
SPITBOL 360
USER'S GUIDE AND NEWSLETTERS

Spitbol 360 Version 2.3

8 November 2001

http://www.snobol4.com

Copyright © 1971-1974, 2001 Robert B. K. Dewar and Kenneth E. Belcher

Permission is granted to make and distribute verbatim copies of this document provided the
copyright notice and this permission notice are preserved on all copies.

IBM is a trademark of International Business Machines Corporation.

Adobe, Acrobat, and Acrobat Reader are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United State and/or other countries.

All other trademarks are the property of of their respective owners.

About This Guide
This guide is the companion documentation to the General Public License (GPL) distribution
of SPITBOL 360.

What This Document Contains
This document contains:

• Scanned page images of the original SPITBOL 360 Manual.

• Scanned page images of the original SPITBOL 360 Newsletters.

Note that this document is searchable by Acrobat® Reader™.

Related Information
For general information about SNOBOL4+, the Macro SPITBOL series of compilers,
SPITBOL 360, or SPITBOL 370 please visit

http://www.snobol4.com

For technical information about SPITBOL 360 please contact

goldberg@snobol4.com

Acknowledgements
Thanks to Robert Dewar and Ken Belcher for allowing me to re-release SPITBOL 360 under
the GPL for all to use and study.

Thanks to Claire Goldberg for helping her dad scan the pages.

Bob Goldberg

CONTENTS

SPITBOL Version 2.0 Manual
Table of Contents .. 9
Introduction .. 13
Summary of Differences ... 15
Datatypes and Conversions .. 19
Syntax .. 25
Pattern Matching .. 27
Functions ... 29
Keywords ... 49
Control Cards... 53
Error Messages and Handling ... 57
Programming Notes... 75
OS Data Sets and JCL .. 79
Addendum for Version 2.1, 2.2 ... 89

Newsletters
Newsletter 1 ... 91
Newsletter 2 ... 101
Newsletter 3 ... 113
Newsletter 4 ... 125
Newsletter 5 ... 133

SPITBOL

Version 2.0

Robert B. K. Dewar

Illinois Institute of Technology

February 12, 1971

S4D23

Note: This document is a reproduction of a document of the same title
prepared at the Illinois Institute of Technology. It is reproduced in
its present form by permission of the author to make it more widely
available to individuals interested in SNOBOL4.

R. E. Griswold
Bell Telephone Laboratories, Incorporated
Holmdel. New Jersey 07733

February 16, 1971

SPITBOL M A N U A L -- V E R S I O N 2.0

TABLE OF CONTENTS

1. Introduction
2. Summary of Differences

2.1 . Features Not Implemented
2.2. Features Implemented Differently
2.3. Additional Features
2.4. Other Incompatabilities

3.1 . Datatypes in SPITBOL
3.2. Datatype Conversion

3 . Datatypes and Conversion
4. Syntax
5. Pattern matching
6. Functions

60 1. ANY -- pattern to match selected char
6.2 APPLY* -- apply function
6.3. ARBNO -- pattern for iterated match
6.40 ARG -- obtain argument name
6.5. ARRAY -- generate ,array structure
6.6. BREAK -- construct scanning pattern
6.7. BREAKX -- construct scanning pattern
6.8. CLEAR -- clear variable storage
6.9. CODE -- convert to code
60 10. COLLECT -- initiate storage regeneration
6011. CONVERT -- convert datatypes
6.12. COPY* -- copy structure
60 13. DATA -- create datatype
6.14. DATATYPE* -- obtain datatype
60 15. DATE -- obtain date
6.16. DEFINE -- define a function
6017. DETACH -- detach I/O association
6.19. DUMP* -- dump storage
6.20. DUPL -- duplicate string
6-21. ENDFILE -- close file
6.22. EQ -- test for equal
6.23. EVAL -- evaluate expression
6.24. FIELD -- get field name
6.25. GE -- test for greater or equal
6.26. GT -- test for greater
60 27.. IDENT* -- test for identical
6.28. INPUT* -- set input association
6.29. INTEGER* -- test for integral
6.30. ITEM -- select array element
6.31. LE -- test for less than or equal
6.32. LEN -- generate specified length pattern
6.33. L a * -- test for lexically equal
6.34. LGE* -- test lexically greater or equal
6.35. LGT -- test for lexically greater
6.36. LLE* -- test for lexically less or equal
6.37. LLT* -- test for lexically less
6.38. LNE* -- test for lexically not equal

6.18. DIFFER* -- test for arguments differing

1- 1
2- 1

2-1
2- 1
2-2
2-3

3- 1
3-2

3- 1

4- 1
5- 1
6-1

6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6- 5
6-5
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-7
6-8
6- 8
6-8
6-8
6-9
6- 9
6-9

6-10
6-10
6-1 0
6-10
6-10
6-1 1
6-1 1
6-1 1

S P I T B O L M A N U A L -- V E R S I O N 2.0

6. 39.
6.40.
6.41.
6.42.
6. 43.
6.44.
6. 45.
6-46.
6.47..
6.48.
6-49..
6.50.
6-51
6.52.
6. 53.
6.54.
6.55.
6.56.
6.57.

6.59.
6.60.
6.61 .
6.62.
6.63.
6.64.
6.65.

6.58.

LOAD* -- load external function
LOC -- get name of local
LPAD -- left pad
LT -- test for less than
NOTANY -- build char select pattern
OPSYN -- equate functions
OUTPUT -- set output association
POS -- define positioning pattern
PROTOTYPE -- retrieve prototype
REMDR -- remainder
REPLACE -- translate characters
REVERSE -- reverse string
REWIND -- rewind file
RPAD -- right pad
RPOS -- create positioning pattern
RTAB -- create tabbing pattern
SETEXIT -- set error exit
SIZE -- get string size
SPAN -- create scanning pattern
STOPTR -- stop trace
SUBSTR -- extract substring
TAB -- create tabbing pattern
TABLE* -- create table
TIME -- get timer value
TRACE* -- initiate trace
TRIM -- trim trailing blanks
UNLOAD -- unload function

7. Keywords
8. Control Cards

8.1. Listing Control Cards
8.1.1. -EJECT
8.1.2. -SPACE
8.1.3. -TITLE
8.1.4. -STITL
8.2. Option Control Cards
8.2 . 1 . -LIST -NOLIST
8.2.2. -NOCODE -CODE
8.2 . 3 . -NOPRINT -PRINT
8.2.4. -SINGLE -DOUBLE
8.2.5. -OPTIMIZE -NOOPTIMIZE
8.2.6. -IN72 -IN80
8.2 . 7. -NOSEQUENCE -SEQUENCE
8 . 2.8. -ERRORS -NOERRORS
8.2 . 9 . -FAIL -NOFAIL
8.2.10. -EXECUTE -NOEXECUTE
8.3. -COPY filename

9. Error Messages and Handling
9.1. Compilation Error Messages
9.2. Execuition Error Messages
9.3. Error Codes
9.4. System Error codes for OS/360

6-1 1
6-12
6-12
6-12
6-12
6-13
6-13
6- 14
6-14
6- 14
6-14
6-15

6-15
6-1 5
6-1 5
6-16
6-1 7
6-17
6-17
6-17
6-18
6-18
6-1 8
6-19
6-19
6-19

7- 1
8- 1

8-1
8- 1

8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-4
8-4

8- 1

8-4
9- 1

9-1
9-4
9-6

9-16

S P I T B O L M A N U A L -- V E R S I O N 2.0

10. Programming Notes

11. OS Data Sets and JCL

10.1. Space Considerations
10 . 2 . Speed Considerations
11.1 . Standard System Files
11 . 1.1. DDNAME=SYSIN
11.1.2. DDNAME=SYSPRINT
11 . 1.3. DDNAME=SYSPUNCH
1 1 . 1 . 4.
11.2. Additional User Defined Files
11.3. Link Editing
11.3.1. Single Phase Version
11.3.2. Two Phase Version
11.4. Default DCB Parameters
11.5. Job Batching
11.6. Parm Options
11.7. Region Parameter and Memory Requirements
11.8. User ABEND Codes
11.9. Linking and Execution of Object Modules
11.10. Sample Deck Setups for OS/360

DDNAME=SYSOBJ

10-1
10-1
10-2

11-1
11-1
11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-4
11-4
11-5
11-7
11-7
11-9
11-9

11-1

S n T T R n T , M A N U A L -- V E R S I O N 1.0

1. Introduction

L- 1

SPITBOL is a new implementation of the SNOBOL-4 computer language for
use on the IBM 360 and 370 series computers. SPITBOL is considerably
smaller than the existing implementation (from Bell Telephone
Laboratories, implemented by the designers of the SNOBOL-4 language --
R. E. Griswold and I. Polonsky) and has execution speeds up to ten
times faster. For certain programs, notably those with in-line
patterns, the gain in speed may be even greater.

Unlike BTL SNOBOL-4 SPITBOL is a true compiler which generates
executable machine code. The generated code may be listed in assembly
form. Of course, the complexity of the SNOBOL-4 language dictates
that system subroutines be used for many common functions. SPITBOL
can be run as an 'in-core' system like WATFIV, where jobs are executed
as sson as they are compiled, and jobs may be bathed together.
Alternately, the compiler can generate an object module for later
execution .
This manual is the preliminary documentation and user's guide for
SPITBOL. It is assumed that the reader is familiar with the standard
version (referred to as BTL SNOBOL-4 in the remainder of the manual).
Version 3.4 of SNOBOL-4 is the reference version for comparison.
There are several minor incornpatabilities and some features are
unimplemented at the current time. In addition, there are several
additions to the language in this implementation.

In general an attempt has been made to retain upward comnpatability
wherever possible. Most SNOBOL-4 programs which operate correctly
using BTL SNOBOL-4 should operate correctly when compiled and executed
using SPITBOL.

SPITBOL was designed and implemented by --
Robert B. K. Dewar

Kenneth Belcher
and

Information Science Center
Illinois Institute of Technology
Chicago, Illinois 60616

S P I T B O L M A N U A L -- V E R S I O N 2.0 2-1

2. Summary of Differences

This section contains a summary of the significant differences between
SPITBOL and BTL SNOBOL-4

2.1 . Features Not Implemented
At the current time, the following features of BTL SNOBOL-4 are not
implemented. It is intended that all these features will be included
in later releases of the SPITBOL system.

1) Program defined trace functions

2) OPSYN for operators (third argument)

3) The BLOCK datatype (as implemented in SNOBOL-4B)

2.2. Features Implemented Differently

The following features are implemented in SPITBOL, but the usage is
different from that in BTL SNOBOL-4 and changes in existing programs
may be required.

1) Recovery from execution errors (see SPITBOL function SETEXIT)

2) I/O is somewhat different. The FORTRAN I10 routines are not used.
However, a FORTRAN format processing routine has been included for
compa t ib i 1 it y .

3) The JCL required for running under OS1360 is different.

S P I T B O L M A N U A L -- V E R S I O N 2.0 2-2

2.3. Additional Features

The following additional features (not in BTL SNOBOL-4) are included
in the SPITBOL system.

1) The datatype DREAL (double precision real) .
2) The additional functions BREAKX LEQ LGE LLE LLT LNE LPAD,

REVERSE, RPAD SETEXIT, SUBSTR.

3) Additional flexibility in I/O Support of all record formats
recognized by QSAM. Format free variable record length I/O
allowing simple input output of strings, Support for partitioned
datasets and multi-file tape volumes.

4) The symbolic dump optionally includes elements of arrays, tables
and program defined datatypes,

5) Both the pattern matching stack and the function call push down
stack may expand to use all available dynamic memory if necessary.

S P I T B O L M A N U A L -- V E R S I O N 2.0 2- 3

2.4. Other incompatabilities

1) The value of a modifiable keyword can be changed only by direct
assignment using =, pattern assignment cannot be used to change
a keyword value and the name operator cannot be applied to a
keyword.

2) SPITBOL allows some datatype conversions not allowed in BTL
SNOBOL-4. For example, a REAL value may be used in pattern
alternation and is converted to a string. In general, SPITBOL
will convert objects to an appropriate datatype if at all
possible.

3) The unary . (name) operator applied to a natural variable yields
a NAME rather than a STRING. Since this NAME can be converted to
a STRING when required, the difference is normally not noticed.
The only points at which the difference will be apparent is in
use of the IDENT DIFFER and DATATYPE functions and when used as
a TABLE subscript.

4) SPITBOL normally operates in an optimized mode which generates a
number of incompatabilities. This mode can be turned off if
necessary, see description of the control cards -OPTIMIZE and
-NOOPTIMIZE

5) SPITBOL permits leading and trailing blanks on numeric strings
which are to be converted to STRING.

6) Several of the built-in functions are different. These are
identified by a * on their name in section 6 of this manual.

7) SPITBOL does not permit exponentiation of two real numbers.

8) The BACKSPACE function is not implemented.

9) Deferred expressions in pattern matching are not assumed to match
one character (see section 5) .

S P I T B O L M A N U A L -- V E R S I O N 2.0 3- 1

3. Datatypes and Conversion

3.1. Datatypes in SPITBOL

3)

4)

7)

STRING

INTEGER

REAL

DREAL

ARRAY

TABLE

PATTERN

NAME

Strings range in length from 0 (null string) to
32758 characters (subject to the setting of
&MAXLNGTH . Any characters from the EBCDIC set can
appear.

Integers are stored in 32 bit form allowing a range
of -2**31 to +2**31-1. There is no negative zero.

Stored as a 32 bit short form floating point number.

Stored using long form floating point. The low
order byte is not available and is stored as zero,
thus giving a 48 bit mantissa (15 decimal digits).

Arrays may have up to 255 dimensions.

A table may have any number of elements, see
description of the TABLE function for further
details. Any SPITBOL object may be used as the name
of a table element, including the null string.

Pattern structures may range up to 32768 bytes which
means there is essentially no limit on the
complexity of a pattern,

A name can be obtained from any variable, Note that
in SPITBOL, the name operator (unary dot) applied to
a natural variable yields a name, not a string as in
BTL SNOBOL-4.

9) EXPRESSION Any expression may be deferred.

10) CODE A string representing a valid program can be
converted to code at execution time. The resulting
object, of type CODE, may be executed in the same
manner as the original program.

S P I T B O L M A N U A L -- V E R S I O N 2.0 3-2

3.2. Datatype Conversion

As far as possible, SPITBOL converts from one datatype to another as
required, The f following table shows which conversions are possible.
A blank entry indicates that the conversion is never possible, X
indicates that the conversion is always possible, and F indicates that
conversion may be possible, depending on the value involved.

convert to

convert
from

S
I
R
D
A
T
P
N
E
C

STRING
INTEGER
REAL
DREAL
ARRAY
TABLE
PATTERN
NAME
EXPRESSION
CODE

The following section gives detailed descriptions for each of the
pos s i b le conversions.

STRING --> INTEGER

Leading and trailing blanks are ignored. A leading sign is optional.
The sign, if present, must immediately precede the digits. A null
string or all blank string i s converted to zero.

STRING --> REAL

Leading and trailing blanks are ignored. A leading sign, if present,
must immediately precede the number. The number itself may be written
in standard (FORTRAN type) format w i t h an optional exponent. The
conversion is always accurate, the last bit is correctly rounded.

SPITBOL M A N U A L -- V E R S I O N 2.0 3-3

STRING --> DREAL

The rules are the same as for STRING to REAL. Note that a STRING is
considered to represent a DREAL if more than eight significant digits
are given, or if a D is used for the exponent instead of an E. The
conversion is always accurate, the last bit is correctly rounded.

STRING --> PATTERN

A pattern is created which will match the string value.

STRING --> NAME

The result is the name of the natural variable with a name of the
given string. This is identical to the result of applying the unary
dot operator to the variable in question. The null string cannot be
converted to a name.

STRING --> EXPRESSION

The string must represent a legal SPITBOL expression. The compiler is
used to convert the string into its equivalent expression and the
result can be used anywhere an expression is permitted.

STRING --> CODE

The string must represent a legal SPITBOL program, complete with
labels, and using semicolons to separate statements. The compiler is
used to convert the string into executable code. The resulting code
can be executed by transferring to it with a direct GOTO or by a
normal transfer to a label within the code.

INTEGER --> STRING

The result has no leading or trailing blanks. Leading zeros are
suppressed. A preceding minus sign is supplied for negative values.
Zero is converted to '0'.

INTEGER --> REAL

A real number is obtained by adding a zero fractional part. Note that
significance is lost in converting integers whose absolute value
exceeds 2**24-1.

INTEGER --> DREAL

A DREAL is obtained by adding a zero fractional part. Significance is
never lost in this conversion.

S P I T B 0 L MANUAL-- V E R S I O N 2.0 3-4

INTEGER --> PATTERN

First convert to STRING and then treat as STRING to PATTERN.

INTEGER --> NAME

First convert to STRING and then treat as STRING to NAME.

INTEGER --> EXPRESSION

The result is a expression which when evaluated yields the INTEGER as
its value.

REAL --> STRING

The real number is converted to its standard character representation.
Fixed type format is used if possible, otherwise an exponent (using E)
is supplied. Seven significant digits are generated, the last being
correctly rounded for all cases. Trailing insignificant zeros are
suppressed after rounding has taken place.

REAL --> INTEGER

This conversion is only possible if the REA. is in the range permitted
for integers. In this case, the result is obtained by truncating the
fractional part.

REAL --> DREAL

Additional low order zeros are added to extend the mantissa.

REAL --> PATTERN

First convert to STRING and then treat as STRING to PATTERN.

REAL --> NAME

First convert to STRING and then treat as STRING to NAME.

REAL --> EXPRESSION

The result is an expression which when evaluated yields the REAL as
its value.

DREAL --> STRING

Like REAL to STRING except that 15 significant digits are given and a
D is used for the exponent if one is required.

- r S P I T B O L M A N U A L -- V E R S I O N 2.0 3-5

DREAL --> INTEGER

T h i s convers ion i s o n l y p o s s i b l e if t h e DREAL i s i n the r a n g e
p e r m i t t e d for i n t e g e r s . I n this c a s e , t h e r e s u l t i s obta ined by
t r u n c a t i n g t h e f r a c t i o n a l pa r t .

DREAL --> REAL

The low order d i g i t s of t h e mantissa a r e t r u n c a t e d t o reduce t h e
precision.

DREAL --> PATTERN

F i r s t conve r t t o STRING and then t r e a t a s S T R I N G t o PATTERN.

DREAL --> NAME

F i r s t conve r t t o STRING and t h e n t r e a t a s S T R I N G to NAME.

DREAL --> EXPRESSION

The r e s u l t i s a n expression which when e v a l u a t e d y i e l d s t h e DREAL as
i t s value.

ARRAY --> TABLE

The a r r a y must be t w o dimensional w i t h a second dimension of two or a n
errors occurs. For each e n t r y (value of t h e f i r s t s u b s c r i p t) , a t a b l e
e n t r y us ing t h e (X,1) e n t r y a s name and t h e (X , 2) e n t r y a s va lue i s
c rea t ed . The t a b l e b u i l t has t h e same number of hash heade r s (see
TABLE f u n c t i o n) a s t h e first dimension.

TABLE --> ARRAY

The t a b l e must have a t l e a s t one element which is non-null. The a r r a y
genera ted i s t w o dimensional. The f i rs t dimension is equa l t o t h e
number of non-null e n t r i e s i n t h e t a b l e . The second dimension is two.
For each e n t r y , the (X,1) element i n t h e array is the name and t h e
(X,2) element i s the value. The order of t h e e lements i n t h e a r r a y i s

t h e o rde r i n which elements were p u t i n t h e t a b l e .

NAME --> S T R I N G

A NAME can be converted t o a S T R I N G only if it is t h e name of a
n a t u r a l v a r i a b l e . The r e s u l t i n g s t r i n g is t h e c h a r a c t e r name of t h e
va r i ab le .

NAME - -> INTEGER, REAL, DREAL, PATTERN, EXPRESSION, CODE

The NAME i s f i rs t converted t o a s t r i n g (i f possible) and t h e n the
convers ion proceeds a s described f o r STRING.

S P I T B O L M A N U A L -- V E R S I O N 2.0 4- 1

4. Syntax

This section describes differences between the syntax in SPITBOL and
BTL SNOBOL-4. These differences are minor and should not affect
existing programs.

1) Reference to elements of arrays which are themselves elements of
arrays is possible without using the item function. Thus the
following are equivalent --
A<J><K> = B<J><K>

ITEM (A<J>, K) = ITEM (B< J> , K)

2) The full 80 columns of input may optionally be used -- see
description of the -IN80 control card.

3) The only way to change the value of a keyword is by direct
assignment. It is not permissible to use a keyword in any other
context requiring a name.

4) The compiler permits real constants to be followed by a FORTRAN
style exponent E+xxx or D+XXX, the latter signifies a double
precision real (DREAL) .

SPITBOL MANUAL -- V E R S I O N 2.0 5- 1

5. Pattern Matching

Pattern matching is essentially compatible, however there are some
minor differences and extensions as described in this section.

The stack used for pattern matching can expand to fill all available
dynamic memory if neccessary. Thus the diagnostic issued for an
infinite pattern recursion is simply the standard memory overflow
mess age.

In quickscan mode, deferred expressions are not assumed to match one
character. This is a definite incompatability and some left recursive
patterns may go berserk. However, experience seems to indicate that
this heuristic has caused more problems than it has solved, so it has
been abandoned.

In SPITBOL the values of &QUICKSCAN and &ANCHOR are obtained only at
the start of the match. In BTL SNOBOL-4, changing these values during
a match can lead to unexpected results.

The BREAKX function allows construction of an extended break pattern.
See the description in the function section.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6- 1

6. Functions

This section defines the functions built-in to the SPITBOL system.
The functions are described in alphabetical order. In most cases, the
arguments are preconverted to some particular datatype. This is
indicated in the function header by the notation --
FUNCTION(STRING,INTEGER etc..

If the corresponding argument cannot be converted to the indicated
datatype, an error with major code 1 (illegal datatype) occurs -- see
section on error codes. In some cases, the range of arguments
permitted is restricted. Arguments outside the permitted domain cause
the generation of an error with major code 13 (incorrect value for
function or operator). The usage 'ARGUMENT' implies that the argument
can be of any datatype. 'NUMERIC' implies that any numeric datatype
can occur (INTEGER, REAL or DREAL).

In the following descriptions, a single asterisk following the name of
the function indicates that the implementation of the function differs
from that in BTL SNOBOL-4, or that the function is not available in
BTL SNOBOL-4.

M A N U A L -- V E R S I O N 2.0 6-2

6.1 ANY -- Pattern to Match Selected Char

ANY (STRING) or ANY (EXPRESSION)

This function returns a pattern which will match a single character
selected from the characters in the argument string. A null argument
is not permitted.

If an expression argument i s used, then the expression is evaluated
during the pattern match and must give a non-null string result.

6.2. APPLY* -- Apply Function

APPLY (NAME,ARG,ARG, a)

The first argument is the name of a function to be applied to the
(possibly null) list of arguments following. Unlike BTL SNOBOL-4,
SPITBOL does not require the number of arguments to match. Extra
arguments are ignored, and missing arguments are supplied as null
strings

6.3. ARBNO -- Pattern for Iterated Match

ARBNO (PATTERN)

This function returns a pattern which will match an arbitrary number
of occurrences of the pattern argument, including the null string

-* - (corresponding to zero occurrences)

6.4. ARG -- Obtain Argument Name

ARG (NAME, INTEGER)

The first argument represents the name of a function. The integer is
the number of a formal argument to this function. The returned result
is the string name of the selected argument. ARG fails if the integer
is out of range (less than one, or greater than the number of
arguments)

S P I T B O L M A N U A L -- V E R S I O N 2.0 6- 3

6.5. ARRAY -- Generate Array Structure

ARRAY (STRING , ARG)

The string represents the prototype of an array to be allocated. This
'is in the format 'LBD1:HBD1,LBD2:HBD2,..' The low bound (LBD) may be
omitted for some or all of the dimensions, in which case a low bound
of one is assumed. The second argument (of any datatype) is the
initial value of all the elements in the array. If the second
argument is omitted, the initial value of all elements wi l l be the
null string.

6.6. BREAK -- Construct Scanning Pattern

BREAK (STRING) or BREAK (EXPRESSION)

This function returns a pattern which will match any string up to but
not including a character in the string argument. A null argument is
not permitted . w-

If an expression argument is given, the resulting pattern causes the
string to be evaluated during pattern matching. In this case, the
evaluated result must be a non-null string.

6.7. BREAKX* -- Construct Scanning Pattern

BREAKX (STRING) or BREAKX(EXPRESSION)

BREAKX returns a pattern whose initial match is the same as a
corresponding BREAK pattern. However, BREAKX has implicit
alternatives which are obtained by scanning past the first break
character found and scanning to the next break character.

Note that BREAKX may be used to replace ARB in many situations where
BREAK cannot be used easily. For example the following replacement
can be made --
ARB ('CAT' I 'DOG') --- > BREAKX('CD') ('CAT' I 'DOG')

In the case of an expression argument, the expression is evaluated
during pattern matching and must yield a non-null string value. Note
that the evaluation of the expression is not repeated on rematch
attempts by extension.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6- 4

6.8. CLEAR* -- Clear Variable Storage

CLEAR (STRING,ARGUMENT)

This function causes the values of variables to be set to null. In
the simple case, where both arguments are omitted, the action is the
same as in BTL SNOBOL-4, I.e. all variables are cleared to contain
null. Two extensions are available in SPITBOL. The first argument
may be a string which is a list of variable names separated by commas.
These represent the names of variables whose value is to be left
unchanged. In addition, if a second non-null argument is supplied,
then all variables containing pattern values are left unchanged. For
example --

CLEAR ('Ax# CDE,GGG' , I)

would cause the value of all variables to be cleared to null except
for the variables ABC,CDE,GGG and all other variables containing
pattern values.

6.9. CODE -- Compile Code
CODE (STRING)

The effect of this function is to convert the argument to type CODE as
described in the section on type conversion. The STRING must represent
a valid SPITBOL program complete with labels and using ; to separate
statements, The call to CODE fails if this condition is not met.

6.10. COLLECT -- Initiate Storage Regeneration

COLLECT (INTEGER)

The COLLECT function forces a garbage collection which retrieves
unused storage and returns it to the block of available storage. The
integer argument represents a minimum number of bytes to be made
available, If this amount of storage cannot be obtained, the collect
function fails. On successful return, the result is the number of
bytes actually obtained.

Note that although the implementation of COLLECT is similar to that in
BTL SNOBOL-4, the values obtained will be quite different due to
different internal data representations. Furthermore, the internal
organization of SPITBOL is such that forcing garbage collections to
occur before they are required always increases execution time.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6- 5

6.11. CONVERT* -- Convert Datatypes

CONVERT (ARGUMENT, STRING)

The returned result is obtained by converting the first argument to
the type indicated by the string name of the datatype given as the
second argument. The section on type conversion describes the
permitted conversions. Any conversions which are not permitted cause
failure of the CONVERT call.

Note that SPITBOL does not permit the conversion of all datatypes to
STRING. Thus CONVERT(BAL,'STRING') fails rather than giving 'PATTERN'
as in BTL SNOBOL-4.

An additional possibility for the second argument is 'NUMERIC'. in
which case, the argument is converted to INTEGER, REAL or DREAL
according to its form.

6.12. COPY* -- Copy Structure

COPY (ARGUMENT)

The COPY function returns a distinct copy of the object which is its
argument. This is only useful for arrays, tables and program defined
datatypes. Note that SPITBOL does permit the copying of TABLES unlike
BTL SNOBOL-4.

6.13. DATA -- Create Datatype

DATA (STRING)

The argument to DATA is a prototype for a new datatype in the form of
a function call with arguments. The function name is the name of the
new datatype. The 'ARGUMENT' names are names of functions which
represent the fields of the new datatype.

Note that in SPITBOL, a significant increase in efficiency is obtained
by avoiding the use of duplicate field names for different datatypes,
although SPITBOL does allow such multiple use of field function names.

6- 6 SPITBOL M A N U A L -- V E R S I O N 2.0

6.14. DATATYPE* -- Obtain Datatype

DATATYPE (ARGUMENT)

DATATYPE returns the formal identification of the datatype of its
argument. In SPITBOL, the additional datatype name 'DREAL' is
included in the list of possible returned results.

6.15. DATE -- Obtain Date

DATE ()

DATE returns an eight character string of the form MM/DD/YY
representing the current date.

6.16. DEFINE -- Define a Function

DEFINE (STRING) or DEFINE (STRING,NAME)

The DEFINE function is used to define program defined functions. The
use of DEFINE is the same in SPITBOL as in BTL SNOBOL-4.

6.17. DETACH -- Detach I/O Association

DETACH (NAME)

NAME is the name of a variable which has previously been input or
output associated. Use of the DETACH function does not affect the
file involved.

6.18 DIFFER* -- Test for Arguments Differing

DIFFER (ARGUMENT, ARG UMENT)

DIFFER is a predicate function which fails if its two arguments are
identical objects. Note that DIFFER(.ABC,'ABC') succeeds in SPITBOL
since .ABC is a NAME. DIFFER and IDENT are the only functions in
which the different implementation of the name operator (unary dot)
may give rise to problems.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-7

6.19. DUMP* -- Dump Storage

The DUMP function causes a dump of current values. After the dump is
complete, execution continues unaffected (the dump function returns
the null string). If the argument to DUMP is one, then the dump
includes values of all non-constant keywords and all non-null natural
variables. If the argument to DUMP is two,' then the dump includes
values of all array and table elements, and of field values of all
program defined datatypes. The format of the latter dump is self
explanatory and avoids printing any structure more than once.

A call to DUMP w i t h a zero argument i s ignored. This allows use of a
switch value which can be turned on and off globally.

6.20. DUPL -- Duplicate String
DUPL (STRING.INTEGER)

DUPL returns a string obtained by duplicating the first (STRING)
argument the number of times indicated by the second argument.

6.21. ENDFILE -- Close file

ENDFILE (STRING)

STRING is the name of a file (not the name of a variable associated
with the file). The named file is closed, all associated storage is
released and all variables associated with the file are automatically
detached. Thus ENDFILE should be used only when no further use is to
be made of the file. If the file is to be reread or rewritten, REWIND
should be used rather than ENDFILE.

6.22. EQ -- Test for Equal

EQ (NUMERIC, NUMERIC)

EQ is a predicate function which tests whether its two arguments are
equal. DREAL arguments are permitted.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-8

J

6.23. EVAL -- Evaluate Expression

EVAL (EXPRESSION)

EVAL returns the result of evaluating its expression argument. Note
that a string can be converted into an expression by compiling it into
code. Thus EVAL in SPITBOL is compatible with BTL SNOBOL-4 and
handles strings in the same way.

6.24. FIELD -- Get Field Name

FIELD (NAME, INTEGER)

FIELD returns the name of the selected field of the program defined
datatype whose name is the first argument. If the second argument is
out of range (less than one, or greater than the number of fields),
the FIELD function fails.

6.25. GE -- Test for Greater or Equal

GE (NUMERIC, NUMERIC)

GE is a predicate function which tests if the first argument is
greater than or equal to the second argument.

6.26. GT -- Test for Greater
GT (NUMERIC, NUMERIC)

GT is a predicate function which tests if the first argument is
greater than the second argument.

6.27. IDENT -- Test for Identical

IDENT (ARGUMENT,ARGUMENT)

IDENT is a predicate function which tests if its two arguments are
identical. Note that in SPITBOL8 IDENT(.ABC,'ABC') fails since .ABC
is a name in SPITBOL. Otherwise IDENT is compatible.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-9

6.28. INPUT* -- Set Input Association

The first argument is the name of a variable which is to be input
associated. The second argument is the filename of the file to which
the variable is to be associated. In OS, the name corresponds to the
DDNAME of the file (see section on OS files). If the second argument
is omitted, the file name 'SYSIN' (standard input file) is assumed.
For compatibility with BTL SNOBOL-4, the second argument may be a one
or two digit integer, in which case, the DDNAME FTXXF001 is used.
Note however, that the filename 5 is interpreted as SYSIN if no
FT05F001 DD card is supplied. Also, there is no provision for multiple
files in the FORTRAN sense. Dataset concatenation can be used instead,

The third argument is either zero, in which case it is ignored, or a
positive non-zero integer, in which case input records longer than the
given limit are truncated.

A restriction in SPITBOL is that only natural variables can be input
associated. It is not possible to input associate array and table
elements .

6.29. INTEGER* -- Test for Integral
INTEGER (NUMERIC)

INTEGER is a predicate function which tests whether its argument is
integral. It fails if the argument cannot be converted to numeric, or
if it has a non-integral value.

6.30. ITEM -- Select Array or Table element

ITEM (ARRAY, INTEGER, INTEGER,. .) or ITEM (TABLE,ARGUMENT)
ITEM returns the selected array or table element by name. Note that
the use of ITEM is unnecessary in SPITBOL because of the extended
syntax for array references. (See section on syntax).

S P I T B O L M A N U A L -- V E R S I O N 2.0 6- 10

6.31. LE -- Test for Less Than or Equal

LE (NUMERIC,NUMERIC)

LE is a predicate function which tests whether the first argument is
less than or equal to the second argument.

6.32. LEN -- Generate Specified Length Pattern

LEN (INTEGER) or LEN (EXPRESSION)

LEN generates a pattern which will match any sequence of characters of
length given by the argument which must be a non-negative integer.
Integer greater than zero.

If the argument is an expression, it is evaluated during pattern
matching and must yield a non-negative integer.

6.33. LEQ* -- Test for Lexically Equal

LEQ (STRING, STRING)

LEQ is predicate function which tests whether its arguments are
lexically equal. Note that LEQ differs from the IDENT function in
that its arguments must be strings, thus LEQ(10,'10') succeeds as does
LEQ(.ABC,'ABC').

6.34. LGE* -- Test Lexically Greater or Equal
LGE (STRING, STRING)

LGE is a predicate function which tests whether the first argument is
lexically greater than or equal to the second argument.

6.35. LGT -- Test for Lexically Greater

LGT (STRING, STRING)

LGT is a predicate function which tests whether its first string
argument is lexically greater than the second string argument.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-1 1

6.36. LLE* -- Test for Lexically Less or Equal

LLE (STRING, STRING)

LLE is a predicate function which tests whether its first string
argument is lexically less than or equal to the second argument.

6.37. LLT* -- Test for Lexically Less

LLT (STRING,STRING)

LLT is predicate function which tests whether its first argument is
lexically less than its second argument.

6.38. LNE* -- Test For Lexically Not Equal

LNE (STRING,STRING)

LNE is a predicate function which tests whether its arguments are
lexically unequal. LNE differs from the DIFFER function in that its
arguments must be strings.

6.39. LOAD* -- Load External Function

LOAD (STRING)

LOAD is used to load an external function. The form of the load
argument is the same as in BTL SNOBOL-4 except that the datatype DREAL
may be used. In the case where the datatype is unspecified, the form
of the descriptor passed is quite different from that in BTL SNOBOL-4.
The form of converted arguments is identical. A later document will
contain additional details on writing external functions for SPITBOL.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-12

6.40. LOC -- Get Name of Local

LOC (NAME, INTEGER)

The value returned is the name of the indicated local of the function
whose name is given by the first argument. LOC fails if the second
argument is out of range (less than one, or greater than the number of
locals) .

6.41. LPAD* -- Left Pad

LPAD (STRING, INTEGER,STRING)

LPAD returns the result obtained by padding out the first argument on
the left to the length specified by the second argument, using the pad
character supplied by the one character string third argument. If the
third argument is null or omitted, a blank is used as the pad
character. long,
it is returned unchanged. LPAD is useful for constructing columnar
output.

If the first argument is already long enough or too

6.42. LT -- Test for Less Than

LT (NUMERIC,NUMERIC)

LT is a predicate function which tests whether the first
less than the second argument.

argument is

6.43. NOTANY -- Build Character Select Pattern

NOTANY (STRING) or NOTANY (EXPRESSION)

NOTANY returns a pattern which will match any single Character not in
the string argument given. A null argument is not permitted.

If the argument is an expression, then the expression is evaluated at
pattern match time and must yield a non-null string.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-13

6.44. OPSYN* -- Equate Functions

OPSYN (NAME,NAME)

The first argument is the name of a function defined to have the same
definition as the function named in the second argument. Note that
the third argument (allowing redefinition of operators) is not
implemented in SPITBOL at this time,

6.45. OUTPUT* -- Set Output Association

OUTPUT (NAME, STRING,STRING)

The first argument is the name of a variable to be output associated.
The second argument is the name of the file to which the association
is to be made. In OS this is the DDNAME (see section on OS files),
If the second argument is omitted, the filename 'SYSPRINT' (standard
output print file) is assumed. For compatibility with BTL SNOBOL-4,
the file name may be one or two digit integer, in which case the
DDNAME FTXXF001 is used. Note however, that the filenames 6,7 are
interpreted as SYSPRINT and SYSPUNCH if t the corresponding FTXXF001 DD
cards are not supplied.

The third argument is the format. It may be entirely omitted. In
this case, all parameters are taken from the dataset definition.
Strings are transmitted directly, If a string exceeds the specified
length (maximum record length- for variable length records), then it is
split into segments as required.

The second possibility for a format is a single character. This is
used for print files. The character given is a control character
which is appended to the start of each record. Thus the definition of
the standard print file is --

OUTPUT (. OUTPUT,, ' ')
A third possibility for the format is a FORTRAN format. This is
supplied for compatibility wi t h BTL SNOBOL-4 and should not be used
except where required since format processing is inherently time
consuming.

A restriction on the output function in SPITBOL is that only natural
variables may be associated. It is not possible to output associate
array and table elements.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-14

6.46. POS -- Define Positioning Pattern

POS (INTEGER) or POS (EXPRESSION)

Pos returns a pattern which matches the null string after the
indicated number of characters has been matched. The argument must be
a non-negative integer.

If an expression argument is given it is evaluated during pattern
matching and must yield a non-negative integer.

6.47. PROTOTYPE -- Retrieve Prototype

PROTOTYPE (ARRAY) or PROTOTYPE (TABLE)

PROTOTYPE returns the first argument used in the ARRAY or TABLE
function call which created the argument.

6.48. REMDR -- Remainder

REMDR (INTEGER, INTEGER)

REMDR returns the remainder of dividing the first argument by the
second, the remainder has the same sign as the first argument
(quotient) .
6.49. REPLACE -- Translate Characters

REPLACE (STRING,STRING, STRING)

REPLACE returns the result of applying the transformations represented
by the second and third arguments to the first argument. REPLACE
fails if the second and third arguments are unequal in length or null.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-15

6.50. REVERSE* -- Reverse String

REVERSE (STRING)

REVERSE returns the result of reversing its string argument. Thus
REVERSE('ABC') = 'CBA'.

6.51 REWIND --'Reposition file

REWIND (STRING)

STRING is the name of an external file the name of a variable
associated with the file). The named file is repositioned so that the
next read or write operation starts at the first record of the file.
Existing associations to the file are unaffected.

6.52. RPAD* -- Right Pad

RPAD (STRING, INTEGER, STRING)

RPAD is similar to LPAD except that the padding is done on the right.

6.53 RPOS -- Create Positioning Pattern
RPOS (INTEGER) or RPOS (EXPRESSION)

RPOS creates a pattern which will match null when the indicated number
of characters remain to be matched. The integer argument must be non-
negative.

If an expression argument is used, it is evaluated during the pattern
match and must yield a non-negative integer.

6.54. RTAB -- Create Tabbing Pattern

RTAB (INTEGER) or RTAB (EXPRESSION)

RTAB returns a pattern which matches from the current location up to
the point where the indicated number of characters remain to be
matched. The argument must be a non-negative integer.

If an expression is used, it is evaluated during pattern matching and
must yield a non-negative integer.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-16

6.55 . SETEXIT* -- Set Error E x i t

SETEXIT (NAME) o r SETEXIT ()

The u s e of SETEXIT allows i n t e r c e p t i o n of any execut ion error. The
argument t o SETEXIT i s a label t o which c o n t r o l i s passed i f a
subsequent e r r o r occurs, providing t h a t t h e value of t h e keyword
& E R R L I M I T i s non-zero. The value of &ERRLIMIT i s decremented when the
e r r o r t r a p occurs. The SETEXIT c a l l w i t h a n u l l argument causes
c a n c e l l a t i o n of t h e i n t e r c e p t . A subsequent error will terminate
execution as usual w i t h an error message.

The r e s u l t r e tu rned by SETEXIT i s t h e prev ious i n t e r c e p t s e t t i n g
(i.e., a label name or n u l l i f no i n t e r c e p t is set) . T h i s can be u s e d
t o save and restore t h e SETEXIT cond i t ions i n a r e c u r s i v e environment.

The error i n t e r c e p t rou t ine may i n s p e c t t h e error code stored i n t h e
keyword &ERRTYPE (see keyword s e c t i o n) , and t a k e one of t h e fol lowing
ac t ions --
1) Terminate execution by t r a n s f e r r i n g to t h e s p e c i a l l a b e l

ABORT. T h i s causes error processing t o r e s u m e a s though no
error i n t e r c e p t had been set.

' 2) Branching to t h e s p e c i a l label CONTINUE. T h i s causes
execut ion t o resume by branching to the f a i l u r e e x i t of the
s ta tement i n error.

3) Continue execution elsewhere by branching t o some other
s e c t i o n of t h e program. N o t e t h a t i f t h e error occurred
i n s i d e a funct ion, we are sti l l 'down a l e v e l ' .

The occurrence of an error c a n c e l s the error i n t e r c e p t . Thus t h e
error i n t e r c e p t r o u t i n e must r e i s s u e the SETEXIT i f required.
Examples of e r r o r processing r o u t i n e s may be found i n t h e s tandard
SPITBOL d i a g n o s t i c programs.

6 . 5 6 . S I Z E -- G e t S t r i n g S i z e

S I Z E (STRING)

S I Z E r e t u r n s an i n t e g e r coun t of the l e n g t h of i ts s t r i n g argument.

S P I T B O L M A N U A L -- VERSION 2.0 6-17

6.57. SPAN -- Create Scanning Pattern
SPAN (STRING) or SPAN (EXPRESSION)

SPAN creates a pattern matching a non-null sequence of characters
contained in the first argument which must be a non-null string.

If an expression argument is used, it is' evaluated during pattern
matching and must yield a non-null string value.

6.58. STOPTR* -- Stop Trace
STOPTR (NAME. STRING)

STOPTR terminates tracing for the name given by the first argument.
The second argument designates the respect in which the trace is to be
stopped as follows --

'VALUE’ or 'V’ or null (omitted) value
'LABEL' or 'L’ label
'FUNCTION' or 'F' function call and return
'CALL' or 'C' function call
'RETURN' or 'R' function return

6.59. SUBSTR* -- Extract Substring
SUBSTR (STRING,INTEGER, INTEGER)

SUBSTR extracts a substring from the first argument, the second
argument specifies the first character (1 = start of string), the
third argument specifies the number of characters. SUBSTR fails if
the sub-string is not a proper sub-string.

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-18

6.60. TAB -- C r e a t e Tabbing P a t t e r n

(INTEGER) or TAB (EXPRESSION)

TAB creates a p a t t e r n which matches from the c u r r e n t p o s i t i o n up to
t h e p o i n t where the i n d i c a t e d number of c h a r a c t e r s have been matched.
The argument t o TAB i s a non-negative i n t e g e r .

I f an expres s ion argument i s used, it is e v a l u a t e d du r ing p a t t e r n
matching and m u s t y i e l d a non-negative i n t e g e r .

6.61. TABLE* -- Crea te T a b l e

TABLE (INTEGER)

The TABLE f u n c t i o n c r e a t e s an associat ive t a b l e as i n BTL SNOBOL-4.
However, i n SPITBOL, t h e t ab l e is implemented i n t e r n a l l y us ing a
hashing a lgor i thm. The i n t e g e r argument t o table is t h e number of
hash heade r s used. The average number of s e a r c h e s is about M/2N where
M is the number of e n t r i e s i n t h e table, and N is t h e number of hash
headers . S i n c e t h e overhead f o r hash headers is small compared t o t h e
s i z e of a t a b l e element, a u s e f u l gu ide is t o u s e an argument which is
an e s t i m a t e of t h e number of e n t r i e s t o be stored i n the table.

Note t h a t this implementation of t a b l e i s compatible i n t h a t t h e c a l l
used i n BTL SNOBOL-4 will work, though possibly no t with maximum
e f f i c i e n c y .

6 . 6 2 . TIME -- G e t T i m e r Value

TIME ()

TIME r e t u r n s t h e i n t e g e r number of m i l l i s e c o n d s of processo r t i m e
s i n c e t h e s t a r t of execut ion. N o t e t h a t t h e v a l u e s ob ta ined w i l l be
d i f f e r e n t (smaller) than those o b t a i n e d with BTL SNOBOL-4 .

S P I T B O L M A N U A L -- V E R S I O N 2.0 6-19

6.63. TRACE* -- Initiate Trace

TRACE (NAME,STRING)

The TRACE 'function initiates a trace of the item whose name is given
by the first argument. The second argument specifies the sense of the
trace as follows --

'VALUE' 'V' or null (omitted) value
'LABEL' or 'L’ label
'FUNCTION' or 'F’ function call and return
'CALL' or 'C' 'function call
'RETURN' or 'R' function return

The following features of the BTL SNOBOL-4 TRACE function are not
implemented --

keyword tracing
tracing of array or table elements
program defined trace functions

6.64. TRIM -- Trim Trailing Blanks

TRIM (STRING)

TRIM returns the result of trimming trailing blanks from the argument
string.

6.65. UNLOAD* -- Unload Function

UNLOAD (STRING)

String is the name of an external function which is to be unloaded.
The restriction in BTL SNOBOL-4 concerning functions OPSYNed to loaded
functions does not apply in SPITBOL. A function is not actually
unloaded until all functions OPSYNed to it have been unloaded.
SPITBOL also allows the names of ordinary functions to appear in calls
to UNLOAD. In this case, the result is merely to undefine the
function.

S P I T B O L M A N U A L -- V E R S I O N 2.0

7. Keywords

7- 1

that is, its

&ABEND

The following is a list of the keywords implemented in SPITBOL. The
notation (R) after the name indicates that the keyword is read only,

value may not be modified by assignment.

Normally set to zero. If it set to one when execution
terminates, an ABEND dump is given. This is normally
used only for system checkout.

&ABORT (R)

&ALPHABET (R)

&ANCHOR

&ARB (R)

&BAL (R)

&CODE

&DUMP

Contains the value of the pattern ABORT

Contains the 256 characters of the EBCDIC set in their
natural collating sequence.

Set to zero for unanchored mode and one for anchored
pattern matching mode.

Contains the value of the pattern ARB

Contains the pattern BAL

The value in &CODE is used as a system return code if
this job is the last in a batch. It is normally set to
zero.

The standard value is zero. If the value is zero at the
end of execution, then no symbolic dump is given. A
value of one gives a dump including values of keywords
and natural variables. If the value is two, the dump
includes non-null array, table and program defined
datatype elements as well. The dump format is self
explanatory and deals with the case of branched
structures including circular lists.

S P I T B O L M A N U A L -- V E R S I O N 2.0 7-2

&ERRTYPE If an execution error is intercepted with the use of the
SETEXIT function, then the error code is stored as an
integer in &ERRTYPE The value stored is
1000*majorcode + m i n o r c o d e . Thus the error code 13.026 is
stored as the integer 13026. &ERRTYPE may be assigned
a value in which case an immediate error is signalled.
This may be useful in signalling program detected
errors. If such an error is intercepted, then either the
standard error message appropriate to the major code
assigned is printed, or a standard message USER ISSUED
ERROR MESSAGE is printed if the major code is not in the
standard range (1-14) .

&ERRLIMIT The maximum number of errors which can be trapped using
the SETEXIT function. &ERRLIMIT is initially zero and is
decremented each time a SETEXIT trap occurs. SETEXIT has
no effect on normal error processing if &ERRLINIT is
zero.

&FAIL (R) Contains the value of the pattern FAIL.

&FENCE (R) Contains the value of the pattern FENCE,

&FNCLEVEL(R) Contains the current function nesting level.

&FTRACE The standard value is zero. If it is set to one, then
all function calls and returns are traced.

&FULLSCAN The standard value is zero (QUICKSCAN pattern matching
mode).. The value is set to one to obtain FULLSCAN mode.

&INPUT Set to one for nomal input (standard value). If set to
zero, all input associations are ignored.

S P I T B O L M A N U A L -- V E R S I O N 2.0 7-3

&LASTNO(R) C o n t a i n s the n u m b e r of t h e l a s t s t a t e m e n t executed.

&MAXLNGTH Contains t h e maximum permi t ted s t r i n g l e n g t h . T h i s
v a l u e may no t exceed 32758.

&OUTPUT Set t o one f o r normal output (s tandard va lue) . I f s e t
t o zero, a l l ou tpu t a s s o c i a t i o n s are ignored.

&REM(R) Contains t h e p a t t e r n REM

& R T N T Y P E (R) C o n t a i n s 'RETURN' , ' FRETURN' or "RETURN' depending on
t h e t y p e of func t ion r e t u r n most r e c e n t l y e x e c u t e d .

&STCOUNT(R) The number of s ta tements execu ted so f a r .

&STLIMIT(R) The maximum number of statements allowed t o be executed.
T h e i n i t i a l value i s 50000. The maximum value allowed
i s 2**24-1 = 16777215.

&STNO(R) T h e number of t h e c u r r e n t statement.

&SUCCEED(R) Contains t h e p a t t e r n SUCCEED.

&TRACE I f the value is ze ro o r negat ive, no trace ou tpu t is
generated. Each l i n e of trace o u t p u t decrements t h e
va lue by one. The i n i t i a l value is 0.

& T R I M Set t o ze ro for normal i n p u t mode (standard value) . I f
t h e value i s s e t t o one, all i n p u t records a r e
au tomat ica l ly trimmed (t r a i l i n g blanks removed) .

A r e s t r i c t i o n i n SPITBOL i s t h a t t h e only way to change a k e y w o r d
value is by a direct assignment. Keywords may n o t appear i n any other
contex t r e q u i r i n g a name (for example as t he r i g h t argument of binary
$)

S P I T B O L M A N U A L -- V E R S I O N 2.0 8- 1

8. Control Cards

Control cards are identified by a minus sign in column one. They may
occur anywhere in a source program and take effect when they are
encountered. Most of these cantrol card types are special features of
SPITBOL and are not implemented in BTL SNOBOL-4.

8.1. Listing Control Cards

Listing control cards are used to alter the appearance of the listing,
they have no other effect on the compilation or execution of the
program. Listing control cards always occur individually.

8.1.1. -EJECT

The -EJECT control card causes the compilation listing to skip to the
top of the next page. The current title and sub-title (if any) are
printed at the top of the page.

8. 1. 2. -SPACE

The -SPACE control card causes spaces to be skipped on the current
page. If -SPACE occurs with no operand, then one line is skipped.
Alternately, an unsigned integer can be given (separated by at least
one space from the -SPACE) which represents the number of lines to be
skipped, If there is insufficient space on the current page, -SPACE
acts like a -EJECT and the listing is spaced to the top of the next
page.

8.1.3. -TITLE

The -TITLE card is used to supply a title for the source program
listing. The text of the title is taken from columns 8-72 of the
-TITLE card. The subtitle (if any), is cleared to blanks, and an
eject to the next page occurs.

8.1.4. -STITL

The -STITL card is used to supply a sub-title for the source program
listing. An eject occurs to the top of the next page and the current
title (if any) and the newly supplied sub-title are printed. The text
for the sub-title is taken from columns 8-72 of the -STITL card. Note
that if both title and sub-title are to be changed, then the -TITLE
card should precede the -STITL card.

S P I T B O L M A N U A L -- V E R S I O N 2.0 R- 2

8.2. Option Control Cards

The option control cards allow selection of various compiler options.
In each case, there are two modes. Two control cards allow switching
from one mode to the other. The mode may be flipped back and forth
within a single program. The full names are given for each control
card, however, only the first four characters are examined, and the
names may thus be abbreviated to four characters. Several control
options may be specified on the same control card by separating the
names with commas (no intervening spaces should occur). For example

In each of the cases listed below, the default option is the one
represented by the first of the two control options listed.

8.2.1. -LIST -NOLIST

Normally, the source statements are listed (-LIST option). The
-NOLIST option causes suppression of this printout. This may be
useful for established programs known to work, or for terminal output.
Note that line numbers are always listed on the left which is
convenient for terminal output. If compilation errors are detected,
the offending statements are printed regardless of the setting of the
list mode .
8 2 2 -NOCODE -CODE

The -CODE option causes a printout of the generated code in assembly
language type format. This listing may be useful in determining how
SPITBOL handles the compilation of various types of statements. The
-NOCODE control option resets the normal mode of no code listing. It
is permissible to use these cards in combination to obtain listings
for selected sections of the source program. The code listing occurs
after the end of the source listing starting on a separate page so
that the source listing is not affected.

8.2.3. -NOPRINT -PRINT

Normally, control cards are not printed (-NOPRINT). The -PRINT option
causes control cards to be listed (provided that the -LIST option is
in effect). This option may be useful if serialization is used for
updating purposes.

S P I T B O L M A N U A L -- V E R S I O N 2.0 8-3

8.2.4. -SINGLE -DOUBLE

The compilation l i s t i n g is normally s i n g l e spaced (-SINGLE). The
-DOUBLE opt ion causes d o u b l e spacing t o be used, with a blank l i n e
between each l isted l ine .

8.2.5. -OPTIMIZE -NOOPTIMIZE

The SPITBOL compiler normally o p e r a t e s i n an optimized mode
t h e fol lowing assumptions are made:

i n which

1) The values O f BAL, ARB, FENCE, ABORT, REM, FAIL, and SUCCEED are
n o t modified dur ing execut ion

2) The s tandard s y s t e m f u n c t i o n s (s e e s e c t i o n 6 for a f u l l l i s t) are
not redef ined.

3) Function cal ls i n a s ta tement do n o t r e s u l t i n modif icat ion of
values of v a r i a b l e s re ferenced elsewhere i n the same statement.

The -NOOPTIMIZE c o n t r o l card s p e c i f i e s tha t the compiler n o t m a k e the
above assumptions. T h i s r e s u l t s i n a higher l e v e l of compatabi l i ty
w i t h BTL SNOBOL-4 a t t h e expense of both space and speed. I n some
cases, t h e loss of speed may b e as much a s a factor of t en . The
optimizing mode may b e switched on and off so t h a t on ly isolated
statements are compiled i n non-optimized mode. N o t e t h a t it is the
references t o redefined f u n c t i o n s which cause the trouble, n o t t h e
a c t u a l d e f i n i t i o n i tself .

8.2.6. -IN72 -IN80

Normally, the compiler reads only columns 1-72 of the input images.
Columns 73-80 may be used f o r ser ia l izat ion. The serialization will
be listed o n - t h e source l i s t i n g separa ted from the program t e x t by a
column of dots (t h i s i s t o prevent a c c i d e n t a l l y punching p a s t column
72) . T h e -IN80 opt ion causes a l l 80 columns of t he i n p u t cards to be
read. The - I N 7 2 card resets t h e normal option. -IN80 should be used
from a t e rmina l device, since it e l imina te s any ou tpu t on t h e r i g h t
side of t h e page.

8.2.7. -NOSEQUENCE -SEQUENCE

T h i s opt ion is only r e l e v a n t if -IN72 is i n effect. The normal mode
(-NOSEQUENCE) i g n o r e s any s e r i a l i z a t i o n occuring in columns 73-80. I f
t he -SEQUENCE opt ion i s taken , t h e n the SPITBOL compiler tests t o see
whether t h e s e r i a l i z a t i o n is i n correct ascending sequence. I f an out
of sequence card o c c u r s , a message is pr in t ed , b u t no other a c t i o n is
taken (un le s s -NOERRORS is also specified at t h e time of t h e sequence
error) .

S P I T B O L M A N U A L -- V E R S I O N 2.0 8-4

8.2.8. -ERRORS -NOERRORS

Normally execu t ion is al lowed even i f compi la t ion errors occur (-
ERRORS). If a compi la t ion error or a sequence error (-SEQUENCE on)
occurs and t h e -NOERRORS o p t i o n h a s been s p e c i f i e d , then t h e execut ion
of t h e program is suppressed.

8 . 2 . 9 . -FAIL - N O F A I L

In BTL SNOBOL-4, and i n SPITBOL w i t h t h e -FAIL m o d e set , a f a i l u r e i n
a s t a t emen t with no c o n d i t i o n a l g o t o is ignored and t h e program
execut ion resumes w i t h t h e n e x t s t a t emen t i n sequence. T h i s
convention o f t e n r e s u l t s i n errors going undetec ted , p a r t i c u l a r l y i n
the c a s e of a r r a y r e f e r e n c e s with out o f range s u b s c r i p t s and p a t t e r n
matches which a r e expected t o always succeed. The - N O F A I L o p t i o n
changes t h i s convention. I f a s t a t emen t having no c o n d i t i o n a l g o t o i s
compiled under t h e -NOFAIL mode, and a f a i l u r e occurs when t h e
s t a t emen t i s executed, an execu t ion error occurs and a s u i t a b l e
message is generated. The -NOFAIL o p t i o n is p a r t i c u l a r l y use fu l for
s t u d e n t jobs and other s i t u a t i o n s where many small programs are being
debugged.

8.2.10. -EXECUTE -NOEXECUTE

Normally execu t ion i s i n i t i a t e d fo l lowing compilat ion. t h e -NOEXECUTE
opt ion , i f set a t t he end of compi la t ion , i n h i b i t s execut ion. T h i s is
o f t e n u s e f u l i n con junc t ion w i t h t h e o p t i o n t o g e n e r a t e ob jec t
modules.

8.3. -COPY f i l ename

The -COPY c o n t r o l card allows a s e c t i o n of coding to be copied i n t o
t h e source from a n e x t e r n a l f i le . The compiler proceeds as though t h e
t e x t i n t h e f i l e had been read i n s t e a d of t h e -COPY card. Filename is
any f i l e name which would be l e g a l as the second argument t o t h e INPUT
func t ion . I n p a r t i c u l a r , OS allows member names t o be s u p p l i e d i n
pa ren theses a f t e r t h e DDNAME which a l lows s e c t i o n s of code (f o r
example, f u n c t i o n d e f i n i t i o n s) , to be stored as m e m b e r s of a pa r t ioned
dataset. The t e x t copied i n may i t s e l f c o n t a i n -COPY cards up to a
maximum n e s t i n g l e v e l of e i g h t levels.

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 1

9. Error Messages and Handling

9 . 1 . Compilation Error Messages
When the compiler detects an error, a flag is placed under the point
in the statement where the error was discovered and processing of the
statement in error is discontinued. Compilation continues with the
next statement. Execution is not suppressed unless the -NOERRORS
option has been set (see section on control cards). If an attempt is
made to execute a statement found erroneous by the compiler, an
execution error occurs. Compiler error messages are surrounded by ****** so they are easy to find. The following section describes the
various error messages.

******ERROR IN GOTO FIELD******

The goto field is incorrectly formed.

*****+ERROR IN NUMERIC ITEM******

A numeric item is illegally constructed.

******EXPRESSION IS TOO COMPLICATED FOR THE COMPILER******

The expression being compiled overflows work areas in the SPITBOL.
The expression must be broken into two or more statements.

******ILLEGAL CHARACTER******

The compiler detected a character which has no syntactic meaning in
the SNOBOL-4 language outside a string literal.

******ILLEGAL TRANSFER ADDRESS******

The operand on an END card is not a simple variable. The operand is
ignored and execution starts wi t h the first statement.

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-2

******ILLEGAL USE OF , ******
A comma has been used in an illegal context. The only legal uses of
comma are to separate array subscripts and function arguments. Note
that this error can be caused by accidentally inserting a blank
between the function name and the -left parenthesis.

The character < (array left bracket) has been used in a context where
an array left bracket cannot legally occur,

A right parenthesis has been used in an illegal context.

An array right bracket has been used in an illegal context. This
character can be used only to terminate a list or array subscripts.

******ILLEGAL USE OF = ******

An equal sign has been used in an illegal context. Only one equal
sign may occur in a statement,

******INVALID -COPY CARD******

A -COPY card has an incorrect filename (this could result from an
error in system control card setup), or -COPY has been nested more
than eight levels. Compilation proceeds after ignoring the erroneous
card,

******LABEL HAS BEEN PREVIOUSLY DEFINED******

The statement has a label which has already been used. Compilation of
the statement ,is discontinued and the earlier definition of the label
is retained.

******MISSING END CARD SUPPLIED******

An end of file was read on the system input file (SYSIN) during
compilation. The compiler supplies an END card and initiates
execution unless the -NOERRORS option is set.

******MISSING OPERAND******

This message is generated when the compiler expects an operand and
none is found. For example -- A / / B, (C+)

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 3

******MISSING OPERATOR******

The compiler expected an operator and no operator was found. This
occurs in situations like (X)A, where an operator is expected after
the right parenthesis.

******NON-RECOVERABLE INPUT ERROR******

A non-recoverable input error has been signalled on the system input
file (SYSIN). This is a fatal error which terminates compilation and
prevents execution. Note that it also cancels any subsequent jobs
when a batched run is being processed.

******PROGRAM TOO LONG FOR AVAILABLE STORAGE******

The storage required by the program exceeds available storage.
Increase the region allocated and/or the H parameter in the compiler
parameter field. Note that storage for execution time use has not yet
been allocated. This must be taken into consideration in deciding how
much additional memory to allocate. This is a fatal error which
terminates compilation and prevents execution.

******UNBALANCED () OR <>******
This occurs if the parentheses or array brackets in a statement are
not properly balanced.

******UNDEFINED TRANSFER ADDRESS***

The label used on an END card is not defined. The operand is ignored,
and execution starts with the first statement.

******UNMATCHED QUOTE******

A string literal has been started but not properly terminated. Note
that string literals cannot be split over continuation cards.

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 4

9.2 . Execution Error Messages
The execution package performs extensive. error checking. When an
error is detected, execution is terminated with an error message
unless the error is intercepted by means of the SETEXIT function. The
message is accompanied by an error code of the form AA.BBB, where AA
is the major code and BBB is the minor code. The major code refers to
the message given (see below). The minor code further identifies the
exact error. The following is a list and explanation of the error
messages together wit h their major codes.

MAJOR = 1 ILLEGAL DATATYPE

In a context where a definite datatype is required, a
value of the wrong data-type is given and the attempt to
convert it to the correct datatype fails.

MAJOR 2 UNEXPECTED FAILURE

A statement having no conditional goto failed with the
-NOFAIL option set. This usually 'corresponds to an error
such as an unexpected out of range subscript.

MAJOR = 3 ERROR IN ARRAY REFERENCE

An array reference is incorrect. Either the object
referenced is not an array or table, or the wrong number
of subscripts is given.

MAJOR = 4 COMPILER DETECTED ERROR

An attempt was made to execute a statement found
erroneous by the compiler. This message is also issued
from statement number ‘zero’ if compiler errors were
detected with the -NOERRORS option set.

MAJOR = 5 ERROR IN REFERENCE TO KEYWORD

error was made a keyword reference. Either the
operand of E is incorrect, or the value stored is
incorrect.

MAJOR = 6 MEMORY OVERFLOW

Dynamic memory is exhausted. Note that this can occur as
a result of runaway recursion in function references or
pattern matching.

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 5

MAJOR = 7 EVALUATION OF GOTO FAILED

If a complex expression is used in the goto field, it is
not allowed to fail. Such a failure within a goto
expression did occur.

MAJOR = 8 ERROR IN GOTO

The operand of a goto must be a natural variable which is
a defined label. Some other value was given. This error
message is also given on a return from level zero.

MAJOR = 9 CALL TO UNDEFINED FUNCTION OR OPERATOR

A reference was made to an undefined function, or an
undefined operator was used.

MAJOR = 10 ERROR IN ARITHMETIC OPERATION

This message cowers a variety of arithmetic errors such
as overflow, division by zero etc.

MAJOR = 11 KEYWORD OR SYSTEM LIMIT EXCEEDED

This message is issued when any of the following limits
is exceeded -- time, page or card system limits,
&MAXLNGTH, &STLIMIT keyword limit.

MAJOR = 12 INPUT/OUTPUT OR OTHER SYSTEM ERROR

An error has been signalled by one of the operating
system routines. Some examples are non-recoverable I/O
error, load on a nonexistent function etc. Note that the
minor codes for this message may differ from operating
system to operating system.

MAJOR = 13 INCORRECT VALUE FOR FUNCTION OR OPERATOR

An argument to a function or operand of an operator was
of the right datatype, but outside the range of values
permitted for some particular use. For example, the null
string is an illegal argument for the break function.

MAJOR = 14 VALUE RETURNED WHERE NAME IS REQUIRED

In a context requiring a name (left side of =, goto
expression, right argument of $ or .)

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 6

9.3. ERROR CODES

This section gives detailed descriptions of the minor codes for all
major codes except 12. The latter (system error codes) are system
dependent and are given in the following section.

1.001 Evaluated result of deferred argument to POS is not an
INTEGER

1. 002 Evaluated result of deferred argument to RPOS is not an
INTEGER

1.003 Evaluated result of deferred argument to RTAB is not an
INTEGER

1.004 Evaluated result of deferred argument to TAB is not an
INTEGER

1.005 Evaluated result of deferred argument to LEN is not an
INTEGER

1.006

1.007

1.008

1.010

1.011

1.012

1.013

1.014

evaluated result of deferred argument to ANY is not a
STRING

Evaluated result of deferred argument to NOTANY is not a
STRiNG

Evaluated result of deferred argument to SPAN is not a
STRING

Evaluated result of deferred argument to BREAKX is not a
STRING

Evaluated result of deferred argument to BREAK is not a
STRING

Evaluated result of deferred expression used in a pattern
match is not a STRING or PATTERN

Value to be stored in a keyword is not an INTEGER

Real argument to loaded function is not a REAL

Integer argument to loaded function is not an INTEGER

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-7

1.015 String argument to loaded function is not a STRING

1.016 Dreal argument to loaded function is not a DREAL

1.017 Operand of unary $ is not a NAME

1.018 Replacing right hand side in a pattern replacement is not
a STRING

1.019 Subject of a pattern match is not a STRING

1.020 The pattern in a pattern match is not a PATTERN

1.021 Subscript in reference to one dimensional array is not an
INTEGER

1.022 Subscript in reference to a multi-dimensional array is
not an INTEGER

1.023 A field function was applied to an inappropriate program
defined datatype

1.024 The left operand for alternation or concatenation is not
a STRING or PATTERN

1.025 The right operand for alternation or concatenation is not
a STRING or PATTERN

1.026 The argument to a field function is not a program defined
datatype

1.027 An operand of binary + is non-numeric

1.028 An operand of binary - is non-numeric
1.029 An operand of binary * is non-numeric
1.030 An operand of binary / is non-numeric

1.031 An argument to NE,EQ,LE,GE,LT,GT is non-numeric

1 .032 An operand of binary ** is non-numeric
1.033 The operand of unary + is non-numeric

1.034 The operand of unary - is non-numeric

S P I T B O L M A N U A L -- V E R S I O N 2.0 9- 8

1.035 First argument to LEQ,LNE,LGT,LLT,LGE or LLE is not a
STRING

1.036 Second argument to LEQ,LNE,LGT,LLT,LGE or LLE is not a
STRING

1.037 Argument to SIZE is not a STRING

1.038 Left operand of binary $ or . is not a PATTERN
1.039 Argument to LEN is not an INTEGER or EXPRESSION

1.040 Argument to POS is not an INTEGER or EXPRESSION

1.041 Argument to TAB is not an INTEGER or EXPRESSION

1.042 Argument to RPOS is not an INTEGER or EXPRESSION

1.043 Argument to RTAB is not an INTEGER or EXPRESSION

1 .044 Argument to SPAN is not a STRING or EXPRESSION

1.045 Argument to BREAKX is not a STRING or EXPRESSION

1.046 Argument to BREAK is not a STRING or EXPRESSION

1.047 Argument to NOTANY is not a STRING or EXPRESSION

1,048 Argument to ANY is not a STRING or EXPRESSION

1.049 Argument to VALUE is not a STRING, NAME or correct
programmer defined datatype

1.050 Argument to ARBNO is not a PATTERN

1.051 First argument to APPLY is not the name of a function

1 052 First argument to ARG is not a NAME

1.053 Second argument to ARG is not an INTEGER

1 . 054 First argument to ARRAY is not a STRING

1.055 First argument to CLEAR is not a STRING

1 056 Argument to CODE is not a STRING

1.057 Argument to COLLECT is not an INTEGER

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-9

1 .058

1 .059

1.060

1.061

1.062

1 .063

1 . 0 6 4

1.065

1.066

1.067

1 .068

1.069

1.070

1.071

1.072

1.073

1.074

1.075

1.076

1.077

1 .078

1.079

1.080

Second argument t o CONVERT is not a STRING

Argument t o DATA is n o t a STRING

F i r s t argument t o DEFINE is n o t a STRING

Second argument to DEFINE is non-nul l and is n o t the name
of a l a b e l

Argument to DETACH is not the name of a natural variable

Second argument t o DUPL is n o t an INTEGER

F i r s t argument t o DUPL is n o t a STRING

Argument t o ENDFILE i s n o t a STRING

Argument t o EVAL i s n o t an EXPRESSION (or a S T R I N G , which
could be converted i n t o an EXPRESSION)

First argument to F I E L D i s n o t a NAME

Second argument t o F I E L D is n o t an INTEGER

F i r s t argument t o INPUT i s not the name of a n a t u r a l
var iab le

F i l e name (second argument) t o INPUT is n o t a STRING

Format s p e c i f i c a t i o n (t h i r d argument) t o INPUT is not an
INTEGER

Argument t o LOAD is n o t a STRING

F i r s t argument t o LOC is n o t a NAME

Second argument t o LOC i s n o t an INTEGER

Thi rd argument t o LPAD i s n o t a STRING

Second argument t o LPAD i s n o t an INTEGER

F i r s t argument t o LPAD is n o t a STRING

F i r s t argument t o OPSYN i s n o t the name of a n a t u r a l
v a r i a b l e

Second argument t o OPSYN i s n o t a function name

First argument t o OUTPUT is n o t the name of a n a t u r a l
v a r i a b l e

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-10

1.081 File name (second argument) for OUTPUT function is not a
STRING

1.082

1.083

1.084

1.085

1.086

1l087

1.088

1.089

1.090

1.091

1.092

1.093

1.094

Format specification (third argument) for OUTPUT function
is not a STRING

Argument to PROTOTYPE is not an ARRAY or TABLE

Second argument to REMDR is not an INTEGER

First argument to REMDR is not an INTEGER

Third argument to REPLACE is not a STRING

Second argument to REPLACE is not a STRING

First argument to REPLACE is not a STRING

Argument to REVERSE is not a STRING

Argument to REWIND is not a STRING

Third argument to RPAD is not a STRING

Second argument to RPAD is not an INTEGER

First argument to RPAD is not a STRING

Argument to SETEXIT is not a label name

1.095 First argument to SUBSTR is not a STRING

1.096 Second argument to SUBSTR is not an INTEGER

1.097 Third argument to SUBSTR is not an INTEGER

1.098 Argument to TABLE is not an INTEGER

1.099 Argument to TRIM is not a STRING

1.100 Argument to UNLOAD is not the name of a function

2.001 Failure of a statement having no conditional goto with
-NOFAIL option in effect

3.001 Array reference with one subscript refers to an object
which is neither a TABLE nor an ARRAY

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-1 1

3.002 Multi-dimensional array reference refers to an object
which is not an array

3.003 wrong number of subscripts in an array reference

4.001 Compilation errors detected with -NOERRORS option in
effect

4.002 Attempted execution of a statement found erroneous by the
compiler

5.001 An attempt was made to reference the keyword attribute of
a non-natural variable

5.002 Reference to an undefined keyword

5.003 An attempt was made to change the value of a keyword
associated with a non-natural variable

5.004 Attempt to change the value of an undefined keyword

5.005 Attempt to change the value of a protected keyword

6.001 Overflow in main dynamic storage area. This can occur as
a result of runaway recursion in pattern matching ox
function reference as well as from generation of too muck
data.

7.001 The evaluation of a complex goto failed

8.001 RETURN from function level zero

8.002 Transfer to an undefined label

8.003 A transfer to the label CONTINUE occured, but no previous
error had been intercepted

8.004 A transfer to the label ABORT occured, but no previous
error had been intercepted

8.005 Name used as a goto operand is not the name of a natural
variable

9.001 Reference to an undefined function

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-12

9.002

9.003

9.004

9.005

9.006

3.007

9,008

9,009

9.010

9.011

10.001

10.002

10.003

10.004

Use of the undefined operator -- unary /
Use of the undefined operator -- binary &
Use of the undefined operator -- binary ¬
Use of the undefined operator -- binary @
Use of the undefined operator -- unary I

use of the undefined operator -- unary #
use of the undefined operator -- binary #
use of the undefined operator -- binary ?
use of the undefined operator -- unary %
Use of the undefined operator -- binary %
Overflow in + - / or * of two DREALs
Overflow in + - / or * of two REALs
REAL division by zero

DREAL division by zero

10.005 Overflow in REAL ** INTEGER or DREAL ** INTEGER
10.006 Integer division by zero

10.007 Integer addition overflow

10.008 Integer subtraction overflow

10.009 Integer multiplication overflow

10.010 Negative exponent for INTEGER ** INTEGER
10.011 Overflow in integer exponentiation

10.012 DREAL ** DREAL is not permitted
10.013 REAL ** REAL is not permitted
10.014 Integer overflow for unary minus (happens only with

largest neg num)

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-13

10.015

11.001

11.002

11.003

11.004

11.005

11.006

11.007

11.008

11.009

11.010

11.011

11.012

12.xxx

13.001

13.002

13.003

13.004

13.005

13.006

13.007

13.008

Attempted division by zero in REMDR function

Page limit (P parameter) exceeded

Card limit (C parameter) exceeded

Input record longer than &MAXLNGTH

Attempt to set &MAXLNGTH to a value greater than the
maximum allowed (32758)

&STLIMIT set to a value less than the number of
statements already executed

Statement limit (&STLIMIT) exceeded

Attempt to form a string longer than &MAXLNGTH by
concatenation

A pattern structure has exceeded the maximum permitted
size (32K bytes)

Time limit (T parameter) exceeded

Attempt to form a string longer than &MAXLNGTH in call to
DUPL function

Attempt to form a string longer than &MAXLNGTH in call to
LPAD function

Attempt to form a string longer than &MAXLNGTH in call to
RPAD function

(See section on system error codes)

Evaluated result of deferred argument to POS is negative

Evaluated result of deferred argument to RPOS is negative

Evaluated result of deferred argument to RTAB is negative

Evaluated result of deferred argument to TAB is negative

Evaluated result of deferred argument to LEN is negative

Evaluated result of deferred argument to ANY is null

Evaluated result of deferred argument to NOTANY is null

Evaluated result of deferred argument to SPAN is null

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-14

13. 009 Evaluated result of deferred argument to BREAKX is null

13.010 Evaluated result of deferred argument to BREAK is null

13.011 Operand of unary $ is null

13.012 Argument for LEN is negative

13.013 Argument for POS is negative

13.014 Argument for TAB is negative

13.015 Argument for RPOS is negative

13.016 Argument for RTAB is negative

13.017 SPAN argument is null

13.018

13.019 Argument for BREAK is null

13.020 NOTANY argument is null

13.021 ANY argument i s null

13.022 Null first argument in call to the ARRAY function

Argument for BREAKX is null

13.023 An array bound in a call to the ARRAY function is null

13.026 An array bound in a call to the ARRAY function is non-
numeric

13.025 In the first argument to ARRAY, a subscript bound has two
colons

13.026 An array lower bound in a call to the ARRAY function is
not in the range -32768 < LBD < +32768

13.027 An array dimension (HBD-LBD+1) in a call to the ARRAY
function is not in the range 0 < DIM < 32768

13.028 Name in CLEAR first argument is null

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-15

13.029

13.030

13.031

13.032

13.033

13.034

13.035

13.036

13.037

Array argument for CONVERT t o TABLE is n o t
d imens iona l .

Argument t o DATA is n u l l

Datatype name i n argument to DATA is n u l l .

Missing left paren i n DATA argument

F i e l d name is n u l l i n DATA argument

DATA argument does n o t end w i t h)

Too many f i e l d s (more t h a n 30), i n argument to DATA

F i r s t argument t o DEFINE i s n u l l

two

Funct ion name i n first argument t o D E F I N E i s missing
(n u l l)

F i r s t argument t o DEFINE is missing a l e f t paren

Argument name i n first argument to DEFINE is n u l l

F i r s t argument to DEFINE i s missing a)

Nul l local name i n first argument to DEFINE

Argument to ENDFILE i s n u l l

Argument t o LOAD is n u l l

Funct ion name i n argument t o LOAD is n u l l

Missing (in argument t o LOAD

13.046 Missing) i n argument to LOAD

13.047 Too many arguments (more than 64) i n f u n c t i o n t o be
LOADed

13.048 Argument t o REWIND is n u l l

13.049 Argument t o TABLE is ze ro or nega t ive

14.001 A f u n c t i o n c a l l e d by name re tu rned a va lue

14.002 A n expres s ion other than a func t ion c a l l r e t u r n e d a va lue
where a name was r equ i r ed

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-16

9.4. SYSTEM ERROR CODES FOR OS/360

This section gives minor codes for major code 12 (system errors) as
signalled by the OS/360 interface.

12.001 Invalid file name. Name is too long, or element notation
is incorrect

12.002 Missing DD card for referenced file

12.003 Module name for LOAD or UNLOAD is longer than eight
characters

12.004 Incorrectable input error

12.005 Incorrectable output error

12.006

12.007

12.008

12.009

12.010

12.011

12.012

12.013

12,014

12.015

Attempt to read past end of file

Incorrectable input error during loading an external
module

Module for external function not found in library
(Possible missing JOBLIB DD card)

Module to be unloaded is not currently loaded (This is
probably an error in the SPITBOL system)

Attempt to REWIND system file (DDNAME = SYSPRINT,
SYSPUNCH, SYSIN)

Attempt to read from a file previously written on with no
intervening REWIND

Attempt to write on a file previously read from with no
intervening REWIND

Duplication factor or T operand (tab location) in an
output (FORTRAN) format is zero

Illegal character in output (FORTRAN) format

Too many levels of parentheses in output (FORTRAN) format

12.016 Too many right parentheses in output (FORTRAN) format

12.017 T operand (tab location) is missing in output (FORTRAN)
format

S P I T B O L M A N U A L -- V E R S I O N 2.0 9-17

12.018 Operand for H (string literal) in output (FORTRAN) format
extends beyond the end of the format

12.019 Output format containing more than one character does not
start with a left paren and cannot be interpreted as a
FORTRAN type format.

12.020 Output format containing more than one character does not
start with a right paren and cannot be interpreted as a
FORTRAN type format

12.021 The logical record length on the SYSIN file exceeds the
maximum permitted (80 characters of data)

12.022 Error in opening file for output

12.023 Error in opening file for input

12.024 Attempt to write two members into the same PDS at the
same time. Use ENDFILE to close one of them

12.025 Attempt to reference two files of a magnetic tape at the
same time. Use ENDFILE to close old file

S P I T B O L M A N U A L -- V E R S I O N 2.0 10-1

10. Programming Notes

The internal organization of SPITBOL is quite different from that in
BTL SNOBOL-4. Consequently the relative speed of various operations
differs. This section attempts to give some idea of what is going on
inside so that the SPITBOL programmer can achieve maximum efficiency.

10.1. Space Considerations

The SPAN, BREAK and BREAM functions use translate and test tables.
For the case of one character arguments, the tables are ,built into the
system and require no additional space. For arguments longer than one
character, tablees must be built for each call. Each such table
requires 260 bytes of storage. If the argument is deferred, no
storage is required, but the execution of the pattern is much slower.

ANY and NOTANY allocate 16 byte tables (actually one bit position in
a shared 256 byte table)

The space required for each element of an array is 8 bytes in addition
to storage required for a string or other structure. All numeric
items require no ‘additional space beyond the 8 byte item.

The space required for each non-null element of a table is 24 bytes in
addition to space for a string or other structure. A table hash
header is 4 bytes. Thus the number of headers can be made reasonably
large without using much additional space.

Program defined datatypes require 8(F+1) bytes where F is the number
of fields. They are thus quite compact and can be used freely.

The memory required for dynamically compiled code (CODE function) is
not reclaimed efficiently in the current version. Improvements w i l l be
attempted in future versions.

Each variable block requires 32 bytes. This space is a constant
requirement whether or not the variable name has a single use or
multiple uses (label,function,variable etc.) This space is never
reclaimed once it has been allocated. Thus it is inefficient to use
variables to build a table with the $ operator. Instead, use the TABLE
data type

The COLLECT function can be used to obtain more detailed information
on memory utilization for various structures.

S P I T B O L M A N U A L -- V E R S I O N 2.0 10-2

10.2. Speed Considerations

To a greater extent than is the case with BTL SNOBOL-4, there is a
loss of efficiency in encoding complex structures as strings. Use
arrays, tables and program defined datatypes where possible. The
latter are particularly- efficient in SPITBOL.

A Pos pattern may be used freely at the start of a pattern since
SPITBOL optimizes this occurence to prevent useless movements of the
anchor point. This optimization (which is completely transparent)
occurs in both QUICKSCAN and FULLSCAN modes.

Time for datatype conversions will be relatively more noticeable in
SPITBOL. Where efficiency is important , avoid unnecessary
conversions.

The $ pattern assignment is, if anything, faster than the . pattern
assignment and may be used freely.

SPITBOL precomputes all constant expressions before execution. When
the OPTIMIZE mode is on (normal Case) , most patterns can be
precomputed, thus no efficiency is lost by writing patterns in line
rather than predefining them. Use of the unary * operator to defer
computation is still useful in certain cases. For example, consider
the following in line pattern matches.

X POS(0) ARB N 'X'
X POS(0) ARB *N 'X'

The second form is more efficient, since the compiler can precompute
the entire pattern.

BREAK, BREAKX and SPAN are very fast, except that deferred arguments
having more than one character are quite slow. ARBNO is quite slow.

ARB is slow and should be avoided where possible.

The actual matching process is much faster in FULLSCAN mode than in
QUICKSCAN mode since the heuristics require time consuming tests. If
a match does not back up much, FULLSCAN may well be faster.

The process of obtaining the value of &LASTNO or &STNO is very slow
and these keywords should be used only for debugging.

The SETEXIT error intercepts are fast and may be used for program
control as well as debugging.

SPITBOL MANUAL -- V E R S I O N 2.0 10-3

If a variable is traced or I/O associated, references to the variable
are substantially slowed down even if the trace and I/O associations
are later removed,

The unary $ (indirect) operator applied to a string argument works
difterently in SPITBOL and corresponds to a hash search of existing
variables, The process of applying $ to a name (including the name of
a natural variable) is much faster, which is why SPITBOL returns a
name instead of a string when the unary dot (name) operator is used
with a natural variable. Thus it is better to use names where
possible, for example in passing labels indirectly.

The REPLACE function is optimized when the second argument is
&ALPHABET. In this case, the third argument can be used as a
translate table directly, and there is no need to construct a table
dynamically. The REPLACE function itself can be used to construct the
necessary third argument. Thus the call --

A = REPLACE(X,Y,Z)

may be replaced by the two calls --
TBL = REPLACE (&ALPHABET, Y, Z)
A = REPLACE(X,&ALPHABET,TBL)

The first of these calls is slow and need only appear once. The
second call is fast and could be executed repeatedly for various
values of X.

S P I T B O L M A N U A L -- V E R S I O N 2.0 11-1

11. OS Data Sets and JCL

11.1. Standard System Files

The following datasets must be defined for operation under OS/360.

11 1 1 DDNAME=SYSIN

This file contains the source images for the compilation and the data.
The LRECL on this dataset must not exceed 80 (84 for V format
records).

11.1.2 . DDNAME=SYSPFUNT
This data set is used for printed output including listing of the
source pxogram, error messages and trace output. In addition, the
standard output variable 'OUTPUT' is associated with the file
SYSPRINT. SYSPRINT may be defined with any convenient RECFM and
LRECL, except that LRECL=l is not permitted.

1 1 . 1 3 LDNAMEESY SYSPUNCH

The output variable 'PUNCH' is associated to. the file SYSPUNCH by
default. Normally this file is used for punched output an4 is defined
accordingly with LRECL=80 (LRECL=€C4 for V type records).

11 1 4. DDNAME=SYSOBJ

If a DD card is supplied for this file, then SPITBOL will generate an
object module for each program compiled. This output is discussed in
further detail in section 11.9. If no object module is required, then
the DD card for this file should be omitted.

S P I T B O L M A N U A L -- V E R S I O N 2.0 11-2

11.2. Additional User Defined Files

The input and output association functions of SPITBOL specify the
DDNAME of the file to which the association is to occur. Appropriate
DD cards must be supplied for each file used. All RECFM types are
supported in SPITBOL.

Filenames may also consist of a DDNAME followed by an element name in
parentheses. In the case of a partitioned dataset, the element name is
a member name. Several members may be read from the same PDS at the
same time. However, only one member may be written at a time. To write
more than one member, the ENDFILE function must be used to close the
previous file.

In the case of a file on tape, the element name in parentheses is an
integer file number. Only one file can be opened on a given tape at
a time, and again the ENDFILE function must be used to close one file
before opening the next.

For variable length record formats, the output string is written as a
single record of appropriate length if possible. If the length of the
string exceeds the LRECL, then the string is split into several
records as required. An oversize record on input causes an error.
The null string is written and read as a one byte record consisting of
the character X'00' (hexadecimal zero). Spanned records are
implemented. However, the input LRECL should not be too much larger
than required, since SPITBOL must temporarily find a buffer of length
LRECL on input.

For the fixed length record formats, the output string is split into
several logical records if its length exceeds the specified LRECL.
The last, or only, record written is padded with blanks. This means
that on input, extra blanks may be read. A null value is written as
a blank record.

For undefined records, the string is written as a block if possible,
or split up if necessary. The null string is handled as for variable
length records.

It should be clear that variable length record formats are preferable
for the input and output of SNOBOL-4 strings, the F formats are
implemented primarily for compatibility with other OS/360 processors.

Note that SPITBOL ignores the A (ASA control characters)
specification. If control characters are to be generated, the output
association should specify an appropriate format. The standard
association for SYSPRINT specifies blank control characters.

S P I T B O L M A N U A L -- V E R S I O N 2.0 11-3

11.3. Link Editing

The SPITBOL system consists of two assembly modules. The first is the
system interface, which has a single CSECT called OSINT. The second
assembly module has CSECTS SPITBOLR, SPITBOLC, SPITBOLP, SPITBOLX,
SPITBOLA and SPITBOLF.

11.3.1. Single Phase Version

The simplest version is obtained by link editing both modules into a
single one-phase structure. This is more efficient than the two phase
version and should be used unless memory is severely limited.

11.3.2. Two Phase Version

If memory is limited, about 14K bytes can be saved by linking the
compiler and execute packages as separate phases. In this case, we
have the following --

Root Phase OSINT
SPITBOLR

compiler Section SPITBOLC

Execution Section SPITBOLP
SPITBOLX
SPITBOLA
SPITBOLF

S P I T B O L M A N U A L -- V E R S I O N 2.0 11-4

11.4. Default DCB Parameters

SPITBOL supplies the following DCB parameters if they are omitted

file default DCB

SYSIN
SYSPRINT
SYSPUNCH
SYSOBJ
OTHER FILES

If the RECFM is supplied, then LRECL and BLKSIZE must also be
supplied. LRECL and BLKSIZE may be overridden separately. Additional
DCB parameters such as OPTCD, BUFNO may be supplied on the DD card as
required. Note that certain systems have special requirements for
SYSPRINT DCB's. If any difficulty is experienced with printed output,
use a DCB which is standard for the installation as copied from one of
the cataloged procedures. ASP systems are specially prone to this type
of problem.

11.5. Job Batching

Several SPITBOL jobs may be batched together in one run. In this
case, SPITBOL need not be reloaded for each program, thus saving
considerable system overhead time.

The one phase version is preferable to the two phase version if
batching is to be used, since the two phase version requires two extra
phase loads for each program in a batch.

To batch programs, follow each program (with its data) with an 'end of
file' card having ./* in columns 1-3, except for the last program in
the batch which is followed with a normal /* data termination card.
See sample deck setup number one for an example.

S P I T B O L M A N U A L -- V E R S N 2.0 11-5

11.6. PARM Options

The PARM parameter on the EXEC statement may be used to set several
parameters for the run. The default setting of the 8 parameters which
can be set is given in the following table.

L=16K

H=100K

Smallest area required for. dynamic memory allocation.
16K represents a minimum value. It is unlikely that
many programs will execute in less space. The L
parameter may be increased for programs known to require
more space.

Largest region requested for dynamic memory allocation.
The default value is set to obtain all available memory.
The actual region used is the largest contiguous area
available with size between the specified limits. The
H parameter may be reduced to prevent SPITBOL from
grabbing all available memory.

N=58 Number of lines per page. This is used for formatting
of compilation output. The compiler skips over creases,
also -EJECT and -TITLE cards skip to a new page.

D=10 Maximum number of dumps given. If an 'internal error
abort occurs or if &SYSABEND is set, then a dump is
printed on SYSPRINT. Note that this dump is not the
standard system dump, but rather is a special format
SPITBOL dump. After giving the dump, execution proceeds
with the next job in the batch. The D parameter limits
the number o f dumps which can be given. If an abort
occurs after this number of dumps, then a U100 ABEND
with the dump option is issued, and a standard system
dump will be given if a SYSUDUMP DD card has been
supplied.

,

S P I T B O L M A N U A L -- V E R S I O N 11-6

R=8K

T=5

P=50

C=0

It is necessary to reserve some memory to the operating
system for I/O buffers, loaded modules, etc. The R
parameters specifies the region to be reserved. This
requirement will vary depending on number of files,
number of buffers, number and size of loaded functions
etc. If -too little space is reserved, execution w i l l be
terminated with a system error code S80A.

Maximum number of seconds of CPU time allowed for
compilation and execution of the SPITBOL program. This
is independent of the time parameter on the exec
statement, which should be set to a higher value so that
SPITBOL terminates the run rather than the system.

Maximum number of printed pages of output permitted for
compilation and execution.

Maximum number of punched cards generated (i.e. 8 images
on SYSPUNCH) .

In a batched run, the parameters are applied separately to each
program in the batch. This prevents any single program from over-
running system limits and aborting the run.

Any or all of these seven parameters may be altered in the PARM field.
By using subparameters of the form where X is
and nnn is the new value. This value may be expressed either as an
integer, or in units of 1024 by using a K following an integer. For
example --

P A M = * 0 0 0, 1 6 K , 0 *
The above PARM specification would reserve 20000 bytes for system use,
16384 bytes for minimum dynamic memory, and allow up to 30 seconds of
CPU time. The parameters may occur in any order. For parameters not
specified, the appropriate default from the above table is used.

S P I T B O L M A N U A L -0 V E R S I O N

11.7. Region Parameter and Memory Requirements.

11-7 '

The region size required for SPITBOL w i l l depend on the system
environment. As a first approximation, use the following -0

REGION (one phase version) = 46K + L +

REGION (two phase version) = 32K + + R

where are as given in the section on PARM options.

For the standard values of which are minimum values suitable for
use with small student programs. These estimates become 70K for the
one phase version and 56K for the two phase version.

If the region is too small to obtain the minimum requested dynamic
core area, a user ABEND w i t h code U200 is given.. If the minimum
requested can be obtained but is insufficient, an error message is
generated by SPITBOL. This does not terminate processing of further
programs if programs are batched together. In either case, the region
parameter on the EXEC for SPITBOL must be increased.

If the system area is too small, a system ABEND with code (S80A) will
be generated. In this case, the R subparameter in the PARM field
should be increased as required.

11.8. User ABEND codes

The following user ABEND codes can be issued.

CODE MEANING

100 Internal error abort, send dump to authors
200 Insufficient dynamic memory, increase region
300 Permanent output error on SYSPRINT
400 Missing DD card for system file
500 Error on opening system file

S P I T B O L M A N U A L - - V E R S I O N 2.0 11-8

11.9 Linking and Execution of Object Modules

If a DD card for SYSOBJ is supplied, then SPITBOL generates an object
module for the compiled program. If several programs are batched
together, then more than one object module is generated.

Although these modules are in the standard OS format, it is not
possible to link them directly with object modules generated by other
system processors or from other SPITBOL runs. such communication must
utilize the LOAD function. The purpose of implementing this feature
is to avoid recompilation of programs which are run frequently and
also to provide an easy medium for distribution of SPITBOL programs.

In order to execute the object module, it must first be link edited
together with the library modules. The control sections in the library
modules have similar names to the standard modules and again, it is
possible to link in a one phase or two phase version.

To obtain a single phase version, the generated object module is link
edited with the library modules. No entry card is required.

To obtain the two phase version, use the following link edit control
cards --
INCLUDE GMOD
INCLUDE LMO
OVERLAY ALP
INSERT SPIT
OVERLAY ALP
INSERT SPIT
INSERT SPIT
INSERT SPIT
INSERT SPIT

11
11
'I
'I
'I
'I
'I
'I
'I

1. (object module generated by SPITBOL)
1 [library modules)
iA
3LCL
IA
3LPL
3LxL
3 L A L
3LFL

When the resulting program is executed, the same DD cards and PARM
field are supplied as for a normal compile and execute run. However,
since the program is already compiled, the dynamic memory obtained is
used only for execute time data. The SYSIN file should point to the
execution data.

S P I T B O L M A N U A L -- V E R S I O N 2.0 11-9

11.10 Sample Deck Setups for OS/360

The following is an example of a run where several programs are
batched together.

// EXEC PGM=SPITBOL
//STEPLIB DD DSN=SPITLIB,DISP=SHR
//SYSPRINT DD SYSOUT-A
//SYSPUNCH DD DUMMY
//SYSIN DD *
SOURCE PROGRAM 1
END
DATA FOR PROGRAM 1

SOURCE PROGRAM 2
END
DATA FOR PROGRAM 2 . /*
SOURCE PROGRAM 3
END
DATA FOR PROGRAM 3 /*

/*

The second example assumes a single program which reads a tape and
generates an updated output tape. The program is stored on disk, but
the data is supplied from cards. Also the limit parameters are
altered to permit 120 seconds of execution, and 2000 pages of output.
Note the use of concatenation to allow a program on disk to be
concatenated with the input stream. SPITBOL allows concatenation in
all cases including concatenation of unlike attributes. The SYSOBJ DD
card w i l l cause an object module to be punched on cards.

// EXEC PGM=SPITBOL, P A N = T= 120, P= 2 0 0 0 a ,
// REGION= 140K
//STEPLIB DD DSN=SPITLIB, DISP=SHR
//SYSOBJ DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B

// VOL=SER=TP1207 (USE DEFAULT DCB)
//TAPEOUT DD DSN=MASTR2, DISP= (,KEEP) LABEL= (, SL) 8
// DCB= LRECL= 96, BLKSI ZE=96 0) VOL=SZR=TP12 08
//SYSIN DD DSN=SNOPROG, DISP=SHR
// DD *
DATA CARDS
/*

//TAPEIN DD DSN=MASTER, DISP=OLD, LABEL= (, SL)

5/29/71

Addendum for Version 2.1s 2.2

The description of Version 2.0 applies with the following exceptions:

2.1

2.1

2.4
5.

6.11

6.19

6.44

6.58

6.61

6.63

7.

9.1

9.2

Program defined trace functions are available for natural variables.

OPSYN is permitted for normally undefined operators.

9) Deferred expressions in pattern matching are assumed to match one
character 1 n quickscan mode.

CONVERT has been changed to allow conversions of all objects to
STRING a4 in BTL SNOBOL4.

DUMP(3) causes a hexadecimal core dump to be printed.

OPSYN(,NAME, INTEGER)
OPSYN may be used to redefine operators using a third argument of
1 or 2 as in BTL SNOBOL4 with the following restrictions:

1) Only the first argument can be an operator name.
2) Only normally undefined operators can be redefined.

An additional second argument 'KEYWORD' or 'K' is used to stop keyword
tracing .
Since the use of even numbers of headers can cause anomolies in the
hashing algorithm, TABLE forces its argument odd by incrementing even
arguments by one.

TRACE(NAME ,STRING,ARGUMENT ,NAME)
Program defined trace functions are available and compatible with BTL
SNOBOL4.

Keyword tracing is available for the keywords &STCOUNT, &FNCLEVEL,
and &ERRTYPE.

&STLIMITmi-value allowed is 2**31-1

******MISSING OPERATOR******
This message is also given when the blanks surrounding a binary oper-
ator are omitted.

MAJOR=4 COMPILER DETECTED ERROR
This message is issued only on an attempt to execute an erroneous
statement. The -NOERRORS option will cause generation of the
'EXECUTION SUPRESSED' message following the compilation statistics.

USER ISSUED ERROR MESSAGE
This message is given if LERRTYPE is assigned a value greater than
14999, or less than 1000.

5/29/71

Addendum for Version 2.1

9.3 4.001 Attempted execution of a statement found erroneous by
the compiler.

The operand of a direct goto is not code.

Deleted (this condition causes the CONVERT function
to fail).

4.002 Deleted.
8.006
9.012 Use of the undefined operator - unary !
13.029

10.2 References to &LASTNO and &STNO are now reasonably fast.

11.2 Element notation for files (partioned dataset member names, and tape
label sequence numbers) is not available.

11.4 The P and C parameters are not implemented.

(Insert for SPITBOL manual version 2.0, S4D23, 2 pages)

SPITBOL NEWSLETTER

December 20, 1971

This is the first issue of what is intended to become
a regular newsletter to inform SPITBOL users of current
developments and to provide a forum for communication
between SPITBOL users.
letters, etc., are solicited for inclusion in future
issues.

Your comments , suggestions,

Robert B.K. Dewar

Kenneth E. Belcher

ILLINOIS INSTITUTE OF TECHNOLOGY

1-1

New SPITBOL Release

enhancements, and fixes for a large number of bugs as documented elsewhere in this
issue. There are currently 29 permanent distribution copies of the SPITBOL system
in the field.

Version 2.2 of SPITBOL has finally been released. It contains several minor

Looking Forward to Version 3.0

Version 3.0 will contain several language enhancements including full implemen-

Mean-
tation of trace (allowing tracing of array, table and program defined datatype
elements). We are hoping to release version 3.0 in the third quarter of '72.
while your suggestions for language and implementation enhancements should be sent
in our direction.
suggestions received.

Most of the next issue will be devoted to reporting and discussing

Errors and Restrictions in Version 2.2

Version 2.2 fixes all reported bugs with the following exceptions:

(a) EVAL cannot be called by name,

(b) In -NOLIST mode, some error situations cause the subsequent
card to be listed.

These should be regarded as restrictions which will be in force until the release
of version 3.0.

1-2

JCL for SPITBOL Version 2.0

(a) Move object modules to a PDS

/ / OM0 D JOB
// EXEC PGM-IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUTl DD DSNzTAPE ,VOL=SER=TAPE ,UNIT=TAPE9,
// LABEL=(1 ,BLP) ,DISP=(OLD,FASS),
// DCB=(RECFM=FB ,LRECL=80 ,BLKSIZE=4000 ,liEN=3)

// DISP= (NEW ,CATLG) ,SPACE= (TRK, (60,lO ,2)) ,
// UNITt2314 ,DCB=(RECFM=FB ,LRECL=80 ,BLKSIZE=800)
// EXEC PGM= IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUTl DD DSNtTAPE ,VOL=SER=TAPE ,UNIT=TAPE9,
// LABEL=(2,BLP) ,DISP=(OLD,PASS),
// DCB=(RECFM=FB ,LRECL=80 ,BLKSIZE=4000 ,DEN=3)
//SYSUT2 DD DSN=SPITBOL .OBJECT(SPITBOL) ,DISP*MUD
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUTl DD DSN=TAPE,VOL=SER=TAPE,UNlT=TAPE9,
// LABEL=(3,BLP) ,DISP=OLD,
// DCB=(RECFMsFB ,LRECL=80 ,BLKSIZE=4000 ,DEK=S)
//SY SUT2 DD DSN=SP ITBOL .OBJECT (SPITL IB) ,DI SP-MOD

//SYSUTZ DD DSNISPITBOL. OBJECT (OSINT)

(b) Link edit to load library

// EXEC LKED,PARM=(LIST ,LET,MAP ,XREF ,OVLY ,NCAL)
//MODS DD DSN=SPITBOL.OBJECT,DISP=SHR

// SPACE= (TRK, (100,lO ,1)) ,UNIT=2314
//SYSIN DD *
//SYSLMOD DD DSN-SPITBOL .LOAD,DISP=(NEW ,CATLG),

for one phase /WE INCLUDE SPITBOL MODS(OSINT,SPITBOL) 1
INCLUDE MODS(OS1NT ,SPITBOL
OVERLAY ALPHA
INSERT SPITBOLC
OVERLAY ALPHA
INSERT SPITBOLP
INSERT SPITBOLX
INSERT SPITBOLA
INSERT SPITBOLF
NAME SPITBOL
INCLUDE MODS(OSINT , SPITL 16)
NAME SPITPROG

for two phase

f for load modules

/*

1- 3

(c) Apply superzaps

// EXEC PGMtSUPERZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=SPITBOL.LOAD,DISP=OLD
//SYSIN DD *

(SUPERZAP CARDS AS SUPPLIED)

(d) Run (compile and go)

// EXEC PGM=SPITBOL,PARM=. . .
//STEPLIB DD DSN=SPITBOL.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT*A,DCB=(installation values)
//SYSPUNCH DD SYSOUT=A,DCB=(instal lation values)
//SYSIN DD *

input

(e) Run (create load module)

// EXEC PGMoSPITBOL
//STEPLIB DD DSN=SPITBOL.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=(installation values)
//SYSPUNCH DD DUMMY
//SYSOBJ DD DSN=&MODS,DISP=(NEW ,PASS),

// UNIT4314
//SYSIN DD *
-NOEXECUTE

/*
// EXEC LKED , PARM= (MAP ,XREF)
KIDS DD DSN=&MODS,DISP=(OLD,DELETE)
//MODL DD DSN=SPITBOL.LOAD,DISP=SHR
//SYSLMOD DD DSN=USERLIB,DISP=OLD
//SYSIN DD *

INCLUDE MODS
INCLUDE MODL (SPITPROG)
NAME PROGNAME

// DCB=(RECFM=FB,LRECL=~ ,BLKSIZE=~O),

source program

/*

1-4

New Distribution Format

The new permanent distribution format contains an additional seventh file.
This contains source updates to the

the 2.2 source.

previous version to obtain the current version
(IEBUPDTE format 7 from version 2.1 7 to +-- version 2.2). -- DO NOT apply these updates to

These updates are provided for the benefit of those interested in seeing what
has actually been changed in the source. They may also be of use to those maintaining
special system interface modules.

Interest i n g Techniques Department

inclusion in a variety of programs.
The following code implements a generalized page titling facility suitable for

&TRACE = 100000
DATA('FORMAT(TITLE,LINES PER PAGE,LINES LEFT)')
DEFINE('PAGE FORMAT(VAR TAMEYFORMAT) ') -
OUTPUT (. T ITL'E) : (PFENDT

PAGEFORMAT L I NES-LE FT (FORMAT) =
GT(LINES LEFT(FORMAT) ,o)
LINES LEn(F0RMAT) - 1 :S(RETURN)

TITLE =fITLE(FORMAT)
TITLE =
LINES-LEFT(F0RMAT) = LINES PER PAGE(F0RMAT)

-2 : (R E T U ~) - FEND
. TRACE(.OUTPUT, ,FORMAT('1TITLE LINE' ,56),

.PAGE FORMAT)
(rest-of program)

1-5

Enhancements in SPITBOL Version 2.2

The page and card limit parameters (P,C) have been implemented. The
defaults have been set to 100000 to minimize conversion difficulties. Exceeding
these limits at execution time causes generation of error codes 11.001,11.002 as
described in the manual.
mination of compilation with the message ***PAGE LIMIT EXCEEDED***.

1.

Exceeding the page limit during compilation causes ter-

2. Time limit exceeded is now recognized during compilation, and causes
termination of compilation with an appropriate message.

3. The parameter I=0,1 is added to provide proper processing for precise and
For use on machines with im- imprecise interrupts.

precise interrupts (360/91, 370/195, etc.) I=1 should be used.
The default is I=0 (precise).

*4. The criterion for generation of blank control characters on subsequent lines
of a record which is split up has been changed.
if and only if ASA records are involved, regardless of specified OUTPUT format. This
solves several reported problems and should represent a better choice of convention.

Blank control characters are supplied

5. The X'00' convention is no longer used if ASA records are involved. This
solves all reported problems with this convention while retaining the useful ability
to write null records on read/write files.

6. Generated code for function calls is shorter.

7. Redundant loads of identical constants are avoided.

8. Statements with predicate function calls and no goto field now handle the
failure case much faster.

9. The efficiency of unary dot, IDENT, DIFFER, ITEM, APPLY is improved.

10. Commutative binary operators are handled better resulting in a reduction in
generated code in some cases.

*11. The handling of string arguments for external functions is now BTL compatible.

12. The name of the LOC function is changed to LOCAL to conform with BTL SNOBOL-4.

1-6

Errors in SPITBOL Version 2.1 Corrected in Version 2.2

1. The circuit for printing headings was non-reentrant if VA type record
format was used.

*2. The circuit for printing TF messages was in error.

3. The times printed and given by TIME() were incorrect following an inter-

*4. DATE() gave the wrong date on the first day of the month.

cepted timer overflow or time limit exceeded during compilation.

*5. V format records generated garbage characters.

6. One character records for VA, UA format records caused trouble with HASP.
An extra blank is added for ASA format records in such cases to avoid control char-
acter only records.

7. SPITBOL did not restore the caller's PICA (SPIE). This is a violation of
OS standards and caused storage use problems in some environments.

8. An incorrect base register setting could cause trouble with CODE/EVAL calls.

9. Syntax errors in CODE/EVAL arguments could cause subsequent regenerati on
failures.

*lo.
eously.

Pattern matches with a constant subject and constant pattern compiled erron-

11. Use of a constant as a goto operand (:F(3)) caused execution failure.

12.
side first.

Statements with complex left hand sides erroneously evaluated the right hand

*l3. Output association was not checked in the case of left hand side function calls.

14.

*15.

Complex goto fields could leave a base register incorrectly set.

CODE, EVAL arguments ending with a variable name were handled incorrectly.

*16. The character X'00' could cause compiler abort.

*17. Incorrect code generation for unary * when used as a function argument and in
other complex expressions.

18. The statement = value (missing left side) caused compiler abort.

1-7

19. Constants on the left side of an = were modified as indicated, no error
being reported.

20. The use of a constant as a right argument to binary dollar or dot (e.g.
X $ 5) was not detected as an error.

21.

22.
malfunction.

Calls to INTEGER and BREAKX were not recognized by the -CODE lister.

SYSIN records longer than 80 characters {from -COPY cards) caused compiler
They are now treated as I/O errors.

23. Sequence error messages were not always listed in -NOLIST mode.

*24. All blank strings were converted to integer zero. This should cause a con-
version error.

*25. The presence of leading and trailing blanks in a string to be converted to an
integer left a base register set incorrectly, resulting in subsequent failure.

26.
to integer.

27.
tion could cause failure.

Strings with one leading and/or trailing blank failed on attempted conversion

The use of $ to create new variable blocks in programs using the OUTPUT func-

28. There is a limit on number of variable blocks allowed (about 3-4K). Exceeding
this limit caused system failure. Now, error code 6.002 is issued.

*29. SPAN with one character deferred argument failed.

*30. Several pattern primitives could fail in QUICKSCAN mode when used within a
recursive match (unnecessary rematches attempted).

*31. Useless matching of alternatives attempted in some cases in QUICKSCAN mode.

*32. Overtime not recognized in certain long pattern match loops.

33. The (strange) construction: X . *V caused an abort.

*34. Stack temporaries not relocated in garbage collection.

35. Like 34, but rarer and not fixed in TF's.

36.
collector.

Garbage collection during pattern construction could cause fatal error in

*37. Undefined operator table not relocated.

*38. Miscellaneous other system fields not relocated.

39.

40. Incorrect garbage collect call from processing of INPUT associated read

Incorrect garbage collect call from unary 8 function.

calls.

*41.

42.

*43.

Handling of long strings incorrect in calls to LOAD'ed functions.

The use of :(RETURN) in a SETEXIT routine activated by an error during

Pattern matches with a string pattern could match erroneously in certain

pattern matching or expression evaluation caused an abort.

unusual cases.

*44. Table elements could be lost in certain cases or entered more than once.

45.
the message or erroneous action if intercepted.

*46.
evaluation.

Real overflow or division by zero could give the wrong statement number in

Incorrect &LASTNO value when last statement executed contained an expression

47.

48.

Statement count trace could cause errors in large programs if the trace used

Number of statements executed printed incorrectly when it should be zero.

a fourth argument.

49. Errors occuring in constant expressions could not be intercepted more than
once.

50.
recognized.
overflows.)

*51.

"52.

A memory overflow during evaluation of constant expressions was not correctly
(This could lead to generation of object modules with inherent memory

Error code 14.001 was issued incorrectly (the statement number could be wrong).

EVAL incorrectly re-evaluated results which were expressions.

53.

*54.

APPLY could bomb when used with system functions.

ARG failed instead of issuing error code 1.052 for undefined functions.

55. Conversion of NAMEs to NAME failed.

56. Conversion of STRINGs to NAME gave an erroneous result (in CONVERT call).

57. Conversion of NAMEs to INTEGER gave unrepeatable erroneous results.

1-9

*58.

*59.

*60.

*61.

*62.

*63.

*64.

*65.

*66.

EVAL function gave an error code instead of failing for bad arguments.

LPAD with a null first argument could give wrong results.

LPAD with second argument > 255 gave wrong results.

RPAD with second argument > 255 gave wrong results.

DUPL could be used to generate strings longer than &MAXLNGTH.

TRACE malfunctioned when a fourth argument was given.

VALUE could not be called by name.

VALUE did not accept NAME'S as arguments.

REWIND function caused an error abort.

* Corrected by 2.1 SUPERZAPs.

Errors Fixed in TF 2.2.1

1. Failure to make proper test for storage overflow when creating new variables

Error in TF printing circuit (again!).

at execution time (via unary $). Fatal effect in some cases.

2.

SPITBOL NEWSLETTER

April 1, 1972

Robert B.K. Dewar
Kenneth E. Belcher

ILLINOIS INSTITUTE OF TECHNOLOGY

2-1

Errors corrected by T F 2.2.3

1. Null records written to UA or VA type f i l e s s t i l l writ ten as X'00' instead
of blank.

2. Page l imi t exceeded d u r i n g code l i s t i n g causes a bomb.

3.

4. Division by 0 when I=1 (imprecise interrupts) causes abort.

Erroneous p ipe line drain i n numeric conversion.

5. STOPTR operates incorrectly, possibly causing an abort.

6. Function tracing (via TRACE) not operative i n certain cases.

7. EVAL compiles concatenation as a pattern match i n some cases.

8. Incorrect garbage co l lec t cal l on return from external function which has a
string value. Usually causes an abort.

9. Exponent overflow (U100 abort) d u r i n g attempt t o convert out of range reals .

10. Keyword t race on &STCOUNT terminates i f &STLIMIT is changed.

11. Incorrect compilation of statements referencing &LASTNO when I=1.

12. Dump after error 8.001 causes U100 abort.

13. Tables created by conversion from array have an even number o f hash headers.
14. The binary dot operator assigns garbage values in corrplicated pattern matches.

15. The attempt t o convert long s t r ings w i t h leading blanks t o integer causes an
abort.

16. The attempt t o compile over-complicated expressions with CODE o r EVAL can cause
an abort instead of a compilation fa i lure .

17. The e r ro r check t o p r o h i b i t input records longer than 80 characters is inoperable,
leading to an abort on the attempt t o read long records as source i n p u t t o the
compiler.

2-2

18. Pattern elements of the form *variable where variable contains an expression

19.

give an erroneous message.

Evaluation of an EXPRESSION which is an input associated variable causes an
abort.

FR Status Listing

All FR's are identified as follows:

V. R.C.N

\I version number

R release number

C copy number

1.l serial number (from FR form)

The disposition codes for closed out FR's are as follows:

Fn

S

D

N

U

E

Closed FR's

FR ID

2.2.0002.9

2.2.0004.1

error fixed by TF V.R.n

filed as a suggestion, not a bug

fix deferred to next source release

not a bug (misunderstandings, etc.)

unsolved problem, insufficient data

system error (not a SPITBOL problem)

2.2.0004.2

Disposition Comments

F3

S Request to alter SPITBOL to work with page
0 fetch protected.

F3

2-3

FR ID

2.2.00 16. RR1

--

2.2.001 7.73

2.2.0017.74

2.2.0017.75

2.2.001 7.76

2.2 .OO 1 7.77

2.2.001 7.79

2.2.001 7.80

2.2.001 7.81

2.2.001 7.82

2.2.001 7.83

2.2.001 7.84

2.2.00 1 7.85

2.2.0017.86

2.2.0017.87

- Disposition Comments

D Strings with a large number of leading
zeros cannot be converted to integers.

F2

S Currently the error codes 1.017, 13.011
The can arise from NRETURN processing.

suggestion calls for separate codes.

F2

F2

F3

F3

N

F2

N

F3

F3

F3

F3

S

2.2.001 7.88 S

2.2.001 7.89 F3

2.2.001 7.90 S

A continue after exceeding &STLIMIT is
treated specially: the statement is not
failed. The suggestion, which is not
possible to implement, is to treat other
errors similarly.

Long strings of digits are converted to
REAL in BTL SNOBOL4. The conversion fails
in SPITBOL.

Include prototypes in string representation
of TABLE's and ARRAY'S.

FR ID

2.2.001 7.91

2.2.001 7.92

2.2.0017.93

2.2.001 7.94

2.2.001 7.95

2.2.001 7.96

2.2.00 1 7.9 7

2.2.00 1 7.98

2.2.0017.99

2.2.001 7. I03

2.2.0019.69

2.2T003.1

Open FR's

Disposition

S

D

U

F3

F3

F3

F3

F3

E

F3

F3

N

2-4

Comments

Allow second argument (library name) in
LOAD call.

Provide uniform recovery from failure in success
goto.

Unidentified U100 abort.

Garbage characters on last line using ASP.

Open FR's are problems which are unsolved but still being worked on:

2.2.001 7.78 Infinite loop after overtime from succeed/fail type loop.

2.2.0017.100

2.2.001 7.101

2.2.001 7.102 Loop caused by erroneous use of CONTINUE.

Specification exception (u100) during EVAL call.

Erroneous 6.001 error with memory available.

2-5

1108 SPITBOL

We have reached the debugging phase, with many features already operational,
such as tracing, programmer defined functions, and integer arithmetic. It
appears to be faster than SPITBOL on a 360/65, as should be expected. The system
i s about the same slze (in characters) as 360 SPITBOL, and operates in quarter
word mode, using 8 bit ASCII internally. The interface will permit I/O in
FLD, EBCDIC, or ASCII. The implementation encompasses some promised 360 enhance-
ments, such as tracing on all names, including arrays, tables, etc., plus a cross
referencing feature. It is expected that &STFCOUNT will be implemented, along
with user-written-code overlays in a transparent fashion.

We hope to have a locally operational version in about a month, and perhaps
a month beyond that to prepare a distributable version.

External Functions in SPITBOL (Version 2)

This section gives detailed information necessary for writing external func-
tions in FORTRAN and assembly language for use in SPITBOL. To a great extent,
compatability with BTL SNOBOL4 is maintained but there are some differences.

An external function exists as a load module in one of the standard job lib-
Most usually, STEPLIB is pointed to
Concatenation may be used to introduce

Note carefully that the module name is the

raries (SYS1.LINKLIB, JOBLIB or STEPLIB).
a private library containing the module.
more than one library if required.
same as the entry name and the function name.

The function is introduced by means of the LOAD system function which is com-
patible with that supplied in BTL SNOBOL4 with minor exceptions:

LOAD('fname(arg 1, arg 2, . . . arg Pi) result')
fname is the function (and module) name.

characters (there is no truncation of longer names as in BTL SNOBOL4).
It must not be longer than 8

arg 1, arg 2 . . are the argument datatypes which ma be STRING, INTEGER, REAL,
DREAL. Any other entry (including null) means that no conversion
takes place. If one of these four special entries is used the cor-
responding argument is converted to the indicated datatype and
passed in special external form.

if no conversion is required.
result is the result type specified in a similar manner. It may be omitted

Note that in SPITBOL, LOAD does not permit a second argument at the current time
(version 2).

2-6

The call to the function obeys standard OS360 conventions:

(1) points to parameter list
(13) points to save area
(14) return address
(15) function entry address

Also register (8) points to the SPITBOL data area for use by functions which
interact in an intimate way with the SPITBOL system.

In accordance with OS standards, any registers used must be saved and restored
in the save area. (BTL SNOBOL4 allows destruction of registers).

Parameters are given as addresses of double word quantities as follows:

STRING

INTEGER

REAL

Word 1 starting address
Word 2 length in bytes

Word 1 integer value
Word 2 unused

Word 1 real value
Word 2 unused

UREAL Words 1, 2 long form real value

Unconverted Words 1, 2 standard SPITBOL value specifier, see SPITBOL
listing for details.

It should be noted that the form of unconverted arguments is totally incom-
patible with BTL SNOBOL4.
Note that the converted forms of numeric data are suitable for use in a call to
a FORTRAN function.

STRING's are not alligned on any given boundary.

The result is returned as follows:

INTEGER (GR0) has integer value

REAL, DREAL (GR0) has real or long real value

STRING (GR0) points to two word block with word 1 = address,
word 2 = length in bytes.

Unconverted (GR0) points to eight byte SPITBOL value specifier.

To return to SPITBOL, execute

BR 14 (success return)
B 4(,14) (faiIure return)

2-7

External Data Types

Special external data types may be introduced as special 8 byte specifiers
passed unconverted with the first byte set to one of the following values:

X'20' , X’22', X'24', X'26', X'28', X'2A' , X'2C', X'2E'

Such external data only has significance to external functions which
recognize it.

UNLOAD Function

The call UNLOAD (.fname) has the effect in SPITBOL of undefining the function
fname for any kind of function.
from storage if all functions referring to it become undefined (or redefined).
Thus in the normal case, UNLOAD is compatible with BTL SNOBOL4, but is also works
in complex uses of OPSYN and function redefinition, avoiding bugs which are cur-
rently present in BTL SNOBOL4.

SPITBOL automatically removes an external function

2-8

Suggestions

changes, etc..
suggestions have come from more than one direction, and many stem directly from
our work.
from Richard Siegler (Columbia University), who also designed the suggestion form
which we have adapted as standard.

This section contains a series of miscellaneous suggestions for improvements,
The contributors are not individually identified since many

However, we would like to take special note of the many suggestions

Not included here are suggestions for efficiency optimizations. The following
general policy is in effect:

Space is a vital factor. The system will not be made larger to decrease running
time unless the gains are really substantial (i.e. more than 10% in a significant
n of programs).

Now here are the suggestions. Please react to them, especially where the
changes might impact your use of the system.

1.
save space).
function entry points.

(a) A control card listing either labels to be treated this way or those

Provide a facility for labels which are not stored in the symbol table (to
Such labels could not be referenced indirectly, traced or used as

Two ways of doing this:

not to be treated this way. Absense of control card implies all
labels to be handled as at present.

(b) Special first character in label (eg. X) indicates this usuage.

This could save approximately 35 bytes label .
2. New keywords, many possibilities:

&CALLTYPE 'NAME' or 'VALUE' depending on how the current function was
called (note:
vi environment t) .

could not be implemented in BTL SNOBOL4 en-

&TIME, &PAGES, etc. Values of various system job limits for monitoring purposes.

&PATLEVEL Incremented during recursive pattern matching. Useful for
dynamic patterns.

&NEWTRACE Allow program defined trace functions to change saved value
of &TRACE.

2-9

&PTRACE Activate pattern match trace. (What should the output be?)

&OPT Control optimization of code generated at execution.

&VERSION Identify implementation version.

&COMPNO Current next statement nunber to be compiled.

&COMPERR Identify type of compilation error in CODE or EVAL call.

3. Remove -FAIL, -NOFAIL feature. We consider the introduction of this to be
an error. Are you using it?

4.
(This feature exists in BTL SNOBOL4 but is not documented).
(garbage collector could remove null elements from a table).

Do away with chronological ordering of table elements when converted to array.
Saves time and space

5.

AND(Pi ,P2)

New pattern function (quite difficult to do, but certainly useful):

matches strings matched by P1 and P2.

NOT(P1) matches null unless P1 would match in which case it fails.

6.
done now by *ASSIGN(.var,value).
space for a small gain in speed which probably violates the optimization policy.

Provide a mechanism for assignments during pattern matches. This can be
A special feature would take quite a bit of

7.

8. Two new functions:

Extend DUMP function to work with specific objects.

LABSYN(.Ll,.L2) copies a label definition attribute.

LABCLEAR (code) undefines all labels references by a code object.

9. Evaluate right hand sides before left hand sides in non pattern match state-
ments in optimized mode.
alone complained. Fixing this "bug" can noticeably slow down programs with
statements such as:

Version 2.1 used to do this, no one even noticed let

T<x> = IDENT(J) 3

10. Make :(CONTINUE) for return from &ERRTYPE trace always cause statement failure.
This would be much cleaner than the current local failure convention.

11.
XOR, etc.).

Provide functions and perhaps a new datatype for bit manipulations (OR, AND,

2-10

12. Implement random access I/O, including ISAM type support. One possibility
would be to have the files logically large arrays (or tables for ISAM), with
access to a certain element such as FILE<l> or ISAM<'ABC'> causing the appropriate
I/O.

13.
don't produce compilation diagnostics, such as 1 = 2.

Cross referencing of variable references and perhaps inherent errors that

14.
keyword (&SPACE?) and/or information with a dump on space utilized for each
structure.

Provide more information on space utilization, perhaps with a traceable

15.
rather than having to trace each element individually.

16. DO NOT EMBELLISH. (suggestion from R. Griswold). This is an excellent
suggestion to be borne in mind when reading the above list or supplying new suggestions
ti .

Provide array, table, etc., tracing on all elements by a single trace call,

SPITBOL NEWSLETTER

June 16, 1972

Robert B.K. Dewar

Kenneth E. Belcher

ILLINOIS INSTITUTE OF TECHNOLOGY

3-i

Table of Contents

Errors corrected by TF 2.2.4

FR Status Listing

1108 SPITBOL

360/370 DOS SPITBOL

SPECTRA/70 SPITBOL

ICL 1900 SPITBOL

External Functions Revisited

Suggestions - The Old
And the New

The One Character Question

3-1

Errors Corrected by TF 2.2.4

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Garbage collection following an intercepted error in pattern matching can
retain an unneeded garbage item.

T parameter value > 300,000 causes an abort.

Garbage collection during programmer defined trace of a function causes an
abort.

EVAL may loop doing endless garbage collects if core is tight.

Garbage collection during a CODE call may cause an abort.

Object module reload fails to relocate strings which have been converted
from small integers during preevaluation of constants.
an example is the pattern 1 A B).

(This is unusual,

Erroneous garbage collect call from string concatenation (consequences are
obscure, may not cause any trouble).

Use of input associated variables in other than simple assignment statements
may give erroneous results.

The use of a control card with some other option following IN72 or IN80
causes an abort.

Changing &STLIMIT resets &STCOUNT to zero.
TF 2.2.3 which must be applied prior to TF 2.2.4).

(Inadvertantly introduced in

Attempt to intercept the error caused by an erroneous branch to CONTINUE
(code 8.003) causes an abort.

Abort may result from creating a new variable block with a call to a
function such as DEFINE or DATA.

Memory overflow (code 6.001) may be signalled with memory available when
creating a new variable block.

Miscellaneous destruction of stacks, data, etc., can occur if CODE or EVAL
is used when core is tight.

Overtime during pattern match causes an abort.

3-2

- FR -.- Status Listing

All FR's are identified as follows:

V. R. C. N

V Version Number
R Release Number
C Copy Number
:I Serial Number (from FR form, starts with NS if submitted

on non-standard form)

The disposition codes for closed out FR's are as follows:

Fn
S
G
;4
U
E

Closed FR's

FR ID

2.2.0002. NS1

2.2.0002. iIS2

2.2.0005 .NS1

2.2.0005.NS2

2.2.0009. ills1

2.2.0016. iiS1

2.2.001 7.78

2.2.0017.100

2.2.001 7.101

2.2.001 7.102

2.2.0017.104

error fixed by TF TF V.R.n
filed as a suggestion, not a bug
fix deferred to next source release
not a bug (misunderstandings, etc.)
unsolved problem, insufficient data
system error (not a SPITBOL problem)

Disposition Comments

F4

F4

F4

N

F4

E

F4

F4

F4

F4

F4

Abort on changing &STLIMIT (OS R21 on 370/165)

FR IG

2.2.001 7.105

--

2.2.001 7.106

2.2.001 7.107

2.2.001 7.108

2.2.001 7.109

2.2.0017.110

2.2.001 7.1 1 1

2.2.301 7.112

2.2.0019.67

2.2.0019.70

2.2.0020.NSl

2.2.0033. PIS1

2.2.0039.001

Open FR's

2.2.0019.201

1108 SPITBOL

3-3

Disposition -

F4

F3

F4

F4

F4

F4

F4

F4

F2

F4

F4

F4

F4

Erroneous results, more information required (may
possibly be fixed by TF 2.2.4).

Debugging is proceeding smoothly. Initial distribution is scheduled for
October 1, 1972.

360/370 DOS SPITBOL

We now have available a version of SPITBOL running under DOS. This version
includes a comprehensive file handling interface which can handle any sequential
format on disks or tapes.
128K machine will start October 1, 1972.

Distribution of the COS version which can run on a

3-4

_. SPECTRA/70 SPITBOL

A version of SPITBOL for the U N I V A C Spectra/70 is being prepared and
will hopefully be ready later this year. (The sample programs have run success-
fully .)

ICL 1900 SPITBOL

A version of SPITBOL for the ICL 1900 series computers is expected to be
completed and available later this year.
that this version is largely coded in machine independent macros and should be
transferable to other machines later on.

Of particular interest is the fact

External Functions Revisited (See Newsletter #2)

Some additional corrections and clarifications:

REAL and DREAL results appear in FRO (not GRO!).

String results are always copied to free core on return and may therefore
be built inside the function.

The SPIE active is one which generates a dump if an interrupt occurs which
is unknown to SPITBOL.

The Program mask is all zeros on entry and must be all zeros on exit.

For those who know the innards of SPITBOL, many functions of the resident
execution package are available to an external function. At the current time,
there are no plans to document such facilities beyond the documentation in the
SPITBOL listing itself, since these facilities are subject to change.

Suggestions - The Old

Last issue's suggestions did draw some mail and the following is a further
examination incorporating user comments.

1. (Transparent labels)

Mixed Reactions. This is clearly 'clutter' in the interests of efficiency
and as such should be resisted unless overwhelmingly necessary. Also describing
which labels must be in the symbol table is awkward (e.g. function entry points).
On balance we are inclined to reject this. (See also new suggestion number 4.)

3-5

. ... 2. (New Keywords)

&CALLTYPE This needs more explanation:

within F, &CALLTYPE = 'NAME', and
within G, &CALLTYPE = 'VALUE'.
On balance, this should probably be
rejected due to difficulties of
implementation in some schemes.

F(X) = G(A)

$TIME, PIPAGES, etc. Probably not worthwhile.

&PATLEVEL, &NEWTRACE Useful and easy to implement.

&PTRACE

&OPT

Defer this pending some viable suggestions
for implementation.

Need this really be dynamic? Why not use
exit value from main compilation.

&VERSION ?

&COMPERR, &COMPNO See New Suggestions .

3. (-NOFAIL removal)

User reactions: "horrors", "don't understand". OK, we changed our
mind. NOFAIL is a good feature and we were clever to think of it the first -
place.

4. (Chronological ordering of Table Elements)

This will be removed. Order will be "undefined".

5. (AND, NOT)

These are useful and were positively received. However
reflection, there is a need for four functions a5 follows:

AND (A , B Matches strings matched by A and

n further

B

NOT (A) Matches any strings not matched by A and
extends like ARB.

FAIL(A) Matches null unless A would match in which case
it matches null.

NULL (A) Matches null if A would match else it fails.

3-6

For an example of the last two, consider these replacements:

BREAK(A) = ARBNO(NOTANY(A)) NULL(ANY(A))

SPAN (A) = ARBNO(ANY (A)) ANY (A) FAIL (ANY (A))

To get a feeling for these, try writing SPAN and BREAK without these
functions .
There is some argument that NOT should be replaced by:

ANDNOT(A,B) Matches strings matched by A but not
matched by B.

This is because NOT as it stands is an implied ANDNOT(ARB,A). That is: an
ARB is used to provide the alternatives for testing against A which may be
very slow.

For example:

AND(LEN(3) ,NOT('ABC'))

may be expected to be much slower than

ANDNOT (LEN (3) , I ABC I)

since the former is equivalent to

AND(LEN (3) ,ANDNOT (ARB , ' ABC'))

6. (Pattern dynamic assignments)

Practically no gain in speed, not worthwhile (especially if = is made
into an operator).

7. (DUMP extension)

Further explanation :

DUMP (2 ,A)

Where A is an array would print the array and all its linked contents.

8. (LABSYN , LABCLEAR)

Seem worthwhile if they can be done.

3-7

9. (Right side first on assignment)

Probably unwise, especially if = is made an operator (see New Suggestions).

10. (statement failure for CONTINUE)

This is an improvement and will be done.

11. (Bit String Manipulations)

This appears worthwhile. Here is a specific scheme:

Datatype name : BITS

Constant denotation : B'10101 ' etc.
(maybe X'324' and/or 0'177' as well.)

Functions : BAND, BOR, BXOR, BCOMPL, BSHIFT, BSUBSTR

Operators : concatenati on

Conversions : BITS + STRING String of '0's and
'1 's of same length
as number of bits.

BITS -P INTEGER Right adjust in a
word and truncate to
word lenth excluding
sign bit. Error if
non-zero bits dropped.

BITS + (D)REAL Convert to integer
first.

STRING -+ BITS Bit string of same
number of characters.
Error if not all '0's
and '1 '5.

INTEGER + BITS Error if not positive.
Else minimum length
bitstring representing
number in binary.

(D)REAL + BITS Convert to integer
first.

3-8

In addition there need to be two (implementation dependent) functions
for mucking with internal representations:

UNSPEC (a rg

Where 'arg' is an INTEGER, STRING, REAL or DREAL yields the bit string
corresponding to the internal representation.

SPEC (bits , type)

Yields a value of datatype 'type' (INTEGER, STRING, REAL, DREAL) using
'bits' as the bit pattern.

(Thanks to J.H. Lindsay, Queen's University for some helpful suggestions
here.)

12. (Direct Access)

Possible details:

FARRAY(fi1enarne) Yields an object of datatype ARRAY whose
elements are fixed length strings.

FTABLE (f i 1 enarne) Yields an object of datatype TABLE whose
elements are variable length strings.
The subscript names correspond to record
keys.

The above files can also be processed sequentially by using the normal I/O
procedures in con junction with two special functions :

NOTE(fi lename) Yields the identification (block number or
record key) of the next record to be pro-
cessed.

POINT(filename, id) Sets the identification of the next record
to be processed.

13. (Cross-reference)

This will be added if possible. It is not likely that this feature would be
extended to 'dynamically compiled code as one user suggested.

14. (Space Utilization Statistics)

Wi11 be provided is possible.

3-9

15. (Array trace with single call)

Probably not (causes trouble with other implementations).

16. (DO NOT EMBELLISH)

AMEN said Dr. Roosen-Runge (Toronto).

And the New

1. Make = an operator which could occur anywhere.
binary operator returning the assigned variable or the assigned value as
appropriate.

Introduce ? as a binary pattern match operator (subject ? pattern). ? could
occur anywhere and would yield the matched substring as value.
also be possible to use this on the left side of an assignment with the usual
result of replacement.
compatability

Allow arbitrary sequences of operator symbols to be use as binary operators
(with OPSYN). This causes no ambiguity and, in fact, neatly deals with the
case of ‘**’. Priority could be that of the first symbol or some standard
default.

It would be a low priority

2.
It would

? could be omitted in the outer position to retain

3.

Note that 1 - 3 are actually implemented in SITBOL, a SNOBOL-4 implementation
for the PDP10 by J. Gimpel, Bell Labs, Holmdel, New Jersey.

4. Provide some kind of IF-THEN-ELSE structure.
One suggestion :

This is desparately needed.

if
then
-

else -

statement t ; OR
statement;
statement;
statement ;

statement;
statement

statement I fi;

- i f statement ;
then statement ; -

statement fi ; -

3-10

Where -- if, then, etc. are keywords either reserved, or written in some special
way (e.g. IF, with following comma) which would be syntactically distinct.
Other similar structures such as case, for, while, until, could be provided.
The boolean condition tested is success failure of the statement.

5. Use ; as a statement terminator consistently (as in PL/1, ALGOL-60, ALGOL-68)
and do away with continuation characters.

6. Allow labels to be indicated by a colon (no confusion need arise with GOTO's
which are always preceeded by a blank).

Suggestions 5, 6 (or 4, 5, 6) could be implemented under a control card switch to
ensure compatability.

7. Provide the following keywords:

&ERRMSG

&COMPNO Number of next statement to be compiled. (Can be

&ERRPOS

Text of error message following execution error or
after a compilation failure in CODE or EVAL.

modified .)
Scan pointer position in string after CODE or
EVAL compilation failure.

These three keywords would allow the compiler to be written in SPITBOL.
would make possible a fully conversational system in a TSO or other similar
environment.

This

The One Character Question

The one character assumption for expression patterns which is now implemented
(see S4D23 addundum at the back of the manual) causes trouble in some cases.
it be changed? Send in your vote today.

Should

SPITBOL NEWSLETTER

March 2, 1973

Robert B.K. Dewar
Kenneth E. Belcher
Illinois Institute of Technology

4-i

Table of Contents

Errors Corrected by TF 2.2.5

FR Status Listing

Note on Input Compared with BTL SNOBOL4

Note on OS R21 Problem

Note on Conversion of Integers

Note on Error Recovery

New 360 Version of SPITBOL

Other New Versions

Suggestions

Errors fixed by TF 2.2.6

4-1

Errors Corrected by TF 2.2.5

1. I n some cases, running ou t o f room a t compile t i m e causes an abort instead
o f an e r r o r message. Also t h i s ou t o f room condi t ion can be s igna l led
f falsely .
Concatenation o f long s t r i ngs can cause an erroneous r e s u l t f r o m an i nco r rec t
storage regeneration.

I f an i n p u t statement causes a garbage co l lec t ion , miscel laneous dest ruct ion
may occur.
a s ide e f f e c t o f TF 2.2.4.

2.

3.
We have seen several cases of t h i s e r r o r which was introduced as

4. Erroneous record length fo r SYSIN causes a bomb instead o f the message
INPUT ERROR.

FR Status L i s t i n g

2.2.0002.10 u
2.2.00412.11 u bad jump i n CODE, no dump
2.2.0002.12 u bad jump i n CODE, no dump
2.2.0007.2 F5
2.2.0015.NSl F5
2.2.0016.7283 S accept more than one d i g i t on -SPACE
2.2.0016.7284 N

2.2.0016.82172 F5
2.2.0017.115 N memory overf low recovery e r ro r , see separate note

2.2.001 7.117 D dupl can bomb i f given very large i n tege r arguments
2.2.0017.118 D cont inuat ion l i n e s are no t recognized i f contro l cards

(i l l e g a l l y) intervene before them. (i .e. no e r r o r
message i s given.)

2.2.0017.119 D -SPACE never l i s t e d even i f -PRINT i s on
2.2.0017.120 F5
2.2.0017.121 S i n te rna l opt imizat ion suggestion
2.2.0017.122 F5
2.2.0017.123 N input question, see separate note
2.2~0017.124 F5
2.2.00191201 F4
2.2.0022.1 F5
2.2.0024.NSB N
2 .2.0030.NSl F4
2.2.0030.NS2 F5
2.2.0031 .NS1 F5
2.2.0038.NSl
2.2.0038.NS2 N problem w l th JCL

mysterious overtime

INPUT does not behave exact ly as i n BTL SNOBOL4
(see separate sect ion)

- , . J .

E::*e 05 the OS V21 problem again

. .

4-2

FR Status Listing cont'd

2.2.0041 .NS1 FS
2 .2.0042.NSl E the OS V21 problem again
2.2.0042.1 F5
2.2.0056.1 F5
2.2.0056.2 N JCL problem

Please use FR forms wherever possible. Extra copies are enclosed with this
issue of the newsletter.

Note on input Compared with BTL SNOBOL4

There are some slight differences between SPITBOL and BTL SNOBOL4 which are
illustrated by the following examples. These are not considered bugs and no
attempt will be made to change SPITBOL to duplicate the apparently strange
behavior of BTL SNOBOL4.

INPUT This statement reads a line in SPITBOL, but not in BTL SNOBOL4.

A = INPUT EQ(1) This statement reads a line in SPITBOL, but not in BTL SNOBOL4.

The one case in which SPITBOL fails to read a line when expected is a pattern
match where the pattern evaluation fails and there is a replacement part.

INPUT EQ(1) = Neither version reads a line for this statement.

Note on OS R21 Problem

OS V21 as distributed contains a serious error which disables many features
in SPITBOL. This error must be corrected as outlined below. (This is a repeat
of a previously issued memo.) It can be fixed by the following IBM APAR:

IBM OS APAR 53361
"SPIE EXIT REG14 INCORRECT"
OS Release 21

ZAP NAME IEANUC01 IEAQNU00
VER 00D8 58F0,0314
REP 00D8 90EF,0314

Note "0314” should be "0214" at some installations.

Contact Local IBM Program Support Customer Engineer and give him the APAR
number 53361 and symptom "SPIE EXIT REG14 INCORRECT" and he will check out
fix for your installation.

restored after a program interrupt and that register is used as a SPITBOL base
register.

The above problem caused a large number of ABENDs since register 14 was not

4-3

Note on Conversion of Integers

The current version of SPITBOL (i.e. version 2) regards an - all blank field
as an error when converted to integer or real This Is a response to sugges-
tions made some time ago.
accounts for the discrepancy in the manual.
still permitted as always.

Unfortunately the manual was not changed and this
Leading and trailing blanks are

Note on Error Recovery

The SETEXIT error recovery facility is not totally reliable in the case of
Some operations, e.g. pattern matching, consume memory before
Repeated application of such operations in the recovery

memory overflow.
checking overflow.
routine will eventually cause an abort.

We are attempting to remove these situations, however in some cases the
cost appears excessive. Meanwhile you recover from category 6 errors at your
own risk!

New 360 Version of SPITBOL

A new source release of SPITBOL correcting all known errors and adding some
new features is planned for the near future.
release is a new system interface for OS which will implement reading and writing
of PDS members, multiple file tape handling, file tracing, and many other new
features.

A major component of this new

Other New Versions of SPITBOL

version is nearing completion.
follows :

The DOS version is now available for distribution. The machine independant
Initial versions deriving from this will be as

1. PDP 11/45
2. ICL 1900
3.
4. CALL 360 version

360/67 TSS 32 bit addressing

The 1108 version is running locally and has successfully run many programs.
We should be able to accept 1108 version orders in the near future.

4-4

Suggestions

Just one note this month. The following is a new feature which has been
added to the machine independant version and will be retrofitted to all other
versions. We call it the selection or alternative feature.

Anywhere that a value is expected, a series of expressions separated by
commas, enclosed in parentheses can be written:

The semantics is to evaluate the expressions from left to right until one

This feature trivially provides an "or" function for predicates but also

succeeds and then use its value:

has many other uses as shown by the following examples:

Failure is signalled if all evaluations fail.

A = (EQ(B,3),GT(B,20)) B + 1

NEXT = (INPUT, '%EOF')

MAXAB - (GT(A,B) A,B)

The alternatives structure provides a limited IF-THEN-ELSE capability , and
It is our feeling that no additional as such is a useful programming feature.

attempt should be made to enlarge the conditional structure at this time. Note
incidentally that the semantics of ordinary parentheses is a correct degenerate
case of an alternative structure with one alternative.

4-5

Errors fixed by TF 2.2.6

1. Patterns with string elements longer than 256 characters fail
to match correctly.

2. The compiler has an error preventing use of SPITBOL under VS-2.
(Other operating systems are not affected.)

3. An error (introduced in TF 2.2.5) causes large programs to compile
incorrectly. This accounts for all reported cases of programs
running under 2.2.4 and failing under 2.2.5.

Note: Another error has been discovered but cannot be fixed till the
next source release:
&BAL, etc.) may not be used if object modules are to be generated.

keywords for pattern primitives (&ARB,

SPITBOL NEWSLETTER

July 1974

Robert B.K. Dewar
Kenneth Belcher
John Cole
Illinois Institute of Technology

5-1

Installations

There are now 101 SPITBOL installations, including ones in Canada, Brazil,
Scotland, England, Germany, Holland, France, Israel, and Sweden.

SPITBOL/360 Plans

Version 3.0 has been delayed a long time, partly because of uncertainty over
what our future directions should be and partly because of a temporary direction
of effort to other work (see announcements later on in this section). We have
now firmed up our plans as follows:

In October 1974 we will release the new interface which provides such features
as reading and writing of PDS members, multiple tape file handling and file tracing.
We will probably include a stability release of SPITBOL itself which will correct
all known errors but contain no new features.

Meanwhile we are commencing work on a major rewrite, which will contain several
new features, including syntactic extensions similar to those recently proposed by
R. Griswold (SNOBOL-X, see SIGPLAN Notices, February 1974). Full details of these
extensions will be published in a separate newsletter to be issued shortly.

We need your input now on directions in which we should move.

1108 Version of SPITBOL

for distribution. Write to:
A new version of SPITBOL for the UNIVAC 1106 1108 1110 machines is now available

SPITBOL Project
Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois 60616

for full details.
360 370 version.

This version is essentially upward compatible with the existing

5-2

ICL 1900 Version of SPITBOL

The ICL 1900 version of SPITBOL, based on our machine independent version,
is up and running.
Write to:

This version is being handled through Leeds University.

Dr. A.P. McCann
SPITBOL Project
Computational Sciences
University of Leeds
Leeds, Yorkshire ,
ENGLAND

for details.

Macro-version of SPITBOL

An adaptation of the macro-version of SPITBOL for the PDP/11 is underway. We
are happy to receive inquiries concerning implementations on other machines.

Techniques Department

A contribution from:

Dr. J.H. Lindsay
Department of Computing and Information Science
Queen's University
Kingston, Canada K7L 3N6

is attached.

Games?

We received an interesting contribution from Robert HSU, Linguistics Department,
University of Hawaii, Honolulu, Hawaii 96822.
is too long to reproduce here, but copies can be obtained by writing Mr. Hsu directly.

It is entitled "The String Game" and

L
3
4
5

L 6
7
R

..

4

10

11

& T R A C E = 3000 0 *- . -. * E c T A m S H THE PSEUDO-VARTARLE C R F A T T O N HECHAYI SY, * 0

DEFINEt'PSEUDO VARIARLF(PVnEF.PVLABEL)PVN1PVN,PVAA*PVA*LHS?,L~~l** e

* .) * S E T UP SOME VALUES OF V A R I A R L E S FOR TEST PURPOSFS. e * e

D

e

+ *PVARGS_CT . - - - - -- I

2 = 'ORIGINAL VALUE OF 2'
A = * O R I G I N A L VALUE OF A'
_B = * O R I G I N A L VALUE OF p*
C = 'ORIGINAL VALUE OF C' * 0 * SET UP THE PSEUDO-VARIARLF. 0 * t

* e * U S E IT. e * e * V A R I A B L E W I T H THE NAME OF THF PSfUDO-VARIAOLF WILL H A V F THF VFqC'Jr * A S S I G N E D THE PSEUDO VA P I A B L F '*FUNCTION**; THF A Q C U W N T S OF T H F - Q * PSEUDO-VARIABLE W I L L RF FVALlJATED AND SAVFD RFFOPF THE nHS nF Tk!F e * A S S I G N M E N T OR W H E N A O A T T F Q N INVT)LVING TYF PSEUDO V A P I A n L F OV T H F e * RTGkIT Of THE BINARY OR % OPFPATORS IS OFING FORFAFD. THfq 0 * METHOD H A S A NUMBER OF U N D F S I R A R L F STDF FFFFtTS: MULTIPLF USr'

* E X C E P T THE L A S T "EVALIJATEDI' WTTH DIFFFRFYT 4RCUMFNTS FPnY TFir 4

6 LAST -**EVALUATED** TO -CALLFn Tfl RECi?f VF- T k ~ F - - f ~ ~ ~ J f W I T H i H T - 0

PSEUDO-VAR I A B L E C * L H $ ~ X, Y , 7) A, B ,c*) II

* OF THE PSEUDO-VARIABLE IN THF SAMF STATFMFNT M A Y c a u x ANY e

* A R G U M E N T S OF THE L A S T "EVALUATION". SI MrLAR CONSTPERATTONS 8 * APPLY TO THE USE OF THF PSFUPO VARIABLE IN ANY SOPT OF R F C ~ J R C T ~ M + * IT I S M E A N I N G L E S S FOR A T Q A C E RflCJTLNr -n9 PSEUDO-VARIABLE e

f- -- WUUT IUETZTI-~~A~LRNREPURRO - c * 0 * S I N C E T H E MECHANISM DEPFNOS ON TRACING, GTPACF: MUST F3F: SFT HIq'i 0 * ENOUGH TO ALLOW FOR A L L C A L L S TO PSEUDO-VARIABLES DU R I N G e
7 EKE-CTUTTUWUR PSEUOO -VAKTARLE WdUfINFT W 7 L L - m RE C A L L E D AFf'e 0 * & T R A C E H A S SEEN DECREMENTED TO ZERO0 e * 0

* T H E R E I S TOO MUCH OVERHEAD I N A L L THIS; I T C O U L D BE DONF MCJCt{- c *- MbRE ~ ~ T T C I E N T L Y A N D ?;JTfHaiJT-THT-cmCHFS I YTFQNALLY SINCF THr * * T R A C E D VARIABLE WHICH I S N R E T U R N E D COIJLP 9F ASSOCIATED W I T H THr e

cn
I
w

L
1

- - - -

CRUDE IMPLEMENTATION O F - P S E U D O - V A R I A B L E S N SNOBOL. n hi

* T H I S IS THE C O D E TO C R E A T E THE P S E U D O - V A R I A B L E . . * . - - _ _
I 2 P S E U D O - V A R I A B L E - * e

* VARIABLE STRING PGDEF. IT THE GRINDS THRCIUGH THE ARGUMENT e

* R E ~ T O R E ~ H E vAiru~s FROM x--I. Y--I. ETC. T n x 1 v t ETC. IF A e

* VARIABLE NAME AS THE ENTRY POINT OF THE USER'S PSEUDO-VARIABLE e

+ - WHTICH U I L L ' W J ~ - T H ~ V A L U E S OF T W ARGUMENTS IN-WTD~ERTGARTARC FC, e

o
*

* P S E U D O - V A R I A B L E F I R S T B R E A K S I T S F I R S T A R G U Y F N T IJP XNTO A *
* S T R I N G (EoG. ' X . Y . 2 ') T O P R O D U C E A S T R I N G nF S N O B O L S T A T F M F N T C I P J e * L H S 2 TO S A V E THE ARGUMENT V A L U F S X 1 Y t Z I N V A R I A B L E S e * - X 1 . Y l l Z 1 A N D A N D T H E R STRING O F S N O B O L STAJ-EMENTS -TD e

* S E C O N D ARGUMENT IS NOT G I V E N . P S E U D O V A R I A B L E USES THE PSEUDO-

* CODE. P S E U D O V A R I A B L E THEN C O M P I L E S A R O U T I N F (FOCI L H S (X ? Y I 7)) n

* A N D N R E T U R N A T R A C E D V A R I A S L E (F O G . L H S - - l) e P S E U D O - V A R I A B L E e * A L S O C O M P I L E S A P R O L O G U F TO THE U S E R ' S P S F U D O - V A R I A B L E ROIJT I bJF- n
~ - ~- * (E-0 so LHS 2 (LHS V AR N A M ,F .-LH S--TAGJ-L !i S 9 X . Y 2 9 A 9 R3CL TO P.UT_ T t 1 r * V A L U E ASSRNED T O THE PSEUDO-VARIABLE I N T O T H T V A R I A B L E W l T H T I i T e * S A M E N A M E A S THE P S E U D O - V A R I A R L E R O U T I N F . P L A C E THS S A V F O e * V A L U E S O F THE ARGUMENTS I N THF ARGUMFNT V A Q T A O L F S 9 AND G r l T r l c * T H E U S E R ' S P S E U D O - V A R I A B L E P O U T I N F . T H I S P R O L O G U F TS MAnE T H r e

f TQACIRC-RmTTN4F?%?-T%F T R A T n V A R f A n L F - K R T U i N m R Y THE F I r e 7 a * P O U T I N E C O M P I L E D A S M F N T I O N E D AROVEe * 1

e __ F U N C T I O N NAME P V N A N ARGUMENT S T R I N G PVAA. - -AyD-A TEMPORARY

e ul

17

19
I8 PV--€

+
- 20

21 +
22
23
26
25
26 *
Z7 END

0

0

..

e

s
e

.)

.-

e
e

e

*

. .-

.-

SOME JUNK1TEST-XlTEST-YlTEST-Zl111

	SPITBOL 360 User's Guide & Newsletters
	Copyright
	Information
	Contents
	SPITBOL Version 2.0 Manual
	Table of Contents
	Introduction
	Summary of Differences
	Datatypes and Conversion
	Syntax
	Pattern Matching
	Functions
	Keywords
	Control Cards
	Error Messages and Handling
	Programming Notes
	OS Data Sets and JCL
	Addendum for Version 2.1, 2.2

	Newsletters
	Newsletter #1
	Newsletter #2
	Newsletter #3
	Newsletter #4
	Newsletter #5

