Simple Representative Instantiations for
Multicast Protocols

Javier Esparza and Monika Maidl

School of Informatics, University of Edinburgh
{jav+monika}@inf.ed.ac.uk

Abstract. We present a formal model for multicast network protocols
working on arbitrary tree structures. We give sufficient conditions un-
der which correctness of the protocol for all structures reduces to cor-
rectness for the structures with at most one layer of internal nodes. If
additional conditions hold, we can reduce further to correctness for one
single structure. All these results can be applied to (an abstract version
of) the Pragmatic General Multicast protocol.

In the last years, much effort has been devoted to the verification of parame-
terised distributed systems, i.e., distributed systems designed to work correctly
independently of the number of processes taking part in them. Classical exam-
ples of these systems are distributed algorithms for leader election, byzantine
agreement, or distributed termination, and communication protocols, like cache
coherence or network protocols. In this paper we study multicast network proto-
cols working on tree structures[] In these protocols, data are exchanged between
a sender (the root of the tree) and several receivers (the leaves) via network
elements (the internal nodes). Messages flowing from sender to receivers can
be multicasted, i.e., simultaneously sent to several successors. Examples of such
multicast network protocols are PGM (Pragmatic General Multicast) [ST00] and
LMS (Light-weight Multicast Services) [PPV].

Verifying a property ¢ of a parameterised system consists of checking that
¢ for all possible structures (in our case, for all possible trees). This may be
difficult, and so a common approach is to first reduce the task to checking ¢
for a restricted class of structures (see for instance [EN95]). This is also the
approach of this paper.

We first provide a general formal model for multicast networks. The only
assumption is that messages can overtake other messages and can get lost, but
cannot be duplicated. This is a reasonable assumption for protocols in which
channels are just an abstraction for a routing mechanism that may send different
messages—or different fragments of the same message—through various routes,
as in the PGM and LMS protocols. For protocols in which messages cannot
overtake others or get lost, the assumption overapproximates the behaviour of
the protocol. In this case, correctness in our model still implies correctness of

! Actually, these protocols run on arbitrary networks, but use a distribution tree to

broadcast messages. We assume that this tree has already been established.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 128-[[43, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Simple Representative Instantiations for Multicast Protocols 129

the protocol. We define a notion of simulation that preserves stuttering-invariant
linear-time properties, i.e., if the simulating structure satisfies the property, then
the simulated structure also satisfies it.

Equipped with this formal setting, we identify general sufficient conditions
for a protocol P to be collapsable, meaning that a property holds for all instan-
tiations N'(P) of P if and only if it holds for the set of instantiations N (P)
with at most one level of internal elements. We prove that for every instantiation
T in N(P) there is an instantiation 7" in A''(P) that simulates T[] Then, all
instantiations in N1(P) satisfy ¢ if and only if all instantiations in 7' € N(P)
satisfy ¢, because simulation preserves properties and N1 (P) C N(P).

In particular, our conditions are satisfied by network elements that only per-
form ‘forwarding’, i.e., only forward messages down from the parent to all chil-
dren, and up from some child to the parent. Hence, our result can be applied
to telecommunication protocols that do not assume that router support can be
used and that use a fixed distribution tree. We show that they are also satisfied
by the PGM protocol, where network elements have a much richer functionality,
which is used to make communication between the sender and receivers more
reliable and efficient.

While the collapse of N'(P) to N'(P) removes the problem of dealing with
different tree topologies, it still leaves us with an infinite number of possible
instantiations. This cannot be avoided as long as more receivers can generate
more behaviour. However, we prove that if the number of different messages that
can circulate is finite and receivers and network elements can repeatedly send
the same message upwards, then the verification task can be further reduced:
Given a property ¢, all instantiations of N1(P) satisfy ¢ if and only if one
single universal instantiation U, which depends on @. Again, we prove that if
the number of messages in the PGM protocol is bounded, then the result can be
applied, and the protocol has a universal instantiation.

The paper is structured as follows. In section [I] we introduce (a version of)
the PGM protocol, in order to introduce network protocols and have a rich
running example for our definitions and results. Section Pl contains our formal
model. Our notions of property and simulation are given in Section [3l Section
presents the sufficient conditions for a network to be collapsable. This section is
divided into two parts; the first part deals with the special case, in which network
elements can only forward messages, and the second deals with the general case.
The section also shows that the PGM protocol satisfies the conditions. Finally,
section Bl presents the universal instance that can simulate any other instantiation
of a collapsable protocol, assuming that the number of messages is finite. The
paper is accompanied by a technical report [EM02] which contains full proofs.

2 Notice that we always speak of instantiations of the same protocol. Given a protocol
P, one can always find another protocol P’ such that every T' € N(P) is simulated
by some T’ € N* (P'") by making the sender, receiver and internal processes more
complicated.

130 J. Esparza and M. Maidl

1 The PGM Protocol

The Pragmatic General Multicast (PGM) protocol is a reliable multicast proto-
col for the distribution of information from multiple senders to multiple receivers.
It is designed in order to minimize loading of the network due to acknowledg-
ment messages or retransmissions of lost packets, and has been presented to the
Internet Engineering Task Force as an open reference specification. We consider
the following abstract, untimed variant of the protocol for one sender. We have
a tree of processes connected by bidirectional channels. Messages can get lost
and can overtake each other (i.e., can be delivered in a different order than
they are sent), but cannot be duplicated. The root of the tree is the sender,
and the leaves the receivers. The other processes are internal network elements.
The source multicasts a numbered sequence of data packets called odata(nr,trl)
(for original data) within a transmit window; nr is the number of the package,
and trl is the left-hand edge of the sender’s window at the moment of sending
it. Network elements forward these packets down the distribution tree. If a re-
ceiver detects that packet nr is missing from the sequence, it repeatedly sends
a primary negative acknowledgment (pnak(nr)) to its parent, requesting a re-
pair. Each network element that receives a pnak forwards it to its parent, and
multicasts a nak-confirmation (ncf(nr)) to its children; it then keeps sending
secondary nak (snak(nr)) to its parent (which are forwarded upwards, but do
not generate confirmations) until it receives a nak-confirmation itself. When the
source receives a pnak or snak it provides a repair (rdata(nr¢rl)), which is multi-
casted downwards to the processes that requested them. There is a final feature
called nak-anticipation: A receiver may receive a confirmation to a pnak sent by
anotherreceiver. Anticipating its own future need for a repair, it repeatedly sends
snak’s to its parent, until either the original data or the repair arrives. Notice
that odata-, rdata- and ncf-messages travel downwards (from sender to receivers)
while pnak- and snak-messages travel upwards (from receiver to sender).

Formally, the protocol is given by three agents describing the sender, the
receivers, and the network elements, whose descriptions can be found in Table [Tl
Every agent has a set of variables and a set of (atomic) transitions. Transitions
are guarded by either boolean expressions over the process variables or by the
delivery of a message. In the initial state, all sets are empty, odata, txw_trail and
rezw_trail are 0, and WIN_SIZE has some fixed value (window size).

Our version of the PGM protocol differs slightly from [ST00] in that we
distinguish between primary and secondary nak messages. While our result also
holds for the original version, as shown in [Mai02], our version allows for a generic
proof, and it can simulate the original version except for a behaviour which is
not desirable according to the specification: Our version is more economic in the
number of nak messages sent than the original one. All these points are discussed
in detail in the full version [EMO02] of this paper.

Simple Representative Instantiations for Multicast Protocols 131

Table 1. Agents of the PGM protocol

agent source
odata, WIN_SIZE, TXWTR: IN; rec_nak: set of IN
sl: in pnak(nr) V in snak(nr) — out ncf(nr) downwards;
tzw_trail < nr — rec_nak := add(rec_nak, nr);
s2: is_in(nr, rec_nak) — nr > trw_trail — out rdata(nr, tzw_trail) downwards;
rec_nak := remove(rec_nak, nr);

s3: length(rec_nak) = 0 — out odata(odata, tzw_trail) downwards;

odata := odata + 1;

odata+ 1 > WIN_SIZE + tzw_trail

— tzw_trail := tzw_trail + WIN_SIZE;

endagent;

agent network_element
set_repair: set of IN; set_interf: set of (IN, channel_name)
el: in pnak(nr) — set_repair := add(set-repair, nr);
set_interf := add(set_interf, (nr,c)); [c reception channel]
pnak & set_repair — out pnak(nr) upwards;
out ncf(nr) downwards;
e2: in snak(nr) — set_interf:= add(set_interf, (nr,c)); [c reception channel]
snak ¢ set_repair — out snak(nr) upwards;
e3: in rdata(nr, trl) — set_repair := remove(set_repair, nr);
out rdata(nr,trl) to all channels ¢’ s.t. (nr,) € set_interf
set_interf := remove((nr, c'), set_interf)
ed: in ncf(nr) — set_repair := remove(set_repair, nr);
e5: in odata(nr, trl) — out odata(nr, trl) downwards;
€6: is_in(nr, set_repair) — out snak(nr) upwards;
endagent;

agent receiver
row_trail, set_nr, set_missing: set of IN
rl: in odata(nr, trl) A row_trail< nr— row_trail < trl — row_trail ;== tri;
set_nr := add(set_nr, nr);
for all (rzw-trail < i < nrAi & set_nr)
set_missing := add(set_missing,i);
set_missing := remove(set-missing, nr);
set_smissing := remove(set_smissing, nr)
r2: in ncf(nr) A row_trail< nrA nré set_nr— set_smissing := add(set_smissing, nr)
for all (rzw_trail < i < nrAt ¢ set_nr)
set_smissing := add(set_smissing, 1);
r3: in rdata(nr, trl) A row_trail< nr— row_trail < trl — row_trail ;= trl;
set_nr := add(set_nr, nr);
set_missing := remove(set_missing, nr);
set_smissing := remove(set_smissing, nr)
rd: is_in(nr, set_missing) — nr > rzw_-trail — out pnak (nr) upwards;
nr < row_trail — set_missing := remove(set_missing, nr);
r5: is_in(nr, set_smissing) — nr > rzw_trail — out snak(nr) upwards;
nr< rzw_trail — set_smissing := remove(set_smissing, nr);
endagent;

132 J. Esparza and M. Maidl
2 A Formal Model of Network Protocols

In this section we formalise the notions of tree networks, and of families of tree
networks defined by a protocol.

2.1 Messages, Actions, Events, and Histories

Let M be a (possibly infinite) set of messages. We assume that M contains an
‘empty’ message, denoted by L. We assume that M = MTUM | UL [] where
M7 and M| are sets of upward and downward messages such that M7TNM | = (.
We model receiving or sending no message as receiving or sending the “empty”
message L. An abstract action, or just an action, is a triple (i,01,09) # (L, L, 1)
of messages such that oy € MTUL and oo € M| UL. Intuitively, an action
models receiving a message ¢, and sending a message o1 upwards and a message
0o downwards. A trace is a finite sequence of actions. We denote the set of all
traces by T'R.

Let Ch be a set of downward channels, and let ch ¢ Ch be an upward chan-
nel. A concrete action or event over ch, Ch is a fivetuple (i,c¢,01,02,C), where
(i,01,02) is an abstract action, ¢ € {ch} U Ch, C C Ch, and moreover, either
c=chandi € M|UL, or ¢c € Ch and i € MJUL. (The intuition is that ch
is the channel communicating with the parent, and Ch the channels communi-
cating with the children.) An event corresponds to a process receiving message
¢ through channel ¢, sending o7 through the upward channel ch, and sending oo
through a subset C' of downward channels. We denote the set of all events by E.
A history is a finite sequence of events. We denote the set of all histories by H.

Given an event e = (i,c¢, 01,03, C) over ch, Ch, we define the action corre-
sponding to e as (i,01,02), and denote it by a(e). Given a channel ¢/, we define
the ¢'-action corresponding to e, denoted by ¢'(e), as the pair (¢/(4), (01, 02))
given by: (1) ¢/(i) =i if ¢ = ¢ and /(i) = L otherwise, and (2) ¢(01,02) = 01
if ¢ = ch, /(01,02) =05 if ¢ € C, and ¢/(01,02) = L otherwise.

Given a history h = e;...e,, we define its associated trace as the sequence
tr(h) = a(ey) ...a(e,). Given a channel ¢, at most one message is sent through
¢ during an action, and hence the projection of history h onto channel c is a
sequence tr(h,c) = c(e1)...c(e,). We call such sequences projected traces and
denote them by TRproj.

2.2 Agents and Processes

In multicast protocols, like the PGM, agents are defined to work independently
of the identity and number of their upward and downward channels, because the
architecture of the network is not known a priori. Our notion of agents intends
to be very general, while respecting this limitation.

An agent is a pair A = (p, f), where p: TR x M — 2MT*ML ig the input/
output relation, and f: TRproj X Act x Bool — Bool is the filter. Let us explain

3 Throughout the paper we identify | and the set {_}. This should cause no confusion.

Simple Representative Instantiations for Multicast Protocols 133

this definition. Intuitively, an agent A selects the events that can be executed as
a function of the past history, and of the current input message i. After receiving
1, the agent selects an event in two steps. First, it nondeterministically selects the
messages 01,02 to be sent upwards and downwards, respectively, as a function
of the current trace ¢r of actions and the input message ¢. Formally, (01,02) €
p(tr,). In the second step, the agent determines the subset of downward channels
through which the message os is sent. The agent examines each channel ¢ € Ch,
and decides whether to send os through it or not depending on the action a =
(i,01,02), the projection tr(h,c) of h on channel ¢, and on whether the input 4
came via the channel ¢ or not. Formally, o9 is sent through c if f(¢r(h,c),a,b) =
true, where b is true iff ¢ arrived through channel c.

A process is a triple P = (ch, Ch, A), where A is an agent, Ch is a set of
channels, and ch is a channel that does not belong to Ch. The set of transitions
of the process P is the subset of H X E x H containing the triples (h, e, h - €)
(also denoted by h < h - €), such that e is an event that can be selected by A
when h is the past history of the process.

Ezample: We formalise the input/output relation p, of the network element

agent of the PGM protocol in our framework. (The filter can be formalised
analogously.)

pn (tr, rdata(nr, trl {(L,rdata(nr, trl))}

pn (tr, pnak(nr {(pnak(nr),ncf(nr))}

pn(tr,snak(nr)) = {(snak(nr), L)}

{(

{(

) =
) =
)
pn(tr, odata(nr, trl)) =
)=
)=

1, odata(nr, trl))}
pn (tr, ncf(nr) 1, 1)}
{(snak nr), L)} if nr € set_repair(tr)
pn(tr, L { 1] otherwise

Note that the value of set_repair is fully determined by tr; nr € set_repair(tr)

if and only if ¢r contains the action (pnak(nr), pnak(nr),ncf(nr)) (which adds
nr to set_repair) and no later occurrence of the actions (ncf(nr), L, ncf(nr)) or
(rdata(nr), L,rdata(nr)) (which remove nr). So set_repair provides an abstract
view on a trace sufficient to define p,,.

2.3 Tree Networks and Protocols

Loosely speaking, a tree network is a network of processes with a tree topology;
every process is connected to its parent and children by bidirectional channels.

Syntaz. A finite tree T is a set of nodes together with a partial order <r
satisfying the usual tree condition: if n; <7 n and ns <7 n, then n; <7 ns or
ny; <7 n;. We denote the child relation by < (i.e., n < n’ if n <7 n’ and there is
no n’ such that n <y n” <7 n’). We write p(n) for the parent of n, i.e., for the
unique n’ such that n’ < n or for the symbol “_” if there is not such n’. If n < n’,
then we call the pair [n,n’] a channel. We define the sets of downward channels
ofnin T as Ch(n, T) = {[n,n’] | n < n'}, and let ch(n, T) = [p(n),n]. If n is

134 J. Esparza and M. Maidl

the root, then the channel [, n] is considered to connect to the environment. If
no confusion is possible, we shorten ch(n, T') and Ch(n, T) to ch(n) and Ch(n),
respectively. Throughout this paper, for simplicity we assume that the sender
only uses its downward channels and receivers only use their upward channel.

A tree network is a pair (T, A), where T is a finite tree, and A is a mapping
that associates to each node n € N an agent A(n). The mapping Proc associates
to each node n the process Proc(n) = (ch(n), Ch(n), A(n)).

We call the root of the tree the sender of the network, and denote it by s.
Maximal nodes w.r.t. <7 are called receivers. All other nodes are called internal.

A tree network (7', A) is homogeneous if A(n) = A(n’) for every two internal
nodes n,n’, and A(r) = A(r') for every two receivers r and r’. A protocol P is
a set of three agents A, A,, A,. A protocol P defines a family N (P) of homo-
geneous tree networks, namely the tree networks (7T, A) satisfying A(s) = As,
A(n) = A, for all internal elements n, and A(r) = A, for all receivers r.

Semantics. A network event of a tree network (T, A) is a pair (n,e), where n is
a node of T and e is an event of Proc(n). Intuitively, a network event models
that the process Proc(n) executes the event e. We denote the set of all network
events by Nev. A network history is a finite sequence of network events. Given a
network history nh = (n1,e1)...(n,,e,) and a node n, we define by nh(n) the
projection of nh onto the events executed by n. Notice that nh(n) is a history
of the process Proc(n).

Since messages can overtake other messages, a channel behaves like a mul-
tiset, which only retains the multiplicity of each message, but not their order.
Loss of a message need not be modelled explicitely, because it can be simulated
by never taking the message from the channel. The multiset of messages that
are waiting for delivery in the channel ¢ after the execution of nh is denoted
by M (nh,c). Formally, M (nh,[n,n’]) is the multiset of messages sent through
channel ¢ by Proc(n) and Proc(n’) during the network history nh, minus the
multiset of messages received through ¢ by the same processes, also during nh.

A triple (nh, (n,e),nh’), where nh,nh’ are network histories and (n,e) is a
network event, is a transition of (7', A) if there is a transition h — h’ of Proc(n)
satisfying the following conditions:

(1) nh(n) = h, nh/(n) = 1’, and nh(n’) = nh(n) for every n’ # n.

(2) Let ¢ be the message received by Proc(n) in e, and let ¢ be the channel
through which 4 arrived. Then, either ¢ = L, or ¢ € M(nh,c). Le., the
message received by Proc(n) in the event e was either empty or it was waiting
for delivery in the channel c.

If (nh, (n,e),nh') is a transition of (T, A), then we write nh — nh’. We write

ey...epn . .. e en
nh —“"5 nh' if there are transitions nh —— nh; ...nh,_1 — nh’. W.lLo.g,
ni n,

np...ny,
we assume that every network history has at least one successor (if not, just add
self-looping transitions with some special label).

Simple Representative Instantiations for Multicast Protocols 135

Fuair executions. In our framework, a state of a tree network is given by a network
history. An execution of T is an infinite sequence m = nhg nhy nhs ... of network
histories (i.e., of states) such that for every i > 0 there is a network event (e;, n;)
satisfying nh; % nh;y1. An execution is fair with respect to a subset TCT

if for every node n € T in the network, n; = n for infinitely many i > 0, i.e., if
every node in T executes infinitely many events.

3 Fair Stuttering Simulations for Tree Networks

Fix a protocol P. We are interested in properties that concern only the be-
haviours of the sender and the receivers, since these are the ‘visible’ elements of
the protocol. So we consider properties @ of the form & = VuVo¢, where pu is a
tuple of message variables, o is a tuple of receiver variables, and ¢ is a stuttering
invariant LTL temporal logic formula [Lam83|PW97]. The atomic propositions
of ¢ can be indexed by the variables of u, o.

Ezxample: Informally, the main property that the PGM protocol should satisfy
is “for every receiver r and for every message m sent by the sender, eventually
one of the following two holds: r receives m, or r knows that m is lost, and that
the sender is not going to resend it in the future”. The second possibility means
that r finds out that the lower end of the sender’s retransmission window (given
by tzw_trail) is larger than the number of messages m.

Given a tree network 7' € N (P), we interpret atomic propositions over sets
of network histories of T[] We say that T satisfies @ if for all valuations wval of
the variables u, o, and for all executions 7w of T' that are fair with respect to s
and to all receivers in the image of val, 7 |= ¢ := val(p), o := val(o)].

Note that executions in which some processes not mentioned in the property
are not scheduled infinitely often are fair, and so the property must also hold
for them. But we exclude as unfair those executions in which the sender or
some receiver mentioned in the property is ‘cut off from the network’ after a
certain time point, i.e. does no longer receive messages due, say, to a connection
breakdown. We say that P satisfies @ if T satisfies @ for all T € N (P), i.e., P
satisfies a property if all the homogeneous tree networks of N'(P) satisfy it.

A simulation of T by T preserves a property @ if T = @ implies T' = @. Our
goal is to prove that all the tree networks of A/(P) can be simulated by those
in a subset N’(P) C N(P), according to a notion of simulation that preserves
properties. Once this is achieved, we can prove that P satisfies @ by showing
that the networks of N/(P) satisfy .

We now define a stuttering version of simulation, similar to stuttering bisim-
ulation [BCGS8S]. In the simulations used in our proofs all actions of the sim-
ulated network T have a corresponding sequence of actions in the simulating
network T, and so we do not have to consider stuttering in 7', which simplifies

* Once P is fixed, all networks (T, A) of N'(P) share the same agent function A. So
we shorten (T, A) to T.

136 J. Esparza and M. Maidl

the definition. Since we only require fair paths to satisfy a property, we adapt
the definition accordingly, like in fair simulation as introduced in [GL94], the
coarsest simulation that preserves fair-ACTL*.

Given two networks T' and T”, let Im be a mapping that assigns to each re-
ceiver r of T a receiver Im(r) of T, called the image of r. Let Match(nh,nh’) be
the relation between histories of T and T" given by tr(nh(s)) = tr(nh’(s'))),
where s and s’ are the senders of T and T”, respectively, and tr(nh(r)) =
tr(nh/(Im(r))) for all receivers r.

Definition 1
A fair stuttering simulation of T by T’ with respect to Im is a relation R C
NH x NH’ such that R(nh,nh’) implies:

— Match(nh,nh’).

— For every subset T of T consisting of the sender and receivers, and for every
execution 7 of T starting at nh which is fair with respect to T there is an
execution 7’ of T starting at nh’, fair with respect to I'm [T], and an increas-
ing mapping o: IN — IN such that (a) for all n > 0, R(w(n),n'(c(n)), and
(b) for all o(n) < j < o(n+ 1), Match(m(n+1),7'(5)).

We say that T is simulated by T’ (with respect to Im) if there is a mapping
Im and a fair stuttering simulation R of T' by T” with respect to Im such that
R(nhg, nhy), where nho and nh{, are the empty network histories of 7" and 7.

The following theorem describes properties that are preserved by fair stut-
tering simulation. It follows easily from the fact that for every execution 7 in T
that is fair with respect to a subset T there is an execution 7’ in 7", fair with
respect to Im[T), such that the states of = and 7’ pointwise (up to stuttering)
satisfy Match. This implies that 7’ satisfies the same stuttering-invariant LTL
properties as 7.

Theorem 1 Let T and T’ be tree networks such that T is simulated by T’
with respect to Im. Let ® = YuVo¢ be a formula such that (1) ¢ is stuttering-
invariant, and (2) for all atomic propositions p of ¢ and for all network histories
nh and nh', Match(nh,nh') implies nh |= p <= nh' = p. Then, T' |= & implies
TE®.

Finally, we have the result we were looking for:

Theorem 2 Let N/ C N(P) such that each T € N(P) is simulated by some
T e N, and let @ as is Theorem[. Then N’ |= ® implies N (P) = &.

4 Collapsable Tree Networks

In this section, we explore conditions on protocols that allow to flatten the tree
hierarchy, i.e. conditions implying that any tree network can be simulated by
one with at most one layer of internal elements.

Simple Representative Instantiations for Multicast Protocols 137

Throughout this section we fix a protocol P consisting of agents (ps, fs),
(pn, fn) and (py, f). Let NO(P) be the set of tree networks in A/(P) without
internal elements, and let N''(P) be the set of tree networks in N(P) with only
one layer of internal elements. For simplicity, we only consider sender agents that
always sends downward messages through all their downward channels.

We are interested in protocols like the PGM, where the sender exchanges
messages with the receivers, and the primary functionality of internal elements
is to forward these messages. Transition es of the PGM provides an example.
However, in order to deal with lost messages and to improve the efficiency, in-
ternal elements can also perform other tasks. First, they can filter downward
messages: Instead of sending a message to all its successors, they select a subset
of them as recipients. An example is transition esz. Moreover, besides forwarding
with or without filtering, internal elements can also generate messages. Transition
eg is an example of ‘spontaneous’ generation, while in transition e; reception
of pnak(nr) triggers the generation of ncf(nr). The generation of messages can
in general depend on the internal state of the component, i.e., its history. For
example, generation of snak(nr) depends on whether nr is contained in the set
set_repair.

We present our main result in two steps. First, in section [4.1] we consider
internal agents that have only forwarding transitions (but possibly with filter-
ing). We then consider protocols in which network elements can also generate
messages. It is easy to see that for general protocols of this form there is no
n > 0 such that N(P) simulates N'(P). We identify a class of protocols P for
which N (P) can be simulated by N'}(P), and show that the PGM belongs to it.

4.1 Forwarding Agents

Intuitively, a forwarding agent is an agent that forwards incoming upward mes-
sages through its upward channel, and multicasts incoming downward messages
through some of its downward channels. We also allow the agent to ‘swallow’
messages.

Definition 2
Formally, an agent (p, f) is a forwarding agent if for every trace tr and every
message © € M:

— Ifi € MY, then p(tr,7) € {(i, 1), (L, D}
— if s € M|, then p(tr,i) C {(L,9),(L,1)}; and
— if i = 1, then p(tr, L) = {(L, 1)}

A forwarding protocol is a protocol whose network element agent (but not nec-
essarily its sender or receiver agents) is forwarding.

Let T be a tree network. We define the tree T as follows: T contains a sender
s and a receiver r for every receiver r of T, but no internal elements; <r is the
projection of <7 onto T. So in T, every receiver is a child of the sender.

138 J. Esparza and M. Maidl

In the full version [EMO2], we define a relation nh <1 nh between network
histories nh and nh, and show that < is a fair stuttering simulation of T by T.
We get as corollary:

Theorem 3 If P is a forwarding protocol and @ is like in Theorem [, then
NO(P) = @ if and only if N (P) = ©.

4.2 Forwarding and Generating Agents

In this section, we consider internal agents that can not only forward but also
generate messages. Clearly, we can no longer expect N (P) to be simulated by
NO(P), unless the messages generated by the internal elements have no effects
whatsoever. We give conditions under which N (P) can be simulated by N(P).
We then show that these conditions are satisfied by the PGM protocol.

Let Myer, € M be the set of messages that can be generated by internal
network elements. (Notice that the sender and the receivers can also generate
messages, but these do not have to be in My,.)

Definition 3

A forwarding and generating agent (f&g agent for short) is an agent (p, f) such
that for every trace tr € TR and for every message i € M, the following condi-
tions hold:

— If i € M7 and (01,02) € p(tr,i), then oy € {i, L} and 09 € Myen, U {L};
— if i € M| and (o1, 02) € p(tr,i), then 01 € Myen, U{L} and o0y € {i, L}; and
—if i = 1 and (01,02) € p(tr, L), then 01,05 € Mye, U {L}.

A f&g protocol is a protocol with a f &g internal element agent.

These definition allows messages to be generated as ‘side-effects’ of forward-
ing other messages, or spontaneously, i.e. without receiving input. In the PGM
protocol, ncf-messages are generated as side-effects, while snak-messages are gen-
erated spontaneously.

Conditions on the Protocol. We define the class of simple protocols, for which
we prove that N'}(P) simulates N'(P). This requires some preliminaries.

Receiving a message has two effects. The first, immediate effect is that some
messages are sent. The second effect is that the internal state of the process (given
in our model by the history) changes. This change may enable the process to
send messages, but these may not be sent immediately. The change of state may
also disable the emission of messages. An example of an enabling effect is given
by transitions el and e6 of the PGM: Transition el adds nr to set_repair, which
enables the process to send snak through transition e6.

We need a definition implying the following intuitive idea: Receiving a mes-
sage ¢ in a subset M’ may have arbitrary disabling effects, but it can only enable
upward forwarding of 4, or generation of messages in another subset M".

Simple Representative Instantiations for Multicast Protocols 139

Definition 4

Let (p, f) be an agent, tr be a trace of it, M’ C M, and M"” C MT7. Let
Rem(tr, M’, M"") be the set of all traces resulting from ¢r by removing arbitrarily
many actions of the form (i, 01, 09) such that either ¢ € M’ or i = 0o = L and
01 € M. We say that M’ only enables M" in the agent (p, f) if for every trace
tr and every tr’ € Rem(tr, M', M") the following conditions hold:

(1) If i e M’ N M7 and (01, 02) € p(tr,i), then o € M" U {i, L} and 0 = L;
ifie M'NM]| and (01,092) € p(tr,i), then 01 € M"” U L and 0y = L;

(2) ifi € M\ L, then p(tr,i) C p(tr',4); and
p(tr, L)\ p(tr', L) € {(o, L) | 0 € M"}.

Let us see why this definition captures the intuition above. Condition (1)
expresses that the immediate effect of receiving ¢ € M’ can only be forwarding
i up, or the generation of an upward message 0o € M”. Condition (2) expresses
that the long-term effect of receiving ¢ can only the be generation of upward
messages in M, let us see why. Suppose first that M” = @. Then (2) implies
that receiving messages in M’ can only have disabling effects: Whatever we
can do after receiving the messages (given by p(tr,i)), we can also do without
receiving them (given by p(¢r/,i)). Now consider the general case. Since p(tr, L)\
p(tr', L) C {(o,L) | 0 € M"}, receiving messages in ¢ may now enable actions
(L,0,1) for o € M”. And since in Rem(tr, M, M") we now allow to remove
actions (L, 0, 1) for o € M"” we make sure that such actions themselves only
enable actions of the same kind.

We are almost ready to present the definition of simple protocols. Let Mg
be the subset of M| containing the messages that can be filtered when being
forward downwards. More precisely, for all actions a in which the downwards
output message belongs to M| \ Mg, there is no filtering, i.e., f(tr,a,b) = true
for all traces ¢r and all boolean values b. We now define:

Definition 5
Let P = (As, An, A,) be a f&g protocol. P is simple if:

(a) In A, (the network element agent), M., only enables), and
(b) in A, (the receiver agent), Mg U Mye, only enables Mge, N MT.

If condition (a) is dropped, the following scenario becomes possible: A net-
work element n spontaneously generates a message o; and sends it upwards to
its parent. The parent forwards it up and, in the next step, generates itself an-
other copy of o1; all predecessors of n behave in the same way. This produces
a cascade of upward messages, and the number of 01’s received by the sender
depends on the position of n in the tree structure. It is easy to see that this
makes it impossible to simulate arbitrary structures by structures with at most
one layer of internal elements.

If condition (b) is dropped, the following scenario becomes possible: A down-
ward message m € Mg is filtered out by a network element n, i.e., n does not
forward m down to any of its successors. The receivers that get m react by send-
ing upwards a message 01 ¢ Mger. Network elements that receive o; forward it

140 J. Esparza and M. Maidl

up and, in the next step, generate a message 0] € My, and send it upwards.
Again, the number of 0] messages received by the sender depends on the position
of n in the tree structure.

The simulation. We show that N'(P) simulates N'(P) if P is simple. Let T be a
tree network. We define the tree T as follows: T contains a sender s. As network
elements can generate messages, the simulating tree network now has to contain
a network element n for every network element m in 7" and n is a child of s.
Moreover, a network element n has to have the same receivers below itself as n
does, because the actions of all these receivers can affect n. So for every r > n,
n needs to have a child r(n) that acts like r. Thereby, we assume for simplicity
that all receivers have an internal element as parent.

Figure [displays an example tree T and its flattening 7. In the full version
[EM02], we define a simulation relation nh < nh between network histories nh of
T and nh of T. The receiver r(p(r)) exactly simulates r, and so we abbreviate
r(p(r)) by r. The other copies r(n) are guaranteed to be able to execute the
same actions as r except actions (4, 01,02) such that i € Mg U M., or actions
(L, 0,L) such that 0 € Myep.

m/s\m T TS,
1

/N //m\\ /1 \

n, rg rs
ri(n;) ra(my) rs(mi) rgy ro rz ri(ne2) ri 1
/1IN R

ng ra rs

rp

Fig. 1. Example of a tree T" and its flattening T°

We obtain that for simple f&g protocols, it suffices to consider trees with
only one level of internal elements:

Theorem 4 If P is a simple f&g protocol and & is as in Theorem [then
NY(P) = & holds if and only if N(P) | .

The PGM protocol. We sketch why the PGM example as presented in Section [I]
is simple in the sense of Definition Bl In the PGM protocol, M., consists of the
messages of form snak(nr) and ncf(nr), and Mg consists of the messages of form
rdata(nr, trl). Let us show that the protocol satisfies the conditions of Definition
5

First, the network element agent (p,, f,) of page [33is { &g by definition. For
(a): When forwarding snak(nr), only a message in Mg., (namely snak(nr)) is
sent upwards, and nothing downwards, and on reception of ncf(nr) nothing is
sent. This shows that condition (1) of Definition [holds. In order to see that

Simple Representative Instantiations for Multicast Protocols 141

messages in My, do not have long-term enabling effects (condition (2)), first note
that p, can be defined in terms of the variable set_repair, as explained on
Reception of snak(nr) does not change set_repair, and on reception of ncf(nr),
nr is removed from set_repair: So if tr' € Rem(tr, Myen,), i.e., if tr' is obtained
by removing actions with input snak(nr) or ncf(nr) then in ¢’ the same actions
as in tr (and possibly more) are enabled. For (b): On reception of rdata(nr,trl) or
ncf(nr), nothing is sent (condition (1)). In order to see that messages in My, do
not have long-term enabling effects, notice first that p,, can be defined in terms of
the variables of the agent. Since reception of rdata(nr,trl) adds nr to set_nr and
removes it from set_missing and set_smissing, it only disables actions. Reception
of nef(nr) only enables actions of the form (L, snak(ns’), L). Finally, sending of
(L,snak(nr’), L) does not change the variables of the receiver, and so it does
not enable or disable actions. So the only actions that can be enabled in ¢r but
not in ¢tr’ € Rem(tr, Mg U Myen, Mgen, N M 1) are of the form (L, snak(nr’), L).

5 Reduction of One-Layer Tree Networks

Given a simple protocol P and a property @, we have shown that checking @
reduces to proving that N1(P) = @. We now introduce the class of iteration
protocols, and show that for them AN'(P) | & reduces to proving U, = &,
where Uy, is a particular instantiation of N''(P) that depends on the number k
of receiver variables used in @. Combining the two results we have that a simple
iteration protocol P satisfies @ if and only if Uy, | .

A trace tr is reachable by an agent (p, f) if it is empty or if tr = tr' - (i, 01, 02)
where #r’ is reachable and (01,02) € p(tr',i). An agent can resend upward mes-
sages if for every reachable trace tr - (i,01,02) and for every n > 1, the trace
tr - (i,01,02) - (L,01,1)" is also reachable.

Definition 6
A protocol is an iteration protocol if M7 is a finite set, and both the receiver and
the network element agents can resend upward messages.

If we bound the number of possible message numbers in the PGM protocol,
i.e., instead of nr € IN we say nr € [l..n| for some number n, then we ob-
tain a simple iteration protocol: The conditions of Definition [6] hold because of
transitions €6, r4 and r5.

Definition 7

Let P be an iteration protocol P, and let u and g be the sizes of M7 and
M7 NMgyen, respectively. For each n > 1, we define the universal instance Uy,
of N*(P) as follows: The sender has k + g + u children, all of them network
elements; each of the first k+ u network elements has u+ 1 children; and each of
the other g network elements has u children. For 1 < i < k, we denote the first
child of the i-th network element by r,. We also denote the tuple (ry,... ,r;) by
R.

5 The variable set_interf is irrelevant for p,, it only affects the filter function f,.

142 J. Esparza and M. Maidl

In order to prove that Uy can simulate the behaviour of instances T' in N (P),
we use the following notion: Let Im be a function mapping a k-sized subset
R ={ry,...,ry} of receivers of T to receivers of Uy. Let Match(nh,nh') hold if
tr(nh)(r) = tri(nh’(Im(r))) for all r € R. We say that fair executions of T are
stuttering-included in the fair executions of Uy if for any execution m which is
fair with respect to R, there is an execution 7/ of Uy, fair with respect to Im[f%],
and an increasing mapping o : IN — IN such that Match(n (i), 7' (o(i))) holds for
all 4, and for all (i) < j < (i + 1), Match(n(i + 1), 7' (j)).

Intuitively, in an iteration protocol, u-many receivers can mimic the be-
haviour of any set R of receivers as follows: For every m € M7 there is a receiver
r(m) € R that first outputs m. We simulate all transitions of r(m) until the first
output of m, and switch to iterating (L, m, 1) afterwards, and so can simulate
all actions of receivers in R. By using this observation, we obtain:

Theorem 5 Let P be a simple f&g iteration protocol and let T € N'(P).
Let {r1,...,ri} be a subset of the receivers of T. The fair executions of T are
stuttering-included in the fair executions of Uy with respect to the mapping Im
given by Im(r;) =r;.

Analogously to Theorem [stuttering-inclusion of fair executions implies that
any formula @ with k receiver variables that holds for Uy also holds for T'. As
Uy is in N'Y(P), we obtain:

Theorem 6 Let P be a simple f&g iteration protocol, and let & be a property
@ =VuVoo as in Theorem[d such that o is a tuple of n receiver variables. Then,
NY(P) = @ if and only if U, = &[0 := R] and so, by Theorem[], P satisfies d
if and only if U,, = §[o := R].

6 Conclusions and Related Work

We have provided a general formal model of multicast network protocols with
which tree-based multicast protocols can be modelled appropriately. We have
proved a general theorem showing that for a simple class of protocols, the verifi-
cation problem reduces to the analysis of instantiations with at most one layer of
internal elements between sender and receivers. For a smaller class we have also
proved that the verification reduces to the analysis of one single instantiation.
Protocols whose internal elements just forward messages fit easily in our class.
In fact, we have shown that the PGM protocol, whose internal elements exhibit
a far more complicated behaviour, also fits in it.

As future work, we plan to explore whether our results can also be used for
protocols that use local error recovery, which is a possible extension of the PGM
protocol, and whether our approach can be extended to the analysis of timed
protocols.

Related work. Some work on regular model-checking has addressed the prob-
lem of automatically verifying systems with a parameterised tree structure

Simple Representative Instantiations for Multicast Protocols 143

[BT02]. However, these techniques still seem far from being able to attack sys-
tems of the complexity of the PGM. There are also some papers on the analysis
of the PGM protocol. However, so far they have concentrated on analysing the
behaviour of a fixed instance, and so this work has a different nature to the
work carried out here. In [BBP02], the timed behaviour of a small instance of a
simplified model is analysed. In the ADVANCE project, the untimed behaviour
of a system that can simulate the universal instance U; has been studied. By our
results this system can simulate any instance with respect to the main property
of the protocol, since this property only involves one receiver variable. Unfortu-
nately, at the time of writing this paper this instance is still out of the reach of
the automatic tools.

Acknowledgements. This work has been supported by the FP5 Project AD-
VANCE, contract No IST-1999-29082.

References

[BBP02] Bérard, B., Bouyer, P. and Petit, A. Analysing the PGM protocol with UP-
PAAL. In: 2nd Workshop on Real-Time Tools. Dep. Information Technology,
Uppsala Univ., 2002, Tech. Report 2002-025.

[BCG88] Browne, M. C., Clarke, E. and Grumberg, O. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science,
59: 115-131, 1988.

[BT02] Bouajjani, A. and Touili, T. FEztrapolating tree transformations. In: Proc.
14th Intl. Conf. on Computer Aided Verification. 2002, LNCS 2404.

[EMO02] Esparza, J. and Maidl, M. Simple representative instantiations for multicast
protocols, 2002. Available at http://www.dcs.ed.ac.uk/monika,

[EN95] Emerson, E. A. and Namjoshi, K. S. Reasoning about rings. In: Proc. 22th
ACM Conf. on Principles of Programming Languages. 1995.

[GL94] Grumberg, O. and Long, D. E. Model checking and modular verification.
TOPLAS, 16(3): 843-871, 1994.

[Lam83] Lamport, L. What good is temporal logic? In: Proc. IFIP 9th World Com-
puter Congress. 1983.

[Mai02] Maidl, M. Simple representative instantiations for the PGM protocol, 2002.
Available at http://www.dcs.ed.ac.uk/monikal

[PPV] Papadopoulos, C., Parulkar, G. and Varghese, G. LMS: A router assisted
scheme for reliable multicast. To appear in: IEEE/ACM Transactions on
Networking.

[PW9T7] Peled, D. and Wilke, T. Stutter-invariant temporal properties are expressible
without the next-operator. Information Processing Letters, 63: 243-246, 1997.

[ST00] Speakman, T. et al. PGM reliable transport protocol specification, 2000. RFC
3208 (experimental) of the IETF. Available at:
http://www.ietf.org/rfc.html.

http://www.dcs.ed.ac.uk/monika
http://www.dcs.ed.ac.uk/monika
http://www.ietf.org/rfc.html

	The PGM Protocol
	A Formal Model of Network Protocols
	Messages, Actions, Events, and Histories
	Agents and Processes
	Tree Networks and Protocols

	Fair Stuttering Simulations for Tree Networks
	Collapsable Tree Networks
	Forwarding Agents
	Forwarding and Generating Agents

	Reduction of One-Layer Tree Networks
	Conclusions and Related Work

