
1

DevDojo - Mercari Mobile Development
(2024/04 ver.)

@klausa (Jan Klausa)

@justin999 (Koichi Sato)

2

Today’s contents

1 Mobile development cycle overview

2 Details in each phase

3 Tech stack

3

● Engineer: Software Engineer
● PM: Product Manager
● QA: Quality Assurance
● PiC: Person in Charge

● JR: Japan Region
● MK: Marketplace
● MC: Mercoin
● MP: Merpay
● SZ: Souzoh (Mercari Shops)

Term definitions in this presentation

4

1. Mobile development cycle overview

5

Marketplace, Merpay
v

Team Structure

Logistics Customer
Experience

iOS
Engineers

Architects

iOS
Engineers

Android
Engineers

Android
Engineers

6

1. Create Specs (PM)
2. Create UI Design (Designer)
3. Write Technical Design Doc (Engineer / PiC)
4. Ticketing & Planning
5. Coding & Create PR(s) (Engineer)
6. Self-QA (Engineer)
7. QA (QA Engineer)
8. Dogfooding
9. Release & Monitoring (Engineer/QA)

Development cycle overview

7

2. Details in each phase

(each team is different!)

8

● PM creates feature specs
○ Created in Confluence
○ Client Engineer serves as the engineering contact

■ Review the Spec, provide feedback, and raises any concerns

Create Specs (PM)

9

● Designer creates UI design
○ Created on Figma
○ Client Engineer should check about:

■ Transition way (Push/Full-modal/Half-modal)
■ Use of Design System
■ Error states, Empty states
■ Platform specific things (iOS/Android)

Create UI Design (Designer)

10

● Engineer writes Technical Design Doc (TDD) before actual
implementation
○ DesignDoc DevDojo
○ Writing Technical Design Doc helps us to understand:

■ what we should do
■ technical design
■ APIs we need to call
■ edge cases
■ conflicts
■ platform specific details

Write Technical Design Doc (Engineer)

https://speakerdeck.com/mercari/devdojo-apr-2024-design-doc

11

● Scrum members create tickets and have planning meetings
○ Ticket type hierarchy:

■ Epic: root ticket for a feature
■ Story: User stories ticket for 1 epic ticket
■ Task: fine-grained tickets for 1 story ticket (optional)

○ Have planning meeting based on created Story(Task) tickets
■ We use scrum as development style
■ Each teams controls their own process

Ticketing & Planning

12

● Engineer writes code!
○ Flow

■ 1. Engineers code
■ 2. Create PR (Pull Request) on GitHub
■ 3. Get reviews & make modifications
■ 4. Merge after approval

● CI status is important
○ Unit Tests, UI Test, Snapshot Tests, etc…
○ Distribute to employees

Coding & create PR(s) (Engineer)

13

● We use Trunk-based development style as branch management
○ Keep PR size small, Merge quickly
○ Master branch is always ready for release
○ Protect new features or bug fixes behind Feature Flags to keep master stable

Coding & create PR(s) (Engineer)

14

● We have dedicated QA members for each team
○ QA = Quality assurance (≠Manual tests)
○ Each team has QA members
○ Mobile Engineers are also responsible for QA
○ TestRail is used for managing test cases

QA (QA Engineer)

https://www.gurock.com/testrail/

15

● Some teams do dogfooding before/after QA as well
○ Flow

■ Create a dogfooding confluence/doc
■ Schedule a meeting with the team to dogfood together
■ Discuss on feedbacks and take actions accordingly

Dogfooding

16

● Release
○ We need to get approval from the platforms to release new versions.
○ Flow

■ Cut release branch (Wednesdays at 4PM)
■ Release judgement test (Thursday)
■ Submit to each app store (App Store, Google Play Store) (Thursday)
■ Waiting for reviews from Apple and Google
■ Release (Next Tuesday)

● Monitoring
○ Engineer should also check crash status after release
○ Hot fix release is needed if crash status is severe

Release & Monitoring (Engineer)

17

3. Tech stack

18

● Feature Flag (a.k.a. Remote Configs)
○ Feature testing (≒ A/B test) system controlled by backend config
○ It’s used for not only new features, but also refactoring, etc

● Laplace
○ New generation log platform in Mercari (Old log platform is Pascal)
○ Batch and Realtime log sending
○ Well-structured log schema

Feature Flag & Laplace

19

● Feature Flag × Laplace = Data driven development
○ Create a feature with some variants and integrate appropriate log for analyze
○ We can decide which variant is the base based on actual data (not inference)

Feature Flag & Laplace

20

● We use JSON and Protobuf for HTTP request and response
○ JSON: used for legacy endpoints (≒ mercari-api); but some teams still use it for

new development
○ Protobuf: used for microservice endpoints

● We DON’T use gRPC for client
○ gRPC is used for communications between microservices

JSON & Protobuf

21

● Design System provides consistent UI Design styles and
components
○ There are some layers similar with Atomic Design

■ Styles, Elements, Components, Templates
○ ref: Figma, ZeroHeight

Design System

https://www.figma.com/file/v0GsiBFF3t9Jw2cCzkRALQ/%5Bv3.0%5D-Master-Components?node-id=318%3A0
https://zeroheight.com/689e7368e/p/298242-mercari-design-system-v30

22

● Used for UI Tests, helps with UI development
● Component library /
● Whole screens
● Standalone
● Separate target

Playbooks

23

Thank you for listening!

Q&A

