RUTGERS

New Jersey Agricultural Experiment Station

Propagation of challenging plants: Creating a system that works

Friday, September 23, 2016

Jim Johnson Agricultural Agent – Nursery Crops

> Cooperative Extension of Cumberland County

Discussion points

- The propagation system
 - Research protocols
 - Back to the basics
 - Controlling variables
 - Supplemental lighting
 - Developing a propagation system
- Results of propagation experimentation
 - Cornus kousa 'Scarlet Fire'
 - Corylus avellana various selections
 - Vaccinium macrocarpon 'Haines'
 - Ilex x? & Ilex crenata 'Beehive'
- Moving toward the future

What are "challenging" plants Experimental design: Using a systematic approach Propagation variables Limiting the variables Auxins

Control of variable combinations

RESEARCH PROTOCOLS & BACK TO THE BASICS

What are challenging plants?

- I describe challenging plants as plants that others have had problems propagating
- How to review scientific literature
 - Look for hints at propagation history or propagation of related plants
 - Always check experimental design to be sure there are adequate controls built into the experiment
 - Without proper experimental controls, information is nearly useless
- Recognize that timing is very important
 - Plants are more successfully propagated at certain times of the year
 - BUT, don't necessarily eliminate other times of the year if it's possible to change experimental designs and protocols

Experimental design: Use a systematic approach

- Since one never knows if a new system will *really* work
 - Limit your exposure by starting with a manageable number of plants
 - There is the potential for crop and financial losses
 - Make sure you have enough cuttings to see a difference
 - Have an appropriate "control" group of plants*
 - Decide if the experiment is a "proof of concept", a comparison against the "present best treatment" or a combination of the two.
 - Allow space for sequential propagation cycles
 - Optimal timing can be measured in days
 - Success can vary by the hour of the day one collects cuttings
 - Rooting success for tissue cultured shoots will vary by size and maturity
 - Remember that plant propagation is nearly as much an art as a science

Propagation variables

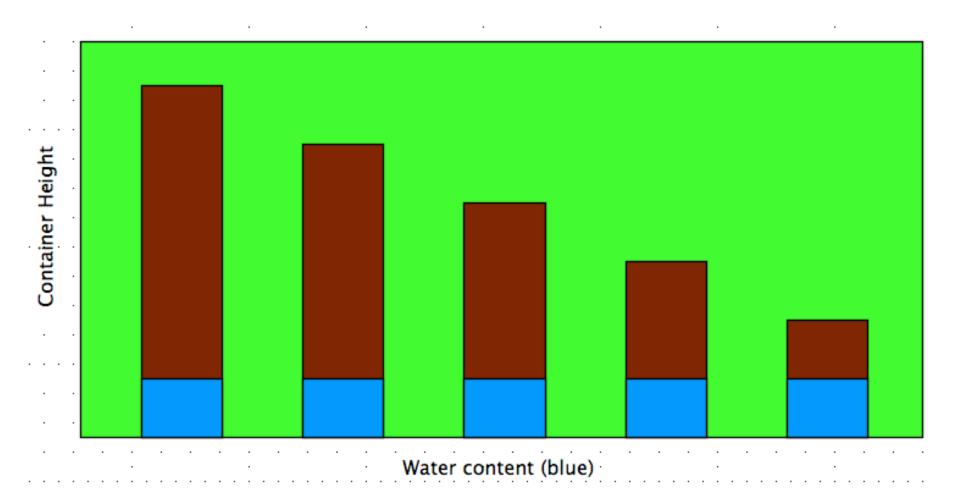
- Air & media temperatures: turgidity & transpiration
- Auxins: which one, what carrier, how to apply
- Fertility: how much & how long after root initiation
- Humidity
 - Condensing (wet leaves as with misting)
 - Non-condensing (dry leaves as with true fog)
- Light: quality, intensity, duration
- Media: texture, moisture content, cation exchange capacity (CEC)
- Timing: based on the physiological stage of growth
- Types of cells & trays

Limiting the variables

- Focus: avoid looking for a bunch of answers at the same time
- Keep the number of test plants high to see differences
- Temperature & humidity
 - Ventilation for heat will reduce both temperature and humidity
 - Condensing humidity can cause foliar and root disease problems
 - Condensing humidity can leach foliar nutrients
 - Non-condensing humidity can resolve many of the temperature/humidity issues but it can be costly
- Media & containers
 - Use a porous medium to limit excess water issues
 - Use a deep cell or tray to maximize useful media
- When one removes a competing variable, rooting success increases

Auxins

- IAA
 - Indole-3-acetic acid
 - Naturally occurring plant hormone
- IBA
 - Indole-3-butyric acid
 - A synthetic rooting hormone
- NAA
 - 1-napthalene-acetic acid
 - A synthetic rooting hormone
- Auxin movement
 - Foliar applied auxins move more readily with more light (2, 4-D)
 - Basal applied auxins more through the xylem in the transpiration stream



Control of variable combinations

- Temperature & humidity
 - Ventilation for heat will reduce both temperature and humidity
 - Supplemental condensing humidity can cause foliar and root disease problems
 - Supplemental condensing humidity can cause leaching of foliar nutrients
 - Non-condensing humidity can resolve many of the temperature/humidity issues but it can be costly
- Media & containers
 - Perched water table
 - When using the same medium, success is largely controlled by the height of the container

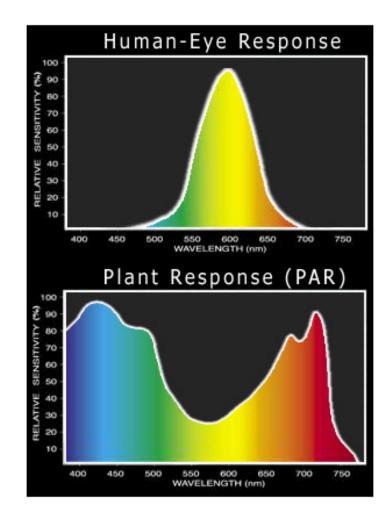
Perched water table

Supplemental lighting

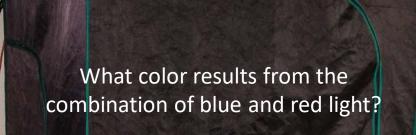
Photosynthesis: we don't see what plants see

A system that can work in the real world

DEVELOPING A PROPAGATION SYSTEM


Supplemental lighting

- Has the ability to can change the season
- LED's (light emitting diodes) produce light by electroluminescence
 - They generate less heat and use less electricity than conventional lights
- Light quality can be fine tuned by use of different wavelength generating LED's
 - Most LED lights have lights for vegetative growth and a second set of lights for flowering built into a single light-set
 - Propagation only needs wavelengths suitable for vegetative growth
- Cost effective
 - LED lighting has a higher initial investment but has longer life
 - From my experience, the system has enhanced rooting


Photosynthesis: we don't see what plants see

- Plant chlorophylls efficiently harvest blue and red light with peak efficiency at about 440 and 640 nm
- They don't capture light between 500-575 nm
- Plants reflect light they can't capture

New Jersey Agricultural Experiment Station

New Jersey Agricultural Experiment Station

The system

•	Reflector Led Grow Light 576w (192-3w LED's)	• \$304
•	Heavy duty light timer	• \$15
•	Grow Tent (4' 9'' x 4' 9'' x6' 7'')	• \$136
•	Ductwork, ductstat, thermostat & rheostat	• \$134
•	15 amp heavy duty power station/surge suppresser	• \$ 28
•	Propagating heat mats w thermostat & tall domes	• \$326
•	50 deep cell plug trays (1.94″ x 4.5″)	• \$121
•	D.B. Smith Contractor Sprayer (mist)	• \$ 26
•	Honeywell 1 Gal. Cool Mist Humidifier (fog)	• \$ 58
•	Plastic pallet bench	• \$ 11
•	Total system cost	• \$1159

A system that can work in the real world

- Set goals when evaluating propagation system changes
- Supplemental lighting can enhance rooting
 - Lighting can effectively change and/or extend the season
- Reduction of environmental impact
 - Water use is limited by the use of non-condensing humidity
 - High humidity levels also reduces loss of water through transpiration
- Worker safety
 - Spray applied auxin offers a method of minimizing worker contact with auxins
- Cost effective
 - LED lighting has a higher initial investment but has longer life
 - LED lighting has a lower operational cost

Cornus kousa 'Scarlet Fire' Corylus avellana – various selections Vaccinium macrocarpon 'Haines' Ilex x? & Ilex crenata 'Beehive'

RESULTS OF PROPAGATION EXPERIMENTS

Cornus kousa 'Scarlet Fire'

- Dogwoods
 - Production of tissue cultured shoots has worked very well
 - Producing roots on those shoots has not been successful in TC
 - An experiment was initiated that looked at hormone rates and frequency of application of foliar applied auxins
- Optimal treatments
 - Tray size: 50 cell, deep tray (4.5" deep)
 - Auxin: 1 foliar application to drip of K-IBA at 350-400 ppm
 - Fertilization: complete at 70 to 75 ppm when rooting is initiated
 - Shading for the first 7 days didn't make a difference
- Results
 - Typically between 95 and 100% success

Cornus kousa 'Scarlet Fire' TC shoots

Newly stuck Cornus kousa 'Scarlet Fire'

Cornus kousa 'Scarlet Fire' propagation procedure

- Keep the shoots in the covered agar medium for 2 days to harden
- Day 1: Stick the shoots and gently water them in so they are in good contact with the medium. Be careful not to dislodge the shoots.
 - Operate the LED vegetative grow lights for 14 hour days
- Day 2: Apply the K-IBA at 350 to 400 ppm as a foliar spray that fully wets the leaves
 - Mist the inside of the domes, supplementing the humidifier
 - Check the shoots later in the day and mist the inside of the dome as well as the leaves again if they are dry
- Day 3 onward: Check the humidity and mist 2 to 3 times a day as necessary (it's normal early in the propagation period).

Propagation procedure

- Day 7: Start checking for root initiation. As soon as the first roots appear, start fertilization at 75 ppm-N. Continue misting until top growth is established.
- Day 12: Top growth should be initiating
- Day 20: Start reducing humidity by removing the domes. Continue growing plants until the desire size is reached.
 - New growth is fairly active at about 22 or 23 days
 - Plants may be as much as 4 to 6 inches tall in 60 days
- Notes:
 - There seems to be some variability in success based on the maturity of the tissue cultured shoots.
 - Use of NAA was not successful

Cornus kousa 'Scarlet Fire' at 60 days

Corylus avellana

- Hazelnuts: a tough nut to crack
 - I used the same general system as for dogwoods
 - Cuttings were traditional stem cuttings, usually from immature suckers
 - Rooting was normally in 38 cell deep trays (5"deep)
 - A combination of IBA and NAA seemed to work best
 - Mid-September dates seemed to offer the most success
 - Cuttings were taken from August through November and in late-January
 - Excess callus was consistently an issue
 - The rooted stick
 - Success with hazelnuts was really not successful with the best treatments achieving around 20% to 50% rooting
 - There was a high degree of varietal variability in success rate
 - Once rooted, they grow exceptionally well

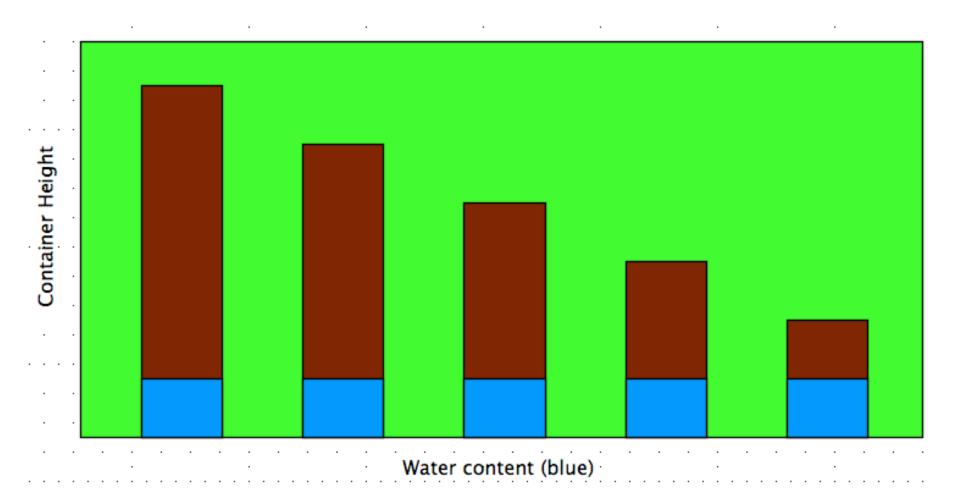
Callus and the rooted stick

Corylus avellana

Vaccinium macrocarpon 'Haines'

- Rutgers researchers

 have developed a new,
 hardier variety of
 cranberry that is able to
 withstand disease and
 has a larger round berry
 with a more even color
 than other varieties
- It's focused on the Craisins[®] market



Propagation of the 'Haines' variety

- Production of tissue cultured shoots with roots has been successful
- Traditional multiplication by softwood cuttings had poor results
- An experiment was set up to evaluate hormone rates
- Ultimately, rooting without hormones was the best treatment as is traditionally done
- The problems were associated with short cells and a perched water table causing cuttings to be stuck into saturated zones

Perched water table

Additional notes and unintended consequences

- Cuttings rooted above 95% without IBA in deep cell trays
- While no hormone was ultimately the preferred treatment, cuttings rooted more aggressively with the use of IBA at 200 to 400 ppm as a spray application
- The unintended consequence is that top growth was effectively inhibited when using foliar applied IBA
 - The higher the rate of IBA applied, the longer it took for top growth to restart
- I was unable to experiment with basal applied IBA as a treatment due to time constraints
 - Economically, it would probably not be cost effective anyway

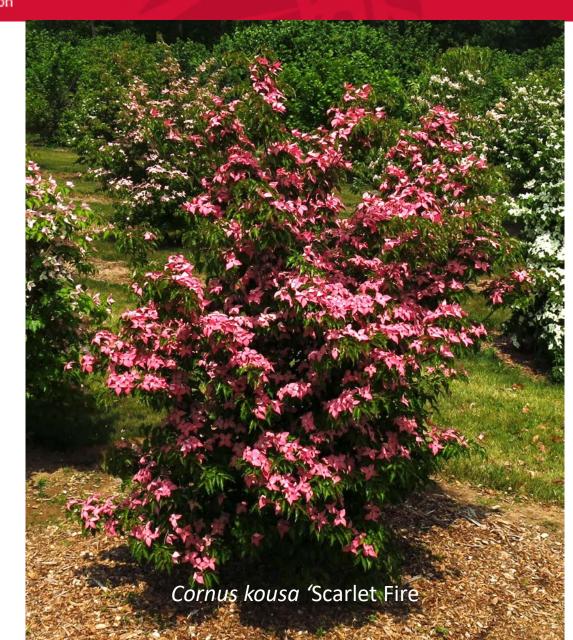
llex x?

llex x? - Surprises happen

- Over 30 years ago while walking through the Rutgers Gardens with Dr. Elwin Orton, I came across a holly tree that had no leaf miner and a glossy ovate leaf with spines
- I asked Dr. Elwin Orton what variety it was and he indicated, colorfully, that years earlier the USDA had initiated a variety evaluation trial and then lost the plot plan
- I took quite a few cuttings and rooted a few using traditional methods of an IBA talc basal dip
- I continue to like the plant so I took cuttings in mid-March in an effort to root some to take with me into my retirement
- Out of 10 cuttings, all rooted.

llex crenata 'Beehive'

- This is a plant that Dr. Elwin Orton selected quite a few years ago
- It's also another that I wanted to have in my retirement landscape
- I took cuttings in mid-March
- Of the 30 cuttings taken, 29 rooted



Moving toward the future

- We are looking at more of the same
 - More regulation
 - Less labor
- That results in the need for
 - More intensive agricultural operations
 - Less employee exposure to risks
 - More mechanization
- This system has lower operational cost
- The system can produce a lot of plants in a small space using LED lighting, non-condensing humidity and bottom heat
- Existing propagation space can be integrated as a step-down system

