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Abstract 

Human artistic creativity typically includes a self-critical aspect that guides 
innovation towards a productive end. It seems likely that truly creative computers 
in the arts will require a similar ability to make aesthetic evaluations. Attempts to 
build such systems, however, have so far mostly failed. 
 
Part of the challenge is understanding the actual mechanisms that underlie 
aesthetics as experienced by humans. To date scientific progress towards such 
understanding has been incomplete. Nevertheless some useful contributions 
include suggested theories from the field of evolutionary psychology, models of 
human esthetics from psychologists such as Arnheim, Berlyne, and Martindale, 
various empirical studies of human aesthetics, and a growing literature in the 
nascent field of neuroaesthetics. 
 
A common thread found in all of the above is the notion of complexity as applied 
to the aesthetic perception of art objects and events. It is suggested here that 
notions of complexity regarding art have lagged the new paradigms offered by 
complexity science, and that a more contemporary conception of complexity can 
integrate and improve older theories of aesthetics. This may be where the path to 
improved computational aesthetic evaluation begins. 
 

1. Introduction 

In previous writing I have outlined the current challenges in evolutionary art 
practice. These include art theoretical issues such as the notion of “truth to 
process.” There is also the technical challenge of vastly increasing the 
complexification capacity of evolutionary systems by introducing multi-level 
emergence. The final challenge is very much related to this paper. It involves 
automating an aesthetic fitness function via computational aesthetic evaluation 
so that the need for human interaction is eliminated. [1, 2] 
 
Typical industrial applications of evolutionary computing search a solution space 
optimizing a predefined fitness function, thus selecting superior candidates from 
the population. Because such a fitness function can be evaluated mechanically 
the system can run numerous generations without human intervention. Attempts 
to create objective fitness functions to judge aesthetics in have, for the most part, 



failed. And successful aesthetic fitness functions have tended to be for very 
specific needs and do not generalize well. [3] Because of this evolutionary 
systems for art and design typically have one or more humans judging each 
individual in the gene pool based on the aesthetic quality they find in the work. 
This creates a “fitness bottleneck” greatly limiting the number of generations that 
can run, which in turn limits the degree to which the art or design can evolve. [4] 
 
Computational aesthetic evaluation remains a significant unsolved problem in the 
field of generative art. And the need for machine evaluation is broader than that 
required for evolutionary approaches. Just as artists and designers exercise 
critical aesthetic judgment in their creative work, it seems reasonable to think that 
a truly creative computer would require some form of self-critical functionality. 
 
A problem quickly encountered when thinking about computational aesthetic 
evaluation is that of human aesthetic evaluation. A recurring theme in aesthetics 
is the balance of order and complexity. For example, it is this balance referred to 
in Coleridge’s notion of beauty as “unity in variety.” To pursue these issues 
scientifically we need a suitable understanding of complexity and order, as well 
as robust psychological models of human aesthetic experience.  
 

2. Models of complexity 

In a 1998 lecture by Feldman and Crutchfield at the Sante Fe Institute well over a 
dozen competing theories of complexity were presented. [5] But there are 
generally two families of complexity models. The first type of model defines 
complexity as being the opposite of order. The second type of model defines 
complexity as being a careful balance of order and disorder. Examples of both 
follow. 

2.1 Shannon Information and Algorithmic Complexity 

In 1948 Claude Shannon launched the field of information theory. [6] Shannon 
was interested in measuring and quantifying communication channels in terms of 
their capacity. His insight was the idea that the more “surprise” a channel 
presents the greater the amount of information delivered.  In addition, the more 
information there is in the channel the less ordered it is, and the less it can be 
compressed without loss.  In Shannon’s paradigm complexity is proportional to 
the amount of information.  And so the more disordered a channel is the more 
complex it is. 
 
For example, a channel that only delivers the letter “a” over and over again offers 
no surprise and delivers no information. It offers a high degree of order and can 
potentially be compressed to a single letter. 
 
A channel that delivers typical English language sentences delivers quite a bit 
more information. But that information is still somewhat redundant and is not 
maximally surprising. For example, if the characters “elephan” come out of the 



channel one expects the next character to be a “t.”  
 
The channel that has maximal information is the one that delivers entirely 
random characters. In such a channel every character matters and if a single one 
is lost it can’t be recovered based on the surrounding characters. A string of 
random characters cannot be compressed without loss and is maximally 
disordered. 
 
Kolmogorov, Solomonoff, and Chaitin independently developed similar ideas in 
the context of computation. In their work algorithmic complexity is proportional to 
the size of the smallest program, including both code and data, that can execute 
a given algorithm. [7-9] 
 
Similar to the above, a program that generates an infinite number of “a” 
characters can be very small. Such a program has very low algorithmic 
complexity. A program that delivers English language text will be larger, but can 
still take advantage of redundancies in the language to achieve some 
compression. A program that delivers an equal number of random characters will 
be larger still because there are no redundancies in strings of random characters. 
 
In short, in the cases of both information theory and algorithmic complexity low 
complexity corresponds to both high degrees of order and compressibility. And 
high complexity corresponds to high degrees of disorder and incompressibility. 
  
From this point of view the most complex music would be white noise and the 
most complex digital image would be random pixels. But to a listener all white 
noise sounds alike, and to a viewer all random pixel images look alike. Is this 
really what we mean when we speak of complexity in the arts? 
 

2.1 Effective Complexity 

With the advent of complexity science as a discipline, defining order and 
complexity has become much more problematic. But for many in the complexity 
science community the notion of complexity as presented above doesn’t square 
with our everyday experience. Arguably the most complex systems we encounter 
are other living organisms. And life requires both order maintaining integrity and 
persistence, and disorder allowing adaptation, change, and flexibility.  
 
Murray Gell-Mann has proposed the notion of effective complexity, a quantity that 
is greatest when there is a balance of order and disorder such as that found in 
the biological world. [10] Unlike information and algorithmic complexity, effective 
complexity is not inversely proportional to order and compressibility. Rather both 
order and disorder contribute to complexity. (See figure 1).  



   
Figure 1 

 

3. Psychological Models of Aesthetics 

In considering human models of aesthetics researchers in the sciences have also 
invoked notions of complexity and its relationship to beauty.  

3.1 Birkhoff’s Aesthetic Measure and Information Aesthetics 

The mathematician George David Birkhoff published a mostly speculative book in 
1933 called “Aesthetic Measure.” He proposed the formula M=O/C where M is 
the measure of aesthetic effectiveness, O is the degree of order, and C is the 
degree of complexity. Birkhoff notes, “The well known aesthetic demand for ‘unity 
in variety’ is evidently closely connected with this formula.” [11] 

But what is complexity? And what is order? It is sometimes forgotten that Birkhoff 
began with an explicit psychoneurological hypothesis. Birkhoff suggested that C 
and O are proxies for the effort required (complexity) and the tension released 
(order) as perceptual cognition does its work. But as a practical matter Birkhoff 
quantified complexity and order using counting operations appropriate to the type 
of work in question. 

For some Birkhoff’s formula seems to measure orderliness rather than beauty, 
and penalizes complexity in a rather unqualified way. [12] 

I would suggest that Birkhoff intuitively equated complexity with disorder in a way 
consistent with the information theory and algorithmic complexity paradigm. And 
indeed, in an attempt to add conceptual and quantitative rigor, Max Bense and 
Abraham Moles restated Birkhoff’s general concept in the context of Shannon’s 
information theory creating the study of information aesthetics. [13, 14] 

3.2 Daniel Berlyne and Arousal Potential 

 Daniel E. Berlyne was a psychologist widely noted for his work regarding 
physiological arousal and aesthetic experience as a neurological process. One of 
Berlyne’s significant contributions is the concept of arousal potential and its 
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relationship to hedonic response.  
 
Arousal potential is a property of stimulus patterns and a measure of the 
capability of that stimulus to arouse the nervous system. Arousal potential has 
three sources; psychophysical properties such as very bright light; ecological 
stimuli such as survival threats like pain; and especially what Berlyne called 
collative effects. Collative effects are combined, comparative, context sensitive 
experiences such as “novelty, surprisingness, complexity, ambiguity, and 
puzzlingness.” Berlyne explicitly notes the correspondence between many of 
these collative effects and concepts from Shannon’s information theory. [15]  
 
Berlyne proposes that the hedonic response, that is the aesthetic sense of 
pleasure and pain, is the result of separate and distinct reward and aversion 
systems. Each of these systems is made up of neurons. The firing thresholds of 
individual neurons will vary according to a Gaussian probability distribution, and 
so the number of neurons responding will increase as a Gaussian cumulative 
distribution. Berlyne further proposes that the reward system requires less 
arousal potential exposure to activate, but that when activated the aversion 
system will produce a larger response. (See figure 2.) 
 

 

 
Figure 2 
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The result is the hedonic response as a summation of the positive reward system 
and the negative aversion system known as the Wundt curve. With no arousal 
potential there is a hedonic response of indifference. As more arousal potential is 
presented the hedonic response increases manifesting itself as a pleasurable 
experience. Beyond a certain point, however, the aversion system begins to 
activate. As the aversion system reaches higher levels of activation the hedonic 
response will lessen and eventually cross into increasing levels of pain. 
For Berlyne increasing collative effects such as novelty and surprise also 
represent increasing complexity in the information theory sense. From this point 
of view works of only moderate information complexity maximize the hedonic 
response. This resonates with the intuitive artistic notion that audiences respond 
best to works that are not so static as to be boring, and yet also operate within 
learned conventions so as to not be experienced as chaotic. But this also means 
there is no obvious mapping of complexity to aesthetic value.  

3.3 Colin Martindale, Prototypicality, and Neural Networks 

Psychologist Colin Martindale published a series of experiments that seemed to 
contradict the arousal potential model of Berlyne. For some Berlyne’s notion of 
collative effects was already problematic. Terms like novelty and complexity were 
slippery both in specification and mechanism.  
 
But Martindale’s primary critique was empirical. For example, contrary to 
Berlyne’s model he found that psychophysical, ecological, and collative 
properties are not additive, nor can they be traded off. And much more often than 
not, empirically measured responses do not follow the inverted-U of the Wundt 
curve but rather are monotonically increasing. Finally, a number of studies 
showed that meaning, rather than pure sensory stimulation, is the primary 
determinant of aesthetic preference. [16-18] In a series of publications Martindale 
developed a natural neural network model of aesthetic perception that is much 
more consistent with experimental observation. [19-21]  
 
Martindale first posits that neurons form nodes that accept, process, and pass on 
stimulation from lower to higher levels of cognition. Shallow sensory and 
perceptual processing tends to be ignored. It is the higher semantic nodes, the 
nodes that encode for meaning, that have the greatest strength in determining 
preference. However, should the work carry significant emotive impact the limbic 
system can become engaged and dominate the subjective aesthetic experience. 
 
Nodes are described as specialized recognition units connected in an excitatory 
manner to nodes corresponding to superordinate categories. Nodes at the same 
level, however, will have a lateral inhibitory effect. Nodes encoding for similar 
stimuli will be physically closer together than unrelated nodes. And so nodes 
encoding similar and related exemplars will tend towards the centre of a 
semantic field. The result is that the overall nervous system will be optimally 
activated when presented an unambiguous stimulus that matches a prototypically 
specific and strong path up the neural hierarchy. (Martindale 1988b) 



Martindale doesn’t reference notions of complexity, but he does make Berlyne’s 
appeal to information theory notions of complexity even more vulnerable. 
Martindale also introduces higher forms of cognition as important and frequently 
dominating aspects of aesthetic experience.  
 
But it is hard to reconcile Martindale’s neural prototypicality and high level 
cognition with known aesthetic experiences such as encounters with the sublime 
or the variety aspect of “unity in variety.”  Prototypicality would seem to shun 
variety and fall short of processing extraordinary sensation as pleasure. 

4. A Neuroaesthetic Complexity Model 

Neuroaesthetics is the study of the neurological bases for all aesthetic behavior 
including the arts. A fundamental issue in neuroaesthetics is fixing the 
appropriate level of inspection for a given question. It may be that the study of 
individual neurons will illuminate certain aspects of aesthetics. Other cases may 
require a systems view of various brain centers and their respective 
interoperation. [22] 
 
In the realm of aesthetics Berlyne, Martindale, and Birkhoff somewhat anticipated 
the neuroaesthetic approach. Each, however, has significant problems. 
 
Both Berlyne and Birkhoff treat order and complexity as opposites. This approach 
convolves complexity with disorder, and eliminates complexity as a direct 
predictor of aesthetic quality.  
 
There is, however, another interpretation. The notion of Gell-Mann’s effective 
complexity was previously mentioned. From that point of view complexity is a 
balance of order and disorder. Comparing Berlyne’s Wundt curve with a plot of 
effective complexity versus order, it is notable that both peak in the middle. This 
suggests that positive hedonic response may be proportional to effective 
complexity.  Effective complexity has, in a sense, the balance of order and 
disorder “built in.” And the idea that extreme order under-stimulates and extreme 
disorder over-stimulates seems quite plausible. 
 
Martindale’s model of aesthetics is based on current thinking about neural 
networks and thus has an intrinsic connection to complexity theory. It engages 
the notion that masses of smaller entities can have local interactions that create 
emergent behavior at a larger scale. What it lacks is an explanation as to why a 
prototypical response should be experienced as pleasurable, and how it is that 
prototype-defying experiences like encounters with the sublime can nevertheless 
bring about intense aesthetic pleasure. 
 
In response to these concerns, I am suggesting that in the context of aesthetics 
the information theory-based notion of complexity be abandoned in favor of 
effective complexity. 
 
There is a plausible evolutionary basis for suggesting that effective complexity 



correlates well with aesthetic value.  Effective complexity is maximized in the 
very biological systems that present us with our greatest opportunities and 
challenges.  And so there is great survival value in having a sensory system 
optimized for the processing of such complexity.   
 
And there is additional survival value in our experiencing such processing as 
being pleasurable. As in other neurological reward systems, pleasure directs our 
attention to where it is needed most. Reward systems for food and sex direct our 
activity towards important survival behaviors. In a similar way our aesthetic 
reward system encourages us to seek stimuli with high effective complexity 
content; the kind of stimuli associated with social interactions and the biological 
world. 
 
This aesthetic reward system is suggested to be a low-level generic feature that 
operates throughout the entire nervous system. However, efficient processing in 
a given region is sufficient to trigger the reward system. This provides a 
corrective to Martindale’s notion of prototypically. What is rewarded isn’t 
matching prototypes per se, but rather the full and efficient exploitation of our 
complexity-tuned neural system. Matching prototypes just happens to be one of 
several ways to do that.  
 
Because it operates in a distributed low-level manner, an aesthetic reward 
system can respond to various levels of cognitive abstraction. Full and efficient 
information processing by a system tuned for complexity is what is rewarded. So, 
for example, aesthetic pleasure could result from the efficient processing of 
complex meanings.  But it could also result from the immersive preverbal 
experience of the sublime.   
 
A widely distributed low-level aesthetic reward system might also explain why 
certain mathematical proofs, or chess moves, or philosophical arguments are 
said to have aesthetic value. Such experiences fully and efficiently engage some 
neural region, and this triggers the aesthetic reward system.  
 
And so to summarize this model of neuroaesthetic complexity: 
 

• Unlike information or algorithmic complexity, effective complexity comes 
with the balance of order and disorder, or expectation and surprise, built 
in. 

 
• There is survival value in gathering as much information as possible short 

of being overstimulated. 
 

• In terms of survival our most difficult transactions are those with other 
complex systems. 

 
• So our nervous system evolved to optimally process information regarding 

other complex systems. 
 



• And a reward system evolved to encourage us to fully utilize that capacity. 
 

• Aesthetic pleasure is what that reward system feels like. 
 

• The balance of unity and variety in aesthetics reflects our nervous system 
being tuned to process effective complexity.  

The adoption of effective complexity as a guiding principle in aesthetics will not 
address all aspects of the computational aesthetic evaluation challenge. Nor will 
this model of a complexity-tuned, efficiency triggered, aesthetic reward system. 
But it seems plausible that they will advance the cause. 



References 
 

[1]	
   Galanter,	
  P.,	
  Truth	
  to	
  Process	
  –	
  Evolutionary	
  Art	
  and	
  the	
  Aesthetics	
  of	
  
Dynamism,	
  in	
  International	
  Conference	
  on	
  Generative	
  Art.	
  2009,	
  Generative	
  Design	
  
Lab,	
  Milan	
  Polytechnic:	
  Milan,	
  Italy.	
  

[2]	
   Galanter,	
  P.,	
  The	
  Problem	
  with	
  Evolutionary	
  Art	
  Is,	
  in	
  Applications	
  of	
  
Evolutionary	
  Computation,	
  Pt	
  Ii,	
  Proceedings,	
  C.	
  DiChio,	
  et	
  al.,	
  Editors.	
  2010,	
  Springer-­‐
Verlag	
  Berlin:	
  Berlin.	
  p.	
  321-­‐330.	
  

[3]	
   Galanter,	
  P.,	
  Computational	
  Aesthetic	
  Evaluation:	
  Past	
  and	
  Future,	
  in	
  Creativity	
  
and	
  Computers,	
  J.	
  McCormack	
  and	
  M.	
  d'Inverno,	
  Editors.	
  in	
  press,	
  Springer:	
  Berlin.	
  

[4]	
   Todd,	
  P.M.	
  and	
  G.M.	
  Werner,	
  Frankensteinian	
  Methods	
  for	
  Evolutionary	
  Music	
  
Composition,	
  in	
  Musical	
  networks:	
  Parallel	
  distributed	
  perception	
  and	
  performance,	
  N.	
  
Griffith	
  and	
  P.M.	
  Todd,	
  Editors.	
  1998,	
  MIT	
  Press/Bradford	
  Books:	
  Cambridge,	
  MA.	
  

[5]	
   Feldman	
  ,	
  D.P.	
  and	
  J.	
  Crutchfield	
  A	
  Survey	
  of	
  “Complexity	
  Measures”.	
  1998,	
  
Santa	
  Fe	
  Institute:	
  Santa	
  Fe.	
  

[6]	
   Shannon,	
  C.E.,	
  A	
  mathematical	
  theory	
  of	
  communication.	
  The	
  Bell	
  System	
  
Technical	
  Journal,	
  1948.	
  27(3):	
  p.	
  379-­‐-­‐423.	
  

[7]	
   Kolmogorov,	
  A.N.,	
  Three	
  approaches	
  to	
  the	
  quantitative	
  definition	
  of	
  
information.	
  Problems	
  in	
  Information	
  Transmission,	
  1965.	
  1:	
  p.	
  1-­‐7.	
  

[8]	
   Solomonoff	
  ,	
  R.J.,	
  A	
  formal	
  theory	
  of	
  inductive	
  inference,	
  Part	
  I	
  and	
  Part	
  II.	
  
Information	
  and	
  Control,	
  1964.	
  7:	
  p.	
  1-­‐22,	
  224-­‐254.	
  

[9]	
   Chaitin,	
  G.J.,	
  On	
  the	
  length	
  of	
  programs	
  for	
  computing	
  finite	
  binary	
  sequences	
  
Journal	
  of	
  the	
  ACM,	
  1966(13):	
  p.	
  547-­‐569.	
  

[10]	
   Gell-­‐Mann,	
  M.,	
  What	
  is	
  complexity?	
  Complexity	
  –	
  John	
  Whiley	
  and	
  Sons,	
  1995.	
  
1(1):	
  p.	
  16-­‐19.	
  

[11]	
   Birkhoff,	
  G.D.,	
  Aesthetic	
  measure.	
  1933,	
  Cambridge,	
  Mass.,:	
  Harvard	
  
University	
  Press.	
  xii,	
  1	
  p.,	
  2	
  l.,	
  3-­‐225,	
  1	
  p.	
  

[12]	
   Scha,	
  R.	
  and	
  R.	
  Bod,	
  Computationele	
  Esthetica.	
  Informatie	
  en	
  Informatiebeleid,	
  
1993.	
  11(1):	
  p.	
  54-­‐63.	
  

[13]	
   Bense,	
  M.,	
  Aesthetica;	
  Einführung	
  in	
  die	
  neue	
  Aesthetik.	
  1965,	
  Baden-­‐Baden,:	
  
Agis-­‐Verlag.	
  348	
  p.	
  

[14]	
   Moles,	
  A.A.,	
  Information	
  theory	
  and	
  esthetic	
  perception.	
  1966,	
  Urbana,:	
  
University	
  of	
  Illinois	
  Press.	
  217.	
  

[15]	
   Berlyne,	
  D.E.,	
  Aesthetics	
  and	
  psychobiology.	
  1971,	
  New	
  York,:	
  Appleton-­‐
Century-­‐Crofts.	
  xiv,	
  336	
  p.	
  



[16]	
   Martindale,	
  C.,	
  K.	
  Moore,	
  and	
  J.	
  Borkum,	
  Aesthetic	
  Preference:	
  Anomalous	
  
Findings	
  for	
  Berlyne's	
  Psychobiological	
  Theory.	
  The	
  American	
  Journal	
  of	
  Psychology,	
  
1990.	
  103(1):	
  p.	
  53-­‐80.	
  

[17]	
   Martindale,	
  C.,	
  K.	
  Moore,	
  and	
  K.	
  Anderson,	
  The	
  Effect	
  Of	
  Extraneous	
  
Stimulation	
  On	
  Aesthetic	
  Preference.	
  Empirical	
  Studies	
  of	
  the	
  Arts,	
  2005.	
  23(2):	
  p.	
  
83-­‐91.	
  

[18]	
   Martindale,	
  C.,	
  Relationship	
  of	
  preference	
  judgements	
  to	
  typicality,	
  novelty,	
  and	
  
mere	
  exposure.	
  Empirical	
  Studies	
  of	
  the	
  Arts,	
  1988.	
  6(1):	
  p.	
  79-­‐96.	
  

[19]	
   Martindale,	
  C.,	
  Cognition	
  and	
  consciousness.	
  The	
  Dorsey	
  series	
  in	
  psychology.	
  
1981,	
  Homewood,	
  Ill.:	
  Dorsey	
  Press.	
  xiii,	
  462	
  p.	
  

[20]	
   Martindale,	
  C.,	
  The	
  pleasures	
  of	
  thought:	
  A	
  theory	
  of	
  cognitive	
  hedonics.	
  
Journal	
  of	
  Mind	
  and	
  Behavior,	
  1984.	
  5(1):	
  p.	
  49-­‐80.	
  

[21]	
   Martindale,	
  C.,	
  Cognitive	
  psychology	
  :	
  a	
  neural-­network	
  approach.	
  1991,	
  
Pacific	
  Grove,	
  California:	
  Brooks/Cole	
  Publishing	
  Company.	
  xxi,	
  282	
  p.	
  

[22]	
   Skov,	
  M.	
  and	
  O.	
  Vartanian,	
  Introduction	
  -­	
  What	
  is	
  neuroaesthetics?,	
  in	
  
Neuroaesthetics	
  -­	
  Foundations	
  and	
  frontiers	
  in	
  aesthetics,	
  M.	
  Skov	
  and	
  O.	
  Vartanian,	
  
Editors.	
  2009,	
  Baywood	
  Pub.:	
  Amityville,	
  N.Y.	
  p.	
  iv,	
  302	
  p.	
  
 
 
 


