
RN-08625-v2.0 _v01 | August 2024

NVIDIA Multi-Instance GPU User
Guide

User Guide

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Supported GPUs.. 3

Chapter 3. Supported Configurations... 4

Chapter 4. Virtualization.. 5

Chapter 5. Concepts..6
5.1. Terminology...6

5.2. Partitioning..7

5.3. CUDA Concurrency Mechanisms..12

Chapter 6. Deployment Considerations... 14
6.1. System Considerations... 14

6.2. Application Considerations..15

Chapter 7. MIG Device Names... 16
7.1. Device Enumeration... 17

7.2. CUDA Device Enumeration..17

Chapter 8. Supported MIG Profiles..19
8.1. A30 MIG Profiles..19

8.2. A100 MIG Profiles... 20

8.3. H100 MIG Profiles...21

8.4. H200 MIG Profiles...24

Chapter 9. Getting Started with MIG..27
9.1. Prerequisites.. 27

9.2. Enable MIG Mode.. 27

9.2.1. GPU Reset on Hopper+ GPUs..28

9.2.2. GPU Reset on Ampere GPUs..28

9.2.3. Driver Clients...29

9.3. List GPU Instance Profiles...30

9.4. Creating GPU Instances... 31

9.5. Running CUDA Applications on Bare-Metal...34

9.5.1. GPU Instances.. 34

9.5.2. Compute Instances.. 35

9.6. Destroying GPU Instances...37

9.7. Monitoring MIG Devices...38

9.8. MIG with CUDA MPS... 39

9.9. Running CUDA Applications as Containers..42

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | iii

9.9.1. Install Docker.. 42

9.9.2. Install NVIDIA Container Toolkit..42

9.9.3. Running Containers..43

9.10. MIG with Kubernetes..45

9.11. MIG with Slurm..45

Chapter 10. Device Nodes and Capabilities... 46
10.1. /dev based nvidia-capabilities... 47

10.2. /proc based nvidia-capabilities (**Deprecated**)...50

Chapter 11. Changelog..52

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | iv

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 1

Chapter 1. Introduction

The new Multi-Instance GPU (MIG) feature allows GPUs (starting with NVIDIA Ampere
architecture) to be securely partitioned into up to seven separate GPU Instances for
CUDA applications, providing multiple users with separate GPU resources for optimal
GPU utilization. This feature is particularly beneficial for workloads that do not fully
saturate the GPU's compute capacity and therefore users may want to run different
workloads in parallel to maximize utilization.

For Cloud Service Providers (CSPs), who have multi-tenant use cases, MIG ensures one
client cannot impact the work or scheduling of other clients, in addition to providing
enhanced isolation for customers.

With MIG, each instance's processors have separate and isolated paths through the
entire memory system - the on-chip crossbar ports, L2 cache banks, memory controllers,
and DRAM address busses are all assigned uniquely to an individual instance. This
ensures that an individual user's workload can run with predictable throughput and
latency, with the same L2 cache allocation and DRAM bandwidth, even if other tasks
are thrashing their own caches or saturating their DRAM interfaces. MIG can partition
available GPU compute resources (including streaming multiprocessors or SMs, and
GPU engines such as copy engines or decoders), to provide a defined quality of service
(QoS) with fault isolation for different clients such as VMs, containers or processes. MIG
enables multiple GPU Instances to run in parallel on a single, physical NVIDIA Ampere
GPU.

With MIG, users will be able to see and schedule jobs on their new virtual GPU Instances
as if they were physical GPUs. MIG works with Linux operating systems, supports
containers using Docker Engine, with support for Kubernetes and virtual machines using
hypervisors such as Red Hat Virtualization and VMware vSphere.

MIG supports the following deployment configurations:

‣ Bare-metal, including containers

‣ GPU pass-through virtualization to Linux guests on top of supported hypervisors

‣ vGPU on top of supported hypervisors

MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single GPU, while
preserving the isolation guarantees that vGPU provides. For more information on GPU
partitioning using vGPU and MIG, refer to the technical brief.

Introduction

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 2

Figure 1. MIG Overview

The purpose of this document is to introduce the concepts behind MIG, deployment
considerations and provide examples of MIG management to demonstrate how users
can run CUDA applications on MIG supported GPUs.

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 3

Chapter 2. Supported GPUs

MIG is supported on GPUs starting with the NVIDIA Ampere generation (i.e. GPUs with
compute capability >= 8.0). The following table provides a list of supported GPUs:

Table 1. Supported GPU Products

Product Architecture Microarchitecture
Compute
Capability Memory Size

Max Number
of Instances

H100-SXM5 Hopper GH100 9.0 80GB 7

H100-PCIE Hopper GH100 9.0 80GB 7

H100-SXM5 Hopper GH100 9.0 94GB 7

H100-PCIE Hopper GH100 9.0 94GB 7

H100 on
GH200 Hopper GH100 9.0 96GB 7

H200-SXM5 Hopper GH100 9.0 141GB 7

A100-SXM4 NVIDIA
Ampere GA100 8.0 40GB 7

A100-SXM4 NVIDIA
Ampere GA100 8.0 80GB 7

A100-PCIE NVIDIA
Ampere GA100 8.0 40GB 7

A100-PCIE NVIDIA
Ampere GA100 8.0 80GB 7

A30 NVIDIA
Ampere GA100 8.0 24GB 4

Additionally, MIG is supported on systems that include the supported products above
such as DGX, DGX Station and HGX.

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 4

Chapter 3. Supported Configurations

Supported deployment configurations with MIG include

‣ Bare-metal, including containers and Kubernetes

‣ GPU pass-through virtualization to Linux guests on top of supported hypervisors

‣ vGPU on top of supported hypervisors

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 5

Chapter 4. Virtualization

MIG can be used with two types of virtualization:

‣ Under Linux guests on supported hypervisors, when MIG-supported GPUs are in GPU
pass-through, the same workflows, tools and profiles available on bare-metal can be
used.

‣ MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single MIG-
supported GPU, while preserving the isolation guarantees that vGPU provides. To
configure a GPU for use with vGPU VMs, refer to the chapter in the vGPU Software
User Guide. Refer also to the technical brief for more information on GPU partitioning
with vGPU.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#configuring-a-gpu-for-mig-backed-vgpus

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 6

Chapter 5. Concepts

5.1. Terminology
This section introduces some terminology used to describe the concepts behind MIG.

Streaming Multiprocessor

A streaming multiprocessor (SM) executes compute instructions on the GPU.

GPU Context

A GPU context is analogous to a CPU process. It encapsulates all the resources
necessary to execute operations on the GPU, including a distinct address space, memory
allocations, etc. A GPU context has the following properties:

‣ Fault isolation

‣ Individually scheduled

‣ Distinct address space

GPU Engine

A GPU engine is what executes work on the GPU. The most commonly used engine is
the Compute/Graphics engine that executes the compute instructions. Other engines
include the copy engine (CE) that is responsible for performing DMAs, NVDEC for video
decoding, NVENC for encoding, etc. Each engine can be scheduled independently and
execute work for different GPU contexts.

GPU Memory Slice

A GPU memory slice is the smallest fraction of the GPU's memory, including the
corresponding memory controllers and cache. A GPU memory slice is roughly one eighth
of the total GPU memory resources, including both capacity and bandwidth.

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 7

GPU SM Slice

A GPU SM slice is the smallest fraction of the SMs on the GPU. A GPU SM slice is roughly
one seventh of the total number of SMs available in the GPU when configured in MIG
mode.

GPU Slice

A GPU slice is the smallest fraction of the GPU that combines a single GPU memory slice
and a single GPU SM slice.

GPU Instance

A GPU Instance (GI) is a combination of GPU slices and GPU engines (DMAs, NVDECs,
etc.). Anything within a GPU instance always shares all the GPU memory slices and other
GPU engines, but it's SM slices can be further subdivided into compute instances (CI).
A GPU instance provides memory QoS. Each GPU slice includes dedicated GPU memory
resources which limit both the available capacity and bandwidth, and provide memory
QoS. Each GPU memory slice gets 1/8 of the total GPU memory resources and each GPU
SM slice gets 1/7 of the total number of SMs.

Compute Instance

A GPU instance can be subdivided into multiple compute instances. A Compute Instance
(CI) contains a subset of the parent GPU instance's SM slices and other GPU engines
(DMAs, NVDECs, etc.). The CIs share memory and engines.

5.2. Partitioning
Using the concepts introduced above, this section provides an overview of how the user
can create various partitions on the GPU. For illustration purposes, the document will use
the A100-40GB as an example, but the process is similar for other GPUs that support
MIG.

GPU Instance

Partitioning of the GPU happens using memory slices, so the A100-40GB GPU can be
thought of having 8x5GB memory slices and 7 SM slices as shown in the diagram below.

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 8

Figure 2. Available Slices on A100

As explained above, then to create a GPU Instance (GI) requires combining some number
of memory slices with some number of compute slices. In the diagram below, a 5GB
memory slice is combined with 1 compute slice to create a 1g.5gb GI profile:

Figure 3. Combining Memory and Compute Slices

Similarly, 4x5GB memory slices can be combined with 4x1 compute slices to create the
4g.5gb GI profile:

Figure 4. Combining Memory and Compute Slices

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 9

Compute Instance

The compute slices of a GPU Instance can be further subdivided into multiple Compute
Instances (CI), with the CIs sharing the engines and memory of the parent GI, but each CI
has dedicated SM resources.

Using the same 4g.20gb example above, a CI may be created to consume only the first
compute slice as shown below:

Figure 5. Combining Memory and Compute Slices

In this case, 4 different CIs can be created by choosing any of the compute slices. Two
compute slices can also be combined together to create a 2c.4g.20gb profile:

Figure 6. Combining Memory and Compute Slices

In this example, 3 compute slices can also be combined to create a 3c.4g.20gb profile
or all 4 can be combined to create a 4c.4g.20gb profile. When all 4 compute slices are
combined, the profile is simply referred to as the 4g.20gb profile.

Refer to the sections on the canonical naming scheme and the CUDA device
terminology.

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 10

Profile Placement

The number of slices that a GI can be created with is not arbitrary. The NVIDIA driver
APIs provide a number of “GPU Instance Profiles” and users can create GIs by specifying
one of these profiles.

On a given GPU, multiple GIs can be created from a mix and match of these profiles, so
long as enough slices are available to satisfy the request.

Note:

The table below shows the profile names on the A100-SXM4-40GB product. For A100-
SXM4-80GB, the profile names will change according to the memory proportion - for
example, 1g.10gb, 2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb respectively.

For a list of all supported combinations of profiles on MIG-enabled GPUs, refer to the
section on supported profiles.

Table 2. GPU Instance Profiles on A100

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.5gb

1/8 1/7

0
NVDECs /0

JPEG /0
OFA

1/8 1 7

MIG
1g.5gb
+me

1/8 1/7

1
NVDEC /1
JPEG /1

OFA

1/8 1
1 (A single 1g

profile can include
media extensions)

MIG
1g.10gb

1/8 1/7

1
NVDECs /0

JPEG /0
OFA

1/8 1 4

MIG
2g.10gb

2/8 2/7

1
NVDECs /0

JPEG /0
OFA

2/8 2 3

MIG
3g.20gb

4/8 3/7
2

NVDECs /0
4/8 3 2

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 11

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

JPEG /0
OFA

MIG
4g.20gb

4/8 4/7

2
NVDECs /0

JPEG /0
OFA

4/8 4 1

MIG
7g.40gb

Full 7/7

5
NVDECs /1

JPEG /1
OFA

Full 7 1

The diagram below shows a pictorial representation of how to build all valid combinations
of GPU instances.

Figure 7. MIG Profiles on A100

In this diagram, a valid combination can be built by starting with an instance profile on
the left and combining it with other instance profiles as you move to the right, such that
no two profiles overlap vertically. For a list of all supported combinations and placements
of profiles on A100 and A30, refer to the section on supported profiles.

Note that prior to NVIDIA driver release R510, the combination of a (4 memory, 4
compute) and a (4 memory, 3 compute) profile was not supported. This restriction no
longer applies on newer drivers.

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 12

Figure 8. Profile Placements on A100

Note that the diagram represents the physical layout of where the GPU Instances will
exist once they are instantiated on the GPU. As GPU Instances are created and destroyed
at different locations, fragmentation can occur, and the physical position of one GPU
Instance will play a role in which other GPU Instances can be instantiated next to it.

5.3. CUDA Concurrency Mechanisms
MIG has been designed to be largely transparent to CUDA applications - so that the
CUDA programming model remains unchanged to minimize programming effort. CUDA
already exposes multiple technologies for running work in parallel on the GPU and it is
worthwhile showcasing how these technologies compare to MIG. Note that streams
and MPS are part of the CUDA programming model and thus work when used with GPU
Instances.

CUDA Streams are a CUDA Programming model feature where, in a CUDA application,
different work can be submitted to independent queues and be processed
independently by the GPU. CUDA streams can only be used within a single process and
don't offer much isolation - the address space is shared, the SMs are shared, the GPU
memory bandwidth, caches and capacity are shared. And lastly any errors affect all the
streams and the whole process.

MPS is the CUDA Multi-Process service. It allows co-operative multi process applications
to share compute resources on the GPU. It's commonly used by MPI jobs that cooperate,
but it has also been used for sharing the GPU resources among unrelated applications,
while accepting the challenges that such a solution brings. MPS currently does not offer
error isolation between clients and while streaming multiprocessors used by each MPS
client can be optionally limited to a percentage of all SMs, the scheduling hardware is still
shared. Memory bandwidth, caches and capacity are all shared between MPS clients.

Concepts

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 13

Lastly, MIG is the new form of concurrency offered by NVIDIA GPUs while addressing
some of the limitations with the other CUDA technologies for running parallel work.

Table 3. CUDA Concurrency Mechanisms

Streams MPS MIG

Partition Type Single Process Logical Physical

Max Partitions Unlimited 48 7

SM Performance
Isolation No Yes (by percentage,

not partitioning) Yes

Memory Protection No Yes Yes

Memory Bandwidth
QoS No No Yes

Error Isolation No No Yes

Cross-Partition
Interop Always IPC Limited IPC

Reconfigure Dynamic Process Launch When Idle

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 14

Chapter 6. Deployment
Considerations

MIG functionality is provided as part of the NVIDIA GPU driver.

‣ H100 GPUs are supported starting with CUDA 12/R525 drivers.

‣ A100 and A30 GPUs are supported starting with CUDA 11/R450 drivers.

6.1. System Considerations
The following system considerations are relevant for when the GPU is in MIG mode.

‣ MIG is supported only on Linux operating system distributions supported by CUDA.
It is also recommended to use the latest NVIDIA Datacenter Linux. Refer to the quick
start guide.

Note:

Also note the device nodes and nvidia-capabilities for exposing the MIG devices.
The /proc mechanism for system-level interfaces is deprecated as of 450.51.06 and it
is recommended to use the /dev based system-level interface for controlling access
mechanisms of MIG devices through cgroups. This functionality is available starting
with 450.80.02+ drivers.

‣ Supported configurations include

‣ Bare-metal, including containers

‣ GPU pass-through virtualization to Linux guests on top of supported hypervisors

‣ vGPU on top of supported hypervisors

MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single A100, while
preserving the isolation guarantees that vGPU provides. For more information on GPU
partitioning using vGPU and MIG, refer to the technical brief.

‣ Setting MIG mode on the A100/A30 requires a GPU reset (and thus super-user
privileges). Once the GPU is in MIG mode, instance management is then dynamic.
Note that the setting is on a per-GPU basis.

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

Deployment Considerations

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 15

‣ On NVIDIA Ampere GPUs, similar to ECC mode, MIG mode setting is persistent across
reboots until the user toggles the setting explicitly

‣ All daemons holding handles on driver modules need to be stopped before MIG
enablement.

‣ This is true for systems such as DGX which may be running system health monitoring
services such as nvsm or GPU health monitoring or telemetry services such as
DCGM.

‣ Toggling MIG mode requires the CAP_SYS_ADMIN capability. Other MIG management,
such as creating and destroying instances, requires superuser by default, but can be
delegated to non-privileged users by adjusting permissions to MIG capabilities in /
proc/.

6.2. Application Considerations
Users should note the following considerations when the A100 is in MIG mode:

‣ No graphics APIs are supported (e.g. OpenGL, Vulkan etc.)

‣ No GPU to GPU P2P (either PCIe or NVLink) is supported

‣ CUDA applications treat a Compute Instance and its parent GPU Instance as a single
CUDA device. See this section on device enumeration by CUDA

‣ CUDA IPC across GPU instances is not supported. CUDA IPC across Compute
instances is supported

‣ CUDA debugging (e.g. using cuda-gdb) and memory/race checking (e.g. using cuda-
memcheck or compute-sanitizer) is supported

‣ CUDA MPS is supported on top of MIG. The only limitation is that the maximum
number of clients (48) is lowered proportionally to the Compute Instance size

‣ GPUDirect RDMA is supported when used from GPU Instances

https://docs.nvidia.com/datacenter/nvsm/index.html
https://docs.nvidia.com/datacenter/dcgm/index.html

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 16

Chapter 7. MIG Device Names

By default, a MIG device consists of a single “GPU Instance” and a single “Compute
Instance”. The table below highlights a naming convention to refer to a MIG device by
its GPU Instance's compute slice count and its total memory in GB (rather than just its
memory slice count).

When only a single CI is created (that consumes the entire compute capacity of the GI),
then the CI sizing is implied in the device name.

Figure 9. MIG Device Name

Note:

The description below shows the profile names on the A100-SXM4-40GB product. For
A100-SXM4-80GB, the profile names will change according to the memory proportion - for
example, 1g.10gb, 2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb respectively.

Table 4. Device names when using a single CI

Memory 20gb 10gb 5gb

GPU Instance 3g 2g 1g

Compute
Instance 3c 2c 1c

MIG Device 3g.20gb 2g.10gb 1g.5gb

GPC GPC GPC GPC GPC GPC

Each GI can be further sub-divided into multiple CIs as required by users depending on
their workloads. The table below highlights what the name of a MIG device would look

MIG Device Names

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 17

like in this case. The example shown is for subdividing a 3g.20gb device into a set of sub-
devices with different Compute Instance slice counts.

Table 5. Device names when using multiple CIs

Memory 20gb 20gb

GPU Instance 3g 3g

Compute
Instance 1c 1c 1c 2c 1c

MIG Device 1c.3g.20gb 1c.3g.20gb 1c.3g.20gb 2c.3g.20gb 1c.3g.20gb

GPC GPC GPC GPC GPC GPC

7.1. Device Enumeration
GPU Instances (GIs) and Compute Instances (CIs) are enumerated in the new /proc
filesystem layout for MIG

$ ls -l /proc/driver/nvidia-caps/
-r--r--r-- 1 root root 0 Nov 21 21:22 mig-minors
-r--r--r-- 1 root root 0 Nov 21 21:22 nvlink-minors
-r--r--r-- 1 root root 0 Nov 21 21:22 sys-minors

The corresponding device nodes (in mig-minors) are created under /dev/nvidia-caps.
Refer to the chapter on device nodes and capabilities for more information.

7.2. CUDA Device Enumeration
MIG supports running CUDA applications by specifying the CUDA device on which the
application should be run. With CUDA 11/R450 and CUDA 12/R525, only enumeration of
a single MIG instance is supported. In other words, regardless of how many MIG devices
are created (or made available to a container), a single CUDA process can only enumerate
a single MIG device.

CUDA applications treat a CI and its parent GI as a single CUDA device. CUDA is limited
to use a single CI and will pick the first one available if several of them are visible. To
summarize, there are two constraints:

 1. CUDA can only enumerate a single compute instance
 2. CUDA will not enumerate non-MIG GPU if any compute instance is enumerated on

any other GPU

Note that these constraints may be relaxed in future NVIDIA driver releases for MIG.

CUDA_VISIBLE_DEVICES has been extended to add support for MIG. Depending on the
driver versions being used, two formats are supported:

MIG Device Names

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 18

 1. With drivers >= R470 (470.42.01+), each MIG device is assigned a GPU UUID starting
with MIG-<UUID>.

 2. With drivers < R470 (e.g. R450 and R460), each MIG device is enumerated by
specifying the CI and the corresponding parent GI. The format follows this
convention: MIG-<GPU-UUID>/<GPU instance ID>/<compute instance ID>.

Note:

With the R470 NVIDIA datacenter drivers (470.42.01+), the example below shows how
MIG devices are assigned GPU UUIDs in an 8-GPU system with each GPU configured
differently.

$ nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-5d5ba0d6-d33d-2b2c-524d-9e3d8d2b8a77)
 MIG 1g.5gb Device 0: (UUID: MIG-c6d4f1ef-42e4-5de3-91c7-45d71c87eb3f)
 MIG 1g.5gb Device 1: (UUID: MIG-cba663e8-9bed-5b25-b243-5985ef7c9beb)
 MIG 1g.5gb Device 2: (UUID: MIG-1e099852-3624-56c0-8064-c5db1211e44f)
 MIG 1g.5gb Device 3: (UUID: MIG-8243111b-d4c4-587a-a96d-da04583b36e2)
 MIG 1g.5gb Device 4: (UUID: MIG-169f1837-b996-59aa-9ed5-b0a3f99e88a6)
 MIG 1g.5gb Device 5: (UUID: MIG-d5d0152c-e3f0-552c-abee-ebc0195e9f1d)
 MIG 1g.5gb Device 6: (UUID: MIG-7df6b45c-a92d-5e09-8540-a6b389968c31)
GPU 1: A100-SXM4-40GB (UUID: GPU-0aa11ebd-627f-af3f-1a0d-4e1fd92fd7b0)
 MIG 2g.10gb Device 0: (UUID: MIG-0c757cd7-e942-5726-a0b8-0e8fb7067135)
 MIG 2g.10gb Device 1: (UUID: MIG-703fb6ed-3fa0-5e48-8e65-1c5bdcfe2202)
 MIG 2g.10gb Device 2: (UUID: MIG-532453fc-0faa-5c3c-9709-a3fc2e76083d)
GPU 2: A100-SXM4-40GB (UUID: GPU-08279800-1cbe-a71d-f3e6-8f67e15ae54a)
 MIG 3g.20gb Device 0: (UUID: MIG-aa232436-d5a6-5e39-b527-16f9b223cc46)
 MIG 3g.20gb Device 1: (UUID: MIG-3b12da37-7fa2-596c-8655-62dab88f0b64)
GPU 3: A100-SXM4-40GB (UUID: GPU-71086aca-c858-d1e0-aae1-275bed1008b9)
 MIG 7g.40gb Device 0: (UUID: MIG-3e209540-03e2-5edb-8798-51d4967218c9)
GPU 4: A100-SXM4-40GB (UUID: GPU-74fa9fb7-ccf6-8234-e597-7af8ace9a8f5)
 MIG 1c.3g.20gb Device 0: (UUID: MIG-79c62632-04cc-574b-af7b-cb2e307120d8)
 MIG 1c.3g.20gb Device 1: (UUID: MIG-4b3cc0fd-6876-50d7-a8ba-184a86e2b958)
 MIG 1c.3g.20gb Device 2: (UUID: MIG-194837c7-0476-5b56-9c45-16bddc82e1cf)
 MIG 1c.3g.20gb Device 3: (UUID: MIG-291820db-96a4-5463-8e7b-444c2d2e3dfa)
 MIG 1c.3g.20gb Device 4: (UUID: MIG-5a97e28a-7809-5e93-abae-c3818c5ea801)
 MIG 1c.3g.20gb Device 5: (UUID: MIG-3dfd5705-b18a-5a7c-bcee-d03a0ccb7a96)
GPU 5: A100-SXM4-40GB (UUID: GPU-3301e6dd-d38f-0eb5-4665-6c9659f320ff)
 MIG 4g.20gb Device 0: (UUID: MIG-6d96b9f9-960e-5057-b5da-b8a35dc63aa8)
GPU 6: A100-SXM4-40GB (UUID: GPU-bb40ed7d-cbbb-d92c-50ac-24803cda52c5)
 MIG 1c.7g.40gb Device 0: (UUID: MIG-66dd01d7-8cdb-5a13-a45d-c6eb0ee11810)
 MIG 2c.7g.40gb Device 1: (UUID: MIG-03c649cb-e6ae-5284-8e94-4b1cf767e06c)
 MIG 3c.7g.40gb Device 2: (UUID: MIG-8abf68e0-2808-525e-9133-ba81701ed6d3)
GPU 7: A100-SXM4-40GB (UUID: GPU-95fac899-e21a-0e44-b0fc-e4e3bf106feb)
 MIG 4g.20gb Device 0: (UUID: MIG-219c765c-e07f-5b85-9c04-4afe174d83dd)
 MIG 2g.10gb Device 1: (UUID: MIG-25884364-137e-52cc-a7e4-ecf3061c3ae1)
 MIG 1g.5gb Device 2: (UUID: MIG-83e71a6c-f0c3-5dfc-8577-6e8b17885e1f)

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 19

Chapter 8. Supported MIG Profiles

This section provides an overview of the supported profiles and possible placements of
the MIG profiles on supported GPUs.

8.1. A30 MIG Profiles
The following diagram shows the profiles supported on the NVIDIA A30:

Figure 10. Profiles on A30

The table below shows the supported profiles on the A30-24GB product.

Table 6. GPU Instance Profiles on A30

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.6gb 1/4 1/4

0
NVDECs /0

JPEG /0
OFA

1/4 1 4

MIG
1g.6gb
+me 1/4 1/4

1
NVDEC /1
JPEG /1

OFA

1/4 1
1 (A single 1g

profile can include
media extensions)

MIG
2g.12gb 2/4 2/4

2
NVDECs /0

JPEG /0
OFA

2/4 2 2

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 20

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
2g.12gb
+me 2/4 2/4

2
NVDECs /1

JPEG /1
OFA

2/4 2
1 (A single 2g

profile can include
media extensions)

MIG
4g.24gb Full 4/4

4
NVDECs /1

JPEG /1
OFA

Full 4 1

Note:

The 1g.6gb+me profile is only available starting with R470 drivers.

The 2g.12gb+me profile is only available starting with R525 drivers.

8.2. A100 MIG Profiles
The following diagram shows the profiles supported on the NVIDIA A100:

Figure 11. Profiles on A100

The table below shows the supported profiles on the A100-SXM4-40GB product. For
A100-SXM4-80GB, the profile names will change according to the memory proportion
- for example, 1g.10gb, 1g.10gb+me, 1g.20gb, 2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb
respectively.

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 21

Table 7. GPU Instance Profiles on A100

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.5gb 1/8 1/7

0
NVDECs /0

JPEG /0
OFA

1/8 1 7

MIG
1g.5gb
+me 1/8 1/7

1
NVDEC /1
JPEG /1

OFA

1/8 1
1 (A single 1g

profile can include
media extensions)

MIG
1g.10gb 1/8 1/7

1
NVDECs /0

JPEG /0
OFA

1/8 1 4

MIG
2g.10gb 2/8 2/7

1
NVDECs /0

JPEG /0
OFA

2/8 2 3

MIG
3g.20gb 4/8 3/7

2
NVDECs /0

JPEG /0
OFA

4/8 3 2

MIG
4g.20gb 4/8 4/7

2
NVDECs /0

JPEG /0
OFA

4/8 4 1

MIG
7g.40gb Full 7/7

5
NVDECs /1

JPEG /1
OFA

Full 7 1

Note:

The 1g.5gb+me profile is only available starting with R470 drivers.

The 1g.10gb profile is only available starting with R525 drivers.

8.3. H100 MIG Profiles
The following diagram shows the profiles supported on the NVIDIA H100:

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 22

Figure 12. Profiles on H100

The table below shows the supported profiles on the H100 80GB product (PCIe and
SXM5).

Table 8. GPU Instance Profiles on H100

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.10gb 1/8 1/7

1
NVDECs /1

JPEG /0
OFA

1/8 1 7

MIG
1g.10gb
+me 1/8 1/7

1
NVDEC /1
JPEG /1

OFA

1/8 1
1 (A single 1g

profile can include
media extensions)

MIG
1g.20gb 1/4 1/7

1
NVDECs /1

JPEG /0
OFA

1/8 1 4

MIG
2g.20gb 2/8 2/7

2
NVDECs /2

JPEG /0
OFA

2/8 2 3

MIG
3g.40gb 4/8 3/7

3
NVDECs /3

JPEG /0
OFA

4/8 3 2

MIG
4g.40gb 4/8 4/7

4
NVDECs /4

JPEG /0
OFA

4/8 4 1

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 23

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
7g.80gb Full 7/7

7
NVDECs /7

JPEG /1
OFA

Full 8 1

The table below shows the supported profiles on the H100 94GB product (PCIe and
SXM5).

Profile
Name

Fraction of
Memory

Fraction of
SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.12gb

1/8 1/7 1
NVDECs /1
JPEG /0
OFA

1/8 1 7

MIG
1g.12gb
+me

1/8 1/7 1 NVDEC /1
JPEG /1
OFA

1/8 1 1 (A single
1g profile
can include
media
extensions)

MIG
1g.24gb

1/4 1/7 1
NVDECs /1
JPEG /0
OFA

1/8 1 4

MIG
2g.24gb

2/8 2/7 2
NVDECs /2
JPEG /0
OFA

2/8 2 3

MIG
3g.47gb

4/8 3/7 3
NVDECs /3
JPEG /0
OFA

4/8 3 2

MIG
4g.47gb

4/8 4/7 4
NVDECs /4
JPEG /0
OFA

4/8 4 1

MIG
7g.94gb

Full 7/7 7
NVDECs /7
JPEG /1
OFA

Full 8 1

The table below shows the supported profiles on the H100 96GB product (H100 on
GH200).

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 24

Profile
Name

Fraction of
Memory

Fraction of
SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.12gb

1/8 1/7 1
NVDECs /1
JPEG /0
OFA

1/8 1 7

MIG
1g.12gb
+me

1/8 1/7 1 NVDEC /1
JPEG /1
OFA

1/8 1 1 (A single
1g profile
can include
media
extensions)

MIG
1g.24gb

1/4 1/7 1
NVDECs /1
JPEG /0
OFA

1/8 1 4

MIG
2g.24gb

2/8 2/7 2
NVDECs /2
JPEG /0
OFA

2/8 2 3

MIG
3g.48gb

4/8 3/7 3
NVDECs /3
JPEG /0
OFA

4/8 3 2

MIG
4g.48gb

4/8 4/7 4
NVDECs /4
JPEG /0
OFA

4/8 4 1

MIG
7g.96gb

Full 7/7 7
NVDECs /7
JPEG /1
OFA

Full 8 1

8.4. H200 MIG Profiles
The following diagram shows the profiles supported on the NVIDIA H200:

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 25

Figure 13. Profiles on H200

The table below shows the supported profiles on the H200 141GB product.

Table 9. GPU Instance Profiles on H200

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
1g.18gb 1/8 1/7

1
NVDECs /1

JPEG /0
OFA

1/8 1 7

MIG
1g.18gb
+me 1/8 1/7

1
NVDEC /1
JPEG /1

OFA

1/8 1
1 (A single 1g

profile can include
media extensions)

MIG
1g.35gb 1/4 1/7

1
NVDECs /1

JPEG /0
OFA

1/8 1 4

MIG
2g.35gb 2/8 2/7

2
NVDECs /2

JPEG /0
OFA

2/8 2 3

MIG
3g.71gb 4/8 3/7

3
NVDECs /3

JPEG /0
OFA

4/8 3 2

MIG
4g.71gb 4/8 4/7

4
NVDECs /4

JPEG /0
OFA

4/8 4 1

Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 26

Profile
Name

Fraction of
Memory

Fraction
of SMs

Hardware
Units

L2 Cache
Size

Copy
Engines

Number of
Instances
Available

MIG
7g.141gb Full 7/7

7
NVDECs /7

JPEG /1
OFA

Full 8 1

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 27

Chapter 9. Getting Started with MIG

9.1. Prerequisites
The following prerequisites and minimum software versions are recommended when
using supported GPUs in MIG mode.

‣ MIG is supported only on GPUs and systems listed here

‣ It is recommended to install the latest NVIDIA datacenter driver. The minimum
versions are provided below:

‣ If using H100, then CUDA 12 and NVIDIA driver R525 (>= 525.53) or later

‣ If using A100/A30, then CUDA 11 and NVIDIA driver R450 (>= 450.80.02) or later

‣ Linux operating system distributions supported by CUDA

‣ If running containers or using Kubernetes, then:

‣ NVIDIA Container Toolkit (nvidia-docker2): v2.5.0 or later

‣ NVIDIA K8s Device Plugin: v0.7.0 or later

‣ NVIDIA gpu-feature-discovery: v0.2.0 or later

MIG can be managed programmatically using NVIDIA Management Library (NVML) APIs
or its command-line-interface, nvidia-smi. Note that for brevity, some of the nvidia-
smi output in the following examples may be cropped to showcase the relevant sections
of interest.

For more information on the MIG commands, see the nvidia-smi man page or nvidia-
smi mig --help. For information on the MIG management APIs, see the NVML header
(nvml.h) included in the CUDA Toolkit packages (cuda-nvml-dev-*; installed under /usr/
local/cuda/include/nvml.h) For automated tooling support with configuring MIG, refer
to the NVIDIA MIG Partition Editor (or mig-parted) tools.

9.2. Enable MIG Mode
By default, MIG mode is not enabled on the GPU. For example, running nvidia-smi shows
that MIG mode is disabled:

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://github.com/nvidia/mig-parted

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 28

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

MIG mode can be enabled on a per-GPU basis with the following command: nvidia-smi
-i <GPU IDs> -mig 1. The GPUs can be selected using comma separated GPU indexes,
PCI Bus Ids or UUIDs. If no GPU ID is specified, then MIG mode is applied to all the GPUs
on the system.

When MIG is enabled on the GPU, depending on the GPU product, the driver will attempt
to reset the GPU so that MIG mode can take effect.

$ sudo nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

9.2.1. GPU Reset on Hopper+ GPUs
Starting with the Hopper generation of GPUs, enabling MIG mode no longer requires a
GPU reset to take effect (and thus the driver does not attempt to reset the GPU in the
background).

Note that MIG mode (Disabled or Enabled states) is only persistent as long as the driver
is resident in the system (i.e. the kernel modules are loaded). MIG mode is no longer
persistent across system reboots (there is no longer a status bit stored in the GPU
InfoROM).

Thus, an unload and reload of the driver kernel modules will disable MIG mode.

9.2.2. GPU Reset on Ampere GPUs
On NVIDIA Ampere GPUs, when MIG mode is enabled, the driver will attempt to reset the
GPU so that MIG mode can take effect.

Note that MIG mode (Disabled or Enabled states) is persistent across system reboots
(there is a status bit stored in the GPU InfoROM). Thus MIG mode has to be explicitly
disabled to return the GPU to its default state.

Note:

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 29

If you are using MIG inside a VM with NVIDIA Ampere GPUs (A100 or A30) in passthrough,
then you may need to reboot the VM to allow the GPU to be in MIG mode as in some
cases, GPU reset is not allowed via the hypervisor for security reasons. This can be seen in
the following example:

$ sudo nvidia-smi -i 0 -mig 1
Warning: MIG mode is in pending enable state for GPU 00000000:00:03.0:Not
 Supported
Reboot the system or try nvidia-smi --gpu-reset to make MIG mode effective on
 GPU 00000000:00:03.0
All done.

$ sudo nvidia-smi --gpu-reset
Resetting GPU 00000000:00:03.0 is not supported.

9.2.3. Driver Clients
In some cases, if you have agents on the system (e.g. monitoring agents) that use the
GPU, then you may not be able to initiate a GPU reset. For example, on DGX systems, you
may encounter the following message:

$ sudo nvidia-smi -i 0 -mig 1
Warning: MIG mode is in pending enable state for GPU 00000000:07:00.0:In use by
 another client
00000000:07:00.0 is currently being used by one or more other processes (e.g. CUDA
 application or a monitoring application such as another instance of nvidia-smi).
 Please first kill all processes using the device and retry the command or reboot
 the system to make MIG mode effective.
All done.

In this specific DGX example, you would have to stop the nvsm and dcgm services, enable
MIG mode on the desired GPU and then restore the monitoring services:

$ sudo systemctl stop nvsm

$ sudo systemctl stop dcgm

$ sudo nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:07:00.0
All done.

The examples shown in the document use super-user privileges. As described in the
Device Nodes section, granting read access to mig/config capabilities allows non-
root users to manage instances once the GPU has been configured into MIG mode. The
default file permissions on the mig/config file is shown below.

$ ls -l /proc/driver/nvidia/capabilities/*
/proc/driver/nvidia/capabilities/mig:
total 0
-r-------- 1 root root 0 May 24 16:10 config
-r--r--r-- 1 root root 0 May 24 16:10 monitor

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 30

9.3. List GPU Instance Profiles
The NVIDIA driver provides a number of profiles that users can opt-in for when
configuring the MIG feature in A100. The profiles are the sizes and capabilities of the
GPU instances that can be created by the user. The driver also provides information
about the placements, which indicate the type and number of instances that can be
created.

$ nvidia-smi mig -lgip
+---+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
|===|
| 0 MIG 1g.5gb 19 7/7 4.75 No 14 0 0 |
| 1 0 0 |
+---+
| 0 MIG 1g.5gb+me 20 1/1 4.75 No 14 1 0 |
| 1 1 1 |
+---+
| 0 MIG 1g.10gb 15 4/4 9.62 No 14 1 0 |
| 1 0 0 |
+---+
| 0 MIG 2g.10gb 14 3/3 9.62 No 28 1 0 |
| 2 0 0 |
+---+
| 0 MIG 3g.20gb 9 2/2 19.50 No 42 2 0 |
| 3 0 0 |
+---+
| 0 MIG 4g.20gb 5 1/1 19.50 No 56 2 0 |
| 4 0 0 |
+---+
| 0 MIG 7g.40gb 0 1/1 39.25 No 98 5 0 |
| 7 1 1 |
+---+

List the possible placements available using the following command. The syntax of the
placement is {<index>}:<GPU Slice Count> and shows the placement of the instances
on the GPU. The placement index shown indicates how the profiles are mapped on the
GPU as shown in the supported profiles tables.

$ nvidia-smi mig -lgipp
GPU 0 Profile ID 19 Placements: {0,1,2,3,4,5,6}:1
GPU 0 Profile ID 20 Placements: {0,1,2,3,4,5,6}:1
GPU 0 Profile ID 15 Placements: {0,2,4,6}:2
GPU 0 Profile ID 14 Placements: {0,2,4}:2
GPU 0 Profile ID 9 Placements: {0,4}:4
GPU 0 Profile ID 5 Placement : {0}:4
GPU 0 Profile ID 0 Placement : {0}:8

The command shows that the user can create two instances of type 3g.20gb (profile ID
9) or seven instances of 1g.5gb (profile ID 19).

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 31

9.4. Creating GPU Instances
Before starting to use MIG, the user needs to create GPU instances using the -cgi
option. One of three options can be used to specify the instance profiles to be created:

 1. Profile ID (e.g. 9, 14, 5)
 2. Short name of the profile (e.g. 3g.20gb
 3. Full profile name of the instance (e.g. MIG 3g.20gb)

Once the GPU instances are created, one needs to create the corresponding Compute
Instances (CI). By using the -C option, nvidia-smi creates these instances.

Note:

Without creating GPU instances (and corresponding compute instances), CUDA workloads
cannot be run on the GPU. In other words, simply enabling MIG mode on the GPU is not
sufficient. Also note that, the created MIG devices are not persistent across system
reboots. Thus, the user or system administrator needs to recreate the desired MIG
configurations if the GPU or system is reset. For automated tooling support for this
purpose, refer to the NVIDIA MIG Partition Editor (or mig-parted) tool, including creating a
systemd service that could recreate the MIG geometry at system startup.

The following example shows how the user can create GPU instances (and corresponding
compute instances). In this example, the user can create two GPU instances (of type
3g.20gb), with each GPU instance having half of the available compute and memory
capacity. In this example, we purposefully use profile ID and short profile name to
showcase how either option can be used:

$ sudo nvidia-smi mig -cgi 9,3g.20gb -C
Successfully created GPU instance ID 2 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 2 using
 profile MIG 3g.20gb (ID 2)
Successfully created GPU instance ID 1 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 1 using
 profile MIG 3g.20gb (ID 2)

Now list the available GPU instances:

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 3g.20gb 9 1 4:4 |
+--+
| 0 MIG 3g.20gb 9 2 0:4 |
+--+

Now verify that the GIs and corresponding CIs are created:

https://github.com/nvidia/mig-parted

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 32

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB / 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	11MiB / 20096MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Instance Geometry

As described in the section on Partitioning, the NVIDIA driver APIs provide a number of
available GPU Instance profiles that can be chosen by the user.

If a mixed geometry of the profiles is specified by the user, then the NVIDIA driver
chooses the placement of the various profiles. This can be seen in the following
examples.

Example 1: Creation of a 4-2-1 geometry. After the instances are created, the placement
of the profiles can be observed:

$ sudo nvidia-smi mig -cgi 19,14,5
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 5 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 1 on GPU 0 using profile MIG 4g.20gb (ID 5)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 13 6:1 |
+--+
| 0 MIG 2g.10gb 14 5 4:2 |
+--+
| 0 MIG 4g.20gb 5 1 0:4 |
+--+

Example 2: Creation of a 3-2-1-1 geometry.

Note:

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html#partitioning

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 33

Due to a known issue with the APIs, the profile ID 9 or 3g.20gb must be specified first in
order. Not doing so, will result in the following error.

$ sudo nvidia-smi mig -cgi 19,19,14,9
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb (ID
 19)
Successfully created GPU instance ID 11 on GPU 0 using profile MIG 1g.5gb (ID
 19)
Successfully created GPU instance ID 3 on GPU 0 using profile MIG 2g.10gb
 (ID 14)
Unable to create a GPU instance on GPU 0 using profile 9: Insufficient
 Resources
Failed to create GPU instances: Insufficient Resources

Specify the correct order for the 3g.20gb profile. The remaining combinations of the
profiles do not have this requirement.

$ sudo nvidia-smi mig -cgi 9,19,14,19
Successfully created GPU instance ID 2 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created GPU instance ID 7 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 4 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 8 on GPU 0 using profile MIG 1g.5gb (ID 19)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 7 0:1 |
+--+
| 0 MIG 1g.5gb 19 8 1:1 |
+--+
| 0 MIG 2g.10gb 14 4 2:2 |
+--+
| 0 MIG 3g.20gb 9 2 4:4 |
+--+

Example 3: Creation of a 2-1-1-1-1-1 geometry:

$ sudo nvidia-smi mig -cgi 14,19,19,19,19,19
Successfully created GPU instance ID 5 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 7 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 8 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 9 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 10 on GPU 0 using profile MIG 1g.5gb (ID 19)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 7 0:1 |
+--+

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 34

| 0 MIG 1g.5gb 19 8 1:1 |
+--+
| 0 MIG 1g.5gb 19 9 2:1 |
+--+
| 0 MIG 1g.5gb 19 10 3:1 |
+--+
| 0 MIG 1g.5gb 19 13 6:1 |
+--+
| 0 MIG 2g.10gb 14 5 4:2 |
+--+

9.5. Running CUDA Applications on
Bare-Metal

9.5.1. GPU Instances
The following example shows how two CUDA applications can be run in parallel on
two different GPU instances. In this example, the BlackScholes CUDA sample is run
simultaneously on the two GIs created on the A100.

$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)
 MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)
 MIG 3g.20gb Device 1: (UUID: MIG-a28ad590-3fda-56dd-84fc-0a0b96edc58d)

$ CUDA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd ./BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-a28ad590-3fda-56dd-84fc-0a0b96edc58d ./BlackScholes &

Now verify the two CUDA applications are running on two separate GPU instances:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	268MiB / 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	268MiB / 20096MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 58866 C ./BlackScholes 253MiB |
| 0 2 0 58856 C ./BlackScholes 253MiB |
+---+

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 35

GPU Utilization Metrics

NVML (and nvidia-smi) does not support attribution of utilization metrics to MIG
devices. From the previous example, the utilization is displayed as N/A when running
CUDA programs:

$ nvidia-smi

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	268MiB / 20096MiB	42 0	3 0 2 0 0
	4MiB / 32767MiB		
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	268MiB / 20096MiB	42 0	3 0 2 0 0
	4MiB / 32767MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 6217 C ...inux/release/BlackScholes 253MiB |
| 0 2 0 6223 C ...inux/release/BlackScholes 253MiB |
+---+

For monitoring MIG devices on MIG capable GPUs such as the A100, including attribution
of GPU metrics (including utilization and other profiling metrics), it is recommended to
use NVIDIA DCGM v2.0.13 or later. See the Profiling Metrics section in the DCGM User
Guide for more details on getting started.

9.5.2. Compute Instances
As explained earlier in this document, a further level of concurrency can be achieved by
using Compute Instances (CIs). The following example shows how 3 CUDA processes
(BlackScholes CUDA sample) can be run on the same GI.

First, list the available CI profiles available using our prior configuration of creating 2 GIs
on the A100.

$ sudo nvidia-smi mig -lcip -gi 1
+--+
| Compute instance profiles: |
| GPU GPU Name Profile Instances Exclusive Shared |
| Instance ID Free/Total SM DEC ENC OFA |
| ID CE JPEG |
|==|
| 0 1 MIG 1c.3g.20gb 0 0/3 14 2 0 0 |
| 3 0 |
+--+
| 0 1 MIG 2c.3g.20gb 1 0/1 28 2 0 0 |
| 3 0 |

https://developer.nvidia.com/dcgm
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 36

+--+
| 0 1 MIG 3g.20gb 2* 0/1 42 2 0 0 |
| 3 0 |
+--+

Create 3 CIs, each of type 1c compute capacity (profile ID 0) on the first GI.

$ sudo nvidia-smi mig -cci 0,0,0 -gi 1
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG
 1c.3g.20gb (ID 0)
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG
 1c.3g.20gb (ID 0)
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG
 1c.3g.20gb (ID 0)

Using nvidia-smi, the following CIs are now created on GI 1.

$ sudo nvidia-smi mig -lci -gi 1
+---+
| Compute instances: |
| GPU GPU Name Profile Instance |
| Instance ID ID |
| ID |
|===|
| 0 1 MIG 1c.3g.20gb 0 0 |
+---+
| 0 1 MIG 1c.3g.20gb 0 1 |
+---+
| 0 1 MIG 1c.3g.20gb 0 2 |
+---+

And the GIs and CIs created on the A100 are now enumerated by the driver:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB / 20224MiB	14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 1 1		14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 2 2		14 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Now, three BlackScholes applications can be created and run in parallel:

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 37

$ CUDA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd ./BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-c376546e-7559-5610-9721-124e8dbb1bc8 ./BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-928edfb0-898f-53bd-bf24-c7e5d08a6852 ./BlackScholes &

And seen using nvidia-smi as running processes on the three CIs:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	476MiB / 20224MiB	14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 1 1		14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 2 2		14 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 59785 C ./BlackScholes 153MiB |
| 0 1 1 59796 C ./BlackScholes 153MiB |
| 0 1 2 59885 C ./BlackScholes 153MiB |
+---+

9.6. Destroying GPU Instances
Once the GPU is in MIG mode, GIs and CIs can be configured dynamically. The following
example shows how the CIs and GIs created in the previous examples can be destroyed.

Note:

If the intention is to destroy all the CIs and GIs, then this can be accomplished with the
following commands:

$ sudo nvidia-smi mig -dci && sudo nvidia-smi mig -dgi
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 1 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 2 from GPU 0 GPU instance ID 1
Successfully destroyed GPU instance ID 1 from GPU 0
Successfully destroyed GPU instance ID 2 from GPU 0

In this example, we delete the specific CIs created under GI 1.

$ sudo nvidia-smi mig -dci -ci 0,1,2 -gi 1
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 1 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 2 from GPU 0 GPU instance ID 1

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 38

It can be verified that the CI devices have now been torn down on the GPU:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
No MIG devices found			
+---+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Now the GIs have to be deleted:

$ sudo nvidia-smi mig -dgi
Successfully destroyed GPU instance ID 1 from GPU 0
Successfully destroyed GPU instance ID 2 from GPU 0

9.7. Monitoring MIG Devices
For monitoring MIG devices on including attribution of GPU metrics (including utilization
and other profiling metrics), it is recommended to use NVIDIA DCGM v3 or later. See the
Profiling Metrics section in the DCGM User Guide for more details on getting started.

Note:

On Ampere GPUs (A100 or A30), NVML (and nvidia-smi) does not support attribution of
utilization metrics to MIG devices. From the previous example, the utilization is displayed
as N/A when running CUDA programs:

$ nvidia-smi

+---
+
| MIG devices:
 |
+------------------+----------------------+-----------+-----------------------
+
| GPU GI CI MIG | Memory-Usage | Vol| Shared
 |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA
 JPG|

https://developer.nvidia.com/dcgm
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 39

| | | ECC|
 |
|==================+======================+===========
+=======================|
| 0 1 0 0 | 268MiB / 20096MiB | 42 0 | 3 0 2 0 0
 |
| | 4MiB / 32767MiB | |
 |
+------------------+----------------------+-----------+-----------------------
+
| 0 2 0 1 | 268MiB / 20096MiB | 42 0 | 3 0 2 0 0
 |
| | 4MiB / 32767MiB | |
 |
+------------------+----------------------+-----------+-----------------------
+

+---
+
| Processes:
 |
| GPU GI CI PID Type Process name GPU Memory
 |
| ID ID Usage
 |
|
===|
| 0 1 0 6217 C ...inux/release/BlackScholes 253MiB
 |
| 0 2 0 6223 C ...inux/release/BlackScholes 253MiB
 |
+---
+

9.8. MIG with CUDA MPS
As described in the section on CUDA concurrency mechanisms, CUDA Multi-Process
Service (MPS) enables co-operative multi-process CUDA applications to be processed
concurrently on the GPU. MPS and MIG can work together, potentially achieving even
higher levels of utilization for certain workloads.

Refer to the MPS documentation to understand the architecture and provisioning
sequence for MPS.

In the following sections, we will walk through an example of running MPS on MIG
devices.

Workflow

In summary, the workflow for running with MPS is as follows:

‣ Configure the desired MIG geometry on the GPU.

‣ Setup the CUDA_MPS_PIPE_DIRECTORY variable to point to unique directories so that
the multiple MPS servers and clients can communicate with each other using named
pipes and Unix domain sockets.

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html#topic_6
https://docs.nvidia.com/deploy/mps/index.html#topic_6

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 40

‣ Launch the application by specifying the MIG device using CUDA_VISIBLE_DEVICES.

Note:

The MPS documentation recommends setting up EXCLUSIVE_PROCESS mode to ensure
that a single MPS server is using the GPU. However, this mode is not supported when the
GPU is in MIG mode as we use multiple MPS servers (one per MIG GPU instance).

Configure GPU Instances

Follow the steps outlined in the previous sections to configure the desired MIG geometry
on the GPU. For this example, we configure the GPU into a 3g.20gb,3g.2gb geometry:

$ nvidia-smi

+---+
| NVIDIA-SMI 460.73.01 Driver Version: 460.73.01 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-PCIE-40GB On	00000000:65:00.0 Off	On
N/A 37C P0 66W / 250W	581MiB / 40536MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	290MiB / 20096MiB	42 0	3 0 2 0 0
	8MiB / 32767MiB		
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	290MiB / 20096MiB	42 0	3 0 2 0 0
	8MiB / 32767MiB		
+------------------+----------------------+-----------+-----------------------+

Setup the MPS Control Daemons

In this step, we start an MPS control daemon (with admin privileges) and ensure we use a
different socket for each daemon:

export CUDA_MPS_PIPE_DIRECTORY=/tmp/<MIG_UUID>
mkdir -p $CUDA_MPS_PIPE_DIRECTORY

CUDA_VISIBLE_DEVICES=<MIG_UUID> \
CUDA_MPS_PIPE_DIRECTORY=/tmp/<MIG_UUID> \
nvidia-cuda-mps-control -d

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 41

Launch the Application

Now we can launch the application by specifying the desired MIG device using
CUDA_VISIBLE_DEVICES:

CUDA_VISIBLE_DEVICES=<MIG_UUID> \
 my-cuda-app

A Complete Example

We now provide a script below where we attempt to run the BlackScholes from before
on the two MIG devices created on the GPU:

#!/usr/bin/env bash

set -euo pipefail

#GPU 0: A100-PCIE-40GB (UUID: GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b)
MIG 3g.20gb Device 0: (UUID: MIG-GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b/1/0)
MIG 3g.20gb Device 1: (UUID: MIG-GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b/2/0)

GPU_UUID=GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b
for i in MIG-$GPU_UUID/1/0 MIG-$GPU_UUID/2/0; do

 # set the environment variable on each MPS
 # control daemon and use different socket for each MIG instance
 export CUDA_MPS_PIPE_DIRECTORY=/tmp/$i
 mkdir -p $CUDA_MPS_PIPE_DIRECTORY
 sudo CUDA_VISIBLE_DEVICES=$i \
 CUDA_MPS_PIPE_DIRECTORY=/tmp/$i \
 nvidia-cuda-mps-control -d

 # now launch the job on the specific MIG device
 # and select the appropriate MPS server on the device
 CUDA_MPS_PIPE_DIRECTORY=/tmp/$i \
 CUDA_VISIBLE_DEVICES=$i \
 ./bin/BlackScholes &
done

When running this script, we can observe the two MPS servers on each MIG device and
the corresponding CUDA program started as an MPS client when using nvidia-smi:

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 46781 M+C ./bin/BlackScholes 251MiB |
| 0 1 0 46784 C nvidia-cuda-mps-server 29MiB |
| 0 2 0 46797 M+C ./bin/BlackScholes 251MiB |
| 0 2 0 46798 C nvidia-cuda-mps-server 29MiB |
+---+

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 42

9.9. Running CUDA Applications as
Containers

NVIDIA Container Toolkit has been enhanced to provide support for MIG devices,
allowing users to run GPU containers with runtimes such as Docker. This section
provides an overview of running Docker containers on A100 with MIG.

9.9.1. Install Docker
Many Linux distributions may come with Docker-CE pre-installed. If not, use the Docker
installation script to install Docker.

$ curl https://get.docker.com | sh \
 && sudo systemctl start docker \
 && sudo systemctl enable docker

9.9.2. Install NVIDIA Container Toolkit
Now install the NVIDIA Container Toolkit (previously known as nvidia-docker2). MIG
support is available starting with v2.3 of nvidia-docker2 (or v1.1.1 of the nvidia-
container-toolkit package).

To get access to the /dev nvidia capabilities, it is recommended to use at least
v2.5.0 of nvidia-docker2. See the Installation Guide for more information.

For brevity, the installation instructions provided here are for Ubuntu 18.04 LTS. Refer to
the NVIDIA Container Toolkit page for instructions on other Linux distributions.

Setup the repository and the GPG key:

$ distribution=$(. /etc/os-release;echo IDVERSION_ID) \
 && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor
 -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
 && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-
container.list | \
 sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-
keyring.gpg] https://#g' | \
 sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

Install the NVIDIA Container Toolkit packages (and their dependencies):

$ sudo apt-get install -y nvidia-docker2 \
 && sudo systemctl restart docker

https://github.com/NVIDIA/nvidia-docker
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://github.com/NVIDIA/nvidia-docker

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 43

9.9.3. Running Containers
To run containers on specific MIG devices - whether these are GIs or specific underlying
CIs, then the NVIDIA_VISIBLE_DEVICES variable (or the --gpus option with Docker
19.03+) can be used.

NVIDIA_VISIBLE_DEVICES supports the following formats to specify MIG devices:

 1. MIG-<GPU-UUID>/<GPU instance ID>/<compute instance ID> when using R450 and
R460 drivers or MIG-<UUID> starting with R470 drivers.

 2. GPUDeviceIndex>:<MIGDeviceIndex>

If using Docker 19.03, the --gpus option can be used to specify MIG devices by using the
following format: ‘“device=MIG-device”’, where MIG-device can follow either of the
format specified above for NVIDIA_VISIBLE_DEVICES.

The following example shows running nvidia-smi from within a CUDA container using
both formats. As can be seen in the example, only one MIG device as chosen is visible to
the container when using either format.

$ sudo docker run --runtime=nvidia \
 -e NVIDIA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd \
 nvidia/cuda nvidia-smi

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB / 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

For Docker versions < 19.03
$ sudo docker run --runtime=nvidia \
 -e NVIDIA_VISIBLE_DEVICES="0:0" \
 nvidia/cuda nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)
 MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)

For Docker versions >= 19.03
$ sudo docker run --gpus '"device=0:0"' \
 nvidia/cuda nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)
 MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 44

A more complex example is to run a TensorFlow container to do a training run using
GPUs on the MNIST dataset. This is shown below:

$ sudo docker run --gpus '"device=0:1"' \
 nvcr.io/nvidia/pytorch:20.11-py3 \
 /bin/bash -c 'cd /opt/pytorch/examples/upstream/mnist && python main.py'

=============
== PyTorch ==
=============

NVIDIA Release 20.11 (build 17345815)
PyTorch Version 1.8.0a0+17f8c32

Container image Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain
 Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio,
 Johnny Mariethoz)
Copyright (c) 2015 Google Inc.
Copyright (c) 2015 Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

NVIDIA Deep Learning Profiler (dlprof) Copyright (c) 2020, NVIDIA CORPORATION. All
 rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying
 project or file.

NOTE: Legacy NVIDIA Driver detected. Compatibility mode ENABLED.

9920512it [00:01, 7880654.53it/s]
32768it [00:00, 129950.31it/s]
1654784it [00:00, 2353765.88it/s]
8192it [00:00, 41020.33it/s]
/opt/conda/lib/python3.6/site-packages/torchvision/datasets/mnist.py:480:
 UserWarning: The given NumPy array is not writeable, and PyTorch does not support
 non-writeable tensors. This means you can write to the underlying (supposedly
 non-writeable) NumPy array using the tensor. You may want to copy the array to
 protect its data or make it writeable before converting it to a tensor. This type
 of warning will be suppressed for the rest of this program. (Triggered internally
 at ../torch/csrc/utils/tensor_numpy.cpp:141.)
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/
MNIST/raw/train-images-idx3-ubyte.gz
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/
MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/
MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/
MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Processing...

Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 45

Done!
Train Epoch: 1 [0/60000 (0%)] Loss: 2.320747
Train Epoch: 1 [640/60000 (1%)] Loss: 1.278727

9.10. MIG with Kubernetes
MIG support in Kubernetes is available starting with v0.7.0 of the NVIDIA Device Plugin
for Kubernetes. Visit the documentation on getting started with MIG and Kubernetes.

9.11. MIG with Slurm
Slurm is a workload manager that is widely used at high performance computing centers
such as government labs, universities.

Starting with 21.08, Slurm supports the usage of MIG devices. Refer to the official
documentation on getting started.

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin
https://docs.nvidia.com/datacenter/cloud-native/kubernetes/mig-k8s.html
https://slurm.schedmd.com/
https://slurm.schedmd.com/gres.html#MIG_Management

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 46

Chapter 10. Device Nodes and
Capabilities

Currently, the NVIDIA kernel driver exposes its interfaces through a few system-wide
device nodes. Each physical GPU is represented by its own device node - e.g. nvidia0,
nvidia1 etc. This is shown below for a 2-GPU system.

 /dev
 ├── nvidiactl
 ├── nvidia-modeset
 ├── nvidia-uvm
 ├── nvidia-uvm-tools
 ├── nvidia-nvswitchctl
 ├── nvidia0
 └── nvidia1

Starting with CUDA 11/R450, a new abstraction known as nvidia-capabilities
has been introduced. The idea being that access to a specific capability is required to
perform certain actions through the driver. If a user has access to the capability, the
action will be carried out. If a user does not have access to the capability, the action will
fail. The one exception being if you are the root-user (or any user with CAP_SYS_ADMIN
privileges). With CAP_SYS_ADMIN privileges, you implicitly have access to all nvidia-
capabilities.

For example, the mig-config capability allows one to create and destroy MIG instances
on any MIG-capable GPU (e.g. the A100 GPU). Without this capability, all attempts to
create or destroy a MIG instance will fail. Likewise, the fabric-mgmt capability allows one
to run the Fabric Manager as a non-root but privileged daemon. Without this capability,
all attempts to launch the Fabric Manager as a non-root user will fail.

The following sections walk through the system level interface for managing these new
nvidia-capabilities, including the steps necessary to grant and revoke access to
them.

System Level Interface

There are two different system-level interfaces available to work with nvidia-
capabilities. The first is via /dev and the second is via /proc. The /proc based
interface relies on user-permissions and mount namespaces to limit access to a
particular capability, while the /dev based interface relies on cgroups. Technically, the

Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 47

/dev based interface also relies on user-permissions as a second-level access control
mechanism (on the actual device node files themselves), but the primary access control
mechanism is cgroups. The current CUDA 11/R450 GA (Linux driver 450.51.06) supports
both mechanisms, but going forward the /dev based interface is the preferred method
and the /proc based interface is deprecated. For now, users can choose the desired
interface by using the nv_cap_enable_devfs parameter on the nvidia.ko kernel module:

‣ When nv_cap_enable_devfs=0 the /proc based interface is enabled.

‣ When nv_cap_enable_devfs=1 the /dev based interface is enabled.

‣ A setting of nv_cap_enable_devfs=0 is the default for the R450 driver (as of Linux
450.51.06).

‣ All future NVIDIA datacenter drivers will have a default of nv_cap_enable_devfs=1.

An example of loading the nvidia kernel module with this parameter set can be seen
below:

$ modprobe nvidia nv_cap_enable_devfs=1

10.1. /dev based nvidia-capabilities
The system level interface for interacting with /dev based capabilities is actually through
a combination of /proc and /dev.

First, a new major device is now associated with nvidia-caps and can be read from the
standard /proc/devices file.

$ cat /proc/devices | grep nvidia-caps
508 nvidia-caps

Second, the exact same set of files exist under /proc/driver/nvidia/capabilities.
These files no longer control access to the capability directly and instead, the contents
of these files point at a device node under /dev, through which cgroups can be used to
control access to the capability.

This can be seen in the example below:

$ cat /proc/driver/nvidia/capabilities/mig/config
DeviceFileMinor: 1
DeviceFileMode: 256
DeviceFileModify: 1

The combination of the device major for nvidia-caps and the value of DeviceFileMinor
in this file indicate that the mig-config capability (which allows a user to create and
destroy MIG devices) is controlled by the device node with a major:minor of 238:1. As
such, one will need to use cgroups to grant a process read access to this device in order

Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 48

to configure MIG devices. The purpose of the DeviceFileMode and DeviceFileModify
fields in this file are explained later on in this section.

The standard location for these device nodes is under /dev/nvidia-caps as seen in the
example below:

$ ls -l /dev/nvidia-caps
total 0
cr-------- 1 root root 508, 1 Nov 21 17:16 nvidia-cap1
cr--r--r-- 1 root root 508, 2 Nov 21 17:16 nvidia-cap2
...

Unfortunately, these device nodes cannot be automatically created/deleted by the
NVIDIA driver at the same time it creates/deletes files underneath /proc/driver/
nvidia/capabilities (due to GPL compliance issues). Instead, a user-level program
called nvidia-modprobe is provided, that can be invoked from user-space in order to do
this. For example:

$ nvidia-modprobe \
 -f /proc/driver/nvidia/capabilities/mig/config \
 -f /proc/driver/nvidia/capabilities/mig/monitor

$ ls -l /dev/nvidia-caps
total 0
cr-------- 1 root root 508, 1 Nov 21 17:16 nvidia-cap1
cr--r--r-- 1 root root 508, 2 Nov 21 17:16 nvidia-cap2

nvidia-modprobe looks at the DeviceFileMode in each capability file and creates the
device node with the permissions indicated (e.g. +ur from a value of 256 (o400) from our
example for mig-config).

Programs such as nvidia-smi will automatically invoke nvidia-modprobe (when
available) to create these device nodes on your behalf. In other scenarios it is not
necessarily required to use nvidia-modprobe to create these device nodes, but it does
make the process simpler.

If you actually want to prevent nvidia-modprobe from ever creating a particular device
node on your behalf, you can do the following:

Give a user write permissions to the capability file under /proc
$ chmod +uw /proc/driver/nvidia/capabilities/mig/config

Update the file with a “DeviceFileModify” setting of 0
$ echo "DeviceFileModify: 0" > /proc/driver/nvidia/capabilities/mig/config

You will then be responsible for managing creation of the device node referenced by /
proc/driver/nvidia/capabilities/mig/config going forward. If you want to change
that in the future, simply reset it to a value of "DeviceFileModify: 1" with the same
command sequence.

This is important in the context of containers because we may want to give a container
access to a certain capability even if it doesn't exist in the /proc hierarchy yet.

Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 49

For example, granting a container the mig-config capability implies that we should also
grant it capabilities to access all possible gis and cis that could be created for any GPU
on the system. Otherwise the container will have no way of working with those gis and
cis once they have actually been created.

One final thing to note about /dev based capabilities is that the minor numbers for all
possible capabilities are predetermined and can be queried under various files of the
form:

/proc/driver/nvidia-caps/*-minors

For example, all capabilities related to MIG can be looked up as:

$ cat /proc/driver/nvidia-caps/mig-minors
config 1
monitor 2
gpu0/gi0/access 3
gpu0/gi0/ci0/access 4
gpu0/gi0/ci1/access 5
gpu0/gi0/ci2/access 6
...
gpu31/gi14/ci6/access 4321
gpu31/gi14/ci7/access 4322

The format of the content follows: GPU<deviceMinor>/gi<GPU instance ID>/
ci<compute instance ID>

Note that the GPU device minor number can be obtained by using either of these
mechanisms:

‣ The NVML API nvmlDeviceGetMinorNumber() so it returns the device minor number

‣ Or use the PCI BDF available under /proc/driver/nvidia/gpus/
domain:bus:device:function/information. This file contains a "Device Minor" field.

Note:

The NVML device numbering (e.g. through nvidia-smi) is not the device minor number.

For example, if the MIG geometry was created as below:

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	19MiB / 40192MiB	14 0	3 0 3 0 3
	0MiB / 65535MiB		
+------------------+ +-----------+-----------------------+			
0 1 1 1		14 0	3 0 3 0 3
+------------------+ +-----------+-----------------------+

Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 50

| 0 1 2 2 | | 14 0 | 3 0 3 0 3 |
| | | | |
+------------------+----------------------+-----------+-----------------------+

Then the corresponding device nodes: /dev/nvidia-cap12, /dev/nvidia-cap13 and /
dev/nvidia-cap14 and /dev/nvidia-cap15 would be created.

10.2. /proc based nvidia-capabilities
(**Deprecated**)

The system level interface for interacting with /proc based nvidia-capabilities is
rooted at /proc/driver/nvidia/capabilities. Files underneath this hierarchy are used
to represent each capability, with read access to these files controlling whether a user
has a given capability or not. These files have no content and only exist to represent a
given capability.

For example, the mig-config capability (which allows a user to create and destroy MIG
devices) is represented as follows:

 /proc/driver/nvidia/capabilities
 └── mig
 └── config

Likewise, the capabilities required to run workloads on a MIG device once it has been
created are represented as follows (namely as access to the GPU Instance and Compute
Instance that comprise the MIG device):

 /proc/driver/nvidia/capabilities
 └── gpu0
 └── mig
 ├── gi0
 │ ├── access
 │ └── ci0
 │ └── access
 ├── gi1
 │ ├── access
 │ └── ci0
 │ └── access
 └── gi2
 ├── access
 └── ci0
 └── access

And the corresponding file system layout is shown below with read permissions:

$ ls -l /proc/driver/nvidia/capabilities/gpu0/mig/gi*
/proc/driver/nvidia/capabilities/gpu0/mig/gi1:
total 0
-r--r--r-- 1 root root 0 May 24 17:38 access
dr-xr-xr-x 2 root root 0 May 24 17:38 ci0

Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 51

/proc/driver/nvidia/capabilities/gpu0/mig/gi2:
total 0
-r--r--r-- 1 root root 0 May 24 17:38 access
dr-xr-xr-x 2 root root 0 May 24 17:38 ci0

For a CUDA process to be able to run on top of MIG, it needs access to the Compute
Instance capability and its parent GPU Instance. Thus a MIG device is identified by the
following format:

 MIG-<GPU-UUID>/<GPU instance ID>/<compute instance ID>

As an example, having read access to the following paths would allow one to run
workloads on the MIG device represented by <gpu0, gi0, ci0>:

 /proc/driver/nvidia/capabilities/gpu0/mig/gi0/access
 /proc/driver/nvidia/capabilities/gpu0/mig/gi0/ci0/access

Note, that there is no access file representing a capability to run workloads on gpu0 (only
on gi0 and ci0 that sit underneath gpu0). This is because the traditional mechanism of
using cgroups to control access to top level GPU devices (and any required meta devices)
is still required. As shown earlier in the document, the cgroups mechanism applies to:

 /dev/nvidia0
 /dev/nvidiactl
 /dev/nvidiactl-uvm
 ...

In the context of containers, a new mount namespace should be overlaid on top of
the path for /proc/driver/nvidia/capabilities, and only those capabilities a user
wishes to grant to a container should be bind-mounted in. Since the host’s user/group
information is retained across the bind-mount, it must be ensured that the correct
user permissions are set for these capabilities on the host before injecting them into a
container.

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 52

Chapter 11. Changelog

‣ 11/17/2022 (author: PR): Includes the following changes:

‣ Updates for Hopper, CUDA 12.0/R525

‣ Reorginzation of several chapters

‣ Added more information on /dev based capabilities

‣ 7/19/2022 (author: PR): Includes the following changes:

‣ Added a chapter on virtualization.

‣ 6/6/2022 (author: PR): Includes the following changes:

‣ Fix table that lists A30 profiles.

‣ Update Slurm documentation link.

‣ 8/26/2021 (author: PR): Includes the following changes:

‣ Improve explanation of GPU Partitioning.

‣ 6/30/2021 (author: PR): Includes the following changes:

‣ Add info on unique UUIDs for MIG devices.

‣ Update supported profiles.

‣ 4/22/2021 (author: PR): Includes the following changes:

‣ Added information for Slurm and CUDA MPS.

‣ 4/14/2021 (author: PR): Includes the following changes:

‣ Add additional supported products.

‣ Update diagrams.

‣ Add link to vGPU documentation.

‣ 2/17/2021 (author: PR): Includes the following changes:

‣ Add note about persistence of MIG devices.

‣ Add link to gathering telemetry for MIG.

Changelog

NVIDIA Multi-Instance GPU User Guide RN-08625-v2.0 _v01 | 53

‣ Add link to K8s documentation.

‣ 11/24/2020 (author: PR): Includes the following changes:

‣ Fix broken container example.

‣ Added link to Kubernetes documentation.

‣ Added minimum required software versions.

‣ Added MIG mode enablement example on DGX A100.

‣ 11/06/2020 (author: PR): Includes the following changes:

‣ Updated examples.

‣ Added documentation for new CLI options.

‣ Added doc links for vGPU.

‣ Added doc links for Kubernetes support.

‣ Fixed typos.

‣ 8/7/2020 (author: PR):

‣ Added information on device nodes and nvidia-capabilities with CUDA 11.0 GA.

‣ 5/28/2020 (author: PR):

‣ Initial Version.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no

representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA

shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment

to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by

authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA

product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It

is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and

perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA

product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which

may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party

under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations,

and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE

BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES

OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY

USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s

aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the

respective companies with which they are associated.

Copyright

© 2020-2024 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Supported GPUs
	Supported Configurations
	Virtualization
	Concepts
	5.1. Terminology
	5.2. Partitioning
	5.3. CUDA Concurrency Mechanisms

	Deployment Considerations
	6.1. System Considerations
	6.2. Application Considerations

	MIG Device Names
	7.1. Device Enumeration
	7.2. CUDA Device Enumeration

	Supported MIG Profiles
	8.1. A30 MIG Profiles
	8.2. A100 MIG Profiles
	8.3. H100 MIG Profiles
	8.4. H200 MIG Profiles

	Getting Started with MIG
	9.1. Prerequisites
	9.2. Enable MIG Mode
	9.2.1. GPU Reset on Hopper+ GPUs
	9.2.2. GPU Reset on Ampere GPUs
	9.2.3. Driver Clients

	9.3. List GPU Instance Profiles
	9.4. Creating GPU Instances
	9.5. Running CUDA Applications on Bare-Metal
	9.5.1. GPU Instances
	9.5.2. Compute Instances

	9.6. Destroying GPU Instances
	9.7. Monitoring MIG Devices
	9.8. MIG with CUDA MPS
	9.9. Running CUDA Applications as Containers
	9.9.1. Install Docker
	9.9.2. Install NVIDIA Container Toolkit
	9.9.3. Running Containers

	9.10. MIG with Kubernetes
	9.11. MIG with Slurm

	Device Nodes and Capabilities
	10.1. /dev based nvidia-capabilities
	10.2. /proc based nvidia-capabilities (**Deprecated**)

	Changelog

