Skip to main content
Log in

Distance Distributions of Cyclic Orbit Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The distance distribution of a code is the vector whose ith entry is the number of pairs of codewords with distance i. We investigate the structure of the distance distribution for cyclic orbit codes, which are subspace codes generated by the action of \({\mathbb {F}}_{q^n}^*\) on an \({\mathbb {F}}_q\)-subspace U of \({\mathbb {F}}_{q^n}\). Note that \({\mathbb {F}}_{q^n}^*\) is a Singer cycle in the general linear group of all \({\mathbb {F}}_q\)-automorphisms of \({\mathbb {F}}_{q^n}\). We show that for full-length orbit codes with maximal possible distance the distance distribution depends only on \(q,\,n\), and the dimension of U. For full-length orbit codes with lower minimum distance, we provide partial results towards a characterization of the distance distribution, especially in the case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly address the distance distribution of a union of full-length orbit codes with maximum distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Sasson E., Etzion T., Gabizon A., Raviv N.: Subspace polynomials and cyclic subspace codes. IEEE Trans. Inform. Theory 62(3), 1157–1165 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. Braun M., Etzion T., Östergård P.R.J., Vardy A., Wassermann A.: Existence of \(q\)-analogs of Steiner systems. Forum Math Pi 4, e7 (2016).

    MathSciNet  MATH  Google Scholar 

  3. Chen B., Liu H.: Constructions of cyclic constant dimension codes. Des. Codes Cryptogr. 86(6), 1267–1279 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  4. Cossidente, A., Kurz, S., Marino, G., Pavese, F.: Combining subspace codes. Preprint 2019. arXiv: 1911.03387, (2019)

  5. Drudge K.: On the orbits of Singer groups and their subgroups. Electron. J. Combin. 9:#R15, (2002)

  6. Elsenhans A.-S., Kohnert A.: Constructing network codes using Möbius transformations. Preprint 2010. https://math.uni-paderborn.de/fileadmin/mathematik/AG-Computeralgebra/Preprints-elsenhans/net_moebius_homepage.pdf.

  7. Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inform. Theory 57, 1165–1173 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. Gluesing-Luerssen H., Morrison K., Troha C.: Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun. 9(2), 177–197 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gluesing-Luerssen H., Troha C.: Construction of subspace codes through linkage. Adv. Math. Commun. 10, 525–540 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. Greferath M., Pavčević M., Silberstein N., Vázques-Castro M.: Network Coding and Subspace Designs. Springer, New York (2018).

    Book  MATH  Google Scholar 

  11. Heinlein D., Kiermaier M., Kurz S., Wassermann A.: Tables of subspaces codes. Preprint 2016. arXiv: 1601.02864.

  12. Heinlein D., Kurz S.: Coset construction for subspace codes. IEEE Trans. Inform. Theory 63, 7651–7660 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. Honold T., Kiermaier M., Kurz S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum subspace distance \(4\). Contemp. Math. 632, 157–176 (2015).

    MathSciNet  MATH  Google Scholar 

  14. Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inform. Theory 54, 3579–3591 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. Otal K., Özbudak F.: Cyclic subspace codes via subspace polynomials. Des. Codes Cryptogr. 85(2), 191–204 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. Roth R.M., Raviv N., Tamo I.: Construction of Sidon spaces with applications to coding. IEEE Trans. Inform. Theory 64(6), 4412–4422 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. Silberstein N., Trautmann A.-L.: Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks. IEEE Trans. Inform. Theory 61, 3937–3953 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomas S.: Designs over finite fields. Geom. Dedicata 21, 237–242 (1987).

    MathSciNet  MATH  Google Scholar 

  19. Trautmann A.L., Manganiello F., Braun M., Rosenthal J.: Cyclic orbit codes. IEEE Trans. Inform. Theory 59(11), 7386–7404 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao W., Tang X.: A characterization of cyclic subspace codes via subspace polynomials. Finite Fields Appl. 57, 1–12 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their close reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Gluesing-Luerssen.

Additional information

Communicated by T. Etzion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HGL was partially supported by the Grant #422479 from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluesing-Luerssen, H., Lehmann, H. Distance Distributions of Cyclic Orbit Codes. Des. Codes Cryptogr. 89, 447–470 (2021). https://doi.org/10.1007/s10623-020-00823-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00823-x

Keywords

Mathematics Subject Classification

Navigation