ(P) ≡ ∀x (M0 ∧ rename0 �→1(M0) ∧ M ′
1).

The semantic requirement SF |= γ(P) ↔ F can then be derived as follows.

(5) SF ∧ F |= rename0 �→1(∀xM0). By (2) and (1).
(6) SF ∧ F |= ∀x (M0 ∧ rename0 �→1(M0) ∧ M ′

1). By (5) and (2).
(7) SF ∧ F |= γ(P). By (6) and (4).
(8) γ(P) |= ∀x (M0 ∧ M ′′

1 ∧ M ′
1). By (4) and (3).

(9) γ(P) |= F . By (8) and (2).
(10) SF |= γ(P) ↔ F . By (9) and (7).

��
Some examples illustrate Procedure 7 and the encoding a logic program property.

Synthesizing Strongly Equivalent Logic Programs 179

Example 9.

(i) Consider the following clauses and programs.
C1 = ¬p0 ∨ q1 ∨ r0

C2 = ¬s1 ∨ t1 ∨ u1

C3 = ¬p1 ∨ q1 ∨ r1

P = r ← p,not q.
not s ← not t,not u.
not p ← not q,not r.

P ′ = r ← p,not q.
not s ← not t,not u.

Assume as input of Procedure 7 the formula F = C1 ∧ C2 ∧ C3. Then
M0 = C1 and M1 = C2 ∧ C3. If in step 2 we set M ′

1 = M1 and M ′′
1 = �,

then the extracted program is P . We might, however, also set M ′
1 = C2 and

M ′′
1 = C3 and obtain the shorter strongly equivalent program P ′.

(ii) For F = ¬p1∨q1∨r0 we have to set M ′
1 = M ′′

1 = M1 = � and the procedure
yields {r;not p ← not q.}.

(iii) The formula F = ¬p0 ∨ q1 ∨ r0 does not encode a logic program because
SF ∧ F �|= rename0 �→1(F).

Remark 1. For the extracted program it is desirable that it is not unnecessar-
ily large. Specifically it should not contain rules that are easily identified as
redundant. Step 2 of Procedure 7 permits techniques to keep M ′ small. Other
possibilities include well-known formula simplification techniques that preserve
equivalence such as removal of tautological or subsumed clauses and may be
integrated into classification, step 1 of the procedure. In addition, conversions
that just preserve equivalence modulo SF may be applied, conceptually as a pre-
processing step, although in practice possibly implemented on the clausal form.
Procedure 7 then receives as input not F but a universal first-order formula F ′

whose vocabulary is included in that of F with the property

SF |= F ′ ↔ F. (iii)

Formula F ′ then also encodes a program: That SF ′ ∧F ′ |= rename0 �→1(F ′) follows
from SF ∧F |= rename0 �→1(F), (iii) and Proposition 4.ii. Procedure 7 guarantees
for its output SF ′ |= γ(P) ↔ F ′, hence by (iii) it follows that SF |= γ(P) ↔ F .

Example 10. Consider the following clauses and programs.
C1 = ¬p0 ∨ q1 ∨ r0

C2 = ¬p0 ∨ q1 ∨ r1

C3 = ¬p1 ∨ q1 ∨ r1

P = r ← p,not q.
← p,not q,not r.

P ′ = r ← p,not q.

Assume as input of Procedure 7 the formula F = C1∧C2∧C3. Then M0 = C1∧C2

and M1 = C3, and, aiming at a short program, we can set M ′
1 = � and M ′′

1 = C3.
The extracted program is then P . By preprocessing F according to Remark 1 we
can eliminate C2 from F and obtain the shorter strongly equivalent program P ′.

3.2 A Refinement of Craig Interpolation for Logic Programs

With the material from Sect. 3.1 on extracting logic programs from formulas
we can now state a theorem on LP-interpolation, where LP stands for logic
program. It is a variation of Craig interpolation applying to first-order formulas
that encode logic programs. The theorem states not only the existence of an
LP-interpolant, but, moreover, also claims effective construction.

180 J. Heuer and C. Wernhard

Theorem 11 (LP-Interpolation). Let F be a 0/1-superscripted first-order
formula that encodes a logic program and let G be a 0/1-superscripted first-order
formula such that Fun(F) ⊆ Fun(G) and SF ∧F |= SG → G. Then there exists a
0/1-superscripted first-order formula H, called the LP-interpolant of F and G,
such that

1. SF ∧ F |= H.
2. H |= SG → G.
3. Pred±(H) ⊆ S ∪ {+p1 | +p0 ∈ S} ∪ {−p1 | −p0 ∈ S}, where S = Pred±(SF ∧

F) ∩ Pred±(SG → G).
4. Fun(H) ⊆ Fun(F).
5. H encodes a logic program.

Moreover, if existence holds, then an LP-interpolant H can be effectively con-
structed, via a universal Craig-Lyndon interpolant of F ∧ SF and SG → G.

Proof. We show the construction of a suitable formula H. Let H ′ be a Craig-
Lyndon interpolant of SF ∧ F and SG → G. Since F and SF are universal
first-order formulas and we have the precondition Fun(F) ⊆ Fun(G), we may in
addition assume that H ′ is a universal first-order formula. (This additional con-
dition is guaranteed for example by the interpolation method from [76], which
computes H ′ directly from a clausal tableaux proof, or indirectly from a reso-
lution proof [77].) Define H def= H ′ ∧ rename0 �→1(H ′). Claims 2, 4 and 5 of the
theorem statement are then easy to see. Claim 1 can be shown as follows. We
may assume the following.

(1) SF ∧ F |= H ′. Since H ′ is a Craig-Lyndon interpolant.
(2) SF ∧ F |= rename0 �→1(F). Since F encodes a logic program.

Claim 1 can then be derived in the following steps.

(3) rename0 �→1(SF ∧ F) |= rename0 �→1(H
′). By (1) and Proposition 4.i.

(4) SF ∧ F |= rename0 �→1(SF ∧ F). By (2), since rename0 �→1(SF) ≡ �.
(5) SF ∧ F |= rename0 �→1(H

′). By (4) and (3).
(6) SF ∧ F |= H. By (5) and (1), since H = H ′ ∧ rename0 �→1(H

′).

Claim 3 follows because since H ′ is a Craig-Lyndon interpolant it holds that
Pred±(H ′) ⊆ Pred±(SF ∧ F)∩ Pred±(SG → G). With the predicate occurrences
in rename0 �→1(H ′), i.e., 1-superscripted predicates in positions of 0-superscripted
predicates in H ′, we obtain the restriction of Pred±(H) stated as claim 3. ��

For an LP-interpolant of formulas F and G, where F encodes a logic program,
the semantic properties stated in claims 1 and 2 are those of a Craig or Craig-
Lyndon interpolant of SF ∧F and SG → G. The allowed polarity/predicate pairs
are those common in SF ∧ F and SG → G, as in a Craig-Lyndon interpolant,
and, in addition, the 1-superscripted versions of polarity/predicate pairs that
appear only 0-superscripted among these common pairs. These additional pairs
are those that might occur in the result of rename0 �→1 applied to a Craig-Lyndon
interpolant. In contrast to a Craig interpolant, functions are only constrained

Synthesizing Strongly Equivalent Logic Programs 181

by the first given formula F . Permitting only functions common to F and G
can result in an interpolant with existential quantification, which thus does not
encode a program. Claim 5 states that the LP-interpolant indeed encodes a logic
program as characterized in Definition 5. This property is, so-to-speak, passed
through from the given formula F to the LP-interpolant.

3.3 Effective Projective Definability of Logic Programs

We present a variation of the “Beth property” that applies to logic programs
with stable model semantics and takes strong equivalence into account. The
underlying technique is our LP-interpolation, Theorem 11. It maps into Craig-
Lyndon interpolation for first-order logic, utilizing that strong equivalence of
logic programs can be expressed as first-order equivalence of encoded programs.
This approach allows the effective construction of logic programs in the role of
“explicit definitions” via Craig-Lyndon interpolation on first-order formulas. Our
variation of the “Beth property” is projective as it is with respect to a given set
of predicates allowed in the definiens. While our LP-interpolation theorem was
expressed in terms of first-order formulas that encode logic programs, we now
phrase definability entirely in terms of logic programs.3

Theorem 12 (Effective Projective Definability of Logic Programs).
Let P and Q be logic programs and let V ⊆ Pred(P) ∪ Pred(Q) be a set of
predicates. The existence of a logic program R with Pred(R) ⊆ V , Fun(R) ⊆
Fun(P)∪ Fun(Q) such that P ∪ R and P ∪ Q are strongly equivalent is express-
ible as entailment between two first-order formulas. Moreover, if existence holds,
such a program R can be effectively constructed, via a universal Craig-Lyndon
interpolant of the left and the right side of the entailment.

Proof. The first-order entailment that characterizes the existence of a logic pro-
gram R is SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P ′) ∨ γ(Q′), where the
primed programs P ′ and Q′ are like P and Q, except that predicates not in V are
replaced by fresh predicates. If the entailment holds, we can construct a program
R as follows: Let H be the LP-interpolant of γ(P) ∧ γ(Q) and ¬γ(P ′) ∨ γ(Q′),
as specified in Theorem 11, and extract the program R from H with Procedure
7. That R constructed in this way has the properties claimed in the theorem
statement can be shown as follows. Since H is an LP-interpolant it follows that

(1) SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= H.
(2) H |= ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P ′) ∨ γ(Q′).
(3) PredLP (H) ⊆ V .
(4) Fun(H) ⊆ Fun(P) ∪ Fun(Q).
(5) H encodes a logic program.

From the preconditions of the theorem and since R is extracted from H with
Procedure 7 and thus meets the properties stated in Theorem 6.ii it follows that
3 LP-interpolation could also be phrased in terms of logic programs, providing an

interpolation result for logic programs on its own, not just as basis for definability.
We plan to address this in future work.

182 J. Heuer and C. Wernhard

(6) V ⊆ Pred(P) ∪ Pred(Q).
(7) SH |= γ(R) ↔ H.
(8) Pred(R) ⊆ PredLP (H).
(9) Fun(R) ⊆ Fun(H).

The claimed properties of the theorem statement can then be derived as steps
(10), (11) and (18) as follows.

(10) Pred(R) ⊆ V . By (8) and (3).
(11) Fun(R) ⊆ Fun(P) ∪ Fun(Q). By (9) and (4).
(12) SP ∧ SQ |= SH . By (6) and (3).
(13) SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= γ(R). By (12), (7) and (1).
(14) SP ′ ∧ SQ′ ∧ γ(P ′) ∧ ¬γ(Q′) |= ¬H. By (2).
(15) SP ∧ SQ ∧ γ(P) ∧ ¬γ(Q) |= ¬H. By (14), (3) and (4).
(16) SP ∧ SQ ∧ γ(P) ∧ ¬γ(Q) |= ¬γ(R). By (15), (12) and (7).
(17) SP ∧ SQ ∧ γ(P) ∧ γ(R) ≡ SP ∧ SQ ∧ γ(P) ∧ γ(Q). By (16) and (13).
(18) P ∪ R and P ∪ Q are strongly equivalent. By (17) and Proposition 2.

Conversely, we have to show that if there exists a logic program R with the
properties in the above theorem statement, then the characterizing entailment
SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P ′) ∨ γ(Q′) does hold. We may
assume

(19) Pred(R) ⊆ V ⊆ Pred(P) ∪ Pred(Q).
(20) Fun(R) ⊆ Fun(P) ∪ Fun(Q).
(21) P ∪ R and P ∪ Q are strongly equivalent.

The characterizing entailment can then be derived as follows.

(22) SP ∧ SQ |= SR By (19).
(23) SP ∧SQ ∧γ(P)∧γ(R) ≡ SP ∧SQ ∧γ(P)∧γ(Q). By (21), Proposition 2 and (22).
(24) SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= γ(R). By (23).
(25) SP ∧ SQ ∧ γ(P) ∧ ¬γ(Q) |= ¬γ(R). By (23).
(26) SP ′ ∧ SQ′ ∧ γ(P ′) ∧ ¬γ(Q′) |= ¬γ(R). By (25), (19) and (20).
(27) SP ∧ SQ ∧ γ(P) ∧ γ(Q) |= ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P ′) ∨ γ(Q′). By (26) and (24).

��
We now give some examples from the application point of view.

Example 13. The following examples show for given programs P,Q and sets V
of predicates a possible value of R according to Theorem 12.

(i) Q = p ← q, r.
p; q ← r.
q ← q, s.

V = {p, r} R = p ← r.

In this first example we consider the special case where P is empty and
thus not shown. Predicates q and s are redundant in Q, “absolutely” and
not just relative to a program P . By Theorem 12, this is proven with the
characterizing first-order entailment and, moreover, a strongly equivalent
reformulation of Q without q and s is obtained as R.

Synthesizing Strongly Equivalent Logic Programs 183

(ii) P = p(X) ← q(X). Q = r(X) ← p(X).
r(X) ← q(X).

V = {p, r} R = r(X) ← p(X).

Only r and p are allowed in R. Or, equivalently, q is redundant in Q,
relative to program P . Again, this is proven with the characterizing first-
order entailment and, moreover, a strongly equivalent reformulation of Q
without q is obtained as R. It is the clause in Q with q that is redundant
relative to P and hence is eliminated in R.

(iii) P = ← p(X), q(X). Q = r(X) ← p(X),not q(X).

R = r(X) ← p(X).

V = {p, r}

Only r and p are allowed in R. The negated literal with q in the body of
the rule in Q is redundant relative to P and is eliminated in R.

(iv) P = p(X) ← q(X),not r(X).
p(X) ← s(X).
not r(X); s(X) ← p(X).
q(X); s(X) ← p(X).

Q = t(X) ← p(X).

R = t(X) ← q(X),not r(X).
t(X) ← s(X).

V = {q, r, s, t}

The predicate p is not allowed in R. The idea is that p is a predicate that
can be used by a client but is not in the actual knowledge base. Program P
expresses a schema mapping from the client predicate p to the knowledge
base predicates q, r, s. The result program R is a rewriting of the client
query Q in terms of knowledge base predicates. Only the first two rules of
P actually describe the mapping. The other two rules complete them to
a full definition, similar to Clark’s completion [19], but here yielding also
a program. Such completed predicate specifications seem necessary for the
envisaged reformulation tasks.

(v) P = As in Example 13.iv. Q = t(X) ← q(X),not r(X).
t(X) ← s(X).

R = t(X) ← p(X).

V = {p, t}

In this example P is from Example 13.iv, while Q and R are also from that
example but switched. The vocabulary allows only p and t. While Example
13.iv realizes an unfolding of p, this example realizes folding into p.

(vi) P = n(X) ← z(X).
n(X) ← n(Y), s(Y,X).

V = {z, s}

Q = not n(X2) ← z(X0), s(X0,X1),
s(X1,X2).

R = ← z(X0), s(X0,X1), s(X1,X2).
Program P defines natural numbers recursively. Program Q has a rule
whose body specifies the natural number 2 and whose head denies that 2 is
a natural number. Because P implies that 2 is a natural number, this head
is in R rewritten to the empty head, enforced by disallowing the predicate
for natural numbers in R.

(vii) P = c(X,Y,Z) ← r(X,Y), r(Y,Z).
← c(X,Y,Z),not r(X,Y).
← c(X,Y,Z),not r(Y,Z).

V = {r}

Q = r(X,Y);not r(X,Y).
← c(X,Y,Z),not r(X,Z).

R = r(X,Y);not r(X,Y).
← r(X,Y), r(Y,Z),not r(X,Z).

Program Q describes a transitive relation r using the helper predicate c to
identify chains where transitivity needs to be checked. In R the use of c is

184 J. Heuer and C. Wernhard

not allowed, program P gives the definition of c. Similar to Example 13.iv
this realizes an unfolding of c.

Definability according to Theorem 12 inherits potential decidability from the
first-order entailment problem that characterizes it. If, e.g., in the involved pro-
grams only constants occur as function symbols, the characterizing entailment
can be expressed as validity in the decidable Bernays-Schönfinkel class.

3.4 Constraining Positions of Predicates Within Rules

The sensitivity of LP-interpolation to polarity inherited from Craig-Lyndon
interpolation and the program encoding with superscripted predicates offers a
more fine-grained control of the vocabulary of definitions than Theorem 12 by
considering also positions of predicates in rules. The following corollary shows
this.

Corollary 14 (Position-Constrained Effective Projective Definability
of Logic Programs). Let P and Q be logic programs and let V+, V+1, V− ⊆
Pred(P)∪Pred(Q) be three sets of predicates. Call a logic program R in scope of
〈V+, V+1, V−〉 if predicates p occur in R only as specified in the following table.

p is allowed in only if p is in

Positive heads V+

Negative bodies V+ ∪ V+1

Negative heads V−
Positive bodies V−

The existence of a logic program R in scope of 〈V+, V+1, V−〉 with Fun(R) ⊆
Fun(P)∪ Fun(Q) such that P ∪ R and P ∪ Q are strongly equivalent is express-
ible as entailment between two first-order formulas. Moreover, if existence holds,
such a program R can be effectively constructed, via a universal Craig-Lyndon
interpolant of the left and the right side of the entailment.

Proof (Sketch). Like Theorem 12 but with applying the renaming of disallowed
predicates not already at the program level but in the first-order encoding with
considering polarity. Let V ± be the set of polarity/predicate pairs defined as
V ± def= {+p0 | p ∈ V+}∪{+p1 | p ∈ V+ ∪V+1}∪{−p0 | p ∈ V−}∪{−p1 | p ∈ V−}.
The corresponding entailment underlying definability and LP-interpolation is
then SF ∧ SQ ∧ γ(P) ∧ γ(Q) |= ¬S′

P ∨ ¬S′
Q ∨ ¬γ(P)′ ∨ γ(Q)′ ∨ ¬Aux , where

the primed variations of formulas are obtained by replacing each predicate p
that does not appear in V ± or appears in V ± with only a single polarity by a
dedicated fresh predicate p′. (Note that negation and priming commute.) With
W def= Pred±(¬SP ∨ ¬SQ ∨ ¬γ(P) ∨ γ(Q)) we define Aux as

∧

+p∈V ±,−p/∈V ±,+p∈W

∀x (p(x) → p′(x)) ∧
∧

−p∈V ±,+p/∈V ±,−p∈W

∀x (p′(x) → p(x)),

where x matches the arity of the respective predicates p. ��

Synthesizing Strongly Equivalent Logic Programs 185

In general, for first-order formulas F,G the second-order entailment F |= ∀pG,
where p is a predicate, holds if and only if the first-order entailment F |= G′

holds, where G′ is G with p replaced by a fresh predicate p′. This explains the
construction of the right side of the entailment in the proof of Corollary 14 as
an encoding of quantification upon (or “forgetting about”) a predicate only in
a single polarity. With predicate quantification this can be expressed, e.g., for
positive polarity, as ∃+pG def= ∃p′ (G′ ∧ ∀x (p(x) → p′(x))), where p′ is a fresh
predicate and G′ is G with p replaced by p′. We illustrate the specification of
Aux with an example.

Example 15. Assume that +p ∈ V ± and −p �∈ V ±. Let G stand for SP ∧ SQ ∧
γ(P)∧¬γ(Q) and let G′ stand for G with all occurrences of p replaced by p′. For
now we ignore the restrictions of Aux by W as they only have a heuristic purpose.
The following statements, which are all equivalent to each other, illustrate the
specification of Aux in a step-by-step fashion. We start with expressing the
required “forgetting”. Since it appears in a negation, we have to forget here
the “allowed” +p. (1) F |= ¬∃+p G. (2) F |= ¬∃p′ (G′ ∧ ∀x (p(x) → p′(x))).
(3) F |= ∀p′ (¬G′ ∨ ¬∀x (p(x) → p′(x))). (4) F |= ¬G′ ∨ ¬∀x (p(x) → p′(x)).
(5) F |= ¬G′ ∨ ¬Aux .

Observing the restrictions by membership in W in the definition of Aux can
result in a smaller formula Aux . Continuing the example, this can be illustrated
as follows. Assume +p ∈ V ± and −p �∈ V ± as before and in addition +p /∈ W .
Since +p /∈ W it follows that −p /∈ Pred±(G). So “forgetting” about +p in G
is then just ∃p′ G′ and the Aux component for p is not needed. (Also a further
simplification, outlined in the remark below, is possible in this case.)

Remark 2. The view of “priming” as predicate quantification justifies a heuristi-
cally useful simplification of interpolation inputs for definability: If a predicate p
occurs in a formula F only with positive (negative) polarity, then ∃pF is equiva-
lent to F with all atoms of the form p(t) replaced by � (⊥). Hence, if a predicate
to be primed occurs only in a single polarity, we can replace all atoms with it
by a truth value constant.

We now turn to application possibilities of Corollary 14. While it gives some
control over the position of predicates, it does not allow to discriminate between
allowing a predicate in negative heads and positive bodies. Predicates allowed
in positive heads are also allowed in negative bodies. We give some examples.

Example 16. The following examples show for given programs P,Q and sets
V+, V+1, V− of predicates a possible value of R according to Corollary 14. In all
the examples it is essential that a predicate is disallowed in R only in a single
polarity. If it would not be allowed at all there would be no solution R.

(i) P = p ← q. Q = r ← p.
r ← q.
q ← s.

V+ = {p, q, r, s}
V+1 = {}
V− = {p, r, s}

R = r ← p.
q ← s.

Here q is allowed in R in positive heads (and negative bodies) but not in
positive bodies (and negative heads). Parentheses indicate constraints that
apply but are not relevant for the example.

186 J. Heuer and C. Wernhard

(ii) P = p ← q. Q = ← q,not p.
r ← q.
s ← p.

V+ = {q, r, s}
V+1 = {}
V− = {p, q, r, s}

R = r ← q.
s ← p.

Here p is allowed in R in positive bodies (and negative heads) but not in
negative bodies (and positive heads).

(iii) P = p ← q.
r ← p.

Q = s ← not r.
r ← q.

V+ = {s}
V+1 = {r}
V− = {p, q, r, s}

R = s ← not r.

Here r is allowed in R in negative bodies and but not in positive heads.

4 Prototypical Implementation

We implemented the synthesis according to Theorem 12 and Corollary 14 proto-
typically with the PIE (Proving, Interpolating, Eliminating) environment [74,75],
which is embedded in SWI-Prolog [78]. The implementation and all requirements
are free software, see http://cs.christophwernhard.com/pie/asp.

For Craig-Lyndon interpolation there are several options, yielding differ-
ent solutions for some problems. Proving can be performed by CMProver, a
clausal tableaux/connection prover connection [8,9,46] included in PIE, similar
to PTTP [69], SETHEO [47] and leanCoP [61], or by Prover9 [58]. Interpolant
extraction is performed on clausal tableaux following [76]. Resolution proofs by
Prover9 are first translated to tableaux with the hyper property, which allows
to pass range-restriction and the Horn property from inputs to outputs of inter-
polation [77]. Optionally also proofs by CMProver can be transformed before
interpolant extraction to ensure the hyper property. With CMProver it is pos-
sible to enumerate alternate interpolants extracted from alternate proofs. More
powerful provers such as E [65] and Vampire [43] unfortunately do not emit gap-
free proofs that would be suited for extracting interpolants.

The organization of the implementation closely follows the abstract expo-
sition in Sect. 3, with Prolog predicates corresponding to theorems. For conve-
nience in some applications, the predicate that realizes Theorem 12 and Corollary
14 permits to specify the vocabulary also complementary, by listing predicates
not allowed in the result. In general, if outputs are largely semantically charac-
terized, simplifications play a key role. Solutions with redundancies should be
avoided, even if they are correct. This concerns all stages of our workflow: prepa-
ration of the interpolation inputs, choice or transformation of the proof used for
interpolant extraction, interpolant extraction, the interpolant itself, and the first-
order representation of the output program, where strong equivalence must be
preserved, possibly modulo a background program. Although our system offers
various simplifications at these stages, this seems an area for improvement with
large impact for practice. Some particular issues only show up with experiments.
For example, for both CMProver and Prover9 a preprocessing of the right sides
of the interpolation entailments to reduce the number of distinct variables that
are Skolemized by the systems was necessary, even for relatively small inputs.

The application of first-order provers to interpolation for reformulation tasks
is a rather unknown territory. Experiments with limited success are described

http://cs.christophwernhard.com/pie/asp

Synthesizing Strongly Equivalent Logic Programs 187

in [4]. Our prototypical implementation covers the full range from the appli-
cation task, synthesis of an answer set program for two given programs and
a given vocabulary, to the actual construction of a result program via Craig-
Lyndon interpolation by a first-order prover. At least for small inputs such as
the examples in the paper it successfully produces results. We expect that with
larger inputs from applications it at least helps to identify and narrow down
the actual issues that arise for practical interpolation with current first-order
proving technology. This is facilitated by the embedding into PIE, which allows
easy interfacing to community standards, e.g., by exporting proving problems
underlying interpolation in the TPTP [70] format.

5 Conclusion

We presented an effective variation of projective Beth definability based on Craig
interpolation for answer set programs with respect to strong equivalence under
the stable model semantics. Interpolation theorems for logic programs under
stable models semantics were shown before in [1], where, however, programs are
only on the left side of the entailment underlying interpolation, and the right side
as well as the interpolant are just first-order formulas. Craig interpolation and
Beth definability for answer set programs was considered in [31,64], but with just
existence results for equilibrium logic, which transfer to answer set semantics.
The transfer of Craig interpolation and Beth definability from monotonic logics
to default logics is investigated in [15], however, applicability to the stable model
semantics and a relationship to strong equivalence are not discussed.

In [73] ontology-mediated querying over a knowledge base for specific descrip-
tion logics is considered, based on Beth definability and Craig interpolation.
Interpolation is applied there to the Clark’s completion [19] of a Datalog pro-
gram. Although completion semantics is a precursor of the stable model seman-
tics, both agreeing on a subclass of programs, completion seems applied in [73]
actually on program fragments, or on the “schema level”, as in our Examples
13.iv, 13.v and 13.vii. A systematic investigation of these forms of completion is
on our agenda. Forgetting [22,37] or, closely related, uniform interpolation and
second-order quantifier elimination [30], may be seen as generalizing Craig inter-
polation: an expression is sought that captures exactly what a given expression
says about a restricted vocabulary. A Craig interpolant is moreover related to a
second given expression entailed by the first, allowing to extract it from a proof
of the entailment.

We plan to extend our approach to classes of programs with practically
important language extensions. Arithmetic expressions and comparisons in rule
bodies are permitted in the language mini-gringo, used already in recent works
on verifying strong equivalence [24,26,51]. We considered strong equivalence rel-
ative to a context program P . These contexts might be generalized to first-order
theories that capture theory extensions of logic programs [13,33,41].

So far, our approach characterizes result programs syntactically by restricting
allowed predicates and, to some degree, also their positions in rules. Can this
be generalized? Restricting allowed functions, including constants, seems not

188 J. Heuer and C. Wernhard

possible: If a function occurs only in the left side of the entailment underlying
Craig interpolation, the interpolant may have existentially quantified variables,
making the conversion to a logic program impossible. From the interpolation side
it is known that the Horn property and variations of range-restriction can be
preserved [77]. It remains to be investigated, how this transfers to synthesizing
logic programs, where in particular restrictions of the rule form and safety [14,
45], an important property related to range restriction, are of interest.

In addition to verifying strong equivalence, recent work addresses verifying
further properties, e.g., uniform equivalence (equivalence under inputs expressed
as ground facts) [24,26,52]. The approach is to use completion [19,50] to express
the verification problem in classical first-order logic. It is restricted to so-called
locally tight logic programs [27]. Also forms of equivalence that abstract from
“hidden” predicates are mostly considered for such restricted program classes,
as relative equivalence [55], projected answer sets [23], or external behavior [24].
It remains future work to consider definability with uniform equivalence and
hidden predicates, possibly using completion for translating logic programs to
formulas (instead of γ), although it applies only to restricted classes of programs.

Independently from the application to program synthesis, our characteriza-
tion of encodes a program and our procedure to extract a program from a formula
suggest a novel practical method for transforming logic programs while preserv-
ing strong equivalence. The idea is as follows, where P is the given program:
First-order transformations are applied to F def= γ(P) to obtain a first-order
formula F ′ such that SF ∧F ′ ≡ SF ∧F . For transformations that result in a uni-
versal formula, F ′ encodes a logic program, as argued in Remark 1. Applying the
extraction procedure to F ′ then results in a program P ′ that is strongly equiv-
alent to P . This makes the wide range of known first-order simplifications and
formula transformations applicable and provides a firm foundation for soundness
of special transformations. We expect that this approach supplements known
dedicated simplifications that preserve strong equivalence [11,23].

With its background in artificial intelligence research, answer set program-
ming is a declarative approach to problem solving, where specifications are pro-
cessed by automated systems. It is suitable for meta-level reasoning to verify
properties of specifications and to synthesize new specifications. On the basis
of a technique to verify an equivalence property of answer set programs we
developed a synthesis technique. Our tools were Craig interpolation and Beth
definability, fundamental insights about first-order logic that relate given formu-
las to further formulas characterized in certain ways. Practically realized with
automated first-order provers, Craig interpolation and Beth definability become
tools to synthesize formulas, and, as shown here, also answer set programs.

Acknowledgments. The authors thank anonymous reviewers for helpful suggestions
to improve the presentation.

Synthesizing Strongly Equivalent Logic Programs 189

References

1. Amir, E.: Interpolation theorems for nonmonotonic reasoning systems. In: Flesca,
S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
233–244. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7_20

2. Artale, A., Jung, J.C., Mazzullo, A., Ozaki, A., Wolter, F.: Living without Beth and
Craig: definitions and interpolants in description and modal logics with nominals
and role inclusions. ACM Trans. Comp. Log. 24(4), 34:1–34:51 (2023). https://
doi.org/10.1145/3597301

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2010)

4. Benedikt, M., Kostylev, E.V., Mogavero, F., Tsamoura, E.: Reformulating queries:
theory and practice. In: Sierra, C. (ed.) IJCAI 2017, pp. 837–843. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/116

5. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from Proofs:
The Interpolation-based Approach to Query Reformulation. Morgan & Claypool
(2016). https://doi.org/10.1007/978-3-031-01856-5

6. Benedikt, M., Pradic, C., Wernhard, C.: Synthesizing nested relational queries from
implicit specifications. In: PODS 2023, pp. 33–45. ACM (2023). https://doi.org/
10.1145/3584372.3588653

7. Beth, E.W.: On Padoa’s method in the theory of definition. Indag. Math. 15,
330–339 (1953)

8. Bibel, W.: Automated Theorem Proving. Vieweg, Braunschweig (1987). https://
doi.org/10.1007/978-3-322-90102-6. First edition 1982

9. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-
tion. In: The Legacy of Kurt Schütte, pp. 217–251. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49424-7_13

10. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J.
Autom. Reasoning 54(1), 69–97 (2015). https://doi.org/10.1007/s10817-014-9314-
0

11. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial
evaluation. J. Log. Prog. 40(1), 1–46 (1999). https://doi.org/10.1016/S0743-
1066(98)10030-4

12. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory Pract. Log. Program. 7(6), 745–759 (2007). https://doi.org/10.
1017/S1471068407003110

13. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + time. In:
Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp.
256–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_19

14. Cabalar, P., Pearce, D., Valverde, A.: A revised concept of safety for general
answer set programs. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS (LNAI), vol. 5753, pp. 58–70. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04238-6_8

15. Cassano, V., Fervari, R., Areces, C., Castro, P.F.: Interpolation and Beth defin-
ability in default logics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 675–691. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0_44

16. ten Cate, B., Conradie, W., Marx, M., Venema, Y.: Definitorially complete descrip-
tion logics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR 2006, pp. 79–89.
AAAI Press (2006). http://www.aaai.org/Library/KR/2006/kr06-011.php

https://doi.org/10.1007/3-540-45757-7_20
https://doi.org/10.1145/3597301
https://doi.org/10.1145/3597301
https://doi.org/10.24963/ijcai.2017/116
https://doi.org/10.1007/978-3-031-01856-5
https://doi.org/10.1145/3584372.3588653
https://doi.org/10.1145/3584372.3588653
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/s10817-014-9314-0
https://doi.org/10.1007/s10817-014-9314-0
https://doi.org/10.1016/S0743-1066(98)10030-4
https://doi.org/10.1016/S0743-1066(98)10030-4
https://doi.org/10.1017/S1471068407003110
https://doi.org/10.1017/S1471068407003110
https://doi.org/10.1007/978-3-030-20528-7_19
https://doi.org/10.1007/978-3-642-04238-6_8
https://doi.org/10.1007/978-3-642-04238-6_8
https://doi.org/10.1007/978-3-030-19570-0_44
https://doi.org/10.1007/978-3-030-19570-0_44
http://www.aaai.org/Library/KR/2006/kr06-011.php

190 J. Heuer and C. Wernhard

17. ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. JAIR 48, 347–414 (2013). https://doi.org/10.1613/JAIR.4057

18. Chen, Y., Lin, F., Li, L.: SELP – a system for studying strong equivalence between
logic programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS (LNAI), vol. 3662, pp. 442–446. Springer, Heidelberg (2005). https://
doi.org/10.1007/11546207_43

19. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, vol. 1, pp. 293–322. Plenum Press, New York (1978)

20. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

21. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957). https://doi.org/10.2307/
2963594

22. Delgrande, J.P.: A knowledge level account of forgetting. JAIR 60, 1165–1213
(2017). https://doi.org/10.1613/JAIR.5530

23. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set
programming. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI 2005, pp. 97–102. Pro-
fessional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/1177.pdf

24. Fandinno, J., Hansen, Z., Lierler, Y., Lifschitz, V., Temple, N.: External behavior
of a logic program and verification of refactoring. Theory Pract. Log. Program.
23(4), 933–947 (2023). https://doi.org/10.1017/S1471068423000200

25. Fandinno, J., Lifschitz, V.: On Heuer’s procedure for verifying strong equivalence.
In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281,
pp. 253–261. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-
2_18

26. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs
with anthem and Vampire. Theory Pract. Log. Program. 20(5), 735–750 (2020).
https://doi.org/10.1017/S1471068420000344

27. Fandinno, J., Lifschitz, V., Temple, N.: Locally tight programs. Theory Pract. Log.
Program., 1–31 (2024). https://doi.org/10.1017/S147106842300039X

28. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell.
175(1), 236–263 (2011). https://doi.org/10.1016/J.ARTINT.2010.04.011

29. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1995). https://doi.org/10.1007/978-1-4612-2360-3

30. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publications, Lon-
don (2008)

31. Gabbay, D.M., Pearce, D., Valverde, A.: Interpolable formulas in equilibrium logic
and answer set programming. JAIR 42, 917–943 (2011). https://jair.org/index.
php/jair/article/view/10743

32. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo.
Theory Pract. Log Program 15(4–5), 449–463 (2015). https://doi.org/10.1017/
S1471068415000150

33. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with Clingo 5. In: Carro, M., King, A., Saeedloei, N., Vos,
M.D. (eds.) ICLP 2016. OASIcs, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/OASICS.ICLP.2016.2

34. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving
with Clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/
10.1017/S1471068418000054

https://doi.org/10.1613/JAIR.4057
https://doi.org/10.1007/11546207_43
https://doi.org/10.1007/11546207_43
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.1613/JAIR.5530
http://ijcai.org/Proceedings/05/Papers/1177.pdf
https://doi.org/10.1017/S1471068423000200
https://doi.org/10.1007/978-3-031-43619-2_18
https://doi.org/10.1007/978-3-031-43619-2_18
https://doi.org/10.1017/S1471068420000344
https://doi.org/10.1017/S147106842300039X
https://doi.org/10.1016/J.ARTINT.2010.04.011
https://doi.org/10.1007/978-1-4612-2360-3
https://jair.org/index.php/jair/article/view/10743
https://jair.org/index.php/jair/article/view/10743
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054

Synthesizing Strongly Equivalent Logic Programs 191

35. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.)
Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol.
3. Elsevier, Amsterdam (2008)

36. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) ICLP/SLP 1988, pp. 1070–1080. MIT Press,
Cambridge (1988)

37. Gonçalves, R., Knorr, M., Leite, J.: Forgetting in answer set programming - a
survey. Theory Pract. Log. Program. 23(1), 111–156 (2023). https://doi.org/10.
1017/S1471068421000570

38. Heuer, J.: Automated verification of equivalence properties in advanced logic pro-
grams. Bachelor’s thesis, University of Potsdam (2020). https://arxiv.org/abs/
2310.19806

39. Heuer, J.: Automated verification of equivalence properties in advanced logic
programs. In: Schwarz, S., Wenzel, M. (eds.) WLP 2023 (2023). https://dbs.
informatik.uni-halle.de/wlp2023/WLP2023_Heuer_Automated%20Verification
%20of%20Equivalence%20Properties%20in%20Advanced%20Logic%20Programs.
pdf

40. Huang, G.: Constructing Craig interpolation formulas. In: Du, D.-Z., Li, M. (eds.)
COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0030832

41. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.:
Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program.
17(5–6), 872–888 (2017). https://doi.org/10.1017/S1471068417000242

42. Janhunen, T., Oikarinen, E.: LPEQ and DLPEQ — translators for automated
equivalence testing of logic programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR
2004. LNCS (LNAI), vol. 2923, pp. 336–340. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-24609-1_30

43. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

44. Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof sys-
tems. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC, vol. 46, pp. 49–64. EasyChair
(2017). https://doi.org/10.29007/1qb8

45. Lee, J., Lifschitz, V., Palla, R.: Safe formulas in the general theory of stable models
(preliminary report). In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 672–676. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89982-2_55

46. Letz, R.: Tableau and Connection Calculi. Structure, Complexity, Implementation.
Habilitationsschrift, TU München (1999). http://www2.tcs.ifi.lmu.de/~letz/habil.
ps. Accessed 5 Feb 2024

47. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: a high-performance the-
orem prover. J. Autom. Reasoning 8(2), 183–212 (1992). https://doi.org/10.1007/
BF00244282

48. Lifschitz, V.: Foundations of logic programming. In: Brewka, G. (ed.) Principles of
Knowledge Representation, pp. 69–128. CSLI Publications (1996). http://www.cs.
utexas.edu/users/ai-lab?lif96b

49. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N.,
Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-8_24

50. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-24658-7

https://doi.org/10.1017/S1471068421000570
https://doi.org/10.1017/S1471068421000570
https://arxiv.org/abs/2310.19806
https://arxiv.org/abs/2310.19806
https://dbs.informatik.uni-halle.de/wlp2023/ WLP2023_Heuer_Automated%20Verification%20of%20Equivalence%20Properties%20in%20Advanced%20Logic%20Programs.pdf
https://dbs.informatik.uni-halle.de/wlp2023/ WLP2023_Heuer_Automated%20Verification%20of%20Equivalence%20Properties%20in%20Advanced%20Logic%20Programs.pdf
https://dbs.informatik.uni-halle.de/wlp2023/ WLP2023_Heuer_Automated%20Verification%20of%20Equivalence%20Properties%20in%20Advanced%20Logic%20Programs.pdf
https://dbs.informatik.uni-halle.de/wlp2023/ WLP2023_Heuer_Automated%20Verification%20of%20Equivalence%20Properties%20in%20Advanced%20Logic%20Programs.pdf
https://doi.org/10.1007/BFb0030832
https://doi.org/10.1007/BFb0030832
https://doi.org/10.1017/S1471068417000242
https://doi.org/10.1007/978-3-540-24609-1_30
https://doi.org/10.1007/978-3-540-24609-1_30
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.29007/1qb8
https://doi.org/10.1007/978-3-540-89982-2_55
https://doi.org/10.1007/978-3-540-89982-2_55
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
https://doi.org/10.1007/BF00244282
https://doi.org/10.1007/BF00244282
http://www.cs.utexas.edu/users/ai-lab?lif96b
http://www.cs.utexas.edu/users/ai-lab?lif96b
https://doi.org/10.1007/978-3-642-15025-8_24
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7

192 J. Heuer and C. Wernhard

51. Lifschitz, V.: Strong equivalence of logic programs with counting. The-
ory Pract. Log. Program. 22(4), 573–588 (2022). https://doi.org/10.1017/
S1471068422000278

52. Lifschitz, V., Lühne, P., Schaub, T.: Anthem: transforming gringo programs into
first-order theories (preliminary report). CoRR (2018). http://arxiv.org/abs/1810.
00453

53. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in
the input language of gringo. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.)
LPNMR 2019. LNCS, vol. 11481, pp. 270–283. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20528-7_20

54. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comp. Log. 2(4), 526–541 (2001). https://doi.org/10.1145/383779.383783

55. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: KR 2002, pp. 170–176. Morgan Kaufmann (2002)

56. Lyndon, R.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9,
129–142 (1959)

57. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm - A 25-Year Perspective, pp. 375–398. Artifi-
cial Intelligence. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-
60085-2_17

58. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/
prover9. Accessed 5 Feb 2024

59. Nash, A., Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting.
ACM Trans. Database Syst. 35(3), 1–41 (2010). https://doi.org/10.1145/1806907.
1806913

60. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

61. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010). https://doi.org/10.3233/AIC-2010-0464

62. Pearce, D., Tompits, H., Woltran, S.: Characterising equilibrium logic and nested
logic programs: Reductions and complexity. Theory Pract. Log. Program. 9(05),
565–616 (2009). https://doi.org/10.1017/S147106840999010X

63. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 546–560. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89982-2_46

64. Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in
answer set programming. J. Comput. Syst. Sci. 78(1), 86–104 (2012). https://doi.
org/10.1016/J.JCSS.2011.02.013

65. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

66. Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting. In: PODS
2005, pp. 49–60. ACM (2005)

67. Slagle, J.R.: Interpolation theorems for resolution in lower predicate calculus.
JACM 17(3), 535–542 (1970). https://doi.org/10.1145/321592.321604

68. Smullyan, R.M.: First-Order Logic. Springer, Heidelberg (1968). Also republished
with corrections by Dover publications, 1995

https://doi.org/10.1017/S1471068422000278
https://doi.org/10.1017/S1471068422000278
http://arxiv.org/abs/1810.00453
http://arxiv.org/abs/1810.00453
https://doi.org/10.1007/978-3-030-20528-7_20
https://doi.org/10.1007/978-3-030-20528-7_20
https://doi.org/10.1145/383779.383783
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.1017/S147106840999010X
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1016/J.JCSS.2011.02.013
https://doi.org/10.1016/J.JCSS.2011.02.013
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1145/321592.321604

Synthesizing Strongly Equivalent Logic Programs 193

69. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended
Prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988). https://doi.org/10.
1007/BF00297245

70. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reasoning 59(4), 483–502 (2017). https://doi.
org/10.1007/s10817-017-9407-7

71. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)
72. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation.

Morgan & Claypool (2011). https://doi.org/10.1007/978-3-031-01881-7
73. Toman, D., Weddell, G.E.: First order rewritability in ontology-mediated querying

in horn description logics. In: AAAI 2022, IAAI 2022, EAAI 2022, pp. 5897–5905.
AAAI Press (2022). https://doi.org/10.1609/AAAI.V36I5.20534

74. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In:
Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016. CEUR Workshop Proceed-
ings, vol. 1635, pp. 125–138. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1635/
paper-11.pdf

75. Wernhard, C.: Facets of the PIE environment for proving, interpolating and elimi-
nating on the basis of first-order logic. In: Hofstedt, P., Abreu, S., John, U., Kuchen,
H., Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 160–
177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2_11

76. Wernhard, C.: Craig interpolation with clausal first-order tableaux. J. Autom.
Reasoning 65(5), 647–690 (2021). https://doi.org/10.1007/s10817-021-09590-3

77. Wernhard, C.: Range-restricted and Horn interpolation through clausal tableaux.
In: Ramanayake, R., Urban, J. (eds.) TABLEAUX 2023. LNCS (LNAI), vol. 14278,
pp. 3–23. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43513-3_1

78. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.
Log Program 12(1–2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-031-01881-7
https://doi.org/10.1609/AAAI.V36I5.20534
http://ceur-ws.org/Vol-1635/paper-11.pdf
http://ceur-ws.org/Vol-1635/paper-11.pdf
https://doi.org/10.1007/978-3-030-46714-2_11
https://doi.org/10.1007/s10817-021-09590-3
https://doi.org/10.1007/978-3-031-43513-3_1
https://doi.org/10.1017/S1471068411000494
http://creativecommons.org/licenses/by/4.0/

Regularization in Spider-Style Strategy
Discovery and Schedule Construction

Filip Bártek1,2(B) , Karel Chvalovský1 , and Martin Suda1

1 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical
University in Prague, Prague, Czech Republic

{filip.bartek,karel.chvalovsky,martin.suda}@cvut.cz
2 Faculty of Electrical Engineering, Czech Technical University in Prague, Prague,

Czech Republic

Abstract. To achieve the best performance, automatic theorem provers
often rely on schedules of diverse proving strategies to be tried out (either
sequentially or in parallel) on a given problem. In this paper, we report
on a large-scale experiment with discovering strategies for the Vampire
prover, targeting the FOF fragment of the TPTP library and construct-
ing a schedule for it, based on the ideas of Andrei Voronkov’s system
Spider. We examine the process from various angles, discuss the diffi-
culty (or ease) of obtaining a strong Vampire schedule for the CASC
competition, and establish how well a schedule can be expected to gen-
eralize to unseen problems and what factors influence this property.

Keywords: Saturation-based theorem proving · Proving strategies ·
Strategy schedule construction · Vampire

1 Introduction

In 1997 at the CADE conference, the automatic theorem prover Gandalf [30]
surprised its contenders at the CASC-14 competition [29] and won the MIX
division there. One of the main innovations later identified as a key to Gandalf’s
success was the use of multiple theorem proving strategies executed sequentially
in a time-slicing fashion [31,32]. Nowadays, it is well accepted that a single,
universal strategy of an Automatic Theorem Prover (ATP) is invariably inferior,
in terms of performance, to a well-chosen portfolio of complementary strategies,
most of which do not even need to be complete or very strong in isolation.

Many tools have already been designed to help theorem prover developers
discover new proving strategies and/or to combine them and construct proving
schedules [7,9,12,16,21,24,33,34]. For example, Schäfer and Schulz employed
genetic algorithms [21] for the invention of strong strategies for the E prover
[23], Urban developed BliStr and used it to significantly strengthen strategies
for the same prover via iterative local improvement and problem clustering [33],

Manuscript with additional appendices [1]: https://arxiv.org/abs/2403.12869.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 194–213, 2024.
https://doi.org/10.1007/978-3-031-63498-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_12&domain=pdf
http://orcid.org/0000-0002-1822-2651
http://orcid.org/0000-0002-0541-3889
http://orcid.org/0000-0003-0989-5800
https://arxiv.org/abs/2403.12869
https://doi.org/10.1007/978-3-031-63498-7_12

Regularization in Spider-Style Strategy Discovery and Schedule Construction 195

and, more recently, Holden and Korovin applied similar ideas in their HOS-ML
system [7] to produce schedules for iProver [14]. The last work mentioned—as
well as, e.g., MaLeS [16]—also include a component for strategy selection, the
task of predicting, based on the input problem’s features, which strategy will
most likely succeed on it. (Selection is an interesting topic, which is, however,
orthogonal to our work and will not be further discussed here.)

For the Vampire prover [15], schedules were for a long time constructed by
Andrei Voronkov using a tool called Spider, about which little was known until
recently. Its author finally revealed the architectural building blocks of Spider
and the ideas behind them at the Vampire Workshop 2023, declaring Spider “a
secret weapon behind Vampire’s success at the CASC competitions” and “prob-
ably the most useful tool for Vampire’s support and development” [34]. Acknowl-
edging the importance of strategies for practical ATP usability, we decided to
analyze this powerful technology on our own.

In this paper, we report on a large-scale experiment with discovering strate-
gies for Vampire, based on the ideas of Spider (recalled in Sect. 2.1).1 We target
the FOF fragment of the TPTP library [28], probably the most comprehensive
benchmark set available for first-order theorem proving. As detailed in Sect. 3,
we discover and evaluate (on all the FOF problems) more than 1000 targeted
strategies to serve as building blocks for subsequent schedule construction.

Research on proving strategies is sometimes frowned upon as mere “tuning
for competitions”. While we briefly pause to discuss this aspect in Sect. 4, our
main interest in this work is to establish how well a schedule can be expected to
generalize to unseen problems. For this purpose, we adopt the standard practice
from statistics to randomly split the available problems into a train set and a
test set, construct a schedule on one, and evaluate it on the other. In Sect. 6,
we then identify several techniques that regularize, i.e., have the tendency to
improve the test performance while possibly sacrificing the training one.

Optimal schedule construction under some time budget can be expressed as
a mixed integer program and solved (given enough time) using a dedicated tool
[7,24]. Here, we propose to instead use a simple heuristic from the related set
cover problem [3], which leads to a polynomial-time greedy algorithm (Sect. 5).
The algorithm maintains the important ability to assign different time limits to
different strategies, is much faster than optimal solving (which may overfit to
the train set in some scenarios), allows for easy experimentation with regular-
ization techniques, and, in a certain sense made precise later, does not require
committing to a single predetermined time budget.

In summary, we make the following main contributions:

– We outline a pragmatic approach to schedule construction that uses a greedy
algorithm (Sect. 5), contrasting it with optimal schedules in terms of the qual-
ity of the schedules and the computational resources required for their con-
struction (Sect. 6.2). In particular, our findings demonstrate a relative efficacy
of the greedy approach for datasets similar to our own.

1 Not claiming any credit for these, potential errors in the explanation are ours alone.

196 F. Bártek et al.

– Leveraging the adaptability of the greedy algorithm, we introduce a range of
regularization techniques aimed at improving the robustness of the schedules
in unseen data (Sect. 6). To the best of our knowledge, this represents the
first systematic exploration into regularization of strategy schedules.

– The strategy discovery and evaluation is a computationally expensive process,
which in our case took more than twenty days on 120 CPU cores. At the same
time, there are further interesting questions concerning Vampire’s strategies
than we could answer in this work. To facilitate research on this paper’s topic,
we made the corresponding data set available online [2].

2 Preliminaries

The behavior of Vampire is controlled by approximately one hundred options.
These options configure the preprocessing and clausification steps, control the
saturation algorithm, clause and literal selection heuristics, determine the choice
of generating inferences as well as redundancy elimination and simplification
rules, and more. Most of these options range over the Boolean or a small finite
domain, a few are numeric (integer or float), and several represent ratios.

Every option has a default value, which is typically the most universally
useful one. Some option settings make Vampire incomplete. This is automat-
ically recognized, so that when the prover finitely saturates the input without
discovering a contradiction, it will report “unknown” (rather than “satisfiable”).

A strategy is determined by specifying the values of all options. A schedule
is a sequence (si, ti)ni=1 of strategies si together with assigned time limits ti,
intended to be executed in the prescribed order. We stress that in this work we
do not consider schedules that would branch depending on problem features.

2.1 Spider-Style Strategy Discovery and Schedule Construction

We are given a set of problems P and a prover with its space of available strate-
gies S. Strategy discovery and schedule construction are two separate phases. We
work under the premise that the larger and more diverse a set of strategies we
first collect, the better for later constructing a good schedule.

Strategy discovery consists of three stages: random probing, strategy opti-
mization, and evaluation, which can be repeated as long as progress is made.

Random Probing. We start strategy discovery with an empty pool of strategies
S = ∅. A straightforward way to make sure that a new strategy substantially
contributes to the current pool S is to always try to solve a problem not yet
solved (or covered) by any strategy collected so far. We repeatedly pick such
a problem and try to solve it using a randomly sampled strategy out of the
totality of all available strategies S. The sampling distribution may be adapted
to prefer option values that were successful in the past (cf. Sect. 3.3). This stage
is computationally demanding, but can be massively parallelized.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 197

Strategy Optimization. Each newly discovered strategy s, solving an as-of-yet
uncovered problem p, will get optimized to be as fast as possible at solving p.
One explores the strategy neighborhood by iterating over the options (possibly
in several rounds), varying option values, and committing to changes that lead to
a (local) improvement in terms of solution time or, as a tie-breaker, to a default
option value where time differences seem negligible. We evaluate the impact of
this stage in Sect. 3.4.

Strategy Evaluation. In the final stage of the discovery process, having obtained
an optimized version s′ of s, we evaluate s′ on all our problems P . (This is
another computationally expensive, but parallelizable step.) Thus, we enrich
our pool and update our statistics about covered problems. Note that every
strategy s′ we obtain this way is associated with the problem ps′ for which it
was originally discovered. We will call this problem the witness problem of s′.

Schedule Construction can be tried as soon as a sufficiently rich (cf. Sect. 3)
pool of strategies is collected. Since we, for every collected strategy, know how it
behaves on each problem, we can pose schedule construction as an optimization
task to be solved, e.g., by a (mixed) integer programming (MIP) solver.

In more detail: We seek to allocate time slices ts > 0 to some of the strategies
s ∈ S to cover as many problems as possible while remaining in sum below a
given time budget T [7,24]. Alternatively, we may try to cover all the problems
known to be solvable in as little total time as possible.2 In this paper, we describe
an alternative schedule construction method based on a greedy heuristic, with a
polynomial running time guarantee and other favorable properties (Sect. 5).

2.2 CPU Instructions as a Measure of Time

We will measure computation time in terms of the number of user instructions
executed (as available on Linux systems through the perf tool). This is, in our
experience, more precise and more stable (on architectures with many cores and
many concurrently running processes) than measuring real time.3

In fact, we report megainstructions (Mi), where 1 Mi = 220 instructions
reported by perf. On contemporary hardware, 2000 Mi will typically get used
up in a bit less than a second and 256 000 Mi in around 2 min of CPU time. We
also set 1 Mi as the granularity for the time limits in our schedules.

3 Strategy Discovery Experiment

Following the recipe outlined in Sect. 2.1, we set out to collect a pool of Vam-
pire (version 4.8) strategies covering the first-order form (FOF) fragment of the

2 Strictly speaking, these only give us a set of strategy-time pairs (as opposed to a
sequence). However, the strategies can be ordered heuristically afterward.

3 For a more thorough motivation, see Appendix A of [26].

198 F. Bártek et al.

Fig. 1. Strategy discovery. Left: problem coverage growth in time (uniform strategy
sampling distribution vs. an updated one). Right: collected strategies ordered by limit
(2000, 4000, . . . , 256 000 Mi) and, secondarily, by how many problems can each solve.

TPTP library [28] version 8.2.0. We focused only on proving, so left out all the
problems known to be satisfiable, which left us with a set P of 7866 problems.
Parallelizing the process where possible, we strived to fully utilize 120 cores
(AMD EPYC 7513, 3.6 GHz) of our server equipped with 500 GB RAM.

We let the process run for a total of 20.1 days, in the end covering 6796
problems, as plotted in Fig. 1 (left). The effect of diminishing returns is clearly
visible; however, we cannot claim we have exhausted all the possibilities. In the
last day alone, 8 strategies were added and 9 new problems were solved.

The rest of Fig. 1 is gradually explained in the following as we cover some
important details regarding the strategy discovery process.

3.1 Initial Strategy and Varying Instruction Limits

We seeded the pool of strategies by first evaluating Vampire’s default strategy
for the maximum considered time limit of 256 000 Mi, solving 4264 problems
out of the total 7866.

To save computation time, we did not probe or evaluate all subsequent strate-
gies for this maximum limit. Instead, to exponentially prefer low limits to high
ones, we made use of the Luby sequence4 [18] known for its utility in the restart
strategies of modern SAT solvers. Our own use of the sequence was as follows.

The lowest limit was initially set to 2000 Mi and, multiplying the Luby
sequence members by this number, we got the progression 2000, 2000, 4000, 2000,
2000, 4000, 8000, . . . as the prescribed limits for subsequent probe iterations. This
sequence reaches 256 000 Mi for the first time in 255 steps. At that point, we
stopped following the Luby sequence and instead started from the beginning (to
avoid eventually reaching limits higher than 256 000 Mi).

After four such cycles, the lowest, that is 2000 Mi, limit probes stopped
producing new solutions (a sampling timeout of 1 h per iteration was imposed).

4 https://oeis.org/A182105.

https://oeis.org/A182105

Regularization in Spider-Style Strategy Discovery and Schedule Construction 199

Here, after almost 8.5 d, the “updated 2K” plot ends in Fig. 1 (left). We then
increased the lowest limit to 16 000 Mi and continued in an analogous fashion
for 155 iterations and 5.7 more days (“updated 16K”) and eventually increased
the lowest limit to 64 000 Mi (“updated 64K”) until the end.

Figure 1 (right) is a scatter plot showing the totality of 1096 strategies that
we finally obtained and how they individually perform. The primary order on the
x axis is by the limit and allows us to make a rough comparison of the number
of strategies in each limit group (2000 Mi, 4000 Mi, . . . , 256 000 Mi, from left to
right). It is also clear that many strategies (across the limit groups) are, in terms
of problem coverage, individually very weak, yet each at some point contributed
to solving a problem considered (at that point) challenging.

3.2 Problem Sampling

While the guiding principle of random probing is to constantly aim for solving
an as-of-yet unsolved problem, we modified this criterion slightly to produce a
set of strategies better suited for an unbiased estimation of schedule performance
on unseen problems (as detailed in the second half of this paper).

Namely, in each iteration i, we “forgot” a random half PF
i of all problems P ,

considered only those strategies (discovered so far) whose witness problem lies in
the remaining half PR

i = P \PF
i , and aimed for solving a random problem in PR

i

not covered by any of these strategies. This likely slowed the overall growth of
coverage, as many problems would need to be covered several times due to the
changing perspective of PR

i . However, we got a (probabilistic) guarantee that
any (not too small) subset P ′ ⊆ P will contain enough witness problems such
that their corresponding strategies will cover P ′ well.

3.3 Strategy Sampling

We sampled a random strategy by independently choosing a random value for
each option. The only exception were dependent options. For example, it does
not make sense to configure the AVATAR architecture (changing options such
as acc, which enables congruence closure under AVATAR) if the main AVATAR
option (av) is set to off. Such complications can be easily avoided by following,
during the sampling, a topological order that respects the option dependencies.
(For example, we sample acc only after the value on has been chosen for av.)

Even under the assumption of option independence, the mean time in which
a random strategy solves a new problem can be strongly influenced by the value
distributions for each option. This is because some option values are rarely use-
ful and may even substantially reduce the prover performance, for example, if
they lead to a highly incomplete strategy.5 Nevertheless, not to preclude the

5 An extreme example is turning off binary resolution, the main inference for non-
equational reasoning. This can still be useful, for instance when replaced by unit
resulting resolution [15], but our sampling needs to discover this by chance.

200 F. Bártek et al.

Fig. 2. Strategy optimization scatter plots. Left: time needed to solve strategy’s witness
problem (a log–log plot). Right: the total number of problems (in thousands) solved.

possibility of discovering arbitrarily wild strategies, we initially sampled every
option uniformly where possible.6

Once we collected enough strategies,7 we updated the frequencies for sam-
pling finite-domain options (which make up the majority of all options) by count-
ing how many times each value occurred in a strategy that, at the moment of
its discovery, solved a previously unsolved problem. (This was done before a
strategy got optimized. Otherwise the frequencies would be skewed toward the
default, especially for option values that rarely help but almost never hurt.)

The effect of using an updated sampling distribution for strategy discovery
can be seen in Fig. 1 (left). We ran two independent versions of the discovery
process, one with the uniform distribution and one with the updated distribution.
We abandoned the uniform one after approximately 5 d, by which time it had
covered 6324 problems compared to 6607 covered with the help of the updated
distribution at the same mark. We can see that the rate at which we were able to
solve new problems became substantially higher with the updated distribution.

3.4 Impact of Strategy Optimization

Once random probing finds a new strategy s that solves a new problem p, the
task of optimization (recall Sect. 2.1) is to search the option-value neighborhood
of s for a strategy s′ that solves p in as few instructions as possible and preferably
uses default option values (where this does not compromise performance on p).

The impact of optimization is demonstrated in Fig. 2. On the left, we can see
that, almost invariably, optimization substantially improves the performance
of the discovered strategy on its witness problem p. The geometric mean of
the improvement ratio we observed was 4.2 (and the median 3.2). The right
6 Exceptions were: 1. The ratios: e.g., for age weight ratio we sampled uniformly its

binary logarithm (in the range −10 and 4) and turned this into a ratio afterward
(thus getting values between 1 : 1024 and 16 : 1); 2. Unbounded integers (an example
being the naming threshold [20]), for which we used a geometric distribution instead.

7 This was done in an earlier version of the main experiment.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 201

scatter plot shows the overall performance of each strategy.8 Here, the observed
improvement is ×1.09 on average (median 1.03), and the improvement is solely
an effect of setting option values to default where possible (without this feature,
we would get a geometric mean of the improvement 0.84 and median 0.91). In
this sense, the tendency to pick default values regularizes the strategies, making
them more powerful also on problems other than their witness problem.

3.5 Parsing Does Not Count

When collecting the performance data about the strategies, we decided to ignore
the time it takes Vampire to parse the input problem. This was also reflected in
the instruction limiting, so that running Vampire with a limit of, e.g., 2000 Mi
would allow a problem to be solved if it takes at most 2000 Mi on top of what
is necessary to parse the problem.

The main reason for this decision is that Vampire, in its strategy scheduling
mode, starts dispatching strategies only after having parsed the problem, which
is done only once. Thus, from the perspective of individual strategies, parsing
time is a form of a sunk cost, something that has already been paid.

Although more complex approaches to taking parse time into account when
optimizing schedules are possible, we in this work simply pretend that problem
parsing always costs 0 instructions. This should be taken into account when
interpreting our simulated performance results reported next (in Sect. 4, but
also in Sect. 6.2).

4 One Schedule to Cover Them All

Having collected our strategies, let us pretend that we already know how to
construct a schedule (to be detailed in Sect. 5) and use this ability to answer
some imminent questions, most notably: How much can we now benefit?

Figure 3 plots the cumulative performance (a.k.a. “cactus plot”) of schedules
we could build after 2 h, 6 h, 1 day, and full 20.1 days of the strategy discovery.
The dashed vertical line denotes the time limit of 256 000 Mi, which roughly
corresponds to a 2-minute prover run. For reference, we also plot the behavior of
Vampire’s default strategy. We can see that already after two hours of strategy
discovery, we could construct a schedule improving on the default strategy by
26% (from 4264 to 5403 problems solved). Although the added value per hour
spent searching gradually drops, the 20.1 days schedule is still 4% better than
the 1 day one (improving from 6197 to 6449 at 256 000 Mi).

The plot’s x-axis ends at 8·256 000 Mi, which roughly corresponds to the
time limit used by the most recent CASC competitions [27] in the FOF division
(i.e., 2 min on 8 cores). The strongest schedule shown in the figure manages to

8 In a previous version of the main experiment, we evaluated each strategy both before
and after optimization, which gave rise to this plot.

202 F. Bártek et al.

Fig. 3. Cumulative performance of several greedy schedules, each using a subset of the
discovered strategies as gathered in time, compared with Vampire’s default strategy

solve 6789 problems (of the 6796 covered in total) at that mark.9 We remark
that this schedule, in the end, employs only 577 of the 1096 available strategies,
which points towards a noticeable redundancy in the strategy discovery process.

One way to fit all the solvable problems below the CASC budget would be to
use a standard trick and split the totality of problems P into two or more easy-
to-define syntactic classes (e.g., Horn problems, problems with equality, large
problems, etc.) and construct dedicated schedules for each class in isolation.
The prover can then be dispatched to run an appropriate schedule once the
input problem features are read. We do not explore this option here. Intuitively,
by splitting P into smaller subsets, the risk of overfitting to just the problems for
which the strategies were discovered increases, and we mainly want to explore
here the opposite, the ability of a schedule to generalize to unseen problems.

5 Greedy Schedule Construction

Having collected a set of strategies S and evaluated each on the problems in P ,
let us by Es

p : S × P → N ∪ {∞} denote the evaluation matrix, which records
the obtained solutions times (and uses ∞ to signify a failure to solve a problem
within the evaluation time limit used). Given a time budget T , the schedule
construction problem (SCP) is the task of assigning a time limit ts ∈ N to every
strategy s ∈ S, such that the number of covered problems

∣
∣
∣
∣
∣

⋃

s∈S

{p ∈ P |Es
p ≤ ts}

∣
∣
∣
∣
∣
,

subject to the constraint
∑

s∈S ts ≤ T , is maximized.

9 It is possible to solve all 6796 covered problems with a schedule that spans 2 582 228
Mi. This is the optimum length – no shorter schedule solving all covered problems
exists.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 203

Algorithm 1 . Greedy schedule construction (base version)
Input: Problems P , strategies S, solution times Es

p, time budget T
Output: Pre-schedule ts : S → N

1: ts ← 0 � Start with zeros everywhere
2: T ′ ← T, P ′ ← P � Remaining budget, remaining problems
3: while the maximum just below is positive do
4: s, t ← argmaxs∈S,t∈N,0<(t−ts)≤T ′ |{p ∈ P ′ | Es

p ≤ t}|/(t − ts)
5: T ′ ← T ′ − (t − ts) � Update the remaining budget
6: ts ← t � Extend the pre-schedule
7: P ′ ← {p ∈ P ′ | Es

p > t} � Remove covered problems from P ′

To obtain a schedule as a sequence (as defined in Sect. 2), we would need
to order the strategies having ts > 0. This can, in practice, be done in various
ways, but since the order does not influence the predicted performance of the
schedule under the budget T , we keep it here unspecified (and refer to the mere
time assignment ts as a pre-schedule where the distinction matters).

Although it is straightforward to encode SCP as a mixed integer program and
attempt to solve it exactly (though it is an NP-hard problem), an adaptation of
a greedy heuristic from a closely related (budgeted) maximum coverage problem
[3,13] works surprisingly well in practice and runs in time polynomial in the
size of Es

p. The key idea is to greedily maximize the number of newly covered
problems divided by the amount of time this additionally requires.

Algorithm 1 shows the corresponding pseudocode. It starts from an empty
schedule ts and iteratively extends it in a greedy fashion. The key criterion
appears on line 4. Note that this line corresponds to an iteration over all available
strategies S and, for each strategy s, all meaningful time limits (which are only
those where a new problem gets solved by s, so their number is bounded by |P |).

Algorithm 1 departs from the obvious adaptation of the above-mentioned
greedy algorithm for the set covering problem [3] in that we allow extending a
slice of a strategy s that is already included in the schedule (that is, has ts > 0)
and “charge the extension” only for the additional time it claims (i.e., t − ts).
This slice extension trick turns out to be important for good performance.10

5.1 Do We Need a Budget?

A budget-less version of Algorithm 1 is easy to obtain (imagine T being very
large). When running on real-world Es

p (from evaluated Vampire strategies), we
noticed that the length of a typical extension (t − ts) tends to be small relative
to the current used-up time

∑

s∈S ts and that the presence of a budget starts
affecting the result only when the used-up time comes close to the budget.

As a consequence, if we run a budget-less version and, after each iteration,
record the pair (

∑

s∈S ts, |P \ P ′|), we get a good estimate (in a single run) of
how the algorithm would perform for a whole (densely inhabited) sequence of

10 The degree of importance of slice extension can be observed in Fig. 5 in Appendix A.

204 F. Bártek et al.

relevant budgets. This is how the plot in Fig. 3 was obtained. Note that this
would be prohibitively expensive to do when trying to solve the SCP optimally.

We can also use this observation in an actual prover. If we record and store a
journal of the budget-less run, remembering which strategy got extended in each
iteration and by how much, we can, given a concrete budget T , quickly replay
the journal just to the point before filling up T , and thus get a good schedule
for the budget T without having to optimize specifically for T .

6 Regularization in Schedule Construction

To estimate the future performance of a constructed schedule on previously
unseen problems, we adopt the standard methodology used in statistics, ran-
domly split our problem set P into a train set Ptrain and a test set Ptest , construct
a schedule for the first, and evaluate it on the second.

To reduce the variance in the estimate, we use many such random splits
and average the results. In the experiments reported in the following, we actu-
ally compute an average over several rounds of 5-fold cross-validation [6]. This
means that the size of Ptrain is always 80.0 % and the size Ptest 20.0% of our
problem set P . However, we re-scale the reported train and test performance
back to the size of the whole problem set P to express them in units that are
immediately comparable. We note that the reported performance is obtained
though simulation, i.e., it is only based on the evaluation matrix Es

p.

Training Strategy Sets. We retroactively simulate the effect of discovering strate-
gies only for current training problems Ptrain . Given our collected pool of strate-
gies S, we obtain the training strategy set Strain by excluding those strategies
from S whose witness problem lies outside Ptrain (cf. Sect. 3.2). When a schedule
is optimized on the problem set Ptrain , the training data consists of the results
of the evaluations of strategies Strain on problems Ptrain .

6.1 Regularization Methods

We propose several modifications of greedy schedule construction (Algorithm
1) with the aim of improving its performance on unseen problems (the test set
performance) while possibly sacrificing some of its training performance.

With the base version, we observed that it could often solve more test prob-
lems by assigning more time to strategies introduced into the schedule in early
iterations, at the expense of strategies added later (the latter presumably cover-
ing just a few expensive training problems and being over-specialized to them).
Most of the modifications described next assign more time to strategies added
during early iterations, each according to a different heuristic.

Slack. The most straightforward regularization we explored extends each non-
zero strategy time limit ts in the schedule by multiplying it by the multi-
plicative slack w ≥ 1 and adding the additive slack b ∈ {0, 1, . . .}. For each

Regularization in Spider-Style Strategy Discovery and Schedule Construction 205

ts > 0, the new limit t′s is therefore ts · w + b. To avoid overshooting the
budget, we keep track of the total length of the extended schedule during
the construction (implementation details are slightly more complicated but
not immediately important). The parameters w and b control the degree of
regularization, and with w = 1 and b = 0, we get the base algorithm.

Temporal Reward Adjustment. In each iteration of the base greedy algo-
rithm, we select a combination of strategy s and time limit t that maximizes
the number of newly solved problems n per time t. Intuitively, the relative
degree to which these two quantities influence the selection is arbitrary. To
allow stressing n more or less with respect to t, we exponentiate n by a
regularization parameter α ≥ 0, so the decision criterion becomes nα

t .
For small values of α, the algorithm values the time more and becomes eager
to solve problems early. For large values of α, on the other hand, the algorithm
values the problems more and prefers longer slices that cover more problems.
For example, for α = 1.5, the algorithm prefers solving 2 problems in 5000 Mi
to solving 1 problem in 2000 Mi. Compare this to α = 1 (the base algorithm),
which would rank these slices the other way around.

Diminishing Problem Rewards. By covering a training problem with more
than one strategy, we cover it robustly: When a similar testing problem is
solved by only one of these strategies, the schedule still manages to solve it.
However, the base greedy algorithm does not strive to cover any problem more
than once: as soon as a problem is covered by one strategy, this problem stops
participating in the scheduling criterion. This is the case even when covering
the problem again would cost relatively little time.
Regularization by diminishing problem rewards covers problems robustly by
rewarding strategy s not only by the number of new problems it covers but
also by the problems covered by s that are already covered by the schedule.
This is achieved by modifying the slice selection criterion. Instead of maxi-
mizing the number of new problems solved per time, we maximize the total
reward per time, which is defined as follows: Each problem contributes the
reward βk, where k is the number of times the schedule has covered the prob-
lem and β is a regularization parameter (0 ≤ β ≤ 1). We define 00 = 1 so
that β = 0 preserves the original behavior of the base algorithm.
For example, for β = 0.1, each problem contributes the reward 1 the first
time it is covered, 0.1 the second time, 0.01 the third time, etc. Informally,
the algorithm values covering a problem the second time in time t as much
as covering a new problem in time 10 · t.

These modifications are independent and can be arbitrarily combined.

6.2 Experimental Results

We evaluated the behavior of the previously proposed techniques using three
time budgets: 16 000 Mi (≈8 s), 64 000 Mi (≈32 s), and 256 000 Mi (≈2 min).

206 F. Bártek et al.

Optimal Schedule Constructor. In the existing approaches to the construction
of strategy schedules [7,24], it is common to encode the SCP (see Sect. 5) as a
mixed-integer program and use a MIP solver to find an exact solution. We imple-
mented such an optimal schedule construction (OSC) by encoding the problem11

in Gurobi [5] (ver. 10.0.3) and compared OSC to the base greedy schedule con-
struction (Algorithm 1) on 10 random 80 : 20 splits.

For the budget of 256 000 Mi, it takes Gurobi over 16 h to find an optimal
schedule, whereas the greedy algorithm finds a schedule in less than a minute.
The optimal schedule solves, on average, 45.0 (resp. 8.5) more problems than the
greedy schedule on Ptrain (resp. on Ptest) when re-scaled to |P |. For the 16 000
Mi and 64 000 Mi budgets, Gurobi does not solve the optimal schedule within
a reasonable time limit. For example, after 24 h, the relative gaps between the
lower and upper objective bound are 5.38 % and 1.43 %, respectively. This makes
the OSC impractical to use as a baseline for our regularization experiments.12

Regularization of the Greedy Algorithm. To estimate the performance of the
proposed regularization methods, we evaluated each variant on 50 random splits
(10 times 5-fold cross-validation). We assessed the algorithm’s response to each
regularization parameter in isolation. For each parameter, we evaluated regularly
spaced values from a promising interval covering the default value (b = 0, w = 1,
α = 1, β = 0). Figure 4 demonstrates the effect of these variations on the train
and test performance for the budget 64 000 Mi.13

Temporal reward adjustment was the most powerful of the regularizations,
improving test performance for all the evaluated values of α between 1.1 and 2.0.
Surprisingly, the values 1.1 and 1.2 also improved the train performance, sug-
gesting that the default greedy algorithm is too time-aggressive on our dataset.

Table 1 compares the performance of notable configurations of the greedy
algorithm. Specifically, we include evaluations of the base greedy algorithm and
the best of the evaluated parameter values for each of the regularizations. The
table also illustrates the effect of regularizations on the computational time of
the greedy schedule construction: β > 0 slows the procedure down and α > 1
speeds it up.

In a subsequent experiment, we searched for a strong combination of reg-
ularizations by local search from the strongest single-parameter regularization
(α = 1.7). This yielded a negligible improvement over α = 1.7: The best observed
test performance was 5707 (α = 1.7 and b = 30), compared to 5704 of α = 1.7.

Finally, we briefly explored the interactions between the budget and the
optimal values of the regularization parameters. For each of the three budgets of
interest and each of the regularization parameters, we identified the best param-

11 We used a straightforward encoding similar to the encoding described by Holden
and Korovin [7].

12 A better encoding and solver settings may improve on this. However, we suspect the
problem to be hard; we tried some modifications with similar (or worse) results.

13 This budget seems to be the most practically relevant (e.g., for the application in
interactive theorem provers). The other two budgets are detailed in Appendix A.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 207

Fig. 4. Train and test performance of various regularizations of the greedy schedule
construction algorithm for the budget 64 000. Performance is the mean number of
problems solved out of 7866 across 50 splits. The label of each point denotes the value
of the respective regularization parameter.

eter value from the evaluation grid. Table 2 shows that the best configurations
of all the regularizations except multiplicative slack vary across budgets.14

7 Related Work

Outside the realm of theorem proving, strategy discovery belongs to the topic of
algorithm configuration [22], where the task is to look for a strong configuration of
a parameterized algorithm automatically. Prominent general-purpose algorithm
configuration procedures include ParamILS [8] and SMAC [17].

To gather a portfolio of complementary configurations, Hydra [36] searches
for them in rounds, trying to maximize the marginal contribution against all
the configurations identified previously. Cedalion [25] is interesting in that it
maximizes such contribution per unit time, similarly to our heuristic for greedy
schedule construction. Both have in common that they, a priori, consider all the
input problems in their criterion. BliStr and related approaches [7,9,11,12,33],
on the other hand, combine strategy improvement with problem clustering to
breed strategies that are “local experts” on similar problems. Spider [34] is even
more radical in this direction and optimizes each strategy on a single problem.15

14 See a more detailed comparison in Appendix A.
15 Although the preference for default option values as a secondary criterion, at the

same time, helps to push for good general performance (see Sect. 3.4).

208 F. Bártek et al.

Table 1. Comparison of regularizations of the greedy schedule construction algorithm
for the budget 64 000 Mi. Performance is the mean number of problems solved out of
7866 across 50 splits. Time to fit is the mean time to construct a schedule in seconds.

Regularization Performance Time to fit [s]

Test Train

α = 1.7 5704 5905 4

β = 0.3 5641 5955 67

w = 1.1 5626 5946 19

b = 10 5621 5971 20

None (default) 5616 5986 20

Table 2. Best observed values of regularization parameters for various budgets

Budget [Mi] Best parameter value

b w α β

16000 0 1.1 1.3 0.2

64000 10 1.1 1.7 0.3

256000 20 1.1 1.4 0.2

Once a portfolio of strategies is known, it may be used in one of several ways
to solve a new input problem: execute all strategies in parallel [36], select a single
strategy [9], select one of pre-computed schedules [7], construct a custom strategy
schedule [19], schedule strategies dynamically [16], or use a pre-computed static
schedule [12,24]. The latter is the approach we explored in this work.

A popular approach to construct a static schedule (besides solving SCP opti-
mally [7,24]) is to greedily stack uniformly-timed slices [12].16 Regularization
in this context is discussed by Jakubuv et al. [10]. Finally, a different greedy
approach to schedule construction was already proposed in p-SETHEO [35].

8 Conclusion

In this work, we conducted an independent evaluation of Spider-style [34] strat-
egy discovery and schedule creation. Focusing on the FOF fragment of the TPTP
library, we collected over a thousand Vampire proving strategies, each a priori
optimized to perform well on a single problem. Using these strategies, it is easy
to construct a single monolithic schedule which covers most of the problems

16 However, uniformly-timed slices only get close to the performance of our greedy
schedule at a small region depending on the slice time limit used.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 209

known to be solvable within the budget used by the CASC competition. This
suggests that for CASC not to be mainly a competition in memorization, using
a substantial set of previously unseen problems each year is essential.

To construct strong schedules using the discovered strategies, we proposed
a greedy schedule construction procedure, which can compete with optimal
approaches. For a time budget of approximately 2 min, the greedy algorithm
takes less than a minute to produce a schedule that solves more than 99.0% as
many problems as an optimal schedule, which takes more than 16 h to generate.
For shorter time budgets, optimal schedule construction is no longer feasible,
while greedy construction still produces relatively strong schedules.

This surprising strength of the greedy scheduler can be further reinforced by
various regularization mechanisms, which constitute the main contribution of
this work. An appropriately chosen regularization allows us to outperform the
optimal schedule on unseen problems. Finally, the runtime speed and simplicity
of the greedy schedule construction algorithm and the regularization techniques
make them attractive for reuse and further experimentation.

Acknowledgment. This work was supported by the Czech Science Foundation
project no. 20-06390Y (JUNIOR grant), the European Regional Development Fund
under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466, the
project RICAIP no. 857306 under the EU-H2020 programme, the Grant Agency of the
Czech Technical University in Prague, grant no. SGS20/215/OHK3/3T/37, and the
Czech Science Foundation project no. 24-12759S.

A Experimental Results on Various Budgets

In addition to the budget of 64 000 Mi (approx 32 s), which we discussed in
Sect. 6.2, we evaluated the schedule construction algorithms on the budgets of
16 000 Mi (approx. 8 s) and 256 000 Mi (approx. 2 min). Figure 5 shows the
results of these evaluations. It shows namely that temporal reward adjustment
is the most powerful of the regularizations under consideration for all of these
budgets, and that the optimal values of most of the regularization parameters
vary across budgets.

To demonstrate the effect of the slice extension trick described in Sect. 5,
we also include two weaker versions of the base greedy algorithm: one without
slice extension and one with the slice extension restricted to the most recent
slice (“conservative slice extension”). Both of these modifications allow including
any single strategy in the schedule more than once, which is implemented in a
straightforward fashion.

210 F. Bártek et al.

Fig. 5. Train and test performance of various regularizations of the greedy schedule
construction algorithm for the budgets 256 000 Mi (top), 64 000 Mi (middle), and 16
000 Mi (bottom). Performance is mean number of problems solved out of 7866 across
50 splits. The label of each point denotes the value of the respective regularization
parameter.

Regularization in Spider-Style Strategy Discovery and Schedule Construction 211

References

1. Bártek, F., Chvalovský, K., Suda, M.: Regularization in spider-style strategy
discovery and schedule construction (2024). https://doi.org/10.48550/arXiv.2403.
12869

2. Bártek, F., Suda, M.: Vampire strategy performance measurements (2024). https://
doi.org/10.5281/zenodo.10814478

3. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979). https://doi.org/10.1287/moor.4.3.233

4. Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.): Global Conference on Artificial
Intelligence, GCAI 2015, Tbilis, 16–19 October 2015, EPiC Series in Computing,
vol. 36. EasyChair (2015). https://easychair.org/publications/volume/GCAI 2015

5. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd
edn. SSS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

7. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling
for first-order theorem proving. In: Kamareddine, F., Coen, C.S. (eds.) CICM 2021.
LNCS, vol. 12833, pp. 107–123. Springer, Cham (2021).https://doi.org/10.1007/
978-3-030-81097-9 8

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009).
https://doi.org/10.1613/JAIR.2861

9. Hula, J., Jakubuv, J., Janota, M., Kubej, L.: Targeted configuration of an SMT
solver. In: Buzzard, K., Kutsia, T. (eds.) CICM 2022. LNCS, vol. 13467, pp. 256–
271. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16681-5 18

10. Jakubuv, J., et al.: MizAR 60 for Mizar 50. In: Naumowicz, A., Thiemann, R. (eds.)
14th International Conference on Interactive Theorem Proving, ITP 2023, 31 July
to 4 August 2023, Bia�lystok. LIPIcs, vol. 268, pp. 19:1–19:22. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ITP.
2023.19

11. Jakubuv, J., Suda, M., Urban, J.: Automated invention of strategies and term
orderings for Vampire. In: Benzmüller, C., Lisetti, C.L., Theobald, M. (eds.) GCAI
2017, 3rd Global Conference on Artificial Intelligence, Miami, 18–22 October 2017.
EPiC Series in Computing, vol. 50, pp. 121–133. EasyChair (2017). https://doi.
org/10.29007/XGHJ

12. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, 16–17 Jan-
uary 2017, pp. 43–52. ACM (2017).https://doi.org/10.1145/3018610.3018619

13. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999). https://doi.org/10.1016/S0020-0190(99)00031-
9

14. Korovin, K.: iProver—an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 24

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

https://doi.org/10.48550/arXiv.2403.12869
https://doi.org/10.48550/arXiv.2403.12869
https://doi.org/10.5281/zenodo.10814478
https://doi.org/10.5281/zenodo.10814478
https://doi.org/10.1287/moor.4.3.233
https://easychair.org/publications/volume/GCAI_2015
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1613/JAIR.2861
https://doi.org/10.1007/978-3-031-16681-5_18
https://doi.org/10.4230/LIPICS.ITP.2023.19
https://doi.org/10.4230/LIPICS.ITP.2023.19
https://doi.org/10.29007/XGHJ
https://doi.org/10.29007/XGHJ
https://doi.org/10.1145/3018610.3018619
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1016/S0020-0190(99)00031-9
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-39799-8_1

212 F. Bártek et al.

16. Kühlwein, D., Urban, J.: MaLeS: a framework for automatic tuning of automated
theorem provers. J. Autom. Reason. 55(2), 91–116 (2015). https://doi.org/10.
1007/s10817-015-9329-1

17. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23, 54:1–54:9 (2022). http://jmlr.
org/papers/v23/21-0888.html

18. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algo-
rithms. Inf. Process. Lett. 47(4), 173–180 (1993). https://doi.org/10.1016/0020-
0190(93)90029-9

19. Mangla, C., Holden, S.B., Paulson, L.C.: Bayesian ranking for strategy scheduling
in automated theorem provers. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.)
IJCAR 2022. LNCS, vol. 13385, pp. 559–577. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-10769-6 33

20. Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. 2nd Global Conference
on Artificial Intelligence, 19 September–2 October 2016, Berlin. EPiC Series in
Computing, vol. 41, pp. 11–23. EasyChair (2016). https://doi.org/10.29007/DZFZ

21. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms.
In: Gottlob et al. [4], pp. 263–274. https://doi.org/10.29007/gms9

22. Schede, E., et al.: A survey of methods for automated algorithm configuration. J.
Artif. Intell. Res. 75, 425–487 (2022). https://doi.org/10.1613/jair.1.13676

23. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 27. LNCS, vol. 11716, pp. 495–507. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29436-6 29

24. Schurr, H.: Optimal strategy schedules for everyone. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proceedings of the Workshop on Practical Aspects of Automated
Reasoning Co-located with the 11th International Joint Conference on Automated
Reasoning (FLoC/IJCAR 2022), Haifa, 11–12 August 2022. CEUR Workshop Pro-
ceedings, vol. 3201. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3201/paper8.
pdf

25. Seipp, J., Sievers, S., Helmert, M., Hutter, F.: Automatic configuration of sequen-
tial planning portfolios. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, pp.
3364–3370. AAAI Press (2015). https://doi.org/10.1609/AAAI.V29I1.9640

26. Suda, M.: Vampire getting noisy: will random bits help conquer chaos? (sys-
tem description). EasyChair Preprint no. 7719 (2022). https://easychair.org/
publications/preprint/CSVF

27. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016). https://doi.org/10.1609/AIMAG.V37I2.2620

28. Sutcliffe, G.: The TPTP problem library and associated infrastructure: from CNF
to TH0, TPTP v6.4.0. J. Automat. Reason. 59(4), 483–502 (2017). https://doi.
org/10.1007/s10817-017-9407-7

29. Suttner, C.B., Sutcliffe, G.: The CADE-14 ATP system competition. J. Autom.
Reason. 21(1), 99–134 (1998). https://doi.org/10.1023/A:1006006930186

30. Tammet, T.: Gandalf. J. Autom. Reason. 18(2), 199–204 (1997). https://doi.org/
10.1023/A:1005887414560

31. Tammet, T.: Gandalf c-1.1 (1998). https://www.tptp.org/CASC/15/
SystemDescriptions.html#Gandalf. Accessed 25 Jan 2023

32. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)
CADE-15. LNCS, vol. 1421, pp. 427–441. Springer, Cham (1998). https://doi.org/
10.1007/BFb0054276

https://doi.org/10.1007/s10817-015-9329-1
https://doi.org/10.1007/s10817-015-9329-1
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1007/978-3-031-10769-6_33
https://doi.org/10.1007/978-3-031-10769-6_33
https://doi.org/10.29007/DZFZ
https://doi.org/10.29007/gms9
https://doi.org/10.1613/jair.1.13676
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://ceur-ws.org/Vol-3201/paper8.pdf
https://ceur-ws.org/Vol-3201/paper8.pdf
https://doi.org/10.1609/AAAI.V29I1.9640
https://easychair.org/publications/preprint/CSVF
https://easychair.org/publications/preprint/CSVF
https://doi.org/10.1609/AIMAG.V37I2.2620
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1023/A:1006006930186
https://doi.org/10.1023/A:1005887414560
https://doi.org/10.1023/A:1005887414560
https://www.tptp.org/CASC/15/SystemDescriptions.html#Gandalf
https://www.tptp.org/CASC/15/SystemDescriptions.html#Gandalf
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/BFb0054276

Regularization in Spider-Style Strategy Discovery and Schedule Construction 213

33. Urban, J.: BliStr: The blind strategymaker. In: Gottlob et al. [4], pp. 312–331.
https://doi.org/10.29007/8n7m

34. Voronkov, A.: Spider: learning in the sea of options (2023). https://
easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833. Unpub-
lished. Paper accepted at Vampire23: The 7th Vampire Workshop

35. Wolf, A., Letz, R.: Strategy parallelism in automated theorem proving. In: Cook,
D.J. (ed.) Proceedings of the Eleventh International Florida Artificial Intelligence
Research Society Conference, 18–20 May 1998, Sanibel Island, pp. 142–146. AAAI
Press (1998). http://www.aaai.org/Library/FLAIRS/1998/flairs98-027.php

36. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algo-
rithms for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
11–15 July 2010. AAAI Press (2010). http://www.aaai.org/ocs/index.php/AAAI/
AAAI10/paper/view/1929

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.29007/8n7m
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
http://www.aaai.org/Library/FLAIRS/1998/flairs98-027.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
http://creativecommons.org/licenses/by/4.0/

Lemma Discovery and Strategies
for Automated Induction

Sólrún Halla Einarsdóttir1(B) , Márton Hajdu2 , Moa Johansson1 ,
Nicholas Smallbone1 , and Martin Suda3

1 Chalmers University of Technology, Gothenburg, Sweden
{slrn,jomoa,nicsma}@chalmers.se

2 TU Wien, Vienna, Austria
marton.hajdu@tuwien.ac.at

3 Czech Technical University in Prague, Prague, Czech Republic
martin.suda@cvut.cz

Abstract. We investigate how the automated inductive proof capabili-
ties of the first-order prover Vampire can be improved by adding lemmas
conjectured by the QuickSpec theory exploration system and by training
strategy schedules specialized for inductive proofs. We find that adding
lemmas improves performance (measured in number of proofs found for
benchmark problems) by 40% compared to Vampire’s plain structural
induction as baseline. Strategy training alone increases the number of
proofs found by 130%, and the two methods in combination provide an
increase of 183%. By combining strategy training and lemma discovery
we can prove more inductive benchmarks than previous state-of-the-art
inductive proof systems (HipSpec and CVC4).

Keywords: Induction · Theory Exploration · Lemma Discovery ·
Strategies · Vampire

1 Introduction

We have experimented with augmenting Vampire’s capabilities for induction
by injecting extra lemmas suggested by the theory exploration system Quick-
Spec [25] and by training strategy schedules specialized for inductive proofs. Our
aim is to improve on the state of the art in automating proofs by induction.

Proofs by induction provide a challenge for automated theorem provers. Not
only are there typically many choices of which induction scheme to use, but
a proof may also require the conjecture to be generalized to strengthen the
inductive hypothesis, or require additional auxiliary lemmas, themselves needing
another induction to prove. For example, suppose we have a recursively defined
function rev for reversing lists, defined using the append function ++:

rev [] = []
rev (x : xs) = (rev xs) ++ (x : [])

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 214–232, 2024.
https://doi.org/10.1007/978-3-031-63498-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_13&domain=pdf
http://orcid.org/0000-0002-5445-3975
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0002-1097-8278
http://orcid.org/0000-0003-2880-6121
http://orcid.org/0000-0003-0989-5800
https://doi.org/10.1007/978-3-031-63498-7_13

Lemma Discovery and Strategies for Automated Induction 215

where ++ is defined as follows:

[] ++ xs = xs

(x : xs) ++ ys = x : (xs++ ys)

and want to prove that rev(rev(xs)) = x for any list xs. When we ask Vampire
to find a proof of this using structural induction it is unable to find a proof,
even when given a long time. The induction hypothesis rev(rev(xs)) = xs is
not strong enough to prove that rev(rev(x : xs)) = x : xs: we are missing some
lemmas.

QuickSpec [25] is a system that produces equational conjectures from func-
tion definitions. Suppose we use QuickSpec to conjecture some lemmas about the
rev and ++ functions. In under 1.5 s (running on a regular laptop1) QuickSpec
outputs the following 9 equations as unproved conjectures:

1. rev [] = []
2. x++ [] = x
3. [] ++ x = x
4. rev (rev x) = x
5. rev (x : []) = x : []
6. (x++ y) ++ z = x++ (y ++ z)
7. x : (y ++ z) = (x : y) ++ z
8. rev x++ rev y = rev (y ++ x)
9. (xs++ (y : (z : [])) = rev (z : (x : (rev xs)))

Now suppose we add these equations to the input we give to Vampire, mark-
ing them as conjectured lemmas. Vampire may use such lemma in a proof, but
only if it also proves it (e.g. by induction). Vampire instantly (in 6ms, running
on the same laptop) finds a proof of the original property, using (2), (6), and
(8) above as lemmas, as well as proofs for the lemmas that were used. A closer
investigation shows that only (6) and (8) are necessary to find a proof, where
(8) is used in the proof of the original goal and (6) is used to prove (8).

Coming up with lemmas is a non-trivial task, and has sparked research into
various lemma discovery techniques (see [17] for an overview). Lemma discov-
ery can broadly be divided into two categories: Top-down techniques include
attempting to generalize the current subgoal, or analyzing failed proof attempts
to suggest a missing lemma. Bottom-up techniques focus on discovering poten-
tially interesting lemmas about the definitions and concepts available, without
considering any particular ongoing proof attempts. Bottom-up techniques can
find a wider class of lemmas, but have the disadvantage that the system spends
time working with conjectures that are not relevant to the goal. For example,
the earlier system HipSpec [5] would first run QuickSpec (just as in the example
above) but then attempt to prove all discovered conjectures before working on
the main goal.

1 The same laptop the experiments in Sect. 4 were run on, see more precise description
there.

216 S. H. Einarsdóttir et al.

In this work, we use theory exploration, a bottom-up technique, in a more
goal-directed manner. We use QuickSpec to suggest useful lemmas, but we will
not prove all the suggestions, only those that are useful in the proof of the main
goal. To do this we leverage Vampire’s AVATAR architecture [20,29], which
allows us to attempt (speculatively, in parallel) the proof of the main goal using
any subset of the candidate lemmas. Lemmas used must also be independently
proved, but if that turns out to be hard (or even impossible) other options of
finishing a proof may also be possible. Non-useful conjectures can be ignored and
need not be proved, saving time. Since automatic theorem provers (ATPs) like
Vampire and cvc5 now natively support applying automated induction [11,22] it
is no longer necessary to use a specialized prover to apply induction before send-
ing the resulting proof obligations to an ATP, as HipSpec did, and we examine
the differences between the two approaches.

The performance of ATPs like Vampire is heavily influenced by the use of
proving strategies and their combinations into schedules [15,27,28,30]. In addi-
tion to investigating the influence of adding lemmas from theory exploration, we
also experiment with various learned strategies tailored for inductive proofs. A
specialized strategy may allow Vampire to invent some easy lemmas itself, by
applying generalization of a suitable subterm in a goal, lessening the need for
theory exploration. However, finding strong targeted strategies is a time con-
suming endeavour which requires a set of problems with similar characteristics
to those which we are interested in proving. For regular users, who typically just
want to apply Vampire out of the box, this might not be an option.

2 Background

We propose the following design for an inductive theorem proving system:

1. We first use QuickSpec for theory exploration on the theory in question,
generating equational conjectures about the theory.

2. The theory file including the original goal plus the conjectures from QuickSpec
is sent to Vampire to attempt to find a proof.

Using our tools these two steps can be performed fully automatically, taking
a problem file in the TIP [7] format as input and returning the proof found by
Vampire as output.

2.1 QuickSpec

As seen in Sect. 1, QuickSpec is a system that produces equational conjectures
about a theory. The conjectures are not guaranteed to be true, but have been
tested to hold on 1000 randomly-generated test cases.2 QuickSpec was originally
designed to make conjectures about Haskell programs, but has been adapted to
problems in inductive theorem proving.
2 In automated reasoning terms, this means that 1000 ground instances of the conjec-

ture have been shown to hold.

Lemma Discovery and Strategies for Automated Induction 217

Conjecturing equations is difficult because of combinatorial explosion: even if
we consider only quite simple equations and theories, there are many millions of
possible conjectures. For example, if we identify a set of n = 10,000 interesting
terms, then there are n2 = 100,000,000 candidate equations which could be built
from those terms. Generating and testing all of them is out of the question.

QuickSpec uses a more sophisticated approach which scales with the num-
ber of terms (e.g. 10,000) rather than the number of possible equations (e.g.
100,000,000). We enumerate terms in order of size (these terms may end up
being the left or right hand side of an equational conjecture). We consider each
term one by one, building up two sets as we go:

– The set of discovered conjectures between the terms considered so far.
– The set of representative terms. This consists of the set of terms considered

so far, except that when several terms are equal, only one of them will be
chosen as a representative. Therefore no two representative terms are equal.

Each time we consider a new term t, we answer the following question: Is it equal
to any representative term? We do this in two steps:

1. Pruning. We check if the discovered conjectures imply that t is equal to a
representative term r. If so, we simply ignore t and move on to the next term.

2. Testing. We test t against all representative terms. If it seems to be equal to
some representative term r, we produce the conjecture t = r. Note that, since
no two representative terms are equal, we only ever produce one conjecture
per term.

If neither case holds, we add t as a representative term. The idea here is that,
in case (1), the equation t = r is redundant – we knew it already – whereas in
case (2), it is new information and hence a potentially useful conjecture.

For example, suppose we take the list append function ++ and consider
the following terms, where x, y and z range over lists: [], x, y, z, x ++ [], y ++
[], x++ (y ++ z), x++ (x++ y), (x++ y) ++ z, (x++ x) ++ y.3 Initially, the
set of discovered equations and the set of representative terms are empty. The
algorithm proceeds as follows:

– []. We add [] as a representative term.
– x, y, z. None of these terms are equal to each other or [], so we add them as

representative terms.
– x ++ []. The testing step reveals that this term is equal to x. We produce

the conjecture (1): x++ [] = x (and do not add x++ [] as a representative
term).

– y ++ []. The pruning step shows that this term is equal to y, by conjecture
(1). We discard the term.

– x++ (y ++ z), x++ (x++ y). We add these terms as representatives.
3 In reality we enumerate terms in a systematic way, and a further refinement to the

algorithm, schemas, eliminates many terms that differ from an existing term only in
choice of variables.

218 S. H. Einarsdóttir et al.

– (x++ y) ++ z. Testing shows that this term is equal to x++ (y ++ z). We
produce the conjecture (2): (x++ y) ++ z = x++ (y ++ z).

– (x++ x) ++ y. Pruning shows that this term is equal to x++ (x++ y), by
conjecture (2). We discard the term.

At the end we have produced the conjectures (1) x++ [] = x and (2) (x++
y)++ z = x++(y++ z). Note that these conjectures are complete with respect
to the enumerated terms, in the sense that any true equation between two such
terms follows from the conjectures. In general, the QuickSpec algorithm produces
a complete set of equations in this sense (though not necessarily sound, i.e. we
may have false equations if we are unlucky in the testing).

It is perhaps not obvious why this algorithm should be fast. We point out
the following reasons:

– The runtime of the algorithm scales with the number of terms considered, not
the number of possible equations. This is because, with careful data struc-
tures and algorithms, in both the pruning and testing steps we can efficiently
compare a new term against all representative terms at once, in close to con-
stant time. For pruning, we use unfailing completion [1] as implemented in
Twee [24] to build a rewrite system from the discovered conjectures. We then
keep the set of representative terms normalized with respect to this rewrite
system. To prune a new term, we just normalize it and see if this normal form
appears in the set of representative terms. For testing, we build a decision tree
which allows us to, with a few (typically < 10 test cases), either show that a
new term t is not equal to any representative term, or find precisely one term
r that it might be equal to, whereupon we can test the single equation t = r
more thoroughly.

– In the common case, it takes a tiny amount of time (� 1 ms) to consider each
term. That is because: (1) in the pruning step, the term is just normalized, an
operation taking microseconds; (2) in the testing phase, typically the term is
not equal to any representative term, in which case (as mentioned above) the
term is evaluated on only a few test cases. The only expensive case is when
testing reveals that the new term is equal to a representative case – but this
is precisely the case where we have discovered a new conjecture!

Therefore, the runtime of QuickSpec largely grows proportionally with the
number of discovered conjectures, plus a small amount which is proportional to
the number of explored terms. In practice, QuickSpec is able to handle theories
with ≈ 20 functions and generate equations having ≈ 10 symbols on each side,
after which the number of discovered conjectures typically becomes too huge.

2.2 Induction in Vampire

Vampire supports induction over both term algebras and integers. The former,
used in this work, is based on a constructor-style and two infinite descent-style
schemas [21] in addition to ad hoc schemas generated from well-founded recursive

Lemma Discovery and Strategies for Automated Induction 219

functions in the search space [13]. When inducting on a term in a unit clause (a
literal), an instance of a schema with the negation of the unit clause is added
to the search space. A stronger (and also more explosive) feature is non-unit
induction, which inducts on arbitrarily many occurrences of a term, possibly
across many literals and clauses.

Some basic lemma generation techniques such as generalizations over com-
plex terms and occurrences [12] as well as active occurrence heuristics are
also supported. In the presence of function definitions or induction hypothe-
ses, (unordered) paramodulation may be used to reach lemmas otherwise not
reachable with ordered superposition [13]. For a more detailed description of
induction in Vampire we refer to [11].

Lemma Generation in Vampire. Vampire uses the traditional top-down
backward reasoning approach to generate lemmas. It tries to reduce goals into
subgoals and apply inferences on them, interleaved with induction inferences
applied to all intermediate consequences that result from this process. A new
lemma may be conjectured by generalizing over one of the terms in a subgoal.
This lemma generation approach in Vampire usually derives different lemmas
than QuickSpec’s bottom-up theory exploration approach.

Simplifications and Orderings in Superposition. As superposition is tai-
lored for first-order reasoning, it does not come as a surprise that some techniques
that increase the efficiency of first-order reasoning are incompatible with induc-
tive reasoning or higher-order reasoning in general. In particular, simplifications
and orderings can affect a built-in induction within superposition.

Simplifications are inferences where one of the premises becomes redundant
for further first-order reasoning and can be removed. For example, demodulation
rewrites a clause into a smaller clause with an unconditional (unit) equation, and
removes the original clause. In inductive reasoning things are not as simple, and
any clause (even if it follows from smaller clauses) can be useful to generate
interesting lemmas. For example, we might simplify a clause that would give
rise to a crucial generalized lemma into a clause that does not give the same
generalization anymore. Interestingly, given that simplification steps take up
most of the inferences in a saturation run, in our experience this affects inductive
reasoning less than expected.

3 Implementation

In order to perform our experiments we needed to integrate the lemmas conjec-
tured by QuickSpec into Vampire’s proof search, and choose a promising proof
search strategy.

220 S. H. Einarsdóttir et al.

3.1 Conjectured Lemmas, AVATAR, and Vampire’s Claims

Integrating conjectured lemmas into proof search poses a technical challenge
as they must be proven before they can be soundly used in a proof. At the
same time, trying to prove each suggested lemma before the main goal is even
attempted can create a great deal of unnecessary work. As has been noted
before [8,21], this challenge can be smoothly overcome in the presence of the
AVATAR architecture for clause splitting [20,29].

AVATAR keeps track of information about which clause has been derived
from which splitting assumption, and soundly propagates it through inferences.
Deriving the empty clause conditioned on some assumptions then does not nec-
essarily mean the search is successfully concluded, but merely signifies that the
conjunction of the attached assumptions can no longer be maintained. (AVATAR
then updates its propositional model to reflect this newly derived information
through a call to an underlying SAT or SMT solver.)

Let us assume we want to accommodate a speculative proof with lemmas
L1, . . . , Ln under AVATAR, where each lemma Li is a closed formula. As a first
approximation to explaining how this can be done, let us imagine introducing
and immediately splitting the tautologies Li ∨¬Li for i = 1, . . . , n.4 Each clause
in the search then carries (independently for each i) the information whether it
depends on: 1) the assumption corresponding to Li (proving with the help of
lemma Li), 2) ¬Li (trying to prove lemma Li), or 3) neither of these (currently
ignoring lemma Li). Depending on the order in which (conditional) empty clauses
get derived, the whole power set of possible scenarios is played out as if in
parallel, in which some lemmas may already have been shown to suffice for
proving the main conjecture, while themselves waiting to be proven (possibly
with the help of other lemmas). The underlying SAT/SMT solver orchestrates
the whole endeavour, decides which compatible subset of assumptions will be
worked on next, and declares the proof attempt successful as soon as the first
such scenario is complete. We remark that cyclic reasoning is automatically
avoided by treating the assumptions of Li and ¬Li as mutually exclusive.

It is surprisingly easy to get access to this feature of speculative lemma use
in Vampire under AVATAR. In fact, we can rely on a small adjustment of just
the parser added by Andrei Voronkov already in 2011. In the TPTP language
[26], this adjustment introduced a new custom formula role called the claim.
Precisely as in our use case, a claim is a formula that most likely follows from
the surrounding axioms and has a high chance of being useful for proving the
given conjecture, but must be itself also proven by the system in a valid proof.
For this work we extended Vampire’s SMT-LIB parser in an analogous way and
added a custom construct assert-claim with the same semantics.

4 In reality, both Li and ¬Li must also be skolemized and clausified, which in the
prover happens before splitting. We return to this aspect further below.

Lemma Discovery and Strategies for Automated Induction 221

Technically, when the parser reads a claim formula L, it picks a fresh propo-
sitional symbol pL and passes on the equivalence pL ↔ L as a standard axiom.5
The equivalence pL ↔ L is then clausified to

{¬pL ∨ C |C ∈ CNF(L)} and {pL ∨ D |D ∈ CNF(¬L)}.

AVATAR recognizes the pL and ¬pL as complementary ground components
and will then always assert either pL or ¬pL. Thus the first-order part of the
prover must work with either the clauses from CNF(L) or from CNF(¬L), while
AVATAR keeps track of the respective dependencies.

3.2 Proving Strategies and a New Induction Schedule

A theorem prover typically has many parameters (in Vampire called options)
that can be changed to adjust the proof search characteristics. In Vampire, there
are more than 100 options for configuring the preprocessing steps, the saturation
algorithm, generating and simplification rules, proof search heuristics and also
induction. By a strategy we mean a concrete assignment of values to such options.
It is long known [27,31] that the success rate of an ATP can be dramatically
improved by arranging a number of different proving strategies of complementary
characteristics into a strategy schedule, a sequence of strategies with assigned
time budgets, to be executed in sequence (or in parallel).

In this work, we constructed a strategy schedule specifically targeting induc-
tive theorem proving on the TIP benchmarks (see Sect. 4.1). We followed the
strategy discovery recipe pioneered by the Spider system [30]. This consists of

1. Randomly sampling strategies to try to solve a previously unsolved problem
(or possibly to improve the solution time on a problem already known to be
solvable).

2. Optimizing the found strategy on that problem using local search (in which,
for each option in turn, different values are tried out and a new value is
committed to, if the corresponding change leads to an improved time or the
time stays the same, but the value becomes default).

3. Evaluating the optimized strategy on all problems, to update the information
about which problems are solvable and in what best time.

In our case, we sampled strategies from a space defined by a total of 115 base
Vampire options and 19 dedicated induction options. Most of these options are
Boolean, many are finite enumerations of discrete values and a few are numeric.
It is clear that the totality of all strategies is astronomically large and random
sampling is a way to have access to all the strategies, at least in principle. We
searched for strategies in parallel on 60 cores of our server6 for several days. In

5 The only extra effort is to mark and a protect the new symbol pL against potential
elimination during preprocessing, as, after all, the new equivalence would otherwise
qualify as an unused predicate definition and could be discarded.

6 Equipped With Intel R©Xeon R©Gold 6140 CPU @ 2.3 GHz and 500 GB RAM.

222 S. H. Einarsdóttir et al.

the end, we collected 246 strategies covering 236 of the 486 TIP benchmarks
that we used for training.

Once a sufficiently large set of strategies has been discovered (or when the
rate of solving new problems becomes too low to make search for additional
strategies worth the effort), schedule construction can be formulated as an integer
programming task, in which running times are assigned to individual strategies
to cover the union of as many problems as possible while not exceeding a given
overall time bound [15,23]. We instead adopted a greedy algorithm [4] to a
weighted set cover formulation of the problem: starting from an empty schedule,
we iteratively add a new strategy s for additional t units of time if this step is
currently the best in terms of 1/t·“the number of problems that will additionally
get covered”. This greedy approach does not guarantee an optimal result, but
runs in polynomial time and is really easy to implement. (See also [3].)

Our final schedule makes use of 66 of the discovered strategies and should
be able to solve all of the covered 236 problems in under 12 s (per problem).
For our later experiment we prepared a second schedule, specialized to also take
into consideration the versions of the TIP benchmarks with the added lemmas
(cf. label T in Sect. 4 below). This schedule makes use of 86 strategies, aims
to cover a total of 522 problems (version with and without lemmas counted
separately) and runs to completion after approximately 24 s.

4 Evaluation

In our evaluation we compare several variants of Vampire. We start with two
baseline versions without strategy scheduling:

– (V): Vampire with the following flags for structural induction:

-ind struct -indoct on -nui on -to lpo -drc off

The option -ind struct enables using structural induction (constructor-
based induction axioms for term algebras), and with -indoct on these axioms
are based on generalizing over any term, not just Skolem constants. More-
over, the induction axioms are generated from any clause set using -nui on.
Finally, -to lpo and -drc off enable a simplification ordering which is well-
suited for handling recursive functions.

– (V + L): Vampire with the same flags active as in (V), plus conjectures from
QuickSpec added to the problem files as claims as described in Sect. 3.1.

The idea is that (V) serves as a baseline for what kinds of inductive proofs
Vampire is capable of. By comparing (V) with (V + L), we see whether the
lemmas discovered by QuickSpec help Vampire.

Next we add versions of Vampire with specialized strategy schedules:

– (S): Vampire with the specialized strategy schedule for inductive problems
described in Sect. 3.2.

Lemma Discovery and Strategies for Automated Induction 223

– (S + L): Vampire with both the strategy schedule as in (S) above and con-
jectures from QuickSpec added to the problem files as claims.

By comparing (S) with (V+L), we can see the relative importance of strategy
scheduling and lemmas. In (S+L) we can see whether the two strategies com-
plement each other. We expect that (S) may see less benefit from lemmas than
(V) because the learned strategies may be better at e.g. generalising subgoals.
Note that the strategy schedule is tuned without seeing the lemmas, so it is
even possible that (S+L) might perform worse than (S) due to the extra lemmas
disturbing the strategy scheduler.

Since the strategy schedule is tuned without seeing the lemmas, (S+L) illus-
trates what we can get by taking an existing prover with a built-in strategy
schedule, and adding new lemmas to it. Notice also that any problems that
require lemmas will not be proved during training, so will not influence the
schedule. We can use these problems as a kind of test set for S+L, as they are
effectively unseen during training.

To investigate the limits of our approach we add a third family:

– (T): Vampire with a specialized strategy schedule for inductive problems,
trained on the TIP problems after conjectures from QuickSpec have been
injected into the problem files.

– (T + L): Vampire with the lemma-specialized schedule (T) as above and
conjectures from QuickSpec added to the problem files as claims.

Note that the strategy used by (T) and (T+L) may be prone to overfitting,
as all the test problems are seen during training and influence the schedule.7
The results for (T) and (T+L) are useful as a benchmark to compare the other
provers against, and an indication of what a perfectly-tuned strategy schedule
could do.

We evaluated our methods on the TIP benchmark set. For all methods the
time limit was set to 30 s. Since the strategy schedules are randomized and may
not find the same proofs every time they are run, we ran each one 5 times on
each problem. The experiments were run on a Dell Inc. Latitude 5320 with an
11th Gen Intel R©CoreTMi5-1145G7 @ 2.60GHz × 8 processor and 16GB RAM.
Scripts used to run experiments and process results are available at https://
github.com/solrun/vampspec.

4.1 TIP Benchmarks

TIP is a collection of benchmarks specifically for inductive theorem provers [6].
The problems are expressed in a syntax very similar to SMT-LIB [2], and come

7 Why not use a training/test split? Because there are not very many problems in
total, and more importantly, because many problems are related, which makes it
hard to design an uncontaminated test set, since we need to avoid having related
problems where one is in the training set and one is in the test set.

https://github.com/solrun/vampspec
https://github.com/solrun/vampspec

224 S. H. Einarsdóttir et al.

with tools to translate the problems into various formats (including standard
SMT-LIB) as well as built-in support for lemma generation using QuickSpec.

TIP consists of several subsets: the prod set contains 50 theorems and 24
lemmas about lists and natural numbers defined in [16], the IsaPlanner set
defined in [18] contains 86 properties originally designed to test provers that use
the rippling heuristic. The prod and IsaPlanner problems have previously been
used to evaluate a number inductive theorem provers [5,9,22] so experiments
with them enable comparison to previous work.

The TIP2015 set contains a further 326 problems and was added as many
existing provers, like HipSpec, could solve almost all problems in the previous
two sets. It includes a variety of problems such as various sorting algorithms
with correctness properties expressed in alternative ways, properties of regular
expressions, binary search trees, integers implemented on top of natural numbers,
natural numbers in binary representation, and properties of various functions on
lists and natural numbers. Some of the problems were not known to have been
automated at the time of their publication [6] and are offered as challenges.

4.2 Results

Table 1 shows the number of proofs found for the 486 TIP benchmarks, by the
different methods that we described previously. We count a proof as found if it
was found in any of the 5 proof attempts using that strategy. We found that
Vampire with structural induction enabled, (V), finds proofs to 102 of the prob-
lems, which increases to 143 with the addition of lemmas from QuickSpec. The
specialized strategy schedule, (S), finds 236 proofs, more than twice as many as
(V). The specialized strategy schedule finds some more proofs with the addi-
tion of lemmas but the increase is not so great, from 236 to 263. The strategy
schedule trained on problems already containing lemmas, (T), finds 237 proofs
(the same proofs as (S) and one additional proof), which increases to 288 with
the addition of lemmas. The bottom line of Table 1 shows the number of proofs
found by each method with or without lemmas added.

Table 1. The number of proofs found for the 486 TIP benchmarks when testing the
different proof methods in the presence and absence of generated lemmas.

Proofs found (V) (S) (T)

no lemmas 102 236 237
with lemmas (+ L) 143 263 288
Total proofs found 153 269 289

Although all methods find more proofs with lemmas than without, a num-
ber of proofs can only be found without the additional lemmas and are lost
after lemmas are added. Most often when using ATPs, different strategies or
parameterizations might both gain and lose some proofs rather than one simply

Lemma Discovery and Strategies for Automated Induction 225

being strictly better than the other. Table 2 shows this for our three strategies,
with and without added lemmas. As mentioned above there are a small num-
ber of proofs (10 for (V), 6 for (S) and 1 for (T)) which are found by the each
strategy without lemmas, but not after lemmas are added. Since the added lem-
mas increase the size of the proof search space, we are not surprised that they
may in some cases prevent the strategy from finding a proof in time. In the
case of the specialized strategy schedule (T) which has already seen the prob-
lems with added lemmas in its training, the added lemmas only hinder it from
finding a proof in one instance. In the case where (T+L) loses the proof (T)
found, TIP2015/regexp_RecAtom, the number of conjectured lemmas added to
the problem file is very large (459) which probably causes the search space to
explode. For this particular problem both strategies (V) and (S) also found a
proof, but no strategy found a proof for the problem with lemmas added.

Note that (T+L) finds 53 proofs not found by (S), showing the improve-
ment achievable by adding QuickSpec’s lemma conjecturing and using a strat-
egy schedule specialized to make use of those lemmas, compared to only using
strategy schedule training as with (S). Of these 53 problems, (S+L) finds proofs
for 33 of them, making use of the added lemmas without having seen them in its
training. As mentioned above, the strategy schedule of (S+L) is effectively not
trained on any problems that require lemmas, so we can view the 53 problems as
test problems, unseen in the training data, all solvable with a perfect strategy,
and say that (S+L) solves 62% of those problems. Thus we get an indication
that the strategy schedule is generalizing to unseen problems.

Table 2. Here each column shows the number of unique proofs found by the respective
method (column label) but not by one of the other methods (row label).

(V) (V + L) (S) (S + L) (T) (T + L)

- (V) 51 134 162 135 187
- (V + L) 10 109 124 109 145
- (S) 0 16 33 1 53
- (S + L) 1 4 6 6 25
- (T) 0 15 0 32 52
- (T + L) 1 0 1 0 1

In some cases, one of our methods performs strictly better than another,
namely (S) and (T) are strictly better than (V), (T) is strictly better than
(S), and (T+L) is strictly better than (S+L). Since (S) and (T) are special-
ized strategy schedules that can execute many different strategies for each proof
attempt, including the strategy used by (V), it is unsurprising that they sub-
sume (V). Since (S) and (T) are strategy schedules trained in the same manner,
with the only difference being that (T) is trained on a superset of the problems
(S) is trained on, and both evaluated on problems they have encountered in

226 S. H. Einarsdóttir et al.

their training, we expect them to achieve a similar performance. Note that (T)
only finds one proof not found by (S), so their performance is nearly equivalent.
Since (T+L) is evaluated on problems with added lemmas that it has already
seen during training while (S+L) is given previously unseen lemmas in its input
problems, it would be surprising if (S+L) found a proof that (T+L) could not.
In all cases these pairs of methods are evaluated on the same input problems
(both are evaluated on problems with additional lemmas or both on the problems
without lemmas).

Fig. 1. Time taken to find a proof with lemmas versus without them using the same
strategy (on a log scale).

In cases where the same strategy could find a proof both with and without
lemmas added to the problem file, we compare the time taken to find a proof as a
metric of how easy the proof is to find. Figure 1 shows the plots of the time taken
to find a proof with lemmas versus without them using the same strategy (on a

Lemma Discovery and Strategies for Automated Induction 227

log scale). The points around the edges indicate that the respective method did
not find a proof within the given time limit (30 s), so points along the right-hand
edge indicate that a proof was found with lemmas and not without them, while
points along the top edge indicate a proof was found without lemmas and lost
after they were added.

For problems where both (V) and (V+L) found a proof, the average time
for (V) was 0.67 s with a standard deviation of 3.56 s, while the average time for
(V+L) was 1.04 s with a standard deviation of 4.30 s. We can see how in most
cases where a proof was found both with and without lemmas added, the proof
search went faster without them, indicated by how most of the points are to
the left of the diagonal. For problems where both (S) and (S+L) found a proof,
the average time for (S) was 0.20 s with a standard deviation of 0.49 s while the
average time for (S+L) was 1.53 s with a standard deviation of 4.16 s. We see
many points clustered around the diagonal, indicating both proof searches took
a similar amount of time to find a proof, though many more points lie to the left
of the diagonal than to its right, indicating a faster proof search without lemmas.
For problems where both (T) and (T+L) found a proof, the average time for (T)
was 0.59 s with a standard deviation of 2.39 s while the average time for (T+L)
was 0.37 s with a standard deviation of 1.16 s, so as opposed to methods (V) and
(S), the proof time goes down with the addition of lemmas. Since the schedule
here was trained on problems containing lemmas, it prioritizes strategies that
make use of the available lemmas, thus finding the proofs more efficiently with
lemmas.

Table 3. The number of proofs found in different subsets of the TIP benchmarks,
along with results for CVC4 and HipSpec for the same subsets.

Set (size) (V) (V+L) (S) (S+L) (T) (T+L) CVC4 HipSpec

prod (50) 7 29 27 46 28 49 39 47
IsaPlanner (85) 41 43 73 75 73 81 80 80
TIP2015 (326) 39 53 113 119 113 134 – –

The problems from the IsaPlanner and prod subsets of TIP were also used for
evaluation of HipSpec in [5]8 and of inductive reasoning with CVC4 in [22]. The
number of proofs they found are included in Table 3 along with the results of our
experiments for those subsets.9 We see a clear difference in results on the prod -
8 In order to investigate whether the numbers for HipSpec would be better on a mod-

ern machine, we re-ran it on the prod benchmark. We found that it solved fewer
problems, 44 in all, as a result of slight changes in HipSpec since the publication of
[5]. No problems were solved by HipSpec today that were not solved back then.

9 We tried but failed to run HipSpec on the TIP2015 problems. HipSpec’s input
format is a limited dialect of Haskell and, while TIP problems can be converted to
Haskell, the dialect is not the same as HipSpec’s. As HipSpec is unmaintained, we
were unable to go further.

228 S. H. Einarsdóttir et al.

subset, which is designed such that more complicated lemmas are needed for
most proofs, and the IsaPlanner -subset, which contains easier problems which
can often be solved without external lemmas (or with just lemmas coming from
generalizations of a subgoal). On both subsets we only achieve results competitive
with either CVC4 or HipSpec when we combine a specialized strategy schedule
with lemmas (S+L) and (T+L). On the TIP2015 subset, none of the methods
we tested found proofs for even half of the problems, and we leave a closer
examination of what is required to achieve better results there as future work.

As described in Sect. 3.2, the strategy schedules may not find the same proofs
in every run. In our experiments we ran each schedule 5 times and found there
was a handful of problems where the same strategy schedule would sometimes
find a proof and not others, the exact numbers are shown in Table 4. In the
results shown in Tables 1–3 we count that a proof was found if it was found in
at least one of the five runs.

Table 4. Number of inconsistently found proofs by each strategy schedule with and
without added lemmas.

Method (S) (S + L) (T) (T + L)

Inconsistent Proofs 1 9 4 6

5 Discussion

Modern day ATPs like Vampire have many moving parts. Slight changes in
configuration often lead to some extra proofs being found while others are lost.
This is particularly true when considering also proofs by induction, as here the
potential for exploding the search space in unproductive directions is even larger.
It is often difficult to know in advance what parameters and strategies will affect
the capabilities of finding a proof within reasonable time.

Our first experiments tested the effect of adding lemma candidates for induc-
tive proofs to a standard out-of-the-box variant of Vampire, simulating what a
regular user might have at hand. Here, we see a clear improvement in the number
of proofs for the TIP prod -subset, where more complicated lemmas are needed
for most of the proofs, and a modest improvement on other subsets. Still, the
results are well below both CVC4 and HipSpec. We conclude that simply adding
lemmas from QuickSpec to Vampire (with a default induction strategy) is not
sufficient to reach a state-of-the-art performance.

Secondly, we also experimented with training specialized strategies, cus-
tomized to inductive proofs on TIP problems. This seems to be necessary for top
performance. We experiment with two trained strategies: the first on proofs of
TIP-problems without added lemmas (starting from the out-of-the-box Vampire
setup). The second, to get an upper bound of how well Vampire could perform,
we also trained on proofs with the added lemmas from QuickSpec. With a cus-
tomized strategy for induction, already without lemmas Vampire performs much

Lemma Discovery and Strategies for Automated Induction 229

better than before. We notice that the increase is larger for the customized strat-
egy than it was for adding lemmas to the standard Vampire version! We conclude
that specialized strategies have a larger effect on the number of proofs than just
adding auxiliary lemmas.

Finally, we added the QuickSpec lemmas. Both strategies now improved even
more, especially on the TIP prod -subset, where they both beat previous state
of the art, proving 46 and 49 problems respectively. As expected, the strategy
trained on proofs with lemmas (T) had a larger increase, being able to use the
lemmas available more efficiently. Interestingly, on the TIP IsaPlanner -subset,
only the (T) strategy beat the state of the art. We conclude that in the presence
of auxiliary lemmas and together with specialized strategies, Vampire can indeed
outperform previous state of the art systems CVC4 and HipSpec.

However, one might argue that the comparison is biased. To get state-of-
the-art performance from Vampire requires a strategy optimised by seeing and
trying the problems already! This might not be a viable option for all users. We
do not know how well these schedules would perform on other types of inductive
problems as they are likely overfitted to TIP to some degree. We could have
divided the TIP problems into training and testing sets to try to avoid over-
fitting, but the TIP set is not very large, only 486 problems (of which only 60%
could be solved using any method we tried), and many problems are similar to
each other, so it is not clear that this would solve the problem. In short, there is
too little data to train a general-purpose strategy, and we can not say how well
the learned strategy generalizes to problems outside of TIP.

Even so, domain-specific strategies are reasonable in many applications. For
example, in program verification, it is reasonable to run the prover over a set
of problems multiple times, and find a strategy that works for just those kind
of problems one is interested in verifying. Our results show that specially-tuned
strategies are highly effective, and compatible with lemma discovery.

The search space for proofs where induction is allowed is inherently enormous
and becomes particularly explosive when the ATP itself has to decide when to
apply induction. Trained strategies seem to be necessary for competitive perfor-
mance. HipSpec on the other hand was developed before CVC4 and Vampire
supported induction, and thus handled the induction step outside the ATP, and
only outsourced the resulting subgoals. One benefit of doing so is that the search
space is much less explosive, which contributes to HipSpec’s good performance.
We thus leave the question of how to best implement automated induction par-
tially unsolved: we either need highly specialized strategies trained on many
attempts of proofs, or keeping the application of induction under strict control.

5.1 Future Work

We have many ideas for improvements when it comes to generating lemmas for
inductive proofs. QuickSpec is limited to discovering equational conjectures that
may have a predicate as a condition (if the theory being explored contains a
function that returns a boolean value, the value of that function may be used as
a predicate). However, many inductive proofs require more complex conditional

230 S. H. Einarsdóttir et al.

lemmas. In [10] we presented RoughSpec, a system that generates conjectures
that match a user-defined input template. This could be used to conjecture
lemmas for inductive proofs, using lemma templates likely to be useful learned
from proof libraries. Another idea is developing better methods of only providing
lemmas likely to be useful, limiting the number of lemmas given to the prover so
that the search space does not explode. For example, there are some prominent
examples of using simple syntactic conditions [14] inside the theorem prover
or using machine learning [19] before the invocation of the theorem prover to
mitigate this issue.

Acknowledgments. This work was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation. Martin Suda was supported by the Czech Science
Foundation project no. 24-12759S and the project RICAIP no. 857306 under the EU-
H2020 programme.

References

1. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In:
Rewriting Techniques, pp. 1–30. Elsevier (1989)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). www.SMT-
LIB.org

3. Bártek, F., Chvalovský, K., Suda, M.: Regularization in spider-style strategy dis-
covery and schedule construction. In: IJCAR (2024), accepted

4. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8_23

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: The TIP format. http://
tip-org.github.io/format.html

8. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4_10

9. Dixon, L., Johansson, M.: Isaplanner 2: A proof planner for isabelle (2007)
10. Einarsdóttir, S.H., Smallbone, N., Johansson, M.: Template-based theory explo-

ration: Discovering properties of functional programs by testing. In: Proceedings
of the 32nd Symposium on Implementation and Application of Functional Lan-
guages, IFL 2020, pp. 67-78. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3462172.3462192

11. Hajdu, M., Hozzová, P., Kovács, L., Reger, G., Voronkov, A.: Getting Saturated
with Induction, pp. 306–322. Springer Nature Switzerland, Cham (2022)

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-20615-8_23
http://tip-org.github.io/format.html
http://tip-org.github.io/format.html
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1145/3462172.3462192

Lemma Discovery and Strategies for Automated Induction 231

12. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.)
Intelligent Computer Mathematics, pp. 123–137. Springer International Publish-
ing, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_8

13. Hajdú, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recursive defini-
tions in superposition. In: Formal Methods in Computer Aided Design, FMCAD
2021, New Haven, CT, USA, 19-22 October 2021, pp. 1–10. IEEE (2021)

14. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

15. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling for
first-order theorem proving. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM
2021. LNCS (LNAI), vol. 12833, pp. 107–123. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81097-9_8

16. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom.
Reason. 16, 79–111 (1996)

17. Johansson, M.: Lemma discovery for induction. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp.
125–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_9

18. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: International Conference on Interactive Theorem Proving (2010)

19. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interac-
tive Theorem Proving, pp. 35–50. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2_6

20. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Mid-
deldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 399–415. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_28

21. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: CADE
(2019). https://api.semanticscholar.org/CorpusID:126940163

22. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

23. Schurr, H.: Optimal strategy schedules for everyone. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proceedings of the Workshop on Practical Aspects of Automated
Reasoning Co-located with the 11th International Joint Conference on Automated
Reasoning (FLoC/IJCAR 2022), Haifa, Israel, 11 - 12 August, 2022. CEUR Work-
shop Proceedings, vol. 3201. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3201/
paper8.pdf

24. Smallbone, N.: Twee: An equational theorem prover. In: CADE, pp. 602–613 (2021)
25. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for

the busy programmer. J. Funct. Program. 27 (2017)
26. Sutcliffe, G.: The Logic Languages of the TPTP World. Logic J. IGPL (2022).

https://doi.org/10.1093/jigpal/jzac068
27. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)

CADE 1998. LNCS, vol. 1421, pp. 427–441. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054276

28. Urban, J.: Blistr: The blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov,
A. (eds.) Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia,
16-19 October 2015. EPiC Series in Computing, vol. 36, pp. 312–319. EasyChair
(2015), https://easychair.org/publications/volume/GCAI_2015

https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-642-22438-6_23
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-030-23250-4_9
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-319-21401-6_28
https://api.semanticscholar.org/CorpusID:126940163
https://doi.org/10.1007/978-3-662-46081-8_5
https://ceur-ws.org/Vol-3201/paper8.pdf
https://ceur-ws.org/Vol-3201/paper8.pdf
https://doi.org/10.1093/jigpal/jzac068
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/BFb0054276
https://easychair.org/publications/volume/GCAI_2015

232 S. H. Einarsdóttir et al.

29. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_46

30. Voronkov, A.: Spider: learning in the sea of options. In: Vampire23: The 7th Vam-
pire Workshop (2023), https://easychair.org/smart-program/Vampire23/2023-07-
05.html#talk:223833, to appear

31. Wolf, A., Letz, R.: Strategy parallelism in automated theorem proving. In: Cook,
D.J. (ed.) Proceedings of the Eleventh International Florida Artificial Intelligence
Research Society Conference, May 18-20, 1998, Sanibel Island, Florida, USA,
pp. 142–146. AAAI Press (1998). http://www.aaai.org/Library/FLAIRS/1998/
flairs98-027.php

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_46
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
http://www.aaai.org/Library/FLAIRS/1998/flairs98-027.php
http://www.aaai.org/Library/FLAIRS/1998/flairs98-027.php
http://creativecommons.org/licenses/by/4.0/

Control-Flow Refinement for Complexity
Analysis of Probabilistic Programs

in KoAT
(Short Paper)

Nils Lommen(B) , Éléanore Meyer , and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{lommen,eleanore.meyer,giesl}@cs.rwth-aachen.de

Abstract. Recently, we showed how to use control-flow refinement
(CFR) to improve automatic complexity analysis of integer programs.
While up to now CFR was limited to classical programs, in this paper
we extend CFR to probabilistic programs and show its soundness for
complexity analysis. To demonstrate its benefits, we implemented our
new CFR technique in our complexity analysis tool KoAT.

1 Introduction

There exist numerous tools for complexity analysis of (non-probabilistic) pro-
grams, e.g., [2–6,10,11,15,16,18,19,24,25,28,30,32]. Our tool KoAT infers upper
runtime and size bounds for (non-probabilistic) integer programs in a modu-
lar way by analyzing subprograms separately and lifting the obtained results
to global bounds on the whole program [10]. Recently, we developed several
improvements of KoAT [18,24,25] and showed that incorporating control-flow
refinement (CFR) [13,14] increases the power of automated complexity analysis
significantly [18].

There are also several approaches for complexity analysis of probabilistic pro-
grams, e.g., [1,7,9,21–23,27,29,31,34]. In particular, we also adapted KoAT’s
approach for runtime and size bounds, and introduced a modular framework for
automated complexity analysis of probabilistic integer programs in [27]. How-
ever, the improvements of KoAT from [18,24,25] had not yet been adapted to the
probabilistic setting. In particular, we are not aware of any existing technique
to combine CFR with complexity analysis of probabilistic programs.

Thus, in this paper, we develop a novel CFR technique for probabilistic pro-
grams which could be used as a black box by every complexity analysis tool.
Moreover, to reduce the overhead by CFR, we integrated CFR natively into
KoAT by calling it on-demand in a modular way. Our experiments show that CFR
increases the power of KoAT for complexity analysis of probabilistic programs
substantially.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 233–243, 2024.
https://doi.org/10.1007/978-3-031-63498-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_14&domain=pdf
http://orcid.org/0000-0003-3187-9217
http://orcid.org/0000-0003-1038-4944
http://orcid.org/0000-0003-0283-8520
https://doi.org/10.1007/978-3-031-63498-7_14

234 N. Lommen et al.

The idea of CFR is to gain information on the values of program variables
and to sort out infeasible program paths. For example, consider the probabilistic
while-loop (1). Here, we flip a (fair) coin and either set x to 0 or do nothing.

while x > 0 do x ← 0 ⊕1/2 noop end (1)

The update x ← 0 is in a loop. However, after setting x to 0, the loop cannot
be executed again. To simplify its analysis, CFR “unrolls” the loop resulting in
(2).

while x > 0 do break ⊕1/2 noop end

if x > 0 then x ← 0 end (2)

Here, x is updated in a separate, non-probabilistic if -statement and the loop
does not change variables. Thus, we sorted out paths where x ← 0 was executed
repeatedly. Now, techniques for probabilistic programs can be used for the while-
loop. The rest of the program can be analyzed by techniques for non-probabilistic
programs. In particular, this is important if (1) is part of a larger program.

We present necessary preliminaries in Sect. 2. In Sect. 3, we introduce our
new control-flow refinement technique and show how to combine it with auto-
mated complexity analysis of probabilistic programs. We conclude in Sect. 4
by an experimental evaluation with our tool KoAT. We refer to [26] for further
details on probabilistic programs and the soundness proof of our CFR technique.

2 Preliminaries

Let V be a set of variables. An atom is an inequation p1 < p2 for polynomi-
als p1, p2 ∈ Z[V], and the set of all atoms is denoted by A(V). A constraint is
a (possibly empty) conjunction of atoms, and C(V) denotes the set of all con-
straints. In addition to “<”, we also use “≥”, “=”, etc., which can be simulated
by constraints (e.g., p1 ≥ p2 is equivalent to p2 < p1 + 1 for integers).

For probabilistic integer programs (PIPs), as in [27] we use a formalism based
on transitions, which also allows us to represent while-programs like (1) easily.
A PIP is a tuple (PV,L, �0,GT) with a finite set of program variables PV ⊆ V, a
finite set of locations L, a fixed initial location �0 ∈ L, and a finite set of general
transitions GT . A general transition g ∈ GT is a finite set of transitions which
share the same start location �g and the same guard ϕg. A transition is a 5-
tuple (�, ϕ, p, η, �′) with a start location � ∈ L, target location �′ ∈ L\{�0}, guard
ϕ ∈ C(V), probability p ∈ [0, 1], and update η : PV → Z[V]. The probabilities
of all transitions in a general transition add up to 1. We always require that
general transitions are pairwise disjoint and let T =

⊎
g∈GT g denote the set of

all transitions. PIPs may have non-deterministic branching, i.e., the guards of
several transitions can be satisfied. Moreover, we also allow non-deterministic
(temporary) variables V \ PV. To simplify the presentation, we do not consider
transitions with individual costs and updates which use probability distributions,
but the approach can easily be extended accordingly. From now on, we fix a PIP
P = (PV,L, �0,GT).

Control-Flow Refinement for Probabilistic Programs in KoAT 235

Fig. 1. A Probabilistic Integer Program

Example 1. The PIP in Fig. 1 has PV = {x, y}, L = {�0, �1, �2}, and four gen-
eral transitions {t0}, {t1a, t1b}, {t2}, {t3}. The transition t0 starts at the initial
location �0 and sets x to a non-deterministic positive value u ∈ V \ PV, while y
is unchanged. (In Fig. 1, we omitted unchanged updates like η(y) = y, the guard
true, and the probability p = 1 to ease readability.) If the general transition is a
singleton, we often use transitions and general transitions interchangeably. Here,
only t1a and t1b form a non-singleton general transition which corresponds to
the program (1). We denoted such (probabilistic) transitions by dashed arrows
in Fig. 1. We extended (1) by a loop of t2 and t3 which is only executed if
y > 0 ∧ x = 0 (due to t2’s guard) and decreases y by 1 in each iteration (via t3’s
update).

A state is a function σ : V → Z, Σ denotes the set of all states, and a
configuration is a pair of a location and a state. To extend finite sequences of
configurations to infinite ones, we introduce a special location �⊥ (indicating
termination) and a special transition t⊥ (and its general transition g⊥ = {t⊥})
to reach the configurations of a run after termination. Let L⊥ = L 	 {�⊥},
T⊥ = T 	 {t⊥}, GT ⊥ = GT 	 {g⊥}, and let Conf = (L⊥ × Σ) denote the set of
all configurations. A path has the form c0 →t1 · · · →tn

cn for c0, . . . , cn ∈ Conf
and t1, . . . , tn ∈ T⊥ for an n ∈ N, and a run is an infinite path c0 →t1 c1 →t2 · · · .
Let Path and Run denote the sets of all paths and all runs, respectively.

We use Markovian schedulers S : Conf → GT ⊥ × Σ to resolve all non-
determinism. For c = (�, σ) ∈ Conf, a scheduler S yields a pair S(c) = (g, σ̃)
where g is the next general transition to be taken (with � = �g) and σ̃ chooses
values for the temporary variables such that σ̃ |= ϕg and σ(v) = σ̃(v) for all
v ∈ PV. If GT contains no such g, we obtain S(c) = (g⊥, σ). For the formal
definition of Markovian schedulers, we refer to [26].

For every S and σ0 ∈ Σ, we define a probability mass function prS,σ0 . For
all c ∈ Conf, prS,σ0(c) is the probability that a run with scheduler S and the
initial state σ0 starts in c. So prS,σ0(c) = 1 if c = (�0, σ0) and prS,σ0(c) = 0
otherwise.

For all c, c′ ∈ Conf and t ∈ T⊥, let prS(c →t c′) be the probability that one
goes from c to c′ via the transition t when using the scheduler S (see [26] for the
formal definition of prS). Then for any path f = (c0 →t1 · · · →tn

cn) ∈ Path,
let prS,σ0(f) = prS,σ0(c0) · prS(c0 →t1 c1) · . . . · prS(cn−1 →tn

cn). Here, all
paths f which are not “admissible” (e.g., guards are not fulfilled, transitions are
starting or ending in wrong locations, etc.) have probability prS,σ0(f) = 0.

236 N. Lommen et al.

The semantics of PIPs can be defined via a corresponding probability space,
obtained by a standard cylinder construction. Let PS,σ0 denote the probabil-
ity measure which lifts prS,σ0 to cylinder sets: For any f ∈ Path, we have
prS,σ0(f) = PS,σ0(Pref) for the set Pref of all infinite runs with prefix f . So
PS,σ0(Θ) is the probability that a run from Θ ⊆ Run is obtained when using
the scheduler S and starting in σ0. Let ES,σ0 denote the associated expected
value operator. So for any random variable X : Run → N = N ∪ {∞}, we have
ES,σ0(X) =

∑
n∈N

n · PS,σ0(X = n). For a detailed construction, see [26].

Definition 2 (Expected Runtime). For g ∈ GT , Rg : Run → N is a random
variable with Rg(c0 →t1 c1 →t2 · · ·) = |{i ∈ N | ti ∈ g}|, i.e., Rg(ϑ) is
the number of times that a transition from g was applied in the run ϑ ∈ Run.
Moreover, the random variable R : Run → N denotes the number of transitions
that were executed before termination, i.e., for all ϑ ∈ Run we have R(ϑ) =∑

g∈GT Rg(ϑ). For a scheduler S and σ0 ∈ Σ, the expected runtime of g is
ES,σ0(Rg) and the expected runtime of the program is RS,σ0 = ES,σ0(R).

The goal of complexity analysis for a PIP is to compute a bound on its
expected runtime complexity. The set of bounds B consists of all functions from
Σ → R≥0.

Definition 3 (Expected Runtime Bound and Complexity [27]). The
function RB : GT → B is an expected runtime bound if (RB(g))(σ0) ≥
supS ES,σ0(Rg) for all σ0 ∈ Σ and all g ∈ GT . Then

∑
g∈GT RB(g) is

a bound on the expected runtime complexity of the whole program, i.e.,∑
g∈GT ((RB(g))(σ0)) ≥ supS RS,σ0 for all σ0 ∈ Σ.

3 Control-Flow Refinement for PIPs

We now introduce our novel CFR algorithm for probabilistic integer programs,
based on the partial evaluation technique for non-probabilistic programs from
[13,14,18]. In particular, our algorithm coincides with the classical CFR tech-
nique when the program is non-probabilistic. The goal of CFR is to transform
a program P into a program P ′ which is “easier” to analyze. Thm. 4 shows the
soundness of our approach, i.e., that P and P ′ have the same expected runtime
complexity.

Our CFR technique considers “abstract” evaluations which operate on sets
of states. These sets are characterized by conjunctions τ of constraints from
C(PV), i.e., τ stands for all states σ ∈ Σ with σ |= τ . We now label locations �
by formulas τ which describe (a superset of) those states σ which can occur in
�, i.e., where a configuration (�, σ) is reachable from some initial configuration
(�0, σ0). We begin with labeling every location by the constraint true. Then we
add new copies of the locations with refined labels τ by considering how the
updates of transitions affect the constraints of their start locations and their
guards. The labeled locations become the new locations in the refined program.

Control-Flow Refinement for Probabilistic Programs in KoAT 237

Since a location might be reachable by different paths, we may construct
several variants 〈�, τ1〉, . . . , 〈�, τn〉 of the same original location �. Thus, the for-
mulas τ are not necessarily invariants that hold for all evaluations that reach a
location �, but we perform a case analysis and split up a location � according to
the different sets of states that may reach �. Our approach ensures that a labeled
location 〈�, τ〉 can only be reached by configurations (�, σ) where σ |= τ .

We apply CFR only on-demand on a (sub)set of transitions S ⊆ T
(thus, CFR can be performed in a modular way for different subsets S). In
practice, we choose S heuristically and use CFR only on transitions where
our currently inferred runtime bounds are “not yet good enough”. Then, for
P = (PV,L, �0,GT), the result of the CFR algorithm is the program P ′ =
(PV,L′, 〈�0, true〉,GT ′) where L′ and GT ′ are the smallest sets satisfying the
properties (3), (4), and (5) below.

First, we require that for all � ∈ L, all “original” locations 〈�, true〉 are in L′.
In these locations, we do not have any information on the possible states yet:

∀ � ∈ L. 〈�, true〉 ∈ L′ (3)

If we already introduced a location 〈�, τ〉 ∈ L′ and there is a transition
(�, ϕ, p, η, �′) ∈ S, then (4) requires that we also add the location 〈�′, τϕ,η,�′〉
to L′. The formula τϕ,η,�′ over-approximates the set of states that can result
from states that satisfy τ and the guard ϕ of the transition when applying the
update η. More precisely, τϕ,η,�′ has to satisfy (τ ∧ϕ) |= η(τϕ,η,�′). For example, if
τ = (x = 0), ϕ = true, and η(x) = x−1, then we might have τϕ,η,�′ = (x = −1).

To ensure that every �′ ∈ L only gives rise to finitely many new labeled loca-
tions 〈�′, τϕ,η,�′〉, we perform property-based abstraction: For every location �′, we
use a finite so-called abstraction layer α�′ ⊂ {p1 ∼ p2 | p1, p2 ∈ Z[PV] and ∼ ∈
{<,≤,=}} (see [14] for heuristics to compute α�′). Then we require that τϕ,η,�′

must be a conjunction of constraints from α�′ (i.e., τϕ,η,�′ ⊆ α�′ when regard-
ing sets of constraints as their conjunction). This guarantees termination of our
CFR algorithm, since for every location �′ there are only finitely many possible
labels.

∀ 〈�, τ〉 ∈ L′. ∀ (�, ϕ, p, η, �′) ∈ S. 〈�′, τϕ,η,�′〉 ∈ L′

where τϕ,η,�′ = {ψ ∈ α�′ | (τ ∧ ϕ) |= η(ψ)} (4)

Finally, we have to ensure that GT ′ contains all “necessary” (general) transi-
tions. To this end, we consider all g ∈ GT . The transitions (�, ϕ, p, η, �′) in g ∩ S
now have to connect the appropriately labeled locations. Thus, for all labeled
variants 〈�, τ〉 ∈ L′, we add the transition (〈�, τ〉, τ ∧ ϕ, p, η, 〈�′, τϕ,η,�′〉). In con-
trast, the transitions (�, ϕ, p, η, �′) in g \ S only reach the location where �′ is
labeled with true, i.e., here we add the transition (〈�, τ〉, τ ∧ ϕ, p, η, 〈�′, true〉).

∀ 〈�, τ〉 ∈ L′. ∀ g ∈ GT .
({(〈�, τ〉, τ ∧ ϕ, p, η, 〈�′, τϕ,η,�′〉) | (�, ϕ, p, η, �′) ∈ g ∩ S} ∪
{(〈�, τ〉, τ ∧ ϕ, p, η, 〈�′, true〉) | (�, ϕ, p, η, �′) ∈ g \ S}) ∈ GT ′ (5)

238 N. Lommen et al.

Fig. 2. Result of Control-Flow Refinement with S = {t1a, t1b, t2, t3}

L′ and
⋃

g∈GT ′ g are finite due to the property-based abstraction, as there are
only finitely many possible labels for each location. Hence, repeatedly “unrolling”
transitions by (5) leads to the (unique) least fixpoint. Moreover, (5) yields proper
general transitions, i.e., their probabilities still add up to 1. In practice, we
remove transitions with unsatisfiable guards, and locations that are not reachable
from 〈�0, true〉. Thm. 4 shows the soundness of our approach (see [26] for its
proof).

Theorem 4 (Soundness of CFR for PIPs). Let P ′ = (PV,L′, 〈�0, true〉,
GT ′) be the PIP such that L′ and GT ′ are the smallest sets satisfying (3), (4),
and (5). Let RP

S,σ0
and RP′

S,σ0
be the expected runtimes of P and P ′, respectively.

Then for all σ0 ∈ Σ we have supS RP
S,σ0

= supS RP′
S,σ0

.

CFR Algorithm and its Runtime: To implement the fixpoint construction of
Thm. 4 (i.e., to compute the PIP P ′), our algorithm starts by introducing all
“original” locations 〈�, true〉 for � ∈ L according to (3). Then it iterates over all
labeled locations 〈�, τ〉 and all transitions t ∈ T . If the start location of t is �,
then the algorithm extends GT ′ by a new transition according to (5). Moreover,
it also adds the corresponding labeled target location to L′ (as in (4)), if L′ did
not contain this labeled location yet. Afterwards, we mark 〈�, τ〉 as finished and
proceed with a previously computed labeled location that is not marked yet. So
our implementation iteratively “unrolls” transitions by (5) until no new labeled
locations are obtained (this yields the least fixpoint mentioned above). Thus,
unrolling steps with transitions from T \ S do not invoke further computations.

To over-approximate the runtime of this algorithm, note that for every loca-
tion � ∈ L, there can be at most 2|α�| many labeled locations of the form 〈�, τ〉.
So if L = {�0, . . . , �n}, then the overall number of labeled locations is at most
2|α�0 |+. . .+2|α�n |. Hence, the algorithm performs at most |T |·(2|α�0 |+. . .+2|α�n |)
unrolling steps.

Example 5. For the PIP in Fig. 1 and S = {t1a, t1b, t2, t3}, by (3) we start with
L′ = {〈�i, true〉 | i ∈ {0, 1, 2}}. We abbreviate 〈�i, true〉 by �i in the final result
of the CFR algorithm in Fig. 2. As t0 ∈ {t0} \ S, by (5) t0 is redirected such
that it starts at 〈�0, true〉 and ends in 〈�1, true〉, resulting in t′0. We always use
primes to indicate the correspondence between new and original transitions.

Next, we consider {t1a, t1b} ⊆ S with the guard ϕ = (x > 0) and start
location 〈�1, true〉. We first handle t1a which has the update η = id. We use the

Control-Flow Refinement for Probabilistic Programs in KoAT 239

abstraction layer α�0 = ∅, α�1 = {x = 0}, and α�2 = {x = 0}. Thus, we have to
find all ψ ∈ α�1 = {x = 0} such that (true ∧ x > 0) |= η(ψ). Hence, τx>0,id,�1 is
the empty conjunction true as no ψ from α�1 satisfies this property. We obtain

t′1a : (〈�1, true〉, x > 0, 1/2, id, 〈�1, true〉).
In contrast, t1b has the update η(x) = 0. To determine τx>0,η,�1 , again we

have to find all ψ ∈ α�1 = {x = 0} such that (true ∧ x > 0) |= η(ψ). Here,
we get τx>0,η,�1 = (x = 0). Thus, by (4) we create the location 〈�1, x = 0〉 and
obtain

t′1b : (〈�1, true〉, x > 0, 1/2, η(x) = 0, 〈�1, x = 0〉).
As t1a and t1b form one general transition, by (5) we obtain {t′1a, t′1b} ∈ GT ′.

Now, we consider transitions resulting from {t1a, t1b} with the start location
〈�1, x = 0〉. However, τ = (x = 0) and the guard ϕ = (x > 0) are conflicting, i.e.,
the transitions would have an unsatisfiable guard τ ∧ ϕ and are thus omitted.

Next, we consider transitions resulting from t2 with 〈�1, true〉 or 〈�1, x = 0〉
as their start location. Here, we obtain two (general) transitions {t′2}, {t′′2} ∈ GT ′:

t′2 : (〈�1, x = 0〉, y > 0 ∧ x = 0, 1, id, 〈�2, x = 0〉)
t′′2 : (〈�1, true〉, y > 0 ∧ x = 0, 1, id, 〈�2, x = 0〉)

However, t′′2 can be ignored since x = 0 contradicts the invariant x > 0 at
〈�1, true〉. KoAT uses Apron [20] to infer invariants like x > 0 automatically.
Finally, t3 leads to the transition t′3 : (〈�2, x = 0〉, x = 0, 1, η(y) = y − 1, 〈�1, x =
0〉). Thus, we obtain L′ = {〈�i, true〉 | i ∈ {0, 1}} ∪ {〈�i, x = 0〉 | i ∈ {1, 2}}.

KoAT infers a bound RB(g) for each g ∈ GT individually (thus, non-
probabilistic program parts can be analyzed by classical techniques). Then∑

g∈GT RB(g) is a bound on the expected runtime complexity of the whole
program, see Definition 3.

Example 6. We now infer a bound on the expected runtime complexity of the
PIP in Fig. 2. Transition t′0 is not on a cycle, i.e., it can be evaluated at most
once. So RB({t′0}) = 1 is an (expected) runtime bound for the general transition
{t′0}.

For the general transition {t′1a, t′1a}, KoAT infers the expected runtime bound
2 via probabilistic linear ranking functions (PLRFs, see e.g., [27]). More precisely,
KoAT finds the constant PLRF {�1 �→ 2, 〈�1, x = 0〉 �→ 0}. In contrast, in
the original program of Fig. 1, {t1a, t1b} is not decreasing w.r.t. any constant
PLRF, because t1a and t1b have the same target location. So here, every PLRF
where {t1a, t1b} decreases in expectation depends on x. However, such PLRFs
do not yield a finite runtime bound in the end, as t0 instantiates x by the non-
deterministic value u. Therefore, KoAT fails on the program of Fig. 1 without
using CFR.

For the program of Fig. 2, KoAT infers RB({t′2}) = RB({t′3}) = y. By adding
all runtime bounds, we obtain the bound 3 + 2 · y on the expected runtime
complexity of the program in Fig. 2 and thus by Theorem 4 also of the program
in Fig. 1.

240 N. Lommen et al.

Table 1. Evaluation of CFR on Probabilistic Programs

O(1) O(n) O(n2) O(n>2) O(EXP) < ω AVG+(s) AVG(s)

KoAT+CFR 11 (2) 56 (12) 14 2 1 84 (14) 11.68 11.34

KoAT 9 41 (1) 16 (1) 2 1 69 (2) 2.71 2.41

Absynth 7 35 9 0 0 51 2.86 37.48

eco-imp 8 35 6 0 0 49 0.34 68.02

4 Implementation, Evaluation, and Conclusion

We presented a novel control-flow refinement technique for probabilistic pro-
grams and proved that it does not modify the program’s expected runtime
complexity. This allows us to combine CFR with approaches for complexity
analysis of probabilistic programs. Compared to its variant for non-probabilistic
programs, the soundness proof of Theorem 4 for probabilistic programs is con-
siderably more involved.

Up to now, our complexity analyzer KoAT used the tool iRankFinder [13] for
CFR of non-probabilistic programs [18]. To demonstrate the benefits of CFR
for complexity analysis of probabilistic programs, we now replaced the call to
iRankFinder in KoAT by a native implementation of our new CFR algorithm.
KoAT is written in OCaml and it uses Z3 [12] for SMT solving, Apron [20] to
generate invariants, and the Parma Polyhedra Library [8] for computations with
polyhedra.

We used all 75 probabilistic benchmarks from [27,29] and added 15 new
benchmarks including our leading example and problems adapted from the Ter-
mination Problem Data Base [33], e.g., a probabilistic version of McCarthy’s 91
function. Our benchmarks also contain examples where CFR is useful even if
it cannot separate probabilistic from non-probabilistic program parts as in our
leading example.

Table 1 shows the results of our experiments. We compared the configuration
of KoAT with CFR (“KoAT+CFR”) against KoAT without CFR. Moreover, as
in [27], we also compared with the main other recent tools for inferring upper
bounds on the expected runtimes of probabilistic integer programs (Absynth [29]
and eco-imp [7]). As in the Termination Competition [17], we used a timeout
of 5 min per example. The first entry in every cell is the number of bench-
marks for which the tool inferred the respective bound. In brackets, we give
the corresponding number when only regarding our new examples. For example,
KoAT+CFR finds a finite expected runtime bound for 84 of the 90 examples. A
linear expected bound (i.e., in O(n)) is found for 56 of these 84 examples, where
12 of these benchmarks are from our new set. AVG(s) is the average runtime in
seconds on all benchmarks and AVG+(s) is the average runtime on all successful
runs.

The experiments show that similar to its benefits for non-probabilistic pro-
grams [18], CFR also increases the power of automated complexity analysis

Control-Flow Refinement for Probabilistic Programs in KoAT 241

for probabilistic programs substantially, while the runtime of the analyzer may
become longer since CFR increases the size of the program. The experiments also
indicate that a related CFR technique is not available in the other complexity
analyzers. Thus, we conjecture that other tools for complexity or termination
analysis of PIPs would also benefit from the integration of our CFR technique.

KoAT’s source code, a binary, and a Docker image are available at:

https://koat.verify.rwth-aachen.de/prob cfr

The website also explains how to use our CFR implementation separately (with-
out the rest of KoAT), in order to access it as a black box by other tools.
Moreover, the website provides a web interface to directly run KoAT online, and
details on our experiments, including our benchmark collection.

Acknowledgements. We thank Yoann Kehler for helping with the implementation
of our CFR technique in KoAT.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs’. In: Proceedings of
the ACM on Programming Languages, vol. 2. POPL (2017). https://doi.org/10.
1145/3158122

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Alpuente, M., Vidal, G. (eds.)
SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69166-2 15

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012).
https://doi.org/10.1016/j.tcs.2011.07.009

4. Albert, E., Bofill, M., Borralleras, C., Mart́ın-Mart́ın, E., Rubio, A.: Resource
analysis driven by (conditional) termination proofs. Theory Pract. Log. Program.
19(5–6), 722–739 (2019). https://doi.org/10.1017/S1471068419000152

5. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

6. Avanzini, M., Moser, G.: A combination framework for complexity. In: van Raams-
donk, F. (ed.) RTA 2013. LIPIcs, vol. 21, pp. 55–70 (2013). https://doi.org/10.
4230/LIPIcs.RTA.2013.55

7. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. In: Proceedings of the ACM on Programming Languages, vol. 4. OOP-
SLA (2020). https://doi.org/10.1145/3428240

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72, 3–21 (2008). https://doi.org/10.
1016/j.scico.2007.08.001

https://koat.verify.rwth-aachen.de/prob_cfr
https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.1145/3428240
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001

242 N. Lommen et al.

9. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C., Verscht, L.: A calculus for
amortized expected runtimes. In: Proceedings of the ACM on Programming Lan-
guages, vol. 7. POPL (2023). https://doi.org/10.1145/3571260

10. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38,
1–50 (2016). https://doi.org/10.1145/2866575

11. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S.M. (eds.) PLDI 2015, pp. 467–478 (2015). https://doi.
org/10.1145/2737924.2737955

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Doménech, J.J., Genaim, S.: iRankFinder. In: Lucas, S. (ed.) WST 2018, p. 83
(2018). http://wst2018.webs.upv.es/wst2018proceedings.pdf

14. Doménech, J.J., Gallagher, J.P., Genaim, S.: Control-flow refinement by partial
evaluation, and its application to termination and cost analysis. In: Theory and
Practice of Logic Programming vol. 19(5-6), pp. 990–1005 (2019). https://doi.org/
10.1017/S1471068419000310

15. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

16. Frohn, F., Giesl, J.: Complexity analysis for Java with AProVE. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 85–101. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 6

17. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

18. Giesl, J., Lommen, N., Hark, M., Meyer, F.: Improving automatic complexity anal-
ysis of integer programs. In: The Logic of Software. A Tasting Menu of Formal
Methods. LNCS 13360, pp. 193–228 (2022). https://doi.org/10.1007/978-3-031-
08166-8 10

19. Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis for
OCaml’. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 359–373 (2017).
https://doi.org/10.1145/3009837.3009842

20. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

21. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65, 1–68 (2018).
https://doi.org/10.1145/3208102

22. Kaminski, B.L., Katoen, J.-P., Matheja, C.: Expected runtime analyis by program
verification. In: Barthe, G., Katoen, J.-P., Silva, A (eds.) Foundations of Proba-
bilistic Programming, pp. 185–220. Cambridge University Press (2020). https://
doi.org/10.1017/9781108770750.007

23. Leutgeb, L., Moser, G., Zuleger, F.: Automated expected amortised cost analysis
of probabilistic data structures. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS,
vol. 13372, pp. 70–91 (2022). https://doi.org/10.1007/978-3-031-13188-2 4

https://doi.org/10.1145/3571260
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-540-78800-3_24
http://wst2018.webs.upv.es/wst2018proceedings.pdf
https://doi.org/10.1017/S1471068419000310
https://doi.org/10.1017/S1471068419000310
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-13188-2_4

Control-Flow Refinement for Probabilistic Programs in KoAT 243

24. Lommen, N., Meyer, F., Giesl, J.: Automatic complexity analysis of integer pro-
grams via triangular weakly non-linear loops. In: Blanchette, J., Kovács, L., Pat-
tinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp. 734–754 (2022). https://doi.
org/10.1007/978-3-031-10769-6 43

25. Lommen, N., Giesl, J.: Targeting completeness: using closed forms for size bounds
of integer programs. In: Sattler, U., Suda, M. (eds.) FroCoS 2023. LNCS, vol.
14279, pp. 3–22 (2023). https://doi.org/10.1007/978-3-031-43369-6 1

26. Lommen, N., Meyer, E., Giesl, J.: Control-flow refinement for complexity analy-
sis of probabilistic programs in KoAT. https://doi.org/10.48550/arXiv.2402.03891.
Corr abs/2402.03891(2024)

27. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021.
LNCS, vol. 12651, pp. 250–269. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72016-2 14

28. Moser, G., Schaper, M.: From Jinja bytecode to term rewriting: a complexity
reflecting transformation. Inf. Comput. 261, 116–143 (2018). https://doi.org/10.
1016/j.ic.2018.05.007

29. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: Foster, J.S., Grossman, D. (eds.) PLDI 2018,
pp. 496–512 (2018). https://doi.org/10.1145/3192366.3192394

30. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. J. Autom. Reason. 51, 27–56 (2013). https://
doi.org/10.1007/s10817-013-9277-6

31. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: A deductive
verification infrastructure for probabilistic programs. In: Proceedings of the ACM
on Programming Languages, vol. 7. OOPSLA, pp. 2052–2082 (2023). https://doi.
org/10.1145/3622870

32. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-
ative programs using difference constraints. J. Autom. Reason. 59(1), 3–45 (2017).
https://doi.org/10.1007/s10817-016-9402-4

33. TPDB (Termination Problem Data Base). https://github.com/TermCOMP/
TPDB

34. Wang, D., Kahn, D.M., Hoffmann, J.: Raising expectations: automating expected
cost analysis with types. In: Proceedings of the ACM on Programming Languages,
vol. 4. ICFP (2020). https://doi.org/10.1145/3408992

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.48550/arXiv.2402.03891
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1145/3622870
https://doi.org/10.1145/3622870
https://doi.org/10.1007/s10817-016-9402-4
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1145/3408992
http://creativecommons.org/licenses/by/4.0/

On the (In-)Completeness of Destructive
Equality Resolution in the Superposition

Calculus

Uwe Waldmann(B)

MPI for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

uwe@mpi-inf.mpg.de

Abstract. Bachmair’s and Ganzinger’s abstract redundancy concept for
the Superposition Calculus justifies almost all operations that are used
in superposition provers to delete or simplify clauses, and thus to keep
the clause set manageable. Typical examples are tautology deletion, sub-
sumption deletion, and demodulation, and with a more refined definition
of redundancy joinability and connectedness can be covered as well. The
notable exception is Destructive Equality Resolution, that is, the
replacement of a clause x �≈ t ∨ C with x /∈ vars(t) by C{x �→ t}. This
operation is implemented in state-of-the-art provers, and it is clearly
useful in practice, but little is known about how it affects refutational
completeness. We demonstrate on the one hand that the naive addi-
tion of Destructive Equality Resolution to the standard abstract
redundancy concept renders the calculus refutationally incomplete. On
the other hand, we present several restricted variants of the Superposi-
tion Calculus that are refutationally complete even with Destructive
Equality Resolution.

Keywords: Automated theorem proving · First-order logic ·
Superposition calculus

1 Introduction

Bachmair’s and Ganzinger’s Superposition Calculus [2] comes with an abstract
redundancy concept that describes under which circumstances clauses can be
simplified away or deleted during a saturation without destroying the refuta-
tional completeness of the calculus. Typical concrete simplification and deletion
techniques that are justified by the abstract redundancy concept are tautology
deletion, subsumption deletion, and demodulation, and with a more refined def-
inition of redundancy (Duarte and Korovin [4]) joinability and connectedness
can be covered as well.

There is one simplification technique left that is not justified by Bachmair’s
and Ganzinger’s redundancy criterion, namely Destructive Equality Reso-
lution (DER), that is, the replacement of a clause x �≈ t∨C with x /∈ vars(t) by
C{x �→ t}. This operation is for instance implemented in the E prover (Schulz
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 244–261, 2024.
https://doi.org/10.1007/978-3-031-63498-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_15&domain=pdf
http://orcid.org/0000-0002-0676-7195
https://doi.org/10.1007/978-3-031-63498-7_15

On the (In-)Completeness of Destructive Equality Resolution 245

[6]), and it has been shown to be useful in practice: It increases the number of
problems that E can solve and it also reduces E’s runtime per solved problem.
The question how it affects the refutational completeness of the calculus, both in
theory and in practice, has been open, though (except for the special case that
t is also a variable, where DER is equivalent to selecting the literal x �≈ t so that
Equality Resolution becomes the only possible inference with this clause).

In this paper we demonstrate on the one hand that the naive addition of DER
to the standard abstract redundancy concept renders the calculus refutationally
incomplete. On the other hand, we present several restricted variants of the
Superposition Calculus that are refutationally complete even with DER.

By lack of space, some proofs had to be omitted from this version of the
paper; they can be found in the technical report [7].

2 Preliminaries

Basic Notions. We refer to (Baader and Nipkow [1]) for basic notations and
results on orderings, multiset operations, and term rewriting.

We use standard set operation symbols like ∪ and ∈ and curly braces also
for finite multisets. The union S ∪ S′ of the multisets S and S′ over some set M
is defined by (S ∪ S′)(x) = S(x) + S′(x) for every x ∈ M .

Without loss of generality we assume that all most general unifiers that we
consider are idempotent. Note that if σ is an idempotent most general unifier
and θ is a unifier then θ ◦ σ = θ.

A clause is a finite multiset of equational literals s ≈ t or s �≈ t, written as
a disjunction. The empty clause is denoted by ⊥. We call a literal L in a clause
C ∨ L maximal w.r.t. a strict literal ordering, if there is no literal in C that is
larger than L; we call it strictly maximal, if there is no literal in C that is larger
than or equal to L.

We write a rewrite rule as u → v. Semantically, a rule u → v is equivalent
to an equation u ≈ v. If R is a rewrite system, that is, a set of rewrite rules,
we write s →R t to indicate that the term s can be reduced to the term t by
applying a rule from R. A rewrite system is called left-reduced, if there is no
rule u → v ∈ R such that u can be reduced by a rule from R \ {u → v}.

The Superposition Calculus. We summarize the key elements of Bachmair’s
and Ganzinger’s Superposition Calculus [2].

Let � be a reduction ordering that is total on ground terms. We extend �
to an ordering on literals, denoted by �L,1 by mapping positive literals s ≈ t
to multisets {s, t} and negative literals s �≈ t to multisets {s, s, t, t} and by
comparing the resulting multisets using the multiset extension of �. We extend
the literal ordering �L to an ordering on clauses, denoted by �C, by comparing
the multisets of literals in these clauses using the multiset extension of �L.

1 There are several equivalent ways to define �L.

246 U. Waldmann

The inference system of the Superposition Calculus consists of the rules
Superposition, Equality Resolution, and Equality Factoring.2

Superposition:
D′ ∨ t ≈ t′ C ′ ∨ L[u]

(D′ ∨ C ′ ∨ L[t′])σ

where u is not a variable; σ = mgu(t, u); (C ′ ∨ L[u])σ ��C (D′ ∨ t ≈ t′)σ;
(t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ; either L[u] is a positive literal
s[u] ≈ s′ and L[u]σ is strictly maximal in (C ′ ∨ L[u])σ, or L[u] is a negative
literal s[u] �≈ s′ and L[u]σ is maximal in (C ′ ∨L[u])σ; tσ �� t′σ; and sσ �� s′σ.

Equality Resolution:
C ′ ∨ s �≈ s′

C ′σ

where σ = mgu(s, s′) and (s �≈ s′)σ is maximal in (C ′ ∨ s �≈ s′)σ.

Equality Factoring:
C ′ ∨ r ≈ r′ ∨ s ≈ s′

(C ′ ∨ s′ �≈ r′ ∨ r ≈ r′)σ

where σ = mgu(s, r); sσ �� s′σ; and (s ≈ s′)σ is maximal in (C ′ ∨ r ≈ r′ ∨
s ≈ s′)σ.

The ordering restrictions can be overridden using selection functions that
determine for each clause a subset of the negative literals that are available
for inferences. For simplicity, we leave out this refinement in the rest of this
paper. We emphasize, however, that all results that we present here hold also in
the presence of selection functions; the required modifications of the proofs are
straightforward.

A ground clause C is called (classically) redundant w.r.t. a set of ground
clauses N , if it follows from clauses in N that are smaller than C w.r.t. �C.
A clause is called (classically) redundant w.r.t. a set of clauses N , if all its
ground instances are redundant w.r.t. the set of ground instances of clauses
in N .3 A ground inference with conclusion C0 and right (or only) premise C
is called redundant w.r.t. a set of ground clauses N , if one of its premises is
redundant w.r.t. N , or if C0 follows from clauses in N that are smaller than
C. An inference is called redundant w.r.t. a set of clauses N , if all its ground
instances are redundant w.r.t. the set of ground instances of clauses in N .

Redundancy of clauses and inferences as defined above is a redundancy cri-
terion in the sense of (Waldmann et al. [8]). It justifies typical deletion and
simplification techniques such as the deletion of tautological clauses, subsump-
tion deletion (i.e., the deletion of a clause Cσ ∨ D in the presence of a clause C)
or demodulation (i.e., the replacement of a clause C[sσ] by C[tσ] in the presence
of a unit clause s ≈ t, provided that sσ � tσ).
2 The Equality Factoring rule can be replaced by the Ordered Factoring and

the Merging Paramodulation rule. Our results hold also for this variant.
3 Note that “redundancy” is called “compositeness” in Bachmair and Ganzinger’s
J. Log. Comput. article [2]. In later papers the standard terminology has changed.

On the (In-)Completeness of Destructive Equality Resolution 247

3 Incompleteness

There are two special cases where Destructive Equality Resolution (DER)
is justified by the classical redundancy criterion: First, if t is the smallest constant
in the signature, then every ground instance (x �≈ t ∨ C)θ follows from the
smaller ground instance C{x �→ t}θ. Second, if t is another variable y, then
every ground instance (x �≈ y ∨ C)θ follows from the smaller ground instance
C{x �→ y}{y �→ s}θ, where s is the smaller of xθ and yθ.

But it is easy to see that this does not work in general: Let � be a Knuth-
Bendix ordering with weights w(f) = w(b) = 2, w(c) = w(d) = 1, w(z) = 1 for
all variables z, and let C be the clause x �≈ b ∨ f(x) ≈ d, Then DER applied
to C yields D = f(b) ≈ d. Now consider the substitution θ = {x �→ c}. The
ground instance Cθ = c �≈ b ∨ f(c) ≈ d is a logical consequence of D, but since
it is smaller than D itself, D makes neither Cθ nor C redundant.

Moreover, the following example demonstrates that the Superposition Cal-
culus becomes indeed incomplete, if we add DER as a simplification rule, i.e.,
if we extend the definition of redundancy in such a way that the conclusion of
DER renders the premise redundant.

Example 1. Let � be a Knuth-Bendix ordering with weights w(f) = 4, w(g) =
3, w(b) = 4, w(b′) = 2, w(c) = w(c′) = w(d) = 1, w(z) = 1 for all variables z,
and let N be the set of clauses

C1 = f(x, d) ≈ x

C2 = f(x, y) �≈ b ∨ g(x) ≈ d

C3 = b′ ≈ c′ ∨ b ≈ c
C4 = g(b′) �≈ g(c′)
C5 = g(c) �≈ d

where all the maximal terms in maximal literals are underlined.
At this point, neither demodulation nor subsumption is possible. The only

inference that must be performed is Superposition between C1 and C2, yielding

C6 = x �≈ b ∨ g(x) ≈ d

and by using DER, C6 is replaced by

C7 = g(b) ≈ d

We could now continue with a Superposition between C3 and C7, followed
by a Superposition with C5, followed by Equality Resolution, and obtain

C8 = b′ ≈ c′

from which we can derive the empty clause by Superposition with C4 and once
more by Equality Resolution. However, clause C7 is in fact redundant: The

248 U. Waldmann

ground clauses C3 and C4 imply b ≈ c; therefore C7 follows from C3, C4, and
the ground instances

C1{x �→ c} = f(c, d) ≈ c
C2{x �→ c, y �→ d} = f(c, d) �≈ b ∨ g(c) ≈ d

Because all terms in these clauses are smaller than the maximal term g(b) of
C7, all the clauses are smaller than C7. Since C7 is redundant, we are allowed
to delete it, and then no further inferences are possible anymore. Therefore the
clause set N = {C1, . . . , C5} is saturated, even though it is inconsistent and does
not contain the empty clause, which implies that the calculus is not refutationally
complete anymore.

4 Completeness, Part I: The Horn Case

4.1 The Idea

On the one hand, Example 1 demonstrates that we cannot simply extend the
standard redundancy criterion of the Superposition Calculus with DER with-
out destroying refutational completeness, and that this holds even if we impose
a particular strategy on simplification steps (say, that simplifications must be
performed eagerly and that demodulation and subsumption have a higher prece-
dence than DER). On the other hand, Example 1 is of course highly unrealistic:
Even though clause C7 is redundant w.r.t. the clauses C1, C2, C3, and C4, no rea-
sonable superposition prover would ever detect this – in particular, since doing
so would require to invent the instance C2{x �→ c, y �→ d} of C2, which is not in
any way syntactically related to C7.4

This raises the question whether DER still destroys refutational completeness
when we restrict the other deletion and simplification techniques to those that
are typically implemented in superposition provers, such as tautology detection,
demodulation, or subsumption. Are there alternative redundancy criteria that
are refutationally complete together with the Superposition Calculus and that
justify DER as well as (all/most) commonly implemented deletion and simplifica-
tion techniques? Given the usual structure of the inductive completeness proofs
for saturation calculi, developing such a redundancy criterion would mean in par-
ticular to find a suitable clause ordering with respect to which certain clauses
have to be smaller than others. The following example illustrates a fundamental
problem that we have to deal with:

Example 2. Let � be a Knuth-Bendix ordering with weights w(f) = w(g) =
w(h) = w(c) = 1, w(b) = 2, w(z) = 1 for all variables z. Consider the following
set of clauses:

4 In fact, a prover might use SMT-style heuristic grounding of non-ground clauses, but
then finding the contradiction turns out to be easier than proving the redundancy
of C7.

On the (In-)Completeness of Destructive Equality Resolution 249

D1 = h(x) ≈ x C1 = h(x) �≈ b ∨ f(g(x)) ≈ c
C2 = x �≈ b ∨ f(g(x)) ≈ c

D3 = h(c) �≈ b ∨ g(b) ≈ g(c) C3 = f(g(b)) ≈ c
C4 = h(c) �≈ b ∨ f(g(c)) ≈ c

Demodulation of C1 using D1 yields C2, and if we want Demodulation to
be a simplification, then every ground instance C1θ should be larger than the
corresponding ground instance C2θ in the clause ordering.

DER of C2 yields C3, and if we want DER to be a simplification, then every
ground instance C2θ should be larger than C3θ = C3.

A Superposition inference between D3 and C3 yields C4. The inductive
completeness proof for the calculus relies on the fact that the conclusion of an
inference is smaller than the largest premise, so C3 should be larger than C4.

By transitivity we obtain that every ground instance C1θ should be larger
than C4 in the clause ordering. The clause C4, however, is a ground instance of
C1, which is clearly a contradiction.

On the other hand, a closer inspection reveals that, depending on the limit
rewrite system R∗ that is produced in the completeness proof for the Superposi-
tion Calculus, the Superposition inference between D3 and C3 is only needed,
when D3 produces the rewrite rule g(b) → g(c) ∈ R∗, and that the only critical
case for DER is the one where b can be reduced by some rule in R∗. Since the
limit rewrite system R∗ is by construction left-reduced, these two conditions are
mutually exclusive. This observation indicates that we might be able to find a
suitable clause ordering if we choose it depending on R∗.

4.2 Ground Case

The Normalization Closure Ordering. Let � be a reduction ordering that is
total on ground terms. Let R be a left-reduced ground rewrite system contained
in �.

For technical reasons that will become clear later, we design our ground
superposition calculus in such a way that it operates on ground closures (C · θ).
Logically, a ground closure (C · θ) is equivalent to a ground instance Cθ, but
an ordering may treat two closures that represent the same ground instance in
different ways. We consider closures up to α-renaming and ignore the behavior
of θ on variables that do not occur in C, that is, we treat closures (C1 · θ1) and
(C2 ·θ2) as equal whenever C1 and C2 are equal up to bijective variable renaming
and C1θ1 = C2θ2. We also identify (⊥ · θ) and ⊥.

Intuitively, in order to compare ground closures C · θ, we normalize all terms
occurring in Cθ with R, we compute the multiset of all the redexes occurring
during the normalization and all the resulting normal forms, and we compare
these multisets using the multiset extension of �. Since we would like to give
redexes and normal forms in negative literals a slightly larger weight than redexes
and normal forms in positive literals, and redexes in positive literals below the

250 U. Waldmann

top a slightly larger weight than redexes at the top, we combine each of these
terms with a label (0 for positive at the top, 1 for positive below the top, 2
for negative). Moreover, whenever some term t occurs several times in C as a
subterm, we want to count the redexes resulting from the normalization of tθ
only once (with the maximum of the labels). The reason for this is that DER
can produce several copies of the same term t in a clause if the variable to be
eliminated occurs several times in the clause; by counting all redexes stemming
from t only once, we ensure that this does not increase the total number of
redexes. Formally, we first compute the set (not multiset!) of all subterms t of
C, so that duplicates are deleted, and then compute the multiset of redexes for
all terms tθ (and analogously for terms occurring at the top of a literal).

Definition 3. We define the subterm sets ss+>ε(C) and ss−(C) and the topterm
sets ts+(C) and ts−(C) of a clause C by

ss−(C) = { t | C = C ′ ∨ s[t]p �≈ s′ }
ss+>ε(C) = { t | C = C ′ ∨ s[t]p ≈ s′, p > ε }
ts−(C) = { t | C = C ′ ∨ t �≈ t′ }
ts+(C) = { t | C = C ′ ∨ t ≈ t′ } .

We define the labeled subterm set lss(C) and the labeled topterm set lts(C)
of a clause C by

lss(C) = { (t, 2) | t ∈ ss−(C) }
∪ { (t, 1) | t ∈ ss+>ε(C) \ ss−(C) }
∪ { (t, 0) | t ∈ ts+(C) \ (ss+>ε(C) ∪ ss−(C)) }

lts(C) = { (t, 2) | t ∈ ts−(C) } ∪ { (t, 0) | t ∈ ts+(C) \ ts−(C) } .

We define the R-redex multiset rmR(t,m) of a labeled ground term (t,m)
with m ∈ {0, 1, 2} by

rmR(t,m) = ∅ if t is R-irreducible;
rmR(t,m) = {(u,m)} ∪ rmR(t′,m) if t →R t′ using the rule u → v ∈ R

at position pand p = ε or m > 0;
rmR(t,m) = {(u, 1)} ∪ rmR(t′,m) if t →R t′ using the rule u → v ∈ R

at position p and p > ε and m = 0.

Lemma 4. For every left-reduced ground rewrite system R contained in �,
rmR(t,m) is well-defined.

Definition 5. We define the R-normalization multiset nmR(C · θ) of a ground
closure (C · θ) by

nmR(C · θ) =
⋃

(f(t1,...,tn),m)∈lss(C) rmR(f(t1θ↓R, . . . , tnθ↓R),m)
∪ ⋃

(x,m)∈lss(C) rmR(xθ,m)
∪ ⋃

(t,m)∈lts(C){(tθ↓R,m)}

On the (In-)Completeness of Destructive Equality Resolution 251

Example 6. Let C = h(g(g(x))) ≈ f(f(b)); let θ = {x �→ b}. Then lss(C) =
{(h(g(g(x))), 0), (g(g(x)), 1), (g(x), 1), (x, 1), (f(f(b)), 0), (f(b), 1), (b, 1)} and
lts(C) = {(h(g(g(x))), 0), (f(f(b)), 0)}.

Let R = {f(b) → b, g(g(b)) → b}. Then nmR(C · θ) = {(g(g(b)), 1), (f(b), 1),
(f(b), 0), (h(b), 0), (b, 0)}, where the first element is a redex from the normal-
ization of g(g(x))θ, the second from the normalization of f(b)θ, the third from
the normalization of f(f(b))θ. The remaining elements are the normal forms of
h(g(g(x)))θ and f(f(b))θ.

The R-normalization closure ordering ��R compares ground closures (C · θ1)
and (D · θ2) using a lexicographic combination of three orderings:

– first, the multiset extension ((�, >)lex)mul of the lexicographic combination
of the reduction ordering � and the ordering > on natural numbers applied
to the multisets nmR(C · θ1) and nmR(D · θ2),

– second, the traditional clause ordering �C applied to Cθ1 and Dθ2,
– and third, an arbitrary well-founded ordering �Clo on ground closures that is

total on ground closures (C · θ1) and (D · θ2) with Cθ1 = Dθ2 and that has
the property that (C · θ1) �Clo (D · θ2) whenever Cθ1 = Dθ2 and D is an
instance of C but not vice versa.

Lemma 7. If (C · θ) and (Cσ · θ′) are ground closures, such that Cθ = Cσθ′,
and C and Cσ are not equal up to bijective renaming, then (C · θ) ��R (Cσ · θ′).

Example 8. Let C = h(f(x)) ≈ f(y), let θ′ = {x �→ b}; let θ = {x �→ b, y �→ b};
let σ = {y �→ x}. Let R = {f(b) → b}.

Then nmR(C · θ) = {(f(b), 1), (f(b), 0), (h(b), 0), (b, 0)} and nmR(Cσ · θ′) =
{(f(b), 1), (h(b), 0), (b, 0)}, and therefore (C ·θ) ��R (Cσ ·θ′). The subterm f(x)
occurs twice in Cσ (with labels 0 and 1), but only once in lss(Cσ) (with the
larger of the two labels), and the same holds for the redex f(b) stemming from
f(x)θ′ in nmR(Cσ · θ′).

Parallel Superposition. In the normalization closure ordering, redexes and
normal forms stemming from several occurrences of the same term u in a closure
(C · θ) are counted only once. When we perform a Superposition inference,
this fact leads to a small problem: Consider a closure (C[u, u] · θ). In the R-
normalization multiset of this closure, the redexes stemming from the two copies
of uθ are counted only once. Now suppose that one of the two copies of u is
replaced by a smaller term v in a Superposition inference. The resulting closure
(C[v, u] · θ) should be smaller than the original one, but it isn’t: The redexes
stemming from uθ are still counted once, and additionally, the R-normalization
multiset now contains the redexes stemming from vθ.

There is an easy fix for this problem, though: We have to replace the ordinary
Superposition rule by a Parallel Superposition rule, in which all copies of
a term u in a clause C are replaced whenever one copy occurs in a maximal side of
a maximal literal. Note that this is a well-known optimization that superposition
provers implement (or should implement) anyhow.

252 U. Waldmann

We need one further modification of the inference rule: The side conditions
of the superposition calculus use the traditional clause ordering �C, but our
completeness proof and redundancy criterion will be based on the orderings ��R.
The difference between these orderings becomes relevant in particular when we
consider (Parallel) Superposition inferences where the clauses overlap at
the top of a positive literal. In this case, the ��R-smaller of the two premises
may actually be the �C-larger one. Therefore, the usual condition that the left
premise of a (Parallel) Superposition inference has to be �C-minimal has
to be dropped for these inferences.

Parallel Superposition:
D′ ∨ t ≈ t′ C[u, . . . , u]p1,...,pk

(D′ ∨ C[t′, . . . , t′]p1,...,pk
)σ

where u is not a variable; σ = mgu(t, u); p1, . . . , pk are all the occurrences of
u in C; if one of the occurrences of u in C is in a negative literal or below
the top in a positive literal then Cσ ��C (D′ ∨ t ≈ t′)σ; (t ≈ t′)σ is strictly
maximal in (D′ ∨ t ≈ t′)σ; either one of the occurrences of u in C is in a
positive literal L[u] = s[u] ≈ s′ and L[u]σ is strictly maximal in Cσ, or one
of the occurrences of u in C is in a negative literal L[u] = s[u] �≈ s′ and L[u]σ
is maximal in (C ′ ∨ L[u])σ; tσ �� t′σ; and sσ �� s′σ.

Ground Closure Horn Superposition. We will show that our calculus is
refutationally complete for Horn clauses by lifting a similar result for ground
closure Horn superposition. We emphasize that our calculus is not a basic or
constraint calculus such as (Bachmair et al. [3]) or (Nieuwenhuis and Rubio [5]).
Even though the ground version that we present here operates on closures, it
is essentially a rephrased version of the standard ground Superposition Calcu-
lus. This explains why we also have to consider superpositions below variable
positions.

The ground closure calculus uses the following three inference rules. We
assume that in binary inferences the variables in the premises (D ·θ2) and (C ·θ1)
are renamed in such a way that C and D do not share variables. We can then
assume without loss of generality that the substitutions θ2 and θ1 agree.

Parallel Superposition I:
(D′ ∨ t ≈ t′ · θ) (C[u, . . . , u]p1,...,pk

· θ)
((D′ ∨ C[t′, . . . , t′]p1,...,pk

)σ · θ)

where u is not a variable; tθ = uθ; σ = mgu(t, u); p1, . . . , pk are all the
occurrences of u in C; if one of the occurrences of u in C is in a negative
literal or below the top in a positive literal then (D′ ∨ t ≈ t′)θ ≺C Cθ; one
of the occurrences of u in C is either in a positive literal s[u] ≈ s′ such that
(s[u] ≈ s′)θ is strictly maximal in Cθ or in a negative literal s[u] �≈ s′ such
that (s[u] �≈ s′)θ is maximal in Cθ; s[u]θ � s′θ; (t ≈ t′)θ is strictly maximal
in (D′ ∨ t ≈ t′)θ; and tθ � t′θ.

Parallel Superposition II:
(D′ ∨ t ≈ t′ · θ) (C · θ)

(D′ ∨ C · θ[x �→ u[t′θ]])

On the (In-)Completeness of Destructive Equality Resolution 253

where x is a variable of C; xθ = u[tθ]; if one of the occurrences of x in C is in a
negative literal or below the top in a positive literal then (D′∨t ≈ t′)θ ≺C Cθ;
one of the occurrences of x in C is either in a positive literal s[x] ≈ s′ such
that (s[x] ≈ s′)θ is strictly maximal in Cθ or in a negative literal s[x] �≈ s′

such that (s[x] ≈ s′)θ is maximal in Cθ; s[x]θ � s′θ; (t ≈ t′)θ is strictly
maximal in (D′ ∨ t ≈ t′)θ; and tθ � t′θ.

Equality Resolution:
(C ′ ∨ s �≈ s′ · θ)

(C ′σ · θ)

where sθ = s′θ; σ = mgu(s, s′); and (s �≈ s′)θ is maximal in (C ′ ∨ s �≈ s′)θ.

The following lemmas compare the conclusion concl(ι) of an inference ι with
its right or only premise:

Lemma 9. Let ι be a ground Equality Resolution inference. Then concl(ι)
is ��R-smaller than its premise.

Lemma 10. Let ι be a ground Parallel Superposition inference

(D′ ∨ t ≈ t′ · θ) (C[u, . . . , u]p1,...,pk
· θ)

((D′ ∨ C[t′, . . . , t′]p1,...,pk
)σ · θ)

with tθ = uθ and σ = mgu(t, u) or

(D′ ∨ t ≈ t′ · θ) (C · θ)
(D′ ∨ C · θ[x �→ u[t′θ]])

with xθ = u[tθ]. If (tθ → t′θ) ∈ R, then concl(ι) is ��R-smaller than (C · θ).

Proof. Since tθ is replaced by t′θ at all occurrences of u or at or below all
occurrences of x in C, one copy of the redex tθ is removed from nmR(C · θ).
Moreover all terms in D′θ are smaller than tθ, and consequently all redexes
stemming from D′θ are smaller than tθ. Therefore nmR(C · θ) is larger than
nmR(D′ ∨ C[t′, . . . , t′]p1,...,pk

· θ) or nmR(D′ ∨ C · θ[x �→ u[t′θ]]). In the second
case, this implies (C · θ) ��R concl(ι) immediately. In the first case, it implies
(C · θ) ��R (D′ ∨ C[t′, . . . , t′]p1,...,pk

· θ) and (C · θ) ��R concl(ι) follows using
Lemma 7. ��

Redundancy. We will now construct a redundancy criterion for ground closure
Horn superposition that is based on the ordering(s) ��R.

Definition 11. Let N be a set of ground closures. A ground closure (C · θ)
is called redundant w.r.t. N , if for every left-reduced ground rewrite system R
contained in � we have (i) R |= (C · θ) or (ii) there exists a ground closure
(D · θ) ∈ N such that (D · θ) ≺≺R (C · θ) and R �|= (D · θ).

254 U. Waldmann

Definition 12. Let N be a set of ground closures. A ground inference ι with
right or only premise (C ·θ) is called redundant w.r.t. N , if for every left-reduced
ground rewrite system R contained in � we have (i) R |= concl(ι), or (ii) there
exists a ground closure (C ′ ·θ) ∈ N such that (C ′ ·θ) ≺≺R (C ·θ) and R �|= (C ′ ·θ),
or (iii) ι is a Superposition inference with left premise (D′ ∨ t ≈ t′ · θ) where
tθ � t′θ, and (tθ → t′θ) /∈ R, or (iv) ι is a Superposition inference where the
left premise is not the ��R-minimal premise.

Intuitively, a redundant closure cannot be a minimal counterexample, i.e., a
minimal closure that is false in R. A redundant inference is either irrelevant for
the completeness proof (cases (iii) and (iv)), or its conclusion (and thus its right
or only premise) is true in R, provided that all closures that are ��R-smaller
than the right or only premise are true in R (cases (i) and (ii)) – which means
that the inference can be used to show that the right or only premise cannot be
a minimal counterexample.

We denote the set of redundant closures w.r.t. N by RedC(N) and the set of
redundant inferences by Red I(N).

Example 13. Let � be a KBO where all symbols have weight 1. Let C =
g(b) �≈ c ∨ f(c) �≈ d and C ′ = f(g(b)) �≈ d. Then the closure (C · ∅) is redundant
w.r.t. {(C ′ · ∅)}: Let R be a left-reduced ground rewrite system contained in �.
Assume that C is false in R. Then g(b) and c have the same R-normal form.
Consequently, every redex or normal form in nmR(C ′ · ∅) was already present
in nmR(C · ∅). Moreover, the labeled normal form (c↓R, 2) that is present in
nmR(C · ∅) is missing in nmR(C ′ · ∅). Therefore (C · ∅) ��R (C ′ · ∅). Besides, if
(C · ∅) is false in R, then (C ′ · ∅) is false as well.

Note that C ≺C C ′, therefore C is not classically redundant w.r.t. {C ′}.

Lemma 14. (Red I,RedC) is a redundancy criterion in the sense of (Waldmann
et al. [8]), that is, (1) if N |= ⊥, then N \ RedC(N) |= ⊥; (2) if N ⊆ N ′, then
RedC(N) ⊆ RedC(N ′) and Red I(N) ⊆ Red I(N ′); (3) if N ′ ⊆ RedC(N), then
RedC(N) ⊆ RedC(N \ N ′) and Red I(N) ⊆ Red I(N \ N ′); and (4) if ι is an
inference with conclusion in N , then ι ∈ Red I(N).

Proof. (1) Suppose that N \ RedC(N) �|= ⊥. Then there exists a left-reduced
ground rewrite system R contained in � such that R |= N \RedC(N). We show
that R |= N (which implies N �|= ⊥). Assume that R �|= N . Then there exists a
closure (C ·θ) ∈ N ∩RedC(N) such that R �|= (C ·θ). By well-foundedness of ��R

there exists a ��R-minimal closure (C · θ) with this property. By definition of
RedC(N), there must be a ground closure (D ·θ) ∈ N such that (D ·θ) ≺≺R (C ·θ)
and R �|= (D · θ). By minimality of (C · θ), we get (D · θ) ∈ N \ RedC(N),
contradicting the initial assumption.

(2) Obvious.
(3) Let N ′ ⊆ RedC(N) and let (C · θ) ∈ RedC(N). We show that (C · θ) ∈

RedC(N \N ′). Choose R arbitrarily. If R |= (C ·θ), we are done. Otherwise there
exists a ground closure (D · θ) ∈ N such that (D · θ) ≺≺R (C · θ) and R �|= (D · θ).
By well-foundedness of ��R there exists a ��R-minimal closure (D · θ) with this

On the (In-)Completeness of Destructive Equality Resolution 255

property. If (D · θ) were contained in N ′ and hence in RedC(N), there would
exist a ground closure (D′ ·θ) ∈ N such that (D′ ·θ) ≺≺R (D ·θ) and R �|= (D′ ·θ),
contradicting minimality. Therefore (D · θ) ∈ N \ N ′ as required. The second
part of (3) is proved analogously.

(4) Let ι be an inference with concl(ι) ∈ N . Choose R arbitrarily. We have
to show that ι satisfies part (i), (ii), (iii), or (iv) of Definition 12. Assume that
(i), (iii), and (iv) do not hold. Then R �|= concl(ι), and by Lemmas 9 and 10,
concl(ι) is ��R-smaller than the right or only premise of ι, therefore part (ii) is
satisfied if we take concl(ι) as (C ′ · θ). ��

Constructing a Candidate Interpretation. In usual completeness proofs
for superposition-like calculi, one constructs a candidate interpretation (a set of
ground rewrite rules) for a saturated set of ground clauses by induction over the
clause ordering. In our case, this is impossible since the limit closure ordering
depends on the generated set of rewrite rules itself. We can still construct the
candidate interpretation by induction over the term ordering, though: Instead of
inspecting ground closures one by one as in the classical construction, we inspect
all ground closures (C · θ) for which Cθ contains the maximal term s simulta-
neously, and if for at least one of them the usual conditions for productivity are
satisfied, we choose the ��Rs

-smallest one of these to extend Rs.
Let N be a set of ground closures. For every ground term s we define Rs =⋃

t≺s Et. Furthermore we define Es = {s → s′}, if (C · θ) is the ��Rs
-smallest

closure in N such that C = C ′ ∨ u ≈ u′, s = uθ is a strictly maximal term in
Cθ, occurs only in a positive literal of Cθ, and is irreducible w.r.t. Rs, s′ = u′θ,
Cθ is false in Rs, and s � s′, provided that such a closure (C · θ) exists. We say
that (C · θ) produces s → s′. If no such closure exists, we define Es = ∅. Finally,
we define R∗ =

⋃
t Et.

The following two lemmas are proved as usual:

Lemma 15. Let s be a ground term, let (C · θ) be a closure. If every term that
occurs in negative literals of Cθ is smaller than s and every term that occurs in
positive literals of Cθ is smaller than or equal to s, and if Rs |= (C · θ), then
R∗ |= (C · θ).

Lemma 16. If a closure (C ′ ∨ u ≈ u′ · θ) produces uθ → u′θ, then R∗ |=
(C ′ ∨ u ≈ u′ · θ) and R∗ �|= (C ′ · θ).

Lemma 17. Let (C1 · θ) and (C2 · θ) be two closures. If s is a strictly maximal
term and occurs only positively in both C1θ and C2θ, then (C1 · θ) ��Rs

(C2 · θ)
if and only if (C1 · θ) ��R∗ (C2 · θ).

Lemma 18. Let (D · θ) = (D′ ∨ t ≈ t′ · θ) and (C · θ) be two closures in N . If
(D ·θ) produces tθ → t′θ in R∗, and tθ occurs in Cθ in a negative literal or below
the top a term in a positive literal, then (D · θ) ≺≺R∗ (C · θ) and Dθ ≺C Cθ.

Lemma 19. Let (D · θ) = (D′ ∨ t ≈ t′ · θ) and (C · θ) be two closures in N . If
(D ·θ) produces tθ → t′θ in R∗, tθ occurs in Cθ at the top of the strictly maximal
side of a positive maximal literal, and R∗ �|= (C · θ), then (D · θ) ≺≺R∗ (C · θ).

256 U. Waldmann

We can now show that the Ground Closure Horn Superposition Calculus is
refutationally complete:

Theorem 20. Let N be a saturated set of ground closures that does not contain
(⊥ · θ). Then R∗ |= N .

Proof. Suppose that R∗ �|= N . Let (C ·θ) be the ��R∗ -smallest closure in N such
that R∗ �|= (C · θ).

Case 1: C = C ′ ∨ s �≈ s′ and sθ �≈ s′θ is maximal in Cθ. By assumption,
R∗ �|= sθ �≈ s′θ, hence sθ↓R∗ = s′θ↓R∗ .

Case 1.1: sθ = s′θ. Then there is an Equality Resolution inference from
(C · θ) with conclusion (C ′σ · θ), where θ ◦ σ = θ. By saturation the inference is
redundant, and by minimality of (C · θ) w.r.t. ��R∗ this implies R∗ |= (C ′σ · θ).
But then R∗ |= (C · θ), contradicting the assumption.

Case 1.2: sθ �= s′θ. W.l.o.g. let sθ � s′θ. Then sθ must be reducible by a rule
tθ → t′θ ∈ R∗, which has been produced by a closure (D · θ) = (D′ ∨ t ≈ t′ · θ) in
N . By Lemma 18, (D·θ) ≺≺R∗ (C ·θ) and Dθ ≺C Cθ. If sθ and tθ overlap at a non-
variable position of s, there is a Parallel Superposition I inference ι between
(D ·θ) and (C ·θ); otherwise they overlap at or below a variable position of s and
there is a Parallel Superposition II inference ι with premises (D · θ) and
(C · θ). By Lemma 16, R∗ �|= (D′ · θ). By saturation the inference is redundant,
and by minimality of (C · θ) w.r.t. ��R∗ we know that R∗ |= concl(ι). Since
R∗ �|= (D′ · θ) this implies R∗ |= (C · θ), contradicting the assumption.

Case 2: Cθ = C ′θ ∨ sθ ≈ s′θ and sθ ≈ s′θ is maximal in Cθ. By assumption,
R∗ �|= sθ ≈ s′θ, hence sθ↓R∗ �= s′θ↓R∗ . W.l.o.g. let sθ � s′θ.

Case 2.1: sθ is reducible by a rule tθ → t′θ ∈ R∗, which has been produced
by a closure (D · θ) = (D′ ∨ t ≈ t′ · θ) in N . By Lemmas 18 and 19, we obtain
(D ·θ) ≺≺R∗ (C ·θ), and, provided that tθ occurs in sθ below the top, also Dθ ≺C

Cθ. Therefore there is a Parallel Superposition (I or II) inference ι with
left premise (D · θ) and right premise (C · θ), and we can derive a contradiction
analogously to Case 1.2.

Case 2.2: It remains to consider the case that sθ is irreducible by R∗. Then
sθ is also irreducible by Rsθ. Furthermore, by Lemma 17, ��Rsθ

and ��R∗ agree
on all closures in which sθ is a strictly maximal term and occurs only positively.
Therefore (C · θ) satisfies all conditions for productivity, hence R∗ |= (C · θ),
contradicting the assumption. ��

4.3 Lifting

It remains to lift the refutational completeness result for ground closure Horn
superposition to the non-ground case.

If C is a general clause, we call every ground closure (C ·θ) a ground instance
of C. If

Cn . . . C1

C0

On the (In-)Completeness of Destructive Equality Resolution 257

is a general inference and
(Cn · θ) . . . (C1 · θ)

(C0 · θ)

is a ground inference, we call the latter a ground instance of the former. The
function G maps every general clause C and every general inference ι to the set
of its ground instances. We extend G to sets of clauses N or sets of inferences I
by defining G(N) :=

⋃
C∈N G(C) and G(I) :=

⋃
ι∈I G(ι).

Lemma 21. G is a grounding function, that is, (1) G(⊥) = {⊥}; (2) if ⊥ ∈
G(C) then C = ⊥; and (3) for every inference ι, G(ι) ⊆ Red I(G(concl(ι))).

The grounding function G induces a lifted redundancy criterion (RedG
I ,RedG

C)
where ι ∈ RedG

I (N) if and only if G(ι) ⊆ Red I(G(N)) and C ∈ RedG
C(N) if and

only if G(C) ⊆ RedC(G(N)).

Lemma 22. Every ground inference from closures in G(N) is a ground instance
of an inference from N or contained in Red I(G(N)).

Proof. Let ι be a ground inference from closures in G(N). If ι is a Par-
allel Superposition I or Equality Resolution inference, then it is a
ground instance of a Parallel Superposition or Equality Resolution
with premises in N . It remains to consider Parallel Superposition II infer-
ences

(D′ ∨ t ≈ t′ · θ) (C · θ)
(D′ ∨ C · θ[x �→ u[t′θ]])

with xθ = u[tθ]. Let R be a left-reduced ground rewrite system contained in �.
If (tθ → t′θ) /∈ R, then ι satisfies case (iii) of Definition 12. Otherwise (C · θ[x �→
u[t′θ]]) is a ground instance of the clause C ∈ N and ��R-smaller than the premise
(C · θ). If R |= (C · θ[x �→ u[t′θ]]), then R |= concl(ι), so ι satisfies case (i) of
Definition 12; otherwise it satisfies case (ii) of Definition 12. ��
Theorem 23. The Horn Superposition Calculus (using Parallel Superposi-
tion) together with the lifted redundancy criterion (RedG

I ,RedG
C) is refutationally

complete.

Proof. This follows immediately from Lemma 22 and Theorem 32 from (Wald-
mann et al. [8]). ��

4.4 Deletion and Simplification

It turns out that DER, as well as most concrete deletion and simplification
techniques that are implemented in state-of-the-art superposition provers are in
fact covered by our abstract redundancy criterion. There are some unfortunate
exceptions, however.

258 U. Waldmann

DER. Destructive Equality Resolution, that is, the replacement of a
clause x �≈ t ∨ C with x /∈ vars(t) by C{x �→ t} is covered by the redundancy
criterion. To see this, consider an arbitrary ground instance (x �≈ t ∨ C · θ) of
x �≈ t∨C. Let R be a left-reduced ground rewrite system contained in �. Assume
that the instance is false in R. Then xθ and tθ have the same R-normal form.
Consequently, any redex or normal form in nmR(C{x �→ t} · θ) was already
present in nmR(x �≈ t ∨ C · θ) (possibly with a larger label, if x occurs only
positively in C). Moreover, the labeled normal form (xθ↓R, 2) that is present in
nmR(x �≈ t∨C ·θ) is missing in nmR(C{x �→ t} ·θ). Therefore (x �≈ t∨C ·θ) ��R

(C{x �→ t} · θ). Besides, both closures have clearly the same truth value in R,
that is, false.

Subsumption. Propositional subsumption, that is, the deletion of a clause
C ∨ D with nonempty D in the presence of a clause C is covered by the redun-
dancy criterion. This follows from the fact that every ground instance ((C∨D)·θ)
of the deleted clause is entailed by a smaller ground instance (C ·θ) of the subsum-
ing clause. This extends to all simplifications that replace a clause by a subsum-
ing clause in the presence of certain other clauses, for instance the replacement
of a clause tσ ≈ t′σ∨C by C in the presence of a clause t �≈ t′, or the replacement
of a clause u[tσ] �≈ u[t′σ] ∨ C by C in the presence of a clause t ≈ t′.

First-order subsumption, that is, the deletion of a clause Cσ ∨ D in the
presence of a clause C is not covered, however. This is due to the fact that ��R

makes the instance Cσ smaller than C, rather than larger (see Lemma 7).

Tautology Deletion. The deletion of (semantic or syntactic) tautologies is
obviously covered by the redundancy criterion.

Parallel Rewriting with Condition Literals. Parallel rewriting with condi-
tion literals, that is, the replacement of a clause t �≈ t′ ∨ C[t, . . . , t]p1,...,pk

, where
t � t′ and p1, . . . , pk are all the occurrences of t in C by t �≈ t′ ∨C[t′, . . . , t]p1,...,pk

is covered by the redundancy criterion. This can be shown analogously as
for DER.

Demodulation. Parallel demodulation is the replacement of a clause
C[tσ, . . . , tσ]p1,...,pk

by C[t′σ, . . . , t′σ]p1,...,pk
in the presence of another clause

t ≈ t′ where tσ � t′σ. In general, this is not covered by our redundancy cri-
terion. For instance, if � is a KBO where all symbols have weight 1 and if
R = {f(b) → b, g(g(b)) → b}, then replacing f(f(f(b))) by g(g(b)) in some clause
f(f(f(b))) �≈ c yields a clause with a larger R-normalization multiset, since the
labeled redexes {(f(b), 2), (f(b), 2), (f(b), 2)} are replaced by {(g(g(b)), 2)} and
g(g(b)) � f(b).

A special case is supported, though: If t′σ is a proper subterm of tσ, then
the R-normalization multiset either remains the same of becomes smaller, since
every redex in the normalization of t′σ occurs also in the normalization of tσ.

On the (In-)Completeness of Destructive Equality Resolution 259

5 Completeness, Part II: The Non-horn Case

In the non-Horn case, the construction that we have seen in the previous section
fails for (Parallel) Superposition inferences at the top of positive literals.
Take an LPO with precedence f � c6 � c5 � c4 � c3 � c2 � c1 � b and consider
the ground closures (f(x1) ≈ c1 ∨ f(x2) ≈ c2 ∨ f(x3) ≈ c3 · θ) and (f(x4) ≈ c4 ∨
f(x5) ≈ c5 ∨ f(x6) ≈ c6 · θ), where θ maps all variables to the same constant b.
Assume that the first closure produces the rewrite rule (f(b) ≈ c3) ∈ R∗. The
R∗-normalization multisets of both closures are dominated by three occurrences
of the labeled redex (f(b), 0). However, a Superposition inference between the
closures yields (f(x1) ≈ c1 ∨ f(x2) ≈ c2 ∨ f(x4) ≈ c4 ∨ f(x5) ≈ c5 ∨ c3 ≈ c6 · θ),
whose R∗-normalization multiset contains four occurrences of the labeled redex
(f(b), 0), hence the conclusion of the inference is larger than both premises.
If we want to change this, we must ensure that the weight of positive literals
depends primarily on their larger sides, and if the larger sides are equal, on
their smaller sides. That means that in the non-Horn case, the clause ordering
must treat positive literals as the traditional clause ordering �C. But that has
two important consequences: First, DER may no longer be used to eliminate
variables that occur also in positive literals (since DER might now increase the
weight of these literals). On the other hand, unrestricted demodulation becomes
possible for positive literals.

We sketch the key differences between the non-Horn and the Horn case; for
the details, we refer to the technical report [7].

We define the subterm set ss−(C) and the topterm set ts−(C) of a clause C
as in the Horn case:

ss−(C) = { t | C = C ′ ∨ s[t]p �≈ s′ }
ts−(C) = { t | C = C ′ ∨ t �≈ t′ }

We do not need labels anymore. Instead, for every redex or normal form u
that appears in negative literals we include the two-element multiset {u.u} in
the R-normalization multiset to ensure that a redex or normal form u in negative
literals has a larger weight than a positive literal u ≈ v with u � v. We define
the R-redex multiset rmR(t) of a ground term t by

rmR(t) = ∅ if t is R-irreducible;
rmR(t) = {{u, u}} ∪ rmR(t′) if t →R t′ using the rule u → v ∈ R.

The R-normalization multiset nmR(C · θ) of a ground closure (C · θ) is

nmR(C · θ) =
⋃

f(t1,...,tn)∈ss−(C) rmR(f(t1θ↓R, . . . , tnθ↓R))
∪ ⋃

x∈ss−(C) rmR(xθ)
∪ ⋃

t∈ts−(C){{tθ↓R, tθ↓R}}
∪ ⋃

(s≈s′)∈C{{sθ, s′θ}}
Once more, the R-normalization closure ordering ��R compares ground closures
(C · θ1) and (D · θ2) using a lexicographic combination of three orderings:

260 U. Waldmann

– first, the twofold multiset extension (�mul)mul of the reduction ordering �
applied to the multisets nmR(C · θ1) and nmR(D · θ2),

– second, the traditional clause ordering �C applied to Cθ1 and Dθ2,
– and third, the same closure ordering �Clo as in the Horn case.

With this ordering, we can again prove Lemmas 9 and 10 and their analogue
for Equality Factoring, which implies Lemma 14. In the construction of a
candidate interpretation, we define again Rs =

⋃
t≺s Et for every ground term s

and R∗ =
⋃

t Et. We define Es = {s → s′}, if (C · θ) is the ��Rs
-smallest closure

in N such that C = C ′ ∨ u ≈ u′, uθ ≈ u′θ is a strictly maximal literal in Cθ,
s = uθ, s′ = u′θ, s � s′, s is irreducible w.r.t. Rs, Cθ is false in Rs, and C ′θ
is false in Rs ∪ {s → s′}, provided that such a closure (C · θ) exists. If no such
closure exists, we define Es = ∅.

We can then reprove Theorem 20 for the non-Horn case. The only difference
in the proof is one additional subcase before Case 2.1: If sθ ≈ s′θ is maximal,
but not strictly maximal in Cθ, or if C ′θ is true in Rsθ ∪ {sθ → s′θ}, then there
is an Equality Factoring inference with the premise (C · θ). This inference
must be redundant, which yields again a contradiction.

The lifting to non-ground clauses works as in Sect. 4.3.

6 Discussion

We have demonstrated that the naive addition of Destructive Equality
Resolution (DER) to the standard abstract redundancy concept destroys the
refutational completeness of the calculus, but that there exist restricted variants
of the Superposition Calculus that are refutationally complete even with DER
(restricted to negative literals in the non-Horn case). The key tool for the com-
pleteness proofs is a closure ordering that is structurally very different from the
classical ones – it is not a multiset extension of some literal ordering – but that
still has the property that the redundancy criterion induced by it is compatible
with the Superposition Calculus.

Of course there is a big gap between the negative result and the positive
results. The new redundancy criterion justifies DER as well as most deletion and
simplification techniques found in realistic saturation provers, but only propo-
sitional subsumption and only a very restricted variant of demodulation, The
question whether the Superposition Calculus is refutationally complete together
with a redundancy criterion that justifies both DER (in full generality even
in the non-Horn case) and all deletion and simplification techniques found in
realistic saturation provers (including unrestricted demodulation and first-order
subsumption) is still open. Our work is an intermediate step towards a solution
to this problem. There may exist a more refined closure ordering that allows us to
prove the completeness of such a calculus. On the other hand, if the combination
is really incomplete, a counterexample must make use of those operations that
our proof fails to handle, that is, DER in positive literals in non-Horn problems,
first-order subsumption, or demodulation with unit equations that are contained
in the usual term ordering � but yield closures that are larger w.r.t. ��R∗ .

On the (In-)Completeness of Destructive Equality Resolution 261

Acknowledgement. I thank the anonymous IJCAR reviewers for their helpful com-
ments and Stephan Schulz for drawing my attention to the problem at the CASC dinner
in 2013.

Disclosure of Interests. The author has no competing interests to declare that are

relevant to the content of this article.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge, UK (1998)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf.
Comput. 121(2), 172–192 (1995)

4. Duarte, A., Korovin, K.: Ground joinability and connectedness in the superposition
calculus. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reason-
ing, IJCAR 2022, pp. 169–187. Springer (2022). https://doi.org/10.1007/978-3-031-
10769-6 11

5. Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality con-
strained clauses. J. Symb. Comput. 19(4), 321–351 (1995)

6. Schulz, S.: E–a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
7. Waldmann, U.: On the (in-)completeness of destructive equality resolution in the

superposition calculus. Tech. rep., arXiv:2405.03367
8. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-

work for saturation theorem proving. J. Autom. Reason. 66, 499–539 (2022).
https://doi.org/10.1007/s10817-022-09621-7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-10769-6_11
https://doi.org/10.1007/978-3-031-10769-6_11
http://arxiv.org/abs/2405.03367
https://doi.org/10.1007/s10817-022-09621-7
http://creativecommons.org/licenses/by/4.0/

SAT, SMT and Quantifier Elimination

Model Completeness for Rational Trees

Silvio Ghilardi(B) and Lia M. Poidomani

Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
silvio.ghilardi@unimi.it

http://users.mat.unimi.it/users/ghilardi/

Abstract. We analyze the theory of rational trees with finitely many construc-
tors, infinitely many atoms and an atomicity predicate. We design a new decision
procedure, proving in addition that this theory is model-complete. We also show
that the enrichment of the language with selectors and simultaneous parametric
fixpoints enjoys quantifier elimination.

Keywords: Infinite Trees · Model Completeness · Decision Procedures

1 Introduction

The theory of finite and infinite trees deserves special attention in computer science
applications for its capability of representing both algebraic and co-algebraic datatypes,
including for instance (acyclic or even cyclic) lists, streams, etc. The theory has been
largely investigated by the logic programming community since its early days [3,8]
and various results have been proved about it, including decidability in the full ele-
mentary language [12], albeit within very high (actually non elementary) complexity
bounds [21]. The automated reasoning community gave some contributions too, focus-
ing especially on the more restricted constraint solving fragment [20].

Deciding satisfiability of the elementary theory of finite and infinite trees cannot be
obtained via quantifier elimination, as pointed out in the comprehensive and detailed
paper [4], which improves and extends classical results from [12]. In fact, the normal-
izations performed by the algorithms proposed in these papers prove that every formula
is equivalent to a Boolean combination of special kinds of primitive formulae (thus giv-
ing, in terms of prenex forms, a reduction to a Δ0

2 = ∃∗∀∗ ∩ ∀∗∃∗-class), but not to a
quantifier-free formula. The impossibility of full quantifier-elimination can indeed be
shown by easy counterexamples. However, quantifier elimination is a nice and desirable
property, for instance it facilitates the computation of interpolants [10], whose employ-
ment in verification applications is widely recognized [15].

From the point of view of ‘abstract logical nonsense’, quantifier elimination can be
in principle always obtained, by the trivial enlargement of the language naming every
formula by a fresh atomic predicate. More concretely, it often happens that manageable
enrichments of the language are sufficient to achieve quantifier elimination: a classi-
cal example in this sense is the theory of real closed fields which becomes quantifier-
eliminable after adding to the language the ordering predicate (this is easily seen to be

The first author is supported by INdAM’s GNSAGA group.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 265–283, 2024.
https://doi.org/10.1007/978-3-031-63498-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_16&domain=pdf
http://orcid.org/0000-0001-6449-6883
http://orcid.org/0009-0003-7769-328X
https://doi.org/10.1007/978-3-031-63498-7_16

266 S. Ghilardi and L. M. Poidomani

definable in the theory, because ‘being positive’ turns out to be equivalent to ‘being a
square’). A more complicated, but still manageable example is linear integer arithmetic,
where in order to obtain quantifier elimination it is sufficient to enrich the language with
the infinitely many definable binary predicates expressing ‘equivalence modulo n’.

We take into consideration the variant of the theory of trees whose signature has
finitely many constructors, infinitely many constants symbols and an atomicity predi-
cate. We feel that this variant of the theory is rather natural to consider, especially in
verification applications, where constants can represent infinite data (maybe constrained
by richer theories describing their internal structure). The problem we are addressing
in this paper is: what is the price to pay (in terms of language enrichments) to achieve
quantifier elimination for the above theory? In [14] quantifier elimination is obtained
by introducing ad hoc syntactic entities (called ‘terms with pointers’) and applying to
them an extension of the classical Mal’cev quantifier elimination algorithm for finite
trees [13]. In this paper we stay inside the native first order language and we prove
that our theory is model-complete by introducing a novel technique based on defin-
ability analysis; as a by-product, we achieve full quantifier elimination by enriching
the language with extra operation symbols for selectors and simultaneous parametric
fixpoints.

The paper is structured as follows: Sects. 2, 3 introduce preliminary definitions,
our variant of the theory of trees and establish some basic properties; Sect. 4 gives a
new decision procedure for constraint solving problems using graph representations,
bisimulations and congruence closure. Section 5 introduces our main technical tool,
namely definability in existential formulae; Sect. 6 proves first model-completeness and
then shows how to enrich the language to achieve full quantifier elimination. Section 7
concludes and discusses further improvements. The paper is meant to be self-contained;
we moved to the online available extended version

http://users.mat.unimi.it/users/ghilardi/allegati/GP_IJCAR24.pdf

the proofs of few results which are either well-known or rather straightforward. Such
extended version contains also a thorough comparison with the approach of some rele-
vant papers from the literature like [4] and [14].

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, literal,
(ground) formula, and so on; our signatures always include equality. We compactly
represent a tuple of distinct variables as x. The notation t(x),φ(x) means that the term
t, the formula φ has free variables included in the tuple x. Since our tuples of variables
are assumed to be formed by distinct elements, we underline that when we write e.g.
φ(x,y), we mean that the tuples x,y are made of distinct variables and are also disjoint
from each other. Notations like φ(t/x) are used to denote substitutions.

A formula is said to be universal (resp., existential) if it has the form ∀xφ(x,y)
(resp., ∃xφ(x,y)), where φ is quantifier-free. Formulae with no free variables are called
sentences. A constraint is a conjunction of literals; a primitive formula is obtained from
a constraint by prefixing it a finite string of existential quantifiers.

http://users.mat.unimi.it/users/ghilardi/allegati/GP_IJCAR24.pdf

Model Completeness for Rational Trees 267

From the semantic side, given a signature Σ , we use the standard notion of a Σ -
structure M and of truth of a formula in a Σ -structure under a free variables assignment.
A Σ -theory T is a set of Σ -sentences; a model of T is a Σ -structure M where all
sentences in T are true. We use the standard notation T |= φ to say that φ is T -valid,
i.e. true in all models of T for every assignment to the variables occurring free in φ . We
say that two formulae φ and ψ are T -equivalent iff φ ↔ ψ is T -valid. A theory T is
complete iff for every sentence φ , either φ or ¬φ is T -valid. Complete theories can be
obtained from any Σ -structure M by taking the set of the Σ -sentences that are true in
M (such a theory is denoted by Th(M)).

We say that φ is T -satisfiable iff there is a model M of T and an assignment to the
variables occurring free in φ making φ true in M. The elementary (resp. constraint)
satisfiability problem for T is the following: we are given a formula (resp. a constraint)
φ(x) and we are asked whether there exist a model M of T and an assignment α to the
free variables x such that M,α |= φ(x) holds, i.e. such that φ is true in M under such
assignment.

A theory T has quantifier elimination iff for every formula φ(x) in the signature
of T there is a quantifier-free formula φ ′(x) such that T |= φ(x) ↔ φ ′(x). We shall
be interested also into a condition that is weaker than quantifier elimination, namely
model-completeness. Such a notion is usually defined semantically (as the fact that an
embedding between two models of the theory is elementary), however there is a well-
known equivalent syntactic definition that we are going to extensively use (see [2], Thm.
3.5.1). This equivalent definition is supplied by the following:

Definition 1. A theory T is said to be model-complete iff every existential formula
∃xφ(x,y) in the signature of T is T -equivalent to a universal formula ∀x′ φ ′(x′,y).

Notice that, keeping in mind prenex normal forms and the interdefinability of uni-
versal and existential quantifiers, it turns out that in a model complete theory every
formula whatsoever is T -equivalent to both a universal and an existential formula; con-
sequently, model-completeness reduces the elementary satisfiability problem to the con-
straint satisfiability problem.

3 Σ -Trees

In the whole paper we fix a signature (let us call it Σ) containing: (i) infinitely many
individual constants, (ii) finitely many function symbols h1, . . . ,hN of respective ari-
ties ar1, . . . ,arN ≥ 1 and (iii) a unary predicate At. Symbols h1, . . . ,hN are called Σ -
constructors or just constructors. We use letters f ,g, . . . for constructors or constants of
Σ . We now define Σ -labelled trees.

A tree T is a set of finite lists of positive natural numbers satisfying the following
three conditions; (1) the empty list ε belongs to T ; (2) T is prefix-closed, i.e. σ ∗ τ ∈ T
implies σ ∈ T (here ∗ is list concatenation); (3) if for some positive numbers n,m we
have n< m and σ ∗m ∈ T , then σ ∗n ∈ T .

The elements of a tree T are called nodes and the node ε is called the root of T ;
given a node σ ∈ T , the set Tσ = {τ | σ ∗ τ ∈ T} is a tree itself, called the σ -subtree of
T . A subtree of T is a σ -subtree of T for some σ ∈ T .

268 S. Ghilardi and L. M. Poidomani

A Σ -labelled tree (or just a Σ -tree) is a pair (T,Λ) such that T is a tree and Λ is a
map Λ : T −→ Σ that associates with every node σ of T a constructor or a constant in
such a way that if Λ(σ) has arity n, then σ has precisely n-successors. The latter means
that for every i ≥ 1, we have σ ∗ i ∈ T iff i ≤ n (as a special case, σ ∗ i never belongs to
T in case Λ(σ) is a constant).

Given a node σ in a Σ -tree (T,Λ), the σ -subtree Tσ of T can be endowed with
a Σ -tree structure (Tσ ,Λσ) by putting Λσ (τ) = Λ(σ ∗ τ) for every τ ∈ Tσ . The Σ -
subtrees of (T,Λ) are the Σ -trees of the form (Tσ ,Λσ), varying σ among the nodes
of T . If Λ(σ) is a constructor whose arity is n, we call T-successors of σ the Σ -trees
(Tσ∗1,Λσ∗1), . . . ,(Tσ∗n,Λσ∗n); if Λ(σ) is a constant, σ does not have T -successors and
is said to be a leaf of T and of (T,Λ).

Remark 1. If (T,Λ) is a Σ -tree, we use the notation (σ , f) ∈ (T,Λ) to mean that σ ∈ T
and Λ(σ) = f . The above notation can be used in order to define a Σ -tree (T,Λ) by
specifying by induction on the length of σ whether (σ , f) ∈ (T,Λ) holds or not, for
every σ and for every (constructor or constant) f .

A Σ -tree (T,Λ) is finite iff the set of nodes of T is finite, it is said to be infinite
otherwise. (T,Λ) is rational iff the set of Σ -subtrees of (T,Λ) is finite; notice that a
rational tree can be infinite. Now comes the important definition: the sets of Σ -trees, of
finite Σ -trees and of rational Σ -trees give rise to Σ -structures in the following way:

– the interpretation of a constant a ∈ Σ is the singleton Σ -tree {ε} labelled with a;
– the interpretation of the predicate At consists of the singleton Σ -trees;
– the interpretation of a constructor hi ∈ Σ of arity n maps the labelled trees

(T1,Λ1), . . . ,(Tn,Λn) to the labelled tree (T,Λ) where

T = {ε}∪
n⋃

j=1

{ j ∗σ | σ ∈ Tj}

and Λ is so defined
Λ(ε) = hi, Λ(j ∗σ) = Λ j(σ)

(thus (T,Λ) is the Σ -tree whose root is labelled hi and such that the T -successors of
the root are (T1,Λ1), . . . ,(Tn,Λn)).

It is well-known [12,14] that the Σ -structure of all Σ -trees and of all rational Σ -trees
are elementarily equivalent (i.e. the same Σ -sentences are true in them). So it makes no
difference to work on rational trees or on all Σ -trees; in this paper we made the choice to
work on the structure of rational Σ -trees. We call R this structure. The related complete
theory Th(R) will be also called R (so, for simplicity, we use the same letter R for the
set of rational Σ -trees, the related Σ -structure and the associated complete theory).

There are some important formulae valid in R that we want to list below. In order
to have a compact and intuitive notation, we need some abbreviations. If x is the tuple
x1, . . . ,xn, let us use ∀xφ for ∀x1 · · ·∀xnφ - a similar convention is used for ∃xφ . If
t = t1, . . . tn is a tuple of terms of the same length as x, then x= t stands for

∧n
i=1 xi = ti;

moreover ∃!xφ(x,y) is used for ∃xφ(x,y)∧∀x∀x′(φ(x,y)∧φ(x′,y) → x= x′).

Model Completeness for Rational Trees 269

It is useful to have abbreviations for formulas expressing that “x is rooted by hi”,
these are

Rhi(x) : ≡ ∃x1 · · ·∃xari(x= hi(x1, . . . ,xari)) (1)

for every i = 1, . . . ,N (recall that h1, . . . ,hN are our constructors). The claims of the
following Proposition are either immediate or well-known [4]:

Proposition 1. The following sentences are R-valid:

(i) ∀x(hi(x) = hi(x′) → x= x′) (for i= 1, . . . ,N);
(ii) ∀x¬(Rhi(x)∧Rhj(x)) (for i �= j and i, j = 1, . . . ,N);

(iii) ∀x¬(Rhi(x)∧At(x)) (for i= 1, . . . ,N);
(iv) ∀x(At(x)∨∨N

i=1Rhi(x));
(v) At(a)∧a �= b (for distinct constants a,b ∈ Σ);

(vi) ∀z∃!x(x= t(x,z)), where t(x,z) are proper flat terms.

Above, a flat term is a constant, a variable, or a constructor applied to variables; a flat
term is proper iff it is not a variable.

We make a comment on formula (vi) above. To correctly interpret it, recall that x,z
must be distinct tuples of variables including all variables occurring in t according to
our conventions. Formula (vi) expresses the existence and uniqueness of simultaneous
parametric fixpoints: the fixpoints are simultaneous because x is a tuple of variables (it
is not a single variable) and the z are the parameters on which the fixpoints depend.

We underline the following important fact, which is a consequence of the above
Proposition: the formula Rhi(x) is existential according to its definition (1); however,
because of Proposition 1(ii)–(iv), it is also logically equivalent to a universal formula,
namely

¬At(x)∧
∧

j �=i

¬Rhj(x) (2)

(this is typical of model-complete theories, see Definition 1).
A flat literal is a literal of one of the following forms

x= t, x �= y, At(x), ¬At(x)

where x,y are variables and t is a flat term; a flat literal is proper iff it is of the kind
At(x),x �= y,x= t, where x,y are variables and the term t is flat and proper. A proper flat
literal of the kind At(x) is said to be an atomicity proper flat literal, a proper flat literal
of the kind x �= y is said to be a disequality proper flat literal, a proper flat literal of the
kind x= t is said to be an equality proper flat literal with head variable x.

Definition 2. A constraint C(x) is in solved form iff it is a conjunction of atomicity
proper flat literals, disequality proper flat literals and equality proper flat literals whose
head variables are pairwise different. We also require that if a constraint C in solved
form contains an atomicity proper flat literal of the kind At(v), then the variable v is
not a head variable of any equality proper flat literal v= t of C, unless t is a constant.

270 S. Ghilardi and L. M. Poidomani

We have an analogous notion for primitive formulae. A conjunction of variable
equalities E(x′,x) of the kind x′ = x for x ∈ x and x′ ∈ x′ is an equivalence diagram
(e-diagram for short) iff for every x′ ∈ x′ there is exactly one equality x′ = x with x ∈ x
that is a conjunct of E (that is, E is a ‘logical representation’ of an equivalence relation
over x∪ x′, having the x as representative elements for the equivalence classes).

The role of the e-diagrams in Definition 3 and in the algorithm of Proposition 2
below is subsequent to a choice of representatives variables for equivalence classes:
once a choice is done, e-diagrams neutralize unquantified non-representative variables
(these variables cannot be eliminated), by moving them outside the scope of the exis-
tential quantifiers (in such position they cannot play any role in future manipulations).

Definition 3. A primitive formula is in solved form iff it can be written (up to logical
equivalence) in the form

E(x′,x)∧∃yC(x,y) (3)

where C(x,y) is a constraint in solved form and E(x,x′) is an e-diagram.

A primitive formula in solved form (3) has the following important property: any
assignment to the free variables x satisfying C can be extended to an assignment to x′

satisfying E(x′,x)∧ ∃yC(x,y). The following Proposition shows that the satisfiability
of existential formulae can be reduced to satisfiability of primitive formulae in solved
form:

Proposition 2. Every existential formula is R-equivalent to a disjunction of primitive
formulae in solved form.

Proof. We first flatten all terms occurring in our formula using fresh existentially quan-
tified variables and the logical equivalence φ(x/t) ↔ ∃x(x= t ∧φ) (here x is supposed
not to occur in t). Then we remove negative atom statements by the R-equivalence
¬A(t)↔ ∨N

i=1Rhi(x). Applying DNF conversion and distributing the existential quanti-
fier over disjunctions, we obtain a disjunction of primitive formulae whose matrices are
conjunctions of flat literals.

Now we exhaustively apply to each disjunct of the form ∃yφ(x,y) the rewrite rules
below (disjuncts containing an inconsistency v �= v are in the end removed). The rules
modify the whole disjunct or some conjuncts of its as indicated. When specifying the
rules, we use letters xi ∈ x for the free variables x of ∃yφ(x,y), letter y ∈ y for a quan-
tified variable of ∃yφ(x,y) and letters v,vi,wj ∈ x∪ y for any variable occurring in
∃yφ(x,y); we also fix a total order ≺ on the free variables x.

(0) v= v∧ψ =⇒ ψ;
(1) At(v)∧ v= t =⇒ v �= v (if t is a non-variable, non-constant term);
(2) v = t ∧ v = t ′ =⇒ v �= v (if t, t ′ are non-variable terms rooted with different con-

structors or constants);
(3) v= f (v1, . . . ,vn)∧ v= f (w1, . . . ,wn) =⇒ v= f (w1, . . . ,wn)∧

∧n
i=1 vi = wi;

(4) ∃y(x1 = x2 ∧ψ) =⇒ x1 = x2 ∧∃y(ψ(x1/x2) (if x1 ≺ x2; in case x2 ≺ x1, the rule is
applied by inverting the roles of x1 and x2);

(5) ∃y(y= v∧ψ) =⇒ ψ(v/y) (where v is a variable different from y).

Model Completeness for Rational Trees 271

When applying Rule (4) and moving the equality x1 = x2 outside the existential quan-
tifiers ∃y, we simultaneously replace any free variable equality of the kind x′ = x2 by
x′ = x1 (this ensures that free variables equalities outside the existential quantifiers form
an e-diagram). The above rules are justified either as logical equivalences or by Propo-
sition 1. Rules (2)–(3) adjust equality proper flat literals whose head variables are the
same, whereas Rules (4)–(5) eliminate variable equalities inside the scope of the exis-
tential quantifiers. For termination, we consider pairs of natural numbers (k1,k2), where
k1 is the number of occurrences of constructors symbols and k2 is the number of literals
inside the existential quantifiers. All rules decrease k2 (keeping k1 unchanged), except
Rule (3) which decreases k1.1 �

Remark 2. From the point of view of complexity, it is clear that DNF conversion pro-
duces an exponential blow-up; however Rules (0)–(5) can be exhaustively applied in
polynomial (actually quadratic) time.

4 Σ -Graphs and Bisimulations

In this section, we introduce a procedure to test R-satisfiability of constraints in solved
form. The procedure is based on Σ -graphs (we shall essentially use Σ -graphs as alter-
native representations of Σ -trees):

Definition 4. A Σ -graph G = (G,{Ri}i≥1,λ) is a set G endowed with an infinite family
of unary partial functions Ri (i≥ 1) and with a labeling function λ : G−→ Σ satisfying
the following condition: for every i ≥ 1, the domain of the partial function Ri is the set
of g ∈ G such that the arity of λ (g) is larger than or equal to i.

Notice that the domains of the Ri exclude the nodes of a Σ -graph labeled by a
constant symbol. We use the notation gRig′ to say that g ∈ dom(Ri) and Ri(g) = g′. We
adapt to our context the classical notion of bisimulation:

Definition 5. A bisimulation between Σ -graphs G = (G,{Ri}i≥1,λ) and G′ =
(G′,{R′

i}i≥1,λ ′) is a relation ρ ⊆ G×G′ satisfying the following conditions:

(i) for all g ∈ G,g′ ∈ G′, if ρ(g,g′) then λ (g) = λ (g′);
(ii) for all g1 ∈G,g′

1,g
′
2 ∈G′ and i≥ 1, if ρ(g1,g′

1) and g
′
1R

′
ig

′
2 then there exists g2 ∈G

such that g1Rig2 and ρ(g2,g′
2);

(iii) for all g1,g2 ∈G,g′
1 ∈G′ and i≥ 1, if ρ(g1,g′

1) and g1Rig2 then there exists g′
2 ∈G

such that g′
1R

′
ig

′
2 and ρ(g2,g′

2).

A bisimulation relation which is a total function ρ :G−→G′ is said to be a p-morphism
of G into G′; if ρ is also surjective, we say that G′ is a quotient of G.

Since our Ri are partial functions and (i) holds, conditions (ii) and (iii) in the definition
of a bisimulation are trivially seen to be equivalent to each other (so one of them is
redundant).

1 It is essential that Rule (3) is applied to flat constraints, otherwise it might cause non termina-
tion if naively formulated [16].

272 S. Ghilardi and L. M. Poidomani

Fig. 1. Rules of Pseudo Congruence Closure Algorithm

Bisimulations are closed under unions, so that there is the biggest bisimulation
among two given Σ -graphs G and G′. We write g∼b g′ to mean that there exists a bisim-
ulation between the nodes g and g′ of G and G′ (equivalently, that we have ρ(g,g′) for
the biggest bisimulation among G and G′). Also, since the identity relation is a bisim-
ulation, the converse of a bisimulation is a bisimulation and the composition of bisim-
ulations is a bisimulation, the relation ∼b restricted to the nodes of the same Σ -graph
G turns out to be an equivalence relation. Bisimulation relations between a Σ -graph
and itself which are equivalence relations (called bisimulation equivalences) produce
quotients, in the sense explained by the following Proposition:

Proposition 3. Suppose that ρ is a bisimulation equivalence on a Σ -graph G =
(G,{Ri}i≥1,λ). Then there are a Σ -graph G′ and a quotient q : G −→ G′ such that
we have ρ(g,g′) iff q(g) = q(g′) for all g,g′ in G.

Proof. We let G′ be the quotient set of G under the equivalence relation ρ and q be the
map associating with g its equivalence class [g]. We then put

λ ′([g]) = λ (g), [g]R′
i[g

′] iff ∃g′′ s.t. ρ(g′,g′′) and gRig′′ (for all i ≥ 0) .

In this way G′ = (G′,{R′
i}i≥1,λ ′) is a Σ -graph and q is the desired quotient. �

Given a finite Σ -graph G = (G,{Ri}i≥1,λ) and a relation ρ0 ⊆ G×G, we want
to know whether there is a bisimulation equivalence ρ such that ρ0 ⊆ ρ . This is a
special case of a classical problem well-studied in the literature; since our relations
Ri are partial functions, we can give an alternative solution in a congruence closure
style: our ‘Pseudo Congruence Closure’ (PCC) algorithm first computes the smallest
equivalence relation ρ extending ρ0 and then exhaustively applies to it it the two rules
of Fig. 1. The following Proposition is clear:

Proposition 4. There is a bisimulation equivalence extending a relation ρ0 on a finite
Σ -graph G = (G,{Ri}i≥1,λ) iff PCC, applied to ρ0, terminates without failure. In
particular, for g1,g2 ∈ G we have that g1 ∼b g2 iff PCC does not fail on input
〈G,ρ0 = {(g1,g2)}〉.

Remark 3. PCC can be simulated by an ordinary congruence closure problem (thus,
PCC inherit the complexity bound O(n logn) [9,17,18] of congruence closure). To
see this, it is sufficient to consider the signature comprising unary function symbols

Model Completeness for Rational Trees 273

Fi (i ≥ 0) and unary predicates Pf (varying f among the function and constant sym-
bols of Σ). Notice that such a signature is infinite but only finitely many symbols are
used when handling a finite Σ -graph. Then consider the congruence closure problem
given by the following literals: g1 = g2 (varying (g1,g2) ∈ ρ0), Fi(g) = g′ (for gRig′ in
G), Pf (g) (if λ (g) = f), ¬Pf (g) (if λ (g) �= f). Now it is easy to see that, despite the
fact that the Ri are partial and the Fi are total functions, PCC and standard congruence
closure run in the same way.

An important (infinite) Σ -graph is the Σ -graph of all rational trees. This is the Σ -
graph Rat = (R,{Ri}i,λR), whose underlying set is formed by the set of rational trees
R and where we have

– (T,Λ)Ri(T ′,Λ ′) iff (T ′,Λ ′) is the i-th successor of T (i.e. it is the i-th T -successor
of the root subtree Tε = T of T);

– λR(T,Λ) = Λ(ε) (i.e. the label of (T,Λ) is the label of the root of T).

Inside Rat, bisimulation is trivial:

Proposition 5. In the Σ -graph Rat, we have (T,Λ) ∼b (T ′,Λ ′) iff (T,Λ) = (T ′,Λ ′)

Proof. Suppose that (T,Λ)∼b (T ′,Λ ′). Recall from Remark 1 that if (T,Λ) is a Σ -tree,
we write (σ , f) ∈ (T,Λ) to mean that σ ∈ T and Λ(σ) = f ; moreover recall also that
(T,Λ) = (T ′,Λ ′) iff we have (σ , f) ∈ (T,Λ) iff (σ , f) ∈ (T ′,Λ ′) for all (σ , f). This is
what we are going to prove by induction on the length of σ .

If σ = ε , then from (T,Λ) ∼b (T ′,Λ ′) it follows that the root-labeling symbols of
(T,Λ) and (T ′,Λ ′) are the same.

Suppose now that σ = i∗τ and that (i∗τ, f) ∈ (T,Λ); then Λ(ε) is a function sym-
bol of arity bigger or equal to i, so that there is the i-th successor (Ti,Λi) of (T,Λ)
and we have (T,Λ)Ri(Ti,Λi) and (τ, f) ∈ (Ti,Λi). Since (T,Λ) and (T ′,Λ ′) are bisim-
ilar, the symbols labeling their roots are the same, so for the i-th successor (T ′

i ,Λ ′
i)

of (T ′,Λ ′) we have that (T ′,Λ ′)Ri(T ′
i ,Λ ′

i) and also that (Ti,Λi) ∼b (T ′
i ,Λ ′

i) (again by
bisimilarity). By induction hypothesis, (τ, f) ∈ (T ′

i ,Λ ′
i), that is (i ∗ τ, f) ∈ (T ′,Λ ′) as

required. �

The importance of Rat is due to the fact that every finite Σ -graph compares with it:

Proposition 6. For every finite Σ -graph G = (G,{Ri}i≥1,λ) there is a p-morphism
pG : G −→ Rat.

Proof. Given g ∈ G, let us define a rational tree pG(g) by specifying under which con-
ditions we have (σ , f) ∈ pG(g) for a finite list of positive numbers σ and f ∈ Σ (recall
Remark 1). We stipulate that (i1 · · · ik, f) ∈ pG(g) iff there are g1, . . . ,gk ∈ G such that
gρg1 · · ·ρgk and λ (gk) = f (for k = 0, this means that λ (g) = f). From this definition,
it is easy to see that pG(g) is indeed a Σ -tree and that pG is a p-morphism. The fact
that pG(g) is rational follows from the p-morphism condition, because the Σ -subtrees
of pG(g) turn out to be of the form pG(g′) for g′ ∈ G and G is finite. �

274 S. Ghilardi and L. M. Poidomani

We now relate Σ -graphs and constraint satisfiability in R. We know from Propo-
sition 2 that in order to check satisfiability of primitive formulae we can restrict to
primitive formulae in solved form. To any constraint in solved form φ(x1, . . . ,xn) we
associate a Σ -graph

Gφ = (Gφ ,{Ri
φ }i,λφ)

as follows. The nodes in Gφ are x1, . . . ,xn; we have xkRix j iff φ contains an equality
of the kind xk = f (· · · ,x j, · · ·) (with x j as i-th argument) and in such a case we put
λφ (xk) = f . If φ contains an equality of the kind xk = a for a constant a, we put λφ (xk) =
a. Notice that an equality like xk = f (· · · ,x j, · · ·) or xk = a is uniquely identified for a
variable xk according to Definition 2. The variables xk for which there are no equalities
of the kind xk = f (· · ·) or xk = a in φ are called external in φ . For such xk we put
λφ (xk) = ak, where the ak are fresh distinct constants in Σ (recall that Σ has infinitely
many constants).

Theorem 1. A constraint φ(x1, . . . ,xn) in solved form is R-satisfiable iff φ does not
contain a disequality xk �= x j such that we have xk ∼b x j in Gφ .

Proof. Consider the p-morphism pGφ : G −→ Rat of Proposition 6 and let us assign
pGφ (xk) to every variable xk occurring in φ ; notice that this R-assignment (called the
canonical R-assignment) satisfies all equalities and all atomicity statements in φ (but
it might not satisfy disequalities).

Suppose that there is no disequality xk �= x j in φ such that we have xk ∼b x j in Gφ . If
xk �= x j occurs in φ , we cannot have pGφ (xk)= pGφ (x j), otherwise from xk ∼b pGφ (xk)=
pGφ (x j) ∼b x j we would get xk ∼b x j (this is because p-morphisms and their converses
are bisimulations and bisimulations do compose). So the canonical R-assignment is
indeed a satisfying assignment for φ .

Vice versa, suppose that φ is satisfiable. By the next lemma, the canonical R-
assignment is a satisfying assignment for φ . If we have xk ∼b x j for an inequality
xk �= x j occurring in φ , then we have that pGφ (xk) ∼b pGφ (x j) (because p-morphisms
are bisimulations and bisimulations do compose) which contradicts pGφ (xk) �= pGφ (x j)
and Proposition 5. �

Lemma 1. If a constraint φ(x1, . . . ,xn) in solved form is R-satisfiable, then it is satis-
fied by the canonical R-assignment.

Proof. Let α be a satisfying R-assignment for φ and let αC be the canonical R-
assignment. Since the latter can only fail to satisfy the disequalities from φ , it is suffi-
cient to prove that for xk,x j ∈ {x1, . . . ,xn}, we have α(xi) �= α(x j) ⇒ αC(xi) �= αC(x j).
In other words, we prove that if there is (σ , f) such that (σ , f) ∈ α(xk) and (σ , f) �∈
α(x j), then αC(xk) �= αC(x j). We make an induction on the length of such σ .

Independently on the inductive argument, we notice that if either xk or x j (or both)
is external in φ , the claim is trivial because external variables are mapped by αC into
singleton trees labelled by fresh distinct constants by the construction of Gφ . If xk,x j
are both non external, in φ there are equalities xk = l(v1, . . . ,vm) and x j = l(w1, . . . ,wm)
with v1, . . . ,vm,w1, . . . ,vm ∈ {x1, . . . ,xn} (in the case where in φ there are equalities
xk = l(· · ·) and x j = l′(· · ·) with l �= l′, we again trivially have αC(xk) �= αC(x j) because
αC satisfies the equalities in φ).

Model Completeness for Rational Trees 275

Fig. 2. Σ -graph from Example 1 (left) and its quotient under maximum bisimulation (right).

Let us now argue by induction on σ and restrict to the case where xk,x j are as
above. The case σ = ε is trivial because in that case we have f = l and (ε, l) belongs
to both α(xk) and α(x j), contrary to the fact that we supposed (σ , f) ∈ α(xk) and
(σ , f) �∈ α(x j) (α is a satisfying assignment, so (ε, l)∈ α(x j)). So assume that σ = i∗τ;
then (i∗ τ, f) ∈ α(xk) implies (τ, f) ∈ α(vi) because α satisfies xk = g(v1, . . . ,vm). For
the same reason, we have (τ, f) �∈ α(wi), because otherwise (i∗ τ, f) ∈ α(x j) because
α satisfies x j = g(w1, . . . ,wm). We can then apply induction to (τ, f) and conclude that
αC(vi) �= αC(wi). Since αC nevertheless satisfies the equalities from φ , from the facts
that xk = g(v1, . . . ,vm) and x j = g(w1, . . . ,wm) are true under αC and that αC(vi) �=
αC(wi), we conclude that αC(xk) �= αC(x j). �

Remark 4. As a consequence of Theorem 1 and Proposition 4, in order to solve a R-
constraint satisfiability problem for a constraint φ(x) in solved form, it is sufficient to
run PCC on inputs 〈Gφ ,ρ0 = {(x1,x2)}〉 for every disequality x1 �= x2 occurring in φ .
The constraint is satisfiable iff PCC ends in failure for all such disequalities. This
gives a O(n2 logn) complexity bound for constraints in solved form. As an alternative,
one can directly compute the maximum bisimulation equivalence on the associated Σ -
graph using some known efficient procedure [5–7].

Example 1. [In all examples, we assume that we have only two constructors: h1 (with
arity 1) and h2 (with arity 2)]. Consider the constraint

x= h2(z,y)∧ y= h1(y)∧ z= h2(x,y)∧ x �= y∧ x �= z

whose Σ -graph is depicted in Fig. 2. Nodes x and y are not bisimilar in this Σ -graph,
but the nodes x and z are bisimilar. Hence the constraint is unsatisfiable. �

5 Definability

In this section we investigate what it means for a set of variables to be ‘definable’
(via selectors and simultaneous parametric fixpoints) from the free variables x of an
existential formula ∃yφ(y,x). Definable and undefinable variables will be subject to
different symbolic manipulations when converting an existential formula to a universal
one (the possibility of such conversion is precisely the content of model completeness,
see Definition 1).

276 S. Ghilardi and L. M. Poidomani

Below, when we say that “φ is φ ′ ∧ ψ” we mean that φ is a conjunction and that it
can be written as specified (modulo associativity and commutativity of ∧).

Definition 6. Let ∃yφ(y,x) be an existential formula with free variables x and bounded
variables y. The set of definable variables of ∃yφ(y,x) is the smallest subset D ⊆ x∪ y
satisfying the following conditions:

(o) x ⊆ D;
(i) if u ∈ D and φ is φ ′ ∧u= t(v) for a proper flat term t, then v ⊆ D;

(ii) if u ⊆ D and φ is φ ′ ∧ v= t(v,u) for proper flat terms t, then v ⊆ D.

Intuitively, the condition of Definition 6(i) says that the v are reachable from u via
selectors, whereas the condition of Definition 6(ii) says that the v are reachable via
some fixpoints having the u as parameters. The next couple of lemmas show how to
handle definable and non definable variables: the idea is that definable variables can be
converted into universally quantified variables and that non definable variables can be
removed because of validity/invalidity reasons.

Lemma 2. Suppose that the existential formula π is of the kind

∃w∃uφ(w,u,x)

and that the variables u are definable in it. The π is R-equivalent to a formula of the
kind

∀u′(ψ(u′,x)∧ (θ(u′,x) → ∃wφ(w,u,x))), (4)

where u′ ⊇ u (i.e. u′ possibly extends u by some fresh variables) and ψ,θ are quantifier-
free. In particular, π is R-equivalent to a universal formula in the case where w= /0 (i.e.
in the case where all quantified variables of π are definable).

Proof. We view Definition 6 as a recursive definition and use the equivalences
[
∃v′ (u= t(v,v′)∧φ ′)

]
↔

[
Rhi(u)∧∀w∀v′(u= t(w,v′) → v= w∧φ ′)

]
(5)

(where t is a proper flat term whose root symbol is the constructor hi) and
[
∃v(v= t(v,u)∧φ ′)

]
↔

[
∀v(v= t(v,u) → φ ′)

]
(6)

Syntactic details are straightforward (they can be found in the online available extended
version of the paper). �

Example 2. Consider the formula

∃w1∃w2∃w′∃w′
2∃u(x1 = h2(w1,w2)∧ x2 = h2(w′

1,w
′
2)∧u= h1(w1)∧u �= w1) (7)

whose existentially quantified variables are all definable. In particular, the variables
w1,w2,w′

1,w
′
2 falls within case (i) of Definition 6, hence their conversion into univer-

sal variables follows the schema (5). On the contrary, u is converted into a universal
variable using schema (6), because u falls within the case (ii) of Definition 6: in fact,
u is recursively definable from w1 via the equality u = h1(w1) (the latter is a fixpoint
equations - indeed a trivial fixpoints equation where the variables on the left hand side
of the equality symbol do not occur on the right hand side term). �

Model Completeness for Rational Trees 277

Lemma 3. Suppose that C(x,y) is a constraint in solved form and that in each literal
from C there is at least one occurrence of a variable from y; suppose also that in the
existential formula ∃yC(x,y) the variables y are not definable. Then we have

R |= ∀x(Distinct(x) →
[
∃yC(x,y) ↔ ∃x∃yC(x,y)

]
) (8)

(here Distinct(x) means
∧
(x′ �= x′′), varying the conjuncts on pairwise different

x′,x′′ ∈ x).

Proof. First a comment: what the lemma says is that, in contexts where all parameters
x are interpreted as distinct trees, ∃yC(x,y) is equivalent to the sentence ∃x∃yC(x,y),
which in turn is always equivalent to either � or ⊥ by Theorem 1.

The implication from left to right of ↔ is trivial, so let us assume that in the rational
tree structure R the sentence

∃x∃yC(x,y) (9)

is true and let us assign to x = x1, . . . ,xn arbitrary but distinct rational trees
α(x1), . . . ,α(xn). We want to show that this assignment satisfies the formula ∃yC(x,y).
Since our trees are rational, the trees α(x1), . . . ,α(xn) have only finitely many subtrees;
let their number be n+n′ and let us list them as

α(x1), . . . ,α(xn),α(x′
1), . . . ,α(x′

n′) . (10)

We now write down a constraintC′(x,x′) (where x′ = x′
1, . . . ,x

′
n′) whose unique solution

is precisely the n+n′-tuple of trees (10).2 We shall show that the constraint

∃x∃x′ ∃y(C(x,y)∧C′(x,x′)) (11)

is satisfiable; this proves our claim, because the satisfiability of (11) implies in particular
that α(x1), . . . ,α(xn) satisfy ∃yC(x,y). We now build the Σ -graphs

G(9) = (G(9),{Ri
(9)}i,λ(9)) and G(11) = (G(11),{Ri

(11)}i,λ(11))

associated with the formulae (9) and (11), respectively. In both cases, when choosing
the constants labeling external variables, we take fresh constants not appearing in (9)
and (11): we can do that because our signature Σ contains infinitely many constants and
the trees α(x1), . . . ,α(xn) are rational.

We make a couple of observations. Since the y occur in each literal from C and the
y are not definable, the equality flat literals fromC must be of the kind v= t(x,y) where
v ∈ y, so the x are not head variables in C. Moreover, every head variable v ∈ y has a
path3 to an external variable w∈ y in G(9) (and consequently also in the bigger Σ -graph
G(11)): if it were not be so, considering the equality proper flat literals from C reachable

2 For instance, if α(x1) is rooted by h2 and has immediate successors the pair formed by
α(x′4),α(x1), then C′ contains as a conjunct the equality x1 = h2(x′4,x1), etc. Here we are
using Proposition 1(vi) (with an empty parameters tuple z).

3 By a path in a Σ -graph G = (G,{Ri}i≥1,λ) from a node g ∈ G to a node g′ ∈ G we mean a
chain of the kind g= g0Ri1g1 · · ·gn−1Rikgk = g′.

278 S. Ghilardi and L. M. Poidomani

from v, we could obtain a set of proper flat equalities witnessing the definability of a
subset of variables that includes v (see Definition (6)(ii)). By the equality proper flat
literals reachable from v, we mean the smallest set of literals from C containing the
equality proper flat literal headed by v and such that if it contains v′ = t(u,x), then for
every u ∈ u it contains also the equality proper flat literal headed by u (if it exists).

Let us now consider a bisimulation relation in G(11): we claim that this must be of
the kind ρ ∪ idG(11) , where ρ is a set of pairs (v1,v2) formed by nodes which are both
head nodes belonging to y. In fact, external nodes from y are not bisimilar to each other
(they are labeled by different constants) nor can be bisimilar to the x,x′ (the constants
labeling them are disjoint from the constants labeling the x,x′) nor to head nodes from
y (the latter are not labeled by constants). Similarly, the nodes x,x′ are not bisimilar to
each other (the sub-Σ -graph of G(11) involving the x,x′ is a sub-Σ -graph of Rat - where
the only bisimulation is identity, see Proposition 5 - recall that the x,x′ represent in G(11)

the pairwise different trees (10)) nor to head nodes from y (because the latter have a path
to some external node taken from the y, as explained above, and the x,x′ only have paths
inside themselves).

Suppose now that (11) is not satisfiable; this means that there is a disequality u1 �= u2

from C (recall that C′ does not contain disequalities) such that PCC does not fail when
initialized to ρ = {(u1,u2)} in G(11). Since this entails that u1 and u2 are bisimilar in
G(11), we have that u1,u2 are both head nodes belonging to y. By induction, we show
that PCC initialized to ρ = {(u1,u2)} in G(9) makes precisely the same steps and halts
precisely after the same number of steps as PCC initialized to ρ = {(u1,u2)} in G(11)

(this would mean that (9) is not satisfiable either, a contradiction). Suppose in fact that
PCC in G(11) added to ρ a pair of head nodes v1,v2 belonging to y (only such nodes
can be bisimilar and not identical to each other) and that we have v1Ri

G(11)
v′

1, v2Ri
G(11)

v′
2.

Then v′
1 and v′

2 are bisimilar and so, if they are not identical to each other, they are also
head nodes belonging to y. In such a case, we have v1Ri

G(9)
v′

1, v2Ri
G(9)

v′
2 and so PCC in

G(9) merges their equivalence classes precisely as PCC does in G(11). Moreover, when
PCC halts in G(11), so must do PCC in G(9) because nodes in y can see via the Ri the
same nodes in both graphs: thus if PCC halted in G(11) and in G(9) for (v1,v2) ∈ ρ we
have v1Ri

G(9)
v′

1, v2Ri
G(9)

v′
2, then we have also v1Ri

G(11)
v′

1, v2Ri
G(11)

v′
2 in G(11) and (v′

1,v
′
2)

has been already added by PCC to ρ (actually in both Σ -graphs) because PCC halted in
G(11). �

6 Model Completeness

We improve Proposition 2. Let us say that a primitive formula is in reduced solved form
iff it can be written in the form E(x′,x)∧ ∃yC(x,y) (see (3)) and, in addition to the
requirements of Definition 3, we also ask that the variables y are definable in ∃yC(x,y).

Theorem 2. Every existential formula is R-equivalent to a disjunction of primitive for-
mulae in reduced solved form and also to a universal formula. As a consequence, R is
model-complete.

Proof. Consider an existential formula π(x) of the form ∃wφ(v,w). Given an equiv-
alence relation E over v∪w, let us call ‘full display of E’ the conjunction of all the

Model Completeness for Rational Trees 279

equalities z1 = z2 (for (z1,z2) ∈ E) and of all the disequalities z1 �= z2 (for (z1,z2) �∈ E).
We conjoin the matrix φ(v,w) of our existential formula ∃wφ(v,w) with the dis-
junction over the full displays of all the possible equivalence relations over v ∪ w;
then we take DNF, distribute ∃w over disjunctions and leave each disjunct be han-
dled by the algorithm of Proposition 2. As a result, our π is equivalent to a disjunc-
tion of primitive solved forms E(x′,x)∧∃yC(x,y), whose matrix C(x,y) is of the kind
Distinct(x,y)∧φ(x,y). We shall treat these disjuncts separately.

Fix then such a disjunct. Let us split y as y′,y′′, where the y′ are definable and the y′′

are not definable in ∃yC(x,y). Thus we can rewrite ∃yC(x,y) as

∃y′(C′(x,y′)∧∃y′′C′′(x,y′,y′′)) (12)

where in C′′ all literals contain at least one occurrence of some of the y′′, the y′ are
definable in ∃y′C′(x,y′), the y′′ are not definable in ∃y′′C′′(x,y′,y′′) and the constraint
C′ contains the literals Distinct(x,y′) (this is because Distinct(x,y′,y′′) entails
Distinct(x,y′)). Now we can apply Lemma 3, according to which the subformula
∃y′′C′′(x,y′,y′′) can be replaced by its existential closure ∃x∃y′∃y′′C′′(x,y′,y′′) and the
latter simplifies either to � or to ⊥.

In conclusion, our initial existential formula π(x) is equivalent to a formula of the
required shape, namely to a disjunction of primitive formulae in solved form

∨

k

[
Ek(x′

k,xk)∧∃y
k
Ck(yk,xk)

]
, (13)

where the y
k

are definable in ∃y
k
Ck(yk,xk) (these are the disjuncts surviving after the

above simplifications). Such a formula is also equivalent to a universal formula by
Lemma 2. �

Theorem 2 (together with Theorem 1) gives an algorithm for deciding R-
satisfiability of any first-order sentence, because this theorem supplies an effective
procedure to rewrite an existential formula to a universal one (see the remark after
Definition 1).

Example 3. Consider the formula

∃w1∃w2∀z∀u(x1 = h2(w1,w2)∧ x2 �= h1(z)∧¬At(x2)∧¬(h1(u) = u∧u= w2)) .
(14)

To bring it to the form (13) (and then check its satisfiability), we first rewrite it as
∃w1∃w2¬∃z∃u¬ψ (here ψ is the matrix of (14)), then convert ∃z∃u¬ψ to a universal
formula θ ; in this way ∃w1∃w2¬θ will be again existential. To the latter, we can apply
the procedure of Theorem 2 and obtain a disjunction of primitive formulae in reduced
solved form. After simplifications, in our case we get just one disjunct, namely

∃w1∃w2∃w′∃w′
2∃u(x1 = h2(w1,w2)∧ x2 = h2(w′

1,w
′
2)∧u= h1(w1)∧u �= w1) (15)

(this is the same formula (7) of Example 2 which is, by the way, satisfiable according
to Theorem 1). �

280 S. Ghilardi and L. M. Poidomani

The proof of Theorem 2 shows how to build a definitional extension of R enjoying
quantifier elimination. To this aim, it is sufficient to add to the language new operation
symbols for selectors and simultaneous parametric fixpoints.

For selectors, we need to take care of the fact that selectors are not totally defined.
We adopt the classical solution of [11], saying that a badly applied selector just returns
its argument. In other words, for every constructor hi of arity ari, we add to the signature
of R new unary functions symbols Sel j

i (for j = 1, . . . ,ari) to be interpreted in rational
trees so that the following formula is true for every assignment to x,y:

Sel j
i (x) = y ↔ (∃z1 · · ·∃zari (x= hi(z1, . . . ,zari)∧ y= z j))∨ (¬Rhi(x)∧ y= x)) (16)

For simultaneous parametric fixpoints, we need infinitely many extra functions.
Consider two tuples of variables x− = x−

1 , . . . ,x
−
n and y∗ = y∗

1, . . . ,y
∗
m and proper flat

literals x− = t(x−,y∗): below, we write t(−,∗) for t(x−,y∗) and t(x,y) for a substitution
t(x/x−,y/y∗). We introduce n new functions symbols Fixit(−,∗) (i = 1, . . . ,n), all hav-
ing arity m, interpreted in rational trees so that the following formula is true, for every
assignment to the variable x and to the m-tuple of variables y:

Fixit(−,∗)(y) = x ↔ ∃x(x= t(x,y)∧ x= xi) (17)

where xi denotes the i-th component of the tuple x.
Let us denote with R+ the Σ -structure of rational trees, enriched with the interpre-

tation of the above extra function symbols; we also denote by R+ the theory whose
axioms are the sentences which are true in this expanded structure. From Theorem 2
and (16), (17), we have the following result (see the online available extended version
of the paper for the straightforward syntactic details):

Theorem 3. R+ enjoys quantifier elimination.

Example 4. The formula Rhi(x) (that can be written both as a universal and as an exis-
tential formula in R) can be rewritten in R+ as

x= hi(Sel1
i (x), . . . ,Sel

ari
i (x)) (18)

without using quantifiers. �
Example 5. Eliminating quantifiers from (15), we obtain

x1 = h2(Sel1
h2
(x1),Sel2

h2
(x1))∧x2 = h2(Sel1

h2
(x2),Sel2

h2
(x2))∧Sel1

h2
(x1) �= Fix1

h1(−);
(19)

this formula says that x1,x2 are both rooted with h2 and that applying the first selector to
x1 we get something different from the fixed point of h1;4 the latter can be represented
as the infinite term

h1(h1(h1 · · ·
(it is the infinite unary tree labelled by h1). �

4 Formally, Fix1
h1(−) is the constant expressing the fixpoint of z= h1(z): this is the simultaneous

fixpoint of a tuple of functions with empty parameters formed by the single function h1(z)
(the parameters ∗ are missing and the superscript 1 means the projection to the first unique
component of such tuple of functions).

Model Completeness for Rational Trees 281

7 Conclusions, Related and Further Work

In this paper we introduced the variant of the theory of finite and infinite trees, whose
signature has finitely many constructors, infinitely many constants and an atomicity
predicate. We proved that this theory is model complete, showed that every formula
in this theory is equivalent to a disjunction of primitive formulae in reduced solved
form and proved that one can achieve full quantifier elimination by adding selectors
and simultaneous parametric fixpoints to the language.

One of the main insights given by the above results is the fact that every formula
of our theory essentially expresses a Boolean combination of algebraic dependency
relations involving constructors, selectors and fixpoints (see Example 5 to understand
what we mean). We believe that this is the contribution lying behind statements like
those of Theorems 2, 3. The ‘explicit solved forms’ of [4] and the ‘terms with pointers’
of [14] ultimately carry on this information too, but maybe in a less transparent way (a
thorough comparison requires technical details, we cannot report them here for space
reasons, but see the online available extended version of the paper).

One may wonder whether our analysis extends to other variants of the theory of
trees. Clearly, if for instance we have infinitely many constructors in the signature, we
lose the possibility of expressing formulae like Rhi(x) both as existential and universal
formulae (see (1) and (2)), so model-completeness is likely to fail. Other partial results
might probably be recovered, this has to be investigated by future work.

We wonder whether our techniques can be effective also for extensions of the theory
of trees, we leave this too for future work. For instance, adding a finiteness predicate
(like in [4,22]) is worth investigating.

Concerning our algorithms, we underline that the constraint solving algorithm of
Sect. 4 (based on bisimulations and congruence closure) is rather efficient and its com-
plexity is comparable with analogous constraint solving algorithms from the litera-
ture [19]. The situation is different for our decision procedure once extended to all
elementary formulae. We believe that the algorithm of Theorem 2, relying on model-
completeness, is direct and intuitive, however important improvements still need to be
designed.

A first improvement should avoid any guessing of an equivalence relation between
variables in the proof of Theorem 2: this improvement however requires some care and
involves a strengthening of the technical Lemma 3, so we preferred to leave it for future
work. The strengthening should be able to compute a disjunction of e-diagrams over x
equivalent to ∃yC(x,y), for every existential formula ∃yC(x,y) satisfying the peculiar
hypotheses of Lemma 3.

The other source of complexity of the algorithm deciding satisfiability of all first-
order formulae is the need of DNF conversions every time a quantifier alternation is
removed. Although this problem is somewhat unavoidable (see the lower bound men-
tioned in the introduction), we believe that many redundancies arising during compu-
tations can be removed with suitable heuristics and simplification routines. Another
possibility is that of exploiting the rich algebraic structure of R+ in order to directly
design a quantifier elimination algorithm in R+: here the rich algebraic structure should
consent the adoption of ‘testing points’ methods, similar to those employed in quantifier
elimination for numerical domains [1].

282 S. Ghilardi and L. M. Poidomani

References

1. Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Handbook of Automated
Reasoning, vol. II, pp. 751–844. Elsevier and MIT Press (2001)

2. Chang, C.-C., Keisler, J.H.: Model Theory, 3rd edn. North-Holland Publishing Co.,
Amsterdam-London (1990)

3. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: Fifth Generation
Computer Systems (1984)

4. Djelloul, K., Dao, T., Frühwirth, T.W.: Theory of finite or infinite trees revisited. Theory
Pract. Logic Program. 8(4), 431–489 (2008)

5. Dovier, A., Piazza, C., Policriti, A.: A fast bisimulation algorithm. In: Berry, G., Comon,
H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 79–90. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4_8

6. Gentilini, R., Piazza, C., Policriti, A.: Simulation as coarsest partition problem. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 415–430. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0_29

7. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest partition
problems. J. Autom. Reason. 31, 73–103 (2003)

8. Jaffar, J.: Efficient unification over infinite terms. N. Gener. Comput. 2, 207–219 (1984)
9. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997.

LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
62950-5_59

10. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: Young, M.,
Devanbu, P.T. (eds.) Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, 5–11 November
2006, pp. 105–116. ACM (2006)

11. Kunen, K.: Negation in logic programming. J. Logic Program. 4, 289–308 (1987)
12. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infinite trees. In:

Proceedings Third Annual Symposium on Logic in Computer Science, pp. 348–349. IEEE
Computer Society (1988)

13. Mal’cev, A.: On the elementary theory of locally free algebras. Soviet Math. Doklady 768–
871 (1961)

14. Marongiu, G., Tulipani, S.: Quantifier elimination for infinite terms. Arch. Math. Log. 31(1),
1–17 (1991)

15. McMillan, K.L.: Lazy abstraction with interpolants. In: Proceedings of CAV, pp. 123–136
(2006)

16. Meister, M., Frühwirth, T.: Complexity of the CHR rational tree equation solver. In: Pro-
ceedings of the Third Workshop on Constraint Handling Rules (2006)

17. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM
27(2), 356–364 (1980)

18. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Comput. 205(4),
557–580 (2007)

19. Podelski, A., Roy, P.V.: The beauty and the beast algorithm: Quasi-linear incremental tests
of entailment and disentailment over trees. In: International Logic Programming Symposium
(ILPS), pp. 359–374. MIT Press (1994)

20. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT solvers. In:
Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 4205–4209.
IJCAI/AAAI Press (2016)

https://doi.org/10.1007/3-540-44585-4_8
https://doi.org/10.1007/3-540-46002-0_29
https://doi.org/10.1007/3-540-62950-5_59
https://doi.org/10.1007/3-540-62950-5_59

Model Completeness for Rational Trees 283

21. Vorobyov, S.: An improved lower bound for the elementary theories of trees. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 275–287. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61511-3_91

22. Zaiser, F., Ong, L.: Abstract: the extended theory of trees and algebraic (co)datatypes. In:
Nadel, A., Niemetz, A. (eds.) Proceedings of the 19th International Workshop on Satisfia-
bility Modulo Theories co-located with 33rd International Conference on Computer Aided
Verification (CAV 2021), Online (initially located in Los Angeles, USA), 18–19 July 2021.
CEUR Workshop Proceedings, vol. 2908, p. 65. CEUR-WS.org (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/3-540-61511-3_91
http://creativecommons.org/licenses/by/4.0/

Certifying Phase Abstraction

Nils Froleyks1(B), Emily Yu2, Armin Biere3, and Keijo Heljanko4,5

1 Johannes Kepler University, Linz, Austria
N.froleyks@gmail.com

2 Institute of Science and Technology Austria, Klosterneuburg, Austria
3 Albert–Ludwigs–University, Freiburg, Germany

4 University of Helsinki, Helsinki, Finland
5 Helsinki Institute for Information Technology, Helsinki, Finland

Abstract. Certification helps to increase trust in formal verification of
safety-critical systems which require assurance on their correctness. In
hardware model checking, a widely used formal verification technique,
phase abstraction is considered one of the most commonly used prepro-
cessing techniques. We present an approach to certify an extended form of
phase abstraction using a generic certificate format. As in earlier works our
approach involves constructing a witness circuit with an inductive invari-
ant property that certifies the correctness of the entire model checking
process, which is then validated by an independent certificate checker. We
have implemented and evaluated the proposed approach including certifi-
cation for various preprocessing configurations on hardware model check-
ing competition benchmarks. As an improvement on previous work in this
area, the proposed method is able to efficiently complete certification with
an overhead of a fraction of model checking time.

1 Introduction

Over the past few decades, symbolic model checking [2,22,23] has been put
forward as one of the most effective techniques in formal verification. A lot
of trust is placed into model checking tools when assessing the correctness of
safety-critical systems. However, model checkers themselves and the symbolic
reasoning tools they rely on, are exceedingly complex, both in the theory of
their algorithms and their practical implementation. They often run for multiple
days, distributed across hundreds of interacting threads, ultimately yielding a
single bit of information signaling the verification result. To increase trust in
these tools, several approaches have attempted to implement fully verified model
checkers in a theorem proving environment such as Isabelle [1,27,54]. However,
the scalability as well as versatility of those tools is often rather limited. For
example, a technique update tends to require the entire tool to be re-verified.

An alternative is to make model checkers provide machine-checkable proofs
as certificates that can be validated by independent checkers [8–10,31,32,39,
42,47], which is already a successful approach in SAT [34,35], i.e., proofs are
mandatory in the SAT competition since 2016 [3], and they are a very hot topic
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 284–303, 2024.
https://doi.org/10.1007/978-3-031-63498-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-63498-7_17

Certifying Phase Abstraction 285

in SMT [4,5,36,51] and beyond [4]. Crucially, these certificates need to be simple
enough to allow the implementation of a fully verified proof checker [33,37,41],
and preferably verifiable “end-to-end”, i.e., certifying all stages of the model
checking process, including all forms of preprocessing steps.

The approach in [15,56,57] introduces a generic certificate format that can be
directly generated from hardware model checkers via book-keeping. More specifi-
cally, the certificate is in the form of a Boolean circuit that comes with an inductive
invariant, such that it can be verified by six simple SAT checks. So far, it has shown
to be effective across several model checking techniques, but has not covered phase
abstraction [16]. The experimental results from [15,56,57] also show performance
challenges with more complex model checking problems. In this paper, we focus on
refining the format for smaller certificates while accommodating additional tech-
niques such as cone-of-influence analysis reduction [22].

Phase abstraction [16] is a popular preprocessing technique which tries to
simplify a given model checking problem by detecting and removing periodic
signals that exhibit clock-like behaviors. These signals are essentially the clocks
embedded in circuit designs, often due to the design style of multi-phase clock-
ing [46]. Phase abstraction helps reduce circuit complexity therefore making the
backend model checking task easier. Differently from [6,7] where the concept
was first suggested, requiring syntactic analysis and user inputs, phase abstrac-
tion [16] makes use of ternary simulation to automatically identify a group of
clock-like latches. Beside this, ternary simulation has also been utilized in the
context of temporal decomposition [20] for detecting transient signals.

In industrial settings, due to the use of complex reset logic as well as circuit
synthesis optimizations, clock signals are sometimes delayed by a number of ini-
tialization steps [19]. To further optimize the verification procedure we extend
phase abstraction by exploiting the power of ternary simulation to capture dif-
ferent classes of periodic signals including those that are considered partially as
clocks as well as equivalent signals [26]. An optimal phase number is computed
based on globally extracted patterns, which then is used to unfold the circuit
multiple times. The resulting unfolded circuit further undergoes rewriting and
cone-of-influence reduction, before it is passed on to a base model checker for
final verification. To summarize our contributions are as follows:

1. We formalize, revisit and extend the original phase abstraction [16] by intro-
ducing periodic signals, that are then identified and removed for circuit reduc-
tion. Our technique also subsumes temporal decomposition [20].

2. Building upon [15,56,57], we propose a refined certificate format for hardware
model checking based on a new restricted simulation relation. We demonstrate
how to build such a certificate for extended phase abstraction.

3. We present mc2, a certifying model checker that implements our proposed
preprocessing technique and generates certificates for the entire model check-
ing process. We show empirically that the approach requires small certification
overhead in contrast to [15,56,57].

After background in Sect. 2, Sect. 3 introduces the notion of periodic signals.
In Sect. 4 we present an extended variant of phase abstraction that simplifies

286 N. Froleyks et al.

the original model with periodic signals. In Sect. 5 we define a refined certificate
format and present a general certification approach for phase abstraction. In
Sect. 6 we describe the implementation of mc2 and then show the effectiveness
of our new certification approach in Sect. 7.

2 Background

Given a set of Boolean variables V, a literal l is either a variable v ∈ V or its
negation ¬v. A cube is considered to be a non-contradictory set of literals. Let c
be such a cube over a set of variables L and assume L′ are copies of L, i.e., each
l ∈ L corresponds bijectively to an l′ ∈ L′. Then we write c(L′) to denote the
resulting cube after replacing the variables in c with its corresponding variables
in L′. For a Boolean formula f , we write f |l and f |¬l to denote the formula after
substituting all occurrences of the literal l with � and ⊥ respectively. We use
equality symbols � [24] and ≡ to denote syntactic and semantic equivalence and
similarly → and ⇒ to denote syntactic and semantic logical implication.

Definition 1 (Circuit). A circuit C is represented by a quintuple (I, L,R, F,
P), where I and L are (finite) sets of input and latch variables. The reset func-
tions are given as R = {rl(I, L) | l ∈ L} where the individual reset function
rl(I, L) for a latch l ∈ L is a Boolean formula over inputs I and latches L.
Similarly the set of transition functions is given as F = {fl(I, L) | l ∈ L}.
Finally P (I, L) denotes a safety property corresponding to set of good states
again encoded as a Boolean formula over the inputs and latches.

This notion can be extended to more general circuits involving for instance
word-level semantics or even continuous variables by replacing in this definition
Boolean formulas by corresponding predicates and terms in first-order logic mod-
ulo theories. For simplicity of exposition we focus in this work on Boolean seman-
tics, which matches the main application area we are targeting, i.e., industrial-
scale gate-level hardware model checking. We claim that extensions to “circuits
modulo theories” are quite straightforward.

A concrete state is an assignment to variables I ∪L. Therefore the set of reset
states of a circuit is the set of satisfying assignments to R(L) =

∧

l∈L

(l � rl(I, L)).

Note the use of syntactic equality “�” in this definition.
As in previous work [15] we assume acyclic reset functions. Therefore R(L)

is always satisfiable. A circuit with acyclic reset functions is called stratified.
As in bounded model checking [11], with Ii and Li “temporal” copies of I

and L at time step i, the unrolling of a circuit up to length k is expressed as:

Uk =
∧

i∈[0,k)

(Li+1 � F (Ii, Li)).

Cube simulation [57] subsumes ternary simulation such that a lasso found by
ternary simulation can also be found via cube simulation. A cube simulation is
a sequence of cubes c0, . . ., cδ, . . ., cδ+ω over latches L such that (1) R(L) ⇒ c0;

Certifying Phase Abstraction 287

(2) ci ∧ (L′ � F (I, L)) ⇒ c′
i+1 for all i ∈ [0, δ + ω), where c′

i+1 is the primed
copy of ci+1. It is called a cube lasso if cδ+ω ∧ (L′ � F (I, L)) ⇒ c′

δ. In which
case δ is the stem length and ω is the loop length. For δ = 0, the initial cube is
already part of the loop and for ω = 0, the lasso ends in a self-loop.

3 Periodic Signals

In sequential hardware designs, signals that eventually stabilize to a constant,
i.e., to � or ⊥, after certain initialization steps are called transient signals
[20,57], whereas oscillating signals have clock-like or periodic behaviors. A sim-
plest example of a clock is a latch that always oscillates between � and ⊥.

Since hardware designs typically consist of complex initialization logic, there
are occurrences of delayed oscillating signals, like clocks that start ticking after
several reset steps, with a combination of transient and clock behaviours. We
generalize this concept to categorize latches as periodic signals associated with
a duration (i.e., the number of time steps for which a signal is delayed) and
a phase number (i.e., the period length in a periodic behavior). Moreover, our
generalization also captures equivalent and antivalent signals [26], as well as
those that exhibit partial periodic behaviours. See Fig. 1 for an example.

Fig. 1. An example of a cube lasso over the latches l ∈ L = {a, b, c, d}. In the example
the tall rectangles represent cubes as partial assignments, i.e., the second cube from
the left is (¬a) ∧ b ∧ d. Phase 0 and 1 are marked on top of the cubes. As shown,
duration d = 1 and phase number n = 2 yield a high number of useful signals for this
cube lasso. Each latch l is associated with a periodic pattern λl on the right describing
its behaviors for phase 0 and 1. If a latch is missing from a cube for a certain phase, it
has no constraint thus we use the equality of the latch to itself in the signal. Latch a
turns out to be a simple clock delayed by one step. Latches b and d behave clock-like
but only in phase 0. Latch c always has the opposite value of latch b in phase 1. Note
that we could also have ¬c in phase 1 of signal λb but choosing a single representative
for a set of equivalent signals is beneficial for the following simplification steps.

Definition 2 (Periodic Signal). Given a circuit C = (I, L,R, F, P) and a
cube lasso c0, . . .cδ, . . ., cδ+ω. A periodic signal λl for a latch l ∈ L is defined
as λl = (d, [v0, . . ., vn−1]) where d ∈ N, n ∈ N

+ and vi is a latch literal or
a constant, with d ≤ δ. We further require that there exist k0, k1 ∈ N

+ with

288 N. Froleyks et al.

k0 · n + d = δ and k1 · n = ω + 1 such that for all i ∈ [0, n) and j ∈ [0, k0 + k1)
we have ci+j·n ⇒ (l � vi).

For a signal λl = (d, [v0, . . ., vn−1]) we will write λi
l to refer to the i-th element

of [v0, . . ., vn−1], which we refer to as its phase. See Fig. 1 for an example where
k0 = 1 and k1 = 2.

Fig. 2. Circuit transformation using phase abstraction.

4 Extending Phase Abstraction

In this section, we revisit and extend phase abstraction by defining it as a
sequence of preprocessing steps, as illustrated in Fig. 2. Differently from the
approach in [16], we present phase abstraction as part of a compositional frame-
work, that handles a more general class of periodic signals. As our approach
subsumes temporal decomposition adopted from the framework in [57], we first
apply circuit forwarding [57] for duration d (i.e., unrolling the reset states of a
circuit by d steps) before unfolding is performed.

Figure 2 illustrates the flow of phase abstraction. The process begins by using
cube simulation to identify a set of periodic signals as defined in Sect. 3 and
computing an optimal duration and phase number based on a selected cube
lasso. Once the circuit is unfolded n times, factoring is performed by assigning
constant values to the clock-like signals as well as replacing latches with their
equivalent or antivalent representative latches in each phase. Next, the property
is rewritten by applying structural rewriting techniques and the circuit is further
simplified using cone-of-influence reduction. Finally, the simplified circuit (Cn+4

in Fig. 2) is checked using a base model checking approach such as IC3/PDR [17]
or continue to be preprocessed further.

In Fig. 3, we show intuitively an example of a circuit with 4-bit states repre-
senting 0,...,9 and so on, where the initial state is 0. After forwarding the circuit
by one step (d = 1), the initial state becomes 1. Subsequently with an unfolding
of n = 3, every state (marked with rectangles) in the unfolded circuit consists of
three states from the original circuit. We introduce the formal definitions below.

Unfolding a circuit simply means to copy the transition function multiple
times to compute n steps of the original circuit at once. Each copy of the transi-
tion function only has to deal with a single phase and can therefore be optimized.

Definition 3 (Unfolded circuit). Given a circuit C = (I, L,R, F, P) and a
phase number n ∈ N

+. The unfolded circuit C ′ = (I ′, L′, R′, F ′, P ′) is:

Certifying Phase Abstraction 289

Fig. 3. An example of a forwarded (d = 1) and unfolded (n = 3) circuit. The circles
denote states in the original circuit (0 is the initial state). The rectangle are states in
the unfolded circuit.

1. I ′ = I0 ∪ · · · ∪ In−1; L′ = L0 ∪ · · · ∪ Ln−1.
2. R′ = {r′

l | l ∈ L′} : for l ∈ L0, r′
l = rl;

for i ∈ (0, n), li ∈ Li, r′
li = F (Ii, Li−1).

3. F ′ = {f ′
l | l ∈ L′} : for l ∈ L0, f ′

l = fl(I0, Ln−1);
for i ∈ (0, n), li ∈ Li, f ′

li = fli(Ii, Li−1).
4. P ′ =

∧

i∈[0,n)

P (Ii, Li).

We obtain a simplified circuit by replacing the periodic signals with constants
and equivalent/antivalent latches in the unfolded circuit.

Definition 4 (Factor circuit). For a fixed duration d and phase number n,
given a d-forwarded and n-unfolded circuit C = (I, L,R, F, P) and a periodic
signal with duration d and phase number n for each latch, the factor circuit
C ′ = (I, L,R′, F ′, P) is defined by:

R′ = {r′
l | l ∈ L} :

– r′
li = λi

l, if λi
l ∈ {⊥,�};

– r′
li = rλi

l
, if λi

l ∈ L.

– r′
li = ¬r¬λi

l
, otherwise.

F ′ = {f ′
l | l ∈ L} :

– f ′
li = λi

l, if λi
l ∈ {⊥,�};

– f ′
li = fλi

l
, if λi

l ∈ L.

– f ′
li = ¬f¬λi

l
, otherwise.

Replaced latches will be removed by a combination of rewriting and cone-
of-influence reduction introduced in the following definitions. There are various
rewriting techniques also including SAT sweeping [30,38,43–45,59].

Definition 5 (Rewrite circuit). Given a circuit C = (I, L,R, F, P), a rewrite
circuit C ′ = (I, L,R, F, P ′) satisfies P ≡ P ′.

For a given circuit, we apply cone-of-influence reduction to obtain a reduced
circuit such that latches and inputs outside the cone of influence are removed.

Definition 6 (Reduced circuit). Given a circuit C = (I, L,R, F, P). The
reduced circuit C ′ = (I ′, L′, R′, F ′, P) is defined as follows:
– I ′ = I ∩ coi(P);
– R′ = {rl | l ∈ L′};

– L′ = L ∩ coi(P);
– F ′ = {fl | l ∈ L′},

where the cone of influence of the property coi(P) ⊆ (I ∪ L) is defined as
the smallest set of inputs and latches such that vars(P) ⊆ coi(P) as well as
vars(rl) ⊆ coi(P) and vars(fl) ⊆ coi(P) for all latches l ∈ coi(P).

290 N. Froleyks et al.

5 Certification

We define a revised certificate format that allows smaller and more optimized cer-
tificates. We then propose a method for producing certificates for phase abstrac-
tion. The proofs for our main theorems can be found in the Appendix.

5.1 Restricted Simulation

In the following, we define a new variant of the stratified simulation relation [15],
which we call restricted simulation, that considers the intersection of latches
shared between two given circuits as a common component.

Definition 7 (Restricted Simulation). Given stratified circuits C ′ and C
with C ′ = (I ′, L′, R′, F ′, P ′) and C = (I, L,R, F, P). We say C ′ simulates C
under the restricted simulation relation iff

1. For l ∈ (L ∩ L′), rl(I, L) ≡ r′
l(I

′, L′).
2. For l ∈ (L ∩ L′), fl(I, L) ≡ f ′

l (I
′, L′).

3. P ′(I ′, L′) ⇒ P (I, L).

This new simulation relation differs from [15,56], where inputs were required
to be identical in both circuits (I = I ′), and latches in C had to form a subset of
latches in C ′ (L ⊆ L′). Therefore, under those previous “combinational” [56] or
“stratified” [15] simulation relations the simulating circuit C ′ cannot have fewer
latches than L. This is a feature we need for instance when incorporating cer-
tificates for cone-of-influence reduction [22], a common preprocessing technique.
It opens up the possibility to reduce certificate sizes substantially.

Still, as for stratified simulation, restricted simulation can be verified by
three simple SAT checks, i.e., separately for each of the three requirements in
Definition 7.

Definition 8 (Semantic independence). Let V be a set of variables and v ∈
V. Then a formula f(V) is said to be semantically independent of v iff

f(V)|v ≡ f(V)|¬v.

Semantic dependency [28,40,49,53] allows us to assume that a formula only
depends on a subset of variables, which without loss of generality simplifies proofs
used for the rest of this section. The stratified assumption for reset functions
entails no cyclic dependencies thus R′(L′) is satisfiable. A reset state in a circuit
is simply a satisfying assignment to the reset predicate R(L). Based on the reset
condition (Definition 7.1), it is however necessary to show that for every reset
state in C it can always be extended to a reset state in C ′, while the common
variables have the same assignment in both circuits. This is stated in the lemma
below, and the proofs can be found in the Appendix.

Lemma 1. Let C = (I, L,R, F, P) and C ′ = (I ′, L′, R′, F ′, P ′) be two stratified
circuits satisfying the reset condition defined in Definition 7.1. Then R′(L ∩ L′)
is semantically dependent only on their common variables.

Certifying Phase Abstraction 291

In fact, semantic independence is a direct consequence of restricted simula-
tion; thus no separate check is required. We make a further remark that if the
reset function is dependent on an input variable, then it has to be an input
variable common to both circuits.

Based on this, we conclude with the main theorem for restricted simulation
such that C is safe if C ′ is safe (i.e., no bad state that violates the property is
reachable from any initial state).

Theorem 1. Let C = (I, L,R, F, P) and C ′ = (I ′, L′, R′, F ′, P ′) be two strati-
fied circuits, where C ′ simulates C under restricted simulation.
If C ′ is safe, then C is also safe.

Intuitively, if there is an unsafe trace in C, Definition 7.1 together with
Lemma 1 allow us to find a simulating reset state and transition it with Defini-
tion 7.2 to a simulating state also violating the property in C ′ by Definition 7.3.
Here a state in C ′ simulates a state in C if they match on all common variables.
Building on this, we present witness circuits as a format for certificates. Verifying
the restricted simulation relation requires three SAT checks, and another three
SAT checks are needed for validating the inductive invariant [56]. Therefore cer-
tification requires in total six SAT checks as well as a polynomial time check for
reset stratification.

Definition 9 (Witness circuit). Let C = (I, L,R, F, P) be a stratified circuit.
A witness circuit W = (J,M, S,G,Q) of C satisfies the following:

– W simulates C under the restricted simulation relation.
– Q is an inductive invariant in W .

The witness circuit format subsumes [15,57], thus every witness circuit in
their format is also valid under Definition 9.

Fig. 4. Certification for (extended) phase abstraction. Base model checking is per-
formed on circuit Cn+4, which produces a witness circuit Wn+2, that certifies
Cn+2, Cn+3, and Cn+4. We construct step-wise to obtain W0, which is a certificate
for the entire model checking procedure.

5.2 Certifying Phase Abstraction

The certificate format is generic, subsumes [57], and is designed to potentially be
used as a standard in future hardware model checking competitions. We proceed

292 N. Froleyks et al.

to demonstrate how a certificate can be constructed for a model checking pipeline
that includes phase abstraction. The theorems in this section state that this
construction guarantees that a certificate will be produced. We illustrate our
certification pipeline in Fig. 4. After phase abstraction and base model checking,
we can build a certificate backwards based on the certificate produced by the
base model checker. The following theorem states that the witness circuit of the
reduced circuit serves as a witness circuit for the original circuit too.

Theorem 2. Given a circuit C = (I, L,R, F, P) and its reduced circuit C ′ =
(I ′, L′, R′, F ′, P ′). A witness circuit of C ′ is also a witness circuit of C.

The outcome of rewriting is a circuit with a simplified property that main-
tains semantic equivalence with the original property. Therefore in our frame-
work, the certificate for the simplified property is also valid for the original
property. Furthermore, certificates can be optimized by rewriting at any stage.
We summarize this in the following proposition.

Proposition 1. Given a circuit C and its rewrite circuit C ′. A witness circuit
of C ′ is also a witness circuit of C.

We define the composite witness circuit to combine the certificates for cube
simulation and the factor circuit.

Definition 10 (Composite witness circuit). Given a stratified circuit C =
(I, L,R, F, P) and its factor circuit C ′ = (I ′, L′, R′, F ′, P ′), and the unfolded loop
invariant φ = ∨i∈[0,m) ∧j∈[0,n) ci∗n+j+d, with m = (δ + ω − d + 1)/n, obtained
from the cube lasso. Let W ′ = (J ′,M ′, S′, G′, Q′) be a witness circuit of C ′. The
composite witness circuit W = (J,M, S,G,Q) is defined as follows:
1. J = I ∪ J ′.
2. M = L ∪ (M ′\L′).
3. S = {sl | l ∈ M}:

(a) for l ∈ L, sl = rl;
(b) for l ∈ M ′\L′, sl = s′

l.

4. G = {gl | l ∈ M}:
(a) for l ∈ L, gl = fl;
(b) for l ∈ M ′\L′, gl = g′

l.

5. Q = φ(L) ∧ Q′(J ′,M ′).

Theorem 3. Given circuit C = (I, L,R, F, P), and factor circuit C ′ = (I ′, L′,
R′, F ′, P ′). Let W ′ = (J ′,M ′, S′, G′, Q′) be a witness circuit of C ′, and W =
(J,M, S,G,Q) constructed as in Definition 10. Then W is a witness circuit of
C.

Fig. 5. Every fully initialized state of a 3-folded witness circuit contains 3 original
states that form an unfolded state. Two consecutive 3-folded states contain either the
same unfolded states or two states consecutive in the unfolded circuit.

Certifying Phase Abstraction 293

In the construction of an n-folded witness circuit from the unfolded witness
W ′, a single instance of W ′’s latches (N), yet multiples of the original latches
L are used. As illustrated in Fig. 5, these L record a history, contrasting with
their role in the unfolded circuit where they calculate multi-step transitions.

Definition 11 (n-folded witness circuit). Given a circuit C = (I, L,R, F, P)
with a phase number n ∈ N

+, and its unfolded circuit C ′ = (I ′, L′, R′, F ′, P ′).
Let W ′ = (J ′,M ′, S′, G′, Q′) be the witness circuit of C ′. The n-folded witness
circuit W = (J,M, S,G,Q) is defined as follows:

1. J = I0 ∪ J0, where I0 and J0 are I and J ′ respectively.
2. M = I1 · · · Im ∪ L0 · · · Lm ∪ N ∪ J1 ∪ {b0 · · · bm, e0 · · · en−2},

where m = 2 × n − 2, N = M ′ \ L′, and Ii, Li are copies of I and L, and J1

is a copy of J ′.
3. S = {sl | l ∈ M}:

(a) sb0 = �;
(b) For i ∈ (0,m], sbi = ⊥.
(c) For i ∈ [0, n − 1), sei = ⊥.
(d) For l ∈ L0, sl = r′

l.
(e) For l ∈ (I1 · · · Im ∪ L1 · · · Lm ∪ J1), sl = l.
(f) For l ∈ N, sl = s′

l.
4. G = {gl | l ∈ M}:

(a) gb0 = �.
(b) For i ∈ [1,m], gbi = bi−1.
(c) ge0 = bn−1 ∧ ¬en−2.
(d) For i ∈ [1, n − 1), gei = ei−1 ∧ ¬en−2.
(e) For l ∈ L0, gl = fl.
(f) For l1 ∈ J1, gl1 = l0.
(g) For i ∈ [1,m], li ∈ (Ii ∪ Li), gli = li−1.
(h) For l ∈ N,

gl = ite(en−2, g′
l(J

1,M ′ ∩ (Im−n+1 · · · Im · · · Lm−n+1 · · · Lm ∪ N)), l).
5. Q =

∧

i∈[0,6]

qi :

(a) q0 = P (I0, L0).
(b) q1 = b0.
(c) q2 =

∧

i∈[1,m]

(bi → bi−1).

(d) q3 =
∧

i∈[1,m]

(bi → (Li � F (Ii−1, Li−1))).

(e) q4 =
∧

i∈[1,m]

((¬bi ∧ bi−1) → (R(Li−1) ∧ S′(N))).

(f) q5 = bm → (
∨

i∈[0,n)

((
∧

j∈[i,n−1)

¬ej) ∧ (
∧

j∈[0,i)

ej)∧

Q′(J0,M ′ ∩ (Li · · · ∪ Li+n−1 ∪ N))).
(g) q6 =

∧

i∈[1,n−2]

(ei → ei−1).

(h) q7 =
∧

i∈[0,n−2]

(ei → bn+i).

294 N. Froleyks et al.

(i) q8 =
∧

i∈[0,n−2)

((¬bm ∧ bn+i) → ei).

The bis are used for encoding initialization. So that inductiveness is ensured
when not all copies are initialized. The n − 1 bits ei are used to determine
which set of n consecutive original states form an unfolded state (a state in the
unfolded circuit). This information is used to determine on which copies the
unfolded property needs to hold and to transition the latches in N (the part of
the witness circuit added by the backend model checker) once every n steps.

Theorem 4. Given a circuit C = (I, L,R, F, P) with a phase number n ∈
N

+, its unfolded cicuit C ′ = (I ′, L′, R′, F ′, P ′) with a witness circuit W ′ =
(J ′,M ′, S′, G′, Q′). Let W = (J,M, S,G,Q) be the circuit constructed as in
Definition 11. Then W is a witness circuit of C.

After the witness circuit has been folded, the same construction from [57]
can be used to construct the backward witness. With that, the pipeline outlined
in Fig. 4 is completed. If phase abstraction is the first technique applied by the
model checker, a final witness is obtained. Otherwise, further witness processing
steps still need to be performed. An example of the entire process is illustrated
in Fig. 6.

6 Implementation

In this section, we present mc2, a certifying model checker implementing phase
abstraction and IC3. We implement our own IC3 since no existing model checker
supports reset functions or produces certificates in the desired format. We used
fuzzing to increase trust in our tool. The version of mc2 used for the evaluation,
was tested on over 25 million randomly generated circuits [14] in combination
with random parameter configurations. All produced certificates where verified.

To extract periodic signals we perform ternary simulation [52] while using a
forward-subsumption algorithm based on a one-watch-literal data structure [58]
to identify supersets of previously visited cubes, and thereby a set of cube lassos.
For each cube lasso we consider every factor of the loop length ω as a phase
number candidate n. We also consider every duration d, that renders the leftover
tail length (δ − d) divisible by n. To keep the circuit sizes manageable, we limit
both n and d to a maximum of 8. We call each pair (d, n) an unfolding candidate
and compute the corresponding periodic signal (Definition 2) for each latch.

For each phase, equivalences are identified by inserting a bit string corre-
sponding to the signs of each latch into a hash table. After identifying the sig-
nals, forwarding and unfolding are performed on a copy of the circuit, followed
by rudimentary rewriting. Currently the rewriting does not include structural
hashing and is mostly limited to constant propagation. Afterwards a sequential
cone-of-influence analysis starting from the property is performed. After per-
forming these steps for each candidate, we pick the duration-phase pair that
yields a circuit with the fewest latches and give it to a backend model checker.

Certifying Phase Abstraction 295

Fig. 6. A concrete example of the model checking and certification pipeline. The origi-
nal circuit has two latches; the bottom latch alternates and the top copies the previous
value of this clock. The property is that at least one bit is unset. Bad states are marked
gray. After unfolding with phase number two, the size of the state space is squared.
Since the bottom bit is periodic, we can replace it with a constant in each phase (fac-
tor). On this circuit terminal model checking is performed, since the property is already
inductive (no transition from good to bad), the circuit serves as its own witness. To
produce the final witness circuit, the clock is added back as a latch, and the property
is extended with the loop invariant asserting that the clock has the correct value for
each phase. Lastly, the circuit is folded to match the speed of the original circuit. Three
initialization bits bi are introduced and one additional bit e0 that determins which pair
of consecutive states need to fulfill the property (0 for the right pair and 1 for the left).
This check is only part of the property once full initialization is reached. For this final
witness circuit, only the good states are depicted. Also, the first two states represent
sets of good states with the same behavior.

We evaluated the preprocessor on three backend model checkers: the open-
source k-induction-based model checker McAiger [12](Kind in the following),
the state-of-the-art IC3 implementation in ABC [18] and our own version of
IC3 that supports reset functions and produces certificates. Since ABC does not
support reset functions, it is not able to model check any forwarded circuit (note
that implementing this feature on ABC is also a non-trivial task), therefore for
this configuration we only ran phase abstraction without forwarding thus no
temporal decomposition.

Our IC3 implementation on mc2 does feature cube minimization via ternary
simulation [25], however it is missing proof-obligation rescheduling. In fact, we
currently use a simple stack of proof obligations as opposed to a priority queue.
Despite using one SAT solver instance per frame, we also do not feature cones-
on-demand, but instead always translate the entire circuit using Tseitin [55].

Lastly, we also modified the open source implementation of Certifaiger [21]
to support certificates based on restricted simulation. For a witness circuit C ′ of

296 N. Froleyks et al.

C, the new certificate checker encodes the following six checks as combinatorial
AIGER circuits and then uses the aigtocnf to translate them to SAT:

A The property of C ′ holds in all initial states.
B The property of C ′ implies the property for successor states.
C The property of C ′ holds in all good states.
D The reset functions of common latches are equivalent. (Definition 7.1)
E The transition functions of common latches are equivalent. (Definition 7.2)
F The property of C ′ implies the property of C. (Definition 7. 3)

The first three checks are unchanged and encode the standard check for P ′

being an inductive invariant in C ′. Since P ′ is both the inductive invariant and
the property we are checking, C can technically be omitted. However, in our
implementation, the inductiveness checker is an independent component from
the simulation checker and would also works for scenarios where the inductive
invariant is a strengthening of the property in C ′.

7 Experimental Evaluation

This section presents experimental results for evaluating the impact of prepro-
cessing on the different backends, as well as the effectiveness of our proposed
certification approach. The experiments were run in parallel on a cluster of 32
nodes. Each node was equipped with two 8-core Intel Xeon E5-2620 v4 CPUs
running at 2.10 GHz and 128 GB of main memory. We allocated 8 instances to
each node, with a timeout of 5000 s for model checking and 10 000 s for certificate
checking. Memory is limit to 8 GB per instance in both cases.

The benchmarks are obtained from HWMCC2010 [13] which contains a good
number of industrial problems. As we observe from the experiments in general,
prepossessing is usually fast. Ignoring one outlier in our benchmark set, it com-
pletes within an average of 0.07 seconds and evaluates no more than 17 unfold-
ing candidates per benchmark. Interestingly, for the outlier “bobsmnut1”, 3019
unfoldings are computed for 179 different cube lassos within 34 seconds.

Table 1 presents the effect of our preprocessing on different backends, further
illustrated in Fig. 7. Our preprocessor was able to improve the performance of the
sophisticated IC3/PDR implementation in ABC, allowing us to solve five more
instances, all from the intel family. For each benchmark from this family, our
heuristic computed an optimal phase number of 2. A likely explanation for this is
that the real-world industrial designs tend to contain strict two-phase clocks [6].
The positive effect of phase abstraction is also clear in combination with the k-
induction (Kind) backend. Circuit forwarding provides a further improvement,
that is especially notable on the prodcell benchmarks. These also illustrate how
forwarding enables more successful unfolding. Without forwarding, preprocessing
only unfolds 61 out of the 818 benchmarks with an average phase number of 2,
with forwarding 152 circuits are unfolded with an average of 4.

Even though our prototype implementation of IC3 is missing a number of
important features present in ABC, it still solves a large number of benchmarks.

Certifying Phase Abstraction 297

Table 1. We presents the effect of preprocessing in combination with different backend
engines on model checking time. We compare no preprocessing to only phase abstrac-
tion without forwarding (PA) and full preprocessing (Full). Note that, ABC does not
support reset functions and can therefore not be combined with full preprocessing.
For each model we present the phase number without forwarding n for PA and the
duration d and phase number n corresponding to Full. Models where the property
holds are marked as safe. The first two rows present the number of solved instances
and the PAR2 score [29] over all 818 benchmarks. The table shows all instances where
preprocessing had either a positive or negative impact on model checking success, with
the exception of those instances rendered unsolvable for our IC3 implementation by
forwarding.

Model ABC Our IC3 Kind

Safe n d n PA PA Full PA Full

Solved 740 745 715 715 604 533 538 544

PAR2 996 941 1357 1351 2699 3533 3472 3399

abp4p2ff � 1 1 1 1.12 1.08 6.35 6.23 6.18 2.50 2.50

bjrb07 3 0 3 0.12 0.10 0.11 0.03 0.07 0.03 0.04

nusmvb5p2 5 0 5 0.12 0.10 0.01 0.01 0.01 0.01 0.01

nusmvb10p2 5 0 5 0.22 0.13 0.10 0.03 0.04 0.02 0.02

prodcell0 � 1 5 8 26.97 27.07 228.46 243.73 49.76 2.37

prodcell0neg � 1 5 8 16.36 15.93 230.57 230.67 36.62 2.39

prodcell1 � 1 7 8 23.45 23.38 654.21 665.86 59.67 4.43

prodcell1neg � 1 7 8 28.36 28.33 681.11 738.61 61.74 4.48

prodcell2 � 1 7 8 24.98 24.58 661.71 663.37 56.74 4.43

prodcell2neg � 1 7 8 20.23 20.28 778.39 768.75 56.14 4.47

bc57sen0neg � 1 1 1 503.61 494.55 910.72 906.87 1760.41 830.92

abp4ptimo � 1 1 1 4.14 4.13 28.93 29.91 6.32 608.55

boblivea 1 2 1 3.70 3.68 7.85

bobsm5378d2 1 8 1 4.04 4.12 88.36

bobsmnut1 8 5 8 10.95 40.08 2504.07

prodcell3neg � 2 2 8 27.88 10.86 310.22 837.43 2.73

prodcell4neg � 2 2 8 44.31 9.90 404.12 26.04 2.77

prodcell3 � 2 2 8 23.45 11.24 320.23 1103.29 19.22 2.48

prodcell4 � 2 2 8 31.40 10.08 398.83 29.71 18.67 2.68

pdtvisvsar29 1 2 5 1523.73 0.36 0.29 0.40

intel042 � 1 3 2 3876.04 4061.38

intel022 2 2 2 1852.29

intel021 2 2 2 2752.86 651.56

intel023 2 2 2 2257.94 3728.38

intel029 2 2 2 2550.14 3437.64

intel024 2 2 2 167.96 676.64 4526.60

intel019 2 2 2 2716.40

However, as opposed to ABC it does lose a number of benchmarks with phase
abstraction. This can be explained by the lack of sophisticated rewriting that
can exploit the unfolded circuits structure. The addition of forwarding is highly

298 N. Froleyks et al.

Fig. 7. Comparison of model checking performance. We compare four pairs of config-
urations; the three backend engines with and without phase abstraction (with fixed
duration 0) and for Kind we present the effect of additionally allowing forwarding. The
size of the markers represents n + d. The dots represent instances where the prepro-
cessing heuristic decided not to alter the circuit. The red lines mark the timeout of
5000 s. Markers beyond that line represent instances solved by one configuration but
not the other. (Color figure online)

detrimental to performance, losing 115 instances. This is due to our implemen-
tation following the PDR design outlined in [25]. It requires any blocked cube
not to intersect the initial states after generalization. If only a single reset state
exists this check is linear in the size of the cube. However, in the presence of reset
functions it is implemented with a SAT call. While also slower the main problem
however is that the reset-intersection check is also more likely to block general-
ization. On the 115 lost benchmarks generalization failed 96% of the time, while
it only failed in 1.8% of the cases without forwarding. We keep the optimization
of our IC3 implementation in the presence of reset functions for future work.

Figure 8 displays certification results on mc2 in comparison to model check-
ing time. IC3 provides certificates that are easily verifiable, as confirmed by
our experiments with cumulative overhead of only 3%. The addition of phase
abstraction (i.e., including constructing n-folded witnesses as in Fig. 4, without
witness back-warding) does not bring significant additional overhead. When for-
warding is allowed, the certification overhead increases to 10%. The run time of
certificates generation and encoding to SAT is negligible for all configurations.
The certification time is dominated by the SAT solving time for the transition
(Definition 7.2) and consecution check. Overall, this is a significant improvement
over related work from [57] which reported 1154% overhead on the same set of
benchmarks using a k-induction engine as the backend.

Certifying Phase Abstraction 299

Fig. 8. Certification vs. model checking time for three configurations of our IC3 engine.
The legend shows the cumulative overhead of including certification for all solved
instances. The size of the markers represents n+d. The dots represent instances where
preprocessing did not alter the circuit.

8 Conclusion

In this paper, we present a certificate format that can be effectively validated by
an independent certificate checker. We demonstrate its versatility by applying
it to an extended version of phase abstraction, which we introduce as one of
the contributions of this paper. We have implemented the proposed approach
on a new certifying model checker mc2. The experimental results on HWMCC
instances show that our approach is effective and yields very small certification
overhead, as a vast improvement over related work. Our certificate format allows
for smaller certificates and is designed to be possibly used in hardware model
checking competitions as a standardized format.

Beyond increasing trust in model checking, certificates can be utilized in
many other scenarios. For instance, such certificates will allow the use of
model checkers as additional hammers in interactive theorem provers such as
Isabelle [48] via Sledgehammer [50], with the potential of significantly reducing
the effort needed for using theorem provers in domains where model checking
is essential, such as formal hardware verification, our main application of inter-
est. Currently in Isabelle, Sledgehammer allows to encode the current goal for
automatic theorem provers or SMT solvers and then call one of many tools
to solve the problem. The tool then provides a certificate which is lifted to a
proof that can be replayed in Isabelle. We plan to add our model checker as an
additional hammer to increase the automatic proof capability of Isabelle. This
further motivates us to investigate certificate trimming via SAT proofs.

300 N. Froleyks et al.

Acknowledgements. This work is supported by the Austrian Science Fund (FWF)
under the project W1255-N23, the LIT AI Lab funded by the State of Upper Austria,
the ERC-2020-AdG 101020093, the Academy of Finland under the project 336092 and
by a gift from Intel Corporation.

References

1. Amjad, H.: Programming a symbolic model checker in a fully expansive theorem
prover. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 171–187.
Springer, Heidelberg (2003). https://doi.org/10.1007/10930755 11

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Balyo, T., Heule, M.J.H.: Proceedings of SAT competition 2016 – solver and bench-

mark descriptions. Department of Computer Science Series of Publications B, vol.
B-2016-1. University of Helsinki (2016)

4. Barbosa, H., et al.: Generating and exploiting automated reasoning proof certifi-
cates. Commun. ACM 66(10), 86–95 (2023). https://doi.org/10.1145/3587692

5. Barbosa, H., et al.: Flexible proof production in an industrial-strength SMT solver.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 15–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6 3

6. Baumgartner, J., Heyman, T., Singhal, V., Aziz, A.: Model checking the IBM
gigahertz processor: an abstraction algorithm for high-performance netlists. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 72–83. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 9

7. Baumgartner, J., Heyman, T., Singhal, V., Aziz, A.: An abstraction algorithm for
the verification of level-sensitive latch-based netlists. Formal Methods Syst. Des.
23, 39–65 (2003)

8. Beyer, D., Chien, P., Lee, N.: Bridging hardware and software analysis with Btor2C:
a word-level-circuit-to-C translator. In: Sankaranarayanan, S., Sharygina, N. (eds.)
TACAS 2023. LNCS, vol. 13994, pp. 152–172. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30820-8 12

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: SIGSOFT FSE, pp. 326–337. ACM
(2016)

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022)

11. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 739–764. IOS Press (2021). https://doi.
org/10.3233/FAIA201002

12. Biere, A., Brummayer, R.: Consistency checking of all different constraints over
bit-vectors within a SAT solver. In: FMCAD, pp. 1–4. IEEE (2008)

13. Biere, A., Claessen, K.: Hardware model checking competition 2010 (2010). http://
fmv.jku.at/hwmcc10/

14. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report,
FMV Reports Series, Inst. FMV, JKU Linz, Austria (2011)

15. Biere, A., Yu, E., Froleyks, N.: Stratified certification for k-induction. In: FMCAD,
vol. 3, p. 59. TU Wien Academic Press (2022)

16. Bjesse, P., Kukula, J.H.: Automatic generalized phase abstraction for formal veri-
fication. In: ICCAD, pp. 1076–1082. IEEE Computer Society (2005)

https://doi.org/10.1007/10930755_11
https://doi.org/10.1145/3587692
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/3-540-48683-6_9
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
http://fmv.jku.at/hwmcc10/
http://fmv.jku.at/hwmcc10/

Certifying Phase Abstraction 301

17. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

18. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

19. Case, M.L., Baumgartner, J., Mony, H., Kanzelman, R.: Approximate reachabil-
ity with combined symbolic and ternary simulation. In: FMCAD, pp. 109–115.
FMCAD Inc. (2011)

20. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by
temporal decomposition. In: FMCAD, pp. 17–24. IEEE (2009)

21. Certifaiger: Certifaiger (2021). http://fmv.jku.at/certifaiger
22. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model Checking,

2nd edn. MIT Press, Cambridge (2018)
23. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model

Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8
24. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In:

Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2
volumes), pp. 611–706. Elsevier and MIT Press (2001)

25. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. FMCAD Inc. (2011)

26. van Eijk, C.A.J., Jess, J.A.G.: Exploiting functional dependencies in finite state
machine verification. In: ED&TC, pp. 9–14. IEEE Computer Society (1996)

27. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 31

28. Fleury, M., Biere, A.: Mining definitions in Kissat with Kittens. Formal Methods
Syst. Des. 1–24 (2023)

29. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: Sat competition 2020.
Artif. Intell. 301, 103572 (2021)

30. Fujita, M.: Toward unification of synthesis and verification in topologically con-
strained logic design. Proc. IEEE 103(11), 2052–2060 (2015)

31. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for LTL model checking. In:
FMCAD, pp. 1–9. IEEE (2018)

32. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for SAT-based model check-
ing. Formal Methods Syst. Des. 57(2), 178–210 (2021)

33. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 18

34. Heule, M.J.: Proofs of unsatisfiability. In: Handbook of Satisfiability, pp. 635–668.
IOS Press (2021)

35. Heule, M.J., Biere, A.: Proofs for satisfiability problems. In: All About Proofs,
Proofs for All, vol. 55, no. 1, pp. 1–22 (2015)

36. Hoenicke, J., Schindler, T.: A simple proof format for SMT. In: Déharbe, D.,
Hyvärinen, A.E.J. (eds.) Proceedings of the 20th Internal Workshop on Satisfia-
bility Modulo Theories co-located with the 11th International Joint Conference on
Automated Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference
(FLoC 2022), Haifa, Israel, 11–12 August 2022. CEUR Workshop Proceedings,
vol. 3185, pp. 54–70. CEUR-WS.org (2022)

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
http://fmv.jku.at/certifaiger
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18

302 N. Froleyks et al.

37. Kaufmann, D., Fleury, M., Biere, A., Kauers, M.: Practical algebraic calculus and
nullstellensatz with the checkers pacheck and pastèque and nuss-checker. Formal
Methods Syst. Des. 1–35 (2022)

38. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 21(12), 1377–1394 (2002)

39. Kuismin, T., Heljanko, K.: Increasing confidence in liveness model checking results
with proofs. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
32–43. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 3

40. Lagniez, J.M., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell.
281, 103229 (2020)

41. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020)

42. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: FMCAD, pp. 117–124. IEEE (2016)

43. Mishchenko, A., Chatterjee, S., Brayton, R.K.: Dag-aware AIG rewriting a fresh
look at combinational logic synthesis. In: DAC, pp. 532–535. ACM (2006)

44. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combi-
national equivalence checking. In: ICCAD, pp. 836–843. ACM (2006)

45. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: a unifying
representation for logic synthesis and verification. Technical report, ERL Technical
Report (2005)

46. Mony, H., Baumgartner, J., Aziz, A.: Exploiting constraints in transformation-
based verification. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 269–284. Springer, Heidelberg (2005). https://doi.org/10.1007/
11560548 21

47. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4 2

48. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

49. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une intro-
duction logique à une theorie déductive quelconque. In: Bibliothèque du Congrès
international de philosophie, vol. 3, pp. 309–365 (1901)

50. Paulson, L., Nipkow, T.: The sledgehammer: let automatic theorem provers write
your isabelle scripts (2023)

51. Schurr, H., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: towards a generic SMT
proof format (extended abstract). In: Keller, C., Fleury, M. (eds.) Proceedings
Seventh Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg,
PA, USA, 11 July 2021. EPTCS, vol. 336, pp. 49–54 (2021). https://doi.org/10.
4204/EPTCS.336.6

52. Seger, C.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods Syst. Des. 6(2), 147–189 (1995)

53. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications
to QBF preprocessing. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 508–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 24

54. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054171

https://doi.org/10.1007/978-3-319-03077-7_3
https://doi.org/10.1007/11560548_21
https://doi.org/10.1007/11560548_21
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/BFb0054171

Certifying Phase Abstraction 303

55. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970,
pp. 466–483 (1983)

56. Yu, E., Biere, A., Heljanko, K.: Progress in certifying hardware model checking
results. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 363–
386. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 17

57. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Towards compositional hardware
model checking certification. In: FMCAD (2023)

58. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 42

59. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.L.: SAT sweeping
with local observability don’t-cares. In: DAC, pp. 229–234. ACM (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.1007/11499107_42
http://creativecommons.org/licenses/by/4.0/

Verifying a Realistic Mutable Hash Table

Case Study (Short Paper)

Samuel Chassot(B) and Viktor Kunčak

EPFL, Lausanne, Switzerland
{samuel.chassot,viktor.kuncak}@epfl.ch

Abstract. In this work, we verify, using the Stainless program verifier,
the mutable LongMap from the Scala standard library, a hash table using
open addressing within a single array. As an executable specification, we
write an immutable map based on a list of tuples and verify it against the
mathematical definition of a map. We then show that LongMap’s oper-
ations correspond to operations of this association list. To express the
resizing of the hash table array, we introduce a new reference-swapping
construct in Stainless. This allows us to apply the decorator design pat-
tern without introducing aliasing. Our verification effort led us to find
and fix a bug in the original implementation that manifests for large hash
tables. Our performance analysis shows the verified version to be within
a 1.5 factor of the original data structure.

Keywords: Formal verification · Hash table · LongMap · Scala

1 Introduction

With the improvements in effectiveness and expanding user base of proof assis-
tants such as Isabelle/HOL [22] and Coq [27], we are witnessing systematic veri-
fication of many purely functional data structures. The verification of these data
structures is highly effective using those tools. In the Scala language ecosystem,
such verification efforts were carried out using the Stainless verifier [13] and its
predecessor Leon [19]. However, verification of mutable data structures remains
more challenging. As an example for hash table validation on the JVM platform,
a recent attempt [8] provided a proof with interactive steps and an incomplete
proof based on bounded model checking for one function. We consider such
efforts very valuable. At the same time, our verification led us to discover a bug
that bounded model checking would have likely missed due to the large arrays
required. This illustrates the limitations of bounded checks and the need for
complete formal verification.

In this work, we verify a data structure from the Scala standard library: the
mutable LongMap[V], a hash table with keys of type Long and values of a generic
type V, implemented with open addressing (with all data stored in the arrays).
We verify it using Stainless, a verification framework for a subset of Scala. To our
knowledge, this is the first verified mutable map in Scala and the first verified
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 304–314, 2024.
https://doi.org/10.1007/978-3-031-63498-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_18&domain=pdf
http://orcid.org/0009-0000-9751-9252
http://orcid.org/0000-0001-7044-9522
https://doi.org/10.1007/978-3-031-63498-7_18

Verifying a Realistic Mutable Hash Table 305

hash table with open addressing and non-linear probing. Our implementation
closely follows the existing implementation of the Scala library [26], which was
implemented with efficiency in mind and withstood the test of usability. This
is the fastest hash table implementation we know of in the Scala ecosystem.
Our experience helped us further assess the use of Stainless for imperative code,
following recent verification of the QOI compression algorithm [5] and file system
components [12]. Our paper includes the following contributions:

1. As the key result, the adaptation and full formal verification of the mutable
LongMap of the Scala standard library [26] using Stainless [13,20]; this hash
table can serve as a basis for other verified project; our code and the SMT
queries generated during verification are available on Zenodo [6];

2. A reference implementation of a map verified against the mathematical def-
inition of a map and lemmas for reasoning about such maps. This map is
realized as a sorted list of tuples. We use it as an executable specification for
LongMap and find that it supports automated and inductive reasoning better
than the built-in maps of Stainless;

3. Introduction into Stainless of an operator for swapping references, which
increases the expressive power of Stainless while preserving non-aliasing,
allowing us to implement the resizing and balancing of the hash table;

4. An evaluation of the performance of both LongMap implementations (original
and verified) and the mutable HashMap of the Scala standard library (unver-
ified), showing that the performance of the verified implementation remains
competitive despite the changes introduced to simplify verification.

1.1 Related Work

Hash tables have been of interest in verification from the early days of the field.
Guttag [11] explores the use of algebraic specifications for reasoning about hash
tables, though without formal connection to executable implementations. A hash
table is one of the case studies [17] in the Jahob verification system [18,29]. The
version in Jahob does not use open addressing but separate chaining with linked
list buckets. Furthermore, that case study uses, as an unverified assumption,
the fact that the hash function is pure (total, without side effects, terminating,
and deterministic). The Eiffel2 project offers a collection of verified data con-
tainers, impressive by its diversity [23]. They implemented and verified a hash
table implementation using chaining. These containers are, however, simpler in
their implementations than what appears in Scala and Java standard libraries.
We could not explore this collection in more depth because the tools used are
unavailable. De Boer et al. verified JDK’s IdentityHashTable, based on open
addressing and linear probing, in their case study [8]. The verification was done
using KeY [1] and JJBMC [4], both accepting JML specification. They notably
did not manage to provide a deductive proof for the remove method and one of
its auxiliary methods, but instead used bounded model checking for a map of
up to four elements. The KeY deductive proofs required interactive steps for the
more complex methods, up to 1’655 for the put method. Hance et al. also pro-
posed techniques to verify distributed systems interacting with an asynchronous

306 S. Chassot and V. Kunčak

environment, in particular file systems [14]. In this work, they developed and
verified a hash table with open addressing and linear probing in Dafny. They
implemented two versions of the hash table, one immutable and one mutable.
This separates the functional correctness and correct heap manipulation proofs
but requires implementing the hash table twice.

2 LongMap: From Scala Library to Stainless

A LongMap[V] (called LongMap in this work) is a data structure implementing a
map behavior with keys of type Long (signed 64-bit machine integers) and values
of generic type V. The mutable LongMap of the Scala standard library [26] is a
hash table employing open addressing and non-linear probing.

We implement a subset of the original LongMap interface (outlined in Sect. 3).
This subset corresponds to the functions implementing the map functionality (we
omit functions specific to the Scala collections hierarchy). The apply function
returns the value stored for a given key or a default value if absent. The remove,
update (to add/update pairs), and repack (to resize/balance the map) functions
return a Boolean value indicating the operation success.

The keys and values are stored in two arrays called _keys and _values
respectively. Both are of size N = 2n for some 3 ≤ n ≤ 30. The index of a given
key is computed using a hash function. The corresponding value is stored in the
second array at the same index as its key. We define mask = N − 1.

There are 2 special values in _keys: 0 and Long.MinValue. The value 0
indicates a free spot while Long.MinValue is a tombstone value, indicating that
a key was removed at this spot.

We use open addressing with non-linear probing to resolve collisions. Follow-
ing the original Scala implementation [7,26], the probing function is indexx+1 =
(indexx + 2 ∗ (x + 1) ∗ x − 3) & mask, resulting in cubic index growth. Our ver-
ification is independent of the particular probing function but checks that the
implementation is pure (i.e., deterministic, total, terminating, and without side
effects), free of runtime errors, and returns an index within range.

All operations rely on two elementary ones: 1) looking for a key (seekEntry),
and 2) looking for a key or an empty spot (seekEntryOrOpen). These two oper-
ations use non-linear probing, with the special values 0 and Long.MinValue
in _keys. As an example, update(k: Long, v: V) starts out by computing
i = seekEntryOrOpen(k). If k is at index i, it writes _values(i) = v; if the
function returns an open spot, it writes _keys(i) = k and _values(i) = v.

2.1 Adapting for Verification

Next, we present the changes we made to the original code to comply with the
supported subset of Scala, improve the SMT solver performance, make writing
specifications easier, and simplify termination checking.
Tail recursion (to ease verification). We replace while loops with tail-
recursive functions. Stainless can perform this transformation internally, but we

Verifying a Realistic Mutable Hash Table 307

have better control over specifications if we manually transform the source. For
example, using a loop invariant makes having different pre- and post-conditions
impossible. The Scala compiler transforms tail-recursive functions back to loops
during compilation, so no performance is lost.
Loop counters (to prove termination). We introduce a counter and a
condition that stops while loops (implemented as tail recursion) in seekEntry
and seekEntryOrOpen after a fixed number of iterations. We need this counter
as we do not know whether this probing function covers the space of all indices.
Moreover, it allows the proof to be agnostic to the probing function. It has a
negligible impact on performance, as shown in Sect. 4.
Data representation (for SMT performance). The original implementa-
tion uses the MSBs (Most Significant Bits) of the index returned by the seeking
functions to indicate whether the index points to the key, a 0, or a tombstone. We
replace this with some ADT for better code readability and improved verification
experience, as bitwise operations are often slow in SMT solvers.
Typing and initialization of arrays (to comply with subset). In the orig-
inal implementation, the array storing values (_values) is an Array[AnyRef],
containing null by default, and using casts to store and access values. In our ver-
ified implementation, _values contains boxed values because Stainless does not
support SPSVERBc48s, and the Array.fill function (used to instantiate new
arrays) does not support generically typed arrays. The boxing is implemented
using case classes (i.e., ADTs).
Refactoring (to ease verification). We split the implementation into two
classes, following the decorator design pattern (DP), as detailed in Sect. 3.1.

3 Specification and Verification

We first implement ListLongMap, an immutable map backed by a strictly ordered
list of pairs (Long, V), and verify it against the mathematical specification of a
map. It serves as the executable specification of the mutable LongMap. We thus
specify the mutable LongMap as behaving as the corresponding ListLongMap. A
ghost method map() (not executed at runtime) of LongMap returns an instance
of ListLongMap with the same content and is used in contracts. For example,
update is specified as follows: old(this).map() + (k, v) == this.map().
Figure 1 shows the LongMap interface and specification. Postconditions, expressed
using ensuring calls, are lambda functions taking the return value as parameter
(i.e., res). The method valid is the data structure representation invariant stat-
ing, among other things, that the inserted elements can be found when searching
subsequently using the same probing function. Table 1 shows the lines of code
for the program, specification, and proofs for both maps.

3.1 Decorator Design Pattern for Modular Proofs

Following the decorator DP, we split the LongMap implementation into two
classes to better modularize the proof. First, LongMapFixedSize implements

308 S. Chassot and V. Kunčak

Fig. 1. Mutable LongMap interface and specification (note that we omit preconditions
in this figure which are only checks of the invariant (valid), if any).

the LongMap specification depicted in Fig. 1 without resizing (with arrays of
a given fixed length). Then, we implement the LongMap class as a decorator of
LongMapFixedSize. It implements the same interface and adds the resizing oper-
ation (repack function). Being a decorator, this class forwards all operations to
an underlying instance of LongMapFixedSize except for the repack function. A
key observation about the original implementation of repack is that it works
very similarly to the update function to insert all pairs. Only some checks are
omitted because the array is assumed to be fresh (containing no tombstone values
and, initially, no keys). This observation allows us to use update to implement
repack without significantly impacting the performance, while simplifying the
proof.

3.2 Swap Operation for More Expressive Unique Reference

As discussed in Sect. 3.1, the LongMap class relies on an underlying instance of
the LongMapFixedSize class. The underlying instance must be replaced by a new
one during calls to repack. The repacking process first computes the new array
size, then creates a new instance of LongMapFixedSize with this size, inserts
all pairs, and finally replaces the current underlying instance with this new one.
Aliasing appears during this replacement, yet Stainless disallows it. We can,
however, observe that there is no need for aliasing because the reference to the
newly created instance is not accessed after the replacement. We thus introduced
a swap operation [15] into the Stainless verifier. In addition to array element swap
[12], Stainless now offers a Cell class that encapsulates a mutable variable and
offers a swap operation to swap the content of two cells. This construct enlarges
the expressiveness of Stainless without the need for aliasing and enables the
implementation of a resizable data structure on top of a fixed-size one.

Verifying a Realistic Mutable Hash Table 309

Table 1. Lines of code for program, as well as specification and proof. We use many
ghost functions to express induction proofs. When a function has many arguments, we
typically typeset each argument on a separate line, contributing to line counts.

Class Program LOC Proof+spec. LOC Total LOC

ListLongMap 156 678 834

MutableLongMap 409 7’358 7’767

3.3 Finding and Confirming a Bug in the Original Implementation

During the verification, we discovered that the repack function does not satisfy
the specification stated in its documentation. The documentation states that
the map can accommodate up to 230 values (preferably not more than 229) [25].
However, a number of keys greater than or equal to 228 makes repack loop
forever. The bug arises in the computation of the new mask and is an integer
overflow: a mask candidate is reduced while it is > _size * 8 (where _size
is the number of keys stored in the array). However, if _size * 8 overflows,
i.e., _size ≥ 228, the mask candidate is reduced below _size. The new array
then cannot accommodate all the keys. We fix the bug by modifying the loop
condition and then prove that the function always returns a large enough and
valid mask. Despite the small scope hypothesis [16] and claims in [8], we do not
expect that bounded model checking would have discovered this bug, given that
it occurs only after inserting so many key-value pairs.

3.4 SMT Queries

Stainless generates verification conditions (VCs) which are solved by Inox [28]
using SMT solvers (here, CVC4 [3], cvc5 [2], and Z3 [9]) and incremental function
unrolling. So, a sequence of calls to SMT solvers happens for each VC and solvers
run in parallel in a race. Generated SMT queries [6] use algebraic datatypes and
sets. They do not contain set-logic directive. Only the query corresponding to
the winning solver is recorded for each VC, as the others might be incomplete.
Stainless uses generalized arrays [21] with non-constant default values to encode
generic arrays among other things. This feature is unavailable on CVC4 and not
implemented in Stainless for cvc5. Hence, VCs using it can be solved only by
Z3. This partially explains why Z3 is solving most queries (Fig. 2 (right)).

4 Evaluation

We run the benchmarks on an Ubuntu 20.04.6 LTS server with an Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80 GHz, 64 GB RAM.

Verification takes around 400 s when running from scratch (around 100 s when
re-running with a populated verification-condition cache [10]). Figure 2 shows the
VCs solving time (with cache completely disabled). Most VCs are solved quickly,

310 S. Chassot and V. Kunčak

Fig. 2. Left: VC solving time distribution with Stainless cache disabled. Right: number
of queries solved by each solvers. Both use a logarithmic scale.

Fig. 3. Lookup of N keys in a map prepopulated with 222 pairs (left) (time normalized
per operation) and insertion of 222 pairs (initial capacity of 16) followed by lookup of
N keys (right). Horizontal lines show the average. The black vertical lines show 222.
The error bars show the 95% CI. The time on the y-axis is normalized with respect to
the first data point of the original map.

with a mean and a median of around 0.16 and 0.1 s, respectively. The cumulative
solving time is 1’937 s. Only 3 VCs need more than 10 s in Stainless, with one
VC capping at 29 s out of 12’122 VCs. When calling the solver directly on the
generated SMT-LIB files, the cumulative solving time falls to 407 s. This likely
shows the overhead of the unrolling in Inox [28], which is especially visible for
fast VCs. Figure 2 also shows the distribution of VCs solved by each solver.

We compare the performance of our verified implementation to the origi-
nal [26], the general HashMap of the Scala standard library [24], and an opti-
mized version (denoted Opti) that changes the verified implementation to use
Array[AnyRef] for _values. We use Long as the type of stored values. We con-
sider three scenarios: looking up keys in a pre-populated map, populating the
map first, then looking up keys, and populating the map with all pairs, removing
half of the keys, and inserting all pairs again before looking up keys. Results are
in Fig. 3 and Fig. 4. Our verified LongMap is around 1.5× slower than the original
implementation for lookups only, see Fig. 3 (left). The performance gap is similar

Verifying a Realistic Mutable Hash Table 311

Fig. 4. Total time to lookup N keys and: (left) insert 215 pairs with initial capacity
217, or (right) insert 222 pairs, remove 221, and insert 222 again, with initial capacity
of 16. The black vertical line shows 215 (left) and 222 (right). The error bars show the
95% CI. The time on the y-axis is normalized with respect to the original map.

when taking the population process into account (Fig. 3 (right)). We argue that
this is acceptable. Indeed, the LongMap is the fastest map we know in the Scala
ecosystem. As shown by Fig. 4, the performance of our verified implementation
is comparable to the Scala HashMap (better in some scenarios).
Consequences of Adapting for Verifiability. To understand the impact of
pointer indirection in the _values array (Sect. 2.1), we modified our verified
implementation to use Array[AnyRef] like the original (abandoning the proof).
The results are shown as Opti in the figures, with performance close to the
original one, indicating that this indirection was indeed responsible for the over-
head. Similarly, in our version, creating _values and _keys arrays relies on
Array.fill, which writes all values and is slower than constructing an array
of SPSVERBc48s in the original implementation. Therefore, the verified repack
operation is slower than the original, see Fig. 4 (right). As shown by Fig. 4 (left),
without resizing, the performance is similar to HashMap, suggesting the impact of
Array.fill. Calls to repack are infrequent, so this performance loss is limited.
Finally, as witnessed by the Opti implementation performance being close to
the original, there is limited performance impact of the way seek functions pass
information to the caller, and of counter checks for loop termination (Sect. 2.1).

5 Conclusion

We verified LongMap from the Scala standard library, a mutable hash table with
Long keys, employing open addressing and non-linear probing. This led us to
identify and fix a bug in the original library implementation. The performance
evaluation of our verified implementation against the original shows a slowdown
of around 1.5. The changes we needed to perform for verifiability point to direc-
tions for further improving verification support for efficient Scala constructs.

312 S. Chassot and V. Kunčak

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book, Lecture Notes in Computer Sci-
ence, vol. 10001. Springer International Publishing, Cham (2016). https://doi.org/
10.1007/978-3-319-49812-6, http://link.springer.com/10.1007/978-3-319-49812-6

2. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, pp. 415–442. Springer International Publishing, Cham (2022)

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

5. Bucev, M., Kunčak, V.: Formally verified Quite OK Image format. In: Formal
Methods in Computer-Aided Design (FMCAD) (2022)

6. Chassot, S., Kunčak, V.: Verifying a Realistic Mutable Hash Table Case Study
(Short Paper) (Artifact) (Apr 2024). https://doi.org/10.5281/zenodo.11079220

7. Commit: New mutable hash map with long keys. https://github.com/scala/scala/
commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9

8. De Boer, M., De Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
specification and verification of JDK’s identity hash map implementation. Formal
Aspects Comput. 35(3), 18:1–18:26 (Sep 2023). https://doi.org/10.1145/3594729,
https://dl.acm.org/doi/10.1145/3594729

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Guilloud, S., Bucev, M., Milovančević, D., Kunčak, V.: Formula normalizations in
verification. In: Computer-Aided Verification (CAV) (2023)

11. Guttag, J.V.: Abstract data type and the development of data structures. Com-
mun. ACM 20(6), 396–404 (1977). https://doi.org/10.1145/359605.359618

12. Hamza, J., Felix, S., Kunčak, V., Nussbaumer, I., Schramka, F.: From verified Scala
to STIX file system embedded code using Stainless. In: NASA Formal Methods
(NFM), p. 18 (2022). http://infoscience.epfl.ch/record/292424

13. Hamza, J., Voirol, N., Kunčak, V.: System fr: formalized foundations for the stain-
less verifier. Proc. ACM Program. Lang. 3(OOPSLA) (oct 2019). https://doi.org/
10.1145/3360592

14. Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R., Parno, B.: Storage
Systems are Distributed Systems (So Verify Them That Way!). In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (2020)

15. Harms, D.E., Weide, B.W.: Copying and swapping: influences on the design of
reusable software components. IEEE Trans. Software Eng. 17(5), 424–435 (1991).
https://doi.org/10.1109/32.90445

16. Jackson, D., Damon, C.A.: Elements of style: analyzing a software design feature
with a counterexample detector. ACM SIGSOFT Softw. Eng. Notes 21(3), 239–
249 (May 1996). https://doi.org/10.1145/226295.226322, https://dl.acm.org/doi/
10.1145/226295.226322

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
http://link.springer.com/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.5281/zenodo.11079220
https://github.com/scala/scala/commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9
https://github.com/scala/scala/commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9
https://doi.org/10.1145/3594729
https://dl.acm.org/doi/10.1145/3594729
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/359605.359618
http://infoscience.epfl.ch/record/292424
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1109/32.90445
https://doi.org/10.1145/226295.226322
https://dl.acm.org/doi/10.1145/226295.226322
https://dl.acm.org/doi/10.1145/226295.226322

Verifying a Realistic Mutable Hash Table 313

17. Jahob Hashtables Codebase. https://github.com/epfl-lara/jahob/tree/master/
examples/containers/hashtable

18. Kuncak, V.: Modular Data Structure Verification. Ph.D. thesis, EECS Department,
Massachusetts Institute of Technology (Feb 2007). http://hdl.handle.net/1721.1/
38533

19. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. ACM SIGPLAN Notices 52(1), 330–343
(Jan 2017). https://doi.org/10.1145/3093333.3009874, https://dl.acm.org/doi/10.
1145/3093333.3009874

20. Milovančević, D., Kunčak, V.: Proving and disproving equivalence of functional
programming assignments. In: ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI) (2023)

21. de Moura, L.M., Bjørner, N.S.: Generalized, efficient array decision procedures.
In: Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA, pp. 45–
52. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351142

22. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

23. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. For-
mal Aspects Comput. 30(5), 495–523 (Sep 2018). https://doi.org/10.1007/s00165-
017-0435-1, https://doi.org/10.1007/s00165-017-0435-1

24. HashMap Scala Standard Library. https://scala-lang.org/api/3.3.1/scala/
collection/mutable/HashMap.html

25. LongMap Specification. https://github.com/scala/scala/blob/263e5bd60d9c394
7d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scal
a#L36

26. LongMap Implementation - Standard Library. https://github.com/scala/scala/
blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/
mutable/LongMap.scala

27. Team, T.C.D.: The Coq Proof Assistant (Jun 2023). https://doi.org/10.5281/
ZENODO.1003420. https://zenodo.org/record/1003420, language: en

28. Voirol, N.C.Y.: Verified functional programming, p. 229 (2019). https://doi.org/
10.5075/epfl-thesis-9479

29. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: ACM SIGPLAN Conference Programming Language Design and Imple-
mentation (PLDI) (2008)

https://github.com/epfl-lara/jahob/tree/master/examples/containers/hashtable
https://github.com/epfl-lara/jahob/tree/master/examples/containers/hashtable
http://hdl.handle.net/1721.1/38533
http://hdl.handle.net/1721.1/38533
https://doi.org/10.1145/3093333.3009874
https://dl.acm.org/doi/10.1145/3093333.3009874
https://dl.acm.org/doi/10.1145/3093333.3009874
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://scala-lang.org/api/3.3.1/scala/collection/mutable/HashMap.html
https://scala-lang.org/api/3.3.1/scala/collection/mutable/HashMap.html
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://doi.org/10.5281/ZENODO.1003420
https://doi.org/10.5281/ZENODO.1003420
https://zenodo.org/record/1003420
https://doi.org/10.5075/epfl-thesis-9479
https://doi.org/10.5075/epfl-thesis-9479

314 S. Chassot and V. Kunčak

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Booleguru, the Propositional Polyglot
(Short Paper)

Maximilian Heisinger(B) , Simone Heisinger , and Martina Seidl

Johannes Kepler University Linz, Linz 4040, Austria
{maximilian.heisinger,simone.heisinger,martina.seidl}@jku.at

Abstract. Recent approaches on verification and reasoning solve SAT
and QBF encodings using state-of-the-art SMT solvers, as it “makes
implementation much easier”. The ease-of-use of these solvers make SAT
and QBF solvers less visible to users of solvers—who are maybe from
different research communities—potentially not exploiting the power of
state-of-the-art tools. In this work, we motivate the need to build bridges
over the widening solver-gap and introduce Booleguru, a tool to con-
vert between formats for logic formulas. It makes SAT and QBF solvers
more accessible by using techniques known from SMT solvers, such as
advanced Python interfaces like Z3Py and easily generatable languages
like SMT-LIB, integrating them to our conversion tool. We then intro-
duce a language to manipulate and combine multiple formulas, option-
ally applying transformations for quickly prototyping encodings. Boole-
guru’s advanced scripting capabilities form a programming environment
specialized for Boolean logic, offering a more efficient way to develop
novel problem encodings.

Keywords: SAT · QBF · SMT · DIMACS · QCIR · SMTLIB2 ·
AIGER

1 Introduction

Numerous recent publications with encodings of problems into SAT and QBF do
not use SAT or QBF solvers directly [6,16,18]. SMT solvers, often the feature-
rich and popular state-of-the-art solver Z3 [8], are used instead, as it “makes
implementation much simpler” [17], although no theory reasoning is involved.
Z3’s programming API or the Common Lisp compatible SMT-LIB standard [3]
are well documented and regarded by many as easy to use. While this ease
of use leads to wide adoption and fast results, adapting encodings to use less
general solving backends that are potentially more efficient for the problem at
hand remains hard, e.g. switching from SMT solving to using a less general SAT
solver. Researchers focus on optimizing their encodings against an SMT solver’s
performance characteristics, instead of testing them against many different (also

This work was supported by the LIT AI Lab funded by the State of Upper Austria.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 315–324, 2024.
https://doi.org/10.1007/978-3-031-63498-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_19&domain=pdf
http://orcid.org/0000-0001-7297-6000
http://orcid.org/0009-0000-7630-2791
http://orcid.org/0000-0002-3267-4494
https://doi.org/10.1007/978-3-031-63498-7_19

316 M. Heisinger et al.

Table 1. Formula formats that are optimized (✓), usable (≈), or unusable (✗) for
encoding the respective problem

Problem DIMACS QDIMACS QCIR AIGER SMTLIB2

SAT Solving ✓ ≈ ≈ ≈ ≈
QBF Solving ✗ ✓ ✓ ✗ ≈
AIG Solving ✗ ✗ ≈ ✓ ✓

SMT Solving ✗ ✗ ✗ ✗ ✓

Table 2. File formats and their capabilities.

Format Non-CNF Quantifiers Non-Prenex Structure-Sharing

DIMACS ✗ ✗ ✗ ✗

QDIMACS ✗ ✓ ✗ ✗

AIGER ✓ ✗ ✗ ✓

Limboole ✓ ✓ ✓ ✗

QCIR ✓ ✓ ✓ ✓

SMTLIB ✓ ✓ ✓ ✓

non-SMT) solvers. We consider the transformation of formulas into conjunctive
normal form (CNF) required for SAT and QBF solvers to be non-trivial, espe-
cially for beginners. Seemingly bad intermediary results are discarded, as the
effort required to re-encode the problem to be solvable with SAT or QBF solvers
is too large to be spent during prototyping, effectively forming a solver gap. We
want to bridge over this gap and reduce the friction involved with testing other
solvers outside the SMT world, without extensive modifications to encoding gen-
erators. In this work, we analyze what features are required to build this bridge
and develop Booleguru, a polyglot for (quantified) Boolean logic. Our tool is
available under the permissive MIT license at:

https://github.com/maximaximal/booleguru

1.1 Bridging the Solver Gap with Propositional Logic

In order to build a bridge over the solver gap described above, we first have to
identify it. When encoding problems into logic, one also has to decide which for-
mat to encode into. The encoding itself is then typically accomplished with some
encoder program, which is closely tied to the problem to be encoded. Chang-
ing the output format of an encoder involves considerable effort, as encoders
are typically tailored to the output formats they were designed to support. As
encoders grow in complexity, communities form around them, while still relying
on the original output format. The decision at the beginning of an encoder’s
development then influences the newly formed community, as changing their
encoder to generate a different output format involves considerable effort. We

https://github.com/maximaximal/booleguru

Booleguru, the Propositional Polyglot (Short Paper) 317

Fig. 1. Booleguru Architecture, Transformers may be arbitrarily combined.

therefore identify gaps in the solving landscape opening between the different
input formats of different solvers for different problems. Table 1 lists a selection
of different problems with their associated dominant file formats. Table 2 lists
features offered by each format. All of them offer ways to encode propositional
logic in CNF, with some of them extending it with quantifiers over variables
(∀, ∃). More advanced formats also allow encoding formulas in Non-CNF, i.e.,
formulas built from expressions and more complex logical operators. If a format
supports quantifiers, they may always be added as a prefix to the formula. While
every formula with embedded quantifiers can be prenexed to be in such a prenex
form, some formats also allow encoding formulas in non-prenex form, extending
a format’s expressiveness. Some formats also allow structure-sharing, which lets
problems reference sub-expressions multiple times, without repeating them. The
overlapping capabilities of different formats suggest that a conversion tool has to
be able to process all of them, and to serialize complex features into less complex
formats, where supported.

1.2 Related Work

Other communities already went through this bridge-building effort in order to
reduce duplicated work and advance their fields. One of the biggest examples are
the researchers of the machine learning community, who commonly use libraries
like PyTorch [15], SciPy [21], and Pandas [20]. This allows others to use new
innovations in these libraries, such as newly added learning algorithms or prop-
erties in PyTorch, or better storage formats in Pandas.

Multiple conversion tools already exist for QBF [9,13,19]. While all of these
tools convert between specific formats, no tool tries to encompass multiple con-
version or combination capabilities. Some SMT solvers are able to read multiple
input formats [2,7,8], with all supporting SMT-LIB2, the format favored by the
SMT-Competition [22]. SMT solvers do not offer to combine multiple formulas
seamlessly. Booleguru fills this niche and provides such a convert & combine
capability, while also enabling a unique development environment to create new
formulas. It enables previously tedious comparisons between different solvers
solving similar problems, like SMT and QBF solvers, as shown in Fig. 2.

2 Booleguru, the Propositional Multitool

After introducing the overlaps between file formats and solving communities,
we now introduce our conversion tool: Booleguru. As shown in the architec-
ture diagram in Fig. 1, it consists of readers, transformers, and serializers for

318 M. Heisinger et al.

propositional logic and extensions. Inputs in arbitrary formats may be read,
modified, and then serialized in the same or a different file format. This section
first describes how Booleguru stores propositional formulas in memory, so that
all capabilities described in Table 2 can be provided. We then introduce features
intended for working with formulas.

2.1 Representing Propositional Formulas in Memory

In order to be accepted as an efficient tool to work with propositional formulas,
they have to be both fast to create and to traverse. While this is true for a tool in
any problem domain, the lower expressiveness of propositional logic compared to
bit-vectors or more complex theories leads to large formulas with many nodes,
relying on tools with especially high throughput. For this, they are stored in
a directed-acyclic-graph (DAG), enabling structure-sharing. Each node in the
DAG is either a variable, a unary (negation), or a binary operation (and, or, etc.).
A node is stored in a struct of 16B, which (on most architectures) exactly fits
into a single cache-line. The remaining bits to fill the cache line are occupied by
structural information of the expression and user-writable extra data to be stored
within the DAG, which speeds up transformers that need to store temporary data
on nodes. Beside the user writable data, nodes stay constant over the whole
execution.

References between nodes are stored as 32bit unsigned integers, which are
evaluated relatively to the nodes of a whole formula. When creating a formula, a
hash table is used to check if a given node already exists, and if it does not, a new
node is appended at the back of the node array. References to previous nodes are
immutable, which enables cheaply appending new expressions that are composed
of others. Expressions may only reference other expressions with IDs smaller
than themselves, cycles imply a malstructured formula. Traversing this DAG
does not involve hash lookups or pointer indirections, as every reference can be
resolved directly through the child’s index in the array. Information about a sub-
expression is collected during insertion of a new node, removing the requirement
to scan the DAG in order to check for commonly required structural information.
The 32bit references make traversal very efficient, but limits formula sizes to
232 − 1 nodes. We will provide a compile-time switch to increase reference sizes
in a future version.

2.2 Parsing Formulas

We already implemented several parsers:

– (Q)DIMACS
– QCIR [13]
– AAG (AIGER [5])

– SMT-LIB [3]
– Z3Py
– CLI

– generic infix logic
using &, |, <->, etc.
(Limboole)

The readers are mostly implemented using the ANTLR parser generator [14].
While slower than hand-written parsers, the library allowed us to iterate faster

Booleguru, the Propositional Polyglot (Short Paper) 319

during development and add more input languages with a shared base. Some
parsers are hand-written, and performance critical ones are incrementally opti-
mized to a specialized implementation. Each parser produces a reference to an
expression inside a shared expression manager. Multiple expressions can then be
combined into new ones, disregarding their source format. The command-line
parsing is also fully done using an ANTLR parser producing an expression, in
order to provide a language for composing formulas from multiple files or scripts.

2.3 Transforming Formulas

Transformers are the umbrella term for functions that work on one or more
expressions passed to them. They may return new expressions built from their
inputs and may be chained together. They are either implemented in native
C++, Lua [12], or Fennel1, with Lua and Fennel possibly supplied at run-
time by a user without re-compiling Booleguru. Several transformations are
already implemented, with more being added in future releases. The list below
uses the Colon Operator (:op) notation, which is transformed into Fennel func-
tion calls during CLI parsing. Each such transformation can be supplied to the
Booleguru CLI, where they strongly bind (stronger than binary operators)
to the expression preceding them. Generating transformers without expressions
as inputs have to be written without an expression preceding them, akin to
variables.

:eliminate-implication
Converts a ⇒ b to ¬a ∨ b.

:eliminate-equivalence
Converts a ⇔ b to (a∨¬b)∧(b∨¬a)

:eliminate-xor
Converts a ⊕ b to ¬a ∧ b ∨ a ∧ ¬b

:distribute-ors
Distributes ∨ into the formula and
remove them from the outermost
context.

:distribute-nots
Distributes ¬ into the formula and
remove them from the outermost
context or from applying to sub-
expressions.

:distribute-to-cnf
Distributes operations in the for-
mula until it is in Conjunctive Nor-
mal Form (CNF). This often entails
exponential size increase.

:tseitin
Tseitin-encode a (sub-) expres-
sion into CNF, without the expo-
nential blowup involved with
:distribute-to-cnf.

:rename
Rename one or more variables in a
(sub-) expression. Can take multiple
arguments.

:solve
Solve a (sub-) expression in CNF.
Returns a conjunction of variables.

:quanttree
Draw a formula’s quantifiers.

:unquantified
Print all variables that are not quan-
tified by some quantifier.

:prefixtract
Extract statistics from a formula’s
quantifier prefix (if it is in prenex
form).

1 https://fennel-lang.org.

https://fennel-lang.org

320 M. Heisinger et al.

Fig. 2. Z3 and selected QBF solvers solving the QCIR track of QBFGallery 2023

:quantlist
Print the quantifier prefix (if avail-
able), merging multiple quantifiers
of same type into sorted blocks.

:counterfactuals
Generate a counterfactual (parame-
terized).

:eqkbkf
Generate a KBKF combined with
an equality formula (parameter-
ized).

:dotter
Outputs the in-memory DAG of the
formula as a .dot file that can be
processed using GraphViz.

:assignment-tree
Expands the quantifier prefix into a
tree over all possible variable assign-
ments and solves each leaf assign-
ment using SAT solver. Outputs a
.dot file.

2.4 Serializing Formulas

After reading, combining, and transforming input formulas, they can be printed
in different output formats. For this, several serializers have been developed,
which are listed below. (Q)DIMACS relies on the provided Tseitin encoding by
default, but one may use other methods that arrive on an expression which is
tagged to be in CNF. This made Booleguru a helpful tool in the QBFGallery
20232.

– (Q)DIMACS
– QCIR

– SMTLIB
– Limboole

3 Booleguru, the Programming Environment

During development of new problem encodings or crafted formulas, there is usu-
ally a step where an encoding tool or a formula generator is written [1,4,11]. In
our experience, these tools often rely on similar primitives:

– Create a new variable.
– Compose an expression based on sub-expressions.
– Read from an external source or draw random data.
2 https://qbf23.pages.sai.jku.at/gallery/.

https://qbf23.pages.sai.jku.at/gallery/

Booleguru, the Propositional Polyglot (Short Paper) 321

– Write the formula in the desired output format.

The Lua, Fennel, and Python APIs offered by Booleguru abstract over multi-
ple output formats and the concept of writing formulas into files. When writing
a generator for a new formula, the Booleguru primitives offer the user to work
directly with the formula’s AST, instead of having to generate syntax describing
the AST in the target language. This makes generators more suited to change, as
they are always composed of (nested) functions, each generating sub-expressions.

In addition to using Booleguru as a first-class execution environment for
formula generators, it may be used to reduce SMT encodings developed using
Z3Py to a SAT or QBF solving problem. Booleguru optionally generates a
Python module that emulates the popular interface of Z3.

Lua and Fennel Interface. The Lua and Fennel interfaces are both accessible
through an embedded interpreter. Lua and Fennel scripts that are already dis-
tributed as a part of Booleguru are compiled ahead of time by LuaJIT3. This
makes both initialization and execution of scripts as efficient as possible in the
Release build of Booleguru. User-supplied scripts are compiled at runtime
using LuaJIT.

Python Interface. Additionally to the specialized Lua and Fennel interfaces,
Booleguru provides the pybooleguru interface which is directly modelled after
the widely used Z3Py Python library. We observed that when using Z3Py during
development of a new encoding, the jump from the SMT solver Z3 to more
fundamental SAT or QBF solving becomes harder. This interface is intended
to be a drop-in replacement to Z3Py, enabling the conversion of a complex
Z3-specific encoder written in Python into an encoder capable of producing
additional output of a different format. Python scripts may be read as inputs or
a script may import pybooleguru instead of z3py.

C++ Interface. Additionally to the scripting interfaces, the C++ interface itself
may also be used. Functions are provided to easily build expressions using C++,
which can be useful when developing new tools in systems languages.

3.1 Command-Line Interactive Interface

The command-line interface of Booleguru is also considered a programming
environment, as it seamlessly merges a grammar for propositional logic in infix
notation with the Scheme-based Fennel, a programming language written in
prefix-notation. Each Fennel expression has to return a logical expression, which
it builds using the provided primitives. By combining transformations and work-
ing with expressions, new functionality can be implemented using the CLI alone.
For example, for the formula (a ∧ b) ∨ (a ∧ ¬b), both solutions can be extracted
using the CLI:

3 https://luajit.org/luajit.html.

https://luajit.org/luajit.html

322 M. Heisinger et al.

$ booleguru test.boole :solve
a & !b
$ booleguru test.boole ":(b-and ** (b-not (solve **)))" :solve
a & b

It can also be used to combine formulas while renaming e.g. a to aa:

$ booleguru "test.boole :rename@a@aa <-> test.boole"
(#aa ?b (aa & b)) <-> (#a ?b (a & b))

The CLI can also invoke parameterized custom binary operators. The # comment
below is the file my-bin.fnl in the current working directory.

(lambda my-bin [m] ((. _G m) (b-and *l* *r*) (b-or *l* *r*)))
$./booleguru a ::my-bin@equi b
a & b <-> a | b

3.2 Developing Booleguru

Our tool is implemented in C++, with some helpers provided to ease devel-
opment. The build system is realized using CMake, which makes Booleguru
easily embeddable into other projects. All modules have test suites to be run
during development. They test basic features like the expression tree, but also
transformers and serializers. Defining new tests is easy and running all tests is
quick and parallelizable. The build system offers a fast Release build, a slower
Debug build without optimization options, and a Sanitized build with enabled
address- and undefined behavior sanitizers. If available, LuaJIT is used for exe-
cuting Lua and Fennel scripts, otherwise the regular Lua distribution is provided
as a fallback. Booleguru also natively supports to be built as a WebAssembly
executable, making it runnable in browsers, including Lua and Fennel scripts.

Embedded Fuzzer. Transformers that process operations may also be fuzzed using
the LLVM libFuzzer integration. Booleguru has to be built in the fuzzing
mode, which creates the specialized booleguru-fuzzer binary. The command-
line has to be provided via the environment variable BOOLEGURU_ARGS, with a
fuzz file that serves as the injection point for fuzzed inputs. Arbitrary trans-
formations may then be performed on the expressions, which are called with
every iteration of the fuzzer. Booleguru’s embedded mutator (inspired by the
mutator of Google Protocol Buffers) randomly creates arbitrary many input
structures until unexpected stops are encountered. The fuzzing capability was
used extensively during development of the transformers. The resulting inputs
can be displayed in Limboole format using the booleguru-print-corpus tool.

4 Conclusion

We developed the propositional polyglot Booleguru, which can be used to con-
vert between several widely used logic formats, to transform or combine formulas,

Booleguru, the Propositional Polyglot (Short Paper) 323

and to develop new encodings more efficiently. We discussed the requirements
our tool has to fulfill and introduced the implementation based on these require-
ments. Finally, we explained how Booleguru is used to generate new encodings,
using the embedded Lua, Fennel, and Python scripting support. Booleguru
already proved itself as a valuable tool during the QBFGallery 2023, for revisit-
ing quantifier shifting in QBF [10], and other projects.

References

1. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas and
ASP programs. In: Sixteenth International Conference on Principles of Knowledge
Representation and Reasoning (2018)

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

3. Barret, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6, May
2021. www.SMT-LIB.org

4. Beyersdorff, O., Pulina, L., Seidl, M., Shukla, A.: QBFFam: a tool for generating
QBF families from proof complexity. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 21–29. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-80223-3_3

5. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical
report 11/2, Institute for Formal Models and Verification, Johannes Kepler Uni-
versity, Altenbergerstr. 69, 4040 Linz, Austria (2011)

6. Bonnah, E., Nguyen, L., Hoque, K.A.: Motion planning using hyperproperties for
time window temporal logic. IEEE Robot. Autom. Lett. 8, 1–8 (2023)

7. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2_16

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

9. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Electronic Pro-
ceedings in Theoretical Computer Science (2018). https://doi.org/10.4204/eptcs.
277.7

10. Heisinger, S., Heisinger, M., Rebola-Pardo, A., Seidl, M.: Quantifier shifting for
quantified boolean formulas revisited. In: Benzmüller, C., Heule, M., Schmidt,
R. (eds.) Automated Reasoning - 12th International Joint Conference, IJCAR
2024, Nancy, France, July 3-6, 2024, Proceedings. LNCS, vol. 14739, pp. 325–343,
Springer, Cham (2024). https://doi.org/10.1007/978-3-031-63498-7_20

11. Heisinger, S., Seidl, M.: True crafted formula families for benchmarking quantified
satisfiability solvers. In: Dubois, C., Kerber, M. (eds.) CICM 2023. LNCS, vol.
14101p, pp. 291–296. Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-42753-4_20

12. Ierusalimschy, R.: Programming in Lua. Roberto Ierusalimschy (2006)
13. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI

Workshop: Beyond NP. AAAI Technical report, vol. WS-16-05. AAAI Press (2016)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1007/978-3-030-80223-3_3
https://doi.org/10.1007/978-3-030-80223-3_3
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/eptcs.277.7
https://doi.org/10.4204/eptcs.277.7
https://doi.org/10.1007/978-3-031-63498-7_20
https://doi.org/10.1007/978-3-031-42753-4_20
https://doi.org/10.1007/978-3-031-42753-4_20

324 M. Heisinger et al.

14. Parr, T.: The definitive ANTLR 4 reference. The Definitive ANTLR 4 Reference,
pp. 1–326 (2013)

15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–
8035. Curran Associates, Inc. (2019)

16. Peham, T., Brandl, N., Kueng, R., Wille, R., Burgholzer, L.: Depth-optimal syn-
thesis of Clifford circuits with SAT solvers (2023)

17. Saaltink, C., Nicoletti, S.M., Volk, M., Hahn, E.M., Stoelinga, M.: Solving queries
for Boolean fault tree logic via quantified sat. In: Proceedings of the 9th ACM SIG-
PLAN International Workshop on Formal Techniques for Safety-Critical Systems,
pp. 48–59. FTSCS 2023, Association for Computing Machinery (2023). https://
doi.org/10.1145/3623503.3623535

18. Schwarzová, T., Strejcek, J., Major, J.: Reducing acceptance marks in Emerson-
lei automata by QBF solving. In: 26th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2023, July 4-8, Alghero, Italy. LIPIcs,
vol. 271, pp. 23:1–23:20 (2023). https://doi.org/10.4230/LIPICS.SAT.2023.23

19. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: a tool for generating EPR formulas from
QBF. In: Third Workshop on Practical Aspects of Automated Reasoning, PAAR-
2012, Manchester, UK, June 30–July 1, 2012. EPiC Series in Computing, vol. 21,
pp. 139–148. EasyChair (2012). https://doi.org/10.29007/2B5D

20. The pandas development team: pandas-dev/pandas: Pandas, February 2020.
https://doi.org/10.5281/zenodo.3509134

21. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, pp. 261–272 (2020). https://
doi.org/10.1038/s41592-019-0686-2

22. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015–2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019). https://doi.org/10.3233/SAT190123

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3623503.3623535
https://doi.org/10.1145/3623503.3623535
https://doi.org/10.4230/LIPICS.SAT.2023.23
https://doi.org/10.29007/2B5D
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3233/SAT190123
http://creativecommons.org/licenses/by/4.0/

Quantifier Shifting for Quantified Boolean
Formulas Revisited

Simone Heisinger1(B) , Maximilian Heisinger1 , Adrian Rebola-Pardo1,2 ,
and Martina Seidl1

1 Institute for Symbolic Artificial Intelligence, JKU Linz, Linz, Austria
{simone.heisinger,maximilian.heisinger,adrian.rebola_pardo,

martina.seidl}@jku.at
2 Institute for Logic and Computation, TU Vienna, Vienna, Austria

Abstract. Modern solvers for quantified Boolean formulas (QBFs) pro-
cess formulas in prenex form, which divides each QBF into two parts: the
quantifier prefix and the propositional matrix. While this representation
does not cover the full language of QBF, every non-prenex formula can
be transformed to an equivalent formula in prenex form. This transfor-
mation offers several degrees of freedom and blurs structural information
that might be useful for the solvers. In a case study conducted 20 years
back, it has been shown that the applied transformation strategy heavily
impacts solving time. We revisit this work and investigate how sensitive
recent QBF solvers perform w.r.t. various prenexing strategies.

Keywords: Quantified Boolean Formulas · Prenexing · Normal Form
Transformation

1 Introduction

Quantified Boolean formulas (QBFs), the extension of propositional formulas
with quantifiers over the Boolean variables, have many applications in formal
verification, synthesis, and artificial intelligence [28]. Over the last 25 years,
many efficient QBF solvers have been developed [2], with clear tendency towards
QBFs in prenex conjunctive normal form (PCNF). A QBF in PCNF has the form
Q1x1 . . . Qnxn.φ where Qi ∈ {∀,∃} and φ is a propositional formula in conjunc-
tive normal form. In general, encodings do not result in formulas of this structure,
because of recursive definitions in the encoding or from optimizations that try
to minimize the scope of variables. Origins for a non-CNF structure can be for
example the use of equivalences or xors in the encoding. Therefore two transfor-
mations are required: (1) prenexing which shifts the quantifiers outside of the
formula, and (2) transformation of the quantifier-free formula to CNF. The lat-
ter is efficiently achieved by applying the QBF-variant of the well known Tseitin
transformation [30] or the optimized Plaisted-Greenbaum transformation [24].
In this work, we focus on the prenexing.

*This work was supported by the LIT AI Lab funded by the state of Upper Austria
and by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG11005].
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 325–343, 2024.
https://doi.org/10.1007/978-3-031-63498-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_20&domain=pdf
http://orcid.org/0009-0000-7630-2791
http://orcid.org/0000-0001-7297-6000
http://orcid.org/0000-0001-9234-4377
http://orcid.org/0000-0002-3267-4494
https://doi.org/10.1007/978-3-031-63498-7_20

326 S. Heisinger et al.

Without loss of generality, formulas can be assumed to be in negation normal
form (i.e. negation symbols only occur in front of variables) and cleansed (i.e.
no variable occurs both bound and free, and every variable is quantified at most
once). Under these conditions, prenexing is achieved by the following two rules:

(Qx.ϕ) ◦ ϕ′ ⇔ Qx.(ϕ ◦ ϕ′) ϕ ◦ (Qx.ϕ′) ⇔ Qx.(ϕ ◦ ϕ′)

with Q ∈ {∀,∃} and ◦ ∈ {∧,∨}. The formula structure imposes an ordering of
the quantifiers based on the subformula relation. Quantifiers from independent
parts of a formula can be freely ordered. For example, the formula ∀x.(∃y.(y ∨
x)) ∧ (∀z.(z ∨ ¬x)) has prenex forms ∀x.∃y.∀z.φ or ∀x.∀z.∃y.φ where φ = (y ∨
x) ∧ (z ∨ ¬x). Hence, a prenex form is not uniquely determined.

Egly et al. [6] suggested four different prenexing strategies that minimize
the number of quantifier alternations in the prefix. Empirically, they showed
that the selected prenexing strategy impacts solving performance. In this work,
we revisit those prenexing strategies and give a concise formalization, which the
original work lacked. We show that the original four strategies disambiguate into
six unique prenexing strategies when enforcing a minimal number of quantifier
alternations, and we present a tool that implements those strategies. To evaluate
the impact of prenexing on modern solvers we reimplemented the generator for
encoding nested counterfactuals and performed extensive experiments with these
formulas and formulas from the QBFEval’08 in which a non-prenex track was
organized.

2 Preliminaries

The set of quantified Boolean formulas QF (X) over variables X is defined as
follows: (1) 	,⊥, x,¬x,¬	,¬⊥ ∈ QF (X) if x ∈ X, (2) ϕ ∨ ϕ′, ϕ ∧ ϕ′ ∈ QF (X)
if ϕ,ϕ′ ∈ QF (X), (3) if ϕ ∈ QF (X), then ∀x.ϕ,∃x.ϕ ∈ QF (X) with x ∈ X.1 In
QBF Qx.ϕ with Q ∈ {∀,∃}, the subformula ϕ is called the scope of variable x ∈
X and x is said to be bound by quantifier Q. If variable x occurs in QBF ϕ, but ϕ
does neither contain ∃x nor ∀x then x is free in ϕ. The set of all free variables of a
QBF ϕ is denoted by free(ϕ). A QBF without free variables is called closed. In the
following, we assume that each variable is in the scope of at most one quantifier
and that each variable occurs either free or bound, but not both in a formula.
We call such formulas cleansed. The semantics of a QBF ϕ is defined by the
interpretation function [.]σ : QF (X) → B where B = {1,0} and σ : free(ϕ) → B

is an assignment to the free variables of ϕ. Then []σ = 1, [⊥]σ = 0, for any
x ∈ X, [x]σ = σ(x) and [¬v]σ = 1 − [v]σ for v ∈ X ∪ {	,⊥}. Furthermore,
[ϕ1 ∧ ϕ2]σ = min{[ϕ1]σ, [ϕ2]σ}, and [ϕ1 ∨ ϕ2]σ = max{[ϕ1]σ, [ϕ2]σ}. Finally,
[∃x.ϕ]σ = max{ϕ[x|], ϕ[x|⊥]} and [∀x.ϕ]σ = min{ϕ[x|], ϕ[x|⊥]} where ϕ[x|t]
denotes the QBF obtained by substituting a variable x by a truth constant
t ∈ {	,⊥} in ϕ. Two QBFs ϕ,ϕ′ ∈ QF (X) are equivalent if [ϕ]σ = [ϕ′]σ for any
assignment σ.
1 For simplicity, we assume negations only in front of variables and truth constants.

Quantifier Shifting for Quantified Boolean Formulas Revisited 327

Definition 1. The propositional skeleton ϕpsk of QBF ϕ ∈ QF (X) is defined
as follows:

ϕpsk =

⎧
⎪⎪⎨

⎪⎪⎩

x if ϕ = x, x ∈ X ∪ {	,⊥}
¬x if ϕ = ¬x, x ∈ X ∪ {	,⊥}
ϕ′

psk ◦ ϕ′′
psk if ϕ = ϕ′ ◦ ϕ′′, ◦ ∈ {∧,∨}

ϕ′
psk if ϕ = QV.ϕ′, Q ∈ {∀,∃}

We say that a QBF ϕ is of the form QV.ϕ′ for a set of variables V whenever
ϕ = Qx1.Qxn.ϕ′ for some enumeration x1, . . . , xn of V . A QBF ϕ ∈ QF (X)
is in prenex form if it is has the structure Π.φ where Π = Q1x1 . . .Qnxn is a
quantifier prefix with Qi ∈ {∀,∃}, xi ∈ X and xi = xj for i = j and φ is a
propositional formula. If φ is also in conjunctive normal form (CNF), then ϕ is
in prenex conjunctive normal form (PCNF). A propositional formula is in CNF
if it is a conjunction of clauses. A clause is a disjunction of literals and a literal
is a variable or a negated variable. Obviously, (Π.φ)psk = φ for a PCNF formula
Π.φ.

Proposition 1. Consider QBFs ϕ,ϕ′, a quantifier Q ∈ {∀,∃}, a connective ◦,
and variables x, y.

1. If ϕ ◦ (Qx.ϕ′) is cleansed, then Qx.(ϕ ◦ ϕ′) is cleansed, and both formulas are
equivalent.

2. If Qx.Qy.ϕ is cleansed, then Qy.Qx.ϕ is cleansed, and both formulas are equiv-
alent.

Forests, trees and partial orders. We will oftentimes regard trees and forests as
partially ordered sets. In particular, we define a forest as set T equipped with a
partial ordering ≤ such that for all elements x ∈ T , the subset {y ∈ T | y ≤ x}
is totally ordered. When T is finite, this definition appropriately models the
recursive concept of a forest: the elements of T are nodes, and x ≤ y if y is a
descendant of x. We say that x is covered by y whenever x ≤ y and there is no
z ∈ T with x < y < z. When regarding T as a forest, this means that x is the
parent of y. A forest T is a tree if, additionally, for any two elements x, y ∈ T
there is another element z ∈ T with z ≤ x and z ≤ y. For a finite T , this implies
that T has a least element, which corresponds to its root.

Given a forest T , we call a list x1, . . . , xn a path in T if for all 1 ≤ i < j ≤ n
we have xi, xj ∈ T and xi < xj . The height of a forest T is defined as

ht(T) = max{n ≥ 0 | there is a path x1, . . . , xn in T}.

For a node x ∈ T , we define its lower bounds as T x = {y ∈ T | y ≤ x} and its
upper bounds as Tx = {y ∈ T | y ≥ x}.

Parity-based functions. We will use a parity-based version of the floor and ceiling
functions. Intuitively, �n�k (resp. �n�k) rounds n down (resp. up) to the closest
integer with the same parity as k. Formally, for integers n, k ∈ Z we define:

�n�k = max{m ∈ Z | m ≤ n and m − k is even}
�n�k = min{z ∈ Z | z ≥ y and m − k is even}

328 S. Heisinger et al.

Direction-parametric operators. At several points our ordering-based definitions
will depend on a direction parameter † ∈ {↑, ↓}. Intuitively, ↑-labeled operators
use a reverse ordering, while ↓-labeled operators use an unmodified ordering. In
particular, we define the following operators:

≤↑ is ≥ ≤↓ is ≤ (and similarly for ≥†, <†, >†)

min↑ is max min↓ is min (and similarly for max†)

�. . . �↑
k is �. . . �k �. . . �↓

k is �. . . �k (and similarly for �. . . �†
k)

T ↑
x is T x T ↓

x is Tx (and similarly for T x
†)

3 Related Work

Already 20 years back it has empirically been shown that quantifier shifting has
a severe impact on the solving performance [6] of QBF solvers. In this work,
four different prenexing strategies were introduced that intuitively result in the
smallest number of possible quantifier alternations. The authors noted that the
presented strategies “leave room for different [prenexing] variants”. In this work,
we close this gap by providing a concise formalization of quantifier shifting.

The observation that the prenexing strategy impacts solving performance
motivated development of several non-prenex non-CNF solvers [7,8,15,29]. With
the rise of efficient preprocessing for PCNF formulas and a focus on applica-
tions with few quantifier alternations, however, solver development focused on
formulas in prenex form. To deal with the information loss induced by quan-
tifier shifting, solvers were introduced that employ dependency schemes [27]
to (re-)discover and exploit variable independencies [16,22], i.e., those solvers
recover information on quantifier dependencies that is hidden in the prefix.
Reeves et al. presented an approach to move Tseitin variables from the inner-
most quantifier block to the outer-most possible position in the quantifier pre-
fix [26]. The exact position is determined by the variables occuring in the formula
defined by the Tseitin variable. With this reordering, they observe a consider-
able speed-up in solver performance. Lonsing and Egly evaluated the impact of
the number of quantifier alternations on recent QBF solvers [18]. In their exper-
iments, they established a correlation between different solving paradigms like
expansion or QCDCL (see [2] for a detailed discussion of such proof systems) and
the number of quantifier alternations. Also, proof-theoretical investigations [1]
identify the number of quantifier alternations as source of hardness for practical
solving. However, to the best of our knowledge, there is no recent study that
investigates the impact of quantifier shifting on the solving behavior of state-of-
the-art solvers for formulas in prenex normal form.

Nowadays there is also much interest in dependency quantified Boolean for-
mulas (DQBF) which allow for an explicit specification of quantifier dependen-
cies. The decision problem of these formulas is NEXPTIME-complete [23], in
contrast to the PSPACE-completeness of QBFs.

Quantifier Shifting for Quantified Boolean Formulas Revisited 329

4 Quantifier Shifting

In this work we aim to transform arbitrary QBF formulas ϕ (which are not in
general prenex or in CNF) into equivalent prenex QBF formulas of the form
Q1x1. . . .Qnxn.ϕpsk. The formula ϕpsk is not necessarily in CNF, although this
can be easily achieved through the well-known Tseitin procedure.

The method we propose can be roughly summarized as follows. First, a quan-
tifier tree reflecting the scope hierarchy of quantifiers in ϕ is constructed. Each
node in this quantifier tree will then be assigned a rank with some restrictions
to guarantee soundness; we call this assignment a linearization. Finally, the for-
mula Q1x1. . . .Qnxn.ϕpsk is constructed by enumerating the bound variables
x1, . . . , xn by rank; thanks to the restrictions on linearizations, this formula will
be equivalent to ϕ.

Example 1. Throughout our work we will use the following QBF η as a running
example:

∃x1.x1 ∧
((

∀y1.
(∃z1. (¬y1 ∨ z1) ∧

∀u1.∃v1.(y1 ∨ ¬u1 ∨ v1) ∧ (¬y1 ∨ u1 ∨ ¬v1)
) ∧

(∀z2.(∃u2.¬z2 ∨ u2) ∧ (∀u3.x1 ∨ z2 ∨ u3)
)
)

∨
(

∃y4.(y4 ∧ ∀z4.∃u4.z4 ∧ u4) ∨ (¬y4 ∧ ∃z5.∀u5.z5 ∧ u5)
))

Its propositional skeleton ηpsk is then given by:

x1 ∧
((

(¬y1 ∨ z1) ∧ (y1 ∨ ¬u1 ∨ v1) ∧ (y1 ∨ u1 ∨ ¬v1) ∧
(¬z2 ∨ u2) ∧ (x1 ∨ z2 ∨ u3)

) ∨
(y4 ∧ z4 ∧ u4) ∨ (¬y4 ∧ z5 ∧ u5)

)

Consider the following two quantifier shifts for η:

η′ = ∃x1.∃y4.∃z5.∀y1.∀z2.∀u3.∀z4.∀u5.∃z1.∃u2.∃u4.∀u1.∃v1.ηpsk

η′′ = ∃x1.∃y4.∃z5.∃v1.∀y1.∀z2.∀u3.∀z4.∀u5.∃z1.∃u2.∃u4.∀u1.ηpsk

While η′ is equivalent to η, the QBF formula η′′ is not. The intuitive reason
is that in η′′ the quantifier ∃v1 has been pushed across quantifier alternation
boundaries. This is exactly the situation our formalization will prevent.

Our formalization associates to each QBF a forest obtained by removing from
its syntax tree all non-quantifier nodes. The remaining nodes are thus uniquely
determined by a bound variable and a quantifier, and this forest contains all
the information needed for quantifer shifting. Hence, we first define the abstract

330 S. Heisinger et al.

concept of quantifier forests, and then we will show how to construct a quantifier
forest from a QBF as above.

A quantifier forest is a triple (T,≤, q) where (T,≤) is a finite forest regarded
as a partially ordered set (see Sect. 2) and q : T → {∀,∃}. We call it a quantifier
tree or quantree whenever (T,≤) is a tree. If (T,≤, q) is a nonempty quantree,
we also define q�(x) = 1 if q(x) = q(min(T)) and q�(x) = 0 otherwise. Given a
QBF formula ϕ, its associated quantifier forest is a triple (Tϕ,≤ϕ, qϕ), where Tϕ

is the set of bound variables in ϕ, and ≤ϕ and qϕ are defined recursively:

– If ϕ is either 	, ⊥ or x ∈ X, then ≤ϕ = ∅ and qϕ = ∅.
– If ϕ = ¬ϕ0 where ϕ0 ∈ X ∪ {	,⊥}, then ≤ϕ = ∅ and qϕ = ∅.
– If ϕ = ϕ1 ◦ ϕ2 with ◦ ∈ {∧,∨}, then ≤ϕ=≤ϕ1 ∪ ≤ϕ2 and qϕ = qϕ1 ∪ qϕ2 .
– If ϕ = Qx.ϕ0 for a quantifier Q, then ≤ϕ=≤ϕ0 ∪{(x, y) | y ∈ Tϕ} and

qϕ = qϕ0 ∪ {(x,Q)}.

Proposition 2. Let (Tϕ,≤ϕ, qϕ) be a quantifier forest of QBF ϕ. If ϕ = Qx.ϕ0

for a quantifier Q, then (Tϕ,≤ϕ, qϕ) is a quantree.

Example 2. Figure 1 shows the quantree associated to the QBF η from Exam-
ple 1. In general, we can only guarantee that the quantifier forest associated to
a QBF is a tree when the QBF is of the form Qx.ϕ. For example, the quantifier
forest associated with (∀x.x)∧ (∃y.y) is a forest with two incomparable elements
x and y.

4.1 Linearizations over Quantrees

We now formalize the main object of this paper, namely the different ways
the quantifiers in a formula can be rearranged into a quantifier prefix to an
equivalent prenex formula. Given a QBF of the form Qx.ϕ for a quantifier Q,
we consider its associated quantree T . We aim to construct an equivalent prenex
QBF Q1Vi. . . .Q

NVN .ϕpsk where Qi = Qi+1 for 1 ≤ i < N . To do so, each node
in T (i.e. each bound variable in Qx.ϕ) must be mapped to a single quantifier
block QiVi. We call this i its rank. However, as shown in Example 1, assigning
arbitrary ranks is unsound (i.e. the obtained prenex QBF is not equivalent to
Qx.ϕ). We show how bound variables can be ranked while preserving soundness.

Let us consider an arbitrary quantree T . A map f : T → {1, . . . , N} for some
N ≥ 0 is called a linearization if:

1. f(x) ≤ f(y) for all quantree nodes x, y ∈ T with x ≤ y.
2. For all quantree nodes x ∈ T , f(x) is odd if and only if q�(x) = 1.

Consider now a QBF of the form Qy.ϕ where Q is a quantifier and y is a variable,
and its associated quantree (T,≤, q). In this case, since T is the set of bound
variables in Qy.ϕ, a linearization f : T → {1, . . . , N} maps each bound variable
x ∈ T to an integer f(x) we call its rank. A QBF ψ is called a prenexation of
Qy.ϕ via f if ψ is of the form Q1V1. . . .Q

NVN .ϕpsk where Vi = {x ∈ T | f(x) = i}
and Qi = Q (resp. Q) if i is odd (resp. even) for 1 ≤ i ≤ N .

Quantifier Shifting for Quantified Boolean Formulas Revisited 331

Fig. 1. Above, the quantree associated to the formula η from Example 1. Below, opti-
mal linearizations for this quantree for each strategy. In each column, the variables
mapped to each rank are shown; the quantifier of each block appears in the header.
Note that the optimal linearizations for strategies Q†↑ and Q†↓ assign the same rank
to Q-quantified variables; this is a consequence of Lemma 2.

Theorem 1. Let T be the quantree associated to a QBF of the form Qy.ϕ.
Consider a prenexation ψ of Qy.ϕ via some linearization f : T → {1, . . . , N}.
Then Qy.ϕ is equivalent to ψ.

To guarantee this form Qy.ϕ for an arbitrary QBF ϕ, we can simply introduce
a fresh variable y that does not occur in ϕ. Obviously, ϕ is equivalent to Qy.ϕ.

Example 3. Figure 1 shows six linearizations for the quantree associated to the
QBF η from Example 1 and Example 2. In that example, the quantifier shift η′

is the prenexation of η via the linearization f1. Note that the mapping f that
would produce η′′ is not a linearization, since that would violate Theorem 1. In
particular, u1 ≤ v1 but f(v1) < f(u1).

4.2 Alternation Height of Quantrees

So far we have not shown that linearizations even exist. Given the theoretical
and empirical impact of the number of quantifier alternations on QBF solving,
we are not just interested in their existence, but rather on linearizations that
minimize the maximum rank N . We will now show how to compute the minimal
value of N for which linearizations exist; in fact, this value will be extremely
useful to extend the ideas from [6] to arbitrary QBFs in Sect. 5.2.

332 S. Heisinger et al.

Consider an arbitrary quantree T , and a path x1, . . . , xn in T . We call this
path alternating whenever q(xi) = q(xi+1) for 1 ≤ i < n. Then we can define
the alternation height of T as

aht(T) = max{n ≥ 0 | there is an alternating path x1, . . . , xn in T}.

Intuitively, the alternation height of T is the height of the tree that results from
“clumping” together all adjacent nodes with the same quantifier. It then becomes
apparent that any linearization f over T must have N ≥ aht(T), since for any
alternating path x1, . . . , xn we have f(x1) < · · · < f(xn). The following result
shows that this lower bound can indeed be realized:

Theorem 2. Let T be a quantree. Then, a linearization f : T → {1, . . . , aht(T)}
exists. Furthermore, there exists no linearization g : T → {1, . . . , N} such that
0 ≤ N < aht(T).

Observe that the number of quantifier alternations in a prenexation via a
linearization grows with the value N . In the following sections, we will restrict
our scope to linearizations that minimize this value, i.e. linearizations in the set

Lin(T) = {f : T → {1, . . . , N} | f is a linearization and N = aht(T)}.

5 Linearization Strategies

We now follow up on the ideas from [6] and formalize them. In particular, we
aim to obtain a formal definition of when does a linearization follow a given
strategy, to ascertain whether strategies determine a unique linearization for
each quantree, and to find simple algorithms to compute this linearization.

5.1 Strategies as Preferences over Linearizations

Here we take a non-constructive approach. For each prenexing strategy, we define
a preference relation between the linearizations in Lin(T); linearizations that
follow the strategy “better” than others are preferred. As we will show, this
induces a strategy-based partial order between linearizations. The desired output
of a strategy must then be a maximal element w.r.t. this partial order.

The strategies from [6] are based on the idea of pushing quantifiers of a given
polarity as high or as low as possible in the quantifier hierarchy. This lends itself
to a natural definition of preference.

Consider an arbitrary quantree T . Given a direction † ∈ {↑, ↓} and a quanti-
fier Q, we define the semi-preference relation �Q† over Lin(T) given by f �Q† g
iff f(x) ≤† g(x) for all x ∈ T with q(x) = Q. In other words, g is preferred over
f whenever g assigns ranks to Q-nodes further in the direction † than f does.

Example 4. Consider the linearizations f1, f2 and f6 from Fig. 1. All universal
variables are assigned lower ranks by both f1 and f2 than by f6, so f6 �∀↓ f1
and f6 �∀↓ f2 hold. Note also that f1 and f2 assign the same ranks to universal
variables, so both f1 �∀↓ f2 and f2 �∀↓ f1 hold. Note that this does not imply
f1 = f2.

Quantifier Shifting for Quantified Boolean Formulas Revisited 333

Example 4 shows that the antisymmetric property of partial orders does
not hold for �Q†. This is intuitive: two linearizations might be just as good as
each other regarding Q-nodes, while wildly differing for other nodes. Hence, for
strategies to uniquely determine linearizations we need to provide preferences
for both quantifiers. While this was proposed by [6], it was also noted there that
uniqueness is not attained.

Example 5. The linearizations f2 and f3 from Fig. 1 are both good candidates for
linearizations for the strategy ∃↓∀↑ from [6]: both assign high ranks to existential
variables and low ranks to universal variables. However, there is no apparent
criterion why f2 should or should not be preferred to f3 under that strategy.

We solve this problem by giving one quantifier priority over the other. Our
strategies are of the form Q†‡, where Q is a quantifier and †, ‡ are directions.
A good linearization under this strategy pushes quantifiers Q in the † direction,
and quantifiers Q in the ‡ direction; when in conflict, the former should prevail.

To formalize this idea, we liberally borrow from the somewhat similar notion
of lexicographic orderings. Let us define f ≈Q g whenever f(x) = g(x) for all
x ∈ T with q(x) = Q. In other words, f ≈Q g holds whenever both f �Q† g and
g �Q† f hold, regardless of the choice of direction †. We define the preference
relation �Q†‡ over Lin(T) given by f �Q†‡ g iff f �Q† g holds, and whenever
f ≈Q g holds then f �Q‡ g holds as well.

Proposition 3. �Q†‡ defines a partial order on Lin(T).

It is easy to check that �∀†† and �∃†† are the same preference relation for † ∈
{↑, ↓}. Hence, our approach defines 6 unique strategies, while [6] only proposed
4 strategies. On the one hand, the ∃†∀† strategy from [6] corresponds to our ∃††
(or, equivalently, ∀††) strategy. On the other hand, our strategies ∃†‡ and ∀‡†
with † = ‡ are both covered by the ∃†∀‡ strategy from [6], which is not uniquely
determined.

Example 6. Although we cannot yet convince the reader of this, the lineariza-
tions given in Fig. 1 are the maximum element of Lin(T) for each of the six
(unique) preference orderings �Q†‡; the corresponding strategy is shown in the
rightmost column. For now, we can foreshadow that strategies Q†↑ and Q†↓
assign the same ranks to Q-nodes. As shown later in Lemma 1, this holds in
general.

5.2 Optimal Linearizations over a Strategy

Proposition 3 suggests this is a good direction to formalize the idea of strategies:
since Lin(T) is finite, there exist optimal linearizations w.r.t. the preference
ordering �Q†‡. We call these linearizations Q†‡-optimal ; linearizing a quantree
T through the strategy Q†‡ then means computing a Q†‡-optimal linearization
in Lin(T).

334 S. Heisinger et al.

Some hurdles remain unsolved, though. For one, we have not determined if
Q†‡-optimal linearizations are unique (i.e. if maximal elements w.r.t. �Q†‡ are
maxima as well). This is of interest because to empirically test the performance
effect of quantifier shifting strategies, the outcome of applying a strategy must be
reproducible at worst, and uniquely determined by definition at best. A second
issue is a consequence of our non-constructive approach: we are yet to provide a
procedure that computes a Q†‡-optimal linearization for a given quantree.

The rest of this section is devoted to computing a closed-form expression
for Q†‡-optimal linearizations. Since this expression is deterministic and com-
putable, this solves both aforementioned issues.

Overview. As we mentioned above, �Q†‡ is somewhat similar to a lexicographic
ordering in two components where the first component is ordered by �Q† and
the second component is ordered by �Q‡. We exploit this intuition to construct
Q†‡-optimal linearizations: we will first optimize the first component (in our
case, the ranks of Q-nodes), and then optimize the second component (the ranks
of Q-nodes) while keeping the first component fixed.

To optimize the first component, we find a linearization Γ†, defined below
in (1), that is optimal for �Q†. This is more precisely expressed in Lemma 1: Γ†
pushes Q-nodes further in direction † than any other linearization.

Interestingly, Γ† does not depend on Q: Γ† actually optimizes all nodes in
the † direction. The second part of our method optimizes the ranks assigned
to Q-nodes in the ‡ direction while keeping Q-nodes constant. For a general
linearization f , this procedure results in a new linearization [f]Q‡ defined below
in (2). Lemma 2 shows that [f]Q‡ is optimal for �Q†‡ among the linearizations
that assign the same ranks as f to Q-nodes. These two results are combined in
Theorem 3: the unique Q†‡-maximal linearization is [Γ†]

Q‡.

Theoretical Results. Let us consider a quantree (T,≤, q) and a strategy Q†‡. We
define the mapping Γ† : T → {1, . . . , aht(T)} given by

Γ†(x) =
⌊|max†{1, . . . , aht(T)} − aht(T †

x)| + 1
⌋†

q�(x)
. (1)

Furthermore, we define the mapping [f]Q‡ : T → {1, . . . , aht(T)} for f ∈ Lin(T)
given by

[f]Q‡(x) =
⌊
min‡{f(y) | y ∈ T ‡

x and q(y) = Q}⌋‡
q�(x)

. (2)

In (2), min‡ is taken over a subset of {1, . . . , aht(T)}; we follow the convention
that min‡(∅) = max‡{1, . . . , aht(T)}.

Lemma 1. Γ† ∈ Lin(T). Furthermore, for any g ∈ Lin(T), we have g �Q† Γ†.

Lemma 2. [f]Q‡ ∈ Lin(T) for all f ∈ Lin(T). Furthermore, [f]Q‡ ≈Q f , and
for any g ∈ Lin(T) with g ≈Q f , we have g �Q†‡ f .

Theorem 3. Let f ∈ Lin(T) be a Q†‡-optimal linearization. Then, f = [Γ†]
Q‡.

In particular, [Γ†]
Q‡ is the maximum element in (Lin(T),�Q†‡).

Quantifier Shifting for Quantified Boolean Formulas Revisited 335

Example 7. Let us check that [Γ↓]
∃↑ is indeed f3 for the quantree in Fig. 1 for a

few values. First note that [Γ↓]
∃↑ only depends on the values of Γ↓ for existential

nodes, so we only need to compute these. In this case, max†{1, . . . , aht(T)} =
aht(T) = 5, q�(x) = 1, and aht(T ↓

x) = aht(Tx) is simply the maximum number
of quantifier alternations below x. Γ↓ respects the tree ordering, so we obtain

[Γ↓]
∃↑(z1) = Γ↓(z1) = �|5 − aht(Tz1)| + 1�1 = �4�1 = 3 = f3(z1).

Furthermore, we can compute [Γ↓]
∃↑(u1) by checking only Γ↓(z1), since z1 real-

izes the min↑ operator in (2). Then,

[Γ↓]
∃↑(u1) = �Γ↓(z1)�q�(u1)

= �3�0 = 4 = f3(u1).

Example 7 suggests that [f]Q‡ can be computed recursively. Indeed, the rank
of a node can be computed based on the ranks of its children or parent.

Corollary 1. Let x ∈ T such that q(x) = Q. Then,

[f]Q‡(x) =
⌊
min‡{[f]Q‡(y) | x is covered by y ∈ T w.r.t. ≤‡}.

⌋‡

q�(x)

6 Implementation and Evaluation

We implemented the optimal linearization [Γ†]
Q‡ for each strategy Q†‡ described

in Sect. 5. Our implementation uses the Booleguru framework [10], designed for
efficiently working with propositional formulas and QBFs. Booleguru provides
a convenient parsing and serialization infrastructure for widely used formats,
as well as helper functions to write formula transformations. Our extension is
licensed under the MIT license and publicly available2.

Our implementation computes a quantifier shift on an input QBF ϕ based on
a strategy Q†‡ by traversing twice the abstract syntax tree of the parsed QBF ϕ
in a depth-first fashion. In the first pass, the propositional skeleton ϕpsk and the
quantree T are extracted. Furthermore, the values aht(T x) and aht(Tx), which
we call height and depth of x, are computed for each node x ∈ T .

The second pass is applied only to the quantree. For each node x ∈ T , we
compute its rank [Γ†]

Q‡(x). For Q-nodes, this rank is given by Γ†(x), which is
trivial to compute from the height and depth of x; for Q-nodes, Corollary 1 allows
a recursive computation. Based on their rank, quantifier nodes in the quantree
are collected in a quantifier prefix which is appended to ϕpsk.

To apply a linearization strategy to an arbitrary formula, Booleguru needs
to be called with the options :linearize-quants-{E,A}{up,down}-{up,down}
using the quantifier E (∃) or A (∀) and the two directions up (↑) and down (↓).
Overall, there are eight different combinations that we evaluate in the follow-
ing. However, from the discussion above, it becomes obvious that only six of
2 https://github.com/maximaximal/booleguru.

https://github.com/maximaximal/booleguru

336 S. Heisinger et al.

those eight strategies are different. In the implementation, all quantifiers are
first extracted from an expression and processed in a separate tree. Each node
contains the quantifier type, the quantified variables, and dependent quantifier
nodes.

After computing the linearization, the extracted quantifiers are inserted
piecewise as new expressions that wrap the originally transformed expression.
This ensures the ordering of variables within the quantifier blocks stays the same.
The fully quantified expression is then returned from the transformer and can
either be printed using one of Booleguru’s serializers, or processed further.

6.1 Benchmarks

As most solvers only process formulas in prenex (conjunctive) normal form,
hardly any non-prenex benchmarks are currently available. To test our imple-
mentation, we considered the benchmark set from the QBFEval 2008 and we
reimplemented a generator for nested counterfactuals as described below. All
used formulas and corresponding experimental logs are available at [11].

Nested Counterfactuals. We developed a novel generator for nested counterfactu-
als (NCFs) based on a Lua script, which is integrated into Booleguru. The full
encoding is described in [6]. To generate NCFs, five arguments must be provided:
numbers of formulas in the background theory, numbers of variables, clauses per
formula, variables per clause, nesting depth. Optionally, a sixth argument to fix
the seed value for random choices. A counterfactual φ > ψ is true over a back-
ground theory T iff the minimal change of T to incorporate φ entails ψ. In a
nested counterfactual, also φ or ψ are allowed to be (nested) counterfactuals.
For details see [6]. We chose the range of arguments based on the description
mentioned in Egly et al. [6]. We assume that the background theory T always
consists of 5 randomly generated formulas. Each of these formulas consists of 2 to
10 clauses where each clause is a disjunction of 3 variables. The clauses contain
randomly chosen atoms from a set of 5 variables. These atoms have a 50 percent
chance of being negated. No clause may contain the same literal more than once
and the clauses are non-tautological. The nesting depth of the counterfactuals
ranges from 2 to 6. All possible combinations of these selected parameters result
in 45 different classes. For each of these classes, 100 instances were generated to
ensure that both, satisfiable and unsatisfiable results are represented. With the
8 strategies we obtain 36 000 prenexed formulas either in the non-CNF QCIR
format or in QDIMACS.

Non-Prenex-Non-CNF Benchmarks from QBFEval 2008. In the QBFEval 2008,
a non-prenex, non-CNF track was organized [19]. The benchmarks are available
at the QBFLib.3. This set consists of 492 formulas in the outdated Boole for-
mat. To transform these formulas into prenex form, we first rewrote them into

3 http://www.qbflib.org.

http://www.qbflib.org

Quantifier Shifting for Quantified Boolean Formulas Revisited 337

Table 1. Number of solved formulas per strategy and solver of QBFEval’08 set (QCIR).
Diff indicates the difference between the best and the worst strategy. Each strategy has
492 formulas.

Solver ∃↑↑ ∃↓↓ ∃↑↓ ∃↓↑ ∀↑↑ ∀↓↓ ∀↑↓ ∀↓↑ Diff. Rel. diff. (%)

QuAbS 380 398 405 366 380 400 376 406 40 8.13
QFUN 340 409 360 339 340 407 341 361 70 14.23
CQESTO 436 451 430 442 436 450 447 429 22 4.47
Qute 455 464 465 452 455 464 454 465 13 2.64

the related Limboole4 format that is processable by Booleguru. Again, we
considered all eight options resulting in 4936 prenexed formulas.

6.2 Experimental Setup

All experiments were run with a timeout of 15 minutes on a cluster of dual-
socket AMD EPYC 7313 @ 3.7GHz machines running Ubuntu 22.04 with a
8GB memory limit per task. We split the experiments into two parts: on the
one hand, we consider solvers that process formulas in prenex conjunctive normal
form (PCNF) and on the other hand, we consider solvers that process formu-
las in prenex non-CNF. For the first group of solvers that accept formulas in
the QDIMACS format, we consider the following solvers: The solver DepQBF

(version 6.03) is a conflict/solution driven clause/cube learning (QCDCL) solver
that integrates several advanced inprocessing techniques and reasoning under
the standard dependency scheme [17]. Also Qute [21] is a QCDCL solver that
employs dynamic dependency learning. This solver is also able to process QCIR
formulas, i.e., it is also included in the second group. The solver CAQE [25]
(version 4.0.2) implements clausal selection. The solver RAReQS [14] (version
1.1) implements variable expansion in CEGAR style. Finally, dynQBF [4,5]
(version 1.1.1) is a BDD-based solver. For pre-processing, we used Bloqqer [3]
and HQSpre [31]. For testing the encodings in the non-CNF QCIR format, we
include the solvers QuAbS [9,29] and CQESTO [13] (version v00.0) (sic) that
lift clausal selection to circuits, QFUN [12] (version v00.0) (sic), a solver that
employs machine learning techniques, and Qute which was already mentioned
above.

6.3 Experimental Results

In the following, we first discuss the results of the solvers that process formulas
in QCIR, (i.e. formulas in prenex form but not in CNF). Second, we report on
our experiments with QDIMACS formulas for the PCNF solvers.

4 http://fmv.jku.at/limboole/.

http://fmv.jku.at/limboole/

338 S. Heisinger et al.

Table 2. Number of different prefixes generated from of the 2008 non-CNF benchmark
set with all strategy combinations. Each strategy has 492 formulas.

∀
∃ ↓↓ ↓↑ ↑↓ ↑↑

↓↓ 0 4500 4500 4500
↓↑ 4500 4500 0 4500
↑↓ 4500 0 4500 4500
↑↑ 4500 4500 4500 0

Prenexed formulas in QCIR. The nested counterfactual benchmarks were easily
solved by QCIR solvers, i.e., they could exploit the formula structure to quickly
solve these formulas (all were solved in less than a second). Therefore, we focus
on the formulas of the QBFEval’08 benchmark set in the following. Table 1 shows
the results for the QCIR solvers and Table 2 shows the number of different pre-
fixes that were generated with all strategy combinations. For QuAbS, QFUN,
and CQESTO we see a clear difference between the best and worst shifting
strategy. In contrast, Qute seems to be less sensitive regarding the prenexing,
which might be related to its dynamic dependency learning. The detailed solving
behavior of QFUN and CQESTO is shown in Fig. 2. For QFUN we observe
that ∃↑↑ and ∀↑↑ clearly perform best, while ∀↓↑ and ∃↑↓ seem to be less bene-
ficial.

Prenexed Formulas in QDIMACS. Table 3 shows the results of the QDIMACS
solvers on the encodings of the nested counterfactuals and Table 4 shows the
number of different prefixes that were generated between all strategy combina-
tions. DepQBF solves all formulas from 4 of the 8 strategies and most of the
others, dynQBF is able to solve most of the formulas and Qute solves about
one quarter of the formulas. Meanwhile RAReQS and CAQE hardly solve any of
those. These could be connected with the observation that those solvers perform
better on formulas with few quantifier alternations. For all solvers we observe

Fig. 2. Solving time of the QBFEVAL’08 set with QFUN (left) and CQESTO (right).

Quantifier Shifting for Quantified Boolean Formulas Revisited 339

Table 3. Number of solved formulas per strategy and solver of NCFs. Diff indicates the
difference between the best and the worst strategy. Each strategy has 4500 formulas.

Solver ∃↑↑ ∃↓↓ ∃↑↓ ∃↓↑ ∀↑↑ ∀↓↓ ∀↑↓ ∀↓↑ Diff. Rel. diff. (%)

DepQBF 4500 4495 4497 4500 4500 4495 4500 4497 5 0.11
CAQE 37 86 88 37 37 86 37 88 51 1.13
RAReQS 21 12 19 16 21 12 16 20 9 0.2
Qute 1012 731 724 1010 1012 731 1010 724 288 6.4
dynQBF 4274 4456 4318 4467 4279 4469 4474 4316 200 4.44

Table 4. Number of different prefixes generated from of the NCF benchmark set with
all strategy combinations. Each strategy has 4500 formulas.

∀
∃ ↓↓ ↓↑ ↑↓ ↑↑

↓↓ 0 4500 4500 4500
↓↑ 4500 4500 0 4500
↑↓ 4500 0 4500 4500
↑↑ 4500 4500 4500 0

Fig. 3. Solving time of nested counterfactuals with DepQBF (left) and dynQBF
(right).

that the chosen shifting strategy impacts the number of the solved formulas.
Details of the runs of DepQBF and dynQBF are shown in Fig. 3. For DepQBF,
we observe that strategies ∃↓↓ and ∀↓↓ are clearly less preferable than strate-
gies ∃↑↑ and ∀↑↑, while dynQBF prefers to have existential quantifiers shifted
down. The QBFEval’08 benchmarks are very challenging for recent QDIMACS
solvers with our encoding. Out of the 492 formulas, DepQBF solves up to 128
formulas with the best strategy (∀↓↑). dynQBF solves around 60 formulas. The
other tools solve less than 30 formulas. Enabling preprocessing is beneficial for
all solvers. When preprocessors Bloqqer or HQSpre simplify the formulas,
then almost all formulas can be solved. With and without preprocessing, the

340 S. Heisinger et al.

shifting strategies have only little impact on this benchmark set. Note that more
than two third of these formulas have five or less quantifier alternations.

7 Conclusion and Future Work

This paper analyzes and extends previous work from 2003 on quantifier shifting
for quantified Boolean formulas. Since then, much progress has been made in
the development of QBF solvers by introducing novel solving paradigms, apply-
ing efficient preprocessing techniques, and exploiting quantifier (in-)dependence.
However, most of those approaches assume formulas in prenex normal form. As
a consequence, most encodings are provided in this form, which unnecessarily
restricts solvers with a certain design choice. In this work, we not only formalized
prenexing in a concise manner, but we also provide an efficient, publicly available
tool that implements the discussed prenexing strategies and Tseitin transforma-
tion. In extensive experiments with state-of-the-art prenex CNF and non-CNF
solvers, we showed that in many instances prenexing strategy selection impacts
solving runtime. We showed that different solvers perform differently on differ-
ent strategies, hence it was not possible to uniquely identify the best strategy.
Therefore, we think it is important that solver developers and also the develop-
ers of QBF encodings exploit information available in the problem structure and
do not introduce artificial restrictions.

In future work, we plan to design and evaluate further prenexing strategies
and we will also revisit more non-prenex QBF encodings to obtain larger bench-
mark sets. At the moment, hardly any formulas in non-prenex form are available
which we changed by providing the generator for encodings of nested counter-
factuals. But this is a first step only. Many of the considered formulas are either
too hard or too easy for recent solvers, hence more effort is necessary to obtain
a larger variety of interesting benchmarks (also in the light of next QBF evalua-
tions). Finally, we want to explore how prenexing strategies affect the generation
of certificates and solutions in terms of Herbrand and Skolem functions. From
first-order logic, it is well known that it is beneficial to move quantifiers as far
inwards as possible to minimize the arity of the first-order Skolem functions [20].

References

1. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
ACM Trans. Comput. Theory 12(2), 10:1–10:27 (2020). https://doi.org/10.1145/
3378665

2. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas.
In: Handbook of Satisfiability – Second Edition, Frontiers in Artificial Intelligence
and Applications, vol. 336, pp. 1177–1221. IOS Press (2021). https://doi.org/10.
3233/FAIA201015

https://doi.org/10.1145/3378665
https://doi.org/10.1145/3378665
https://doi.org/10.3233/FAIA201015
https://doi.org/10.3233/FAIA201015

Quantifier Shifting for Quantified Boolean Formulas Revisited 341

3. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-
6_10

4. Charwat, G., Woltran, S.: BDD-based dynamic programming on tree decomposi-
tions. Technical report, Technische Universität Wien, Institut für Informationssys-
teme, Technical report (2016)

5. Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Proceed-
ings of the 4th International Workshop on Quantified Boolean Formulas (QBF
2016) co-located with 19th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2016), Bordeaux, France, July 4, 2016. CEUR Work-
shop Proceedings, vol. 1719, pp. 27–40. CEUR-WS.org (2016)

6. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing different
prenexing strategies for quantified Boolean formulas. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_17

7. Egly, U., Seidl, M., Woltran, S.: A solver for QBFS in nonprenex form. In: ECAI
2006, 17th European Conference on Artificial Intelligence, August 29 - September
1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent
Systems (PAIS 2006), Proceedings. Frontiers in Artificial Intelligence and Appli-
cations, vol. 141, pp. 477–481. IOS Press (2006)

8. Goultiaeva, A., Bacchus, F.: Exploiting circuit representations in QBF solving. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 333–339. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_29

9. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Proceedings
Ninth International Symposium on Games, Automata, Logics, and Formal Verifi-
cation, GandALF 2018, Saarbrücken, Germany, 26-28th September 2018. EPTCS,
vol. 277, pp. 88–102 (2018). https://doi.org/10.4204/EPTCS.277.7

10. Heisinger, M., Heisinger, S., Seidl, M.: Booleguru, the propositional polyglot. In:
Benzmüller, C., Heule, M., Schmidt, R. (eds.) Automated Reasoning - 12th Inter-
national Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceed-
ings. LNCS, vol. 14739, p. 315–324. Springer (2024). https://doi.org/10.1007/978-
3-031-63498-7_19

11. Heisinger, S., Heisinger, M., Rebola-Pardo, A., Seidl, M.: Artifact for “quantifier
shifting for quantified Boolean formulas revisited” (2024). https://doi.org/10.5281/
zenodo.10634925

12. Janota, M.: QFUN: towards machine learning in QBF. CoRR abs/1710.02198
(2017)

13. Janota, M.: Circuit-based search space pruning in QBF. In: Beyersdorff, O., Win-
tersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 187–198. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_12

14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8_10

15. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF Solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14186-7_12

https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-642-22438-6_10
https://doi.org/10.1007/978-3-540-24605-3_17
https://doi.org/10.1007/978-3-642-14186-7_29
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1007/978-3-031-63498-7_19
https://doi.org/10.1007/978-3-031-63498-7_19
https://doi.org/10.5281/zenodo.10634925
https://doi.org/10.5281/zenodo.10634925
https://doi.org/10.1007/978-3-319-94144-8_12
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12

342 S. Heisinger et al.

16. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14

17. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23

18. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9_19

19. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years
of QBF evaluations: QSAT is PSPACE-Hard and it shows. Fundam. Informaticae
149(1–2), 133–158 (2016). https://doi.org/10.3233/FI-2016-1445

20. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT Press
(2001). https://doi.org/10.1016/B978-044450813-3/50008-4

21. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3_19

22. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell.
Res. 65, 180–208 (2019). https://doi.org/10.1613/jair.1.11529

23. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. App. 41(7–8), 957–992 (2001)

24. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form transla-
tion. J. Symb. Comput. 2(3), 293–304 (1986). https://doi.org/10.1016/S0747-
7171(86)80028-1

25. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015. pp. 136–143. IEEE (2015). https://doi.org/10.1109/FMCAD.2015.7542263

26. Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Moving definition variables in quantified
Boolean formulas. In: TACAS 2022. LNCS, vol. 13243, pp. 462–479. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_26

27. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reason. 42(1), 77–97 (2009). https://doi.org/10.1007/s10817-008-9114-5

28. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
Boolean formulas. In: 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019, pp. 78–84.
IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00020

29. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_24

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computa-
tion, pp. 466–483. Springer, Berlin, Heidelberg (1983). https://doi.org/10.1007/
978-3-642-81955-1_28

31. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor
for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 373–390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_21

https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.3233/FI-2016-1445
https://doi.org/10.1016/B978-044450813-3/50008-4
https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1613/jair.1.11529
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1007/978-3-030-99524-9_26
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-662-54577-5_21

Quantifier Shifting for Quantified Boolean Formulas Revisited 343

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Satisfiability Modulo Exponential Integer
Arithmetic

Florian Frohn and Jürgen Giesl(B)

RWTH Aachen University, Aachen, Germany
{florian.frohn,giesl}@informatik.rwth-aachen.de

Abstract. SMT solvers use sophisticated techniques for polynomial
(linear or non-linear) integer arithmetic. In contrast, non-polynomial
integer arithmetic has mostly been neglected so far. However, in the con-
text of program verification, polynomials are often insufficient to capture
the behavior of the analyzed system without resorting to approximations.
In the last years, incremental linearization has been applied successfully
to satisfiability modulo real arithmetic with transcendental functions.
We adapt this approach to an extension of polynomial integer arithmetic
with exponential functions. Here, the key challenge is to compute suit-
able lemmas that eliminate the current model from the search space if it
violates the semantics of exponentiation. An empirical evaluation of our
implementation shows that our approach is highly effective in practice.

1 Introduction

Traditionally, automated reasoning techniques for integers focus on polynomial
arithmetic. This is not only true in the context of SMT, but also for program
verification techniques, since the latter often search for polynomial invariants
that imply the desired properties. As invariants are over-approximations, they
are well suited for proving “universal” properties like safety, termination, or
upper bounds on the worst-case runtime that refer to all possible program runs.
However, proving dual properties like unsafety, non-termination, or lower bounds
requires under-approximations, so that invariants are of limited use here.

For lower bounds, an infinite set of witnesses is required, as the runtime
w.r.t. a finite set of (terminating) program runs is always bounded by a constant.
Thus, to prove non-constant lower bounds, symbolic under-approximations are
required, i.e., formulas that describe an infinite subset of the reachable states.
However, polynomial arithmetic is often insufficient to express such approxima-
tions. To see this, consider the program

x ← 1; y ← nondet(0,∞); while y > 0 do x ← 3 · x; y ← y − 1 done

where nondet(0,∞) returns a natural number non-deterministically. Here, the
set of reachable states after execution of the loop is characterized by the formula

∃n ∈ N. x = 3n ∧ y = 0. (1)

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2).

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 344–365, 2024.
https://doi.org/10.1007/978-3-031-63498-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_21&domain=pdf
http://orcid.org/0000-0003-0902-1994
http://orcid.org/0000-0003-0283-8520
https://doi.org/10.1007/978-3-031-63498-7_21

Satisfiability Modulo Exponential Integer Arithmetic 345

In recent work, acceleration techniques have successfully been used to deduce
lower runtime bounds automatically [17,18]. While they can easily derive a for-
mula like (1) from the code above, this is of limited use, as most1 SMT solvers
cannot handle terms of the form 3n. Besides lower bounds, acceleration has also
successfully been used for proving non-termination [15,18,19] and (un)safety
[3,6,7,20,28,29], where its strength is finding long counterexamples that are
challenging for other techniques.

Importantly, exponentiation is not just “yet another function” that can result
from applying acceleration techniques. There are well-known, important classes
of loops where polynomials and exponentiation always suffice to represent the
values of the program variables after executing a loop [16,26]. Thus, the lack of
support for integer exponentiation in SMT solvers is a major obstacle for the
further development of acceleration-based verification techniques.

In this work, we first define a novel SMT theory for integer arithmetic with
exponentiation. Then we show how to lift standard SMT solvers to this new
theory, resulting in our novel tool SwInE (SMT with Integer Exponentiation).

Our technique is inspired by incremental linearization, which has been
applied successfully to real arithmetic with transcendental functions, includ-
ing the natural exponential function expe(x) = ex, where e is Euler’s number
[11]. In this setting, incremental linearization considers expe as an uninterpreted
function. If the resulting SMT problem is unsatisfiable, then so is the original
problem. If it is satisfiable and the model that was found for expe coincides
with the semantics of exponentiation, then the original problem is satisfiable.
Otherwise, lemmas about expe that rule out the current model are added to
the SMT problem, and then its satisfiability is checked again. The name “incre-
mental linearization” is due to the fact that these lemmas only contain linear
arithmetic.

The main challenge for adapting this approach to integer exponentiation
is to generate suitable lemmas, see Sect. 4.2. Except for so-called monotonicity
lemmas, none of the lemmas from [11] easily carry over to our setting. In contrast
to [11], we do not restrict ourselves to linear lemmas, but we also use non-
linear, polynomial lemmas. This is due to the fact that we consider a binary
version λx, y. xy of exponentiation, whereas [11] fixes the base to e. Thus, in
our setting, one obtains bilinear lemmas that are linear w.r.t. x as well as y,
but may contain multiplication between x and y (i.e., they may contain the
subterm x · y). More precisely, bilinear lemmas arise from bilinear interpolation,
which is a crucial ingredient of our approach, as it allows us to eliminate any
model that violates the semantics of exponentiation (Theorem 23). Therefore,
the name “incremental linearization” does not fit to our approach, which is rather
an instance of “counterexample-guided abstraction refinement” (CEGAR) [13].

To summarize, our contributions are as follows: We first propose the new
SMT theory EIA for integer arithmetic with exponentiation (Sect. 3). Then,
based on novel techniques for generating suitable lemmas, we develop a CEGAR
approach for EIA (Sect. 4). We implemented our approach in our novel open-

1 CVC5 uses a dedicated solver for integer exponentiation with base 2.

https://github.com/cvc5/cvc5/blob/a287aabdadbead4b5bbebaa4c57818cc4c3f207e/src/theory/arith/nl/pow2_solver.h

346 F. Frohn and J. Giesl

source tool SwInE [22,23] and evaluated it on a collection of 4627 EIA bench-
marks that we synthesized from verification problems. Our experiments show
that our approach is highly effective in practice (Sect. 6). All proofs can be
found in [21].

2 Preliminaries

We are working in the setting of SMT-LIB logic [4], a variant of many-sorted
first-order logic with equality. We now introduce a reduced variant of [4], where
we only explain those concepts that are relevant for our work.

In SMT-LIB logic, there is a dedicated Boolean sort Bool, and hence for-
mulas are just terms of sort Bool. Similarly, there is no distinction between
predicates and functions, as predicates are simply functions of type Bool.

So in SMT-LIB logic, a signature Σ = (ΣS , ΣF , ΣR) consists of a set ΣS

of sorts, a set ΣF of function symbols, and a ranking function ΣR : ΣF →
(ΣS)+. The meaning of ΣR(f) = (s1, . . . , sk) is that f is a function which maps
arguments of the sorts s1, . . . , sk−1 to a result of sort sk. We write f : s1 . . . sk

instead of “f ∈ ΣF and ΣR(f) = (s1, . . . , sk)” if Σ is clear from the context.
We always allow to implicitly extend Σ with arbitrarily many constant function
symbols (i.e., function symbols x where |ΣR(x)| = 1). Note that SMT-LIB
logic only considers closed terms, i.e., terms without free variables, and we are
only concerned with quantifier-free formulas, so in our setting, all formulas are
ground. Therefore, we refer to these constant function symbols as variables to
avoid confusion with other, predefined constant function symbols like true, 0, . . .,
see below.

Every SMT-LIB signature is an extension of ΣBool where ΣS
Bool = {Bool}

and ΣF
Bool consists of the following function symbols:

true, false : Bool ¬ : Bool Bool ∧,∨, =⇒ , ⇐⇒ : Bool Bool Bool

Note that SMT-LIB logic only considers well-sorted terms. A Σ-structure A
consists of a universe A =

⋃
s∈ΣS As and an interpretation function that maps

each function symbol f : s1 . . . sk to a function �f�
A : As1 × . . .×Ask−1 → Ask

.
SMT-LIB logic only considers structures where ABool = {true, false} and all
function symbols from ΣBool are interpreted as usual.

A Σ-theory is a class of Σ-structures. For example, consider the extension
ΣInt of ΣBool with the additional sort Int and the following function symbols:

0, 1, . . . : Int +,−, ·, div,mod: Int Int Int <,≤, >,≥,=, =: Int Int Bool

Then the ΣInt-theory non-linear integer arithmetic (NIA)2 contains all ΣInt-
structures where AInt = Z and all symbols from ΣInt are interpreted as usual.
2 As we only consider quantifier-free formulas, we omit the prefix “QF ” in theory

names and write, e.g., NIA instead of QF NIA. In [4], QF NIA is called an SMT-LIB
logic, which restricts the (first-order) theory of integer arithmetic to the quantifier-
free fragment. For simplicity, we do not distinguish between SMT-LIB logics and
theories.

Satisfiability Modulo Exponential Integer Arithmetic 347

If A is a Σ-structure and Σ′ is a subsignature of Σ, then the reduct of A to
Σ′ is the unique Σ′-structure that interprets its function symbols like A. So the
theory linear integer arithmetic (LIA) consists of the reducts of all elements of
NIA to ΣInt \ {·, div,mod}.

Given a Σ-structure A and a Σ-term t, the meaning �t�
A of t results from

interpreting all function symbols according to A. For function symbols f whose
interpretation is fixed by a Σ-theory T , we denote f ’s interpretation by �f�

T .
Given a Σ-theory T , a Σ-formula ϕ (i.e., a Σ-term of type Bool) is satisfiable
in T if there is an A ∈ T such that �ϕ�

A = true. Then A is called a model of
ϕ, written A |= ϕ. If every A ∈ T is a model of ϕ, then ϕ is T -valid, written
|=T ϕ. We write ψ ≡T ϕ for |=T ψ ⇐⇒ ϕ.

We sometimes also consider uninterpreted functions. Then the signature may
not only contain the function symbols of the theory under consideration and
variables, but also additional non-constant function symbols.

We write “term”, “structure”, “theory”, . . . instead of “Σ-term”, “Σ-struc-
ture”, “Σ-theory”, . . . if Σ is irrelevant or clear from the context. Similarly, we
just write “≡” and “valid” instead of “≡T ” and “T -valid” if T is clear from the
context. Moreover, we use unary minus and tc (where t is a term of sort Int and
c ∈ N) as syntactic sugar, and we use infix notation for binary function symbols.

In the sequel, we use x, y, z, . . . for variables, s, t, p, q, . . . for terms of sort
Int, ϕ,ψ, . . . for formulas, and a, b, c, d, . . . for integers.

3 The SMT Theory EIA

We now introduce our novel SMT theory for exponential integer arithmetic. To
this end, we define the signature Σexp

Int, which extends ΣInt with

exp : Int Int Int.

If the 2nd argument of exp is non-negative, then its semantics is as expected,
i.e., we are interested in structures A such that �exp�A (c, d) = cd for all d ≥ 0.
However, if the 2nd argument is negative, then we have to use different semantics.
The reason is that we may have cd /∈ Z if d < 0. Intuitively, exp should be a partial
function, but all functions are total in SMT-LIB logic. We solve this problem
by interpreting exp(c, d) as c|d|. This semantics has previously been used in the
literature, and the resulting logic admits a known decidable fragment [5].

Definition 1 (EIA). The theory exponential integer arithmetic (EIA) contains
all Σexp

Int-structures A with �exp�A (c, d) = c|d| whose reduct to ΣInt is in NIA.

Alternatively, one could treat exp(c, d) like an uninterpreted function if d is
negative. Doing so would be analogous to the treatment of division by zero
in SMT-LIB logic. Then, e.g., exp(0,−1) = exp(0,−2) would be satisfied by a
structure A with �exp�A (c, d) = cd if d ≥ 0 and �exp�A (c, d) = d, otherwise.
However, the drawback of this approach is that important laws of exponentiation
like

exp(exp(x, y), z) = exp(x, y · z)
would not be valid. Thus, we focus on the semantics from Definition 1.

348 F. Frohn and J. Giesl

Algorithm 1: CEGAR for EIA
Input: a Σexp

Int-formula ϕ
// Preprocessing

1 do
2 ϕ′ ← ϕ;
3 ϕ ← FoldConstants(ϕ);
4 ϕ ← Rewrite(ϕ);

5 while ϕ �= ϕ′;
// Refinement Loop

6 while there is a NIA-model A of ϕ do
7 if A is a counterexample then
8 L ← ∅;
9 for kind ∈ {Symmetry,Monotonicity,Bounding, Interpolation} do

10 L ← L ∪ ComputeLemmas(ϕ, kind);
11 ϕ ← ϕ ∧ ∧{ψ ∈ L | A �|= ψ}
12 else return sat

13 return unsat

4 Solving EIA Problems via CEGAR

We now explain our technique for solving EIA problems, see Algorithm 1. Our
goal is to (dis)prove satisfiability of ϕ in EIA. The loop in Line 6 is a CEGAR
loop which lifts an SMT solver for NIA (which is called in Line 6) to EIA.
So the abstraction consists of using NIA- instead of EIA-models. Hence, exp is
considered to be an uninterpreted function in Line 6, i.e., the SMT solver also
searches for an interpretation of exp. If the model found by the SMT solver is a
counterexample (i.e., if �exp�A conflicts with �exp�EIA), then the formula under
consideration is refined by adding suitable lemmas in Lines 9–11 and the loop is
iterated again.

Definition 2 (Counterexample). We call a NIA-model A of ϕ a counterex-
ample if there is a subterm exp(s, t) of ϕ such that �exp(s, t)�A = (�s�A)|�t�A|.

In the sequel, we first discuss our preprocessings (first loop in Algorithm 1) in
Sect. 4.1. Then we explain our refinement (Lines 9–11) in Sect. 4.2. Here, we first
introduce the different kinds of lemmas that are used by our implementation in
Sect. 4.2.1–4.2.4. If implemented naively, the number of lemmas can get quite
large, so we explain how to generate lemmas lazily in Sect. 4.2.5. Finally, we
conclude this section by stating important properties of Algorithm 1.

Example 3 (Leading Example). To illustrate our approach, we show how to
prove

∀x, y. |x| > 2 ∧ |y| > 2 =⇒ exp(exp(x, y), y) = exp(x, exp(y, y))

Satisfiability Modulo Exponential Integer Arithmetic 349

by encoding absolute values suitably3 and proving unsatisfiability of its negation:

x2 > 4 ∧ y2 > 4 ∧ exp(exp(x, y), y) = exp(x, exp(y, y))

4.1 Preprocessings

In the first loop of Algorithm 1, we preprocess ϕ by alternating constant folding
(Line 3) and rewriting (Line 4) until a fixpoint is reached. Constant folding
evaluates subexpressions without variables, where subexpressions exp(c, d) are
evaluated to c|d|, i.e., according to the semantics of EIA. Rewriting reduces the
number of occurrences of exp via the following (terminating) rewrite rules:

exp(x, c) → x|c| if c ∈ Z

exp(exp(x, y), z) → exp(x, y · z)
exp(x, y) · exp(z, y) → exp(x · z, y)

In particular, the 1st rule allows us to rewrite4 exp(s, 0) to s0 = 1 and exp(s, 1)
to s1 = s. Note that the rule

exp(x, y) · exp(x, z) → exp(x, y + z)

would be unsound, as the right-hand side would need to be exp(x, |y| + |z|)
instead. We leave the question whether such a rule is beneficial to future work.

Example 4 (Preprocessing). For our leading example, applying the 2nd rewrite
rule at the underlined position yields:

x2 > 4 ∧ y2 > 4 ∧ exp(exp(x, y), y) = exp(x, exp(y, y))

→ x2 > 4 ∧ y2 > 4 ∧ exp(x, y2) = exp(x, exp(y, y)) (2)

Lemma 5. We have ϕ ≡EIA FoldConstants(ϕ) and ϕ ≡EIA Rewrite(ϕ).

4.2 Refinement

Our refinement (Lines 9–11 of Algorithm 1) is based on the four kinds of lemmas
named in Line 9: symmetry lemmas, monotonicity lemmas, bounding lemmas,
and interpolation lemmas. In the sequel, we explain how we compute a set L of
such lemmas. Then our refinement conjoins

{ψ ∈ L | A |= ψ}

to ϕ in Line 11. As our lemmas allow us to eliminate any counterexample, this
set is never empty, see Theorem 23. To compute L, we consider all terms that
are relevant for the formula ϕ.
3 We tested several encodings, but surprisingly, this non-linear encoding worked best.
4 Note that we have �exp(0, 0)�EIA = 00 = 1.

350 F. Frohn and J. Giesl

Definition 6 (Relevant Terms). A term exp(s, t) is relevant if ϕ has a sub-
term of the form exp(±s,±t).

Example 7 (Relevant Terms). For our leading example (2), the relevant terms
are all terms of the form exp(±x,±y2), exp(±y,±y), or exp(±x,±exp(y, y)).

While the formula ϕ is changed in Line 11 of Algorithm 1, we only conjoin new
lemmas to ϕ, and thus, relevant terms can never become irrelevant. Moreover,
by construction our lemmas only contain exp-terms that were already relevant
before. Thus, the set of relevant terms is not changed by our CEGAR loop.

As mentioned in Sect. 1, our approach may also compute lemmas with non-
linear polynomial arithmetic. However, our lemmas are linear if s is an integer
constant and t is linear for all subterms exp(s, t) of ϕ. Here, despite the fact
that the function “mod” is not contained in the signature of LIA, we also con-
sider literals of the form s mod c = 0 where c ∈ N+ = N \ {0} as linear. The
reason is that, according to the SMT-LIB standard, LIA contains a function5

“divisiblec Int Bool” for each c ∈ N+, which yields true iff its argument is
divisible by c, and hence we have s mod c = 0 iff divisiblec(s).

In the sequel, �. . .� means �. . .�
A, where A is the model from Line 6 of

Algorithm 1.

4.2.1 Symmetry Lemmas Symmetry lemmas encode the relation between
terms of the form exp(±s,±t). For each relevant term exp(s, t), the set L contains
the following symmetry lemmas:

t mod 2 = 0 =⇒ exp(s, t) = exp(−s, t) (sym1)
t mod 2 = 1 =⇒ exp(s, t) = −exp(−s, t) (sym2)

exp(s, t) = exp(s,−t) (sym3)

Note that sym1 and sym2 are just implications, not equivalences, as, for example,
c|d| = (−c)|d| does not imply d mod 2 = 0 if c = 0.

Example 8 (Symmetry Lemmas). For our leading example (2), the following
symmetry lemmas would be considered, among others:

sym1 : −y mod 2 = 0 =⇒ exp(−y,−y) = exp(y,−y) (3)
sym2 : −y mod 2 = 1 =⇒ exp(−y,−y) = −exp(y,−y) (4)
sym3 : exp(x, exp(y, y)) = exp(x,−exp(y, y)) (5)
sym3 : exp(y, y) = exp(y,−y) (6)

Note that, e.g., (3) results from the term exp(−y,−y), which is relevant (see
Definition 6) even though it does not occur in ϕ.

5 We excluded these functions from ΣInt, as they can be simulated with mod.

Satisfiability Modulo Exponential Integer Arithmetic 351

To show soundness of our refinement, we have to show that our lemmas are
EIA-valid.

Lemma 9. Let s, t be terms of sort Int. Then sym1–sym3 are EIA-valid.

4.2.2 Monotonicity Lemmas Monotonicity lemmas are of the form

s2 ≥ s1 > 1 ∧ t2 ≥ t1 > 0 ∧ (s2 > s1 ∨ t2 > t1) =⇒ exp(s2, t2) > exp(s1, t1),
(mon)

i.e., they prohibit violations of monotonicity of exp.

Example 10 (Monotonicity Lemmas). For our leading example (2), we obtain,
e.g., the following lemmas:

x > 1 ∧ exp(y, y) > y2 > 0 =⇒ exp(x, exp(y, y)) > exp(x, y2) (7)

x > 1 ∧ −exp(y, y) > y2 > 0 =⇒ exp(x,−exp(y, y)) > exp(x, y2) (8)

So for each pair of two different relevant terms exp(s1, t1), exp(s2, t2) where
�s2� ≥ �s1� > 1 and �t2� ≥ �t1� > 0, the set L contains mon.

Lemma 11. Let s1, s2, t1, t2 be terms of sort Int. Then mon is EIA-valid.

4.2.3 Bounding Lemmas Bounding lemmas provide bounds on relevant
terms exp(s, t) where �s� and �t� are non-negative. Together with symmetry
lemmas, they also give rise to bounds for the cases where s or t are negative.

For each relevant term exp(s, t) where �s� and �t� are non-negative, the fol-
lowing lemmas are contained in L:

t = 0 =⇒ exp(s, t) = 1 (bnd1)
t = 1 =⇒ exp(s, t) = s (bnd2)

s = 0 ∧ t = 0 ⇐⇒ exp(s, t) = 0 (bnd3)
s = 1 =⇒ exp(s, t) = 1 (bnd4)

s + t > 4 ∧ s > 1 ∧ t > 1 =⇒ exp(s, t) > s · t + 1 (bnd5)

The cases t ∈ {0, 1} are also addressed by our first rewrite rule (see Sect. 4.1).
However, this rewrite rule only applies if t is an integer constant. In contrast,
the first two lemmas above apply if t evaluates to 0 or 1 in the current model.

Example 12 (Bounding Lemmas). For our leading example (2), the following
bounding lemmas would be considered, among others:

bnd1 : exp(y, y) = 0 =⇒ exp(x, exp(y, y)) = 1
bnd2 : exp(y, y) = 1 =⇒ exp(x, exp(y, y)) = x

bnd3 : x = 0 ∧ exp(y, y) = 0 ⇐⇒ exp(x, exp(y, y)) = 0
bnd4 : x = 1 =⇒ exp(x, exp(y, y)) = 1

bnd5 : y > 2 =⇒ exp(y, y) > y2 + 1 (9)

bnd5 : −y > 2 =⇒ exp(−y,−y) > y2 + 1 (10)

352 F. Frohn and J. Giesl

Lemma 13. Let s, t be terms of sort Int. Then bnd1–bnd5 are EIA-valid.

The bounding lemmas are defined in such a way that they provide lower bounds
for exp(s, t) for almost all non-negative values of s and t. The reason why we
focus on lower bounds is that polynomials can only bound exp(s, t) from above
for finitely many values of s and t. The missing (lower and upper) bounds are
provided by interpolation lemmas.

4.2.4 Interpolation Lemmas In addition to bounding lemmas, we use
interpolation lemmas that are constructed via bilinear interpolation to provide
bounds. Here, we assume that the arguments of exp are positive, as negative
arguments are handled by symmetry lemmas, and bounding lemmas yield tight
bounds if at least one argument of exp is 0. The correctness of interpolation
lemmas relies on the following observation.

Lemma 14. Let f : R+ → R+ be convex, w1, w2 ∈ R+, and w1 < w2. Then

∀x ∈ [w1, w2]. f(x) ≤ f(w1) +
f(w2) − f(w1)

w2 − w1
· (x − w1) and

∀x ∈ R+ \ (w1, w2). f(x) ≥ f(w1) +
f(w2) − f(w1)

w2 − w1
· (x − w1).

Here, [w1, w2] and (w1, w2) denote closed and open real intervals. Note that the
right-hand side of the inequations above is the linear interpolant of f between
w1 and w2. Intuitively, it corresponds to the secant of f between the points
(w1, f(w1)) and (w2, f(w2)), and thus the lemma follows from convexity of f .

Let exp(s, t) be relevant, �s� = c > 0, �t� = d > 0, and �exp� (c, d) = cd, i.e.,
we want to prohibit the current interpretation of exp(s, t).

Interpolation Lemmas for Upper Bounds. First assume �exp� (c, d) > cd,
i.e., to rule out this counterexample, we need a lemma that provides a suitable
upper bound for exp(c, d). Let c′, d′ ∈ N+ and:

c− := min(c, c′) c+ := max(c, c′) d− := min(d, d′) d+ := max(d, d′)

[c±] := [c− .. c+] [d±] := [d− .. d+]

Here, [a .. b] denotes a closed integer interval. Then we first use d−, d+ for linear
interpolation w.r.t. the 2nd argument of λx, y. xy. To this end, let

ip[d±]
2 (x, y) := xd−

+
xd+ − xd−

d+ − d−
· (y − d−),

where we define a
b

:= a
b if b = 0 and a

0
:= 0. So if d− < d+, then ip[d±]

2 (x, y)
corresponds to the linear interpolant of xy w.r.t. y between d− and d+. Then
ip[d±]

2 (x, y) is a suitable upper bound, as

∀x ∈ N+, y ∈ [d±]. xy ≤ ip[d±]
2 (x, y) (11)

Satisfiability Modulo Exponential Integer Arithmetic 353

follows from Lemma 14. Hence, we could derive the following EIA-valid lemma:6

s > 0 ∧ t ∈ [d±] =⇒ exp(s, t) ≤ ip[d±]
2 (s, t) (ip1)

Example 15 (Linear Interpolation w.r.t. y). Let �exp(s, t)� = �exp� (3, 9) > 39,
i.e., we have c = 3 and d = 9. Moreover, assume c′ = d′ = 1, i.e., we get c− = 1,
c+ = 3, d− = 1, and d+ = 9. Then

ip[d±]
2 (x, y) = ip[1..9]

2 (x, y) = x1 +
x9 − x1

9 − 1
· (y − 1) = x +

x9 − x

8
· (y − 1).

Hence, ip1 corresponds to

s > 0 ∧ t ∈ [1, 9] =⇒ exp(s, t) ≤ s +
s9 − s

8
· (t − 1).

This lemma would be violated by our counterexample, as we have
�

s +
s9 − s

8
· (t − 1)

�

= 3 +
39 − 3

8
· 8 = 39 < �exp� (3, 9) = �exp(s, t)� .

However, the degree of ip[d±]
2 (s, t) depends on d+, which in turn depends on

the model that was found by the underlying SMT solver. Thus, the degree of
ip[d±]

2 (s, t) can get very large, which is challenging for the underlying solver.
So we next use c−, c+ for linear interpolation w.r.t. the 1st argument of

λx, y. xy, resulting in

ip[c±]
1 (x, y) := (c−)y +

(c+)y − (c−)y

c+ − c−
· (x − c−).

Then due to Lemma 14, ip[c±]
1 (x, y) is also an upper bound on the exponen-

tiation function, i.e., we have

∀y ∈ N+, x ∈ [c±]. xy ≤ ip[c±]
1 (x, y). (12)

Note that we have y−d−

d+−d− ∈ [0, 1] for all y ∈ [d±], and thus

ip[d±]
2 (x, y) = xd− ·

(

1 −
y − d−

d+ − d−

)

+ xd+ ·
y − d−

d+ − d−

6 Strictly speaking, this lemma is not a Σexp
Int-term if d+ > d−, as the right-hand side

makes use of division in this case. However, an equivalent Σexp
Int-term can clearly be

obtained by multiplying with the divisor.

354 F. Frohn and J. Giesl

is monotonically increasing in both xd−
and xd+

. Hence, in the definition of
ip[d±]

2 , we can approximate xd−
and xd+

with their upper bounds ip[c±]
1 (x, d−)

and ip[c±]
1 (x, d+) that can be derived from (12). Then (11) yields

∀x ∈ [c±], y ∈ [d±]. xy ≤ ip[c±][d±](x, y) (13)

where

ip[c±][d±](x, y) := ip[c±]
1 (x, d−) +

ip[c±]
1 (x, d+) − ip[c±]

1 (x, d−)

d+ − d−
· (y − d−).

So the set L contains the lemma

s ∈ [c±] ∧ t ∈ [d±] =⇒ exp(s, t) ≤ ip[c±][d±](s, t), (ip2)

which is valid due to (13), and rules out any counterexample with �exp� (c, d) >

cd, as ip[c±][d±](c, d) = cd.

Example 16 (Bilinear Interpolation, Example 15 continued). In our example, we
have:

ip[c±]
1 (x, y) = ip[1..3]

1 (x, y) = 1y +
3y − 1y

3 − 1
· (x − 1) = 1 +

3y − 1
2

· (x − 1)

ip[c±]
1 (s, d−) = ip[1..3]

1 (s, 1) = 1 +
3 − 1

2
· (s − 1) = s

ip[c±]
1 (s, d+) = ip[1..3]

1 (s, 9) = 1 +
39 − 1

2
· (s − 1) = 1 + 9841 · (s − 1)

Hence, we obtain the lemma

s ∈ [1, 3] ∧ t ∈ [1, 9] =⇒ exp(s, t) ≤ s +
1 + 9841 · (s − 1) − s

8
· (t − 1).

This lemma is violated by our counterexample, as we have
�

s +
1 + 9841 · (s − 1) − s

8
· (t − 1)

�

= 39 < �exp� (3, 9) = �exp(s, t)� .

ip2 relates exp(s, t) with the bilinear function ip[c±][d±](s, t), i.e., this function
is linear w.r.t. both s and t, but it multiplies s and t. Thus, if s is an integer
constant and t is linear, then the resulting lemma is linear, too.

To compute interpolation lemmas, a second point (c′, d′) is needed. In our
implementation, we store all points (c, d) where interpolation has previously been
applied and use the one which is closest to the current one. The same heuristic
is used to compute secant lemmas in [11]. For the 1st interpolation step, we use
(c′, d′) = (c, d). In this case, ip2 simplifies to s = c ∧ t = d =⇒ exp(s, t) ≤ cd.

Satisfiability Modulo Exponential Integer Arithmetic 355

Lemma 17. Let c+ ≥ c− > 0 and d+ ≥ d− > 0. Then ip2 is EIA-valid.

Interpolation Lemmas for Lower Bounds. While bounding lemmas already
yield lower bounds, the bounds provided by bnd5 are not exact, in general.
Hence, if �exp� (c, d) < cd, then we also use bilinear interpolation to obtain a
precise lower bound for exp(c, d). Dually to (11) and (12), Lemma 14 implies:

∀x, y ∈ N+. xy ≥ ip[d..d+1]
2 (x, y) (14) ∀x, y ∈ N+. xy ≥ ip[c..c+1]

1 (x, y) (15)

Additionally, we also obtain

∀x, y ∈ N+. xy+1 − xy ≥ ip[c..c+1]
1 (x, y + 1) − ip[c..c+1]

1 (x, y) (16)

from Lemma 14. The reason is that for f(x) := xy+1 − xy, the right-hand side
of (16) is equal to the linear interpolant of f between c and c + 1. Moreover, f
is convex, as f(x) = xy · (x − 1) where for any fixed y ∈ N+, both xy and x − 1
are non-negative, monotonically increasing, and convex on R+.

If y ≥ d, then ip[d..d+1]
2 (x, y) = xd + (xd+1 − xd) · (y − d) is monotonically

increasing in the first occurrence of xd, and in xd+1−xd. Thus, by approximating
xd and xd+1 − xd with their lower bounds from (15) and (16), (14) yields

∀x ∈ N+, y ≥ d. xy ≥ ip
[c..c+1]
1 (x, d) + (ip

[c..c+1]
1 (x, d + 1) − ip

[c..c+1]
1 (x, d)) · (y − d)

= ip[c..c+1][d..d+1](x, y). (17)

So dually to ip2, the set L contains the lemma

s ≥ 1 ∧ t ≥ d =⇒ exp(s, t) ≥ ip[c..c+1][d..d+1](s, t) (ip3)

which is valid due to (17) and rules out any counterexample with �exp� (c, d) < cd,
as ip[c..c+1][d..d+1](c, d) = cd.

Example 18 (Interpolation, Lower Bounds). Let �exp(s, t)� = �exp� (3, 9) < 39,
i.e., we have c = 3, and d = 9. Then

ip[3..4]
1 (x, 9) = 39 + (49 − 39) · (x − 3) = 19683 + 242461 · (x − 3)

ip[3..4]
1 (x, 10) = 310 + (410 − 310) · (x − 3) = 59049 + 989527 · (x − 3)

ip[3..4][9..10](x, y) = ip[3..4]
1 (x, 9) + (ip[3..4]

1 (x, 10) − ip[3..4]
1 (x, 9)) · (y − 9)

and thus we obtain the lemma

s ≥ 1∧ t ≥ 9 =⇒ exp(s, t) ≥ 747066 · s · t− 6481133 · s− 2201832 · t+19108788.

It is violated by our counterexample, as we have

�747066 · s · t − 6481133 · s − 2201832 · t + 19108788� = 39 > �exp� (3, 9).

356 F. Frohn and J. Giesl

Lemma 19. Let c, d ∈ N+. Then ip3 is EIA-valid.

4.2.5 Lazy Lemma Generation In practice, it is not necessary to compute
the entire set of lemmas L. Instead, we can stop as soon as L contains a single
lemma which is violated by the current counterexample. However, such a strategy
would result in a quite fragile implementation, as its behavior would heavily
depend on the order in which lemmas are computed, which in turn depends on
low-level details like the order of iteration over sets, etc. So instead, we improve
Lines 9–11 of Algorithm 1 and use the following precedence on our four kinds of
lemmas:

symmetry � monotonicity � bounding � interpolation

Then we compute all lemmas of the same kind, starting with symmetry lemmas,
and we only proceed with the next kind if none of the lemmas computed so far is
violated by the current counterexample. The motivation for the order above is as
follows: Symmetry lemmas obtain the highest precedence, as other kinds of lem-
mas depend on them for restricting exp(s, t) in the case that s or t is negative. As
the coefficients in interpolation lemmas for exp(s, t) grow exponentially w.r.t. �t�
(see, e.g., Example 18), interpolation lemmas get the lowest precedence. Finally,
we prefer monotonicity lemmas over bounding lemmas, as monotonicity lemmas
are linear (if the arguments of exp are linear), whereas bnd5 may be non-linear.

Example 20 (Leading Example Finished). We now finish our leading example
which, after preprocessing, looks as follows (see Example 4):

x2 > 4 ∧ y2 > 4 ∧ exp(x, y2) = exp(x, exp(y, y)) (2)

Then our implementation generates 12 symmetry lemmas, 4 monotonicity lem-
mas, and 8 bounding lemmas before proving unsatisfiability, including

(3), (4), (5), (6), (7), (8), (9), and (10).

These lemmas suffice to prove unsatisfiability for the case x > 2 (the cases
x ∈ [−2 .. 2] or y ∈ [−2 .. 2] are trivial). For example, if y < −2 and −y mod 2 = 0,
we get

y < −2
(10)
� exp(−y,−y) > y2 + 1

(3)
� exp(y,−y) > y2 + 1

(6)
� exp(y, y) > y2 + 1

(7)
� exp(x, exp(y, y)) > exp(x, y2)

(2)
� false

and for the cases y > 2 and y < −2 ∧ −y mod 2 = 1, unsatisfiability can
be shown similarly. For the case x < −2, 5 more symmetry lemmas, 2 more
monotonicity lemmas, and 3 more bounding lemmas are used. The remaining
3 symmetry lemmas and 3 bounding lemmas are not used in the final proof of
unsatisfiability.

Satisfiability Modulo Exponential Integer Arithmetic 357

While our leading example can be solved without interpolation lemmas, in gen-
eral, interpolation lemmas are a crucial ingredient of our approach.

Example 21. Consider the formula

1 < x < y ∧ 0 < z ∧ exp(x, z) < exp(y, z).

Our implementation first rules out 33 counterexamples using 7 bounding lemmas
and 42 interpolation lemmas in ∼0.1 seconds, before finding the model �x� = 21,
�y� = 721, and �z� = 4. Recall that interpolation lemmas are only used if a
counterexample cannot be ruled out by any other kinds of lemmas. So without
interpolation lemmas, our implementation could not solve this example.

Our main soundness theorem follows from soundness of our preprocessings
(Lemma 5) and the fact that all of our lemmas are EIA-valid (Lemmas 9, 11,
13, 17, and 19).

Theorem 22 (Soundness of Algorithm 1). If Algorithm 1 returns sat, then
ϕ is satisfiable in EIA. If Algorithm 1 returns unsat, then ϕ is unsatisfiable in
EIA.

Another important property of Algorithm 1 is that it can eliminate any coun-
terexample, and hence it makes progress in every iteration.

Theorem 23 (Progress Theorem). If A is a counterexample and L is com-
puted as in Algorithm 1, then

A |=
∧

L.

Despite Theorems 22 and 23, EIA is of course undecidable, and hence Algorithm
1 is incomplete. For example, it does not terminate for the input formula

y = 0 ∧ exp(2, x) = exp(3, y). (18)

Here, to prove unsatisfiability, one needs to know that 2|x| is 1 or even, but 3|y| is
odd and greater than 1 (unless y = 0). This cannot be derived from the lemmas
used by our approach. Thus, Algorithm 1 would refine the formula (18) infinitely
often.

Note that monotonicity lemmas are important, even though they are not
required to prove Theorem 23. The reason is that all (usually infinitely many)
counterexamples must be eliminated to prove unsat. For instance, reconsider
Example 20, where the monotonicity lemma (7) eliminates infinitely many coun-
terexamples with �exp(x, exp(y, y))� ≤

�
exp(x, y2)

�
. In contrast, Theorem 23

only guarantees that every single counterexample can be eliminated. Conse-
quently, our implementation does not terminate on our leading example if mono-
tonicity lemmas are disabled.

358 F. Frohn and J. Giesl

5 Related Work

The most closely related work applies incremental linearization to NIA, or to
non-linear real arithmetic with transcendental functions (NRAT). Like our app-
roach, incremental linearization is an instance of the CEGAR paradigm: An
initial abstraction (where certain predefined functions are considered as unin-
terpreted functions) is refined via linear lemmas that rule out the current coun-
terexample.

Our approach is inspired by, but differs significantly from the approach for
linearization of NRAT from [11]. There, non-linear polynomials are linearized
as well, whereas we leave the handling of polynomials to the backend solver.
Moreover, [11] uses linear lemmas only, whereas we also use bilinear lemmas.
Furthermore, [11] fixes the base to Euler’s number e, whereas we consider a
binary version of exponentiation.

The only lemmas that easily carry over from [11] are monotonicity lemmas.
While [11] also uses symmetry lemmas, they express properties of the sine func-
tion, i.e., they are fundamentally different from ours. Our bounding lemmas are
related to the “lower bound” and “zero” lemmas from [11], but there, λx. ex is
trivially bounded by 0. Interpolation lemmas are related to the “tangent” and
“secant lemmas” from [11]. However, tangent lemmas make use of first deriva-
tives, so they are not expressible with integer arithmetic in our setting, as we
have ∂

∂y xy = xy · ln x. Secant lemmas are essentially obtained by linear inter-
polation, so our interpolation lemmas can be seen as a generalization of secant
lemmas to binary functions. A preprocessing by rewriting is not considered in
[11].

In [10], incremental linearization is applied to NIA. The lemmas that are
used in [10] are similar to those from [11], so they differ fundamentally from
ours, too.

Further existing approaches for NRAT are based on interval propagation
[14,24]. As observed in [11], interval propagation effectively computes a piece-
wise constant approximation, which is less expressive than our bilinear approx-
imations.

Recently, a novel approach for NRAT based on the topological degree test
has been proposed [12,30]. Its strength is finding irrational solutions more often
than other approaches for NRAT. Hence, this line of work is orthogonal to ours.

EIA could also be tackled by combining NRAT techniques with branch-and-
bound, but the following example shows that doing so is not promising.

Example 24. Consider the formula x = exp(3, y) ∧ y > 0. To tackle it with
existing solvers, we have to encode it using the natural exponential function:

ez = 3 ∧ x = ey·z ∧ y > 0 (19)

Here x and y range over the integers and z ranges over the reals. Any model
of (19) satisfies z = ln 3, where ln 3 is irrational. As finding such models is
challenging, the leading tools MathSat [9] and CVC5 [2] fail for ez = 3.

Satisfiability Modulo Exponential Integer Arithmetic 359

MetiTarski [1] integrates decision procedures for real closed fields and approxi-
mations for transcendental functions into the theorem prover Metis [27] to prove
theorems about the reals. In a related line of work, iSAT3 [14] has been coupled
with SPASS [35]. Clearly, these approaches differ fundamentally from ours.

Recently, the complexity of a decidable extension of linear integer arithmetic
with exponentiation has been investigated [5]. It is equivalent to EIA without the
functions “·”, “div”, and “mod”, and where the first argument of all occurrences
of exp must be the same constant. Integrating decision procedures for fragments
like this one into our approach is an interesting direction for future work.

6 Implementation and Evaluation

Implementation. We implemented our approach in our novel tool SwInE. It
is based on SMT-Switch [31], a library that offers a unified interface for various
SMT solvers. SwInE uses the backend solvers Z3 4.12.2 [32] and CVC5 1.0.8 [2].
It supports incrementality and can compute models for variables, but not yet
for uninterpreted functions, due to limitations inherited from SMT-Switch.

The backend solver (which defaults to Z3) can be selected via command-line
flags. For more information on SwInE and a precompiled release, we refer to
[22,23].

Benchmarks. To evaluate our approach, we synthesized a large collection of
EIA problems from verification benchmarks for safety, termination, and com-
plexity analysis. More precisely, we ran our verification tool LoAT [18] on the
benchmarks for linear Constrained Horn Clauses (CHCs) with linear integer
arithmetic from the CHC Competitions 2022 and 2023 [8] as well as on the
benchmarks for Termination and Complexity of Integer Transition Systems from
the Termination Problems Database (TPDB) [34], the benchmark set of the
Termination and Complexity Competition [25], and extracted all SMT prob-
lems with exponentiation that LoAT created while analyzing these benchmarks.
Afterwards, we removed duplicates.

The resulting benchmark set consists of 4627 SMT problems, which are avail-
able at [22]:

– 669 problems that resulted from the benchmarks of the CHC Competition
’22 (called CHC Comp ’22 Problems below)

– 158 problems that resulted from the benchmarks of the CHC Competition
’23 (CHC Comp ’23 Problems)

– 3146 problems that resulted from the complexity benchmarks of the TPDB
(Complexity Problems)

– 654 problems that resulted from the termination benchmarks of the TPDB
(Termination Problems)

Evaluation. We ran SwInE with both supported backend solvers (Z3 and
CVC5). To evaluate the impact of the different components of our approach, we

360 F. Frohn and J. Giesl

also tested with configurations where we disabled rewriting, symmetry lemmas,
bounding lemmas, interpolation lemmas, or monotonicity lemmas. All experi-
ments were performed on StarExec [33] with a wall clock timeout of 10s and a
memory limit of 128GB per example. We chose a small timeout, as LoAT usually
has to discharge many SMT problems to solve a single verification task. So in
our setting, each individual SMT problem should be solved quickly.

The results can be seen in Tables 1, 2, 3, and 4, where VB means “virtual
best”. All but 48 of the 4627 benchmarks can be solved, and all unsolved bench-
marks are Complexity Problems. All CHC Comp Problems can be solved with
both backend solvers. Considering Complexity and Termination Problems, Z3

Table 1. CHC Comp ’22 – Results

backend configuration sat unsat unknown

Z3 default 296 373 0

CVC5 296 373 0

VB 296 373 0

Z3 no rewriting 291 373 5

no symmetry 296 373 0

no bounding 110 373 186

no interpolation 3 372 294

no monotonicity 296 373 0

no rewriting, no lemmas 1 364 304

CVC5 no rewriting 296 372 1

no symmetry 296 373 0

no bounding 186 373 110

no interpolation 28 372 269

no monotonicity 296 373 0

no rewriting, no lemmas 1 364 304

Fig. 1. CHC Comp ’22 – Runtime

Table 2. CHC Comp ’23 – Results

backend configuration sat unsat unknown

Z3 default 87 71 0

CVC5 87 71 0

VB 87 71 0

Z3 no rewriting 86 71 1

no symmetry 87 71 0

no bounding 79 71 8

no interpolation 0 71 87

no monotonicity 87 71 0

no rewriting, no lemmas 0 61 97

CVC5 no rewriting 87 71 0

no symmetry 87 71 0

no bounding 79 71 8

no interpolation 36 71 51

no monotonicity 87 71 0

no rewriting, no lemmas 0 61 97

Fig. 2. CHC Comp ’23 – Runtime

Satisfiability Modulo Exponential Integer Arithmetic 361

Table 3. Complexity – Results

backend configuration sat unsat unknown

Z3 default 1282 1789 75

CVC5 990 1784 372

VB 1309 1789 48

Z3 no rewriting 1201 1789 156

no symmetry 975 1789 382

no bounding 674 1788 684

no interpolation 586 1787 773

no monotonicity 1284 1789 73

no rewriting, no lemmas 30 1733 1383

CVC5 no rewriting 900 1784 462

no symmetry 954 1784 408

no bounding 181 1784 1181

no interpolation 405 1782 959

no monotonicity 795 1784 567

no rewriting, no lemmas 30 1728 1388

Fig. 3. Complexity – Runtime

Table 4. Termination – Results

backend configuration sat unsat unknown

Z3 default 223 431 0

CVC5 208 430 16

VB 223 431 0

Z3 no rewriting 223 431 0

no symmetry 223 431 0

no bounding 177 429 48

no interpolation 15 429 210

no monotonicity 223 431 0

no rewriting, no lemmas 7 428 219

CVC5 no rewriting 208 430 16

no symmetry 208 430 16

no bounding 171 428 55

no interpolation 10 428 216

no monotonicity 208 430 16

no rewriting, no lemmas 7 428 219

Fig. 4. Termination – Runtime

and CVC5 perform almost equally well on unsatisfiable instances, but Z3 solves
more satisfiable instances.

Regarding the different components of our approach, our evaluation shows
that the impact of rewriting is quite significant. For example, it enables Z3
to solve 81 additional Complexity Problems. Symmetry lemmas enable Z3 to
solve more Complexity Problems, but they are less helpful for CVC5. In fact,
symmetry lemmas are needed for most of the examples where Z3 succeeds but
CVC5 fails, so they seem to be challenging for CVC5, presumably due to the use of
“mod”. Bounding and interpolation lemmas are crucial for proving satisfiability.
In particular, disabling interpolation lemmas harms more than disabling any

362 F. Frohn and J. Giesl

other feature, which shows their importance. For example, Z3 can only prove
satisfiability of 3 CHC Comp Problems without interpolation lemmas.

Interestingly, only CVC5 benefits from monotonicity lemmas, which enable
it to solve more Complexity Problems. From our experience, CVC5 explores the
search space in a more systematic way than Z3, so that subsequent candidate
models often have a similar structure. Then monotonicity lemmas can help CVC5
to find structurally different candidate models.

Remarkably, disabling a single component does not reduce the number of
unsat’s significantly. Thus, we also evaluated configurations where all compo-
nents were disabled, so that exp is just an uninterpreted function. This reduces
the number of sat results dramatically, but most unsat instances can still be
solved. Hence, most of them do not require reasoning about exponentials, so it
would be interesting to obtain instances where proving unsat is more challeng-
ing.

The runtime of SwInE can be seen in Figs. 1, 2, 3, and 4. Most instances can
be solved in a fraction of a second, as desired for our use case. Moreover, CVC5
can solve more instances in the first half second, but Z3 can solve more instances
later on. We refer to [22] for more details on our evaluation.

Validation. We implemented sanity checks for both sat and unsat results. For
sat, we evaluate the input problem using EIA semantics for exp, and the current
model for all variables. For unsat, assume that the input problem ϕ contains
the subterms exp(s0, t0), . . . , exp(sn, tn). Then we enumerate all SMT problems

ϕ ∧
∧n

i=0 ti = ci ∧ exp(si, ti) = sci
i where c1, . . . , cn ∈ [0 .. k] for some k ∈ N

(we used k = 10). If any of them is satisfiable in NIA, then ϕ is satisfiable in
EIA. None of these checks revealed any problems.

7 Conclusion

We presented the novel SMT theory EIA, which extends the theory non-linear
integer arithmetic with integer exponentiation. Moreover, inspired by incremen-
tal linearization for similar extensions of non-linear real arithmetic, we developed
a CEGAR approach to solve EIA problems. The core idea of our approach is to
regard exponentiation as an uninterpreted function and to eliminate counterex-
amples, i.e., models that violate the semantics of exponentiation, by generating
suitable lemmas. Here, the use of bilinear interpolation turned out to be crucial,
both in practice (see our evaluation in Sect. 6) and in theory, as interpolation
lemmas are essential for being able to eliminate any counterexample (see Theo-
rem 23). Finally, we evaluated the implementation of our approach in our novel
tool SwInE on thousands of EIA problems that were synthesized from verifica-
tion tasks using our verification tool LoAT. Our evaluation shows that SwInE is
highly effective for our use case, i.e., as backend for LoAT. Hence, we will couple
SwInE and LoAT in future work.

Satisfiability Modulo Exponential Integer Arithmetic 363

With SwInE, we provide an SMT-LIB compliant open-source solver for EIA
[23]. In this way, we hope to attract users with applications that give rise to
challenging benchmarks, as our evaluation suggests that our benchmarks are
relatively easy to solve. Moreover, we hope that other solvers with support for
integer exponentiation will follow, with the ultimate goal of standardizing EIA.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010). https://doi.
org/10.1007/S10817-009-9149-2

2. Barbosa, H., et al.: CVC5: a versatile and industrial-strength SMT solver. In:
Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 24

3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. Int. J. Softw. Tools Technol. Transf. 10(5), 401–424 (2008). https://doi.
org/10.1007/s10009-008-0064-3

4. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). (2016). https://smt-lib.org/

5. Benedikt, M., Chistikov, D., Mansutti, A.: The complexity of Presburger arithmetic
with power or powers. In: Etessami, K., Feige, U., Puppis, G. (eds.) ICALP 2023.
LIPIcs, vol. 261, pp. 112:1–112:18 (2023). https://doi.org/10.4230/LIPIcs.ICALP.
2023.112

6. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 23

7. Bozga, M., Iosif, R., Konečný, F.: Relational analysis of integer programs. Tech-
nical report, TR-2012-10, VERIMAG (2012). https://www-verimag.imag.fr/TR/
TR-2012-10.pdf

8. CHC Competition. https://chc-comp.github.io
9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT

solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

10. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 23

11. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018). https://
doi.org/10.1145/3230639

12. Cimatti, A., Griggio, A., Lipparini, E., Sebastiani, R.: Handling polynomial and
transcendental functions in SMT via unconstrained optimisation and topological
degree test. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol.
13505, pp. 137–153. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19992-9 9

https://doi.org/10.1007/S10817-009-9149-2
https://doi.org/10.1007/S10817-009-9149-2
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
https://smt-lib.org/
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://doi.org/10.1007/978-3-642-14295-6_23
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://chc-comp.github.io
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-031-19992-9_9
https://doi.org/10.1007/978-3-031-19992-9_9

364 F. Frohn and J. Giesl

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

14. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007). https://doi.org/10.3233/
sat190012

15. Frohn, F., Giesl, J.: Proving non-termination via loop acceleration. In: Barrett,
C.W., Yang, J. (eds.) FMCAD 2019, pp. 221–230 (2019). https://doi.org/10.23919/
FMCAD.2019.8894271

16. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 24

17. Frohn, F., Naaf, M., Brockschmidt, M., Giesl, J.: Inferring lower runtime bounds
for integer programs. ACM Trans. Program. Lang. Syst. 42(3), 13:1–13:50 (2020).
https://doi.org/10.1145/3410331

18. Frohn, F., Giesl, J.: Proving non-termination and lower runtime bounds with
LoAT. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS,
vol. 13385, pp. 712–722. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-10769-6 41

19. Frohn, F., Giesl, J.: Proving non-termination by acceleration driven clause learning.
In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS, vol. 14132, pp. 220–233.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8 13

20. Frohn, F., Giesl, J.: ADCL: acceleration driven clause learning for constrained
horn clauses. In: Hermenegildo, M.V., Morales, J.F. (eds.) SAS 2023. LNCS, vol.
14284, pp. 259–285. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
44245-2 13

21. Frohn, F., Giesl, J.: Satisfiability modulo exponential integer arithmetic. CoRR
abs/2402.01501 (2024). https://doi.org/10.48550/arXiv.2402.01501

22. Frohn, F., Giesl, J.: Evaluation of “Satisfiability modulo exponential integer arith-
metic” (2024). https://aprove-developers.github.io/swine-eval/

23. Frohn, F., Giesl, J.: SwInE (2024). https://ffrohn.github.io/swine/
24. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-

ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3 23

25. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

26. Hark, M., Frohn, F., Giesl, J.: Termination of triangular polynomial loops. Form.
Methods Syst. Des. (2023). https://doi.org/10.1007/s10703-023-00440-z

27. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In:
STRATA 2003, pp. 56–68. Report NASA/CP-2003-212448 (2003). https://apps.
dtic.mil/sti/pdfs/ADA418902.pdf

28. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general
linear loops. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014, pp. 529–540 (2014).
https://doi.org/10.1145/2535838.2535843

https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1145/3410331
https://doi.org/10.1007/978-3-031-10769-6_41
https://doi.org/10.1007/978-3-031-10769-6_41
https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/978-3-031-44245-2_13
https://doi.org/10.1007/978-3-031-44245-2_13
https://doi.org/10.48550/arXiv.2402.01501
https://aprove-developers.github.io/swine-eval/
https://ffrohn.github.io/swine/
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/s10703-023-00440-z
https://apps.dtic.mil/sti/pdfs/ADA418902.pdf
https://apps.dtic.mil/sti/pdfs/ADA418902.pdf
https://doi.org/10.1145/2535838.2535843

Satisfiability Modulo Exponential Integer Arithmetic 365

29. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. Formal Methods Syst. Des. 47(1), 75–92
(2015). https://doi.org/10.1007/s10703-015-0228-1

30. Lipparini, E., Ratschan, S.: Satisfiability of non-linear transcendental arithmetic
as a certificate search problem. In: Rozier, K.Y., Chaudhuri, S. (eds.) NFM 2023.
LNCS, vol. 13903, pp. 472–488. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-33170-1 29

31. Mann, M., et al.: SMT-Switch: a solver-agnostic C++ API for SMT solving. In:
Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 377–386. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80223-3 26

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for
logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 28

34. Termination Problems Data Base (TPDB). http://termination-portal.org/wiki/
TPDB

35. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10703-015-0228-1
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
http://creativecommons.org/licenses/by/4.0/

SAT-Based Learning of Computation
Tree Logic

Adrien Pommellet(B) , Daniel Stan , and Simon Scatton

LRE, EPITA, Le Kremlin-Bicêtre, France
{adrien,simon.scatton}@lrde.epita.fr, daniel.stan@epita.fr

https://www.lrde.epita.fr/ adrien/, https://www.tudo.re/daniel.stan/

Abstract. The CTL learning problem consists in finding for a given
sample of positive and negative Kripke structures a distinguishing CTL
formula that is verified by the former but not by the latter. Further con-
straints may bound the size and shape of the desired formula or even
ask for its minimality in terms of syntactic size. This synthesis problem
is motivated by explanation generation for dissimilar models, e.g. com-
paring a faulty implementation with the original protocol. We devise a
SAT-based encoding for a fixed size CTL formula, then provide an incre-
mental approach that guarantees minimality. We further report on a
prototype implementation whose contribution is twofold: first, it allows
us to assess the efficiency of various output fragments and optimizations.
Secondly, we can experimentally evaluate this tool by randomly mutat-
ing Kripke structures or syntactically introducing errors in higher-level
models, then learning CTL distinguishing formulas.

Keywords: Computation Tree Logic · Passive learning · SAT solving

1 Introduction

Passive learning is the act of computing a theoretical model of a system from a
given set of data, without being able to acquire further information by actively
querying said system. The input data may have been gathered through monitor-
ing, collecting executions and outputs of systems. Automata and logic formulas
tend to be the most common models, as they allow one to better explain systems
of complex or even entirely opaque design.

Linear-time Temporal Logic LTL [19] remains one of the most widely used
formalisms for specifying temporal properties of reactive systems. It applies to
finite or infinite execution traces, and for that reason fits the passive learning
framework very well: a LTL formula is a concise way to distinguish between
correct and incorrect executions. The LTL learning problem, however, is anything
but trivial: even simple fragments on finite traces are NP-complete [10], and
consequently recent algorithms tend to leverage SAT solvers [16].

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 366–385, 2024.
https://doi.org/10.1007/978-3-031-63498-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_22&domain=pdf
http://orcid.org/0000-0002-1825-0097
http://orcid.org/0000-0002-4723-5742
https://doi.org/10.1007/978-3-031-63498-7_22

SAT-Based Learning of Computation Tree Logic 367

Computation Tree Logic CTL [8] is another relevant formalism that applies to
execution trees instead of isolated linear traces. It is well-known [1, Thm. 6.21]
that LTL and CTL are incomparable: the former is solely defined on the resulting
runs of a system, whereas the latter depends on its branching structure.

However, the CTL passive learning problem has seldom been studied in as
much detail as LTL. In this article, we formalize it on Kripke structures (KSs):
finite graph-like representations of programs. Our goal is to find a CTL formula
(said to be separating) that is verified by every state in a positive set S+ yet
rejected by every state in a negative set S−.

We first prove that an explicit formula can always be computed and we bound
its size, assuming the sample is devoid of contradictions. However, said formula
may not be minimal. The next step is therefore to solve the bounded learning
problem: finding a separating CTL formula of size smaller than a given bound n.
We reduce it to an instance Φn of the Boolean satisfiability problem whose
answer can be computed by a SAT solver; to do so, we encode CTL’s bounded
semantics, as the usual semantics on infinite executions trees can lead to spurious
results. Finally, we use a bottom-up approach to pinpoint the minimal answer by
solving a series of satisfiability problems. We show that a variety of optimizations
can be applied to this iterative algorithm. These various approaches have been
implemented in a C++ tool and benchmarked on a test sample.

Related Work. Bounded model checking harnesses the efficiency of modern SAT
solvers to iteratively look for a witness of bounded size that would contradict
a given logic formula, knowing that there exists a completeness threshold after
which we can guarantee no counter-example exists. First introduced by Biere et
al. [3] for LTL formulas, it was later applied to CTL formulas [17,24,25].

This approach inspired Neider et al. [16], who designed a SAT-based algo-
rithm that can learn a LTL formula consistent with a sample of ultimately peri-
odic words by computing propositional Boolean formulas that encode both the
semantics of LTL on the input sample and the syntax of its Directed Acyclic
Graph (DAG) representation. This work spurred further SAT-based develop-
ments such as learning formulas in the property specification language PSL [21]
or LTLf [7], applying MaxSAT solving to noisy datasets [11], or constraining the
shape of the formula to be learnt [15]. Our article extends this method to CTL
formulas and Kripke structures. It subsumes the original LTL learning problem:
one can trivially prove that it is equivalent to learning CTL formulas consistent
with a sample of lasso-shaped KSs that consist of a single linear sequence of
states followed by a single loop.

Fijalkow et al. [10] have studied the complexity of learning LTLf formulas of
size smaller than a given bound and consistent with a sample of finite words:
it is already NP-complete for fragments as simple as LTLf(∧,X), LTLf(∧,F), or
LTLf(F,X,∧,∨). However, their proofs cannot be directly extended to samples
of infinite but ultimately periodic words.

Browne et al. [6] proved that KSs could be characterized by CTL formulas
and that conversely bisimilar KSs verified the same set of CTL formulas. As we

368 A. Pommellet et al.

will show in Sect. 3, this result guarantees that a solution to the CTL learning
problem actually exists if the input sample is consistent.

Wasylkowski et al. [23] mined CTL specifications in order to explain precon-
ditions of Java functions beyond pure state reachability. However, their learn-
ing algorithm consists in enumerating CTL templates of the form ∀F a, ∃F a,
∀G(a =⇒ ∀X∀F b) and ∀G(a =⇒ ∃X∃F b) where a, b ∈ AP for each func-
tion, using model checking to select one that is verified by the Kripke structure
representing the aforementioned function.

Two very recent articles, yet to be published, have addressed the CTL learning
problem as well. Bordais et al. [5] proved that the passive learning problem for
LTL formulas on ultimately periodic words is NP-hard, assuming the size of
the alphabet is given as an input; they then extend this result to CTL passive
learning, using a straightforward reduction of ultimately periodic words to lasso-
shaped Kripke structures. Roy et al. [22] used a SAT-based algorithm, resulting
independently to our own research in an encoding similar to the one outlined in
Sect. 4. However, our explicit solution to the learning problem, the embedding
of the negations in the syntactic DAG, the approximation of the recurrence
diameter as a semantic bound, our implementation of this algorithm, its test
suite, and the experimental results are entirely novel contributions.

2 Preliminary Definitions

2.1 Kripke Structures

Let AP be a finite set of atomic propositions. A Kripke structure is a finite
directed graph whose vertices (called states) are labelled by subsets of AP.

Definition 1 (Kripke Structure). A Kripke structure (KS) K on AP is a
tuple K = (Q, δ, λ) such that:

– Q is a finite set of states; the integer |Q| is known as the size of K;
– δ : Q → (2Q \ {∅}) is a transition function; the integer max

q∈Q
|δ(q)| is known

as the degree of K;
– λ : Q → 2AP is a labelling function.

An infinite run r of K starting from a state q ∈ Q is an infinite sequence
r = (si) ∈ Qω of consecutive states such that s0 = q and ∀ i ≥ 0, si+1 ∈ δ(si).
RK(q) is the set of all infinite runs of K starting from q.

The recurrence diameter αK(q) of state q in K is the length of the longest
finite run (si)i=0,...,αK(q) starting from q such that ∀ i, j ∈ [0 . . αK(q)], if i �= j
then si �= sj (i.e. the longest simple path in the underlying graph structure). We
may omit the index K whenever contextually obvious.

Note that two states may generate the same runs despite their computation
trees not corresponding. It is therefore necessary to define an equivalence relation
on states of KSs that goes further than mere run equality.

SAT-Based Learning of Computation Tree Logic 369

Definition 2 (Bisimulation Relation). Let K = (Q, δ, λ) be a KS on AP.
The canonical bisimulation relation ∼ ⊆ Q × Q is the coarsest (i.e. the most
general) equivalence relation such that for any q1 ∼ q2, λ(q1) = λ(q2) and ∀ q′

1 ∈
δ(q1),∃ q′

2 ∈ δ(q2) such that q′
1 ∼ q′

2.

Bisimilarity does not only entails equality of runs, but also similarity of shape:
two bisimilar states have corresponding computation trees at any depth. A par-
tition refinement algorithm allows one to compute ∼ by refining a sequence of
equivalence relations (∼i)i≥0 on Q × Q inductively, where for every q1, q2 ∈ Q:

q1 ∼0 q2 ⇐⇒ λ(q1) = λ(q2)
q1 ∼i+1 q2 ⇐⇒ (q1 ∼i q2) ∧ ({[q′

1]∼i
| q′

1 ∈ δ(q1)} = {[q′
2]∼i

| q′
2 ∈ δ(q2)})

Where [q]∼i
stands for the equivalence class of q ∈ Q according to the equiva-

lence relation ∼i. Intuitively, q1 ∼i q2 if their computation trees are correspond-
ing up to depth i. The next theorem is a well-known result [1, Alg. 31]:

Theorem 1 (Characteristic Number). Given a KS K, there exists i0 ∈ N

such that ∀ i ≥ i0, ∼ = ∼i. The smallest integer i0 verifying that property is
known as the characteristic number CK of K.

Note that Browne et al. [6] introduced an equivalent definition: the charac-
teristic number of a KS is also the smallest integer CK ∈ N such that any two
states are not bisimilar if and only if their labelled computation trees of depth
CK are not corresponding.

2.2 Computation Tree Logic

Definition 3 (Computation Tree Logic). Computation Tree Logic (CTL)
is the set of formulas defined by the following grammar, where a ∈ AP is any
atomic proposition and † ∈ {∀ ,∃ } a quantifier:

ϕ ::= a | � | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | † Xϕ | † Fϕ | † Gϕ | † ϕUϕ

Given E ⊆ {¬,∧,∨,∀X,∃X,∀F,∃F,∀G,∃G,∀U,∃U}, we define the (syntactic)
fragment CTL(E) as the subset of CTL formulas featuring only operators in E.

CTL formulas are verified against states of KSs (a process known as model
checking). Intuitively, ∀ (all) means that all runs starting from state q must
verify the property that follows, ∃ (exists), that at least one run starting from
q must verify the property that follows, Xϕ (next), that the next state of the
run must verify ϕ, Fϕ (finally), that there exists a state of run verifying ϕ, Gϕ
(globally), that each state of the run must verify ϕ, and ϕUψ (until), that the
run must keep verifying ϕ at least until ψ is eventually verified.

More formally, for a state q ∈ Q of a KS K = (Q, δ, λ) and a CTL formula ϕ,
we write (q |=K ϕ) when K satisfies ϕ. CTL’s semantics are defined inductively
on ϕ (see [1, Def. 6.4] for a complete definition); we recall below the until case:

370 A. Pommellet et al.

Definition 4 (Semantics of ∀U,∃U). Let K = (Q, δ, λ) be a KS, ϕ and ψ two
CTL formulas, q ∈ Q, and † ∈ {∀ ,∃ }. Then:

q |=K † ϕUψ ⇐⇒ †(si) ∈ RK(q),∃ i ≥ 0, (si |=K ψ) ∧ (∀ j < i, sj |=K ϕ)

Bisimilarity and CTL equivalence coincide [1, Thm. 7.20] on finite KSs. The
proof relies on the following concept:

Theorem 2 (Browne et al. [6]). Given a KS K = (Q, δ, λ) and a state q ∈ Q,
there exists a CTL formula ϕq ∈ CTL({¬,∧,∨,∀X,∃X}) known as the master
formula of state q such that, for any q′ ∈ Q, q′ |=K ϕq if and only if q ∼ q′.

Fig. 1. The syntactic tree and indexed
DAG of the CTL formula ¬a ∧ ∀X a.

To each CTL formula ϕ, we asso-
ciate a syntactic tree T . For brevity’s
sake, we consider a syntactic directed
acyclic graph (DAG) D by coalescing
identical subtrees in the original syn-
tactic tree T , as shown in Fig. 1. The
size |ϕ| of a CTL formula ϕ is then
defined as the number of nodes of its
smallest syntactic DAG. As an exam-
ple, |¬a ∧ ∀X a| = 4.

2.3 Bounded Semantics

We introduce the bounded temporal operators ∀Fu, ∃Fu, ∀Gu, ∃Gu, ∀Uu, and
∃Uu, whose semantics only applies to the first u steps of a run. Formally:

Definition 5 (Bounded Semantics of CTL). Let K = (Q, δ, λ) be a KS, ϕ
and ψ two CTL formulas, u ∈ N and q ∈ Q. The bounded semantics of CTL of
rank u with regards to K are defined as follows for the quantifier † ∈ {∀ ,∃ }:

q |=K †Fu ϕ ⇐⇒ †(si) ∈ RK(q),∃ i ∈ [0 . . u], si |=K ϕ

q |=K †Gu ϕ ⇐⇒ †(si) ∈ RK(q),∀ i ∈ [0 . . u], si |=K ϕ

q |=K † ϕUu ψ ⇐⇒ †(si) ∈ RK(q),∃ i ∈ [0 . . u], (si |=K ψ) ∧ (∀ j < i, sj |=K ϕ)

Intuitively, the rank u of the bounded semantics acts as a timer: (q |=K ∀Gu ϕ)
means that ϕ must hold for the next u computation steps; (q |=K ∀Fu ϕ), that q
must always be able to reach a state verifying ϕ within u steps; (q |=K ∀ϕUu ψ),
that q must always be able to reach a state verifying ψ within u steps, and that
ϕ must hold until it does; etc. This intuition results in the following properties:

Property 1 (Base case). (q |=K ψ) ⇐⇒ (q |=K †F0 ψ) ⇐⇒ (q |=K
† ϕU0 ψ) ⇐⇒ (q |=K †G0 ψ).

Property 2 (Induction). (q |=K †Fu+1 ϕ) ⇐⇒ (q |=K ϕ) ∨ �
q′∈δ(q)

(q′ |=K †Fu ϕ),

(q |=K † ϕUu+1 ψ) ⇐⇒ (q |=K ψ) ∨
[
(q |=K ϕ) ∧ �

q′∈δ(q)

(q′ |=K † ϕUu ψ)
]
, and

SAT-Based Learning of Computation Tree Logic 371

(q |=K †Gu+1 ϕ) ⇐⇒ (q |=K ϕ) ∧ �
q′∈δ(q)

(q′ |=K †Gu ϕ), where � = ∧ if † = ∀

and � = ∨ if † = ∃.

Property 3 (Spread). (q |=K †Fu ϕ) =⇒ (q |=K †Fu+1 ϕ), (q |=K †Gu+1 ϕ) =⇒
(q |=K †Gu ϕ), and (q |=K † ϕUu ψ) =⇒ (q |=K † ϕUu+1 ψ).

Bounded model checking algorithms [25] rely on the following result, as one
can then restrict the study of CTL semantics to finite and fixed length paths.

Theorem 3. Given q ∈ Q, for † ∈ {∀ ,∃ } and � ∈ {F,G}, q |=K † � ϕ (resp.
q |=K † ϕUψ) if and only if q |=K † �α(q) ϕ (resp. q |=K † ϕUα(q) ψ).

A full proof of this result is available in Appendix A.

3 The Learning Problem

We consider the synthesis problem of a distinguishing CTL formula from a sample
of positive and negative states of a given KS.

3.1 Introducing the Problem

First and foremost, the sample must be self-consistent: a state in the positive
sample cannot verify a CTL formula while another bisimilar state in the negative
sample does not.

Definition 6 (Sample). Given a KS K = (Q, δ, λ), a sample of K is a pair
(S+, S−) ∈ 2Q × 2Q such that ∀ q+ ∈ S+, ∀ q− ∈ S−, q+ �∼ q−.

We define the characteristic number CK(S+, S−) of a sample as the smallest
integer c ∈ N such that for every q+ ∈ S+, q− ∈ S−, q+ �∼c q−.

Definition 7 (Consistent Formula). A CTL formula ϕ is said to be consis-
tent with a sample (S+, S−) of K if ∀ q+ ∈ S+, q+ |=K ϕ and ∀ q− ∈ S−,
q− �|=K ϕ.

The rest of our article focuses on the following passive learning problems:

Definition 8 (Learning Problem). Given a sample (S+, S−) of a KS K and
n ∈ N

∗, we introduce the following instances of the CTL learning problem:
LCTL(E)(K, S+, S−). Is there ϕ ∈ CTL(E) consistent with (S+, S−)?
L≤n
CTL(E)(K, S+, S−). Is there ϕ ∈ CTL(E), |ϕ| ≤ n, consistent with (S+, S−)?

MLCTL(E)(K, S+, S−). Find the smallest ϕ ∈ CTL(E) consistent with (S+, S−).

Theorem 4. LCTL(K, S+, S−) and MLCTL(K, S+, S−) always admit a solution.

Proof. Consider ψ =
∨

q+∈S+
ϕq+ . This formula ψ is consistent with (S+, S−) by

design. Thus LCTL(K, S+, S−) always admits a solution, and so does the problem
MLCTL(K, S+, S−), although ψ is unlikely to be the minimal solution. ��

Bordais et al. [5] proved that L≤n
CTL(K, S+, S−) is NP-hard, assuming the set

of atomic propositions AP is given as an input as well.

372 A. Pommellet et al.

3.2 An Explicit Solution

We must find a formula consistent with the sample (S+, S−), an easier problem
than Browne et al. [6]’s answer to Theorem 2 that subsumes bisimilarity with an
entire KS. As we know that every state in S− is dissimilar to every state in S+,
we will try to encode this fact in CTL form, then use said encoding to design a
formula consistent with the sample.

Definition 9 (Separating Formula). Let (S+, S−) be a sample of a KS K =
(Q, δ, λ). Assuming that AP and Q are ordered, and given q1, q2 ∈ Q such that
q1 �∼ q2, formula Dq1,q2 is defined inductively w.r.t. c = CK({q1}, {q2}) as follows:

– if c = 0 and λ(q1) \ λ(q2) �= ∅ has minimal element a, then Dq1,q2 = a;
– else if c = 0 and λ(q2) \ λ(q1) �= ∅ has minimal element a, then Dq1,q2 = ¬a;
– else if c �= 0 and ∃ q′

1 ∈ δ(q1), ∀ q′
2 ∈ δ(q2), q′

1 �∼c−1 q′
2, then Dq1,q2 =

∃X
(∧

q′
2∈δ(q2)

Dq′
1,q′

2

)
, picking the smallest q′

1 verifying this property;

– else if c �= 0 and ∃ q′
2 ∈ δ(q2), ∀ q′

1 ∈ δ(q1), q′
1 �∼c−1 q′

2, then Dq1,q2 =

∀X ¬
(∧

q′
1∈δ(q1)

Dq′
2,q′

1

)
, picking the smallest q′

2 verifying this property.

The formula SK(S+, S−) =
∨

q+∈S+

∧
q−∈S−

Dq+,q− ∈ CTL({¬,∧,∨,∀X,∃X}) is then

called the separating formula of sample (S+, S−).

Intuitively, the CTL formula Dq1,q2 merely expresses that states q1 and q2 are
dissimilar by negating Definition 2; it is such that q1 |=K Dq1,q2 but q2 �|=K Dq1,q2 .
Either q1 and q2 have different labels, q1 admits a successor that is dissimilar to
q2’s successors, or q2 admits a successor that is dissimilar to q1’s. The following
result is proven in Appendix B:

Theorem 5. The separating formula SK(S+, S−) is consistent with (S+, S−).

As proven in Appendix C, we can bound the size of SK(S+, S−):

Corollary 1. Assume the KS K has degree k and c = CK(S+, S−), then:

– if k ≥ 2, then |SK(S+, S−)| ≤ (5 · kc + 1) · |S+| · |S−|;
– if k = 1, then |SK(S+, S−)| ≤ (2 · c + 3) · |S+| · |S−|.

4 SAT-Based Learning

The universal fragment CTL∀ = CTL({¬,∧,∨,∀X,∀F,∀G,∀U}) of CTL happens
to be as expressive as the full logic [1, Def. 6.13]. For that reason, we will reduce
a learning instance of CTL∀ of rank n to an instance of the SAT problem. A
similar reduction has been independently found by Roy et al. [22].

Lemma 1. There exists a Boolean propositional formula Φn such that the
instance L≤n

CTL∀(K, S+, S−) of the learning problem admits a solution ϕ if and
only if the formula Φn is satisfiable.

SAT-Based Learning of Computation Tree Logic 373

4.1 Modelling the Formula

Assume that there exists a syntactic DAG D of size smaller than or equal to n
representing the desired CTL formula ϕ. Let us index D’s nodes in [1 . . n] in
such a fashion that each node has a higher index than its children, as shown in
Fig. 1. Hence, n always labels a root and 1 always labels a leaf.

Let L = AP ∪ {�,¬,∧,∨,∀X,∀F,∀G,∀U} be the set of labels that decorates
the DAG’s nodes. For each i ∈ [1 . . n] and o ∈ L, we introduce a Boolean
variable τo

i such that τo
i = 1 if and only if the node of index i is labelled by o.

For all i ∈ [1 . . n] and j ∈ [0 . . i − 1], we also introduce a Boolean variable
li,j (resp. ri,j) such that li,j = 1 (resp. ri,j = 1) if and only if j is the left (resp.
right) child of i. Having a child of index 0 stands for having no child at all in
the actual syntactic DAG D.

Three mutual exclusion clauses guarantee that each node of the syntactic
DAG has exactly one label and at most one left child and one right child. More-
over, three other clauses ensure that a node labelled by an operator of arity x
has exactly x actual children (by convention, if x = 1 then its child is to the
right). These simple clauses are similar to Neider et al.’s encoding [16] and for
that reason are not detailed here.

4.2 Applying the Formula to the Sample

For all i ∈ [1 . ., n] and q ∈ Q, we introduce a Boolean variable ϕq
i such that

ϕq
i = 1 if and only if state q verifies the sub-formula ϕi rooted in node i. The next

clauses implement the semantics of the true symbol �, the atomic propositions,
and the CTL operator ∀X.

∧

i∈[1. .n]
q∈Q

(τ�
i =⇒ ϕq

i) (sem
)

∧

i∈[1. .n]
q∈Q

[(∧

a∈λ(q)

(τa
i =⇒ ϕq

i)

)
∧

(∧

a�∈λ(q)

(τa
i =⇒ ¬ϕq

i)

)]
(sema)

∧

i∈[2. .n]
k∈[1. .i−1]

[
(τ∀X

i ∧ ri,k) =⇒
∧

q∈Q

(
ϕq

i ⇐⇒
∧

q′∈δ(q)

ϕq′
k

)]
(sem∀X)

Semantic clauses are structured as follows: an antecedent stating node i’s
label and its possible children implies a consequent expressing ϕq

i ’s semantics
for each q ∈ Q. Clause sem
 states that q |= � is always true; clause sema, that
q |= a if and only if q is labelled by a; and clause sem∀X, that q |= ∀Xψ if and
only if all of q’s successors verify ψ. Similar straightforward clauses encode the
semantics of the Boolean connectors ¬, ∧ and ∨.

CTL semantics are also characterized by fixed points, whose naive encoding
might however capture spurious (least vs greatest) sets: we resort to the bounded

374 A. Pommellet et al.

semantics ∀Fu, ∀Uu and ∀Gu. For all i ∈ [1 . . n], q ∈ Q, and u ∈ [0 . . α(q)], we
introduce a Boolean variable ρu

i,q such that ρu
i,q = 1 if and only if q verifies the

sub-formula rooted in i according to the CTL bounded semantics of rank u (e.g.
q |= ∀Fu ψ, assuming sub-formula ∀Fψ is rooted in node i).

Thanks to Theorem 3 we can introduce the following equivalence clause:

∧

i∈[2. .n]

[(
∨

o∈{∀F,∀G,∀U}
τo

i

)
=⇒

∧

q∈Q

(ϕq
i ⇐⇒ ρ

α(q)
i,q)

]
(semρ)

Property 3 yields two other clauses whose inclusion is not mandatory (they
were left out by Roy et al. [22]) that further constrains the bounded semantics:

∧

i∈[2. .n]

[
(τ∀F

i ∨ τ∀U
i) =⇒

∧

q∈Q
u∈[1. .α(q)]

(ρu−1
i,q =⇒ ρu

i,q)

]
(ascentρ)

∧

i∈[2. .n]

[
τ∀G

i =⇒
∧

q∈Q
u∈[1. .α(q)]

(ρu
i,q =⇒ ρu−1

i,q)

]
(descentρ)

The next clause enables variable ρu
i,q for temporal operators only:

∧

i∈[2. .n]

[(
∧

o∈{∀F,∀G,∀U}
¬τo

i

)
=⇒

∧

q∈Q
u∈[0. .α(q)]

¬ρu
i,q

]
(noρ)

Properties 1 and 2 yield an inductive definition of bounded semantics. We
only explicit the base case baseρ and the semantics sem∀U of ∀Uu, but also
implement semantic clauses for the temporal operators ∀F and ∀G.

∧

i∈[2. .n]
k∈[1. .i−1]

[([
∨

o∈{∀F,∀G,∀U}
τo

i

]
∧ ri,k

)
=⇒

∧

q∈Q

(ρ0
i,q ⇐⇒ ϕq

k)

]
(baseρ)

∧

i∈[2. .n]
j,k∈[1. .i−1]

[
(τ∀U

i ∧ li,j ∧ ri,k) =⇒

∧

q∈Q
u∈[1. .α(q)]

(
ρu

i,q ⇐⇒
[
ϕq

k ∨
(

ϕq
j ∧

∧

q′∈δ(q)

ρ
min(α(q′),u−1)

i,q′

)])]
(sem∀U)

Finally, the last clause ensures that the full formula ϕ (rooted in node n) is
verified by the positive sample but not by the negative sample.

(
∧

q+∈S+

ϕq+

n

)
∧

(
∧

q−∈S−
¬ϕq−

n

)
(semϕ)

SAT-Based Learning of Computation Tree Logic 375

4.3 Solving the SAT Instance

We finally define the formula Φn as the conjunction of all the aforementioned
clauses. Assuming an upper bound d on the KS’s recurrence diameter, this encod-
ing requires O(n2 + n · |AP| + n · |Q| · d) variables and O(n · |AP| + n3 · |Q| · d +
n · |AP| · |Q|) clauses, not taking transformation to conjunctive normal form into
account. By design, Lemma 1 holds.

Proof. The syntactic clauses allow one to infer the DAG of a formula ϕ ∈ CTL of
size smaller than or equal to n from the valuations taken by the variables (τo

i),
(li,j), and (ri,j). Clauses sema to semϕ guarantee that the sample is consistent
with said formula ϕ, thanks to Theorem 3 and Properties 1, 2, and 3. ��

5 Algorithms for the Minimal Learning Problem

We introduce in this section an algorithm to solve the minimum learning problem
MLCTL∀(K, S+, S−). Remember that it always admits a solution if and only if
the state sample is consistent by Theorem 4.

5.1 A Bottom-Up Algorithm

Input: a KS K and a sample S.
Output: the smallest CTL∀ formula ϕ

consistent with S.
n ← 0;
repeat

n ← n + 1;
compute Φn;

until Φn is satisfiable by some valuation v;
from v build and return ϕ.

Algorithm 1: Solving MLCTL∀(K, S).

By Theorem 4, there exists
a rank n0 such that the
problem L≤n0

CTL∀(K, S) admits a
solution. Starting from n =
0, we can therefore try to
solve L≤n

CTL∀(K, S) incremen-
tally until a (minimal) solu-
tion is found, in a simi-
lar manner to Neider and
Gavran [16]. Algorithm 1 ter-
minates with an upper bound
n0 on the number of required
iterations.

5.2 Embedding Negations

The CTL formula ∃F a is equivalent to the CTL∀ formula ¬ ∀G¬a, yet the former
remains more succinct, being of size 2 instead of 4. While CTL∀ has been proven
to be as expressive as CTL, the sheer amount of negations needed to express
an equivalent formula can significantly burden the syntactic DAG. A possible
optimization is to no longer consider the negation ¬ as an independent operator
but instead embed it in the nodes of the syntactic DAG, as shown in Fig. 2.

Note that such a definition of the syntactic DAG alters one’s interpretation
of a CTL formula’s size: as a consequence, under this optimization, Algorithm 1

376 A. Pommellet et al.

Fig. 2. The syntactic DAG of ¬∃ 	U¬ ∀X¬a, before and after embedding negations.

may yield a formula with many negations that is no longer minimal under the
original definition of size outlined in Sect. 2.2.

Formally, for each i ∈ [1 . . n], we introduce a new variable νi such that
νi = 0 if and only if the node of index i is negated. As an example, in Fig. 2,
ν1 = ν3 = ν4 = 0, but ν2 = 1 and the sub-formula rooted in node 3 is ¬ ∀X¬a.

We then change the SAT encoding of CTL∀’s semantics accordingly. We
remove the ¬ operator from the syntactic DAG clauses and the set L of labels.
We delete its semantics and update the semantic clauses of the other opera-
tors. Indeed, the right side of each equivalence expresses the semantics of the
operator rooted in node i before applying the embedded negation; we must there-
fore change the left side of the semantic equivalence accordingly, replacing the
Boolean variable ϕq

i with the formula ϕ̃q
i = (¬νi ∧ ¬ϕq

i) ∨ (νi ∧ ϕq
i) that is

equivalent to ϕq
i if νi = 1 and ¬ϕq

i if νi = 0.

5.3 Optimizations and Alternatives

Minimizing the Input KS. In order to guarantee that an input S is indeed a
valid sample, one has to ensure no state in the positive sample is bisimilar to
a state in the negative sample. To do so, one has to at least partially compute
the bisimilarity relation ∼ on K = (Q, δ, λ). But refining it to completion can be
efficiently performed in O(|Q| · |AP| + |δ| · log(|Q|)) operations [1, Thm. 7.41],
yielding a bisimilar KS Kmin of minimal size.

Minimizing the input KS is advantageous as the size of the semantic clauses
depends on the size of K, and the SAT solving step is likely to be the computa-
tional bottleneck. As a consequence, we always fully compute the bisimulation
relation ∼ on K and minimize said KS.

Approximating the Recurrence Diameter. Computing the recurrence diameter
of a state q is unfortunately an NP-hard problem that is known to be hard to
approximate [4]. A coarse upper bound is α(q) ≤ |Q| − 1: it may however result
in a significant number of unnecessary variables and clauses. Fortunately, the
decomposition of a KS K into strongly connected components (SCCs) yields a
finer over-approximation shown in Fig. 3 that relies on the ease of computing α in
a DAG. It is also more generic and suitable to CTL than existing approximations
dedicated to LTL bounded model checking [14].

Contracting each SCC to a single vertex yields a DAG known as the conden-
sation of K. We weight each vertex of this DAG G with the number of vertices in
the matching SCC. Then, to each state q in the original KS K, we associate the
weight β(q) of the longest path in the DAG G starting from q’s SCC, minus one

SAT-Based Learning of Computation Tree Logic 377

(in order not to count q). Intuitively, our approximation assumes that a simple
path entering a SCC can always visit every single one of its states once before
exiting, a property that obviously does not hold for two of the SCCs shown here.

Encoding the Full Logic. CTL∀ is semantically exhaustive but the existential
temporal operators commonly appear in the literature; we can therefore consider
the learning problem on the full CTL logic by integrating the operators ∃X, ∃F,
∃G, and ∃U and provide a Boolean encoding of their semantics. We also consider
the fragment CTLU = {¬,∨,∃X,∃G,∃U} used by Roy et al. [22].

Fig. 3. An approximation β of the recurrence diameter α relying on SCC decomposition
that improves upon the coarse upper bound α(q) ≤ |Q| − 1 = 6.

6 Experimental Implementation

We implement our learning algorithm in a C++ prototype tool LearnCTL1 relying
on Microsoft’s Z3 due to its convenient C++ API. It takes as an input a sample
of positive and negative KSs with initial states, then coalesced into a single KS
and a sample of states compatible with the theoretical framework we described.
It finally returns a separating CTL∀, CTL, or CTLU formula after a sanity check
performed by model-checking the input KSs against the learnt formula, using a
simple algorithm based on Theorem 3.

6.1 Benchmark Collection

We intend on using our tool to generate formulas that can explain flaws in
faulty implementations of known protocols. To do so, we consider structures
generated by higher formalisms such as program graphs: a single mutation in
the program graph results in several changes in the resulting KS. This process
has been achieved manually according to the following criteria:

– The mutations only consist in deleting lines.
– The resulting KS should be small, less than ∼ 1000 states.
– Any mutation should result in a syntactically correct model.
1 publicly available at https://gitlab.lre.epita.fr/adrien/learnctl.

https://gitlab.lre.epita.fr/adrien/learnctl

378 A. Pommellet et al.

We collected program graphs in a toy specification language for a CTL model
checker class implemented in Java. Furthermore, we also considered PROMELA
models from the Spin model-checker [12] repository. Translations were then per-
formed through the Python interface of spot/ltsmin [9,13].

Example 1. Consider the mutual exclusion protocol proposed by [18] and spec-
ified in PROMELA in Fig. 4 that generates a KS with 55 states. We generate
mutants by deleting no more than one line of code at a time, ignoring variable
and process declarations as they are necessary for the model to be compiled and
the two assertion lines that are discarded by our KS generator, our reasoning
being that subtle changes yield richer distinguishing formulas.

Furthermore, removing the instruction ncrit-- alone would lead to an infi-
nite state space; thus, its deletion is only considered together with the instruc-
tion ncrit++. Finally, we set some atomic propositions of interest: c stands for
at least one process being in the critical section (ncrit>0), m for both processes
(ncrit>1), and t for process 0’s turn. An extra dead atomic proposition is added
by Spot/LTSMin to represent deadlocked states.

As summarized on Fig. 4, every mutated model, once compared with the
original KS, lead to distinguishing formulas characterizing Peterson’s protocol:
mutations m1, m2, and m3 yield a mutual exclusion property, m4 yields a liveness
property, m5 yields a fairness property, and m6 yields global liveness formula.

Fig. 4. Peterson’s mutual exclusion protocol in PROMELA and learnt formulas for
each deleted instruction.

SAT-Based Learning of Computation Tree Logic 379

6.2 Quantitative Evaluation

We quantitatively assess the performance of the various optimizations and CTL
fragments discussed previously. To do so, we further enrich the benchmark series
through the use of random mutations of hard-coded KSs: these mutations may
alter some states, re-route some edges, and spawn new states. We consider a
total of 234 test samples, ranging from size 11 to 698 after minimization. We
perform the benchmarks on a GNU/Linux Debian machine (bullseye) with 24
cores (Intel(R) Xeon(R) CPU E5-2620 @ 2.00 GHz) and 256Go of RAM, using
version 4.8.10 of libz3 and 1.0 of LearnCTL.

Table 1 displays a summary of these benchmarks: β stands for the refined
approximation of the recurrence diameter described in Sect. 5.3; ¬, for the
embedding of negations in the syntactic tree introduced in Sect. 5.2. The average
size of the syntactic DAGs learnt is 4.14.

Option β yields the greatest improvement, being on average at least 6 times
faster than the default configuration; option ¬ further divides the average run-
time by at least 2. These two optimizations alone speed up the average runtime
by a factor of 12 to 20. The CTL fragment used, all other options being equal,
does not influence the average runtime as much (less than twofold in the worst
case scenario); (CTLU, β,¬) is the fastest option, closely followed by (CTL∀, β,¬).

Intuitively, approximating the recurrence diameter aggressively cuts down the
number of SAT variables needed: assuming that α has upper bound d, we only
need n · |Q| · d Boolean variables (ρu

i,q) instead of n · |Q|2. Moreover, embedding
negations, despite requiring more complex clauses, results in smaller syntactic
DAGs with “free” negations, hence faster computations, keeping in mind that
the last SAT instances are the most expensive to solve, being the largest.

Table 1. Number of timeouts at ten min-
utes | arithmetic mean (in milliseconds) on
the 178 samples that never timed out of var-
ious options and fragments.

Figure 5 further displays a log-log
plot comparing the runtime of the
most relevant fragments and options
to (CTLU, β,¬). For a given set of
parameters, each point stands for
one of the 234 test samples. Points
above the black diagonal favour
(CTLU, β,¬); points below, the afore-
mentioned option. Points on the sec-
ond dotted lines at the edges of the
figure represent timeouts.

Unsurprisingly, (CTL∀, β,¬) and (CTL, β,¬) outperform (CTLU, β,¬) when a
minimal distinguishing formula using the operator ∀U exists: the duality between
∀U and ∃U is complex and, unlike the other operators, cannot be handled at no
cost by the embedded negation as it depends on the release operator.

380 A. Pommellet et al.

Fig. 5. Comparing (CTLU, β, ¬) to other options on every sample.

7 Conclusion and Further Developments

We explored in this article the CTL learning problem: we first provided a direct
explicit construction before relying on a SAT encoding inspired by bounded
model-checking to iteratively find a minimal answer. We also introduced in
Sect. 3 an explicit answer to the learning problem that belongs to the frag-
ment CTL(¬,∧,∨,∀X,∃X). It remains to be seen if a smaller formula can be
computed using a more exhaustive selection of CTL operators. A finer grained
explicit solution could allow one to experiment with a top-down approach as
well.

Moreover, we provided a dedicated C++ implementation, and evaluated it on
models of higher-level formalisms such as PROMELA. Since the resulting KSs
have large state spaces, further symbolic approaches are to be considered for
future work, when dealing with program graphs instead of Kripke structures. In
this setting, one might also consider the synthesis problem of the relevant atomic
propositions from the exposed program variables. Nevertheless, the experiments
on Kripke structures already showcase the benefits of the approximated recur-
rence diameter computation and of our extension of the syntactic DAG defini-
tion, as well as the limited relevance of the target CTL fragment.

Another avenue for optimizations can be inferred from the existing SAT-based
LTL learning literature: in particular, Rienier et al. [20] relied on a topology-
guided approach by explicitly enumerating the possible shapes of the syntactic
DAG and solving the associated SAT instances in parallel. Given the small size
on average of the formulas learnt so far and the quadratic factor impacting the
number of semantic clauses such as sem∀U due to the structural variables li,j and
ri,k, this approach could yield huge performance gains in CTL’s case as well.

SAT-Based Learning of Computation Tree Logic 381

We relied on Z3’s convenient C++ API, but intuit that we would achieve better
performance with state-of-the-art SAT solvers such as the winners of the yearly
SAT competition [2]. We plan on converting our Boolean encoding to the DIMACS
CNF format in order to interface our tool with modern SAT solvers.

Finally, it is known that the bounded learning problem is NP-complete, but
we would also like to find the exact complexity class of the minimal CTL learning
problem. We intuit that it is not, Kripke structures being a denser encoding in
terms of information than lists of linear traces: as an example, one can trivially
compute an LTL formula (resp. a CTL formula) of polynomial size that distin-
guishes a sample of ultimately periodic words (resp. of finite computation trees
with lasso-shaped leaves), but the same cannot be said of a sample of Kripke
structures. It remains to be seen if this intuition can be confirmed or infirmed
by a formal proof.

A Proof of Theorem 3

∀F. Assume that q |= ∀Fϕ. Let us prove that q |= ∀Fα(q) ϕ. Consider a run
r = (si) ∈ R(q). By hypothesis, we can define the index j = min{i ∈ N | si |= ϕ}.

Now, assume that j > α(q). By definition of the recurrence diameter α,
∃ k1, k2 ∈ [0 . . j − 1] such that k1 ≤ k2 and sk1 = sk2 . Consider the finite
runs u = (si)i∈[0. .k1] and v = (si)i∈[k1+1. .k2]. We define the infinite, ultimately
periodic run r′ = u · vω = (s′

i). By definition of j, ∀ i ∈ N, s′
i �|= ϕ in order to

preserve the minimality of j. Yet r′ ∈ R(q) and q |= ∀Fϕ. By contradiction,
j ≤ α(q). As consequence, (q |= ∀Fϕ) =⇒ (q |= ∀Fα(q) ϕ) holds.

Trivially, (q |= ∀Fα(q) ϕ) =⇒ (q |= ∀Fϕ) holds. Hence, we have proven both
sides of the desired equivalence for ∀F.

∀G. Assume that q |= ∀Gα(q) ϕ. Let us prove that q |= ∀Gϕ. Consider a run
r = (si) ∈ R(q) and j ∈ N. Let us prove that sj |= ϕ.

State sj is obviously reachable from q. Let us consider a finite run without
repetition u = (s′

i)i∈[0. .k] such that s0 = q and s′
k = sj . By definition of the

recurrence diameter, k ≤ α(q). We define the infinite runs v = (si)i>j and
r′ = u · v. Since r′ ∈ R(q) and q |= ∀Gα(q) ϕ, sk |= ϕ, hence sj |= ϕ. As a
consequence, (q |= ∀Gα(q) ϕ) =⇒ (q |= ∀Gϕ).

Trivially, (q |= ∀Gϕ) =⇒ (q |= ∀Gα(q) ϕ) holds. Hence, we have proven both
sides of the desired equivalence for ∀G.

∃F and ∃G. Formula ∃Fϕ (rep. ∃Gϕ) being equivalent to the dual formula
¬ ∀G¬ϕ (resp. ¬ ∀F¬ϕ), the previous proofs immediately yield the desired equiv-
alences.

∀U and ∃U. We can handle the case of ∀ϕUψ in a manner similar to ∀F: we
prove by contradiction that the first occurrence of ψ always happens in less than
α(q) steps. And the semantic equivalence for ∃ϕUψ can be handled in a fashion
similar to ∀G: an existing infinite run yields a conforming finite prefix without
repetition of length lesser than or equal to α(q).

382 A. Pommellet et al.

B Proof of Theorem 5

Given two dissimilar states q1, q2 ∈ Q, let us prove by induction on the charac-
teristic number cq1,q2 = CK({q1}, {q2}) that q1 |= Dq1,q2 and q2 �|= Dq1,q2 .

Base Case. If cq1,q2 = 0, then by definition λ(q1) �= λ(q2) and by design Dq1,q2

is a literal (i.e. an atomic proposition or the negation thereof) verified by q1
but not by q2.

Inductive Case. Assume that the property holds for all characteristic numbers
smaller than or equal to c ∈ N. Consider two states q1, q2 ∈ Q such that
cq1,q2 = c + 1. By definition of the refined equivalence relation ∼c+1, ∃ q′

1 ∈
δ(q1), ∀ q′

2 ∈ δ(q2), q′
1 �∼c q′

2, hence cq′
1,q′

2
≤ c.

By induction hypothesis, Dq′
1,q′

2
is well-defined, q′

1 |= Dq′
1,q′

2
and q′

2 �|= Dq′
1,q′

2
.

As a consequence, Dq1,q2 is well-defined, q1 |= ∃X
(∧

q′
2∈δ(q2)

Dq′
1,q′

2

)
, and q2 �|=

∃X
(∧

q′
2∈δ(q2)

Dq′
1,q′

2

)
.

We handle the case where ∃ q′
2 ∈ δ(q2), ∀ q′

1 ∈ δ(q1), q′
1 �∼c q′

2 in a similar
fashion. As a consequence, the property holds at rank c + 1.

Therefore, for each q+ ∈ S+ and each q− ∈ S−, q+ |= Dq+,q− and q− �|=
Dq+,q− . Hence, q+ |= SK(S+, S−) and q− �|= SK(S+, S−). ��

C Proof of Corollary 1

First, given q+ ∈ S+ and q− ∈ S−, let us bound the size of Dq+,q− based on
their characteristic number cq1,q2 = CK({q1}, {q2}).

cq1,q2 = 0 =⇒ |Dq+,q− | ≤ 2 as λ(q1) �= λ(q2)

cq1,q2 ≥ 1 =⇒ |Dq+,q− | ≤ (k + 1) +
∑

q′
2∈δ(q2)

|Dq′
1,q′

2
| for some q′

1 ∈ δ(q1)

or |Dq+,q− | ≤ (k + 1) +
∑

q′
1∈δ(q1)

|Dq′
1,q′

2
| for some q′

2 ∈ δ(q2)

We are looking for an upper bound (Un)n≥0 such that ∀n ∈ N, ∀ q+ ∈ S+,
∀ q− ∈ S−, if cq+,q− ≤ n, then |Dq+,q− | ≤ Un. We define it inductively:

U0 = 2
Un+1 = k · Un + k + 1

Assuming k ≥ 2, we explicit the bound Un = (2 + k+1
k−1) · kn − k+1

k−1 ≤ 5 · kn.
As ({q+}, {q−}) is a sub-sample of S, cq+,q− ≤ c and |Dq+,q− | ≤ Uc ≤ 5 · kc. We

SAT-Based Learning of Computation Tree Logic 383

can finally bound the size of SK(S+, S−):

|SK(S+, S−)| ≤ (|S+| − 1) · (|S−| − 1) +
∑

q+∈S+

q−∈S−

|Dq+,q− |

≤ |S+| · |S−| + |S+| · |S−| · Uc

≤ (5 · kc + 1) · |S+| · |S−|

Yielding the aforementioned upper bound. If k = 1, then Un = 2 · n + 2 and
the rest of the proof is similar to the previous case. ��

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT

Competition 2023: Solver, Benchmark and Proof Checker Descriptions. Depart-
ment of Computer Science Series of Publications B, Department of Computer Sci-
ence, University of Helsinki, Finland (2023)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and
Analysis of Systems, pp. 193–207. Springer, Berlin Heidelberg, Berlin, Heidelberg
(1999). https://doi.org/10.1007/3-540-49059-0 14

4. Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths
and cycles. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27836-8 21

5. Bordais, B., Neider, D., Roy, R.: Learning temporal properties is NP-hard (2023)
6. Browne, M., Clarke, E., Grümberg, O.: Characterizing finite kripke struc-

tures in propositional temporal logic. Theor. Comput. Sci. 59(1), 115–131
(1988). https://doi.org/10.1016/0304-3975(88)90098-9https://www.sciencedirect.
com/science/article/pii/0304397588900989

7. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in lin-
ear temporal logic. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 29, no. 1, pp. 621–630 (May 2021). https://
doi.org/10.1609/icaps.v29i1.3529, https://ojs.aaai.org/index.php/ICAPS/article/
view/3529

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

9. Duret-Lutz, A., et al.: From Spot 2.0 to Spot 2.10: What’s new? In: Proceedings
of the 34th International Conference on Computer Aided Verification (CAV’22).
LNCS, vol. 13372, pp. 174–187. Springer (Aug 2022). https://doi.org/10.1007/978-
3-031-13188-2 9

10. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: Chandlee, J., Eyraud, R., Heinz, J., Jardine, A., van Zaa-
nen, M. (eds.) Proceedings of the 15th International Conference on Grammati-
cal Inference, 23-27 August 2021, Virtual Event. Proceedings of Machine Learn-
ing Research, vol. 153, pp. 237–250. PMLR (2021). https://proceedings.mlr.press/
v153/fijalkow21a.html

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-540-27836-8_21
https://doi.org/10.1007/978-3-540-27836-8_21
https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989
https://www.sciencedirect.com/science/article/pii/0304397588900989
https://doi.org/10.1609/icaps.v29i1.3529
https://doi.org/10.1609/icaps.v29i1.3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://proceedings.mlr.press/v153/fijalkow21a.html
https://proceedings.mlr.press/v153/fijalkow21a.html

384 A. Pommellet et al.

11. Gaglione, J.R., Neider, D., Roy, R., Topcu, U., Xu, Z.: Learning linear temporal
properties from noisy data: a MaxSAT-based approach. In: Hou, Z., Ganesh, V.
(eds.) Automated Technology for Verification and Analysis, pp. 74–90. Springer
International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-88885-
5 6

12. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley (2004)

13. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

14. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Verification, Model
Checking, and Abstract Interpretation, pp. 298–309. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36384-X 24

15. Lutz, S., Neider, D., Roy, R.: Specification sketching for linear temporal logic. In:
André, É., Sun, J. (eds.) Automated Technology for Verification and Analysis, pp.
26–48. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-
3-031-45332-8 2

16. Neider, D., Gavran, I.: Learning linear temporal properties. In: Bjørner,
N.S., Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1–10.
IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603016, https://doi.org/
10.23919/FMCAD.2018.8603016

17. Penczek, W., Woźna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of CTL. Fundam. Inf. 51(1–2), 135–156 (2002)

18. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3), 115–116 (1981). https://doi.org/10.1016/0020-0190(81)90106-X, https://
doi.org/10.1016/0020-0190(81)90106-X

19. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57 (1977). https://doi.org/10.
1109/SFCS.1977.32

20. Riener, H.: Exact synthesis of LTL properties from traces. In: 2019 Forum for
Specification and Design Languages (FDL), pp. 1–6 (2019). https://doi.org/10.
1109/FDL.2019.8876900

21. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence. IJCAI 2020 (2021)

22. Roy, R., Neider, D.: Inferring properties in computation tree logic (2023)
23. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. In:

2009 IEEE/ACM International Conference on Automated Software Engineering,
pp. 295–306 (Nov 2009). https://doi.org/10.1109/ASE.2009.30

24. Xu, L., Chen, W., Xu, Y.Y., Zhang, W.H.: Improved bounded model checking for
the universal fragment of CTL. J. Comput. Sci. Technol. 24(1), 96–109 (2009).
https://doi.org/10.1007/s11390-009-9208-5, https://doi.org/10.1007/s11390-009-
9208-5

25. Zhang, W.: Bounded semantics of CTL and sat-based verification. In: Breitman,
K., Cavalcanti, A. (eds.) Formal Methods and Software Engineering, pp. 286–305.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10373-5 15

https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/3-540-36384-X_24
https://doi.org/10.1007/978-3-031-45332-8_2
https://doi.org/10.1007/978-3-031-45332-8_2
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/FDL.2019.8876900
https://doi.org/10.1109/FDL.2019.8876900
https://doi.org/10.1109/ASE.2009.30
https://doi.org/10.1007/s11390-009-9208-5
https://doi.org/10.1007/s11390-009-9208-5
https://doi.org/10.1007/s11390-009-9208-5
https://doi.org/10.1007/978-3-642-10373-5_15
https://doi.org/10.1007/978-3-642-10373-5_15

SAT-Based Learning of Computation Tree Logic 385

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

MCSat-Based Finite Field Reasoning
in the Yices2 SMT Solver (Short Paper)

Thomas Hader1(B), Daniela Kaufmann1 , Ahmed Irfan2 ,
Stéphane Graham-Lengrand2 , and Laura Kovács1

1 TU Wien, Vienna, Austria
{thomas.hader,daniela.kaufmann,laura.kovacs}@tuwien.ac.at

2 SRI International, Menlo Park, CA, USA
{ahmed.irfan,stephane.graham-lengrand}@sri.com

Abstract. This system description introduces an enhancement to the
Yices2 SMT solver, enabling it to reason over non-linear polynomial
systems over finite fields. Our reasoning approach fits into the model-
constructing satisfiability (MCSat) framework and is based on zero
decomposition techniques, which find finite basis explanations for theory
conflicts over finite fields. As the MCSat solver within Yices2 can sup-
port (and combine) several theories via theory plugins, we implemented
our reasoning approach as a new plugin for finite fields and extended
Yices2’s frontend to parse finite field problems, making our implementa-
tion the first MCSat-based reasoning engine for finite fields. We present
its evaluation on finite field benchmarks, comparing it against cvc5.
Additionally, our work leverages the modular architecture of the MCSat
solver in Yices2 to provide a foundation for the rapid implementation
of further reasoning techniques for this theory.

Keywords: SMT solving · MCSat · finite fields · polynomial
arithmetic

1 Introduction

Satisfiability Modulo Theories (SMT) solving plays a crucial role in automated
reasoning as it combines the power of Boolean satisfiability (SAT) with various
mathematical background theories [3]. This connection enables the automated
verification and synthesis of systems [15] that require reasoning in more expres-
sive logical theories, for example real/integer arithmetic.

State-of-the-art SMT solvers employ a combination of Boolean level reason-
ing and theory-specific algorithms. This is achieved either through the use of
the CDCL(T) paradigm [16] or the model-constructing satisfiability (MCSat)
approach [11,14]. The MCSat algorithm lifts the Boolean-level CDCL algorithm
to the theory level, while keeping the search theory independent. This approach
is particularly effective for handling complex arithmetic theories. For instance,
Yices2 [5] uses the MCSat approach to handle non-linear arithmetic constraints.
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 386–395, 2024.
https://doi.org/10.1007/978-3-031-63498-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_23&domain=pdf
http://orcid.org/0000-0002-5645-0292
http://orcid.org/0000-0001-7791-9021
http://orcid.org/0000-0002-2112-7284
http://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-63498-7_23

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver 387

Finite fields offer an ideal framework for modeling bounded machine arith-
metic, particularly relevant in the context of contemporary cryptosystems uti-
lized in system security and post-quantum cryptography. Current methodolo-
gies, for instance, develop private and secure systems using zero-knowledge (ZK)
proofs [7] or authenticate blockchain technologies like smart contracts [19]. Veri-
fying applications in such areas require efficient SMT solvers that support reason-
ing over finite field arithmetic, e.g., verification of a compiler for ZK proofs [18].

Related Work. Currently, the related work on SMT solving in finite field arith-
metic is still rather limited. Our own theoretical work [9] on MCSat approaches
based on finding zero decompositions comes with a proof-of-concept implementa-
tion that facilitates only a very fundamental MCSat algorithm, has only limited
support of Boolean propagation, and is unable to parse SMT-LIB 2 [2].

The only other SMT solver that we are aware of being capable of reasoning
over finite fields is cvc5 [1,17], which uses a classical CDCL(T) approach. As a
theory engine, Gröbner bases [4] reasoning over a set of polynomial equalities is
applied. If the derived Gröbner basis contains the constant 1, then the system is
unsatisfiable and a conflict core for the CDCL(T) search can be found. Otherwise,
a guided enumeration of all possible solutions is performed to search for a model.

Note that both approaches [9,17] use complementary techniques. On the one
hand, Gröbner bases are highly engineered to find conflicts in the polynomial
input, which tends to help for unsatisfiable instances [17]. On the other hand,
a model constructing approach tends to be fast whenever there is a solution,
especially when there is a high number of models [9].

We further note that at the moment our implementation in Yices2, as well
as cvc5, is restricted to finite fields where the order (i.e. size) is prime. This
limitation is sufficient for many applications in cryptosystems and ZK proofs.

Besides using dedicated finite field solvers, problems over prime fields can be
encoded in integer arithmetic using the modulo operator. Further, since terms are
bounded, encoding as bit-vectors for subsequent bit-blasting is possible. How-
ever, prior experiments have shown that those encodings perform poorly on
existing solvers [17].

Contributions. We present an integration of the theory of non-linear finite field
arithmetic in the Yices2 SMT solver [5], enabling it to reason over finite field
problems. This includes the following contributions which we will further explain
throughout the rest of this paper:

– Adding the parsing of finite field problems to the Yices2 SMT-LIB 2 front-
end (Sect. 3).

– Representing finite field polynomials as terms in Yices2 and implementing
features regarding such polynomials in the LibPoly library [12], which is the
library used for polynomials in Yices2 (Sect. 4).

– Implementing and evaluating an MCSat theory back-end for finite field rea-
soning, using existing concepts from non-linear real and bit-vector solving
from Yices2 (Sect. 5).

388 T. Hader et al.

To the best of our knowledge, our work is currently the only finite field instan-
tiation of MCSat. While our initial theory reasoning approach follows closely the
explanation generation procedure of our previous work [9], our implementation
allows easy drop-in of an improved explanation procedure in the future.

2 Preliminaries

In mathematics, a finite field is a field that contains a finite number of elements.
A finite field Fp of prime order p can roughly be seen as the representation of
the integers modulo the prime p. We refer to [9,17] for details on the theory and
representation of finite fields. Since there is no inherent order on finite fields,
polynomial constraints are either equalities p = 0 or disequalities p �= 0 for a
finite field polynomial p.

For SMT solving in finite fields, we are interested in the following problem:

Given a finite field Fp, where p is a prime number, let X = x1, . . . xn, let
F be a set of polynomial constraints in Fp[X] and F a formula following
the logical structure:

F =
∧

C⊆F

∨

f∈C

f =
∧

C⊆F

∨

f∈C

poly(f) � 0 with �∈ {=, �=}.

SMT solving over finite fields: Does an assignment ν : {x1, . . . , xn} → F
n
p

exist that satisfies F?
For example, the formula F1 = (x − 1 = 0 ∨ y − 1 = 0) ∧ (xy − 1 = 0)

is satisfied by the assignment x �→ 1, y �→ 1 in F3; whereas the formula F2 =
(x − 1 = 0 ∨ y − 1 = 0) ∧ (xy − 1 = 0) ∧ (x − 2 = 0) is unsatisfiable in F3.

Yices2 and MCSat. Yices2 contains two main solvers, one based on the tradi-
tional CDCL(T) approach [16] and one based on the MCSat approach [13,14].
Yices2’s common API and front-ends can automatically select which solver to
use at runtime, depending on an SMT-LIB 2 logic. In particular, when non-linear
real or integer arithmetic constraints are present Yices2 selects the MCSat
solver. The MCSat solver in Yices2 currently supports the theories of non-
linear real arithmetic (QF_NRA) [13] and integer arithmetic (QF_NIA) [10],
bit-vectors (QF_BV) [8], equality and uninterpreted functions (QF_EUF),
arrays [6], and combinations thereof.

In contrast to CDCL(T) that complements CDCL with theory reasoning,
MCSat applies CDCL-like mechanisms to perform theory reasoning. Specifi-
cally, it explicitly and incrementally constructs models with first-order variable
assignments—maintained in a trail—while maintaining the invariant that none
of the constraints evaluate to false. MCSat decides upon such assignments when
there is choice, it can propagate them when there is not, and it backtracks
upon conflict. The lemmas learned upon backtracking are based on theory-
specific explanations of conflicts and propagations. This theory-specific reason-

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver 389

ing is implemented through plugins that provide interfaces to make decisions,
perform propagations, and produce explanations.

3 Usability of SMT Solving in Finite Fields

Support for finite field reasoning in Yices2 is available on the master branch1and
will be included in the next release (2.7). The theory of finite fields can be
accessed using a not-yet official extension of the SMT-LIB 2 language (.smt2).

SMT-LIB 2 Parsing. Extending the parser to handle finite field problems was
our first extension to Yices2. Currently, polynomials over finite fields are no
official theory in SMT-LIB 2 [2]. However, when implementing finite field sup-
port in cvc5 [1], an extension was proposed in [17]. In the interest of keeping
inputs and benchmarks comparable, we aimed at a compatible implementation.
Standardization efforts to create an official SMT-LIB 2 theory for finite field
arithmetic are currently ongoing.

In the SMT-LIB 2 extension, the theory of (quantifier-free) non-linear finite
field arithmetic is denoted as QF_FFA. Elements can be defined using the sort
FiniteField. The sort is indexed by the order of the finite field, which is required
to be a prime number. For instance (_ FiniteField 3) defines the finite field of
order 3. Constants are indexed with the field order to indicate which finite field
they belong in, e.g., (_ ff2 3). Note that the integer following ff is interpreted
modulo the field order. As a short-cut to avoid rewriting the field order over
and over again, the as keyword can be used to interpret the constant in the
correct field type: (as ff2 FF3) for a defined finite field sort FF3. To specify
the finite field operations ff.mul and ff.add are available for multiplication and
addition of finite field values, respectively. Both support an arbitrary number of
operators. Atoms with finite field terms can be = with its respective meaning.
For example, an encoding of F1 can be seen in Fig. 1.

Fig. 1. Example for an SMT-LIB 2 encoding of a finite field problem F1.

1 Available at https://github.com/SRI-CSL/yices2.

https://github.com/SRI-CSL/yices2

390 T. Hader et al.

4 Implementation Details

The Implementation of MCSat in Yices2. The MCSat solver in Yices2 sup-
ports multiple theories via a notion of theory plugin that builds upon an earlier
architecture [11]. An MCSat theory plugin in Yices2 implements a number of
functionalities that are given to the main MCSat solver as function pointers.
The main MCSat loop calls these functions for theory-specific operations such
as deciding or propagating the value of variables or getting explanation lemmas,
or upon certain events such as the creation of new terms and lemmas. In return,
a theory plugin can access theory-generic mechanisms for, e.g., inspecting the
MCSat trail, creating variables and requesting to be notified of certain events like
variable assignments, as well as raising conflicts. A theory plugin is not required
to implement mechanisms for propagating theory assignments and explaining
them, but for the current theories in Yices2, such propagations have provided
noticeable speed-ups (see, e.g., [8]).

The Finite Field MCSat Plugin. Before handling constraints in the finite field
MCSat plugin, the input assertions are represented as polynomial constraints.
Limited preprocessing (e.g., constant propagation) is performed at this step.
Internally, the plugin only handles polynomial equalities and disequalities. The
implementation of the finite field plugin follows an approach similar to the plugin
for non-linear arithmetic [10].

Using the MCSat trail, the finite field plugin reads which constraints must
be fulfilled at any given time (as decided or deduced by the Boolean plugin) and
tracks the assignment of values to polynomial variables. It also tracks, for each
polynomial variable, the set of feasible values that the variable can be assigned
without any of the polynomial constraints evaluating to false: Using watch lists,
it detects when any of the constraints becomes unit, i.e. when all of its variables
but one have been assigned values. Upon such detection, it computes how the
constraint restricts the set of feasible values for the last remaining variable, using
regular univariate polynomial factorization. When that set becomes empty, the
plugin reports a theory conflict to the main MCSat engine. Given a conflict core
and the current assignment, the explanation procedure in the plugin generates
a (globally valid) lemma that explains the conflict in that it excludes a class of
assignments (including the current one) that all violate the conflict core. The
MCSat engine performs conflict analysis using theory explanations and Boolean
resolutions, and either backtracks if it can or concludes unsatisfiability. On the
other hand, the instance is satisfiable once all variables are assigned a value.

Finite Field Explanations. In our earlier work [9], we presented an explana-
tion procedure for finite fields. This approach employs subresultant regular sub-
chains (SRS) [20] between conflicting polynomials to provide new polynomial
constraints that can be propagated. In a nutshell, SRS can be used to con-
struct a generalized greatest common divisor (GCD) of polynomials that takes
into account the current partial variable assignment on the trail. The computed
GCD is utilized in a zero decomposition procedure to reduce the degree of the

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver 391

conflicting polynomials until we can learn a polynomial constraint that excludes
the current partial assignment. This constraint is added as an explanation clause
to resolve the conflict. We implemented the procedure of [9] in the current ver-
sion of Yices2 using LibPoly. However, it is important to note that there
are other solving techniques for polynomial systems over finite field that could
potentially be utilized to develop an explanation method suitable for an MCSat-
based search. Furthermore, it is still an open question how different techniques
perform in an MCSat environment. That is why we have kept the explanation
procedure encapsulated in our implementation, allowing for easy extension in
order to support development and evaluation of future explanation procedures.

5 Evaluation

Since finite field solving is a rather new endeavor in the world of SMT, no
extensive set of SMT-LIB 2 benchmarks exists yet. For the evaluation we have
selected the benchmark sets presented in the papers describing the theory behind
the implementation of Yices2 and cvc5:

(i) The polynomial sets from our prior work [9], consisting of 325 instances.
These benchmarks primarily contains finite fields up to order 211, using two
classes of polynomial systems: randomly generated as well as crafted systems.
The crafted benchmarks are product of (mostly) degree-1 polynomials.

(ii) Benchmarks generated using ZK proof compilers presented in [17]. Besides
polynomial equations, these 1602 benchmark instances also contain Boolean
structure. The field order varies form small (11) up to vast (more than 2255).

Experimental Setup. Our experiments were run on an AMD EPYC 7502 CPU
with a timeout of 300 seconds per benchmark instance. We compared our imple-
mentation of Yices2 against cvc5 version 1.1.1, which is the latest released
version at the time of writing. We are not aware of any further SMT solvers sup-
porting the theory of non-linear finite fields to be included in the comparison.

Experimental Results. The performance comparison between the two solvers on
the first benchmark set can be seen in Fig. 2 and Fig. 3 (left). It is clear to
see that the random instances are harder to solve than the crafted instances
(which have significantly more variables). We believe that this is due to the lack
of internal structure in random polynomials. This makes symbolic handling of
those polynomial systems hard, both for Gröbner basis computation (in cvc5)
as well as SRS computation (in Yices2).

Note that cvc5 performs most symbolic computation upfront (when gener-
ating the Gröbner basis) and enumerates potential solutions in a second step
(using auxiliary Gröbner basis calls). The MCSat approach in Yices2, on the
other hand, interleaves model generation and symbolic computation during the
search. This tends to be an advantage for harder polynomial systems especially
together with small finite field orders. When the finite field order increases, this
advantage seems to vanish. For the crafted polynomial benchmarks, Yices2

392 T. Hader et al.

Fig. 2. Runtime comparison for benchmarks from [9] (in seconds, timeout 300 s) result:
sat o, unsat x; finite field order: 3 (blue), 13 (green), and 211 (orange)

tends to be faster. We believe that this is due to the fact that the polynomi-
als tend to be large (in the number of monomials), but rather easy to solve.
Generating a full Gröbner basis upfront might add significant overhead.

For the second benchmark set, many instances can be solved by both solvers
immediately (c.f. Fig. 3 right). We believe that those instances can be solved
without extensive finite field reasoning, as the benchmark set contains Boolean
structure. This enables both solvers to successfully solve benchmarks even with
vast field orders. However, once extensive algebraic reasoning is required in finite
fields of vast order (the majority of the benchmarks), the purely symbolic app-
roach of cvc5 in proving unsatisfiability seems to be advantageous. An MCSat
approach requires to pick actual values in a gigantic search space, thus especially
strong lemmas need to be learned in order to prune the search space efficiently.
Improving the explanation procedure is part of our future work.

Fig. 3. Instances solved over time (timeout 300s) by Yices2 and cvc5 from [9] (left)
and [17] (right).

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver 393

6 Summary and Outlook

In this system description we have presented the first implementation of an
MCSat-based decision procedure for non-linear finite field polynomials. We have
shown that MCSat is a feasible way of solving SMT instances over finite fields and
it compares well with SMT approaches using Gröbner bases for many instances.

The presented tool implementation is well suited for future experiments and
the rapid development of more advanced explanation procedures that will elim-
inate the current bottlenecks with regard to large finite fields.

Acknowledgments. This work was conducted during the first author’s stay at
SRI International. We acknowledge funding from the ERC Consolidator Grant
ARTIST 101002685, the TU Wien SecInt Doctoral College, the FWF grants SFB
10.55776/F8504 and ESPRIT 10.55776/ESP666), the WWTF ICT22-007 project ForS-
mart, the NSF award CCRI-2016597, the Amazon Research Award 2024 QuAT, and
from SRI Internal Research And Development funds. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the US Government or NSF.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 1267–1329. IOS Press (2021). https://doi.org/10.3233/FAIA201017,
https://doi.org/10.3233/FAIA201017

4. Buchberger, B.: Bruno Buchberger’s PhD Thesis 1965: an algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
J. Symbol. Comput. 41(3-4), 475–511 (2006). https://doi.org/10.1016/J.JSC.2005.
09.007

5. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

6. Dutertre, B., Goel, A., Graham-Lengrand, S., Irfan, A., Jovanovic, D., Mason, I.A.:
Yices 2 in SMT-COMP 2023 (2023)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1016/J.JSC.2005.09.007
https://doi.org/10.1016/J.JSC.2005.09.007
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012

394 T. Hader et al.

8. Graham-Lengrand, S., Jovanović, D., Dutertre, B.: Solving Bitvectors with
MCSAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 103–121. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51074-9_7

9. Hader, T., Kaufmann, D., Kovács, L.: SMT solving over finite field arithmetic.
In: Piskac, R., Voronkov, A. (eds.) Intl. Conf. on Logic for Programming, Artifi-
cial Intelligence and Reasoning (LPAR). EPiC Series in Computing, vol. 94, pp.
238–256. EasyChair (2023). https://doi.org/10.29007/4N6W, https://doi.org/10.
29007/4n6w

10. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_18

11. Jovanovic, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: International Conference on Formal
Methods in Computer-Aided Design (FMCAD), pp. 173–180. IEEE (2013).https://
doi.org/10.1109/FMCAD.2013.7027033

12. Jovanovic, D., Dutertre, B.: Libpoly: a library for reasoning about polynomials. In:
Brain, M., Hadarean, L. (eds.) Intl. Workshop on Satisfiability Modulo Theories
(SMT). CEUR Workshop Proceedings, vol. 1889, pp. 28–39. CEUR-WS.org (2017).
https://ceur-ws.org/Vol-1889/paper3.pdf

13. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

14. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

15. de Moura, L.M., Bjørner, N.S.: Satisfiability modulo theories: introduction and
applications. Commun. ACM 54(9), 69–77 (2011)

16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-32275-7_3

17. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.W.: Satisfiability modulo finite
fields. In: International Conference on Computer Aided Verification (CAV), Part II.
LNCS, vol. 13965, pp. 163–186. Springer (2023).https://doi.org/10.1007/978-3-
031-37703-7_8

18. Ozdemir, A., Wahby, R.S., Brown, F., Barrett, C.W.: Bounded verification for
finite-field-blasting - in a compiler for zero knowledge proofs. In: Enea, C., Lal, A.
(eds.) International Conference on Computer Aided Verification (CAV), Part III.
LNCS, vol. 13966, pp. 154–175. Springer (2023).https://doi.org/10.1007/978-3-
031-37709-9_8

19. Szabo, N.: Smart Contracts: Building Blocks for Digital Markets (1996). http://
www.fon.hum.uva.nl

20. Wang, D.: Elimination Methods. Springer Science & Business Media (2001)

https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.29007/4N6W
https://doi.org/10.29007/4n6w
https://doi.org/10.29007/4n6w
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-031-37709-9_8
https://doi.org/10.1007/978-3-031-37709-9_8
http://www.fon.hum.uva.nl
http://www.fon.hum.uva.nl

MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver 395

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Certified MaxSAT Preprocessing

Hannes Ihalainen1(B) , Andy Oertel2,3 , Yong Kiam Tan4 ,
Jeremias Berg1 , Matti Järvisalo1 , Magnus O. Myreen5 ,

and Jakob Nordström2,3

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
{hannes.ihalainen,jeremias.berg,matti.jarvisalo}@helsinki.fi

2 Lund University, Lund, Sweden
andy.oertel@cs.lth.se, jn@di.ku.dk

3 University of Copenhagen, Copenhagen, Denmark
4 Institute for Infocomm Research (I2R), A*STAR, Singapore, Singapore

tanyk1@i2r.a-star.edu.sg
5 Chalmers University of Technology, Gothenburg, Sweden

myreen@chalmers.se

Abstract. Building on the progress in Boolean satisfiability (SAT) solv-
ing over the last decades, maximum satisfiability (MaxSAT) has become
a viable approach for solving NP-hard optimization problems. However,
ensuring correctness of MaxSAT solvers has remained a considerable con-
cern. For SAT, this is largely a solved problem thanks to the use of proof
logging, meaning that solvers emit machine-verifiable proofs to certify
correctness. However, for MaxSAT, proof logging solvers have started
being developed only very recently. Moreover, these nascent efforts have
only targeted the core solving process, ignoring the preprocessing phase
where input problem instances can be substantially reformulated before
being passed on to the solver proper.

In this work, we demonstrate how pseudo-Boolean proof logging can
be used to certify the correctness of a wide range of modern MaxSAT
preprocessing techniques. By combining and extending the VeriPB and
CakePB tools, we provide formally verified end-to-end proof checking
that the input and preprocessed output MaxSAT problem instances have
the same optimal value. An extensive evaluation on applied MaxSAT
benchmarks shows that our approach is feasible in practice.

Keywords: maximum satisfiability · preprocessing · proof logging ·
formally verified proof checking

1 Introduction

The development of Boolean satisfiability (SAT) solvers is arguably one of the
true success stories of modern computer science—today, SAT solvers are rou-
tinely used as core engines in many types of complex automated reasoning sys-
tems. One example of this is SAT-based optimization, usually referred to as

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 396–418, 2024.
https://doi.org/10.1007/978-3-031-63498-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_24&domain=pdf
http://orcid.org/0000-0002-4608-7549
http://orcid.org/0000-0001-9783-6768
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X
http://orcid.org/0000-0002-9504-4107
http://orcid.org/0000-0002-2700-4285
https://doi.org/10.1007/978-3-031-63498-7_24

Certified MaxSAT Preprocessing 397

maximum satisfiability (MaxSAT) solving. The improved performance of SAT
solvers, coupled with increasingly sophisticated techniques for using SAT solver
calls to reason about optimization problems, have made MaxSAT solvers a pow-
erful tool for tackling real-world NP-hard optimization problems [8].

However, Modern MaxSAT solvers are quite intricate pieces of software, and
it has been shown repeatedly in the MaxSAT evaluations [51] that even the best
solvers sometimes report incorrect results. This was previously a serious issue
also for SAT solvers (see, e.g., [13]), but the SAT community has essentially
eliminated this problem by requiring that solvers should be certifying [1,53],
i.e., not only report whether a given formula is satisfiable or unsatisfiable but
also produce a machine-verifiable proof that this conclusion is correct. Many
different SAT proof formats such as RUP [33], TraceCheck [7], GRIT [17],
and LRAT [16] have been proposed, with DRAT [35,36,74] established as the de
facto standard; for the last ten years, proof logging has been compulsory in the
(main track of the) SAT competitions [66]. It is all the more striking, then, that
until recently no similar developments have been observed in MaxSAT solving.

1.1 Previous Work

A first natural question to ask—since MaxSAT solvers are based on repeated
calls to SAT solvers—is why we cannot simply use SAT proof logging also for
MaxSAT. The problem is that DRAT can only reason about clauses, whereas
MaxSAT solvers argue about costs of solutions and values of objective functions.
Translating such claims to clausal form would require an external tool to certify
correctness of the translation. Also, such clausal translations incur a significant
overhead and do not seem well-adapted for, e.g., counting arguments in MaxSAT.

While there have been several attempts to design proof systems specifically
for MaxSAT solving [11,23,39,45,57,58,63–65], none of these have come close
to providing a general proof logging solution, because they apply only for very
specific algorithm implementations and/or fail to capture the full range of tech-
niques used. Recent papers have instead proposed using pseudo-Boolean proof
logging with VeriPB [9,32] to certify correctness of so-called solution-improving
solvers [72] and core-guided solvers [4]. Although these works demonstrate, for
the first time, practical proof logging for modern MaxSAT solving, the meth-
ods developed thus far only apply to the core solving process. This ignores the
preprocessing phase, where the input formula can undergo major reformulation.
State-of-the-art solvers sometimes use stand-alone preprocessor tools, or some-
times integrate preprocessing-style reasoning more tightly within the MaxSAT
solver engine, to speed up the search for optimal solutions. Some of these pre-
processing techniques are lifted from SAT to MaxSAT, but there are also native
MaxSAT preprocessing methods that lack analogies in SAT solving.

1.2 Our Contribution

In this paper, we show, for the first time, how to use pseudo-Boolean proof log-
ging with VeriPB to produce proofs of correctness for a wide range of prepro-

398 H. Ihalainen et al.

cessing techniques used in modern MaxSAT solvers. VeriPB proof logging has
previously been successfully used not only for core MaxSAT search as discussed
above, but also for advanced SAT solving techniques (including symmetry break-
ing) [9,27,32], subgraph solving [28–30], constraint programming [22,31,54,55],
and 0–1 ILP presolving [37], and we add MaxSAT preprocessing to this list.

In order to do so, we extend the VeriPB proof format to include an output
section where a reformulated output can be presented, and where the pseudo-
Boolean proof establishes that this output formula and the input formula are
equioptimal, i.e., have optimal solutions of the same value. We also enhance
CakePB [10,29]—a verified proof checker for pseudo-Boolean proofs—to handle
proofs of reformulation. In this way, we obtain an end-to-end formally verified
toolchain for certified preprocessing of MaxSAT instances.

It is worth noting that although preprocessing is also a critical component
in SAT solving, we are not aware of any tool for certifying reformulations even
for the restricted case of decision problems, i.e., showing that formulas are equi-
satisfiable—the DRAT format and tools support proofs that satisfiability of an
input CNF formula F implies satisfiability of an output CNF formula G but not
the converse direction (except in the special case where F is a subset of G). To
the best of our knowledge, our work presents the first practical tool for proving
(two-way) equisatisfiability or equioptimality of reformulated problems.

We have performed computational experiments running a MaxSAT prepro-
cessor with proof logging and proof checking on benchmarks from the MaxSAT
evaluations [51]. Although there is certainly room for improvements in perfor-
mance, these experiments provide empirical evidence for the feasibility of certi-
fied preprocessing for real-world MaxSAT benchmarks.

1.3 Organization of This Paper

After reviewing preliminaries in Sect. 2, we explain our pseudo-Boolean proof
logging for MaxSAT preprocessing in Sect. 3, and Sect. 4 discusses verified proof
checking. We present results from a computational evaluation in Sect. 5, after
which we conclude with a summary and outlook for future work in Sect. 6.

2 Preliminaries

We write � to denote a literal, i.e., a {0, 1}-valued Boolean variable x or its
negation x = 1 − x. A clause C = �1 ∨ . . . ∨ �k is a disjunction of literals, where
a unit clause consists of only one literal. A formula in conjunctive normal form
(CNF) F = C1 ∧ . . . ∧ Cm is a conjunction of clauses, where we think of clauses
and formulas as sets so that there are no repetitions and order is irrelevant.

A pseudo-Boolean (PB) constraint is a 0–1 linear inequality
∑

j aj�j ≥ b,
where, when convenient, we can assume all literals �j to refer to distinct variables
and all integers aj and b to be positive (so-called normalized form). A pseudo-
Boolean formula is a conjunction of such constraints. We identify the clause C =

Certified MaxSAT Preprocessing 399

�1 ∨ · · · ∨ �k with the pseudo-Boolean constraint PB(C) = �1 + · · ·+ �k ≥ 1, so a
CNF formula F is just a special type of PB formula PB(F) = {PB(C) | C ∈ F}.

A (partial) assignment ρ mapping variables to {0, 1}, extended to literals
by respecting the meaning of negation, satisfies a PB constraint

∑
j aj�j ≥ b

if
∑

�j :ρ(�j)=1 aj ≥ b (assuming normalized form). A PB formula is satisfied
by ρ if all constraints in it are. We also refer to total satisfying assignments ρ as
solutions. In a pseudo-Boolean optimization (PBO) problem we ask for a solution
minimizing a given objective function O =

∑
j cj�j + W , where cj and W are

integers and W represents a trivial lower bound on the minimum cost.

2.1 Pseudo-Boolean Proof Logging Using Cutting Planes

The pseudo-Boolean proof logging in VeriPB is based on the cutting planes
proof system [15] with extensions as discussed briefly next. We refer the reader
to [14] for and in-depth discussion of cutting planes and to [9,26,37,73] for more
detailed information about the VeriPB proof system and format.

A pseudo-Boolean proof maintains two sets of core constraints C and derived
constraints D under which the objective O should be minimized. At the start
of the proof, C is initialized to the constraints in the input formula F . Any
constraints derived by the rules described below are placed in D, from where
they can later be moved to C (but not vice versa). The proof system semantics
preserves the invariant that the optimal value of any solution to C and to the
original input problem F is the same. New constraints can be derived from C∪D
by performing addition of two constraints or multiplication of a constraint by a
positive integer, and literal axioms � ≥ 0 can be used at any time. Additionally,
we can apply division to

∑
j aj�j ≥ b by a positive integer d followed by rounding

up to obtain
∑

j�aj/d��j ≥ �b/d�, and saturation to yield
∑

j min{aj , b} · �j ≥ b
(where we again assume normalized form).

The negation of a constraint C =
∑

j aj�j ≥ b is ¬C =
∑

j aj�j ≤ b − 1. For
a (partial) assignment ρ we write C�ρ for the restricted constraint obtained by
replacing literals in C assigned by ρ with their values and simplifying. We say
that C unit propagates � under ρ if C�ρ cannot be satisfied unless � is assigned
to 1. If repeated unit propagation on all constraints in C ∪ D ∪ {¬C}, starting
with the empty assignment ρ = ∅, leads to contradiction in the form of an
unsatisfiable constraint, we say that C follows by reverse unit propagation (RUP)
from C∪D. Such (efficiently verifiable) RUP steps are allowed in VeriPB proofs
as a convenient way to avoid writing out an explicit cutting planes derivation.
We use the same notation C�ω to denote the result of applying to C a (partial)
substitution ω, which can map variables not only to {0, 1} but also to literals,
and extend this notation to sets of constraints by taking unions.

In addition to the above rules, which derive semantically implied constraints,
there is a redundance-based strengthening rule, or just redundance rule for short,
that can derive non-implied constraints C as long as they do not change the
feasibility or optimal value. This can be guaranteed by exhibiting a witness sub-
stitution ω such that for any total assignment α satisfying C∪D but violating C,
the composition α ◦ ω is another total assignment that satisfies C ∪ D ∪ {C} and

400 H. Ihalainen et al.

yields an objective value that is at least as good. Formally, C can be derived
from C ∪ D by exhibiting ω and subproofs for

C ∪ D ∪ {¬C} � (C ∪ D ∪ {C})�ω ∪ {O ≥ O�ω} , (1)

using the previously discussed rules (where the notation C1 � C2 means that the
constraints C2 can be derived from the constraints C1).

During preprocessing, constraints in the input formula are often deleted or
replaced by other constraints, in which case the proof should establish that
these deletions maintain equioptimality. Removing constraints from the derived
set D is unproblematic, but unrestricted deletion from the core set C can clearly
introduce spurious better solutions. Therefore, removing C from C can only be
done by the checked deletion rule, which requires a proof that the redundance rule
can be used to rederive C from C \{C} (see [9] for a more detailed explanation).

Finally, it turns out to be useful to allow replacing O by a new objective O′

using an objective function update rule, as long as this does not change the
optimal value of the problem. Formally, updating the objective from O to O′

requires derivations of the two constraints O ≥ O′ and O′ ≥ O from the core
set C, which shows that any satisfying solution to C has the same value for both
objectives. More details on this rule can be found in [37].

2.2 Maximum Satisfiability

A WCNF instance of (weighted partial) maximum satisfiability FW = (FH , FS)
is a conjunction of two CNF formulas FH and FS with hard and soft clauses,
respectively, where soft clauses C ∈ FS have positive weights wC . A solution ρ
to FW must satisfy FH and has value cost(FS , ρ) equal to the sum of weights of
all soft clauses not satisfied by ρ. The optimum opt

(FW
)

of FW is the minimum
of cost(FS , ρ) over all solutions ρ, or ∞ if no solution exists.

State-of-the-art MaxSAT preprocessors such as MaxPre [39,44] take a
slightly different objective-centric view [5] of MaxSAT instances F = (F,O)
as consisting of a CNF formula F and an objective function O =

∑
j cj�j + W

to be minimized under assignments ρ satisfying F . A WCNF MaxSAT instance
FW = (FH , FS) is converted into objective-centric form ObjMaxSAT(FW) =
(F,O) by letting the formula F = FH ∪ {C ∨ bC | C ∈ FS , |C| > 1} of
ObjMaxSAT(FW) consist of the hard clauses of FW and the non-unit soft
clauses in FS , each extended with a fresh variable bC that does not appear in
any other clause. The objective O =

∑
(�)∈FS

w(�)�+
∑

wCbC contains literals �

for all unit soft clauses � in FS as well as literals for all new variables bC , with
coefficients equal to the weights of the corresponding soft clauses. In other words,
each unit soft clause � ∈ FS of weight w is transformed into the term w · � in the
objective function O, and each non-unit soft clause C is transformed into the
hard clause C ∨ bC paired with the unit soft clause (bC) with same weight as C.
The following observation summarizes the properties of ObjMaxSAT(FW) that
are central to our work.

Certified MaxSAT Preprocessing 401

Observation 1. For any solution ρ to a WCNF MaxSAT instance FW there
exists a solution ρ′ to (F,O) = ObjMaxSAT(FW) with O(ρ′) = cost(FW , ρ).
Conversely, if ρ′ is a solution to ObjMaxSAT(FW), then there exists a solution
ρ of FW for which cost(FW , ρ) ≤ O(ρ′).

For the second part of the observation, the reason O(ρ′) is only an upper
bound on cost(FW , ρ) is that the encoding forces bC to be true whenever C is
not satisfied by an assignment but not vice versa.

An objective-centric MaxSAT instance (F,O), in turn, clearly has the same
optimum as the pseudo-Boolean optimization problem of minimizing O subject
to PB(F). For the end-to-end formal verification, the fact that this coincides
with opt

(FW
)

needs to be formalized into theorems as shown in Fig. 4.

3 Proof Logging for MaxSAT Preprocessing

We now discuss how pseudo-Boolean proof logging can be used to reason about
correctness of MaxSAT preprocessing steps. Our approach maintains the invari-
ant that the current working instance in the preprocessor is synchronized with
the PB constraints in the core set C as described in Sect. 2.2. At the end of
each preprocessing step (i.e., application of a preprocessing technique) the set of
derived constraints D is empty. All constraints derived in the proof as described
in this section are moved to the core set, and constraints are always removed by
checked deletion from the core set. Full details are in the online appendix [40].

3.1 Overview

All our preprocessing steps maintain equioptimality, which means that if pre-
processing of the WCNF MaxSAT instance FW yields the output instance FW

P ,
then the equality opt

(FW
)
= opt

(FW
P

)
is guaranteed to hold. Our preprocess-

ing is certified, meaning that we provide a machine-verifiable proof justifying
this claimed equality. Our discussion below focuses on input instances that have
solutions, but our techniques also handle the—arguably less interesting—case
of FW not having solutions; details are in the online appendix [40].

An overview of the workflow of our certifying MaxSAT preprocessor is
shown in Fig. 1. Given a WCNF instance FW as input, the preprocessor pro-
ceeds in five stages (illustrated on the left in Fig. 1), and then outputs a pre-
processed MaxSAT instance FW

P together with a pseudo-Boolean proof that
opt

(
ObjMaxSAT

(FW
))

= opt
(
ObjMaxSAT

(FW
P

))
. For certified MaxSAT

preprocessing, this proof can then be fed to a formally verified checker as in
Sect. 4 to verify that (a) the initial core constraints in the proof correspond
exactly to the clauses in ObjMaxSAT

(FW
)
, (b) each step in the proof is valid,

and (c) the final core constraints in the proof correspond exactly to the clauses
in ObjMaxSAT

(FW
P

)
. Below, we provide more details on the five stages of the

preprocessing flow.

402 H. Ihalainen et al.

Fig. 1. Overview of the five stages of certified MaxSAT preprocessing of a WCNF
instance FW . The middle column contains the state of the working MaxSAT instance
as a WCNF instance and a lower bound on its optimum cost (Stages 1–2), or as an
objective-centric instance (Stages 3–5). The right column contains a tuple (C, O) with
the set C of core constraints, and objective O, respectively, of the proof after each stage.

Stage 1: Initialization. An input WCNF instance FW is transformed to
pseudo-Boolean format by converting it to an objective-centric representation
(F 0, O0) = ObjMaxSAT

(FW
)

and then representing all clauses in F 0 as
pseudo-Boolean constraints as described in Sect. 2.2. The VeriPB proof starts
out with core constraints PB(F 0) and objective O0. The preprocessor maintains
a lower bound on the optimal cost of the working instance, which is initialized
to 0 for the input FW .

Stage 2: Preprocessing on the Initial WCNF Representation. During
preprocessing on the WCNF representation, a (very limited) set of simplification
techniques are applied on the working formula. At this stage the preprocessor
removes duplicate, tautological, and blocked clauses [43]. Additionally, hard unit
clauses are unit propagated and clauses subsumed by hard clauses are removed.
Importantly, the preprocessor is performing these simplifications on a WCNF
MaxSAT instance where it deals with hard and soft clauses. As the pseudo-
Boolean proof has no concept of hard or soft clauses, the reformulation steps
must be expressed in terms of the constraints in the proof. The next example
illustrates how reasoning with different types of clauses is logged in the proof.

Certified MaxSAT Preprocessing 403

Example 1. Suppose the working instance has two duplicate clauses C and D. If
both are hard, then the proof has two identical constraints PB(C) and PB(D)
in the core set, and PB(D) can be deleted since it follows from PB(C) by reverse
unit propagation (RUP). If D is instead a non-unit soft clause, the proof has
the constraint PB(D ∨ bD) and the term wDbD in the objective, where bD does
not appear in any other constraint. Then in the proof we (1) remove the RUP
constraint PB(D∨bD), (2) introduce bD ≥ 1 by redundance-based strengthening
using the witness {bD → 0}, (3) remove the term wDbD from the objective, and
(4) delete bD ≥ 1 with the witness {bD → 0}.

Stage 3: Conversion to Objective-Centric Representation. In order to
apply more simplification rules in a cost-preserving way, the working instance
FW

1 = (F 1
H , F 1

S) at the end of Stage 2 is converted into the corresponding
objective-centric representation that takes the lower-bound lb inferred during
Stage 1 into account. More specifically, the preprocessor next converts its work-
ing MaxSAT instance into the objective-centric instance F2 = (F 2, O2 + lb)
where (F 2, O2) = ObjMaxSAT(FW

1).
Here it is important to note that at the end of Stage 2, the core constraints C1

and objective O1 of the proof are not necessarily PB(F 2) and O2 + lb, respec-
tively. Specifically, consider a unit soft clause (�) of FW

1 obtained by shrinking
a non-unit soft clause C ⊇ (�) of the input instance, with weight wC . Then the
objective function O2 in the preprocessor will include the term wC� that does
not appear in the objective function O1 in the proof. Instead, O1 contains the
term wCbC and C1 the constraint �+bC ≥ 1 where bC is the fresh variable added
to C in Stage 1. In order to “sync up” the working instance and the proof we
(1) introduce �+ bC ≥ 1 to the proof with the witness {bC → 0}, (2) update O1

by adding wC� − wCbC , (3) remove the constraint � + bC ≥ 1 with the witness
{bC → 0}, and (4) remove the constraint � + bC ≥ 1 with witness {bC → 1}.
The same steps are logged for all soft unit clauses of FW

1 obtained during Stage
2. In the following stages, the preprocessor will operate on an objective-centric
MaxSAT instance whose clauses correspond exactly to the core constraints of
the proof.

Stage 4: Preprocessing on the Objective-Centric Representation. Dur-
ing preprocessing on the objective-centric representation, more simplification
techniques are applied to the working objective-centric instance and logged to
the proof. We implemented proof logging for a wide range of preprocessing tech-
niques. These include MaxSAT versions of rules commonly used in SAT solving
like bounded variable elimination (BVE) [20,68], bounded variable addition [49],
blocked clause elimination [43], subsumption elimination, self-subsuming reso-
lution [20,60], failed literal elimination [24,46,75], and equivalent literal sub-
stitution [12,48,71]. We also cover MaxSAT-specific preprocessing rules like
TrimMaxSAT [61], (group)-subsumed literal (or label) elimination (SLE) [6,44],
intrinsic at-most-ones [38,39], binary core removal (BCR) [25,44], label match-
ing [44], and hardening [2,39,56]. Here we give examples for BVE, SLE, label

404 H. Ihalainen et al.

matching, and BCR—the rest are detailed in the online appendix [40]. In the fol-
lowing descriptions, let (F,O) be the current objective-centric working instance.

Bounded Variable Elimination (BVE) [20,68]. BVE eliminates from F a variable
x that does not appear in the objective by replacing all clauses in which either x
or x appears with the non-tautological clauses in {C ∨D | C ∨x ∈ F,D∨x ∈ F}.

An application of BVE is logged as follows: (1) each non-tautological con-
straint PB(C ∨D) is added by summing the existing constraints PB(C ∨x) and
PB(D∨x) and saturating, after which (2) each constraint of the form PB(C∨x)
and PB(D ∨ x) is deleted with the witness x → 1 or x → 0, respectively.

Label Matching [44]. Label matching allows merging pairs of objective variables
that can be deduced to not both be set to 1 by optimal solutions. Assume that (i)
F contains the clauses C ∨ bC and D ∨ bD, (ii) bC and bD are objective variables
with the same coefficient w in O, and (iii) C ∨ D is a tautology. Then label
matching replaces bC and bD with a fresh variable bCD, i.e., replaces C ∨ bC and
D ∨ bD with C ∨ bCD and D ∨ bCD and adds −wbC − wbD + wbCD to O.

As C ∨ D is a tautology there is some literal � such that � ∈ C and � ∈ D.
Label matching is logged via the following steps: (1) introduce the constraint
bC + bD ≥ 1 with the witness {bC → �, bD → �}, (2) introduce the constraints
bCD + bC + bD ≥ 2 and bCD + bC + bD ≥ 1 by redundance; these correspond
to bCD = bC + bD which holds even though the variables are binary due to the
constraint added in the first step, (3) update the objective by adding −wbC −
wbD +wbCD to it, (4) introduce the constraints PB(C ∨ bCD) and PB(D∨ bCD)
which are RUP, (5) delete PB(C ∨ bC) and PB(D ∨ bD) with the witness {bC →
�, bD → �}, (6) delete the constraint bCD + bC + bD ≥ 2 with the witness
{bC → 0, bD → 0} and bCD + bC + bD ≥ 1 with the witness {bC → 1, bD → 0},
(7) delete bC + bD ≥ 1 with the witness {bC → 0}.

Subsumed Literal Elimination (SLE) [6,39]. Given two non-objective variables
x and y such that (i) {C | C ∈ F, y ∈ C} ⊆ {C | C ∈ F, x ∈ C} and (ii)
{C | C ∈ F, x ∈ C} ⊆ {C | C ∈ F, y ∈ C}, subsumed literal elimination
(SLE) allows fixing x = 1 and y = 0. This is proven by (1) introducing x ≥ 1
and y ≥ 1, both with witness {x → 1, y → 0}, (2) simplifying the constraint
database via propagation, and (3) deleting the constraints introduced in the first
step as neither x nor y appears in any other constraints after simplification.

If x and y are objective variables, the application of SLE additionally requires
that: (iii) the coefficient in the objective of x is at most as high as the coefficient
of y. Then the value of x is not fixed as it would incur cost. Instead, only y = 0
is fixed and y removed from the objective. Intuitively, conditions (i) and (ii)
establish that the values of x and y can always be flipped to 0 and 1, respectively,
without falsifying any clauses. If neither of the variables is in the objective, this
flip does not increase the cost of any solutions. Otherwise, condition (iii) ensures
that the flip does not make the solution worse, i.e., increase its cost.

Certified MaxSAT Preprocessing 405

Binary Core Removal (BCR) [25,44]. Assume that the following four prereq-
uisites hold: (i) F contains a clause bC ∨ bD for two objective variables bC and
bD, (ii) bC and bD have the same coefficient w in O, (iii) the negations bC and
bD do not appear in any clause of F , and (iv) both bC and bD appear in at
least one other clause of F but not together in any other clause of F . Binary
core removal replaces all clauses containing bC or bD with the non-tautological
clauses in {C ∨D∨bCD | C ∨bC ∈ F,D∨bD ∈ F}, where bCD is a fresh variable,
and modifies the objective function by adding −wbC − wbD + wbCD + w to it.

BCR is logged as a combination of the so-called intrinsic at-most-ones tech-
nique [38,39] and BVE. Applying intrinsic at most ones on the variables bC and
bD introduces a new clause (bC ∨ bD ∨ bCD) and adds −wbC − wbD +wbCD +w
to the objective. Our proof for intrinsic at most ones is the same as the one
presented in [4]. As this step removes bC and bD from the objective, both can
now be eliminated via BVE.

Stage 5: Constant Removal and Output. After objective-centric prepro-
cessing, the final objective-centric instance (F 3, O3) is converted back to a
WCNF instance. Before doing so, the constant term W3 of O3 is removed by
introducing a fresh variable bW3 , and setting F 4 = F 3 ∧ (bW3) and O4 =
O3 − W3 + W3b

W3 . This step is straightforward to prove.
Finally, the preprocessor outputs the WCNF instance FW

P = (F 4, FP
S) that

has F 4 as hard clauses. The set FP
S of soft clauses consists of a unit soft clause

(�) of weight c for each term c · � in O4. The preprocessor also outputs the
final proof of the fact that the minimum-cost of solutions to the pseudo-Boolean
formula PB(F 0) under O0 is the same as that of PB(F 4) under O4, i.e. that
opt(ObjMaxSAT(FW)) = opt(ObjMaxSAT(FW

P)).

3.2 Worked Example of Certified Preprocessing

We give a worked-out example of certified preprocessing of the instance FW =
(FH , FS) where FH = {(x1 ∨ x2), (x2)} and three soft clauses: (x1) with weight
1, (x3∨x4) with weight 2, and (x4∨x5) with weight 3. The proof for one possible
execution of the preprocessor on this input instance is detailed in Table 1.

During Stage 1 (Steps 1–4 in Table 1), the core constraints of the proof are
initialized to contain the four constraints corresponding to the hard and non-unit
soft clauses of FW (IDs (1)–(4) in Table 1), and the objective to x1 + 2b1 + 3b2,
where b1 and b2 are fresh variables added to the non-unit soft clauses of FW .

During Stage 2 (Steps 5–9), the preprocessor fixes x2 = 0 via unit propagation
by removing x2 from the clause (x1 ∨ x2), and then removing the unit clause
(x2). The justification for fixing x2 = 0 are Steps 5–7. Next the preprocessor
fixes x1 = 1 which (i) removes the hard clause (x1), and (ii) increases the lower
bound on the optimal cost by 1. The justification for fixing x1 = 1 are Steps
8 and 9 of Table 1. At this point—at the end of Stage 2—the working instance
FW

1 = (F 1
H , F 1

S) has F 1
H = {} and F 1

S = {(x3 ∨ x4), (x4 ∨ x5)}.

406 H. Ihalainen et al.

Table 1. Example proof produced by a certifying preprocessor. The column (ID) refers
to constraint IDs in the pseudo-Boolean proof. The column (Step) indexes all proof
logging steps and is used when referring to the steps in the discussion. The letter ω is
used for the witness substitution in redundance-based strengthening steps.

Step ID Type Justification Objective

1 (1) add x1 + x2 ≥ 1 input x1 + 2b1 + 3b2

2 (2) add x2 ≥ 1 input x1 + 2b1 + 3b2

3 (3) add x3 + x4 + b1 ≥ 1 input x1 + 2b1 + 3b2

4 (4) add x4 + x5 + b2 ≥ 1 input x1 + 2b1 + 3b2

Unit propagation: fix x2 = 0, constraint (2)

5 (5) add x1 ≥ 1 (1) + (2) x1 + 2b1 + 3b2

6 delete (1) RUP x1 + 2b1 + 3b2

7 delete (2) ω : {x2 → 0} x1 + 2b1 + 3b2

Unit propagation; fix x1 = 1, constraint (5)

8 add −x1 + 1 to obj (5) 2b1 + 3b2 + 1

9 delete (5) ω : {x1 → 1} 2b1 + 3b2 + 1

BVE: eliminate x4

10 (6) add x3 + b1 + x5 + b2 ≥ 1 (3) + (4) 2b1 + 3b2 + 1

11 delete (3) ω : {x4 → 0} 2b1 + 3b2 + 1

12 delete (4) ω : {x4 → 1} 2b1 + 3b2 + 1

Subsumed literal elimination: b2

13 (7) add b2 ≥ 1 ω : {b2 → 0, b1 → 1} 2b1 + 3b2 + 1

14 add −3b2 to obj (7) 2b1 + 1

15 (8) add x3 + b1 + x5 ≥ 1 (6) + (7) 2b1 + 1

16 delete (6) RUP 2b1 + 1

17 delete (7) ω : {b2 → 0} 2b1 + 1

Remove objective constant

18 (9) add b3 ≥ 1 ω : {b3 → 1} 2b1 + 1

19 add b3 − 1 to obj (9) 2b1 + b3

In Stage 3, the preprocessor converts its working instance into the objective-
centric representation (F,O) where F = {(x3 ∨ x4 ∨ b1), (x4 ∨ x5 ∨ b2)} and
O = 2b1 + 3b2 + 1, which exactly matches the core constraints and objective of
the proof after Step 9. Thus, in this instance, the conversion does not result in any
proof logging steps. Afterwards, during Stage 4 (Steps 10–17), the preprocessor
applies BVE in order to eliminate x4 (Steps 10–12) and SLE to fix b2 to 0
(Steps 13–17). Finally, Steps 18 and 19 represent Stage 5, i.e., the removal of the
constant 1 from the objective. After these steps, the preprocessor outputs the
preprocessed instance FW

P = (FP
H , FP

S), where FP
H = {(x3 ∨ x5 ∨ b1), (b3)} and

FP
S contains two clauses: (b1) with weight 2, and (b3) with weight 1.

Certified MaxSAT Preprocessing 407

4 Verified Proof Checking for Preprocessing Proofs

This section presents our new workflow for formally verified, end-to-end proof
checking of MaxSAT preprocessing proofs based on pseudo-Boolean reasoning;
an overview of this workflow is shown in Fig. 2. To realize this workflow, we
extended the VeriPB tool and its proof format to support a new output section
for declaring (and checking) reformulation guarantees between input and out-
put PBO instances (Sect. 4.1); we similarly modified CakePB [29] a verified
proof checker to support the updated proof format (Sect. 4.2); finally, we built
a verified frontend, CakePBwcnf, which mediates between MaxSAT WCNF
instances and PBO instances (Sect. 4.3). Our formalization is carried out in the
HOL4 proof assistant [67] using CakeML tools [34,59,70] to obtain a verified
executable implementation of CakePBwcnf.

Fig. 2. Workflow for end-to-end verified MaxSAT preprocessing proof checking.

In the workflow in Fig. 2, the MaxSAT preprocessor produces a reformulated
output WCNF together with a proof of equioptimality with the input WCNF.
This proof is elaborated by VeriPB and then checked by CakePBwcnf, result-
ing in a verified verdict—in case of success, the input and output WCNFs are
equioptimal. This workflow also supports verified checking of WCNF MaxSAT
solving proofs (where the output parts of the flow are omitted).

4.1 Output Section for Pseudo-Boolean Proofs

Given an input PBO instance (F,O), the VeriPB proof system as described
in Sect. 2.1 maintains the invariant that the core constraints C (and current
objective) are equioptimal to the input instance. Utilizing this invariant, the
new output section for VeriPB proofs allows users to optionally specify an
output PBO instance (F ′, O′) at the end of a proof. This output instance is
claimed to be a reformulation of the input which is either: (i) derivable, i.e.,
satisfiability of F implies satisfiability of F ′, (ii) equisatisfiable to F , or (iii)

408 H. Ihalainen et al.

equioptimal to (F,O). These are increasingly stronger claims about the relation-
ship between the input and output instances. After checking a pseudo-Boolean
derivation, VeriPB runs reformulation checking which, e.g., for equioptimality,
checks that C ⊆ F ′, F ′ ⊆ C, and that the respective objective functions are syn-
tactically equal after normalization; other reformulation guarantees are checked
analogously.

The VeriPB tool supports an elaboration mode [29], where in addition to
checking the proof it also converts it from augmented format to kernel format.
The augmented format contains syntactic sugar rules to facilitate proof logging
for solvers and preprocessors like MaxPre, while the kernel format is supported
by the formally verified proof checker CakePB. The new output section is passed
unchanged from augmented to kernel format during elaboration.

4.2 Verified Proof Checking for Reformulations

There are two main verification tasks involved in extending CakePB with sup-
port for the output section. The first task is to verify soundness of all cases of
reformulation checking. Formally, the equioptimality of an input PBO instance
fml, obj and its output counterpart fml ′, obj ′ is specified as follows:

sem_output fml obj None fml ′ obj ′ Equioptimal
def=

∀ v. (∃w. satisfies w fml ∧ eval_obj obj w ≤ v) ⇐⇒
(∃w′. satisfies w′ fml ′ ∧ eval_obj obj ′ w′ ≤ v)

This definition says that, for all values v, the input instance has a satisfying
assignment with objective value less than or equal to v iff the output instance
also has such an assignment; note that this implies (as a special case) that fml
is satisfiable iff fml’ is satisfiable. The verified correctness theorem for CakePB
says that if CakePB successfully checks a pseudo-Boolean proof in kernel for-
mat and prints a verdict declaring equioptimality, then the input and output
instances are indeed equioptimal as defined in sem_output.

The second task is to develop verified optimizations to speedup proof steps
which occur frequently in preprocessing proofs; some code hotspots were also
identified by profiling the proof checker against proofs generated by MaxPre.
Similar (unverified) versions of these optimizations are also used in VeriPB.
These optimizations turned out to be necessary in practice—they mostly target
steps which, when naïvely implemented, have quadratic (or worse) time com-
plexity in the size of the constraint database.

Optimizing Reformulation Checking. The most expensive step in reformulation
checking for the output section is to ensure that the core constraints C are
included in the output formula and vice versa (possibly with permutations and
duplicity). Here, CakePB normalizes all pseudo-Boolean constraints involved to
a canonical form and then copies both C and the output formula into respective
array-backed hash tables for fast membership tests.

Certified MaxSAT Preprocessing 409

Optimizing Redundance and Checked Deletion Rules. A naïve implementa-
tion of these two rules would require iterating over the entire constraints
database when checking all subproofs in (1) for the right-hand-side constraints
(C ∪ D ∪ {C})�ω∪{O ≥ O�ω}. An important observation here is that preprocess-
ing proofs frequently use substitutions ω that only involve a small number of vari-
ables (often a single variable, which in addition is fresh in the important special
case of reification constraints z ⇔ C encoding that z is true precisely when the
constraint C is satisfied). Consequently, most of the constraints (C ∪ D ∪ {C})�ω

can be skipped when checking redundance because they are unchanged by the
substitution. Similarly, the constraint O ≥ O�ω is expensive to construct when
the objective O contains many terms, but this construction can be skipped if no
variables being substituted occur in O. CakePB stores a lazily-updated mapping
of variables to their occurrences in the constraint database and the objective,
which it uses to detect these cases.

The occurrence mapping just discussed is crucial for performance due to the
frequency of steps involving witnesses for preprocessing proofs, but incurs some
memory overhead in the checker. More precisely, every variable occurrence in
any constraint in the database corresponds to exactly one ID in the mapping.
Thus, the overhead of storing the mapping is in the worst case quadratic in
the number of constraints, but it is still linear in the total space usage for the
constraints database.

4.3 Verified WCNF Frontend

The CakePBwcnf frontend mediates between MaxSAT WCNF problems and
pseudo-Boolean optimization problems native to CakePB. Accordingly, the cor-
rectness of CakePBwcnf is stated in terms of MaxSAT semantics, i.e., the
encoding, underlying pseudo-Boolean semantics, and proof system are all for-
mally verified. In order to trust CakePBwcnf, one only has to carefully inspect
the formal definition of MaxSAT semantics shown in Fig. 3 to make sure that it
matches the informal definition in Sect. 2.2. Here, each clause C is paired with
a natural number n, where n = 0 indicates a hard clause and when n > 0 it
is the weight of C. The optimal cost of a weighted CNF formula wfml is None
(representing ∞) if no satisfying assignment to the hard clauses exist; otherwise,
it is the minimum cost among all satisfying assignments to the hard clauses.

Fig. 3. Formalized semantics for MaxSAT WCNF problems.

410 H. Ihalainen et al.

There and Back Again. CakePBwcnf contains a verified WCNF-to-PB encoder
implementing the encoding described in Sect. 2.2. Its correctness theorems are
shown in Fig. 4, where the two lemmas in the top row relate the satisfiability and
cost of the WCNF to its PB optimization counterpart after running wcnf_to_pbf
(and vice versa), see Observation 1. Using these lemmas, the final theorem (bot-
tom row) shows that equioptimality for two (encoded) PB optimization problems
can be translated back to equioptimality for the input and preprocessed WCNFs.

Fig. 4. Correctness theorems for the WCNF-to-PB encoding.

Putting Everything Together. The final verification step is to specialize the end-
to-end machine code correctness theorem for CakePB to the new frontend.
The resulting theorem for CakePBwcnf is shown abridged in Fig. 5; a detailed
explanation of similar CakeML-based theorems is available elsewhere [29,69]
so we do not go into details here. Briefly, the theorem says that whenever the
verdict string “s VERIFIED OUTPUT EQUIOPTIMAL” is printed (as a suffix) to the
standard output by an execution of CakePBwcnf, then the two input files
given on the command line parsed to equioptimal MaxSAT WCNF instances.

Fig. 5. Abridged final correctness theorem for CakePBwcnf.

5 Experiments

We updated the MaxSAT preprocessor MaxPre 2.1 [39,42,44] to MaxPre 2.2
which now produces proof logs in the VeriPB format [10]. MaxPre 2.2 is

Certified MaxSAT Preprocessing 411

available at the MaxPre 2 repository [50]. The generated proofs were elaborated
using VeriPB [73] and then checked by the verified proof checker CakePB-
wcnf. As benchmarks we used the 558 weighted and 572 unweighted MaxSAT
instances from the MaxSAT Evaluation 2023 [52].

The experiments were conducted on 11th Gen Intel(R) Core(TM) i5-1145G7
@ 2.60GHz CPUs with 16 GB of memory, a solid state drive as storage, and
Rocky Linux 8.5 as operating system. Each benchmark ran exclusively on a node
and the memory was limited to 14 GB. The time for MaxPre was limited to
300 s. There is an option to let MaxPre know about this time limit, but we
did not use this option since MaxPre then decides which techniques to try
based on how much time remains. This would have made it very hard to get
reliable measurements of the overhead when proof logging is switched on in the
preprocessor. The time limits for both VeriPB and CakePBwcnf were set to
6000 s to get as many instances checked as possible.

The main focus of our evaluation was the default setting of MaxPre,
which does not use some of the techniques mentioned in Sect. 3 (or the online
appendix [40]). We also conducted experiments with all techniques enabled to
check the correctness of the proof logging implementation for all preprocessing
techniques. The data and source code from our experiments can be found in [41].

The goal of the experiments was to answer the following questions:

RQ1. How much extra time is required to write the proof for the preprocessor?
RQ2. How long does proof checking take compared to proof generation?

Fig. 6. Proof logging overhead for
MaxPre.

Fig. 7. MaxPre vs. combined proof
checking running time.

To answer the first question, in Fig. 6 we compare MaxPre with and without
proof logging. In total, 1081 instances were successfully preprocessed by Max-
Pre without proof logging. With proof logging enabled, 8 fewer instances were
preprocessed due to either time- or memory-outs. For the successfully prepro-
cessed instances, the geometric mean of the proof logging overhead is 46% of the

412 H. Ihalainen et al.

running time, and 95% of the instances were preprocessed with proof logging in
at most twice the time required without proof logging.

Our comparison between proof generation and proof checking is based on the
1073 instances for which preprocessing with proof logging was successful. Out
of these, 1021 instances were successfully checked and elaborated by VeriPB.
For 991 instances the verdicts were confirmed by the formally verified proof
checker CakePBwcnf, with the remaining instances being time- or memory-
outs. This shows the practical viability of our approach, as the vast majority of
preprocessing proofs were checked within the resource limits.

A scatter plot comparing the running time of MaxPre with proof logging
enabled against the combined checking process is shown in Fig. 7. For the com-
bined checking time, we only consider the instances that have been successfully
checked by CakePBwcnf. In the geometric mean, the time for the combined
verified checking pipeline of VeriPB elaboration followed by CakePBwcnf
checking is 113× the preprocessing time of MaxPre. A general reason for this
overhead is that the preprocessor has more MaxSAT application-specific context
than the pseudo-Boolean checker, so the preprocessor can log proof steps with-
out performing the actual reasoning while the checker must ensure that those
steps are sound in an application-agnostic way. An example for this is reification:
as the preprocessor knows its reification variables are fresh, it can easily emit
redundance steps that witness on those variables; but the checker has to verify
freshness against its own database. Similar behaviour has been observed in other
applications of pseudo-Boolean proof logging [27,37].

To analyse further the causes of proof checking overhead, we also compared
VeriPB to CakePBwcnf. The checking of the elaborated kernel proof with
CakePBwcnf is 6.7× faster than checking and elaborating the augmented proof
with VeriPB. This suggests that the bottleneck for proof checking is VeriPB;
VeriPB without elaboration is about 5.3× slower than CakePBwcnf. As elab-
oration is a necessary step before running CakePBwcnf, improving the per-
formance of VeriPB would benefit the performance of the pipeline as a whole.
One specific feature that seems desirable would be to augment RUP rule appli-
cations with LRAT-style hints [16], so that VeriPB would not need to perform
unit propagation to elaborate RUP steps to cutting planes derivations. Though
these types of engineering challenges are important to address, they are beyond
the scope of the current paper and we have to leave them as future work.

6 Conclusion

In this work, we show how to use pseudo-Boolean proof logging to certify cor-
rectness of the MaxSAT preprocessing phase, extending previous work for the
main solving phase in unweighted model-improving solvers [72] and general core-
guided solvers [4]. As a further strengthening of previous work, we present a fully
formally verified toolchain which provides end-to-end verification of correctness.

In contrast to SAT solving, there is a rich variety of techniques in maximum
satisfiability solving, and it still remains to design pseudo-Boolean proof logging

Certified MaxSAT Preprocessing 413

methods for general, weighted, model-improving MaxSAT solvers [21,47,62] and
implicit hitting set (IHS) MaxSAT solvers [18,19] with abstract cores [3]. Nev-
ertheless, our work adds further weight to the conclusion that pseudo-Boolean
reasoning seems like a very promising foundation for MaxSAT proof logging.
We are optimistic that this work is another step on the path towards general
adoption of proof logging in the context of SAT-based optimization.

Acknowledgments. This work has been financially supported by the University of
Helsinki Doctoral Programme in Computer Science DoCS, the Research Council of
Finland under grants 342145 and 346056, the Swedish Research Council grants 2016-
00782 and 2021-05165, the Independent Research Fund Denmark grant 9040-00389B,
the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, and by A*STAR, Singapore. Part of this
work was carried out while some of the authors participated in the extended reunion of
the semester program Satisfiability: Theory, Practice, and Beyond in the spring of 2023
at the Simons Institute for the Theory of Computing at UC Berkeley. We also acknowl-
edge useful discussions at the Dagstuhl workshops 22411 Theory and Practice of SAT
and Combinatorial Solving and 23261 SAT Encodings and Beyond. The computational
experiments were enabled by resources provided by LUNARC at Lund University.

References

1. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C., Schweitzer, P.: An introduc-
tion to certifying algorithms. IT - Information Technology Methoden und innova-
tive Anwendungen der Informatik und Informationstechnik 53(6), 287–293 (2011)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (eds.) Proceedings of the 18th International Con-
ference on Principles and Practice of Constraint Programming (CP 2012). LNCS,
vol. 7514, pp. 86–101. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-
33558-7_9

3. Berg, J., Bacchus, F., Poole, A.: Abstract cores in implicit hitting set MaxSat
solving. In: Pulina, L., Seidl, M. (eds.) Proceedings of the 23rd International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2020). LNCS,
vol. 12178, pp. 277–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51825-7_20

4. Berg, J., Bogaerts, B., Nordström, J., Oertel, A., Vandesande, D.: Certified core-
guided MaxSAT solving. In: Pientka, B., Tinelli, C. (eds.) Proceedings of the 29th
International Conference on Automated Deduction (CADE-29). LNCS, vol. 14132,
pp. 1–22. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_1

5. Berg, J., Järvisalo, M.: Unifying reasoning and core-guided search for maximum
satisfiability. In: Calimeri, F., Leone, N., Manna, M. (eds.) Proceedings of the 16th
European Conference on Logics in Artificial Intelligence (JELIA 2019). LNCS, vol.
11468, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19570-0_19

6. Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum satis-
fiability. In: Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016). FAIA, vol. 285, pp. 630–638. IOS Press (2016)

7. Biere, A.: Tracecheck (2006). http://fmv.jku.at/tracecheck/

https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-030-19570-0_19
http://fmv.jku.at/tracecheck/

414 H. Ihalainen et al.

8. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, 2nd edn., vol. 336. IOS
Press, February 2021

9. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified dominance and
symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023). Preliminary version in AAAI 2022

10. Bogaerts, B., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.:
Documentation of VeriPB and CakePB for the SAT competition 2023, March 2023.
Available at https://satcompetition.github.io/2023/checkers.html

11. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9),
606–618 (2007)

12. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses.
IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 52–59 (2004)

13. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of
SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) Proceedings of the
13th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2010). LNCS, vol. 6175, pp. 44–57. Springer, Cham (2010). https://doi.org/
10.1007/978-3-642-14186-7_6

14. Buss, S.R., Nordström, J.: Proof complexity and SAT solving. In: Biere et al. [8],
Chap. 7, pp. 233–350

15. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discret. Appl. Math. 18(1), 25–38 (1987)

16. Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (eds.) Proceedings of the
26th International Conference on Automated Deduction (CADE-26). LNCS, vol.
10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63046-5_14

17. Cruz-Filipe, L., Marques-Silva, J.P., Schneider-Kamp, P.: Efficient certified reso-
lution proof checking. In: Legay, A., Margaria, T. (eds.) Proceedings of the 23rd
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2017). LNCS, vol. 10205, pp. 118–135. Springer, Cham
(2017). https://doi.org/10.1007/978-3-662-54577-5_7

18. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (eds.) Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP 2011). LNCS, vol. 6876,
pp. 225–239. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-23786-
7_19

19. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13

20. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) Proceedings of the 8th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2005). LNCS,
vol. 3569, pp. 61–75. Springer, Cham (2005). https://doi.org/10.1007/11499107_5

21. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2(1–4), 1–26 (2006)

22. Elffers, J., Gocht, S., McCreesh, C., Nordström, J.: Justifying all differences using
pseudo-Boolean reasoning. In: Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI 2020), pp. 1486–1494, February 2020

https://satcompetition.github.io/2023/checkers.html
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/11499107_5

Certified MaxSAT Preprocessing 415

23. Filmus, Y., Mahajan, M., Sood, G., Vinyals, M.: MaxSAT resolution and subcube
sums. In: Pulina, L., Seidl, M. (eds.) Proceedings of the 23rd International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2020). LNCS,
vol. 12178, pp. 295–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51825-7_21

24. Freeman, J.W.: Improvements to propositional satisfiability search algorithms.
Ph.D. thesis, University of Pennsylvania (1995)

25. Gimpel, J.F.: A reduction technique for prime implicant tables. In: Proceedings
of the 5th Annual Symposium on Switching Circuit Theory and Logical Design,
(SWCT 1964), pp. 183–191. IEEE Computer Society (1964)

26. Gocht, S.: Certifying correctness for combinatorial algorithms by using
pseudo-Boolean reasoning, Ph.D. thesis, Lund University, June 2022. https://
portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-
algorithms-by-using-pseu

27. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for
pseudo-Boolean solving. In: Proceedings of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 236, pp. 16:1–16:25, August 2022

28. Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J.: Cer-
tifying solvers for clique and maximum common (connected) subgraph problems.
In: Simonis, H. (eds.) Proceedings of the 26th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2020). LNCS, vol. 12333, pp.
338–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_20

29. Gocht, S., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.:
End-to-end verification for subgraph solving. In: Proceedings of the 368h AAAI
Conference on Artificial Intelligence (AAAI 2024), pp. 8038–8047, February 2024

30. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting
planes: solving with certified solutions. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 1134–1140, July 2020

31. Gocht, S., McCreesh, C., Nordström, J.: An auditable constraint programming
solver. In: Proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 235, pp. 25:1–25:18, August 2022

32. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI 2021), pp. 3768–3777, February 2021

33. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE 2003), pp. 886–891, March 2003

34. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic formu-
lae for CakeML. In: Yang, H. (eds.) Proceedings of the 26th European Symposium
on Programming (ESOP 2017). LNCS, vol. 10201, pp. 584–610. Springer, Cham
(2017). https://doi.org/10.1007/978-3-662-54434-1_22

35. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Proceedings of the 13th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2013), pp. 181–188, October 2013

36. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (eds.) Proceedings of the 24th International Con-
ference on Automated Deduction (CADE-24). LNCS, vol. 7898, pp. 345–359.
Springer, Cham (2013). https://doi.org/10.1007/978-3-642-38574-2_24

https://doi.org/10.1007/978-3-030-51825-7_21
https://doi.org/10.1007/978-3-030-51825-7_21
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-642-38574-2_24

416 H. Ihalainen et al.

37. Hoen, A., Oertel, A., Gleixner, A., Nordström, J.: Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In: Proceedings of the 21st International
Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR 2024), May 2024, to appear

38. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisfiability Boolean Model. Comput. 11(1), 53–64 (2019)

39. Ihalainen, H., Berg, J., Järvisalo, M.: Clause redundancy and preprocessing in max-
imum satisfiability. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Proceedings
of the 11th International Joint Conference on Automated Reasoning (IJCAR 2022).
LNCS, vol. 13385, pp. 75–94. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-10769-6_6

40. Ihalainen, H., et al.: Certified MaxSAT preprocessing (2024). https://arxiv.org/
abs/2404.17316. Full-length version

41. Ihalainen, H., et al.: Experimental Repository for “Certified MaxSAT Preprocess-
ing”, February 2024. https://doi.org/10.5281/zenodo.10630852

42. Jabs, C., Berg, J., Ihalainen, H., Järvisalo, M.: Preprocessing in SAT-based multi-
objective combinatorial optimization. In: Proceedings of the 29th International
Conference on Principles and Practice of Constraint Programming (CP 2023).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 280, pp. 18:1–18:20
(2023)

43. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2010).
LNCS, vol. 6015, pp. 129–144. Springer, Cham (2010). https://doi.org/10.1007/
978-3-642-12002-2_10

44. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT
preprocessor. In: Gaspers, S., Walsh, T. (eds.) Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2017). LNCS,
vol. 10491, pp. 449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66263-3_28

45. Larrosa, J., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A framework
for certified Boolean branch-and-bound optimization. J. Autom. Reason. 46(1),
81–102 (2011)

46. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electron.
Notes Discrete Math. 9, 59–80 (2001)

47. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59–64 (2010)

48. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Pro-
ceedings of the 17th National Conference on Artificial Intelligence and 12th Con-
ference on Innovative Applications of Artificial Intelligence, pp. 291–296. AAAI
Press/The MIT Press (2000)

49. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formu-
las. In: Biere, A., Nahir, A., Vos, T. (eds.) 8th International Haifa Verification
Conference (HVC 2012), Revised Selected Papers. LNCS, vol. 7857, pp. 102–117.
Springer, Cham (2013). https://doi.org/10.1007/978-3-642-39611-3_14

50. MaxPre 2: MaxSAT preprocessor. https://bitbucket.org/coreo-group/maxpre2
51. MaxSAT evaluations: Evaluating the state of the art in maximum satisfiability

solver technology. https://maxsat-evaluations.github.io/
52. MaxSAT evaluation 2023, July 2023. https://maxsat-evaluations.github.io/2023
53. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.

Comput. Sci. Rev. 5(2), 119–161 (2011)

https://doi.org/10.1007/978-3-031-10769-6_6
https://doi.org/10.1007/978-3-031-10769-6_6
https://arxiv.org/abs/2404.17316
https://arxiv.org/abs/2404.17316
https://doi.org/10.5281/zenodo.10630852
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-642-39611-3_14
https://bitbucket.org/coreo-group/maxpre2
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/2023

Certified MaxSAT Preprocessing 417

54. McIlree, M., McCreesh, C.: Proof logging for smart extensional constraints. In:
Proceedings of the 29th International Conference on Principles and Practice of
Constraint Programming (CP 2023). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 280, pp. 26:1–26:17, August 2023

55. McIlree, M., McCreesh, C., Nordström, J.: Proof logging for the circuit con-
straint. In: Proceedings of the 21st International Conference on the Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR 2024), May 2024, to appear

56. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary
search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) Proceedings of the
15th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2012). LNCS, vol. 7317, pp. 284–297. Springer, Cham (2012). https://doi.
org/10.1007/978-3-642-31612-8_22

57. Morgado, A., Ignatiev, A., Bonet, M.L., Marques-Silva, J.P., Buss, S.R.:
DRMaxSAT with MaxHS: first contact. In: Janota, M., Lynce, I. (eds.) Proceed-
ings of the 22nd International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2019). LNCS, vol. 11628, pp. 239–249. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24258-9_17

58. Morgado, A., Marques-Silva, J.: On validating Boolean optimizers. In: Proceedings
of the 23rd IEEE International Conference on Tools with Artificial Intelligence,
(ICTAI 2011), pp. 924–926 (2011)

59. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)

60. Ostrowski, R., Grégoire, É., Mazure, B., Saïs, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 185–199. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46135-3_13

61. Paxian, T., Raiola, P., Becker, B.: On preprocessing for weighted MaxSAT. In:
Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp.
556–577. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67067-2_25

62. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C. (eds.) Proceedings
of the 21st International Conference on Theory and Applications of Satisfiability
Testing (SAT 2018). LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94144-8_3

63. Py, M., Cherif, M.S., Habet, D.: Towards bridging the gap between SAT and Max-
SAT refutations. In: Proceedings of the 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2020), pp. 137–144, November 2020

64. Py, M., Cherif, M.S., Habet, D.: A proof builder for Max-SAT. In: Li, CM., Manyá,
F. (eds.) Proceedings of the 24th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2021). LNCS, vol. 12831, pp. 488–498. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80223-3_33

65. Py, M., Cherif, M.S., Habet, D.: Proofs and certificates for Max-SAT. J. Artif.
Intell. Res. 75, 1373–1400 (2022)

66. The International SAT Competitions web page. http://www.satcompetition.org
67. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,

Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_6

68. Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT

https://doi.org/10.1007/978-3-642-31612-8_22
https://doi.org/10.1007/978-3-642-31612-8_22
https://doi.org/10.1007/978-3-030-24258-9_17
https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-030-80223-3_33
http://www.satcompetition.org
https://doi.org/10.1007/978-3-540-71067-7_6

418 H. Ihalainen et al.

2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005). https://doi.org/
10.1007/11527695_22

69. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in CakeML. Int. J. Softw. Tools Technol. Transf.
25, 167–184 (2023). Preliminary version in TACAS 2021

70. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: The
verified CakeML compiler backend. J. Funct. Program. 29, e2:1–e2:57 (2019)

71. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver.
Ann. Math. Artif. Intell. 43(1), 239–253 (2005)

72. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: a certified MaxSAT
solver. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) Proceedings of the 16th
International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR 2022). LNCS, vol. 13416, pp. 429–442. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-15707-3_33

73. VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/
software/VeriPB

74. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Proceedings
of the 17th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT 2014). LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3_31

75. Zabih, R., McAllester, D.A.: A rearrangement search strategy for determining
propositional satisfiability. In: Proceedings of the 7th National Conference on Arti-
ficial Intelligence (AAAI 1988), pp. 155–160. AAAI Press/The MIT Press (1988)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11527695_22
https://doi.org/10.1007/11527695_22
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-031-15707-3_33
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB
https://doi.org/10.1007/978-3-319-09284-3_31
http://creativecommons.org/licenses/by/4.0/

A Formal Model to Prove Instantiation
Termination for E-matching-Based

Axiomatisations

Rui Ge(B) , Ronald Garcia , and Alexander J. Summers

Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada

{rge,rxg}@cs.ubc.ca, alex.summers@ubc.ca

Abstract. SMT-based program analysis and verification often involve
reasoning about program features that have been specified using quan-
tifiers; incorporating quantifiers into SMT-based reasoning is, however,
known to be challenging. If quantifier instantiation is not carefully con-
trolled, then runtime and outcomes can be brittle and hard to predict.
In particular, uncontrolled quantifier instantiation can lead to unex-
pected incompleteness and even non-termination. E-matching is the most
widely-used approach for controlling quantifier instantiation, but when
axiomatisations are complex, even experts cannot tell whether or not
their use of E-matching guarantees completeness or termination.

This paper presents a new formal model that facilitates the proof,
once and for all, that giving a complex E-matching-based axiomatisa-
tion to an SMT solver such as Z3 or cvc5, cannot cause non-termination.
Key to our technique is an operational semantics for solver behaviour
that models how the E-matching rules common to most solvers are used
to determine when quantifier instantiations are enabled, but abstracts
over irrelevant details of individual solvers. We demonstrate the effec-
tiveness of our technique by presenting a termination proof for a set
theory axiomatisation adapted from those used in the Dafny and Viper
verifiers.

Keywords: SMT solving · Quantifiers · Termination proofs ·
E-matching

1 Introduction

SMT-based program analysis and verification have advanced dramatically in the
past two decades. These advances have been partly fuelled by major improve-
ments in SAT and SMT solving techniques, as well as their implementations in
state-of-the-art solvers such as Z3 [22] and cvc5 [2]. Leveraging these advances
in SMT, a huge number of program analysis and verification tools have been
based on SMT, including for example Dafny [17], Why3 [12] and Viper [24].

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 419–438, 2024.
https://doi.org/10.1007/978-3-031-63498-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_25&domain=pdf
http://orcid.org/0000-0003-1049-8132
http://orcid.org/0000-0002-0982-1118
http://orcid.org/0000-0001-5554-9381
https://doi.org/10.1007/978-3-031-63498-7_25

420 R. Ge et al.

Such tools must translate a wide range of problem features into SMT queries
that model these domain-specific concerns. While some theories relevant to prob-
lem features (e.g. linear arithmetic [22]) are natively supported by SMT solvers,
most problem features must be modelled by axiomatisation.

Axiomatising problem features involves introducing uninterpreted sorts,
uninterpreted functions on these sorts, and (crucially) quantifiers1 that define
the intended meaning of these features. For instance, one can model sets of inte-
gers by introducing a sort Set for sets, uninterpreted functions member and diff
to represent set membership and set difference respectively, and quantifiers such
as ∀s1, s2 : Set, x : Int. member(x, s2) → ¬member(x, diff(s1, s2)).

Such modelling to SMT is expressive, but makes heavy use of quantifiers that
must be instantiated during SMT solving. But quantifier instantiation in SMT
notoriously presents notable challenges, potentially causing slow performance
and even non-termination, as well as unexpectedly-failing proofs [4,19]. Worse
still, latent quantifier instantiation issues may not surface on all runs, but cause
a “butterfly effect” [16], meaning that unrelated changes to an input problem
may lead to substantial changes in solver behaviour along these lines.

To manage these issues, solvers allow quantifiers to be annotated with instan-
tiation triggers (a.k.a. instantiation patterns). Triggers specify (possibly multi-
ple) shapes of ground terms that must be known (occur in the current proof
context, modulo known equalities) to enable a quantifier instantiation. This
method of guiding quantifier instantiation is referred to as E-matching [8,25]
and is supported by virtually all modern SMT solvers.

However, selecting appropriate triggers is an art. The choice requires exper-
tise in managing a fine balance: not too restrictive, to avoid insufficient quantifier
instantiations for proofs, and not too permissive, to prevent excessive instantia-
tions. Subtle issues can easily lead to the same hard-to-debug problems even for
the most talented of SMT artists [16,19], and even when successful it is unclear
how one can know that the chosen triggers are guaranteed to work in the future.

The ideal aim is to achieve both instantiation completeness and instantia-
tion termination. Instantiation completeness means that all necessary quantifier
instantiations for a proof can be made by the solver. Instantiation termination
means that the solver will never endlessly explore infinitely many quantifier
instantiations. In this paper, we focus on instantiation termination.2

Failures of instantiation termination stem from matching loops: the problem-
atic scenario of a quantifier instantiation (possibly indirectly) leading to learning
new terms that cause further instantiations of the same quantifier, potentially
creating an endless loop. Matching loops can cause non-termination, but (prob-
lematically, for debugging) may only do so on some runs (in case heuristics in
the solver arrive at the facts necessary to complete a proof “in time”).

1 We use the term quantifier (also) as a synonym for quantified formula.
2 Instantiation termination can be trivially achieved by pathological trigger choices

that prevent all instantiations (similar to proving a function terminating under a false
precondition). However, such axiomatisations are not useful (or used) in practice.

A Formal Model to Prove Instantiation Termination of E-matching 421

Our paper enables proving that matching loops have been avoided altogether.
We present a high-level formal model of E-matching-based quantifier instantia-
tion that suffices to prove once and for all that a given set of trigger-annotated
quantifiers, when combined with any possible ground facts, guarantees instanti-
ation termination, thereby ensuring the absence of matching loops. Our model
is designed to be broadly applicable because it models the core E-matching
rules common to most solvers, but abstracts over implementation details where
individual solvers make different choices. Our model enables formal termination
proofs based on familiar concepts from program reasoning, with manageable
complexity, allowing axiomatisation practitioners to independently construct
these proofs and confidently seek terminating responses to ground theory queries.

Our main technical contributions are as follows:

1. We develop a formal model for reasoning about instantiation termination in
E-matching-based axiomatisations. The model abstracts from solver imple-
mentation details but accounts for the essential features necessary for rigorous
instantiation termination proofs.

2. We validate the practical utility of our formal model by using it to prove
instantiation termination of a challenging set theory axiomatisation adapted
from the cores of those used in the Dafny and Viper verifiers.

3. We outline a methodology for constructing instantiation termination proofs
using our model. Our methodology involves classifying quantifiers according
to certain characteristics, using these to incrementally define and refine a
progress measure that eventually supports the whole axiomatisation.

Our research draws inspiration from Dross et al.’s [11] prior formalism for
quantifier instantiation via E-matching. To the best of our knowledge, their
work represents the sole formal attempt in this space before ours. However, we
find their formalism incompatible with our goals: we elaborate on this point
in Sect. 5.

Full details and supporting proofs are available in our technical report (TR
hereafter) [13].

2 Problem Statement

We begin with a basic grounding in E-matching, and use this to lay out the most
important challenges a formal model needs to address to be useful in practice.

2.1 Quantifier Instantiation via E-matching

Quantifiers are crucial for effectively modelling external problem features as an
SMT problem. However, when determining whether such a first-order problem
is satisfiable, an SMT solver must contend with quantifiers ranging over infinite
sorts. A successful proof will (and need) only involve finitely many instantiations
of the quantifiers, but selecting these is in general undecidable. Most solvers
provide E-matching as the main means of guiding instantiation.

422 R. Ge et al.

E-matching requires each quantifier to be associated with instantiation trig-
gers (a.k.a. instantiation patterns). Triggers consist of terms containing the quan-
tified variables, and prescribe that instantiations should only be made when
ground terms of matching shape(s) arise in the current proof search.

During a proof search, SMT solvers maintain and update the currently-known
ground terms and (dis)equalities on them in an efficient congruence-closure
data structure called an E-graph. This information enables E-matching [21,25]—
matching modulo currently-known equalities—of known terms against quantifier
triggers, which enables new instantiations, and of potential instantiations against
previous ones, which prevents redundant instantiations.

Example 1. Consider the set theory axiom presented early in Sect. 1, now anno-
tated with triggers (written comma-separated inside square brackets)3:

∀s1, s2, x. [diff(s1, s2), member(x, s2)] member(x, s2) → ¬member(x, diff(s1, s2))

The trigger consists of two terms, diff(s1, s2) and member(x, s2); a multi-term
trigger prescribes that terms matching all (here, both) patterns must be known
for some instantiation of the quantified variables. If so, the corresponding instan-
tiation of the quantifier itself will be made: the instantiated quantifier body4 will
be treated as a newly-derived fact (typically, a clause), and the solver will also
record that this instantiation has been made (to avoid doing so again).

Suppose that an E-graph represents the congruence closure of the facts:
member(t, a)=�, diff(b, c)�=b and a=c. E-matching will find a successful match
against the trigger above; although it might seem that there is no consistent pair
of terms here, the equality a = c means that (modulo equalities) we can con-
sider the terms member(t, a) and diff(b, a) as known in the E-graph, which match
the triggers under the instantiation s1 �→b, s2 �→a and x�→t. The corresponding
instantiation of the quantifier body yields ¬member(t, a)∨¬member(t, diff(b, a)).
Subsequently, the same quantifier cannot be instantiated with e.g. s1 �→b, s2 �→c
and x�→t since, again modulo equalities, this is an equivalent instantiation.

Example 2. Consider a variant of the previous quantifier, modified with a dif-
ferent trigger, and in the context of a different E-graph that represents instead
the congruence closure of the facts: member(t, a)=� and member(t, b)=�.

∀s1, s2, x. [member(x, s1), member(x, s2)]
member(x, s2) → ¬member(x, diff(s1, s2))

Now four instantiations are enabled: one for each pair of member applications
in our current model (and E-graph): e.g. instantiating s1 �→a, s2 �→b and x�→t or
s1 �→b, s2 �→a and x�→t. All four will be made: they are different choices since
we don’t know that a = b. The second, for example, causes the new clause
(rewritten as a disjunction) ¬member(t, a)∨¬member(t, diff(b, a)) to be assumed.
This doesn’t change the E-graph (which is populated only by assumed literals);
3 For brevity, sorts on quantified variables are omitted in this example and hereafter.
4 Quantifier body refers to the subformula that falls within the scope of a quantifier.

A Formal Model to Prove Instantiation Termination of E-matching 423

clauses are kept separately in the prover state. However, case-splitting on this
clause may lead to the literal ¬member(t, diff(b, a)) being added. At this point,
five new quantifier instantiations will be enabled; the number of pairs of member
applications has increased. In fact, by alternately instantiating this quantifier
and case-splitting on newly-learned clauses, we can uncover new instantiations
indefinitely, in a so-called matching loop.

These first examples show that the choice of triggers affects instantiation
behaviour, and that modelling instantiations requires considering not only initial
terms, but also facts learned during proof search and case-splitting choices.

Example 3. Consider the following “subset elimination” axiom (from the set
theory axiomatisation we tackle later) with nested quantifiers:

∀s1, s2. [subset(s1, s2)] subset(s1, s2) →
(∀x.[member(x, s1)][member(x, s2)] member(x, s1) → member(x, s2))

The inner quantifier has two triggers, defining alternative conditions for instan-
tiation (a term of either shape is sufficient). Note that these triggers depend on
the outer-quantified variables s1 and s2, and thus their instantiations.

Instantiating an outer quantifier expands the current quantifiers for instan-
tiations. In this example, instantiating the outer quantifier (∀s1, s2. . . .) results
in a clause that includes a copy of the inner quantifier (∀x. . . .); case-splitting
on this clause can cause the copy to be assumed, effectively adding one more
quantifier for future potential instantiations. As such, the instantiation of outer
quantifiers dynamically introduces new quantifiers, adding complexity to estab-
lishing termination arguments—one must be able to identify and predict the
quantifiers (and their instantiations) that will be dynamically introduced.

2.2 Objectives for a Formal Model of E-matching

Given the difficulty of choosing quantifier triggers and knowing that their instan-
tiations can never continue forever, our objective is to provide formal and usable
means of proving such E-matching termination proofs once-and-for-all. Rather
than attempt to capture the precise behaviour of a specific solver and its config-
uration, we want a model that abstracts over the behaviours of any reasonable
implementation of E-matching, while still being sufficiently precise for the proofs
to work and be reasonable to construct in practice.

The design of a model for E-matching must address multiple challenges:

1. How should (intermediate) solver states and the transitions between them be
modelled, avoiding over-fitting to specific solver choices while retaining clear
and pertinent information suitable for understandable proofs?

2. How should equality-related information and reasoning be captured, given
their central nature (for defining enabled E-matches) but the complexities of
the data structures employed in real implementations?

3. How can nested quantifiers (cf. Example 3), when instantiations can introduce
new quantifiers on the fly, be supported?

424 R. Ge et al.

4. How can we make the model extensible to more-complex future applications
(e.g. axiomatisations whose termination depends on theory reasoning)?

5. How can a formal model enable formal proofs with manageable complexity?

We present our model, designed to address these challenges in the next
section; we demonstrate its applicability for termination proofs in Sect. 4.

3 An Operational Semantics for E-matching

We develop our formal model in the style of a small-step operational semantics,
a popular choice for programming languages. In this operational style, states
represent intermediate points of a proof search, while transitions represent solver
steps; non-determinism abstracts over choices specific solvers make. With this
design, our desired notion of instantiation termination can be recast as a familiar
style of termination proof, albeit against a semantics with novel core details.

3.1 Preliminaries

Our syntax for formulas is based around a generalisation of conjunctive nor-
mal form, used internally in SMT algorithms; we assume all formulas are pre-
converted to this form (existential quantifiers are eliminated by Skolemisation).

Definition 1 (Formula Syntax). We assume a pre-defined set of atoms5,
including equalities on terms t1 = t2. A (simple) literal l is either an atom
or its negation. The grammars of extended literals φ, extended clauses C and
extended conjunctive normal form (ECNF) formulas A are as follows:

φ ::= l | (∀−→x .
−→
[T]A)�α C ::= φ | C ∨ C A ::= C | A ∧ A

Here, (∀−→x .
−→
[T]A)�α denotes a tagged quantifier: the (possibly-multiple) variables

−→x are bound, the (possibly-multiple) trigger sets −→
T are each marked with square

brackets and positioned before the quantifier body A, and �α is a tag used to
uniquely identify this particular quantifier (see also Sect. 3.6).

As presented in Example 1, a trigger set T is a (non-empty) set of terms,
written comma-separated. There are additional requirements: each trigger set
must contain each quantified variable at least once, and each term must contain
at least one quantified variable. Furthermore, each term must contain at least
one uninterpreted function application and no interpreted function symbols such
as equalities. These restrictions are common for SMT solvers.

When quantifier tags are not relevant, we omit them for brevity.

5 The pre-defined atoms come from the first-order signature of the problem in question.

A Formal Model to Prove Instantiation Termination of E-matching 425

3.2 States

As illustrated in Examples 1 and 2, both case-splitting and quantifier instantia-
tion steps are crucial to our problem; we define our semantics around these two
kinds of transitions. Furthermore, we must abstractly capture information rele-
vant for deciding E-matching questions, tracking in particular which terms and
equalities are known (modulo currently known equalities), and which quantifier
instantiations have already been made.

Definition 2 (States). States s ∈ State are defined as follows:

s ::= 〈W, A, E〉 | ♦ | ⊥
where ♦ and ⊥ are distinguished symbols for saturated and inconsistent states,
W (the current quantifiers) is a set of tagged quantifiers, A (the current clauses)
is a set of extended clauses, and E (the current E-state) is explained below.

For simple applications of our semantics, the set of current quantifiers remains
fixed, but for problems with nested quantifiers (e.g. Example 3), it may grow
as a solver runs. As we show, which instantiations are immediately enabled
is definable in terms of both the current quantifiers and the current E-state.
The current clauses, on the other hand, through case-splitting, introduce new
quantifiers to the current quantifiers and generate new literals for the E-state;
new extended clauses may be added as a consequence of quantifier instantiations.

The inconsistent and saturated states represent two different termination
conditions for traces in our semantics: the former due to logical inconsistency,
and the latter due to all quantifier instantiations having been exhausted.

3.3 E-interfaces

Each solver maintains its own implementation of E-graphs to efficiently rep-
resent and query the currently-known ground terms modulo congruences and
known equalities. Rather than formalising such an implementation, we devise an
abstraction called an E-interface, capturing the operations and expected math-
ematical properties of E-graph implementations.

Definition 3 (E-interface Judgements). An E-interface EI is a set of equal-
ities and disequalities on terms.6 We write EI �kn t to express that the ground
term t is known in the E-interface EI; we write EI � t1 ∼ t2 to express that
the ground terms t1 and t2 are known equal in EI. These two judgements are
(mutually recursively) defined by (the least fixed-point of) the derivation rules:

t1 ∼ t2 ∈ EI

EI � t1 ∼ t2
(eq-in)

EI � t2 ∼ t1
EI � t1 ∼ t2

(eq-sym)

EI � t1 ∼ t2 EI � t2 ∼ t3

EI � t1 ∼ t3
(eq-tran)

EI �kn t

EI � t ∼ t
(eq-kn-refl)

6 A positive or negative non-equational literal, P , is added to the E-interface via
P = � or P = ⊥, respectively; � �= ⊥ is preloaded into all E-interfaces.

426 R. Ge et al.

EI � ti ∼ t′
i EI �kn g (t1, . . . , ti, . . . , tn)

EI � g (t1, . . . , ti, . . . , tn) ∼ g (t1, . . . , t′
i, . . . , tn) (eq-kn-sub)

EI � t1 ∼ t2
EI �kn t1

(kn-eq)
EI �kn g (. . . , ti, . . .)

EI �kn ti
(kn-sub)

The judgement EI � t1 �∼ t2 represents t1 and t2 being known disequal in EI;
the judgement EI � ⊥ represents that EI is inconsistent (in the logical sense);
cf. App. A of the TR.

E-interfaces are equivalent if they agree on these judgements in all cases. When
a proof step adds new literals, we must be able to extend our E-interfaces.

Definition 4 (E-interface Extension). For a set of equality and disequality
literals L, the update of an E-interface EI with L, denoted EI � L, is a minimal
E-interface which satisfies all E-interface judgements that EI does, while also
satisfying EI � l for all l ∈ L.

We call a set of terms a basis of EI if each element is a representative of a
different equivalence class7 induced by the EI � t1 ∼ t2 relation on the terms
known in EI. As we shall see in the next subsection, equivalence classes are
relevant for defining which quantifier instantiations can be made after which.

3.4 E-histories, E-states, E-matching

As illustrated in Example 1, E-matching against triggers does not suffice to deter-
mine whether a quantifier instantiation should be considered enabled; we must
also determine whether the instantiation is considered redundant given previous
ones. We record previous instantiations using our next formal ingredient:

Definition 5 (E-histories and E-states). An E-history EH is a set of pairs
(each denoted (�α : −→r)) in our formalism: the first element is a tag (identify-
ing a quantifier), and the second is a vector of ground terms (representing an
instantiation of the corresponding quantifier).

An E-state (cf. Definition 2) E is a pair (EI, EH) of E-interface and E-
history.

Recall that E-states are a part of the states in our formalism. E-states con-
sist of an E-interface component, which captures the current known terms and
equality information, and an E-history component, which records the history of
instantiations, in particular representing sufficient information to reject redun-
dant instantiations.

Definition 6 (History-Enabled E-matches). Given a candidate match pair
(�α : −→r) (of tag �α and vector of terms −→r), the E-state E enables (�α : −→r),
written E �hist (�α : −→r), if: for every instantiation pair (�α :

−→
r′) ∈ EH, at least

one of the pointwise equalities
−−−−→
ri ∼ r′

i is not known in EI.
7 What we refer to as an equivalence class in this paper is also known as a congruence
class in the literature: an equivalence class modulo known equalities.

A Formal Model to Prove Instantiation Termination of E-matching 427

Example 4. Revisiting Example 1, suppose the tag of the quantifier is �τ , E
is the E-state whose E-interface component contains the example literals. The
first instantiation s1 �→b, s2 �→a and x�→t is represented in our formal model by
adding (�τ : (b, a, t)) to the E-history, resulting in a new E-state, say E′. The
second candidate match s1 �→b, s2 �→c and x�→t is not enabled in E′ since the
three pointwise equalities between instantiated terms are all known in E′.

With the help of the above ingredients, we formally characterise E-matching:

Definition 7 (E-matching). For a given state 〈W, A, E〉, the judgement
〈W, A, E〉 �match (∀−→x .

−→
[T]A′)�α�−→r defines which instantiations (using terms −→r)

of which quantifiers (∀−→x .
−→
[T]A′)�α are enabled by E-matching rules, as follows:

(∀−→x .
−→
[T]A′)�α ∈ W

−→
t is one trigger set of

−→
[T]

EI �kn
−→
t [−→r/−→x] E �hist (�α : −→r)

〈W, A, E〉 �match (∀−→x .
−→
[T]A′)�α�−→r

We write 〈W, A, E〉 ��match to mean no instantiations are enabled in this state.

E-matching �match requires (1) a quantifier in the current state, (2) a trigger set−→
t with replacement terms −→r for quantified variables −→x to be known in EI, and

(3) that this potential match is enabled by the E-state E. Note that (2) implies
the terms −→r to match against the quantified variables of one trigger set −→

t to
be known in the current E-interface EI.

3.5 State Transitions

The last main ingredient of our formal model is the definition of state transitions.

Definition 8 (State Transitions). The (single step) state transition relation
−→ ⊆ State × State is defined by the union of the following cases:

∅ ⊂ Φ ⊆ {
φi | C ∈ A; W1, EI

1 ��sat C; C is · · · ∨ φi ∨ · · · }

W2 = W1 ∪ filter∀ (Φ) EI
2 = EI

1 � filterlit (Φ) EH
2 = EH

1
〈W1, A, E1〉 −→ 〈W2, A, E2〉 (split)

EI � ⊥
〈W, A, E〉 −→ ⊥ (bot)

EI �� ⊥ W, EI �sat C for every C ∈ A 〈W, A, E〉 ��match

〈W, A, E〉 −→ ♦ (sat)

〈W1, A1, E1〉 �match (∀−→x .
−→
[T]A11)�α�−→r

A12 = A11 [−→r/−→x] A′
12 = filter∀ (A12) ∪ filterlit (A12)

A2 = A1 ∪ (A12\A′
12) W2 = W1 ∪ filter∀ (A12)

EI
2 = EI

1 � filterlit (A12) EH
2 = EH

1 � (�α : −→r)
〈W1, A1, E1〉 −→ 〈W2, A2, E2〉 (inst)

428 R. Ge et al.

where the overloaded operators filter∀ and filterlit select quantifiers and simple
literals, respectively, from any provided set of extended literals, or from unit
clauses of any provided set of extended clauses; the judgement W, EI �sat C
holds if: for some disjunct φi of C, either φi is a tagged quantifier from W , or
φi is a simple literal that EI knows.

Our state transition relation −→ consists of case-splitting steps, steps that
deduce the inconsistent state, steps that deduce the saturated state, and quan-
tifier instantiation steps, corresponding to the rules (split), (bot), (sat) and
(inst) respectively.

We allow a case-splitting transition to non-deterministically select any non-
empty subset of the disjuncts in the unsatisfied current clauses—those that have
not yet been made true in the current state. A case-splitting transition must
make progress towards satisfying the clauses. We do not impose restrictions on
the order in which unsatisfied current clauses are chosen, nor on the number of
disjuncts assumed within a clause, provided that progress is being made.8

We model case-splitting as non-deterministic. Recall Example 2, where the
clause ¬member(t, a) ∨ ¬member(t, diff(b, a)) is learnt. Subsequently, the solver
can choose to assume either one or both of the disjuncts; generally, it can choose
to assume neither disjunct as long as it selects at least one disjunct from some
other unsatisfied clause. Here, the disjuncts are ground simple literals (which are
added to the E-state); in general, some could be new quantifiers to record.

Our �sat judgement checks if a provided clause is satisfied (i.e. at least one
disjunct is assumed in the current state). If all current clauses are satisfied, and
the E-interface is not inconsistent, and there are no enabled instantiations, the
(sat) rule applies and transitions to the saturated state (♦). Conversely, if the
current E-interface is inconsistent, the (bot) rule transitions to the inconsistent
state (⊥); if there are enabled instantiations, the (inst) rule applies.

The instantiation rule (inst) relies on the �match judgement to select an
instantiation enabled by E-matching rules. The effect of an instantiation transi-
tion involves adding quantifiers and simple literals occurring as unit clauses in the
quantifier body to the current quantifiers W1 and E-interface EI

1, respectively;
any remaining non-unit clauses are added to the current clauses A1. Finally, the
E-history EH

1 is updated to record this instantiation.
In practice, common SMT solvers such as cvc5 [2] perform quantifier instan-

tiation both (1) up-front and (2) in phases interleaved with other solver steps. In
particular, the latter is essential for many applications: most quantifier instantia-
tions lead to e.g. clauses requiring context-aware case-splitting via DPLL/CDCL.
Our model effectively captures both processes through its unrestricted interleav-
ings of quantifier instantiation and case-splitting steps.

In retrospect, Sects. 3.2 to 3.5 have tackled design challenges #1 and #2 (cf.
Sect. 2.2). We address #3 and #4 in the next two subsections, respectively.

8 Our model allows simulating efficient propagation-based restrictions of case-splitting,
but does not require it; restricting to this case would be possible if needed.

A Formal Model to Prove Instantiation Termination of E-matching 429

3.6 Nested Quantifiers

Example 3 demonstrates that instantiating outer quantifiers in nested structures
of quantifiers can introduce new quantifiers on the fly. To effectively argue for
termination regarding these instantiations (as will be discussed in Sect. 4), one
must be able to identify and predict these dynamically introduced quantifiers.
To facilitate this, we employ a tagging system that is capable of handling nested
structures (cf. App. A of the TR for details). Each quantifier in an axioma-
tisation is labelled with a distinct tag. The tag for any non-nested quantifier
(including the outermost quantifier in any nested structure of quantifiers) is
not parameterised. A nested quantifier has its tag parameterised by all of its
outer-quantified variables. Instantiating an outer quantifier produces a copy of
the quantifier body in which (among other changes) tags of all inner quanti-
fiers that are parameterised by this outer-quantifier are updated to reflect this
instantiation. In Example 3, we label the outer and inner quantifiers with tags
�union-elim and �union-elim(s1, s2), respectively. Instantiating the outer quanti-
fier with s1 �→a and s2 �→b introduces a copy of the quantifier body in which the
inner quantifier is tagged with �union-elim(a, b).

To further mitigate redundancy in quantifier instantiation, our semantics
supports two additional optimisations. First, a quantifier is only permitted to
join the current quantifiers W if its tag is known to be distinct from the tags
of existing quantifiers in W , modulo equivalence on the parameters of the tags,
as assessed in the current E-interface. This criterion prevents adding redundant
quantifiers into W . Second, the relation of history-enabled E-matches �hist lever-
ages the current E-interface to verify the uniqueness of tags—once again, mod-
ulo equivalence on tag parameters—before enabling an E-match. An E-match is
enabled only if no quantifier with an equivalent tag has been instantiated with
an equivalent match previously. (cf. App. A of the TR for related definitions.)

3.7 Theory-Specific Reasoning

Although our rules do not yet account for (interpreted) theory reasoning (as
performed by theory solvers in a typical SMT solver design), our small-step
semantics is intentionally chosen to easily accommodate future extensions: “hot-
plugging” new kinds of primitive transitions is straightforward, and will not dis-
turb the existing formal rules (e.g. for quantifier instantiations or case-splitting).
Similarly to our E-interfaces for abstracting of E-graph details, we plan to do
this in a way which abstracts over the effects of theory deduction steps, without
exposing the solver-specific internals. For example, we can add deduction steps
which extend the E-interface with new terms and/or (dis)equalities, based on a
valid deduction within, say, an integer theory.

Just as for quantifier instantiations, it may be necessary for some applications
to guarantee that theory reasoning is performed under some fairness conditions
(e.g. that inconsistencies detectable by a theory solver are not infinitely post-
poned). Imposing custom fairness constraints on the traces of our semantics for
specific examples can be achieved in a standard way for small-step semantics.

430 R. Ge et al.

While it is clear that extensions to theory solving will be straightforward,
we choose the case study for this paper to be a complex and practically-relevant
axiomatisation which nonetheless does not rely on external theory solvers.

4 Proving Instantiation Termination for E-matching

We now apply our model to prove instantiation termination for a practical E-
matching-based axiomatisation. First, we briefly present our set theory axioma-
tisation, adapted from Dafny and Viper. We then demonstrate our methodology
for constructing instantiation termination proofs using our model.

4.1 Axiomatisation for Set Theory

To assess our formal model, we tackle formal proofs of instantiation termina-
tion for axiomatisations currently employed by state-of-the-art verification tools,
specifically targeting set theory in this paper. Set theory, despite the known chal-
lenges associated with its quantifier instantiation, is extensively used in verifiers.

Drawing from the axioms used by Dafny [18] and Viper [27], we aim to
construct an axiomatisation that (1) faithfully models the core of set theory,
(2) supports various encodings of set theory used by verifiers, and (3) strives
to maintain a balance on triggers to ensure instantiation termination without
harming instantiation completeness.

Our axiomatisation involves 12 uninterpreted functions, representing a wider
range of set operations than the counterparts in Dafny and Viper. Cardinality
operators are, however, removed due to their dependency on external linear
arithmetic solvers (cf. Sect. 3.7 for explanation). Refer to App. C.1 and C.2 of
the TR for a full presentation of our axiomatisation and comparison with theirs.

Dafny and Viper typically use complex “iff” formulas to define set operations,
restricting trigger flexibility as they must apply in both directions of the “iff”.
Inspired by proof systems for formal logic, we redefine set operations using ana-
logues of introduction and elimination axioms, introducing independent triggers
for each implication direction and thereby enhancing trigger flexibility.

Example 5. Below is our elimination rule for set union, named (union-elim),
allowing more alternative triggers than the counterparts from Dafny and Viper.

∀s1, s2, x. [member(x, union(s1, s2))]
[union(s1, s2), member(x, s1)] [union(s1, s2), member(x, s2)]
member (x, union (s1, s2)) → member(x, s1) ∨ member(x, s2)

Our axiomatisation overall has more permissive triggers, which provides more
flexibility for instantiation, but also increases the risk of non-termination. That
instantiation termination holds for our axiomatisation means that Dafny and
Viper’s more restrictive triggers are not necessary to ensure termination.

A Formal Model to Prove Instantiation Termination of E-matching 431

4.2 Progress Measure

To prove instantiation termination for an axiomatisation, it suffices to prove
that querying any set of ground literals on the axiomatisation cannot lead to an
infinite trace in our formal semantics. The proof argument is parametric with
respect to the ground literals in the initial state.9 Drawing inspiration from
program reasoning [7,26], we identify a suitable measure on solver states and
then establish its decrease at appropriate steps in a well-founded manner.

This method leverages the specific features of the axioms under consideration.
We analyse our set theory axioms and classify them by two criteria: (1) whether
instantiating the axiom would potentially generate new quantifiers or new equiv-
alence classes of terms, i.e. new terms modulo equalities, and (2) whether the
axiom contains nested quantifiers.

Non-generative Quantifiers. We call a quantifier non-generative if its instanti-
ations yield neither new quantifiers nor new equivalence classes of terms. The
majority of our set theory axioms are non-generative.

For instance, the (union-elim) axiom from Example 5, when instantiated
with s1 �→a, s2 �→b and x�→t, yields ¬member (t, union (a, b)) ∨ member(t, a) ∨
member(t, b), without the potential (via case-splitting) to introduce new quanti-
fiers or new equivalence classes of terms. The absence of new terms is because all
of t, a, b and union(a, b) are subterms of the matched trigger and hence known.
Bool-sorted terms never add new equivalence classes (cf. Definition 3).

Instantiating a non-generative quantifier reduces the amount of enabled E-
matches by at least one since, on the one hand, history-enabled E-matches pre-
vent instantiating the same quantifier with equivalent matches; on the other
hand, instantiating a non-generative quantifier does not introduce new quanti-
fiers or equivalence classes, thereby not expanding the match pool. This suggests:

Idea 1. Define the progress measure to be about the amount of enabled E-
matches.

Generative Quantifiers. A quantifier is generative if its instantiations may intro-
duce new quantifiers or new equivalence classes of terms. Among our set theory
axioms without nested quantifiers, four are generative, with each potentially cre-
ating new applications of Skolem functions upon instantiation.

For instance, the following (subset-intro) axiom, when instantiated, may cre-
ate a new term Skss(s1, s2) for some sets s1 and s2:

∀s1, s2. [subset(s1, s2)] (subset(s1, s2) ∨ member(Skss(s1, s2), s1)) ∧
(subset(s1, s2) ∨ ¬member(Skss(s1, s2), s2))

9 In fact, it would be straightforward to generalise the termination proof argument,
including the termination theorem, to the ground clauses in the initial state.

432 R. Ge et al.

Similarly, axioms for introducing extensional equality on sets, set disjointness,
and set emptiness—namely (equal-sets-intro), (disjoint-intro), and (isEmpty-
intro-1), respectively—can each produce new applications of Skolem functions:
Skeq(s1, s2), Skdj(s1, s2), and Skie(s), respectively (cf. App. C.1 of the TR).

Generative quantifiers, by introducing new equivalence classes of terms, may
expand the pool of E-matches, including those enabled. We thereby suggest:

Idea 2. Predict new equivalence classes of terms introduced by instantiating gen-
erative quantifiers; incorporate these forecasts to estimate enabled E-matches.

Set theory axioms with nested quantifiers are all generative because their
instantiations can potentially create new quantifiers. Such axioms include
(subset-elim) from Example 3, and axioms (disjoint-elim) and (isEmpty-elim-
1) for eliminating set disjointness and emptiness, respectively (cf. App. C.1 of
the TR).

Instantiating these three axioms does not introduce new equivalence classes
of ground terms. However, since they contain nested quantifiers, their instanti-
ations can create new quantifiers—each with its own set of enabled E-matches,
effectively raising the total amount of enabled E-matches. We therefore propose:

Idea 3. Incorporate predicted effects from instantiating generative quantifiers
with nested quantifier structures to refine estimates of enabled E-matches.

In practice, provided that these ideas are respected, one can often define sim-
pler termination measures via over-approximations of these candidate instanti-
ations (provided this over-approximation remains finite and decreasing).

Formalising a Practical Progress Measure. A basis of an E-interface is a repre-
sentation of the known equivalence classes. We define its overapproximation to
include potential new equivalence classes introduced by generative quantifiers.

Definition 9 (Overapproximation of Basis for Set Theory). Suppose B
is a basis of an E-interface. The functions O1(B) and O2(B) denote overapproxi-
mations for the Set(T)-sorted and T -sorted elements within basis B, respectively,
to accommodate new expected equivalence classes of terms.

O1(B) = filterSet(T)(B)

O2(B) = filterT (B) ∪ Ŝkss(O1(B), O1(B)) ∪ Ŝkeq(O1(B), O1(B))

∪ Ŝkdj(O1(B), O1(B)) ∪ Ŝkie(O1(B))

Here filterSet(T) and filterT take a basis and select its Set(T)-sorted and T -sorted
elements, respectively; each Ŝk is lifted from the corresponding Sk to support sets.

The potential new terms introduced by generative quantifiers are all T -sorted
Skolem terms. Thus predictions are solely performed by O2(B), not by O1(B).

Note that the results of these two overapproximations are guaranteed to be
finite. E-interface bases always remain finite: elements are added (at most) for

A Formal Model to Prove Instantiation Termination of E-matching 433

the new terms introduced in a step. Since our construction filters and e.g. maps
Skolem functions over these finite sets, its results are finite. Leveraging this
overapproximation of equivalence classes, we estimate enabled E-matches.

Definition 10 (Overestimation of Enabled E-matches for Set Theory).
Consider an arbitrary state s = 〈W, A, E〉. Let B be a basis of the E-interface
EI. Define an overestimation of the enabled E-matches for s from B as follows:

P (〈W, A, E〉 , B) = {. . . p�τi
, . . . , p�τj(−→r), . . . }

where p�τi
and p�τj(−→r) each denote a set of tuples that overapproximate the

enabled E-matches from the basis B to the quantifiers with tags �τi and �τj(−→r),
respectively; each tag �τi identifies an original quantifier from W , and each
�τj(−→r) identifies a quantifier introduced by instantiating an original quantifier
�τj from W with terms −→r from approximations O1(B) or O2(B). Original quan-
tifiers from W are those from the axiomatisation, not those introduced at run-
time.

To clarify, examples for each category are presented as follows; the remaining
quantifiers shall adhere to the same pattern.
– An (original) non-generative quantifier:

p�union-elim = {(s1, s2, x) | s1, s2 ∈ O1(B), x ∈ O2(B),
E �hist (�union-elim : (s1, s2, x))}

– An (original) generative quantifier without nested quantifiers:
p�subset-intro = {(s1, s2) | s1, s2 ∈ O1(B) ; E �hist (�subset-intro : (s1, s2))}

– An (original) generative quantifier with nested quantifiers:
p�subset-elim = {(s1, s2) | s1, s2 ∈ O1(B) ; E �hist (�subset-elim : (s1, s2))}

– A quantifier introduced by instantiating an (original) generative quantifier:
p�subset-elim(a, b) = {x | x ∈ O2(B) ; E �hist (�subset-elim(a, b) : x)}
where a, b ∈ O1(B).

We define a progress measure for our set theory axiomatisation. The first and
foremost ingredient of our progress measure is an overestimation on the amount
of enabled E-matches. We anticipate that this overestimation strictly descents
after each instantiation step and does not ascend after each case-splitting step.
The second ingredient is the amount of unsatisfied current clauses, which we
expect to descent by at least one after each case-splitting step. The result of the
progress measure is a lexicographically ordered pair of the above two ingredients.

Definition 11 (Progress Measure for Set Theory). We define the progress
measure M : State −→ (N ∪ {−1})2, as follows, where ‖·‖ denotes cardinality.

M (s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∑

p∈P (〈W,A,E〉,B)
‖p‖ ,

∥
∥{

C ∈ A | W, EI ��sat C
}∥

∥
)

if s = 〈W, A, E〉

and B is a basis for EI
(

−1, −1
)

if s = ⊥ or ♦

Inconsistent or saturated states are assigned (the smallest) measures (−1, −1).
The order on (N ∪ {−1}) is the natural extension of that on N.

434 R. Ge et al.

4.3 Invariants and Termination Theorem

Drawing on program reasoning, we anticipate classical techniques such as induc-
tion variants can be employed to termination proofs. We maintain two kinds of
induction variants: general-purpose and problem-specific invariants.

General-purpose invariants uphold the integrity of our formal semantics,
remaining valid across all applications. For example, the E-history EH of an
arbitrary state s = 〈W, A, E〉 must be up to date w.r.t. the current quantifiers
W and E-interface EI. That is, for every pair (�τ : −→r) from EH, there exists
a quantifier ∀−→x .

−→
[T]A from W whose tag is �τ , the dimension of −→x is equal to

that of −→r , EI �kn
−→r , and EI �kn

−→
t [−→r/−→x] for some trigger set −→

t from
−→
[T]. (cf.

App. A of the TR for more invariants.)
Problem-specific invariants are tailored to the distinct features of each prob-

lem, focusing on properties of solver states reachable from specified initial states,
and tracing the origins of terms in intermediate states. For example, consider an
arbitrary intermediate state 〈W, A, E〉: for each extended clause in A of the form
¬member (t, union (a, b)) ∨ member(t, a) ∨ member(t, b), (�union-elim : (a, b, t)) ∈
EH holds; the tag being for the axiom (union-elim) discussed in Example 5. This
invariant concerns the origins of the extended clauses in the current clauses A.
Case-splitting on a current clause (e.g. the one above) may seem to introduce a
new term, but this invariant indicates that this term is not new—it is equal to
a known term that triggered a prior instantiation, as tracked by the E-history
EH. This ensures a traceable lineage for each clause, linking it back to a specific
quantifier in the E-history. (cf. App. B of the TR for more invariants.)

We finally define the instantiation termination theorem for our set theory
axiomatisation, proven by induction on traces leveraging both general-purpose
and set-theory-specific invariants. Note that termination is proved against an
arbitrary set of ground literals—this works because our progress measure and
invariants are defined parametrically with the current state. Given these right
invariants and termination measure, the proof is straightforward (cf. App. B
of the TR). This theorem guarantees the absence of matching loops in this
axiomatisation; practitioners of this axiomatisation hence can confidently seek
terminating answers to ground theory queries.

Theorem 1 (Instantiation Termination for Set Theory). Suppose L is
an arbitrary set of ground literals. The initial state is s0 = 〈W0, A0, E0〉, where
W0 is our axiomatisation for set theory with tags, A0 = ∅, EI

0 = ∅ � L, and
EH

0 = ∅. Any sequence of transitions from the initial state s0, where −→ defined
in Sect. 3.5 represents the transition relation, has a finite length.

A Formal Model to Prove Instantiation Termination of E-matching 435

5 Related Work

For the purpose of program verification, where SMT solvers are used to prove
unsatisfiability, E-matching is widely used to handle quantifiers. The idea of
E-matching dates back to Nelson [25], which was first put into practice in Sim-
plify [8]. Since then, efficient handling of E-matching-based quantifier instanti-
ation has been studied by, e.g. de Moura and Bjørner [21] for Z3, Ge et al. [14]
for CVC3, Bansal et al. [1] for Z3 and CVC4, and Moskal et al. [20] for Fx7.
When satisfiable results and their models are of interest, model-based quantifier
instantiation (MBQI) [15] can be used to handle quantifiers.

Dross et al. [9–11] formally define and reason about instantiation termination
in a similar context. They define a novel logic with first-class triggers, introduce
instantiation trees as algebraic objects to help define termination, and provide
an ingenious technique for showing, for their implementation in Alt-Ergo, that
finding a single finite instantiation tree is sufficient for termination.

Despite being a powerful tool for numerous deep meta-theoretic results [9],
we believe that applying a formal inductive construction of instantiation trees for
larger examples would be complex in practice: existing examples focus instead on
bounds for the sets of terms ever generatable by a solver run. These arguments
closely relate to our inductive termination proofs over traces. Our work enables
detailed formal proofs based directly on such familiar notions from program
reasoning, including inductive invariants and well-founded measures.

The approach of this prior work also requires restrictions on solver behaviour,
including fairness of quantifier instantiation, and eager application of theory
deductions (via entailments in their custom logic)10. Our operational model and
termination proofs do not require or build in such assumptions. Still, restricting
our traces (e.g. with fairness constraints) would be simple to do if desired for
specific applications. Our weak assumptions make our approach (extended with
appropriate theory deduction steps) applicable to SMT solvers broadly; solvers
such as Z3 [22] and cvc5 [2] commonly interleave theory reasoning and quantifier
instantiation in (bounded or exhaustive) rounds of multiple steps.

The Axiom Profiler [4] leverages Z3 log files to provide comprehensive sup-
port for analysing quantifier instantiations. The tool focuses on helping users
effectively understand and debug problematic solver runs, rather than proving
their absence. It was validated by empirical evidence rather than formal proofs.

Existing works on the termination of SMT transition systems [3,5,6,23]
demonstrate that divergence is prevented by ensuring all new terms derive from
a finite basis. In contrast, in our work, a finite basis does not imply termination—
the basis can grow. At a high level these works prove that certain solver aspects
always terminate. However, E-matching cannot have this property; instead it
places the onus on the author of an axiomatisation to achieve termination
through careful selection of axioms and triggers, motivating a user-facing model.

10 We explain how to simply add theory steps to our operational model in Sect. 3.7.

436 R. Ge et al.

6 Conclusion and Future Work

We have shown a novel model for E-matching as widely employed in SMT
solvers, abstracting over solver details while enabling detailed and formal proofs
of instantiation termination. Our model has been shown to apply directly and
rigorously to the kinds of axiomatisations used in practical verification tools.

In future work, we would like to explore axiomatisations that rely on more-
restricted characteristics of a solver, such as fairness of instantiation selection or
theory reasoning steps. Similarly to our E-interfaces, we will investigate suitable
abstractions over theory solver interactions incorporated into a proof search.

While instantiation termination is a much sought-after property, the com-
plementary problem of guaranteed instantiation completeness is a natural next
target to investigate with our novel operational model, which may require us to
also explore various fairness restrictions of our model’s transition relation.

Acknowledgments. We thank the anonymous reviewers, Mark R. Greenstreet and
Yanze Li for their detailed and constructive suggestions. We are very grateful to Claire
Dross for putting generous time and energy into thoughtful feedback for us. This work
has been partly funded by NSERC Discovery Grants held by Garcia and Summers.

References

1. Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local theory
extensions via e-matching. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 87–105. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3_6

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

3. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277_35

4. Becker, N., Müller, P., Summers, A.J.: The axiom profiler: understanding and
debugging SMT quantifier instantiations. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 99–116. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0_6

5. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: transition system and completeness. J. Autom. Reason.
64(3), 579–609 (2020). https://doi.org/10.1007/s10817-018-09510-y

6. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: lemmas, modules, and proofs. J. Autom. Reason. 66(1),
1–49 (2022). https://doi.org/10.1007/s10817-021-09606-y

7. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011). https://doi.org/10.1145/1941487.1941509

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.1066102

https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/s10817-018-09510-y
https://doi.org/10.1007/s10817-021-09606-y
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1145/1066100.1066102

A Formal Model to Prove Instantiation Termination of E-matching 437

9. Dross, C.: Generic decision procedures for axiomatic first-order theories. Ph.D.
thesis, Université Paris Sud - Paris XI (2014). https://tel.archives-ouvertes.fr/tel-
01002190

10. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In:
Fontaine, P., Goel, A. (eds.) SMT 2012. EPiC Series in Computing, vol. 20, pp.
22–31. EasyChair (2013). https://doi.org/10.29007/3C1N

11. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to
SMT solvers using axioms with triggers. J. Autom. Reason. 56(4), 387–457 (2016).
https://doi.org/10.1007/s10817-015-9352-2

12. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

13. Ge, R., Garcia, R., Summers, A.J.: A formal model to prove instantiation termi-
nation for E-matching-based axiomatisations (extended version). Technical report.
arXiv:2404.18007 (2024). https://doi.org/10.48550/arXiv.2404.18007

14. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 167–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3_12

15. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

16. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_20

17. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

18. Microsoft: Set Axiomatisation (2014). https://github.com/dafny-lang/dafny/
blob/master/Source/DafnyCore/DafnyPrelude.bpl. Accessed 05 Feb 2024

19. Moskal, M.: Programming with triggers. In: SMT 2009, pp. 20–29. Association
for Computing Machinery, New York (2009). https://doi.org/10.1145/1670412.
1670416

20. Moskal, M., Łopuszański, J., Kiniry, J.R.: E-matching for fun and profit. Electron.
Notes Theor. Comput. Sci. 198(2), 19–35 (2008). https://doi.org/10.1016/j.entcs.
2008.04.078

21. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3_13

22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

23. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

24. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

https://tel.archives-ouvertes.fr/tel-01002190
https://tel.archives-ouvertes.fr/tel-01002190
https://doi.org/10.29007/3C1N
https://doi.org/10.1007/s10817-015-9352-2
https://doi.org/10.1007/978-3-642-37036-6_8
http://arxiv.org/abs/2404.18007
https://doi.org/10.48550/arXiv.2404.18007
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://github.com/dafny-lang/dafny/blob/master/Source/DafnyCore/DafnyPrelude.bpl
https://github.com/dafny-lang/dafny/blob/master/Source/DafnyCore/DafnyPrelude.bpl
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1016/j.entcs.2008.04.078
https://doi.org/10.1016/j.entcs.2008.04.078
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2

438 R. Ge et al.

25. Nelson, C.G.: Techniques for program verification. Technical report CSL-81-10,
Xerox Palo Alto Research Center (1981)

26. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69. University Mathematical Laboratory,
Cambridge, UK (1949)

27. Viper Project Team: Set Axiomatisation (2021). https://github.com/viperproject/
carbon/blob/master/src/main/scala/viper/carbon/modules/impls/sequence_
axioms/SetAxiomatization.scala. Accessed 05 Feb 2024

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/viperproject/carbon/blob/master/src/main/scala/viper/carbon/modules/impls/sequence_axioms/SetAxiomatization.scala
https://github.com/viperproject/carbon/blob/master/src/main/scala/viper/carbon/modules/impls/sequence_axioms/SetAxiomatization.scala
https://github.com/viperproject/carbon/blob/master/src/main/scala/viper/carbon/modules/impls/sequence_axioms/SetAxiomatization.scala
http://creativecommons.org/licenses/by/4.0/

Fast and Verified UNSAT Certificate
Checking

Peter Lammich(B)

University of Twente, Enschede, Netherlands
p.lammich@utwente.nl

Abstract. We describe a formally verified checker for unsatisfiability
certificates in the LRAT format, which can be run in parallel with the
SAT solver, processing the certificate while it is being produced. It is
implemented time and memory efficiently, thus increasing the trust in
the SAT solver at low additional cost.

The verification is done w.r.t. a grammar of the DIMACS format and
a semantics of CNF formulas, down to the LLVM code of the checker.
In this paper, we report on the checker and its design process using the
Isabelle-LLVM stepwise refinement approach.

Keywords: UNSAT certificates · LRAT · Isabelle-LLVM · Verified
Software

1 Introduction

SAT solvers are highly complex and highly optimized programs, which are used
to verify critical properties of other systems. To increase the trust in them,
SAT solvers produce certificates that can be independently checked by formally
verified checkers [5,9,10,16,23,34,35]. Here, the focus is on certificates for unsat-
isfiability, as certificates for satisfiability are (considered) trivial.

Typically, certificate checking proceeds in two phases: An unverified elabora-
tor adds additional information to the certificate produced by the SAT solver,
and then a formally verified checker checks the elaborated certificate against the
original formula. This approach moves some complicated and computationally
expensive tasks into the unverified elaborator, making checking of the elaborated
certificate simpler and less expensive.

However, the elaborator has to recompute information which is, in principle,
known to the solver, and elaboration typically takes as long as solving. More
recent techniques accelerate elaboration by including this information into the
certificate [2]. The most recent development are solvers that directly produce
elaborated certificates [29]. This allows for streaming the certificates from the
solver into the checker: solving and checking are done in parallel, and the poten-
tially large certificates need not be stored on disk. When implemented appropri-
ately, the memory footprint of the checker is similar to that of the solver.

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 439–457, 2024.
https://doi.org/10.1007/978-3-031-63498-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_26&domain=pdf
http://orcid.org/0000-0003-3576-0504
https://doi.org/10.1007/978-3-031-63498-7_26

440 P. Lammich

There are different formats for elaborated unsatisfiability certificates, such as
PB [4] and GRAT [23]. The de-facto standard is the LRUP format [10], and its
backwards compatible generalizations LRAT [9] and LPR [35]. These correspond
to the non-elaborated DRUP [17], DRAT [36], and DPR [35] formats. With an
exception in 2023, LRUP is sufficient for all top performing solvers in the SAT
competitions of the last years [29].

In this paper, we present a formally verified checker that can stream LRUP
certificates. We benchmark our tool on the CaDiCaL solver [29], where it only
causes a minimal additional computation overhead, and has a memory usage sim-
ilar to that of the solver. Our checker is as fast as the highly optimized unverified
lrat-trim checker [29], and at least one order of magnitude faster than any other
verified checker we know of. Using the Isabelle Refinement Framework [22], our
checker is verified down to the LLVM intermediate representation [26] of its
code, and against a formal grammar of the DIMACS CNF format, which is the
standard for representing CNF formulas [32]. To the best of our knowledge, our
checker is the first that comes with a verified parser. Our tool and benchmark
data is available at https://github.com/lammich/lrat_isa.

In the rest of this paper, we describe our formal specification (Sect. 2),
the abstract certificate checking algorithm (Sect. 3), and its implementation
(Sect. 4). We then report on our benchmark results (Sect. 5). Finally we con-
clude the paper and discuss related and future work (Sect. 6).

2 Specification

We prove soundness of our checker, i.e., it accepts a string only if it is a repre-
sentation of an unsatisfiable formula in DIMACS CNF format1. In this section
we present the formalization of this specification.

2.1 Conjunctive Normal Form

Throughout this paper, we will use some simplified Isabelle/HOL notation, and
explain unusual notations where they first occur. For definitions we use ≡. Data
types are written in prefix notation, e.g., lit set for a set of literals. Function
application is denoted as f x1 . . . xn.

The following is the abstract syntax and semantics of CNF, taken from the
GRAT tool [23] and slightly adapted to our needs:

typedef var ≡ {v::nat. v �= 0}
lit ≡ Pos var | Neg var clause ≡ lit set cnf ≡ clause set

valuation ≡ var ⇒ bool
sem lit :: lit ⇒ valuation ⇒ bool

1 Note that proving completeness is less interesting: even if we show that our checker
accepts all valid certificates, the elaborator or solver may still fail to produce one.
We verify completeness empirically on a large set of benchmarks.

https://github.com/lammich/lrat_isa

Fast and Verified UNSAT Certificate Checking 441

sem lit (Pos v) σ ≡ σ v sem lit (Neg v) σ ≡ ¬ σ v

sem cnf :: cnf ⇒ valuation ⇒ bool
sem cnf F σ ≡ ∀C∈F. ∃l∈C. sem lit l σ

sat :: cnf ⇒ bool sat F ≡ ∃σ. sem cnf F σ

A variable is a positive natural number, a literal is a positive or negative variable,
a clause is a set of literals, and a cnf-formula is a set of clauses. A valuation
assigns truth values to variables. For a valuation σ, the semantics assigns truth
values to literals (sem lit) and formulas (sem cnf): a positive literal is true iff its
variable is true, and a negative literal is true iff its variable is false. A formula
is true iff every clause contains a true literal, and it is satisfiable if there is a
valuation for which it is true.

2.2 Specification of the DIMACS CNF Format

Fig. 1. Example formula in
DIMACS CNF

DIMACS CNF is the de-facto standard format
for representing CNF formulas. Figure 1 displays
an example: the file can start with optional com-
ment lines, indicated by a heading ‘c’. After the
comments, there is a header of the form p cnf n
m, where n is the maximum variable, and m is
the number of clauses. Then the clauses follow,
encoded as zero-terminated sequences of integers,
where a positive integer represents a positive lit-
eral, and a negative integer represents a negative literal. We need to specify how
a word in DIMACS format corresponds to a formula. While a language is a set
of words, we use a relation between words and corresponding abstract syntax.
By slight abuse of naming, we call such relations grammars. We shallowly embed
regular grammars into Isabelle HOL’s logic:

(′a,′r) gM ≡ (′a list × ′r) set
return x ≡ {([],x)} 〈C〉 ≡ { ([c],c) | c∈C }
bind g f ≡ { (w1@w2,r) | ∃x. (w1,x) ∈ g ∧ (w2,r) ∈ f x }

Here, (w, r) ∈ g means that the grammar g relates the word w to the result r.
The empty relation {} corresponds to the empty language. The relation return x
relates the empty word to the result x. It corresponds to the language {[]} of
only the empty word. The relation 〈C〉 relates single-character words to the
corresponding character from the set C. Finally, the relation bind g f relates a
word w1w2 to a result r, if g relates w1 to some intermediate result x, and f x
relates w2 to r. This corresponds to concatenation of languages.

The type gM is a monad, and we use the usual shortcut notation for bind:

x←g; f x ≡ bind g (λx. f x) g1;g2 ≡ bind g1 (λ . g2)

442 P. Lammich

We also define shortcuts to apply a function to the result of a monad, to lift a
binary function into a monad, and to concatenate two grammars, ignoring the
result of the latter:

a 〈&〉 f ≡ x←a; return (f x)
lift2 f a b ≡ x←a; y←b; return (f x y)
a � b ≡ r←a; b; return r

We then define the relational versions of the power function and the Kleene star:

g pow g 0 ≡ return [] g pow g (n+1) ≡ lift2 (#) g (g pow g n)
g∗ ≡ ⋃

n::nat. g pow g n

where x#xs prepends the element x to the list xs. That is, g pow g n and g∗

relate the input to lists, the elements being the results produced by g. We also
define g? ≡ (g 〈&〉 Some) ∪ (return None).

Using the grammar monad, we specify a grammar for the simplified DIMACS
format as used by SAT competitions since 2009 [32]. We start with defining sets
of ASCII characters:

whitespace, digits1, digits :: 8 word set
whitespace ≡ {‘ ’, ‘\t’, ‘\n’, ‘\v’, ‘\f ’, ‘\r’}
digits1 ≡ {‘1’, . . . , ‘9’} digits ≡ {‘0’, . . . , ‘9’}

Here, 8 word is the 8-bit word type from Isabelle’s machine word library [3,11].
Note whitespace includes all 6 ASCII whitespace characters. Based on this, we
define a grammar g dimacs :: (8 word × cnf) set:

g ws ≡ 〈whitespace〉∗; return () g ws1 ≡ 〈whitespace〉; g ws

g variable ≡ x←〈digits1〉; xs←〈digits〉∗; return (nat of str (x#xs)))
g literal ≡ (〈{‘-’}〉; g variable 〈&〉 Neg) ∪ (g variable 〈&〉 Pos)
g clause ≡ (g literal � g ws1)∗ 〈&〉 set � 〈{‘0’}〉
g cnf ≡ (return {})

∪ (c←g clause; cs ← (g ws1; g clause)∗; return ({c} ∪ set cs))

g comment ≡ 〈{‘c’}〉; 〈−{‘\n’}〉∗; 〈{‘\n’}〉; return ()
g p header ≡ 〈{‘p’}〉; 〈−{‘\n’}〉∗; 〈{‘\n’}〉; return ()
g comments ≡ (g ws ∪ g comment)∗; return ()
g dimacs ≡ g comments; g p header?; g ws; g cnf � g ws

Here, nat of str :: 8 word list ⇒ nat converts a string to a natural number, and
set :: ′a list ⇒ ′a set yields the set of elements in a list.

Note that we do not check the contents of the header, which contains auxiliary
information for parsing, but does not affect the represented formula. We also
accept multiple clauses per line and clauses spanning several lines, as well as extra
whitespace anywhere in the file. Many SAT solvers support similar relaxations
of the format, and we wanted this flexibility in our tool, too.

Fast and Verified UNSAT Certificate Checking 443

As a sanity check, we prove that our grammar is unambiguous, i.e., that it
relates the same word to at most one formula:

(w, f1) ∈ g dimacs ∧ (w, f2) ∈ g dimacs =⇒ f1 = f2

2.3 Correctness Specification

At this point, we can formalize the postcondition for our checker’s specification:
∃F. (w,F) ∈ g dimacs ∧ ¬sat F means that the sequence of bytes w is a valid
DIMACS CNF representation of an unsatisfiable formula.

3 Certificates for Unsatisfiability

RUP (reverse unit propagation) certificates contain the clauses learned by the
solver. The checker justifies that addition of each clause preserves satisfiability.
For an unsatisfiable formula, the last learned clause is the empty clause. Adding
the empty clause yields an unsatisfiable formula, and, as each clause addition is
justified to preserve satisfiability, the original formula is unsatisfiable, too.

Justification is done by reverse unit propagation [14]: a clause C can be added
to the formula F , if the formula F ∧¬C is unsatisfiable, and if this can be shown
by generating an empty clause via unit propagation. For RUP, the checker has to
implement unit propagation itself, for example with a two-watched-literals data
structure [28]. LRUP (linear RUP) certificates annotate each clause addition,
with the relevant unit clauses in the order they become unit, and the final conflict
clause. This makes the checker simpler and more efficient, as it only needs to
check if clauses are unit, rather then find unit clauses.

The certificates also contain clauses deleted by the solver. This allows the
checker to also delete those clauses from its data structures, freeing up memory.
Note that deleting a clause trivially preserves satisfiability.

The actual LRUP format uses natural numbers to identify clauses, rather
than spelling them out whenever they are referenced. The n clauses of the initial
formula implicitly get the ids [1, . . . , n]. A clause addition has the form <id>
<literal>* 0 <id>+ 0. It consists of the id under which this clause shall be
added, a zero-terminated list of the literals of the clause, and a zero terminated
list of the unit clauses and the conflict clause to justify the addition. A clause
deletion has the form <id>+ 0, and consists of a zero terminated list of the ids
of the clauses to be deleted. There is an ASCII and a more compact binary
encoding for LRUP certificates.

3.1 Abstract Checker

In this section, we present our formalization of the abstract checker algorithm.
We start with defining some basic concepts:

444 P. Lammich

− :: lit ⇒ lit −Pos v ≡ Neg v −Neg v ≡ Pos v
pan ≡ lit ⇒ bool consistent (A::pan) ≡ ∀l. ¬ (A l ∧ A (−l))
sat wrt F A ≡ ∃σ. sem cnf F σ ∧ (∀l. A l =⇒ sem lit l σ)
conflict A C ≡ ∀l∈C. A (−l)
is uot A C l ≡ l∈C ∧ ¬A(−l) ∧ (∀l′∈C−{l}. A(−l′))
taut C ≡ ∃l. l∈C ∧ −l∈C

The literal −l is the negation of the literal l. A partial assignment (pan) charac-
terizes a set of literals that are assigned (to true). It is consistent if it does not
assign both a literal and its negation. A formula F is satisfiable w.r.t. a partial
assignment A (sat wrt F A), if A can be extended to a satisfying valuation; A
is in conflict with a clause C (conflict A C), if the negations of all the clause’s
literals are assigned. The clause C is unit or true w.r.t. A and a literal l (is uot
A C l), if l is the only literal in C whose negation is not assigned. A clause is a
tautology (taut C), if it contains both a literal and its negation.

Correctness of a RUP step adding C to F is implied by the following lemmas:

(1) Let C be a non-tautological clause. Then, the initial assignment λl. −l∈C,
which assigns the negated version of each literal in C, is consistent, and
F ∧ ¬C is satisfiable iff F is satisfiable w.r.t. the initial assignment:

¬taut C =⇒ consistent (λl. −l∈C) ∧ sat (F ∧ ¬ C) = sat wrt F (λl. −l∈C)

(2) If the formula contains a unit or true clause, assigning its literal preserves
consistency and does not change satisfiability:

consistent A ∧ C∈F ∧ is uot A C l
=⇒ consistent (A(l := True)) ∧ sat wrt F A = sat wrt F (A(l := True))

(3) If the formula contains a conflict clause, it is unsatisfiable:

consistent A ∧ C∈F ∧ conflict A C =⇒ ¬sat wrt F A

Note that the learned clause cannot be a tautology. While adding tautolo-
gies trivially preserves satisfiability, they yield an inconsistent initial assign-
ment. Instead of spending computation time to detect tautologies, we let
our checker run with the inconsistent assignment: should it succeed, we add
the clause, which is safe.

We formalize the abstract checker as a transition system over the state:

checker state ≡ CNF formula | CLS formula clause pan
| PRF formula clause pan | PDN formula clause | UNSAT | FAIL

The transition relation → is the least relation that satisfies the following rules:

(del clauses) F′ ⊆ F =⇒ CNF F → CNF F′

(start clause) CNF F → CLS F {} (λ . False)
(add lit) CLS F C A → CLS F ({l} ∪ C) (A(−l:=True))
(start proof) CLS F C A → PRF F C A
(add unit) uC∈F ∧ is uot A uC ul

=⇒ PRF F C A → PRF F C (A(ul:=True))

Fast and Verified UNSAT Certificate Checking 445

(add conflict) uC∈F ∧ conflict A uC =⇒ PRF F C A → PDN F C
(finish proof) C �={} =⇒ PDN F C → CNF ({C} ∪ F)
(finish proof unsat) PDN F {} → UNSAT
(to fail) s → FAIL

The checker starts in state CNF F, with some formula F . To delete clauses
(del clauses), they are removed from F . A clause addition is split into mul-
tiple smaller steps: First, we initiate adding a clause by going to state CLS
(start clause). We also maintain a partial assignment, starting with the empty
assignment λ . False. We then add the literals of the clause, one by one (add lit).
For each added literal l, we assign the negated literal −l. When all literals have
been added, we start the proof (start proof) going to state PRF. During the
proof, we add unit clauses, assigning the unit literal (add unit). When we have
added enough unit clauses, we add a conflict clause (add conflict), going to state
PDN (proof done). From there, we either go to state UNSAT if we have proved
the empty clause (finish proof unsat), or back to state CNF with the new clause
added to the formula (finish proof). We can always go to FAIL (to fail), indi-
cating that the proof failed.

With the above Lemmas 1–3, some bookkeeping that add lit steps construct
the correct initial assignment, and a special case for tautologies, we prove:

Theorem 1 (Soundness of Abstract Checker). If the abstract checker can
reach UNSAT from the initial state CNF F, then the formula F is unsatisfiable:
CNF F →∗ UNSAT =⇒ ¬sat F

Note that we do not yet model clause identifiers on this level. They will be
introduced in a later refinement step.

4 Implementation

We have specified a grammar to relate strings in DIMACS format to formulas, a
semantics to define satisfiability of formulas, and an abstract certificate checker.
We now refine these to the actual implementation of a certificate checker.

We use the Isabelle Refinement Framework [24], which supports refinement in
multiple steps and in a modular fashion. Each step focuses on a different aspect of
the algorithm, thus structuring the correctness proof, and making it manageable
in the first place. In this section, we first describe the data structures that we
use in our implementation, to represent abstract concepts such as literals and
clauses (cf. Sect. 2.1). We then describe how we implement the abstract checker
algorithm (cd. Sect. 3.1), using these data structures. Finally, we describe how
we integrate the checker with the parser, to obtain the actual verified tool.

4.1 Basic Concepts and Data Structures

We use data structures such as arrays, dynamic arrays, and array lists from
Isabelle LLVM’s library [22]. For technical reasons, sizes and counters are imple-
mented as non-negative signed 64-bit integers, or, equivalently, as unsigned 64-
bit integers less than 263. Formally, refinement relations between concrete and

446 P. Lammich

abstract types are used. For example, size rel :: (64 word × nat) set relates
non-negative 64-bit signed integers to natural numbers. Similarly, Booleans are
implemented by 1-bit words, via the relation bool1 rel :: (1 word × bool) set.

Clause identifiers are modelled as 64-bit unsigned integers less than 263 − 1,
via the relation cid rel :: (64 word × nat) set. This bound allows us to use clause
identifiers as indexes into an array whose length is represented by a size.

Literals are first refined to natural numbers via nlit rel :: (nat × lit) set,
where a number n > 1 represents the variable �n/2�, and the literal is negative iff
n is odd. The natural numbers are further refined to unsigned 32-bit integers, via
u32 rel :: (32 word × nat) set. When we compose the two refinement relations,
we get a relation between 32-bit integers and literals: ulit rel ≡ u32 rel O nlit rel.
Using 0 for None, we can also refine optional literals to 32-bit integers via the
relation ulito rel :: (32 word × lit option) set. For each operation on the abstract
data type, we define a corresponding operation on the concrete data type. For
example, we define:

nlit neg :: nat ⇒ nat nlit neg n ≡ if even n then n+1 else n−1
ulit neg :: 32 word ⇒ 32 word ulit neg w ≡ w XOR 1

We show that the concrete operations refine their abstract counterparts:

ulit neg, nlit neg :: u32 rel → u32 rel nlit neg, (−) :: nlit rel → nlit rel

Here, f,g :: R1 → R2 is a shorthand notation for ∀(x,y)∈R1. (f x, g y) ∈ R2.
Combining these refinement theorems yields ulit neg, (−) :: ulit rel → ulit rel.

Clauses are implemented as zero-terminated arrays of 32-bit words, via the
relation zcl assn :: 32 word ptr ⇒ clause ⇒ assn. As arrays are stored on the
heap, this relation is expressed as separation logic assertion (assn). By conven-
tion, pure refinement relations have the suffix rel, while those that use the heap
have the suffix assn.

A clause database cdb ≡ nat ⇒ clause option is a partial function from
clause identifiers to clauses. It is implemented by a dynamic array of pointers to
clauses cdbi ≡ 32 word ptr larray, via cdb assn :: cdbi ⇒ cdb ⇒ assn. The array
is indexed by the clause identifier. For clause identifiers not in the database,
the array contains a null pointer. Consider the abstract operation cdb ins cid C
db that inserts a clause C with identifier cid into the database db, its concrete
version cdb ins impl, and the corresponding refinement theorem:

cdb ins :: nat ⇒ clause ⇒ cdb ⇒ cdb
cdb ins impl :: 64 word ⇒ 32 word ptr ⇒ cdbi ⇒ cdbi
cdb ins impl, cdb ins :: cid rel → zcl assnd → cdb assnd → cdb assn

The concrete operation destructively updates the array, thus the abstract cdb
parameter does no longer correspond to any concrete value. Also, the ownership
of the inserted clause is transferred into the clause database, thus the abstract
clause parameter does no longer correspond to any (visible) concrete value. We
call those parameters destroyed, indicated by a d in the refinement theorem [21].

Fast and Verified UNSAT Certificate Checking 447

4.2 Data Structures with Capacity Bounds

Several data structures in our checker use counters. For example, during parsing,
the literals of a clause are collected in an array list, which uses a counter for its
size. We prove non-overflow of these counters from the bounded size of the CNF
file, and a limit on how many literals we can read from the certificate before the
checker rejects it2. While we elide the details, we note that some abstract data
structures have a capacity bound field. This is a ghost field, i.e., it is not present
in the implementation.

The clause builder uses a dynamic array to store the literals of the clause
that is currently parsed, and also keeps track of the maximum literal encoun-
tered so far. Its abstract type is cbld ≡ nat × lit list × nat. A clause builder
(ml,ls,bnd) :: cbld consists of the maximum encountered literal ml, the current
list of literals ls, and a (ghost) bound bnd that limits the length of ls. We define
a data type invariant cbld inv :: cbld ⇒ bool that characterizes valid clause
builders (i.e., the bound and maximum literal are consistent with the list of lit-
erals). The relation cbld assn :: (32 word × 32 word array list) ⇒ cbld ⇒ assn
implements clause builders.

A partial assignment (cf. Sect. 3.1) is implemented by an array of bits indexed
by the literals, as well as an array list that contains all set literals. This array list
allows for efficiently resetting the assignment in between proof steps. We use the
type rpani :: 1 word larray × 32 word array list for the implementation, and
rpan :: bool list × nat list × nat for the functional representation, related by
rpan assn :: rpani ⇒ rpan ⇒ assn. The last field of rpan is a (ghost) capacity
bound. The type rpan comes with an invariant rpan inv, and an abstraction
function rpan α :: rpan ⇒ pan to the encoded partial assignment.

4.3 Proof Checker Implementation

We implement the abstract checker state (Sect. 3.1) by the following types:

cs op ≡ bool × bool × cdb × cbld × rpan — outside proof (CNF, UNSAT)
cs bc ≡ bool × rpan × cbld × cdb — build clause (CLS)
cs ip ≡ bool × bool × rpan × cbld × cdb — inside proof (PRF, PDN)

All data structures start with an error flag, which indicates a failed proof
(abstract state FAIL). Outside a proof, i.e., in abstract states CNF and UNSAT,
the checker state is represented by a tuple (err,unsat,db,bld,A) :: cs op, where
unsat indicates that the formula has been proved unsatisfiable and db is the
clause database holding the formula. The builder state bld and assignment A
are unused here, but threaded through such that they can be reused when the
next proof begins. When building a clause (abstract state CLS), the state is rep-
resented as (err,A,bld,db) :: cs bc. Finally, inside a proof (abstract states PRF
and PDN), the state is (err,confl,A,bld,db) :: cs ip. Here, confl indicates that a
conflict clause has been found.
2 The size of the formula plus the number of literals in the certificate cannot exceed
263. We don’t expect this limit to be ever hit in practice.

448 P. Lammich

We define invariants cs op inv, cs bc inv, cs ip inv; and abstraction func-
tions cs op α, cs bc α, cs ip α to the abstract checker state. We then show
that the functions on the concrete states preserve the invariants and implement
the transition relation →∗ on the corresponding abstract states. For example,
the following function handles a proof step, adding a unit or a conflict clause:

cs prf step :: nat ⇒ cs ip ⇒ cs ip nres
cs ip inv cap cs ∧ cap>0
=⇒ cs prf step cid cs ≤ spec cs′. cs ip inv (cap−1) cs′

∧ (cs ip α cs) →∗ (cs ip α cs′)

Here, ’a nres is the Isabelle Refinement Framework’s type of programs that
return a result of type ’a, and P =⇒ c ≤ spec r. Q r is a Hoare-triple with
pre- condition P, program c, and postcondition Q [24]. That is, if the concrete
checker state cs has some capacity left, then the cs prf step function preserves
the invariant cs ip inv and implements the abstract transition relation →. The
available capacity of the checker state decreases by one.

Fig. 2. Function to check if a clause is unit, true, or
conflict.

The implementation of
cs prf step uses a function
to check if a clause is unit,
true, or a conflict. It is
displayed in Fig. 2. It first
checks (l. 3) if the clause
identifier is valid, and looks
it up in the database (l. 4).
Then (l. 6), it loops over
the literals of the clause,
maintaining a state consist-
ing of an optional literal
and an error flag (ul,err).
Initially (l. 11), the state
is (None,False). The loop

assigns to ul the first literal that is not false (l. 9). If a second non-false lit-
eral is encountered, the error flag is set (l. 10). The function returns the state
after the loop, or (None,True) if the clause was invalid (l. 12). Note that we
assume (l. 5) a finite clause. On the abstract level, we can use this to justify
termination of the loop. When implementing the function, we have to prove
finiteness, which is trivial, as the clause is stored in an array. Dually, we assert
(l. 7) that the literals of the clause are in bounds of the assignment. This has
to be proved on the abstract level. When implementing, we can use it to justify
that the array access for looking up the literal is in bounds. This way, assertions
and assumptions are used to pass proof obligations up and down the refinement
chain, proving them at the most convenient abstraction level.

The loop in check uot is the innermost loop of the checker, and special care
has been taken to optimize it: while an actual certificate always contains unit
clauses, we also allow clauses with one true literal (cf. is uot in Sect. 3.1). This
avoids indexing both A(l) and A(−l) to distinguish between the two cases.

Fast and Verified UNSAT Certificate Checking 449

The correctness theorem for check uot is as follows:

rpan inv A ∧ cdb cid = Some C ∧ cdb vars cdb ⊆ rpan dom A =⇒
check uot cdb cid A ≤ spec (ul,err). ¬ err −→ case ul of
Some l ⇒ is uot (rpan α A) C l | None ⇒ conflict (rpan α A) C

I.e., if the partial assignment satisfies its invariant, the clause identifier identifies
clause C, and the clause database contains only variables within the bounds of
the partial assignment, then the function will either return an error, or some
literal l such that C is unit or true w.r.t. l, or None and C is a conflict clause.

4.4 A Verified DIMACS Parser

We present the parsing function’s signature and correctness theorem. Its imple-
mentation is elided due to page limit constraints:

read dimacs cs :: 8 word list ⇒ (cs op × nat) nres
read dimacs cs str ≤ spec (cs,cap). ∃ F. cs op inv cap cs

∧ (cs op α cs = FAIL ∨ (str,F) ∈ g dimacs ∧ cs op α cs = CNF F)

This function parses a string, and returns a checker state. On a parsing error, the
checker state corresponds to the abstract state FAIL. Otherwise, it corresponds
to CNF F for the formula F parsed from the string. The function also returns
the capacity left for the certificate after parsing the formula.

4.5 Assembling the Whole Program

Having implemented functions for the proof steps, we combine them with a parser
(details elided) for LRAT proofs, resulting in a function that reads an LRAT
proof from a buffered reader (brd rs), performs the corresponding transitions on
the proof state, and finally checks if the proof state has reached UNSAT:

main checker loop :: cs op ⇒ brd rs ⇒ (bool × brd rs) nres

Fig. 3. The checker program.

The certificate checker,
displayed in Fig. 3, combines
the main checker loop with
the DIMACS parser. It takes
a string cnf, parses it as
formula (l. 3), initializes a
buffered reader for the cer-
tificate stream (l. 5), and
runs the main checker loop
with that reader (l. 6). From
the correctness of the parser
(Sect. 4.4), the fact that all proof steps in main checker loop implement the
abstract checker, and the fact that the abstract checker is sound (Theorem 1),
we prove:

450 P. Lammich

Theorem 2 (Soundness of Functional Checker). If read check lrat cnf
returns true, then cnf is a valid representation of an unsatisfiable formula:

read check lrat cnf ≤ spec r. r =⇒ ∃F. (cnf, F) ∈ g dimacs ∧ ¬ sat F

4.6 Refinement to LLVM Code

In Sect. 4.1 and Sect. 4.2 we have indicated how we implement the basic data
structures of our checker. Then, we have mostly presented functional code. Given
implementations of the data structures, refining this functional code to impera-
tive code is mostly straightforward. Actually, much of this process can be auto-
mated by the Sepref tool [22], which we use to generate implementations for each
data structure and algorithm. For example, for the function check uot (cf. Sect.
4.3):

sepref def check uot impl is
check uot :: rpan assn → cdb assn → cid rel → ulito rel × bool1 rel
unfolding check uot def by sepref

This generates the function check uot impl and proves the refinement theorem:

check uot impl, check uot
:: rpan assn → cdb assn → cid rel → ulito rel × bool1 rel

To read the certificate, we use an external C function based on fread:

size t fread from certificate(void ∗p, size t n) {
if (!cert file) return 0;
return fread(p,1,n,cert file); }

Inside Isabelle, this function is specified by:

htriple (arr assn xsi xs � size rel ni n � n ≤ length xs)
fread from certificate xsi ni
(λri. ∃r ys. size rel ri r � arr assn xsi ys �

� r≤n � length ys = length xs � drop r ys = drop r xs)

Where htriple is the Hoare triple for LLVM programs and � is the separating
conjunction. This matches the specification of POSIX’s fread function [30],
except that we do not specify what data is read. This is sound, as it is a valid
over-approximation of the actual behaviour.

4.7 Soundness Theorem

Finally, we generate an implementation of read check lrat (Sect. 4.5), obtaining:

read check lrat impl :: 8 word ptr × 64 word ⇒ 1 word llM
read check lrat impl, read check lrat :: inp assn → bool1 rel

Fast and Verified UNSAT Certificate Checking 451

Here, inp assn implements the input string by an array and its length. In order
to smoothly interface this function from C/C++, we eliminate the tuple type
and return a byte instead of a bit. We define:

lrat checker :: 8 word ptr ⇒ 64 word ⇒ 8 word llM
lrat checker p n ≡
if read check lrat impl (p,n) then return 1 else return 0

Isabelle LLVM’s code generator creates LLVM code, and a matching header file:

export llvm lrat checker is uint8 t lrat checker(uint8 t ∗, int64 t)
file ../code/lrat checker export.{ll,h}

We link this with a small C program that reads the command line, memory-maps
the formula file, provides the function fread from certificate (cf. Sect. 4.6), calls
the verified checker, and prints the result.

Chaining together the correctness of the functional checker (Theorem 2) and
the refinement theorem for read check lrat, and unfolding some definitions yields:

Theorem 3 (Soundness of Implementation). When we pass the checker a
pointer cp to an array of size cszi holding the bytes c, then the checker will
terminate with the array being unchanged, and if the result is not zero, the bytes
c in the array are a syntactically correct encoding of an unsatisfiable CNF:

htriple (arr assn cp c � size rel cszi csz � csz=length c)
(lrat checker cp cszi)
(λr. arr assn cp c � (r�=0 =⇒ (∃F. (c,F)∈g dimacs ∧ ¬sat F)))

Note that this theorem does not depend on any complex data structures or
refinements. Apart from the basic notions of Hoare triples, separation logic,
machine words, and pointers to arrays, it only depends on our semantics of
formulas (Sect. 2.1), and our grammar for the DIMACS format (Sect. 2.2).

5 Benchmarks

For our benchmarks, we have used the latest stable versions of the tools avail-
able at the time of writing: CaDiCaL 1.9.4 [7], lrat-trim 0.2.0 [27], cake lpr
7a207e9 [8], gratchk dc6dd9d [15], lrat-check 9ee016c [12], and lrat-acl2 (incre-
mental) 8.5 [1] on gcl 2.6.13pre [13]. We used an AMD Ryzen 9 7950X3D machine
with 128 GB DDR5 RAM and a 2.0 TB Samsung 990 Pro SSD disk.

We have used problems from the 2022 SAT competition3 [33]: out of the 156
problems proved unsatisfiable in the main track, CaDiCaL timed out on 5 after
5000 s. The remaining 151 problems form our benchmark set.

3 We did not choose the 2023 competition, because the problems there are biased
towards checkers that use techniques not available for direct LRAT generation in
CaDiCaL.

452 P. Lammich

Checker n tc/ts ls lc mc/ms w/wf w/wb

Our tool 151 6% 97% 5% 80% 102% 110%
cake lpr 138 61% 85% 47% 162× 130% 143%

Table 1. Benchmark results in streaming mode. The
table displays the averages over the successfully certi-
fied problems (n).

First, we let the checker
run in parallel to CaD-
iCaL, streaming the cer-
tificate directly into the
checker. We used our checker
and cake lpr4. We measure
the computing times (the
sum of user and system
time) that were allocated to the sat solver (ts) and checker (tc). The ratio tc/ts
indicates how the work is distributed between solver and checker. The smaller
this ratio, the less time the checker needs in comparison to the solver. Next,
we measure the average CPU loads allocated to the solver (ls) and checker (lc).
A solver load less than 100% indicates that the solver was slowed down. The
less load the checker produces, the fewer additional computing power is needed
for checking. We also measure the peak memory consumption (maximum resi-
dent set size) of the solver (ms) and checker (mc). The ratio mc/ms indicates
the additional memory required for checking. Finally, we measure the wall-clock
time until certification finishes (w), and compare that to the time required by
the solver to solve the problem and write the certificate to a file (wf), and to the
solving time without producing a certificate at all (wb). The ratios w/wf and
w/wb indicate the observed extra time required for certification. The results are
displayed in Table 1: Our checker verified all problems, adding about 6% more
computation time and 80% more memory on top of solving and certificate pro-
ducing. It does not significantly slow down the solver, which runs at 97% CPU
load. Compared to writing the certificate to a file, streaming it directly to the
checker is 2% slower, and the overhead added by the whole certification process
is 10%. The cake lpr checker failed to certify 13 problems5. For the remaining
problems, it added 61% of computation time, and the solver only ran at 85% load.
Streaming the certificate to cake lpr is 30% slower than writing the certificate
to a file, and 43% slower than solving without producing a certificate. Moreover,
for each cake lpr run, maximum heap and stack sizes have to be determined
upfront, and cake lpr is likely to use all available heap6. Without prior knowl-
edge of the problem, it is impossible to guess good sizes. For our experiments,
we used 8GiB stack and 16GiB heap, based on the maximum of 11GiB that
our tool needed. With this, cake lpr ran out of memory for six problems, and
maxed out at around 16GiB memory usage for most of the remaining problems
(131/138). On average, it needed 162 times more memory than the solver.

4 We didn’t include a Coq based lrat-checker [9], nor an ACL2 based one [16]: the
former is reportedly less efficient than cake lpr [35], and the latter supports, to the
best of our knowledge, no streaming of the certificate.

5 6 memouts, 6 parsing errors, most likely due to benchmarks incompatible with
CakeLPR’s strict interpretation of the DIMACS CNF format, and one timeout at
5000 s.

6 We assume that the garbage collector only becomes active when available memory
has filled up.

Fast and Verified UNSAT Certificate Checking 453

Checker n ttot tavg mavg

lrat-trim 151 116% 118% 96%
lrat-check 150 357% 384% 116%
gratchk 147 917% 994% 80×
cake lpr 138 1666% 1797% 208×
lrat-acl2 57 105× 8200% 158×

Table 2. Benchmark results in file
mode.

To measure the performance of just
the checker, we ran it on certifi-
cates stored in files. For this experi-
ment we also included the gratchk tool,
which is reported to be faster than
cake lpr [35], the lrat-acl2 tool, and the
unverified checker implementations lrat-
trim (forward) and lrat-check, to com-
pare our verified tool against unverified
but highly optimized implementations.

For the garbage collected tools (gratchk, cake lpr, lrat-acl2), we set a heap limit
of 16GiB. If possible, we used binary LRAT encoding (our tool and lrat-trim),
and did not include conversion time from LRAT to GRAT (gratchk). Using our
tool as baseline (100%), we display the ratio of the total computation times over
all problems (ttot), and the average ratios of computation time and peak memory
usage per problem (tavg and mavg). The results are displayed in Table 2: our tool
is slightly faster but uses slightly more memory than lrat-trim. It is significantly
faster and uses less memory than any other verified or unverified tool we tested.
After 14:30h, lrat-acl2 had processed 66 problems and succeeded on 57. The
same problems took 3:25m to check by our tool. We aborted the experiment at
that point, as, by extrapolation, it would have taken 5 more days to complete.

6 Conclusion

We have used the Isabelle LLVM framework to formally verify soundness of
an unsatisfiability certificate checker. Our checker is verified w.r.t. a grammar
of the DIMACS format, a semantics of CNF, and down to the LLVM code
that implements the checker. Completeness of the checker has been empirically
verified by showing that it accepts a large set of benchmarks. Our checker accepts
the LRUP fragment of the LRAT format, which makes it suitable for checking
certificates from many top-performing SAT solvers. For solvers that support
streaming of LRAT certificates, our tool can be run in parallel to the solver,
eliminating the need to store the potentially large certificate, and coming back
with the certification result the moment the solver is finished. For CaDiCaL, this
is only 10% slower than running just the solver, and 2% slower than writing the
certificate to a file without checking it. Our implementation is slightly faster and
uses only 4% more memory than the unverified and highly optimized lrat-trim
checker. It is significantly faster and more memory efficient than any other LRAT
checker we know of, verified or unverified. This makes it possible to routinely
run the checker with the solver, increasing the confidence at low cost.

To design our checker, we first implemented and profiled prototypes in C++
to determine the important optimizations. This took roughly 40 person hours.
We then used the Isabelle Refinement Framework to produce a verified version of
the checker. This was done in a top-down refinement process, which was guided
by the experience from the unverified prototypes. This took another 200 h.

454 P. Lammich

6.1 Related Work

The closest work to ours is the verified cake lpr checker [34,35]. It supports
streaming certificates7 and the full LPR format. The cake lpr checker is verified
down to assembly code (with a thin C wrapper around it), while our checker is
verified down to LLVM intermediate code. While verifying an LLVM compiler
is orthogonal to this project, we would immediately profit from such a verified
compiler, further reducing our trusted code base. Moreover, our checker is verified
w.r.t. a grammar of DIMACS CNF, while cake-lpr’s parser is not verified. It only
comes with a sanity check, showing that the parser is left inverse to a pretty
printer. Our checker is significantly faster than cake lpr, and only allocates as
much memory as needed, while cake-lpr’s memory size has to be set upfront,
making it uncontrollable without background information about the problem. In
particular in streaming mode, such information is not available. Finally, cake lpr
uses the ASCII encoding of LRAT, while our checker uses the more compact
binary encoding.8

There are other verified certificate checkers [5,9,16,23], which, however, do
not support streaming or are significantly slower than cake lpr.

6.2 Future Work

There are no principle problems to extend our tool to the more powerful LRAT
and LPR formats. We leave this to future work, as we are not aware of any solver
that would support streaming these formats.

While our parser was manually implemented and then verified, there is work
on verified parser generators [6,18–20,25,31]. We leave it to future work to inte-
grate similar techniques into the Isabelle LLVM workflow.

While faster than parsing the ASCII encoding, decompression of the binary
encoding is a hot-spot in our checker. In streaming mode, we could probably use
a less compact but faster to read format, which we leave to future work.

References

1. ACL2 github repository. https://github.com/acl2/acl2
2. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for SAT solver-

elaborator communication. In: TACAS 2021. LNCS, vol. 12651, pp. 59–75.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_4

3. Beeren, J., et al.: Finite machine word library. Archive of Formal Proofs, June
2016. https://isa-afp.org/entries/Word_Lib.html. Formal proof development

4. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023). Preliminary version in AAAI 2022

7 Surprisingly, we have not found reports on using cake lpr in streaming mode. In
particular, Pollit et. al. [29] did not consider this possibility when they extended
CaDiCaL to directly produce LRUP certificates.

8 Conversion between the encodings is easy, and we leave native support of the ASCII
encoding in our checker to future work.

https://github.com/acl2/acl2
https://doi.org/10.1007/978-3-030-72016-2_4
https://isa-afp.org/entries/Word_Lib.html

Fast and Verified UNSAT Certificate Checking 455

5. Bogaerts, B., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.:
VeriPB and CakePB in the SAT competition 2023. In: Balyo, T., Heule, M., Iser,
M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2023: Solver,
Benchmark and Proof Checker Descriptions. Department of Computer Science
Series of Publications B, Department of Computer Science, University of Helsinki,
Finland (2023)

6. Bortin, M.: A formalisation of the Cocke-Younger-Kasami algorithm. Archive of
Formal Proofs, April 2016. https://isa-afp.org/entries/CYK.html. Formal proof
development

7. CaDiCaL github repository. https://github.com/arminbiere/cadical/releases/tag/
rel-1.9.4

8. cake lpr github repository. https://github.com/tanyongkiam/cake_lpr
9. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:

Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5_14

10. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolu-
tion proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_7

11. Dawson, J.: Isabelle theories for machine words. Electron. Notes Theoret.
Comput. Sci. 250(1), 55–70 (2009). https://doi.org/10.1016/j.entcs.2009.08.005,
https://www.sciencedirect.com/science/article/pii/S1571066109003302. Proceed-
ings of the Seventh International Workshop on Automated Verification of Critical
Systems (AVoCS 2007)

12. DRAT-trim github repository. https://github.com/marijnheule/drat-trim
13. GNU common lisp. git://git.sv.gnu.org/gcl.git
14. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In:

International Symposium on Artificial Intelligence and Mathematics,
ISAIM 2008, Fort Lauderdale, Florida, USA, 2–4 January 2008 (2008).
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_
60a1f9b2fd607a61ec9e0feac3f438f8.pdf

15. gratchk github repository. https://github.com/IsaFoL/IsaFoL/tree/master/
GRAT/gratchk

16. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0_18

17. Heule, M., Hunt, W., Wetzler, N.: Trimming while checking clausal proofs. In:
2013 Formal Methods in Computer-Aided Design, FMCAD 2013, pp. 181–188.
IEEE (2013)

18. Jia, X., Kumar, A., Tan, G.: A derivative-based parser generator for visibly push-
down grammars. Proc. ACM Program. Lang. 5(OOPSLA), 1–24 (2021). https://
doi.org/10.1145/3485528

19. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 397–416. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2_20

20. Koprowski, A., Binsztok, H.: TRX: a formally verified parser interpreter. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 345–365. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6_19

https://isa-afp.org/entries/CYK.html
https://github.com/arminbiere/cadical/releases/tag/rel-1.9.4
https://github.com/arminbiere/cadical/releases/tag/rel-1.9.4
https://github.com/tanyongkiam/cake_lpr
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1016/j.entcs.2009.08.005
https://www.sciencedirect.com/science/article/pii/S1571066109003302
https://github.com/marijnheule/drat-trim
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://github.com/IsaFoL/IsaFoL/tree/master/GRAT/gratchk
https://github.com/IsaFoL/IsaFoL/tree/master/GRAT/gratchk
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1145/3485528
https://doi.org/10.1145/3485528
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-11957-6_19

456 P. Lammich

21. Lammich, P.: Refinement to Imperative/HOL. In: ITP, LNCS, vol. 9236, pp. 253–
269. Springer, Cham (2015)

22. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Harrison, J.,
O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive Theo-
rem Proving, ITP 2019, 9–12 September 2019, Portland, OR, USA. LIPIcs, vol. 141,
pp. 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://
doi.org/10.4230/LIPIcs.ITP.2019.22

23. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

24. Lammich, P., Tuerk, T.: Applying data refinement for Monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8_12

25. Lasser, S., Casinghino, C., Fisher, K., Roux, C.: Costar: a verified all(*) parser. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 420-434. PLDI 2021. Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3453483.3454053

26. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, 2004, CGO 2004, pp. 75–86 (2004). https://doi.org/10.1109/CGO.2004.
1281665

27. lrat-trim github repository. https://github.com/arminbiere/lrat-trim/releases/
tag/rel-0.2.0

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of DAC, pp. 530–535. ACM (2001)

29. Pollitt, F., Fleury, M., Biere, A.: Faster LRAT checking than solving with CaDi-
CaL. In: Mahajan, M., Slivovsky, F. (eds.) 26th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2023, 4–8 July 2023, Alghero, Italy.
LIPIcs, vol. 271, pp. 21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.SAT.2023.21

30. The Open Group Base Specifications (2018). Issue 7 (IEEE Std 1003.1-2017)
31. Rau, M.: Earley parser. Archive of Formal Proofs, July 2023. https://isa-afp.org/

entries/Earley_Parser.html. Formal proof development
32. SAT competition 2009—submission format (2009). http://www.satcompetition.

org/2009/format-benchmarks2009.html
33. SAT competition (2022). https://satcompetition.github.io/2022/
34. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: verified propagation redun-

dancy checking in CakeML. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 223–241. Springer, Cham
(2021)

35. Tan, Y.K., Heule, M.J., Myreen, M.O.: Verified propagation redundancy and com-
positional UNSAT checking in CakeML. Int. J. Softw. Tools Technol. Transfer
25(2), 167–184 (2023)

36. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3_31

https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1145/3453483.3454053
https://doi.org/10.1145/3453483.3454053
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/arminbiere/lrat-trim/releases/tag/rel-0.2.0
https://github.com/arminbiere/lrat-trim/releases/tag/rel-0.2.0
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://isa-afp.org/entries/Earley_Parser.html
https://isa-afp.org/entries/Earley_Parser.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
https://satcompetition.github.io/2022/
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

Fast and Verified UNSAT Certificate Checking 457

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Generalized Optimization Modulo
Theories

Nestan Tsiskaridze1(B) , Clark Barrett1 , and Cesare Tinelli2

1 Stanford University, Stanford, CA, USA
{nestan,barrett}@cs.stanford.edu

2 The University of Iowa, Iowa City, IA, USA
cesare-tinelli@uiowa.edu

Abstract. Optimization Modulo Theories (OMT) has emerged as an
important extension of the highly successful Satisfiability Modulo Theo-
ries (SMT) paradigm. The OMT problem requires solving an SMT prob-
lem with the restriction that the solution must be optimal with respect
to a given objective function. We introduce a generalization of the OMT
problem where, in particular, objective functions can range over par-
tially ordered sets. We provide a formalization of and an abstract cal-
culus for the Generalized OMT problem and prove their key correctness
properties. Generalized OMT extends previous work on OMT in several
ways. First, in contrast to many current OMT solvers, our calculus is
theory-agnostic, enabling the optimization of queries over any theories
or combinations thereof. Second, our formalization unifies both single-
and multi-objective optimization problems, allowing us to study them
both in a single framework and facilitating the use of objective functions
that are not supported by existing OMT approaches. Finally, our calcu-
lus is sufficiently general to fully capture a wide variety of current OMT
approaches (each of which can be realized as a specific strategy for rule
application in the calculus) and to support the exploration of new search
strategies. Much like the original abstract DPLL(T) calculus for SMT,
our Generalized OMT calculus is designed to establish a theoretical foun-
dation for understanding and research and to serve as a framework for
studying variations of and extensions to existing OMT methodologies.

Keywords: Optimization Modulo Theories (OMT) · Optimization ·
Satisfiability Modulo Theories (SMT) · Abstract Calculus

1 Introduction

Over the past decade, the field of Optimization Modulo Theories (OMT) has
emerged, inspiring the interest of researchers and practitioners alike. OMT builds
on the highly successful Satisfiability Modulo Theories (SMT) [3] paradigm and
extends it: while the latter focuses solely on finding a theory model for a first-
order formula, the former adds an objective term that must be optimized with
respect to some total ordering over the term’s domain.

The development of OMT solvers has fostered research across an expanding
spectrum of applications, including scheduling and planning with resources [7,
c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 458–479, 2024.
https://doi.org/10.1007/978-3-031-63498-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63498-7_27&domain=pdf
http://orcid.org/0000-0002-4729-9770
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://doi.org/10.1007/978-3-031-63498-7_27

Generalized Optimization Modulo Theories 459

13,17,20,26,30,35,38,48,58], formal verification and model checking [37,49],
program analysis [10,23,25,28,69], requirements engineering and specification
synthesis [21,41–43], security analysis [4,18,46,61], system design and configu-
ration [14,15,29,34,47,51,63,68], machine learning [59,62], and quantum anneal-
ing [5].

Various OMT procedures have been developed for different types of optimiza-
tion objectives (e.g., single- and multi-objective problems), underlying theories
(e.g., arithmetic and bitvectors), and search strategies (e.g., linear and binary
search). We provide an overview of established OMT techniques in Sect. 5. An
extensive survey can be found in Trentin [64].

We introduce a proper generalization of the OMT problem and an abstract
calculus for this generalization whose main goal is similar to that of the DPLL(T)
calculus for SMT [45]: to provide both a foundation for theoretical understand-
ing and research and a blueprint for practical implementations. Our approach is
general in several ways. First, in contrast to previous work in OMT, it is param-
eterized by the optimization order, which does not need to be total, and it is
not specific to any theory or optimization technique, making the calculus easily
applicable to new theories or objective functions. Second, it encompasses both
single- and multi-objective optimization problems, allowing us to study them in
a single, unified framework and enabling combinations of objectives not covered
in previous work. Third, it captures a wide variety of current OMT approaches,
which can be realized as instances of the calculus together with specific strate-
gies for rule application. Finally, it provides a framework for the exploration of
new optimization strategies.

Contributions . To summarize, our contributions include:

– a formalization of a generalization of OMT to partial orders that unifies tra-
ditional single- and multi-objective optimization problems;

– a theory-agnostic abstract calculus for Generalized OMT that can also be
used to describe and study previous OMT approaches;

– a framework for understanding and exploring search strategies for Generalized
OMT; and

– proofs of correctness for important properties of the calculus.

The rest of the paper is organized as follows. Section 2 introduces background
and notation. Section 3 defines the Generalized OMT problem. Section 4 presents
the calculus, provides an illustrative example of its use and addresses its cor-
rectness1. Finally, Sect. 5 discusses related work, and Sect. 6 concludes.

2 Background

We assume the standard many-sorted first-order logic setting for SMT, with
the usual notions of signature, term, formula, and interpretation. We write I |= φ

1 Full proofs and an additional example are provided in the longer version of this
paper [67].

460 N. Tsiskaridze et al.

Table 1. Theory-specific notation.

Syntax Semantics Meaning

Bool,Int,Real,BV[n],Str Sorts for Booleans, integers, reals, bitvectors of
length n, and character strings

+, −, ×, ÷ Arithmetic operators over reals/integers
<R, >R, ≤R, ≥R ≺R, �R, �R, �R Comparison operators over reals
<Int, >Int, ≤Int, ≥Int ≺Int, �Int, �Int, �Int Comparison operators over integers
+[n],−[n],×[n],÷[n] Arithmetic modulo 2n operators
<[n], >[n], ≤[n], ≥[n] ≺[n], �[n], �[n], �[n] (Unsigned) comparison operators over BV[n]

terms
ite(c, x, y) If-then-else operator (if c then x else y)
tup(t1, . . . , tn) n-ary tuple where element i is ti

<str, >str, ≤str, ≥str, ≺str, �str, �str, �str Strict and non-strict lexicographic and reverse
lexicographic orders on strings

ε The empty string
x · y String concatenation operator
len(x) String length operator
contains(x, y) String containment operator (true iff y is a

substring of x)

to mean that formula φ holds in or is satisfied by an interpretation I. A theory is
a pair T = (Σ, I), where Σ is a signature and I is a class of Σ-interpretations. We
call the elements of I T -interpretations. We write Γ |=T φ, where Γ is a formula
(or a set of formulas), to mean that Γ T -entails φ, i.e., every T -interpretation
that satisfies (each formula in) Γ satisfies φ as well. For convenience, for the rest
of the paper, we fix a background theory T with equality and with signature Σ.
We also fix an infinite set X of sorted variables with sorts from Σ and assume
≺X is some total order on X . We assume that all terms and formulas are Σ-
terms and Σ-formulas with free variables from X . Since the theory T is fixed,
we will often abbreviate |=T as |= and consider only interpretations that are
T -interpretations assigning a value to every variable in X . At various places in
the paper, we use sorts and operators from standard SMT-LIB theories such
as integers, bitvectors, strings,2 or data types [2]. We assume that every T -
interpretation interprets them in the same (standard) way. Table 1 lists theory
symbols used in this paper and their meanings. A Σ-formula φ is satisfiable
(resp., unsatisfiable) in T if it is satisfied by some (resp., no) T -interpretation.

Let s be a Σ-term. We denote by sI the value of s in an interpretation I,
defined as usual by recursively determining the values of sub-terms. We denote by
FV (s) the set of all variables occurring in s. Similarly, we write FV (φ) to denote
the set of all the free variables occurring in a formula φ. If FV (φ) = {v1, . . . , vn},
where for each i ∈ [1, n), vi ≺X vi+1, then the relation defined by φ (in T) is
{(vI

1 , . . . , vI
n) | I |= φ for some T -interpretation I}. A relation is definable in T

if there is some formula that defines it. Let v be a tuple of variables (v1, . . . , vn),

2 For simplicity, we assume strings are over characters ranging only from ‘a’ to ‘z’.

Generalized Optimization Modulo Theories 461

and let t = (t1, . . . , tn) be a tuple of Σ-terms, such that ti and vi are of the
same sort for i ∈ [1, n]; then, we denote by s[v ← t] the term obtained from s
by simultaneously replacing each occurrence of variable vi in s with the term ti.

If S is a finite sequence (s1, . . . , sn), we write Top(S) to denote, s1, the first
element of S in S; we write Pop(S) to denote the subsequence (s2, . . . , sn) of
S. We use ∅ to denote both the empty set and the empty sequence. We write
s ∈ S to mean that s occurs in the sequence S, and write S ◦S′ for the sequence
obtained by appending S′ at the end of S.

We adopt the standard notion of strict partial order ≺ on a set A, that is,
a relation in A × A that is irreflexive, asymmetric, and transitive. The relation
≺ is a strict total order if, in addition, a1 ≺ a2 or a2 ≺ a1 for every pair a1, a2

of distinct elements of A. As usual, we will call ≺ well-founded over a subset A′

of A if A′ contains no infinite descending chains. An element m ∈ A is minimal
(with respect to ≺) if there is no a ∈ A such that a ≺ m. If A has a unique
minimal element, it is called a minimum.

3 Generalized Optimization Modulo Theories

We introduce a formalization of the Generalized Optimization Modulo Theories
problem which unifies single- and multi-objective optimization problems and lays
the groundwork for the calculus presented in Sect. 4.

3.1 Formalization

For the rest of the paper, we fix a theory T with some signature Σ.

Definition 1 (Generalized Optimization Modulo Theories (GOMT)).
A Generalized Optimization Modulo Theories problem is a tuple GO := 〈t,≺, φ〉,
where:

– t, a Σ-term of some sort σ, is an objective term to optimize;
– ≺ is a strict partial order definable in T , whose defining formula has two free

variables, each of sort σ; and
– φ is a Σ-formula.

For any GOMT problem GO and T -interpretations I and I ′, we say that:

– I is GO-consistent if I |= φ;
– I GO-dominates I ′, denoted by I <GO I ′, if I and I ′ are GO-consistent and

tI ≺ tI
′
; and

– I is a GO-solution if I is GO-consistent and no T -interpretation GO-domi-
nates I.

Informally, the term t represents the objective function, whose value we want
to optimize. The order ≺ is used to compare values of t, with a value a being
considered better than a value a′ if a ≺ a′. Finally, the formula φ imposes
constraints on the values that t can take. It is easy to see that the value of

462 N. Tsiskaridze et al.

tI assigned by a GO-solution I is always minimal. As a special case, if ≺ is a
total order, then tI is also unique (i.e., it is a minimum). Once we have fixed a
GOMT problem GO, we will informally refer to a GO-consistent interpretation
as a solution (of φ) and to a GO-solution as an optimal solution.

Our notion of Generalized OMT is closely related to one by Bigarella et
al. [6], which defines a notion of OMT for a generic background theory using a
predicate that corresponds to a total order in that theory. Definition 1 generalizes
this in two ways. First, we allow partial orders, with total orders being a special
case. One useful application of this generalization is the ability to model multi-
objective problems as single-objective problems over a suitable partial order, as
we explain below. Second, we do not restrict ≺ to correspond to a predicate
symbol in the theory. Instead, any partial order definable in the theory can be
used. This general framework captures a large class of optimization problems.

Example 1. Suppose T is the theory of real arithmetic with the usual signature.
Let GO := 〈x + y,≺, 0 < x ∧ xy = 1〉, where x and y are variables of sort Real
and ≺ is defined by the formula v1 <R v2 (where v1 ≺X v2). A GO-solution is
any interpretation that interprets x and y as 1.

Example 2. With T now being the theory of integer arithmetic, let GO = 〈x,≺
, x2 < 20〉, where x is of sort Int, and ≺ is defined by v1 >Int v2 (where v1 ≺X v2).
A GO-solution must interpret x as the maximum integer satisfying x2 < 20 (i.e.,
x must have value 4).

The examples above are both instances of what previous work refers to as
single-objective optimization problems [64], with the first example being a min-
imization and the second a maximization problem. The next example illustrates
a less conventional ordering.

Note that from now on, to keep the exposition simple, we define partial orders
≺ appearing in GO problems only semantically, i.e., formally, but without giving
a specific defining formula. However, it is easy to check that all orders used in
this paper are, in fact, definable in a suitable T .

Example 3. Let GO = 〈x,≺, x2 < 20〉 be a variation of Example 2, where now,
for any integers a and b, a ≺ b iff |b| ≺Int |a|. A GO-solution can interpret x either
as 4 or −4. Neither solution dominates the other since their absolute values are
equal.

We next show how multi-objective problems are also instances of Definition 1.

3.2 Multi-objective Optimization

We use the term multi-objective optimization to refer to an optimization problem
consisting of several sub-problems, each of which is also an optimization problem.
A multi-objective optimization may also require specific interrelations among
its sub-problems. In this section, we define several varieties of multi-objective
optimization problems and show how each can be realized using Definition 1.

Generalized Optimization Modulo Theories 463

For each, we also state a correctness proposition which follows straightforwardly
from the definitions.

In the following, given a strict ordering ≺, we will denote its reflexive closure
by �. We start with a multi-objective optimization problem which requires that
the sub-problems be prioritized in lexicographical order [8,9,53,56,64].

Definition 2 (Lexicographic Optimization (LO)). A lexicographic opti-
mization problem is a sequence of GOMT problems LO = (GO1, . . . ,GOn),
where GOi := 〈ti,≺i, φi〉 for i ∈ [1, n]. For T -interpretations I and I ′, we say
that:

– I LO-dominates I ′, denoted by I <LO I ′, if I and I ′ are GOi-consistent for
each i ∈ [1, n], and for some j ∈ [1, n]:
(i) tIi = tI

′
i for all i ∈ [1, j); and

(ii) tIj ≺j tI
′

j .
– I is a solution to LO iff I is GOi-consistent for each i and no T -

interpretation LO-dominates I.

An LO problem can be solved by converting it into an instance of Definition 1.

Definition 3 (GOLO). Given an LO problem (GO1, . . . ,GOn), with GOi :=
〈ti,≺i, φi〉 for i ∈ [1, n], the corresponding GO instance is defined as
GOLO(GO1, . . . ,GOn) := 〈t,≺LO, φ〉, where:

– t = tup(t1, . . . , tn); φ = φ1 ∧ · · · ∧ φn;
– if t is of sort σ, then ≺LO is the lexicographic extension of (≺1,. . .,≺n) to σT:

for (a1, . . . , an), (b1, . . . , bn) ∈ σT , (a1, . . . , an) ≺LO (b1, . . . , bn) iff for some
j ∈ [1, n] :
(i) ai = bi for all i ∈ [1, j); and
(ii) aj ≺j bj.

Here and in other definitions below, we use the data type theory constructor tup
to construct the objective term t. This is a convenient mechanism for keeping
an ordered list of the sub-objectives and keeps the overall theoretical framework
simple. In practice, if using a solver that does not support tuples or the theory of
data types, other implementation mechanisms could be used. Note that if each
sub-problem uses a total order, then ≺LO will also be total.

Proposition 1. Let I be a GOLO-solution. Then I is also a solution to the
corresponding LO problem as defined in Definition 2.

Example 4 (LO). Let GO1 :=〈x,≺1,True〉 and GO2 :=〈y+[2] z,≺2,True〉, where
x, y, z are variables of sort BV[2], a ≺1 b iff a ≺[2] b, and a ≺2 b iff a
[2] b. Now,
let GO = GOLO(GO1,GO2) = 〈t,≺LO,True〉. Then, t = tup(x, y +[2] z) and
(a1, a2) ≺LO (b1, b2) iff a1 ≺[2] b1 or (a1 = b1 and a2 �[2] b2).
Now, let I, I ′, and I ′′ be such that: xI = 11, yI = 00, zI = 10, and tI := (11, 10);
xI′

= 01, yI′
= 01, zI′

= 01, and tI
′
:= (01, 10); xI′′

= 01, yI′′
= 01, zI′′

= 10,
and tI

′′
:= (01, 11). Then, I ′′ <GO I ′ <GO I, since (01, 11) ≺LO (01, 10) ≺LO

(11, 10).

464 N. Tsiskaridze et al.

We can also accommodate Pareto optimization [8,9,64] in our framework.

Definition 4 (Pareto Optimization (PO)). A Pareto optimization problem
is a sequence of GOMT problems PO = (GO1, . . . ,GOn), where GOi := 〈ti,≺i

, φi〉 for i ∈ [1, n]. For any T -interpretations I and I ′, we say that:

– I PO-dominates, or Pareto dominates, I ′, denoted by I <PO I ′, if I and I ′

are GO-consistent w.r.t. each GOi, i ∈ [1, n], and:
(i) tIi �i tI

′
i for all i ∈ [1, n]; and

(ii) for some j ∈ [1, n], tIj ≺j tI
′

j .
– I is a solution to PO iff I is GO-consistent w.r.t. each GOi and no I ′ PO-

dominates I.

Definition 5 (GOPO). Given a PO problem PO = (GO1, . . . ,GOn), we define
GOPO(GO1, . . . ,GOn) := 〈t,≺PO, φ〉, where:

– t = tup(t1, . . . , tn); φ = φ1 ∧ · · · ∧ φn;
– if t is of sort σ, then ≺PO is the pointwise extension of (≺1, . . . ,≺n) to σT ;

for any (a1, . . . , an), (b1, . . . , bn) ∈ σT , (a1, . . . , an) ≺PO (b1, . . . , bn) iff:
(i) ai �i bi for all i ∈ [1, n]; and
(ii) aj ≺j bj for some j ∈ [1, n].

Proposition 2. Let I be a GOPO-solution. Then I is also a solution to the
corresponding PO problem as defined in Definition 4.

Next, consider a PO example with two sub-problems: one minimizing the length
of a string w, and the other maximizing a substring x of w lexicographically.

Example 5 (PO). Let T be the SMT-LIB theory of strings and let GO1 :=
〈len(w),≺1, len(w) < 4〉 and GO2 := 〈x,≺2, contains(w, x)〉, where w, x
are variables of sort Str, ≺1 is ≺Int, and ≺2 is
Str. Now, let GOPO =
GOPO(GO1,GO2) = 〈t,≺PO, len(w) < 4 ∧ contains(x,w)〉. Then, t =
tup(len(w), x) and (a1, a2) ≺PO (b1, b2) iff a1 �Int b1, a2 �str b2, and (a1 ≺Int b1
or a2
str b2). Now, let I, I ′, and I ′′ be such that: I := {w �→ "aba", x �→ "ab"}
and tI := (3, "ab"); I ′ := {w �→ "z", x �→ "z"} and tI

′
:= (1, "z"); and I ′′ :=

{w �→ ε, x �→ ε} and tI
′′
:= (0, ε). Then, I ′ <GO I, since (1, "z") ≺PO (3, "ab");

but both I and I ′ are incomparable with I ′′. Both I ′ and I ′′ are optimal solu-
tions.

Though we omit them for space reasons, we can similarly capture the MinMax
and MaxMin optimization problems [56,64] as corresponding GOMINMAX and
GOMAXMIN instances of Definition 1.3

Note that except for degenerate cases, the orders used for MinMax and
MaxMin, as well as the order ≺PO above, are always partial orders. Being able
to model these multi-objective optimization problems in a clean and simple way
is a main motivation for using a partial instead of a total order in Definition 1.

Another problem in the literature is the multiple-independent (or boxed) opti-
mization problem [8,9,64]. It simultaneously solves several independent GOMT
problems. We show how to realize this as a single GO instance.
3 Details of these formulations can be found in the longer version of this paper [67].

Generalized Optimization Modulo Theories 465

Definition 6 (Boxed Optimization (BO)). A boxed optimization problem is
a sequence of GOMT problems, BO = (GO1, . . . ,GOn), where GOi := 〈ti,≺i, φi〉
for i ∈ [1, n]. We say that:

– A sequence of interpretations (I1, . . . , In) BO-dominates (I ′
1, . . . , I ′

n),
denoted by (I1, . . . , In) <BO (I ′

1, . . . , I ′
n), if Ii and I ′

i are GOi-consistent
or each i ∈ [1, n], and:
(i) tIi

i �i t
I′
i

i for all i ∈ [1, n]; and
(ii) for some j ∈ [1, n], t

Ij

j ≺j t
I′
j

j .
– (I1, . . . , In) is a solution to BO iff Ii is GOi-consistent for each i ∈ [1, n]

and no (I ′
1, . . . , I ′

n) BO-dominates (I1, . . . , In).

Note that in previous work, there is an additional assumption that φi = φj

for all i, j ∈ [1, n]. Below, we show how to solve the more general case without
this assumption. We first observe that the above definition closely resembles
Definition 4 for Pareto optimization (PO) problems. Leveraging this similarity,
we show how to transform an instance of a BO problem into a PO problem.

Definition 7. (GOBO) Let BO = (GO1, . . . ,GOn), where GOi := 〈ti,≺i, φi〉
for i ∈ [1, n]. Let Vi be the set of all free variables in the ith sub-problem that
also appear in at least one other sub-problem:

Vi = (FV (ti) ∪ FV (φi)) ∩
⋃

j∈[1,n],j �=i

FV (tj) ∪ FV (φj).

Let vi = (vi,1, . . . , vi,m) be some ordering of the variables in Vi (say, by ≺X),
and for each j ∈ [1,m], let v′

i,j be a fresh variable of the same sort as vi,j, and
let v′

i = (v′
i,1, . . . , v

′
i,m). Then, let t′i = ti[vi ← v′

i], φ′
i = φi[vi ← v′

i], and
GO′

i = 〈t′i,≺i, φ
′
i〉. Then we define GOBO := GOPO(GO′

1, . . . ,GO′
n).

Proposition 3. Let I be a solution to GOBO as defined in Definition 7. Then
(I1, . . . , In) is a solution to the corresponding BO problem as defined in Defini-
tion 6, where for each i ∈ [1, n], Ii is the same as I except that each variable
vi,j ∈ Vi is interpreted as (v′

i,j)
I .

In practice, solvers for BO problems can be implemented without variable renam-
ing (see, e.g., [8,36,53]). Variable renaming, while a useful theoretical construct,
also adds generality to our definition of BO. An interesting direction for future
experimental work would be to compare the two approaches in practice.

Compositional Optimization. GOMT problems can also be combined by
functional composition of multiple objective terms, possibly of different sorts,
yielding compositional optimization problems [12,62,64]. Our framework handles
them naturally by simply constructing an objective term capturing the desired
compositional relationship. For example, compositional objectives can address
the (partial) MaxSMT problem [64], where some formulas are hard constraints
and others are soft constraints. The goal is to satisfy all hard constraints and as
many soft constraints as possible. The next example is inspired by Cimatti et
al. [12] and Teso et al. [62].

466 N. Tsiskaridze et al.

Example 6 (MaxSMT). Let x≥0 and y≥0 be hard constraints and 4x+y−4≥0
and 2x + 3y − 6≥0 soft constraints. We can formalize this as GOCO = 〈t,≺, φ〉,
where: t = ite(4x + y − 4 ≥ 0, 0, 1) + ite(2x + 3y − 6 ≥ 0, 0, 1), ≺ ≡ ≺Int, and
φ = x≥ 0 ∧ y ≥ 0. An optimal solution must satisfy both hard constraints and,
by minimizing the objective term t, as many soft constraints as possible.

MaxSMT has various variants including generalized, partial, weighted, and par-
tial weighted MaxSMT [64], all of which our framework can handle similarly.

Next, we show a different compositional example that combines two different
orders, one on strings and the other on integers. This example also illustrates a
theory combination not present in the OMT literature.

Example 7 (Composition of Str and Int). Let T be again the theory of strings4
Let GOCO = 〈tup(x, len(x)), ≺, contains(x, "a") ∧ len(x) > 1〉, where x is of
sort Str and (a1, b1) ≺ (a2, b2) iff b1 ≺Int b2 or (b1 = b2 and a1
str a2). ≺
prioritizes minimizing the length, but then maximizes the string with respect to
lexicographic order. An optimal solution must interpret x as the string "za" of
length 2 since x must be of length at least 2 and contain "a", making "za" the
largest string of minimum length.

Based on the definitions given in this section, we see that our formalism
can capture any combination of GO (including compositional), GOLO, GOPO,
GOMINMAX , GOMAXMIN , and GOBO problems. And note that the last four
all make use of the partial order feature of Definition 1.

4 The GOMT Calculus

We introduce a calculus for solving the GOMT problem, presented as a set of
derivation rules. We fix a GOMT problem GO = 〈t,≺, φ〉 where φ is satisfiable
(optimizing does not make sense otherwise). We start with a few definitions.

Definition 8 (State). A state is a tuple Ψ = 〈I,Δ, τ〉, where I is an interpre-
tation, Δ is a formula, and τ is a sequence of formulas.

The set of all states forms the state space for the GOMT problem. Intuitively, the
proof procedure of the calculus is a search procedure over this state space which
maintains at all times a current state 〈I,Δ, τ〉 storing a candidate solution and
additional search information. In the current state, I is the best solution found
so far in the search; Δ is a formula describing the remaining, yet unexplored, part
of the state space, where a better solution might exist; and τ contains formulas
that divide up the search space described by Δ into branches represented by the
individual formulas in τ , maintaining the invariant that the disjunction of all the
formulas τ1, . . . , τp in τ is equivalent to Δ modulo φ, that is, φ |= (

∨p
i=1 τi ⇔ Δ).

Note that states contain T -interpretations, which are possibly infinite math-
ematical structures. This is useful to keep the calculus simple. In practice, it
4 The SMT-LIB theory of strings includes the theory of integers to support constraints

over string length.

Generalized Optimization Modulo Theories 467

is enough just to keep track of the interpretations of the (finitely-many) sym-
bols without fixed meanings (variables and uninterpreted functions and sorts)
appearing in the state, much as SMT solvers do in order to produce models.

Definition 9 (Solve). Solve is a function that takes a formula and returns a
satisfying interpretation if the formula is satisfiable and a distinguished value ⊥
otherwise.

Definition 10 (Better). BetterGO is a function that takes a GO-consistent
interpretation I and returns a formula BetterGO(I) with the property that for
every GO-consistent interpretation I ′,

I ′ |= BetterGO(I) iff I ′ <GO I.

The function above is specific to the given optimization problem GO or, put
differently, is parametrized by t, ≺, and φ. When GO is clear, however, we
simply write Better, for conciseness.

The calculus relies on the existence and computability of Solve and Better.
Solve can be realized by any standard SMT solver. Better relies on a defining
formula for ≺ as discussed below. We note that intuitively, Better(I) is simply
a (possibly unsatisfiable) formula characterizing the solutions of φ that are better
than I. Assuming α≺ is the formula defining ≺, with free variables v1 ≺X v2,
if the value tI can be represented by some constant c (e.g., if tI is a rational
number), then Better(I) = α≺[(v1, v2) ← (t, c)] satisfies Definition 10. On the
other hand, it could be that tI is not representable as a constant (e.g., it could
be an algebraic real number); then, a more sophisticated formula (involving, say,
a polynomial and an interval specifying a particular root) may be required.

Definition 11 (Initial State). The initial state of the GOMT problem GO =
〈t,≺, φ〉 is 〈I0,Δ0, τ0〉, where I0 = Solve(φ), Δ0 = Better(I0), τ0 = (Δ0).

Note that I0 �= ⊥ since we assume that φ is satisfiable. The search for an optimal
solution to the GOMT problem in our calculus starts with an arbitrary solution
of the constraint φ and continues until it finds an optimal one.

4.1 Derivation Rules

Figure 1 presents the derivation rules of the GOMT calculus. The rules are given
in guarded assignment form, where the rule premises describe the conditions
on the current state that must hold for the rule to apply, and the conclusion
describes the resulting modifications to the state. State components not men-
tioned in the conclusion of a rule are unchanged.

A derivation rule applies to a state if (i) the conditions in the premise are
satisfied by the state and (ii) the resulting state is different. A state is saturated
if no rules apply to it. A GO-derivation is a sequence of states, possibly infinite,
where the first state is the initial state of the GOMT problem GO, and each state

468 N. Tsiskaridze et al.

Fig. 1. The derivation rules of the GOMT Calculus.

in the sequence is obtained by applying one of the rules to the previous state.
The solution sequence of a derivation is the sequence made up of the solutions
(i.e., the interpretations) in each state of the derivation.

The calculus starts with a solution for φ and improves on it until an optimal
solution is found. During a derivation, the best solution found so far is maintained
in the I component of the current state. A search for a better solution can be
organized into branches through the use of the F-Split rule. Progress toward a
better solution is enforced by the formula Δ which, by construction, is falsified
by all the solutions found so far. We elaborate on the individual rules next.

F-Split. F-Split divides the branch of the search space represented by the
top formula ψ = Top(τ) in τ into k sub-branches (ψ1, . . . , ψk), ensuring their
disjunction is equivalent to ψ modulo the constraint φ: φ |= ψ ⇔

∨k
j=1 ψj .

The rest of the state remains unchanged. F-Split is applicable whenever τ is
non-empty. The rule does not specify how the formulas ψ1, . . . , ψk are chosen.
However, a pragmatic implementation should aim to generate them so that they
are irredundant in the sense that no formula is entailed modulo φ by the (dis-
junction of the) other formulas. This way, each branch potentially contains a
solution that the others do not. Note, however, that this is not a requirement.

F-Sat. The F-Sat rule applies when there is a solution in the branch repre-
sented by the top formula ψ in τ . The rule selects a solution I ′ = Solve(φ ∧ ψ)
from that branch. One can prove that, by the way the formulas in τ are generated
in the calculus, I ′ necessarily improves on the current solution I, moving the
search closer to an optimal solution.5 Thus, F-Sat switches to the new solution
(with I := I ′) and directs the search to seek an even better solution by updat-
ing Δ to Δ′ = Δ ∧ Better(I ′). Note that F-Sat resets τ to the singleton
sequence (Δ′), discarding any formulas in τ . This is justified, as any discarded
better solutions must also be in the space defined by Δ′.

F-Close. The F-Close rule eliminates the first element ψ of a non-empty
τ if the corresponding branch contains no solutions (i.e., Solve(φ ∧ ψ) = ⊥).

5 See Lemma 6 in Appendix B of a longer version of this paper [67].

Generalized Optimization Modulo Theories 469

The rule further updates the state by adding the negation of ψ to Δ as a way
to eliminate from further consideration the interpretations satisfying ψ.

Note that rules F-Sat and F-Close both update Δ to reflect the remaining
search space, whereas F-Split refines the division of the current search space.

4.2 Search Strategies

The GOMT calculus provides the flexibility to support different search strategies.
Here, we give some examples, including both notable strategies from the OMT
literature as well as new strategies enabled by the calculus, and explain how they
work at a conceptual level.

Divergence of Strategies: The strategies discussed below, with the exception
of Hybrid search, may diverge if an optimal solution does not exist or if there is a
Zeno-style [54,55] infinite chain of increasingly better solutions, all dominated by
an optimal one. We discuss these issues and termination in general in Sect. 4.4.

Linear Search: A linear search strategy is obtained by never using the F-Split
rule. Instead, the F-Sat rule is applied to completion (that is, repeatedly until
it no longer applies). As we show later (see Theorem 2), in the absence of Zeno
chains, τ eventually becomes empty, terminating the search. At that point, I is
guaranteed to be an optimal solution.

Binary Search: A binary search strategy is achieved by using the F-Split
rule to split the search space represented by ψ = Top(τ) into two subspaces,
represented by two formulas ψ1 and ψ2, with φ |= ψ ⇔ (ψ1 ∨ ψ2). In a strict
binary search strategy, ψ1 and ψ2 should be chosen so that the two subspaces
are disjoint and, to the extent possible, of equal size. A typical binary strategy
alternates applications of F-Split with applications of either F-Sat or F-Close
until τ becomes empty, at which point I is guaranteed to be an optimal solution.
A smart strategy would aim to find an optimal solution as soon as possible by
arranging for solutions in ψ1 (which will be checked first) to be better than
solutions in ψ2, if this is easy to determine. Note that an unfortunate choice
of ψ1 by F-Split, containing no solutions at all, is quickly remedied by an
application of F-Close which removes ψ1, allowing ψ2 to be considered next.
The same problem of Zeno-style infinite chains can occur in this strategy.

Multi-directional Exploration: For multi-objective optimization problems, a
search strategy can be defined to simultaneously direct the search space towards
any or all objectives. Formally, if n is the number of objectives, then the F-Split
rule can be instantiated in such a way that ψj =

∧n
i=1 ψji, where ψji is a formula

describing a part of the search space for the ith objective term in the jth branch.

470 N. Tsiskaridze et al.

Search Order: We formalize τ as a sequence to enforce exploring the branches
in τ in a specific order, assuming such an order can be determined at the time
of applying F-Split. Often, this is the case. For example, in binary search, it
is typically best to explore the section of the search space with better objective
values first. If a solution is found in this section, a larger portion of the search
space is pruned. Conversely, if the branches are explored in another order, even
finding a solution necessitates continued exploration of the space corresponding
to the remaining branches.

Alternatively, τ can be implemented as a set, by redefining the Top and Pop
functions accordingly to select and remove a desired element in τ . With τ defined
as a set, additional search strategies are possibile, including parallel exploration
of the search space and the ability to arbitrarily switch between branches.

Hybrid Search: For some objectives and orders, there exist off-the-shelf exter-
nal optimization procedures (e.g., Simplex for linear real arithmetic). One way to
integrate such a procedure into our calculus is to replace a call to the Solve func-
tion in F-Sat with a call to an external optimization procedure Optimize that
is sort- and order-compatible with the GOMT problem. We pass to Optimize
as parameters the constraint φ ∧ Top(τ) and the objective t and obtain an
optimal solution in the current branch Top(τ).6 The call can be viewed as an
accelerator for a linear search on the current branch. This approach incorporates
theory-specific optimization solvers in much the same way as is done in the OMT
literature. However, our calculus extends previous approaches with the ability
to blend theory-specific optimization with theory-agnostic optimization by inter-
leaving applications of F-Sat using Solve with applications using Optimize.
For example, we may want to alternate between expensive calls to an external
optimization solver and calls to a standard solver that are guided by a custom
branching heuristic.

Other Strategies: The calculus enables us to mix and match the above strate-
gies arbitrarily, as well as to model other notable search techniques like cutting
planes [16] by integrating a cut formula into Solve. And, of course, one advan-
tage of an abstract calculus is that its generality provides a framework for the
exploration of new strategies. Such an exploration is a promising direction for
future work.

4.3 New Applications

A key feature of our framework is that it is theory-agnostic, that is, it can be used
with any SMT theory or combination of theories. This is in contrast to most of
the OMT literature in which a specific theory is targeted. It also fully supports
arbitrary composition of GOMT problems using the multi-objective approaches
described in Sect. 3.2. Thus, our framework enables OMT to be extended to new
6 This assumes there exists an optimal solution in the current branch. If not (i.e., if

the problem is unbounded), a suitable error can be raised and the search terminated.

Generalized Optimization Modulo Theories 471

application areas requiring either combinations of theories or multi-objective
formulations that are unsupported by previous approaches. We illustrate this
(and the calculus itself) using a Pareto optimization problem over the theories
of strings and integers (a combination of theories and objectives unsupported by
any existing OMT approach or solver).

Example 8 (GOPO). Let GO1 := 〈len(w),≺1, len(s) < len(w)〉 and GO2 :=
〈x,≺2, x = s ·w ·s〉, where w, x, s are of sort Str, len(w) and len(s) are of sort Int,
≺1 ≡ ≺Int, and ≺2 ≡
Str;. Then, let GOPO(GO1,GO2) := 〈t,≺PO, φ〉, where t
is tup(len(w), x), φ is x = s ·w · s ∧ len(s) < len(w), and (a1, a2) ≺PO (b1, b2) iff
a1 �1 b1, a2 �2 b2, and either a1 ≺1 b1 or a2 ≺2 b2 or both. Suppose initially:

I0 = {x �→ "aabaa", s �→ "a", w �→ "aba", }, τ0 = (Δ0),
Δ0 = (len(w) ≤ 3 ∧ x >str "aabaa") ∨ (len(w) < 3 ∧ x ≥str "aabaa").

The initial objective term value is (3, "aabaa").

1. We can first apply F-Split to split the top-level disjunction in τ . And suppose
we want to work on the second disjunct first. This results in:

τ1 = (len(w) < 3 ∧ x ≥str "aabaa", len(w) ≤ 3 ∧ x >str "aabaa")

while the other elements of the state are unchanged.
2. Now, suppose we want to do binary search on the length objective. This can

be done by again applying the F-Split rule with the disjunction (len(w) <
2 ∧ x ≥str "aabaa") ∨ (2 ≤ len(w) < 3 ∧ x ≥str "aabaa") to get:

τ2 = (len(w) < 2 ∧ x ≥str "aabaa", 2 ≤ len(w) < 3 ∧ x ≥str "aabaa",
len(w) ≤ 3 ∧ x >str "aabaa").

3. Both F-Split and F-Sat are applicable, but we follow the strategy of apply-
ing F-Sat after a split. Suppose we get the new solution I ′ = {x �→ "b", s �→
ε, w �→ "b"}. Then we have:

I3 = {x �→ "b", s �→ ε, w �→ "b"}, τ3 = (Δ3),
Δ3 = (len(w) ≤ 1 ∧ x >str "b") ∨ (len(w) < 1 ∧ x ≥str "b").

4. Both F-Split and F-Sat are again applicable. Suppose that we switch now
to linear search and thus again apply F-Sat, and suppose the new solution
is I ′ = {x �→ "z", s �→ ε, w �→ "z"}. This brings us to the state:

I4 = {x �→ "z", s �→ ε, w �→ "z"}, τ4 = (Δ4),
Δ4 = (len(w) ≤ 1 ∧ x >str "z") ∨ (len(w) < 1 ∧ x ≥str "z").

5. Now, Solve(φ ∧ ((len(w) ≤ 1∧ x >str "z")∨ (len(w) < 1∧ x ≥str "z"))) = ⊥.
Indeed, len(w) �= 0, since 0 ≤ len(s) < len(w); if len(w) = 1, then len(s) = 0
and len(x) = 1, thus, x �>str "z". Now F-Close can derive the state:

〈I5,Δ5, τ5〉 = 〈I4,Δ4 ∧ ¬Δ4, ∅〉

472 N. Tsiskaridze et al.

6. We have reached a saturated state, and I5 is a Pareto optimal solution. ��

Optimization of objectives involving strings and integers (or strings and
bitvectors) could be especially useful in security applications such as those men-
tioned in [60]. Optimization could be used in such applications to ensure that a
counter-example is as simple as possible, for example.

Examples of multi-objective problems unsupported by existing solvers
include multiple Pareto problems with a single min/max query, Pareto-
lexicographic multi-objective optimization, and single Pareto queries involving
MinMax and MaxMin optimization (see, for example, [1,32,52]). Our framework
offers immediate solutions to these problems.

As has repeatedly been the case in SMT research, when new capabilities
are introduced, new applications emerge. We expect that will happen also for
the new capabilities introduced in this paper. One possible application is the
optimization of emerging technology circuit designs [22].

4.4 Correctness

In this section, we establish correctness properties for GO-derivations. Initially,
we demonstrate that upon reaching a saturated state, the interpretation I in
that state is optimal.7

Theorem 1. (Solution Soundness) Let 〈I,Δ, τ〉 be a saturated state in a
derivation for a GOMT problem GO. Then, I is an optimal solution to GO.

Proof. (Sketch) We show that in a saturated state τ = ∅, and when τ = ∅,
φ |= ¬Δ. Then, we establish that I is GO-consistent, and that for any GO-
consistent T -interpretation J , J |= Δ iff J <GO I. This implies there is no
J s.t. J |= φ and J <GO I, confirming I as an optimal solution to GO. ��

In general, the calculus does not always have complete derivation strategies,
for a variety of reasons. It could be that the problem is unbounded, i.e., no
optimal solutions exist along some branch. Another possibility is that the order
is not well-founded, and thus, an infinite sequence of improving solutions can
be generated without ever reaching an optimal solution. For the former, various
checks for unboundedness can be used. These are beyond the scope of this work,
but some approaches are discussed in Trentin [64]. The latter can be overcome
using a hybrid strategy when an optimization procedure exists (see Theorem 4).
It is also worth observing that any derivation strategy is in effect an anytime
procedure: forcibly stopping a derivation at any point yields (in the final state)
the best solution found so far. When an optimal solution exists and is unique,
stopping early provides the best approximation up to that point of the optimal
solution.

There are also fairly general conditions under which solution complete deriva-
tion strategies do exist. We present them next.
7 Full proofs for the theorems in this section can be found in a longer version of this

paper [67].

Generalized Optimization Modulo Theories 473

Definition 12. A derivation strategy is progressive if it (i) never halts in a
non-saturated state and (ii) only uses F-Split a finite number of times in any
derivation.

Let us again fix a GOMT problem GO = 〈t,≺, φ〉. Consider the set At = {tI |
I is GO-consistent}, collecting all values of t in interpretations satisfying φ.

Theorem 2. (Termination) If ≺ is well-founded over At, any progressive strat-
egy reaches a saturated state.

Proof. (Sketch) We show that any derivation using a progressive strategy termi-
nates when ≺ is well-founded. Subsequently, based on the definition of progres-
sive, the final state must be saturated. ��

Theorem 3. (Solution Completeness) If ≺ is well-founded over At and GO
has one or more optimal solutions, every derivation generated by a progressive
derivation strategy ends with a saturated state containing one of them.

Proof. The proof is a direct consequence of Theorem 1 and Theorem 2. ��

Solution completeness can also be achieved using an appropriate hybrid strategy.

Theorem 4. If GO has one or more optimal solutions and is not unbounded
along any branch, then every derivation generated by a progressive hybrid strat-
egy, where Solve is replaced by Optimize in F-Sat, ends with a saturated state
containing one of them.

Proof. (Sketch) If D is such a derivation, we note that F-Split can only be
applied a finite number of times in D and consider the suffix of D after the
last application of F-Split. In that suffix, F-Close can only be applied a finite
number of times in a row, after which F-Sat must be applied. We then show that
due to the properties of Optimize, this must be followed by either an application
of F-Close or a single application of F-Sat followed by F-Close. Both cases
result in saturated states. The theorem then follows from Theorem 1. ��

5 Related Work

Various approaches for solving the OMT problem have been proposed. We sum-
marize the key ideas below and refer the reader to Trentin [64] for a more thor-
ough survey.

The offline schema employs an SMT solver as a black box for optimization
search through incremental calls [54,55], following linear- or binary-search strate-
gies. Initial bounds on the objective function are given and iteratively tightened
after each call to the SMT solver. In contrast, the inline schema conducts the
optimization search within the SMT solver itself [54,55], integrating the opti-
mization criteria into its internal algorithm. While the inline schema can be
more efficient than the offline counterpart, it necessitates invasive changes to
the solver and may not be possible for every theory.

474 N. Tsiskaridze et al.

Symbolic Optimization optimizes multiple independent linear arithmetic
objectives simultaneously [36], seeking optimal solutions for each corresponding
objective. This approach improves performance by sharing SMT search effort. It
exists in both offline and inline versions, with the latter demonstrating superior
performance. Other arithmetic schemas combine simplex, branch-and-bound,
and cutting-plane techniques within SMT solvers [44,50]. A polynomial con-
straint extension has also been introduced [33].

Theory-specific techniques address objectives involving pseudo-Booleans [11,
54,55,57], bitvectors [40,65], bitvectors combined with floating-point arith-
metic [66], and nonlinear arithmetic [6]. Other related work includes techniques
for lexicographic optimization [8], Pareto optimization [8,24], MaxSMT [19], and
All-OMT [64].

Our calculus is designed to capture all of these variations. It directly corre-
sponds to the offline schema, can handle both single- and multi-objective prob-
lems, and can integrate solvers with inline capabilities (including theory-specific
ones) using the hybrid solving strategy. Efficient MaxSMT approaches [19] can
also be mimicked in our calculus. These approaches systematically explore the
search space by iteratively processing segments derived from unsat cores. Our
calculus can instantiate these branches using the F-Split rule, by first captur-
ing unsat cores from calls to F-Close, and then using these cores to direct the
search in the F-Split rule.

6 Conclusion and Future Work

This paper introduces the Generalized OMT problem, a proper extension of
the OMT problem. It also provides a general setting for formalizing various
approaches for solving the problem in terms of a novel calculus for GOMT and
proves its key correctness properties. As with previous work on abstract transi-
tion systems for SMT [27,31,39,45], this work establishes a framework for both
theoretical exploration and practical implementations. The framework is gen-
eral in several aspects: (i) it is parameterized by the optimization order, which
does not need to be total; (ii) it unifies single- and multi-objective optimization
problems in a single definition; (iii) it is theory-agnostic, making it applicable
to any theory or combination of theories; and (iv) it provides a formal basis for
understanding and exploring search strategies for Generalized OMT.

In future work, we plan to explore an extension of the calculus to the gen-
eralized All-OMT problem. We also plan to develop a concrete implementation
of the calculus in a state-of-the-art SMT solver and evaluate it experimentally
against current OMT solvers.

Acknowledgements. This work was funded in part by the Stanford Agile Hardware
Center and by the National Science Foundation (grant 2006407).

Generalized Optimization Modulo Theories 475

References

1. Akinlana, D.M.: New Developments in Statistical Optimal Designs for Physical
and Computer Experiments. Ph.D. thesis, University of South Florida (2022)

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol.185, pp. 825–885. IOS Press (2009)

4. Bertolissi, C., dos Santos, D.R., Ranise, S.: Solving multi-objective workflow sat-
isfiability problems with optimization modulo theories techniques. In: Bertino, E.,
Lin, D., Lobo, J. (eds.) Proceedings of the 23nd ACM on Symposium on Access
Control Models and Technologies, SACMAT 2018, Indianapolis, IN, USA, June
13-15, 2018, pp. 117–128. ACM (2018)

5. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving
SAT and MaxSAT with a quantum annealer: foundations and a preliminary report.
In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 153–
171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_9

6. Bigarella, F., et al.: Optimization modulo non-linear arithmetic via incremental
linearization. In: Konev, B., Reger, G. (eds.) FroCoS 2021. LNCS (LNAI), vol.
12941, pp. 213–231. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86205-3_12

7. Bit-Monnot, A., Leofante, F., Pulina, L., Ábrahám, E., Tacchella, A.: SMarTplan:
a task planner for smart factories (2018). arXiv preprint arXiv:1806.07135

8. Bjørner, N.S., Phan, A.D.: νz - maximal satisfaction with z3. In: International
Symposium on Symbolic Computation in Software Science (2014)

9. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - An optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_14

10. Candeago, L., Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Speed-
ing up the constraint-based method in difference logic. In: Creignou, N., Le Berre,
D. (eds.) Theory and Applications of Satisfiability Testing - SAT 2016, pp. 284–301.
Springer International Publishing, Cham (2016)

11. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
pp. 99–113. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39071-5_12

13. Craciunas, S.S., Oliver, R.S., Chmelík, M., Steiner, W.: Scheduling real-time com-
munication in IEEE 802.1qbv time sensitive networks. In: Proceedings of the 24th
International Conference on Real-Time Networks and Systems, p. 183-192. RTNS
2016, Association for Computing Machinery, New York, NY, USA (2016)

14. Demarchi, S., Menapace, M., Tacchella, A.: Automating elevator design with sat-
isfiability modulo theories. In: 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 26–33 (2019)

15. Demarchi, S., Tacchella, A., Menapace, M.: Automated design of complex systems
with constraint programming techniques. In: Proceedings of the Cyber-Physical

www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-66167-4_9
https://doi.org/10.1007/978-3-030-86205-3_12
https://doi.org/10.1007/978-3-030-86205-3_12
http://arxiv.org/abs/1806.07135
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-642-39071-5_12

476 N. Tsiskaridze et al.

Systems Ph.D Workshop 2019, CPS Summer School “Designing Cyber-Physical
Systems - From concepts to implementation”, Alghero, Italy, pp. 51–59 (2019)

16. Dutertre, B., de Moura, L.: Integrating simplex with DPLL(T). Technical Report,
SRI International (2006)

17. Eraşcu, M., Micota, F., Zaharie, D.: Applying optimization modulo theory, math-
ematical programming and symmetry breaking for automatic deployment in the
cloud of component-based applications extended abstract. In: 4th Women in Logic
Workshop, p. 6 (2020)

18. Erata, F., Piskac, R., Mateu, V., Szefer, J.: Towards automated detection of single-
trace side-channel vulnerabilities in constant-time cryptographic code (2023).
arXiv preprint arXiv:2304.02102

19. Fazekas, K., Bacchus, F., Biere, A.: Implicit hitting set algorithms for maximum
satisfiability modulo theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 134–151. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94205-6_10

20. Feng, J., Zhang, T., Yi, C.: Reliability-aware comprehensive routing and scheduling
in time-sensitive networking. In: Wireless Algorithms, Systems, and Applications:
17th International Conference, WASA 2022, Dalian, China, November 24–26, 2022,
Proceedings, Part II, pp. 243–254. Springer (2022)

21. Gavran, I., Darulova, E., Majumdar, R.: Interactive synthesis of temporal spec-
ifications from examples and natural language. In: Proceedings of the ACM on
Programming Languages, vol. 4(OOPSLA), pp. 1–26 (2020)

22. Gretsch, R., Song, P., Madhavan, A., Lau, J., Sherwood, T.: Energy efficient con-
volutions with temporal arithmetic. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, vol. 2, pp. 354–368. ASPLOS 2024, Association for Computing Machin-
ery, New York, NY, USA (2024)

23. Henry, J., Asavoae, M., Monniaux, D., Maïza, C.: How to compute worst-case
execution time by optimization modulo theory and a clever encoding of program
semantics. In: Proceedings of the 2014 SIGPLAN/SIGBED Conference on Lan-
guages, Compilers and Tools for Embedded Systems, Edinburgh, United Kingdom,
pp. 43–52. Association for Computing Machinery, New York, NY, USA (2014)

24. Jackson, D., Estler, H.C., Rayside, D.: The Guided Improvement Algorithm for
Exact, General-Purpose, Many-Objective Combinatorial Optimization. Technical
Report 2009-033, MIT-CSAIL (2009)

25. Jiang, J., Chen, L., Wu, X., Wang, J.: Block-wise abstract interpretation by com-
bining abstract domains with SMT. In: Bouajjani, A., Monniaux, D. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 18th International Conference,
VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings. Lecture Notes in
Computer Science, vol. 10145, pp. 310–329. Springer (2017). https://doi.org/10.
1007/978-3-319-52234-0_17

26. Jin, X., Xia, C., Guan, N., Zeng, P.: Joint algorithm of message fragmentation and
no-wait scheduling for time-sensitive networks. IEEE/CAA J. Automatica Sin.
8(2), 478–490 (2021)

27. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

28. Karpenkov, G.E.: Finding inductive invariants using satisfiability modulo theories
and convex optimization, Ph.D Thesis. Université Grenoble Alpes (2017). https://
tel.archives-ouvertes.fr/tel-01681555/file/KARPENKOV_2017_diffusion.pdf

http://arxiv.org/abs/2304.02102
https://doi.org/10.1007/978-3-319-94205-6_10
https://doi.org/10.1007/978-3-319-52234-0_17
https://doi.org/10.1007/978-3-319-52234-0_17
https://doi.org/10.1007/978-3-642-31365-3_27
https://tel.archives-ouvertes.fr/tel-01681555/file/KARPENKOV_2017_diffusion.pdf
https://tel.archives-ouvertes.fr/tel-01681555/file/KARPENKOV_2017_diffusion.pdf

Generalized Optimization Modulo Theories 477

29. Knüsel, M.: Optimizing Declarative Power Sequencing. Master thesis, ETH Zurich,
Zurich (2021-09)

30. Kovásznai, G., Biró, C., Erdélyi, B.: Puli - a problem-specific OMT solver. Easy-
Chair Preprints (2018)

31. Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI), vol.
4720, pp. 1–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74621-8_1

32. Lai, L., Fiaschi, L., Cococcioni, M., Deb, K.: Pure and mixed lexicographic-paretian
many-objective optimization: state of the art. Nat. Comput. Int. J. 22(2), 227-242
(2022)

33. Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) Theory and Applications of Satisfiability Testing - SAT 2014, pp.
333–350. Springer International Publishing, Cham (2014)

34. Lee, D., et al.: SP&R: SMT-based simultaneous place-and-route for standard cell
synthesis of advanced nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 40(10), 2142–2155 (2020)

35. Leofante, F., Giunchiglia, E., Ábrahám, E., Tacchella, A.: Optimal planning mod-
ulo theories. In: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pp. 4128–4134 (2021)

36. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California, USA,
pp. 607–618 (2014). https://doi.org/10.1145/2535838.2535857

37. Liu, T., Tyszberowicz, S., Beckert, B., Taghdiri, M.: Computing exact loop bounds
for bounded program verification. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.)
SETTA 2017. LNCS, vol. 10606, pp. 147–163. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69483-2_9

38. Marchetto, G., Sisto, R., Valenza, F., Yusupov, J., Ksentini, A.: A formal approach
to verify connectivity and optimize VNF placement in industrial networks. IEEE
Trans. Industr. Inf. 17(2), 1515–1525 (2021)

39. de Moura, L.M., Bjørner, N.S.: Model-based theory combination. In: Krstic, S.,
Oliveras, A. (eds.) Proceedings of the 5th International Workshop on Satisfiability
Modulo Theories, SMT@CAV 2007, Berlin, Germany, July 1-2, 2007. Electronic
Notes in Theoretical Computer Science, vol. 198, pp. 37–49. Elsevier (2007)

40. Nadel, A., Ryvchin, V.: Bit-vector optimization. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 851–867. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9_53

41. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Requirements evolution
and evolution requirements with constrained goal models. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974,
pp. 544–552. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-
1_42

42. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Modeling and reasoning
on requirements evolution with constrained goal models. In: Cimatti, A., Sirjani, M.
(eds.) Software Engineering and Formal Methods - 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings. Lecture Notes in
Computer Science, vol. 10469, pp. 70–86. Springer (2017)

https://doi.org/10.1007/978-3-540-74621-8_1
https://doi.org/10.1007/978-3-540-74621-8_1
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1007/978-3-319-69483-2_9
https://doi.org/10.1007/978-3-319-69483-2_9
https://doi.org/10.1007/978-3-662-49674-9_53
https://doi.org/10.1007/978-3-319-46397-1_42
https://doi.org/10.1007/978-3-319-46397-1_42

478 N. Tsiskaridze et al.

43. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective rea-
soning with constrained goal models. Requirements Eng. 23(2), 189–225 (2016).
https://doi.org/10.1007/s00766-016-0263-5

44. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability Testing
- SAT 2006, pp. 156–169. Springer, Berlin Heidelberg, Berlin, Heidelberg (2006)

45. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

46. Paoletti, N., et al.: Synthesizing stealthy reprogramming attacks on cardiac devices.
In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems, ICCPS 2019, pp. 13–22. Association for Computing Machinery,
New York, NY, USA (2019)

47. Park, D., Lee, D., Kang, I., Gao, S., Lin, B., Cheng, C.K.: SP&R: simultaneous
placement and routing framework for standard cell synthesis in sub-7nm. In: 2020
25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 345–
350 (2020)

48. Patti, G., Bello, L.L., Leonardi, L.: Deadline-aware online scheduling of tsn flows
for automotive applications. IEEE Trans. Ind. Inform. 19(4), 5774–5784 (2022)

49. Ratschan, S.: Simulation based computation of certificates for safety of dynamical
systems (2017). arXiv preprint arXiv:1707.00879

50. Roc, O.V.: Optimization Modulo Theories. Master’s thesis, Polytechnic University
of Catalonia. https://upcommons.upc.edu/handle/2099.1/14204 (2011)

51. Rybalchenko, A., Vuppalapati, C.: Supercharging plant configurations using z3.
In: Integration of Constraint Programming, Artificial Intelligence, and Operations
Research: 18th International Conference, CPAIOR 2021, Vienna, Austria, July
5–8, 2021, Proceedings. vol. 12735, p. 1. Springer Nature (2021)

52. Schmitt, T., Hoffmann, M., Rodemann, T., Adamy, J.: Incorporating human pref-
erences in decision making for dynamic multi-objective optimization in model pre-
dictive control. Inventions 7(3), 46 (2022)

53. Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theories
with linear-arithmetic cost functions. In: Baier, C., Tinelli, C. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 335–349. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2015)

54. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning, pp. 484–498.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

55. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logic 16(2), 1–43 (2015)

56. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
J. Autom. Reasoning 64(3), 423–460 (2018). https://doi.org/10.1007/s10817-018-
09508-6

57. Sebastiani, R., Trentin, P.: On optimization modulo theories, maxSMT and sort-
ing networks. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 231–248. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2017)

58. Shen, D., Zhang, T., Wang, J., Deng, Q., Han, S., Hu, X.S.: QoS guaranteed
resource allocation for coexisting eMBB and URLLC traffic in 5G industrial net-
works. In: 2022 IEEE 28th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp. 81–90. IEEE (2022)

https://doi.org/10.1007/s00766-016-0263-5
http://arxiv.org/abs/1707.00879
https://upcommons.upc.edu/handle/2099.1/14204
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6

Generalized Optimization Modulo Theories 479

59. Sivaraman, A., Farnadi, G., Millstein, T., Van den Broeck, G.: Counterexample-
guided learning of monotonic neural networks. Adv. Neural. Inf. Process. Syst. 33,
11936–11948 (2020)

60. Subramanian, S., Berzish, M., Tripp, O., Ganesh, V.: A solver for a theory of strings
and bit-vectors. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 124–126 (2017)

61. Tarrach, T., Ebrahimi, M., König, S., Schmittner, C., Bloem, R., Nickovic, D.:
Thorsten Tarrach and Masoud Ebrahimi and Sandra König and Christoph Schmit-
tner and Roderick Bloem and Dejan Nickovic, WorkingPaper (2022)

62. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif.
Intell. 244, 166–187 (2017)

63. Tierno, A., Turri, G., Cimatti, A., Passerone, R.: Symbolic encoding of reliability
for the design of redundant architectures. In: 2022 IEEE 5th International Confer-
ence on Industrial Cyber-Physical Systems (ICPS), pp. 01–06 (2022)

64. Trentin, P.: Optimization Modulo Theories with OptiMathSAT. Ph.D. thesis, Uni-
versity of Trento (2019)

65. Trentin, P., Sebastiani, R.: Optimization modulo the theories of signed bit-vectors
and floating-point numbers. J. Autom. Reason. 65(7), 1071-1096 (2021)

66. Trentin, P., Sebastiani, R.: Optimization modulo the theories of signed bit-vectors
and floating-point numbers. J. Autom. Reason. 65(7), 1071–1096 (2021)

67. Tsiskaridze, N., Barrett, C., Tinelli, C.: Generalized optimization modulo theories
(2024). arXiv preprint arXiv:2404.16122

68. Tsiskaridze, N., et al.: Automating system configuration. In: Formal Methods in
Computer Aided Design, FMCAD 2021, New Haven, CT, USA, October 19-22,
2021, pp. 102–111. IEEE (2021)

69. Yao, P., Shi, Q., Huang, H., Zhang, C.: Program analysis via efficient symbolic
abstraction. In: Proceedings of the ACM on Programming Languages, vol. 5(OOP-
SLA), pp. 1–32 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2404.16122
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Acclavio, Matteo II-216
Amrollahi, Daneshvar I-154
Arrial, Victor II-338
Avigad, Jeremy I-3
Ayala-Rincón, Mauricio II-317

B
Baader, Franz II-279
Balbiani, Philippe II-78
Barragán, Andrés Felipe González II-317
Barrett, Clark I-458
Bártek, Filip I-194
Berg, Jeremias I-396
Bhayat, Ahmed I-75
Biere, Armin I-284
Bonsangue, Marcello II-401
Bozec, Tanguy II-157
Bromberger, Martin I-133
Brown, Chad E. I-86
Bruni, Alessandro II-61

C
Cerna, David M. II-317
Chassot, Samuel I-304
Chvalovský, Karel I-194
Ciabattoni, Agata II-176
Coopmans, Tim II-401

D
Das, Anupam II-237
De Lon, Adrian I-105
De, Abhishek II-237
Dixon, Clare II-3

E
Ehling, Georg II-381
Einarsdóttir, Sólrún Halla I-214

F
Férée, Hugo II-43
Fernández Gil, Oliver II-279
Ferrari, Mauro II-24
Fiorentini, Camillo II-24
Frohn, Florian I-344
Froleyks, Nils I-284
Fruzsa, Krisztina II-114

G
Gao, Han II-78
Garcia, Ronald I-419
Ge, Rui I-419
Gencer, Çiğdem II-78
Ghilardi, Silvio I-265
Giesl, Jürgen I-233, I-344, II-360
Giessen, Iris van der II-43
Gool, Sam van II-43
Graham-Lengrand, Stéphane I-386
Guerrieri, Giulio II-338

H
Hader, Thomas I-386
Hajdu, Márton I-21, I-115, I-154, I-214
Heisinger, Maximilian I-315, I-325
Heisinger, Simone I-315, I-325
Heljanko, Keijo I-284
Heuer, Jan I-172
Hozzová, Petra I-21, I-154
Hustadt, Ullrich II-3

I
Ihalainen, Hannes I-396
Irfan, Ahmed I-386

J
Järvisalo, Matti I-396
Johansson, Moa I-214

© The Editor(s) (if applicable) and The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 481–482, 2024.
https://doi.org/10.1007/978-3-031-63498-7

https://doi.org/10.1007/978-3-031-63498-7

482 Author Index

K
Kaliszyk, Cezary I-86
Kassing, Jan-Christoph II-360
Kaufmann, Daniela I-386
Kesner, Delia II-338
Khalid, Zain I-53
Kotthoff, Lars I-53
Kovács, Laura I-21, I-115, I-154, I-386
Kozen, Dexter II-257
Krasnopol, Florent I-133
Kunčak, Viktor I-304
Kutsia, Temur II-317, II-381
Kuznets, Roman II-114

L
Laarman, Alfons II-401
Lammich, Peter I-439
Lommen, Nils I-233

M
Mei, Jingyi II-401
Meyer, Éléanore I-233
Middeldorp, Aart II-298
Mitterwallner, Fabian II-298
Möhle, Sibylle I-133
Myreen, Magnus O. I-396

N
Nalon, Cláudia II-3, II-97
Niederhauser, Johannes I-86
Nordström, Jakob I-396

O
Oertel, Andy I-396
Olivetti, Nicola II-78

P
Papacchini, Fabio II-3
Pattinson, Dirk II-97
Peltier, Nicolas II-157
Perrault, C. Raymond I-53
Petitjean, Quentin II-157
Platzer, André II-196

Poidomani, Lia M. I-265
Pommellet, Adrien I-366
Prebet, Enguerrand II-196

R
Rawson, Michael I-115
Rebola-Pardo, Adrian I-325
Ritter, Eike II-61
Rooduijn, Jan II-257
Ruess, Harald II-137

S
Scatton, Simon I-366
Schmid, Ulrich II-114
Schöpf, Jonas II-298
Schürmann, Carsten II-61
Seidl, Martina I-315, I-325
Shillito, Ian II-43
Sighireanu, Mihaela II-157
Silva, Alexandra II-257
Smallbone, Nicholas I-214
Stan, Daniel I-366
Suda, Martin I-75, I-194, I-214
Summers, Alexander J. I-419
Sutcliffe, Geoff I-30, I-53
Suttner, Christian I-53

T
Tan, Yong Kiam I-396
Tesi, Matteo II-176
Tinelli, Cesare I-458
Tsiskaridze, Nestan I-458

V
van Ditmarsch, Hans II-114
Vartanyan, Grigory II-360
Voronkov, Andrei I-21, I-115, I-154

W
Wagner, Eva Maria I-154
Waldmann, Uwe I-244
Weidenbach, Christoph I-133
Wernhard, Christoph I-172

Y
Yu, Emily I-284

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Invited Contributions
	Automated Reasoning for Mathematics
	1 The Origins and Foundations of Automated Reasoning
	2 Taking Stock
	3 A Personal History
	4 Domain-General Reasoning for Verification
	5 Domain-Specific Reasoning for Verification
	6 Automation for the Discovery of New Theorems
	7 Machine Learning and Symbolic AI
	8 Conclusions
	References

	Induction in Saturation
	1 Introduction
	2 Induction in Saturation - In a Nutshell
	3 Induction and Arithmetic
	4 Induction over Arrays
	5 Induction over Lists
	6 Conclusions and Outlook
	References

	Stepping Stones in the TPTP World
	1 Introduction
	2 The TPTP Language
	3 The TPTP Problem Library
	4 The TSTP Solution Library
	5 The SZS Ontologies
	6 Specialist Problem Classes
	7 Problem Difficulty Ratings
	8 SystemOnTPTP and StarExec
	9 The CADE ATP System Competition
	10 TPTP World Users
	11 Conclusion
	References

	Theorem Proving and Tools
	An Empirical Assessment of Progress in Automated Theorem Proving
	1 Introduction
	2 The TPTP Problem Library
	2.1 Specialist Problem Classes
	2.2 TPTP Problem Ratings

	3 The TSTP Solution Library
	3.1 Resource Limits

	4 Analysis Processes
	4.1 Analysis Data
	4.2 Coherent SPC Sets
	4.3 Six Analyses

	5 Evidence of Progress
	5.1 First Solutions
	5.2 Solutions and Ratings

	6 Conclusion
	References

	A Higher-Order Vampire (Short Paper)
	1 Introduction
	2 Preliminaries
	3 Calculus
	4 Implementation
	5 Strategies and the Schedule
	6 Related Work
	7 Conclusion
	References

	Tableaux for Automated Reasoning in Dependently-Typed Higher-Order Logic
	1 Introduction
	2 Preliminaries
	2.1 HOL
	2.2 DHOL
	2.3 Erasure

	3 Tableau Calculus for DHOL
	3.1 Rules
	3.2 Soundness and Completeness

	4 Implementation
	4.1 Type Checking
	4.2 Implementation of the Rules
	4.3 Generating Instantiations

	5 Case Study: List Reversal Is an Involution
	6 Conclusion
	References

	The Naproche-ZF Theorem Prover (Short Paper)
	1 Introduction
	2 Controlled Natural Language
	3 Semantics and Proof Checking
	4 Conclusion and Future Work
	References

	Reducibility Constraints in Superposition
	1 Introduction
	2 Preliminaries
	3 Reducibility Constraints
	4 Model Construction in BLINC
	5 Redundancy Detection in BLINC
	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	First-Order Automatic Literal Model Generation
	1 Introduction
	2 Preliminaries
	3 SCL: Clause Learning from Simple Models
	4 Generating Models
	5 Conclusion and Future Work
	References

	Synthesis of Recursive Programs in Saturation
	1 Introduction
	2 Preliminaries
	3 Recent Developments in Saturation
	4 Saturation with Induction in Constructive Logic
	5 Induction with Magic Formulas
	6 Programs with Primitive Recursion
	7 Recursive Synthesis in Saturation
	8 Generalization to Arbitrary Term Algebras
	9 Implementation and Examples
	10 Related Work
	11 Conclusions
	References

	Synthesizing Strongly Equivalent Logic Programs: Beth Definability for Answer Set Programs via Craig Interpolation in First-Order Logic
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Strong Equivalence as First-Order Equivalence
	2.3 Definition Synthesis with Craig Interpolation

	3 Variations of Craig Interpolation and Beth Definability for Logic Programs
	3.1 Extracting Logic Programs from a First-Order Encoding
	3.2 A Refinement of Craig Interpolation for Logic Programs
	3.3 Effective Projective Definability of Logic Programs
	3.4 Constraining Positions of Predicates Within Rules

	4 Prototypical Implementation
	5 Conclusion
	References

	Regularization in Spider-Style Strategy Discovery and Schedule Construction
	1 Introduction
	2 Preliminaries
	2.1 Spider-Style Strategy Discovery and Schedule Construction
	2.2 CPU Instructions as a Measure of Time

	3 Strategy Discovery Experiment
	3.1 Initial Strategy and Varying Instruction Limits
	3.2 Problem Sampling
	3.3 Strategy Sampling
	3.4 Impact of Strategy Optimization
	3.5 Parsing Does Not Count

	4 One Schedule to Cover Them All
	5 Greedy Schedule Construction
	5.1 Do We Need a Budget?

	6 Regularization in Schedule Construction
	6.1 Regularization Methods
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	A Experimental Results on Various Budgets
	References

	Lemma Discovery and Strategies for Automated Induction
	1 Introduction
	2 Background
	2.1 QuickSpec
	2.2 Induction in Vampire

	3 Implementation
	3.1 Conjectured Lemmas, AVATAR, and Vampire's Claims
	3.2 Proving Strategies and a New Induction Schedule

	4 Evaluation
	4.1 TIP Benchmarks
	4.2 Results

	5 Discussion
	5.1 Future Work

	References

	Control-Flow Refinement for Complexity Analysis of Probabilistic Programs in KoAT (Short Paper)
	1 Introduction
	2 Preliminaries
	3 Control-Flow Refinement for PIPs
	4 Implementation, Evaluation, and Conclusion
	References

	On the (In-)Completeness of Destructive Equality Resolution in the Superposition Calculus
	1 Introduction
	2 Preliminaries
	3 Incompleteness
	4 Completeness, Part I: The Horn Case
	4.1 The Idea
	4.2 Ground Case
	4.3 Lifting
	4.4 Deletion and Simplification

	5 Completeness, Part II: The Non-horn Case
	6 Discussion
	References

	SAT, SMT and Quantifier Elimination
	Model Completeness for Rational Trees
	1 Introduction
	2 Preliminaries
	3 -Trees
	4 -Graphs and Bisimulations
	5 Definability
	6 Model Completeness
	7 Conclusions, Related and Further Work
	References

	Certifying Phase Abstraction
	1 Introduction
	2 Background
	3 Periodic Signals
	4 Extending Phase Abstraction
	5 Certification
	5.1 Restricted Simulation
	5.2 Certifying Phase Abstraction

	6 Implementation
	7 Experimental Evaluation
	8 Conclusion
	References

	Verifying a Realistic Mutable Hash Table
	1 Introduction
	1.1 Related Work

	2 LongMap: From Scala Library to Stainless
	2.1 Adapting for Verification

	3 Specification and Verification
	3.1 Decorator Design Pattern for Modular Proofs
	3.2 Swap Operation for More Expressive Unique Reference
	3.3 Finding and Confirming a Bug in the Original Implementation
	3.4 SMT Queries

	4 Evaluation
	5 Conclusion
	References

	Booleguru, the Propositional Polyglot (Short Paper)
	1 Introduction
	1.1 Bridging the Solver Gap with Propositional Logic
	1.2 Related Work

	2 Booleguru, the Propositional Multitool
	2.1 Representing Propositional Formulas in Memory
	2.2 Parsing Formulas
	2.3 Transforming Formulas
	2.4 Serializing Formulas

	3 Booleguru, the Programming Environment
	3.1 Command-Line Interactive Interface
	3.2 Developing Booleguru

	4 Conclusion
	References

	Quantifier Shifting for Quantified Boolean Formulas Revisited
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Quantifier Shifting
	4.1 Linearizations over Quantrees
	4.2 Alternation Height of Quantrees

	5 Linearization Strategies
	5.1 Strategies as Preferences over Linearizations
	5.2 Optimal Linearizations over a Strategy

	6 Implementation and Evaluation
	6.1 Benchmarks
	6.2 Experimental Setup
	6.3 Experimental Results

	7 Conclusion and Future Work
	References

	Satisfiability Modulo Exponential Integer Arithmetic
	1 Introduction
	2 Preliminaries
	3 The SMT Theory EIA
	4 Solving EIA Problems via CEGAR
	4.1 Preprocessings
	4.2 Refinement

	5 Related Work
	6 Implementation and Evaluation
	7 Conclusion
	References

	SAT-Based Learning of Computation Tree Logic
	1 Introduction
	2 Preliminary Definitions
	2.1 Kripke Structures
	2.2 Computation Tree Logic
	2.3 Bounded Semantics

	3 The Learning Problem
	3.1 Introducing the Problem
	3.2 An Explicit Solution

	4 SAT-Based Learning
	4.1 Modelling the Formula
	4.2 Applying the Formula to the Sample
	4.3 Solving the SAT Instance

	5 Algorithms for the Minimal Learning Problem
	5.1 A Bottom-Up Algorithm
	5.2 Embedding Negations
	5.3 Optimizations and Alternatives

	6 Experimental Implementation
	6.1 Benchmark Collection
	6.2 Quantitative Evaluation

	7 Conclusion and Further Developments
	A Proof of Theorem 3
	B Proof of Theorem 5
	C Proof of Corollary 1
	References

	MCSat-Based Finite Field Reasoning in the Yices2 SMT Solver (Short Paper)
	1 Introduction
	2 Preliminaries
	3 Usability of SMT Solving in Finite Fields
	4 Implementation Details
	5 Evaluation
	6 Summary and Outlook
	References

	Certified MaxSAT Preprocessing
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.3 Organization of This Paper

	2 Preliminaries
	2.1 Pseudo-Boolean Proof Logging Using Cutting Planes
	2.2 Maximum Satisfiability

	3 Proof Logging for MaxSAT Preprocessing
	3.1 Overview
	3.2 Worked Example of Certified Preprocessing

	4 Verified Proof Checking for Preprocessing Proofs
	4.1 Output Section for Pseudo-Boolean Proofs
	4.2 Verified Proof Checking for Reformulations
	4.3 Verified WCNF Frontend

	5 Experiments
	6 Conclusion
	References

	A Formal Model to Prove Instantiation Termination for E-matching-Based Axiomatisations
	1 Introduction
	2 Problem Statement
	2.1 Quantifier Instantiation via E-matching
	2.2 Objectives for a Formal Model of E-matching

	3 An Operational Semantics for E-matching
	3.1 Preliminaries
	3.2 States
	3.3 E-interfaces
	3.4 E-histories, E-states, E-matching
	3.5 State Transitions
	3.6 Nested Quantifiers
	3.7 Theory-Specific Reasoning

	4 Proving Instantiation Termination for E-matching
	4.1 Axiomatisation for Set Theory
	4.2 Progress Measure
	4.3 Invariants and Termination Theorem

	5 Related Work
	6 Conclusion and Future Work
	References

	Fast and Verified UNSAT Certificate Checking
	1 Introduction
	2 Specification
	2.1 Conjunctive Normal Form
	2.2 Specification of the DIMACS CNF Format
	2.3 Correctness Specification

	3 Certificates for Unsatisfiability
	3.1 Abstract Checker

	4 Implementation
	4.1 Basic Concepts and Data Structures
	4.2 Data Structures with Capacity Bounds
	4.3 Proof Checker Implementation
	4.4 A Verified DIMACS Parser
	4.5 Assembling the Whole Program
	4.6 Refinement to LLVM Code
	4.7 Soundness Theorem

	5 Benchmarks
	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	References

	Generalized Optimization Modulo Theories
	1 Introduction
	2 Background
	3 Generalized Optimization Modulo Theories
	3.1 Formalization
	3.2 Multi-objective Optimization

	4 The GOMT Calculus
	4.1 Derivation Rules
	4.2 Search Strategies
	4.3 New Applications
	4.4 Correctness

	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

