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Abstract. In this paper we propose a progressive technique for teaching
recursion with the aim of making easier the understanding of this con-
cept by students of other areas than computer science. Since knowledge
is intended to be actively constructed by the students and not passively
absorbed from textbooks and lecturers, the adopted teaching technique
is derived from constructivism. This paper presents a study of the re-
sults obtained in 2005 by two groups of students from Mathematics and
Statistics degrees.

1 Introduction

During the last years, computational science has been proved to be a powerful
tool in many areas such as economy, mathematics, statistics, biology, and so on.
Therefore, the corresponding curricula contain basic courses on computer sci-
ence, since the students involved in these areas should learn its basic concepts.
This applied aspect of computer science has led us to study its methodology in
Mathematics and Statistics degrees, in order to check the understanding level
of its foundations. In our opinion, recursion should be included in such degrees,
owing to its suitability in program design [10]. In fact, recursive-functional lan-
guages have proven their usefulness in simplifying programming efforts when
dealing with complex problems in computational science (see e.g. [6]). In this
respect, there exist two generalized tendencies in teaching recursion: In a basic
course or as an advanced tool [I]. We consider that it should be taught as soon
as possible, so that students can both take profit from it during their studies,
and by doing so, strengthen their knowledge about this useful technique. In this
paper, we have taken both approaches: Our first choice was considering recur-
sion as a basic tool, but its treatment as an advanced one is also present in our
experiment, because the individuals in the group of Mathematics hardly received
training in recursion during their first years.

In addition to this, we pretended to introduce recursion as a natural tool
for solving problems whose iterative solution is highly complex. Students were
previously taught if statements, loops, and subprograms. The new approach was
conceived by considering not only our teaching experience, but also the unfruitful
traditional methodology [11] and the initial iterative tendency of students.
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1.1 Didactical Framework: Constructivism

The traditional methodology for teaching consists in transmitting knowledge by
means of teacher explanations. By contrast, we will consider constructivism [2],
where the teacher task is to pose problems for being solved by the students. In
such a case, the teacher just observes the strategies employed by the scholars,
but without revealing the solutions of the proposed questions [5].

Besides, thought, as an essential mechanism for solving logical /mathematical
questions, comes from acting over an environment [9]. Moreover, the experi-
mentation must be both constant and organized [4], and as a consequence, the
teacher will guide the learning of the students by organizing the posed problems.
The first one must be easily solvable by modifying the previous knowledge, and
the remaining sequence will be proposed by introducing didactic variables, that
is, planned items which can be modified by the teacher in order to sway the
students hierarchy of strategies for solving problems [31[7].

Following this constructivist methodology, we have used questions dealing
with platyhelminthes, that is, flatworms with two kinds of reproduction which
allow us to recursively study their family tree. Our proposal comprises four
sections: "General definition", "base case/recursive case", "final recursion/non-
final recursion", and "inefficiency of several recursive calls".

2 Our Proposal

This section comprises the problems posed to the students by paying special
attention to the used didactic variables and their purposes. The solving of such
problems was performed in the following way:

1. Students were given the formulations.

2. Problems were solved by the individuals by following the given instructions.
The teacher behaved as constructivism states.

3. Students explained their solutions. Afterwards, the most suitable ones were
selected. In this framework, the discussion among students is extremely im-
portant so that the validation of the results is carried out by themselves.

The use of a programming language was not compulsory, so specifications in
natural language were also admitted. The problems were the following: Let us
consider a colony of platyhelminthes which is characterized by both its way of repro-
duction (every worm has at least one children) and the immortality of its individuals.
Answer concisely the proposed questions. The following functiondl] can be used:

1. funhermaphrodite(w:worm)returns(b:bool) where hermaphrodite(w)«<w
is an hermaphrodite worm (sexual reproduction .

2. fun parent(w:worm) returns (w,:worm) where w, either generated w by frag-
mentation (asexual reproduction) or is the male worm which generated w by
internal fecundation (sexual reproduction).

! They are written by using the notation defined in [§].
2 The way of reproduction of a worm is constant in its lifetime.
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3. fun children(w:worm) returns (chg:v) where type v=array [1..n] of worm
and ch, contains the children of worm w.

4. funfirstborn child(w:worm)returns (w,:worm) where w; is the firstborn
child of w (generated from either w's head or its first fertilized egg).

5. fun name(w:worm) returns (s:string) where s is the first name of w.

6. actionwrite(s:string) writes the string s.

2.1 General Definition

The first problem deals with the concept of recursion by means of two questions
which ask for the ancestors and the descendants of a given worm, respectively.

In order to avoid several ascending branches in the family tree, the didactic

variable way of reproduction takes the value by fragmentation. In the second
question, fragmentation also sets the number of descendants at two.
1. Let us consider that there did not exist an original worm in the colony such that
the remaining worms come from it. Define the set of ancestors of a given flatworm w
if all the reproductions leading to it have been by fragmentation. Similarly, define the
set of descendants of platyhelminth w if its reproduction and those of its descendants
have been by fragmentation.

Because of the way of reproduction of the ancestors, the solution for the first
question is a linear or simple recursive function, whereas the second one is solved
by using a non-linear or multiple recursive function.

Notice that the problem asks for neither the cardinal of ancestors nor the one
of descendants of w. Defining a function to calculate the number of ancestors is
trivial, whereas the number of descendants can be expressed by the following
geometric progression: » -, 2™.

Anchor cases are not possible in solving these questions because the colony
features make all the branches in the family tree infinite.

2.2 Base Case/Recursive Case

In order to introduce the base or anchor case concept, we modify the previous
formulation by combining both values for the variable way of reproduction.

2. Let us consider a non-hermaphrodite flatworm w. Define a function to work out the
number of ancestors of w whose reproduction is by fragmentation. The calculation
must finish when getting the youngest ancestor whose reproduction has been sexual.
Similarly, define a function to calculate the number of descendants of w which have
bred asexually and whose parent and sibling are asexual as well.

The first function base case is satisfied by any ascending branch where a sexual
worm exists. Similarly, the second function anchor case is met by a descending
branch as long as there exists an asexual worm with an hermaphrodite child. The
calculation of descendants requires two recursive calls and a base case, whose
definition is simplified by the imposed condition on the descendants of w.

2.3 Final Recursion/Non-final Recursion

In order to solve the following problem a non-final recursive function is needed.
Even though the previous questions required non-final recursion, now our purpose
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goes further: The order between the result processing and recursive calls becomes
crucial when defining the required sets. This significance is due to the introduction
of the didactic variable age order with two possible values: From the eldest to the
youngest and from the youngest to the eldest. Besides, the variable way of repro-
duction allows to obtain both a simple sequence of platyhelminthes (ancestors of
w) or a graph/tree of flatworms (descendants of w).

3a. Let us assume that all the flatworms in the colony have reproduced by fragmenta-
tion. In these conditions, the firstborn child of a platyhelminth is the one generated
from its head. Besides, let us consider that all the flatworms have a first name
which identifies them univocally. Given a platyhelminth w, enumerate its firstborn
descendants from the eldest one to the youngest one.

3b. Let us suppose a combination of reproduction types where every flatworm has
at least one hermaphrodite descendant. In these conditions, the firstborn child of
a platyhelminth is the one either generated from its head (asexual reproduction)
or born from its first fertilized egg (sexual reproduction). Besides, let us suppose
that all the flatworms have a first name which identifies them univocally. Given
a non-hermaphrodite platyhelminth w, enumerate its firstborn non-hermaphrodite
descendants. The calculation must finish when getting the first sexual one and the
enumeration must be from the eldest one to the youngest one.

3c. Let us assume the conditions in 3b. Given a non-hermaphrodite platyhelminth
w, enumerate the first names of its non-hermaphrodite firstborn descendants. The
calculation must finish when a sexual worm is reached and the enumeration must
be from the youngest one to the eldest one.

It is easy to see that questions 3a and 3t are final recursion cases, whereas
the solution of question 3c is a non-final recursive algorithm.

2.4 Inefficiency of Several Recursive Calls

Recursion drawbacks encompass inefficiency because the usual overload pro-
duced by algorithm invocations is increased by using this mechanism. The reason
is that an external call may generate a lot of internal invocations.

The following problem will make students face this drawback as they are asked
to design a method for improving recursion efficiency.
4a. Let us consider that in the colony there existed an original flatworm which is the
eldest ancestor of all the platyhelminthes there. Besides, each worm is bigger than
its ancestors as shown by the following expression: rings(w) =rings((parent(w))+
(rings(parent(parent(w)))div2). Calculate the number of times each
platyhelminth number of rings is computed when the final task is calculating the
number of rings of a great-great-grandchild of the original flatwornmd.

By analyzing the simplest solution of this question it is clear that some recur-
sive algorithms are inefficient owing to the used design method. In such a case,
the same values are calculated many times, though these repeated computations
can be avoided by using auxiliary parameters.

3 In question 3b, the writing action cannot be included in the base case.
* The students were given the following data: rings(firstborn child(wo))=4 and
rings(wo) =2 where wo is the original flatworm.
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4b. Let us assume the conditions in question 4a. Calculate the number of rings of a
flatworm in such a way that each ancestor is processed only once.

3 Obtained Results: Mathematics

The detailed analysis of the solutions proposed by the students of the subject
Java Programming allowed us to check the fact that they hardly know the con-
cept of recursion except from the idea that a recursive function or procedure
calls itself repeatedly. As a consequence, many students answer with iterative al-
gorithms to inherently recursive questions, such as the enumeration of both the
ancestors and descendants of a given flatworm. This iterative tendency yields
never-ending loops whenever the recursion we are dealing with lacks a base case.
Next, we discuss such design issues by analyzing some of the obtained results.

3.1 General Definition

More than half of the students (seven of 13) defined iterative algorithms based
on loops instead of recursive functions. A representative fragment of (Java) code
extracted from these algorithms is the following, where the boolean condition is
trivially satisfied because there did not exist an original worm in the colony.
worm wr =w; while(parent(wr)!=null){wr =parent(wr);}
In addition to this, just one of the six remaining students deemed the question
too difficult, but the rest of solutions were correctly formulated in a recursive
way. Next, we show the definition of the set of ancestors of w provided by the only
student who learnt Haskell in his first year of Computer Science. The analysis of
his answers confirms the idea that teaching functional programming languages
before imperative ones makes easy the understanding of the concept of recursion:
yEA(w) < y=parent(w)Vy€EA(parent(w))

3.2 Base Case/Recursive Case

In this case, nine students defined a function to work out the number of ancestors
of w and seven provided a function to calculate the number of descendants of the
same worm. In spite of this low level of response, the proposed algorithms such
as the following show a clear iterative tendency in defining recursive concepts.
worm wr =w; boolean asexual =true;
while (asexual){
if (hermaphrodite(parent(wr)))asexual =false else wr =parent(wr); }
Seven (of nine) students provided similar algorithms to the one shown above,
whereas there was just one suitable solution recursively defined. Concerning the
calculation of the descendants of w, many functions were not properly defined
owing to the fact that they were based on the expression
hermaphrodite(parent(w))Vhermaphrodite(sibling(w)), where
sibling(w)=wy <> Wy € children(parent(w))Aname(w,) 7 name(w),
while a closer analysis of the question yields the boolean condition
hermaphrodite(children(g)[1]) Vhermaphrodite(children(g)[2]).
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Therefore, two (of seven) students provided an iterative algorithm by using the
first expression, and five of them defined a recursive implementation, two of
which were correctly designed. Finally, we note that students tend either to
solve both questions (seven of 13) or to leave blank both of them (four of 13).
The two remaining students provided only an algorithm to work out the number
of ancestors of w.

3.3 Final Recursion/Non-final Recursion

As expected, the number of students who tried to solve a problem is inversely
proportional to the level of difficulty of such problem. In this way, seven students
provided solutions corresponding to questions 3a and 3b, whereas question 3c was
solved by four students. In any case, loops were less used than before, though
it was easy to find in them many mistakes quite similar to those previously
described. The proposed algorithms dealing with final recursion were correct in
most cases, as shown by the following functional definition:
names x —name x : names firstborn childx

Nevertheless, non-final recursion proved to be hard to understand, since in order
to solve the last question, students defined a double path through the family
tree: First the youngest sexual descendant of w is found, and then its ancestors
are properly displayed. In short, four students solved properly questions 3a and
3b, one of whom provided a correct algorithm in Haskell for question 3c.

3.4 Inefficiency of Several Recursive Calls

The question was solved by only three students, who also provided algorithms
for the previous problems. They correctly calculated the number of rings of
a great-great-grandchild of the original worm in the colony, but the provided
solutions for computing such number in the general case were not accurate.
To be exact, just one student proposed a correct solution in Haskell for the
whole problem, whereas his schoolmates, who learnt Pascal in their first year of
Computer Science, did not handle accumulators properly.

4 Obtained Results: Statistics

The results in this section show the difficulties in teaching recursion owing to
the iterative tendency of human mind. As a consequence, our main purpose is to
make students understand recursion as a natural mechanism for problem solving.
Besides, these individuals, who study statistics, are not familiarized with pro-
gramming techniques, so they are not supposed to give formal solutions for the
posed questions but informal specifications of the corresponding algorithms.

4.1 General Definition

The first approach for the first question (ancestors of w) given by the 14 students
was iterative, so that the following hint was given: "Let us assume that one of
your ancestors knows the set of his/hers. Could you answer this question by
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using such set?". This clue led the students to a correct recursive algorithm,
though it was fairly suggested by the teacher. Concerning the question about
the descendants of w, one student provided an iterative algorithm, whereas the
remaining 13 proposed a solution defined in a recursive way, one of which was
correct. The rest of recursive algorithms called themselves just once, maybe
because in those days statistics students had not learnt arrays in depth.

4.2 Base Case/Recursive Case

The number of clues given by the teacher diminished considerably for this prob-
lem, owing to the fact that recursion was introduced in the previous one. In spite
of this, not only three students provided iterative algorithms, but also another
two defined solutions by combining loops with recursive calls in the non-trivial
case. The following fragment of code shows such combination.

repeat anc:=parent(w)+ances(parent(w)) (xrecursive callx)

until (hermaphrodite(parent(w))=true)
Nine students proposed recursive solutions, two of which lacked a base case.

4.3 Final Recursion/Non-final Recursion

According to the constructivist method, the teacher did not gave any hint in this
case, since it was assumed that recursion was introduced enough. In some cases,
the traverse of the family tree was wrongly accomplished, due to the fact that
just two generations were reached, as shown by the following implementation.

nameW:=name(w)+name(firstborn child(w))
However, other recursive solutions were quite clear. We show the most represen-
tative one corresponding to question 3b.

funlist(w:worm) returns (n:string)

n=name(w)+if (hermaphrodite(firstborn child(w)))
list(firstborn child(w))

Finally, the analysis of the obtained results confirms that students tend to con-
sider recursion when solving those problems whose iterative solutions have an
increasing complexity. The ratio between the number of iterative solutions and
the total number of answers were: Ten to 14 in question 3a, five to ten in ques-
tion 3b, and one to eight in question 3c. Besides, we noticed that half of the
recursive algorithms provided for questions 3b and 3c did not consider a base
case, though these solutions were more correct than the iterative ones.

4.4 Inefficiency of Several Recursive Calls

As expected, only few students tried to solve this problem, as it shows the
fact that only six individuals provided a solution for the first question. Besides,
every student except one mistaken the calculations in the following way: Given
the expressions
rings(ws) =rings(ws)+ (rings(wy)div2),

rings(wsz) =rings(wy)+ (rings(w;)div2), and

rings(wy) =rings(wi)+ (rings(w,)div2)
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they did not consider that platyhelminth wy is consulted three times, owing to
the number of rings of ws is used for processing wy and wz. This mistake is due to
the fact that students did not develop the whole invocations tree, that is, they
just worked out for each flatworm its appearance in the right hand-side of the
equations. Finally, the last question was answered by four students, who failed
to solve the involved recurrence and did not propose any recursive solution.

5 Conclusions and Current Work

The main purpose of this test was the study of teaching recursion in other areas
than computer science. It can be observed that recursion can be successfully
taught in a basic course in order to provide a useful technique for developing
computational systems by students of either Mathematics or Statistics degrees.
Concerning our platyhelminth problem, it is easy to see that students tend to
provide iterative algorithms to solve the simplest questions, whereas recursion is
used in the complex ones, because recursive programming needs fewer low level
details than loop programming. In this way, the teacher’s role as a simple guide
has proved to be very useful, since students have evolved by themselves from
iterative to recursive solutions. Besides, since the posed problems deal with fam-
ily trees (a familiar concept) instead of the typical mathematical items (e.g. the
Fibonacci series), its use in areas such as biology or economy is more plausible.

As current work, we pretend to pose again these questions by simplifying their
formulations with the purpose of making them suitable for other programming
subjects and areas.
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