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The temporal dynamics of group
interactions in higher-order social networks

Iacopo Iacopini 1,2,3 , Márton Karsai 3,4 & Alain Barrat 5

Representing social systems as networks, starting from the interactions
between individuals, sheds light on themechanisms governing their dynamics.
However, networks encode only pairwise interactions, while most social
interactions occur among groups of individuals, requiring higher-order net-
work representations. Despite the recent interest in higher-order networks,
little is known about themechanisms that govern the formation and evolution
of groups, and howpeoplemove between groups. Here, we leverage empirical
data on social interactions among children and university students to study
their temporal dynamics at both individual and group levels, characterising
how individuals navigate groups and how groups form and disaggregate. We
find robust patterns across contexts and propose a dynamical model that
closely reproduces empirical observations. These results represent a further
step in understanding social systems, andopenup research directions to study
the impact of group dynamics on dynamical processes that evolve on top
of them.

Social interactions are the building blocks of our society1. Humans —
and animals in general— formgroups of different sizes2 and have learnt
the advantages of communicating and gathering in close social
circles3,4. Our everyday social path is in fact a succession of thesegroup
events that involve different numbers of peers, from walking alone or
having a coffee with a friend, to engaging in meetings or group con-
versations at work or during social gatherings. Networks provide a
powerful tool to represent these complex social trajectories with the
capacity to encode the structure and dynamics of interactions
between individuals5–8. The use of network representations and of
social network analysis tools1, as well as the emerging field of temporal
networks, have helped identifying the mechanisms that govern the
formation and evolution of these structures9–11. Nevertheless, these
conventional network descriptions are inherently limited to the
description of pairwise interactions, which does not capture the full
complexity of the social phenomena12–15. Considering interactions of
higher-order is thus compulsory to represent and model how humans
interact in groups16,17 or how animals gather18.

The structure and dynamics of group interactions, however, are
complex19. Groups may have heterogeneous sizes20–24, can change
dynamically25,26 or exhibit hierarchical and nested structures27,28. Pos-
sible drivingmechanismsbehind these characters include for example,
simplicial closure21 and homophily24. Most studies on group formation
and structure, however, do not take into account the further temporal
evolution of the underlying social systems—that is characterised by
patterns of memory and burstiness, and exhibits a complex dynamics
of merging and splitting of groups22,29–31. For instance, larger groups
tend to have shorter durations29 and exhibit shorter temporal
correlations31; the dynamics of group formation and fragmentation
exhibits a preferred temporal direction22,31, and non-trivial recurrence
of groups can emerge, driven by different contexts and geographical
places of interactions and defining social circles32. These complex
patterns are the results of microscopic individual level decisions,
ultimately shaping the emergence of collective behaviours. Under-
standing these mechanisms is essential to better characterise the
emerging group dynamics and their effects on processes such as
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disease transmission or spread of information, social norms and
behavioural patterns within and across group gatherings7,33–35.

Here, we address this challenge by investigating empirical traces
of group dynamics extracted from proximity data in different social
and temporal contexts. Leveraging two data sets of temporally
resolved human interactions among preschool children and freshmen
students, we highlight complex mechanisms of group dynamics both
at the individual and at the group level. Following the group mem-
bership of individuals across groups of different sizes, we find that the
main dynamical patterns of group-change are independent from the
context of interactions. The statisticsof groupdurations exhibit aswell
robust properties, with a long-gets-longer effect29,36 for all group sizes
(i.e., the probability to change group decreases with the time spent in
it). Furthermore, the dynamics of group aggregation and disaggrega-
tion show hierarchical and largely symmetrical properties of assembly
and disassembly. Finally, we propose a dynamical model for temporal
interactions—that takes groups explicitly into account— and show that
it reproduces the empirical patterns.

Our results shed lights on how temporal patterns of group for-
mation and evolution can result frommicroscopic choices at the level
of individuals, by accounting for mechanisms of social and temporal
memory. The proposed model can moreover serve as a synthetic
structure for studying the impact of group interactions and their
temporal properties on dynamical processes: indeed, recent works
based on static hypergraphs have shown evidence that group inter-
actions can induce critical mass effects in social contagion37,38, amplify
small initial opinion biases and accelerate the formation of
consensus23,39 and cooperation40,41, but investigations on evolving
structures are scarce42. Overall, our study provides a starting point for
increasingly realistic modelling approaches to better characterise
complex social systems and the phenomenology of attached
processes.

Results
Extracting groups from real-world data
We consider records from two data-collection efforts that tracked
social interactions at a university and in a preschool, yielding data sets
in the formof temporal networks, in which each person is represented
as a node and each interaction as a temporal edge (seeMethods). Time
is in each case discretized by the temporal resolution of the data col-
lection setup. At each timestamp, we define as groups the maximal
cliques (largest fully connected subgraphs) and build in this way a
temporalhypergraph. At each timestamp, eachnode can thus be either
isolated or part of one or several groups (hyperedges).

University. We use data collected by the Copenhagen Network Study
(CNS)43. It is a temporally resolved data describing the proximity
events of 706 freshmen students at the Technical University of
Denmark, collected using the exchange of Bluetooth signals by their
smartphones. We use the publicly available data describing these
proximity events during four consecutive weeks and with a temporal
resolution of 5 minutes43. We split the data into three different con-
texts, which might result in different interaction patterns. First, we
treat all interactions taking place over theweekends as a separate set.
Second, we divide interactions that happen during the workweek
into in-class and out-of-class time. In this way, we do not mix the
group dynamics emerging in unconstrained interactions during the
free time of the lunch break and in-between classes with potentially
constrained co-presence due to common attendance of classes and/
or seating configurations. For this data set moreover, we perform
some data pre-processing before extracting the groups in each
timestamp, to filter out very weak interactions (based on the Blue-
tooth Received Signal Strength Indication), smoothen intermittent
patterns, remove spurious connections, and perform a standard
triadic closure procedure with tailored parameters32. Additional

details on the data set and the pre-processing are described in the
Methods.

Preschool. We also consider another data set, collected in a preschool
as part of the DyLNet project44 to follow the social interactions of
children of age 3 − 6 and their teachers and assistants. The data
describes proximity social interactions between 174 children and 34
adults in seven classes, recorded by Radio Frequency Identification
(RFID) Wireless Proximity Sensors carried by each participant. Inter-
actions were recorded with a temporal resolution of 5 seconds, during
periods of 5 consecutive days, for 10 consecutive months (overall
50 days of data collection) of a single academic year in a French pre-
school. For the purpose of our study we rely on a pre-processed data
set shared in44 and a temporal network reconstructed from the cleaned
interaction signals as explained in45, and we remove the data of inter-
actions with and between adults, to focus on the childrens’ group
dynamics.

Similarly to the university setting, we also divide the data
according to the contexts thatmay impose different constraints on the
emergence of possible group interactions. We differentiate between
in-class periods, during which the social grouping of children was
strongly influenced by the teachers’ instructions and scheduled
activities, and out-of-class periods, when children could choose freely
to interact with anyone from their own and potentially other classes.
For more details on the data pre-processing, network reconstruction,
and context selection, we refer to the Methods section.

The dynamics of group change
A first coarse summary of the complexity of group interactions is
unveiled through the heterogeneity of groups sizes, already docu-
mented in a variety of studies20–24,28.We confirm this finding in the data
sets considered here in Fig. 1A, B, with distributions of instantaneous
group sizes having similar shapebut spanning varying ranges of values:
the interactions measured in the university (panel A) feature larger
group sizes than preschool ones (panel B), possibly because of the
longer range of the Bluetooth signals used in the data collection
infrastructure. In addition, we observe a general tendency of gathering
in smaller groups in contexts where students or children are free to
interact (out-of-class and weekend).

The distribution of sizes is, however, by design, an aggregated
observable that does not informus about the dynamicsof interactions:
a given node might belong at different times to groups of very dif-
ferent sizes, just as a node in a temporal network might have very
different numbers of neighbours or centrality values at different
times46–48. We thus now investigate how the group membership of
individuals evolves across various sizes (some example trajectories can
be found in Supplementary Information, Figs. S1 and S2). In this regard,
it is important to stress that whenever we refer here to a group change
by a node, we interpret it in the most general sense, i.e., it does not
necessarily mean that the node is actively changing from a group to
another one. In fact, from the point of view of a given individual, a
group change can also be due to another person joining or leaving
their current group. Under this approach, adopted to avoid having to
arbitrarily decide how group “labels” propagate whenever there is a
change in one of the members, our analysis is purely observational,
and agnostic with respect to the intention of individuals.

We build for each context a transition matrix T � fTkk0 g describ-
ing these changes asmeasured in the data: denoting by nt

i the size of a
group to which node i belongs at time t, each matrix element repre-
sents the conditional probability Pðnt + 1

i = k0jnt
i = kÞ of finding a given

node i in a groupof size k0 at time t+ 1 given that at time t it belonged to
a different group of size k (see Methods). The results, displayed in
Fig. 1C–G, show strikingly robust patterns across the different con-
texts, differing only in the cut-off associated with the largest group
sizes observed: (i) at given group size k at t, the most probable group
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size at the next time step is k0 = k, for small enough k (except for k = 1 in
which case the next size is most often 2); (ii) the distribution
Pðnt + 1

i = k0jnt
i = kÞ extends to values around the diagonal k0 = k, with

both events of individuals undergoing a group change towards a larger
or a smaller group but large differences between k and k0 are rare; (iii)
as k increases, the distribution shifts to the left of the diagonal, i.e., it
becomes increasingly probable that a change of group leads an indi-
vidual to a group of smaller size.

The approach just described follows the evolution between
groups of different sizes from a purely individual standpoint and does
not include any information about alter group members beside the
considered ego. However, each transition from a group size k to k0

could correspond to very different scenarios in terms of group mem-
bers. To illustrate this point, we compute the overlap between con-
secutive groups of an ego, as measured by the Jaccard coefficient
between their sets of members. The ego could for instance be at t and
t + 1 in groups formed by totally distinct alters, leading to a low Jaccard
coefficient. On the contrary, a group change could also result from
anothermember of the group leaving, in which case the egowould see
a strong overlap between the groups at successive times. Even at fixed
k and k0, the distributions of Jaccard similarity values between con-
secutive groups, shown in Supplementary Information, Fig. S3, con-
firm in fact that a broad range of intermediate situations are also
encountered in terms of change of group members seen by the ego.
Therefore, to get better insights on the underlying dynamics from a
compositional point of view, we now shift the focus of our analysis
from individuals to groups.

For each group, we define its times of birth and death respectively
as the first and last appearance of the same set of members in con-
secutive time steps. The duration of a group is then naturally given by
the temporal difference τ between its time of birth and death, and we
investigate in Fig. 2 how the duration statistics depend on the group
size. We find that the distributions of group duration Pk(τ) for groups

of size k present broad shapes for all k, with comparable patterns in
shape, exponent values and size dependency across the very different
contexts considered. In particular, whether students interact during
classes, in the other spaces of the university, or elsewhere during the
weekend, the distributions of their group interactions depend on the
group size in a similar way: the heavy-tail distributions are broader for
smaller group sizes, with longer averages and maximum observed
durations. Group interactions at preschool show a similar pattern.

This phenomenon is closely linked to the one of burstiness, an
important feature found in empirical temporal networks10, where
periods of node (or link) inactivity are heterogeneously distributed.
Moving beyond pairwise interactions, node inactivity corresponds to
groups of size 1, i.e., when a node is isolated. Figure 2 thus confirms the
presence of bursty periods of inactivity at the node level. This is also
illustrated by examples of node activity through time, as given by the
temporal evolution of the size of the group to which a node belongs,
reported for some selected nodes in Supplementary Information,
Figs. S1 and S2. As expected, nodes display very heterogeneous levels
of participation —and active periods featuring medium and large
groups are inevitably correlated across different nodes. In addition to
the inter-event time distribution for nodes given Fig. 2, we also find
burstiness across the different contexts of interactions at the level of
groups. This is deduced from the inter-event time distributions
reported in Supplementary Information, Figs. S4 and S5 that are
broadly distributed even after disaggregating by group size. This
analysis extends the results described in22,29 to very different contexts,
showing that the strong robustness of statistical patterns of contacts
goes beyond the one of pairwise interactions described in earlier
works49,50, and hinting at common robust mechanisms determining
contact and group formation, duration, and evolution in different
contexts.

To go further,wenow investigate howgroups change: indeed, the
node transition matrices introduced above and shown in Fig. 1 give

Fig. 1 | Group size distributions and node transition matrices. A, B Group size
distributions for University (A) and Preschool (B) interactions that take place in-
class, out-of-class, or during the weekend (see legend). C–G Node transition
matrices for University (C–E) and Preschool (F, G), for interactions that take place
during in-class (E), (F), out-of-class (C, G), or weekend (D) time. The elements of

each matrix represent the conditional probability that a node that is member of a
group of size k at time t is next member of a different group of size k0 at time t + 1—
given that it undergoes a group change between t and t + 1. Probability values are
given by the height of each element (normalized by row). Note that the scales on
the y-axes—one for each matrix row—vary for visualization purposes.
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only partial information regarding the actual group dynamics. The
individual point of view adopted is useful to understand how indivi-
dual group membership evolves between different sizes, but the
impact of these individual changes on the sizes of the groups needs an
independent analysis. For instance, while Fig. 2 shows that larger
groups tend to have shorter lives, how they break up is still to uncover.
Similarly, a group might appear due to the fusion of two pre-existing
groups of comparable sizes —like water droplets that merge after
overlapping due to surface tension, or from a gradual process of the
integration of one individual at a time. To investigate this issue, we
follow the members of each group, before the group’s birth and after
its break-up. Moreover, we pool together the results of groups of the
same size, to check whether groups of different sizes undergo differ-
ent aggregation and disaggregation dynamics. For each group size k,
we show in Fig. 3 the heatmaps (one for each context) of the size
distributions of the largest sub-set of group members observed just
before the birth or just after the death of a group (see Methods). For
small group sizes, both group aggregation and disaggregation tend to
happen gradually from or to groups of similar sizes. This is in agree-
ment with previous results for the formation of 3-body interactions22.
For increasingly larger groups, the picture evolves in a slightly context-
dependent way. The general picture is that no merging from (or
splitting into) equally sized groups is observed, as could be expected
from a purely combinatorial point of view. Medium- and large-sized
groups tend to be created from a group of slightly smaller size joined
by one or few small ones, and symmetrically lose members in a small
chunk, remaining of mid to large size. This points towards a partially
hierarchical dynamicalmechanism according to which individuals first
engage in small groups and the small to mid and large groups aggre-
gate to form even larger ones. A symmetric process takes place when
large groups dismantle —first into smaller medium-sized subgroups
and then loosing members one at the time.

A data-driven dynamical model for groups’ evolution
Most models describing the temporal evolution of social interactions
consider network representations, i.e., are based on mechanisms
governing how pairwise interactions are established and successively
broken36,51–55. Here, we describe instead a model that explicitly inte-
grates how individuals formgroupsof arbitrary sizes29,56,57: at each time
step an individual can decide to stay in their current group, leave and
join a different one, or become isolated.

Themodel is inspired by the one put forward in29,56: we considerN
agents that interact in groups over time. For simplicity, we assume that
each agent i = 1, 2, …, N participates in only one group at a time (as it
happens for most of the empirically observed interactions, see Sup-
plementary Information, Table S1).We callKt the set of groups present
at time t. We denote by σt

i 2 Kt the —single— group to which agent i
participates at time t, of size nt

i � jσt
i j. If nt

i = 1, the agent i is isolated, or
inactive (cf. Supplementary Information, Figs. S1 and S2). We note that

many models devoted to describing the evolution of interactions
between individuals are based on successive pairwise interactions
(groups of size 2)11,51,53,55. As time is aggregated, the result of these
binary interactions is a social network between a set of nodes repre-
senting individuals1, where a link denotes the fact that two individuals
have been in contact (each link canbeweighted, e.g., by the cumulated
time of interactions). In the present case, interactions between agents
aredescribedby groups of various sizes. The adequate tool to describe
the temporally aggregated picture is then not anymore a network, but
a hypergraph between the set of vertices V representing the agents12,58.
This hypergraph is formed by hyperedges between these vertices,
where a k-hyperedge σ 2 K is a set of k vertices representing a group
interaction of size k, whichcanbeweightedby the total time this group
interaction has taken place.

The model evolves through iterations where each time step t
corresponds to an epoch, during which each one of the N agents is
selected in a randomorder.Whenever anagent i is selected, currently a
member of group σt

i , the model then evolves according to two
sequential mechanisms. With the first one the agent decides to either
stay in the same group, depending on the time spent there and the
group size, or alternatively leave it for a different one. If the agent
stays, nothing happens. If the agent instead leaves its current group, a
second mechanism is triggered, corresponding to the choice of its
next group: this choice is based on the acquaintances made until that
time. We note that in the original pairwise model29,56, individuals
leaving a group became automatically isolated, and isolated indivi-
duals could join groups of any size, which implies that the shape of the
empirical transition matrix of Fig. 1 could not be reproduced. In the
next paragraphs we leverage qualitative insights and direct measures
from data to define these two mechanisms in more details.

We first take into account that the probability for an agent to have
a group changedecreaseswith the time τ the agent has already spent in
that group, i.e., a “long-gets-longer” effect. Evidence for such effect has
been found empirically in pairwise interactions36,53. The case of larger
group sizes and the potential dependency on the group size have
however not been investigated. We thus measure the group-change
probabilities in our data, and how they depend on the group sizes.
Specifically, we compute the probability P↷(k, τ) for a node belonging
to a group of size k to have a change of group after τ timestamps (see
Methods). Figure 4A, D shows the resulting probability distribution as a
function of the group duration τ aggregated over all group sizes k (the
distributions shown in the figure correspond to interactions that take
place out of class, and results for the other contexts are shown in
the Supplementary Information, Figs. S6 and S7). These empirical
results suggest that the “old-gets-older” mechanism observed in pair-
wise interactions remains valid for groups: the probability for an agent
to change groupdecreaseswith the time they have spent in that group.
In other words, the longer a group has been established, the smaller
the probability that it will break apart. Similar trends can be found for

Fig. 2 | Distributions of group durations. Each panel reports the distribution of
group duration τ for the CNS (A–C) and the DyLNet (D–E) data sets in different
contexts: in-class (A, D), out-of-class (B, E) and weekend (C). Different symbols

correspond to different group sizes. The distributions for group size 1 have been
fitted using the method in Ref. 88, and can be characterized by the depicted
exponent values.
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the two data sets, both when aggregating over group sizes —as just
shown— and for the distributions P↷(k, τ) separated by group size, as
shown in Supplementary Information, Figs. S8 and S9 for the CNS and
the DyLNet data sets, respectively.

We thus assume in themodel that the probability that a node i in a
group of size k has a change of group decreases with the time τ that
node i has spent in that group (residence time) as

pkðτÞ=
bk

τβ=N
, ð1Þ

where β is a real-valued exponent that modulates the impact of the
residence time, which we obtain by fitting the empirical distributions
(dashed lines in Fig. 4A, D).With probability 1 − pk(τ) the agent i stays in
the same group.

In Equation (1), bk is a constant that depends on the size of the
current group of node i. It is indeed reasonable to assume that the
probability of leaving a group also depends on the size of the group
itself, as size is a crucial factor that determines a group’s sociological
form59, and its ability to sustain a single conversation —leading to the
phenomenon known as schisming60. To gain insights on the depen-
dency of bk on the group size k, we fit each P↷(k, τ) using a power-law
function of the form bkτ−β (with β taken from the fit shown in Fig. 4A, D).
The resulting values of bk are reported in Fig. 4B, E. They show a
monotonic increase with k, which we fit to a logistic form

bk =
1

1 + e�αðk�k0Þ
: ð2Þ

Similar results across the different contexts and data sets are
reported in Supplementary Information, Figs. S10 and S11 for the CNS
and DyLNet data sets, respectively. In all cases, the logistic fit falls
within the confidence intervals of the empirical measures, justifying
the choice of a logistic function.

Let us now focus on the second mechanism of the model, which
controls for the selection of the new group after the group change.
Previous empirical and modelling investigations for temporal net-
works support the idea that individuals have apreference for repeating
interactions with people already met, i.e., a mechanism of social
memory36,53,55. Nevertheless, this explicit signal at the level of groups
has never been measured. Hence, we check the presence of social
memory in the empirical data by looking,whenever a node iundergoes
a group change at any time t, at the fraction χi,ω(t) of known nodes in
the new groupω of node i. We then take the average over all the group
changes and plot the associated distributions for the two considered
data sets in Fig. 4C, F. We also compare the results with two baseline
scenarios in which the group choice is performed uniformly at ran-
dom, among the available groups at the moment of the change, or at
random but restricted to those having the same size of the new group
in the empirical data (see Methods). The results of Fig. 4C, F clearly
show that both data sets display a strong signal of social memory as
compared to their random counterparts. The same holds for the other
contexts and data sets, as reported in Supplementary Information,
Figs. S12 and S13.

We thus take into account thismechanismof socialmemory in the
followingway in themodel. In case of a group change, we denote by σt

i
the group of i at time t, and by ω 2 Ωt = fKt n σt

i ∪ ;g the new group
after the group change. Note that, by including the empty set ; among
the possible target groups, we account for the possibility that i
becomes isolated. Specifically, we include in the ensemble Ωt of pos-
sible groups to joinmultiple copies of ;: thismultiplicity, controlled by
a parameter ϵ, makes it possible to tune in themodel thewillingness of
agents to become isolated upon leaving a group. Among all possible
groups ω ∈ Ωt, i selects the one to join via the second behavioural
mechanism, which involves the memory of previous interactions.
Namely, the probability to join ω is proportional to the fraction χi,ω(t)
of agents in ω that at time t have already interacted with i in the past.
Let us know define a slightly different quantity χyi,ωðtÞ as

χyi,ωðtÞ=
1 + ω \ St

t 0 = 1
σt0
i

� �

1 + jωj :
ð3Þ

Note that, differently from the simple fraction of known agents,
node i itself is included in the computation of χyi,ωðtÞ in order to have a
non-zero probability for i to join either an empty group or a group of
previously unmet individuals. In other words, χyi,ωðtÞ is the density of
agents in the groupwhich areknown to i right after joining. Altogether,
the probability for an agent i belonging to group σt

i at time t to be
found in a different group ω at time t + 1 is given by

Probðσt + 1
i =ωjfσt

i gtÞ=
χyi,ωðtÞP
ω0χ

y
i,ω0 ðtÞ

: ð4Þ

The model reproduces the higher-order dynamical features
We now explore the ability of the model defined above to capture the
key empirical features we have uncovered in the dynamics of group
interactions. As empirical results are robust across data sets and con-
texts, we consider as an example the University interactions taking
place during out-of-class time. We thus run the model initialised with
N = 700 agents for T = 2000 time steps, using different parameter
values for ϵ, α, and k0—while β is set to 0.8 asmeasured in Fig. 4A. Each
realisation of the model generates a sequence of temporally-ordered
hypergraphs thatwe can analyse as per the empirical data, obtaining in
particular group size distributions and group size transition matrices.
As described inMethods, we can thus jointly fit themodel on these two
observables.

Fig. 3 | Group dynamics of aggregation and disaggregation. The panels report
results for University (A–C) and Preschool (D–E) interactions that take place during
in-class (A, D), out-of-class (B, E), or weekend (C) time. Each side of the pyramidal
heatmaps shows the probability distribution associated to the size for the largest
sub-group joining and the largest subgroup leaving a group of size k. The central
column reports the considered group size k, while the probability distributions on
its left-hand side and right-hand side, respectively, corresponds to group aggre-
gation and disaggregation. Dashed lines refer to the distribution average.
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We show the results of the best-performing model in Fig. 5. All
obtained results are in line with the empirical data analysed. The
group-size distribution (Fig. 5A) spans a range of values comparable
with the empirical observation in Fig. 1A. The group size transition
matrix for the dynamics of group changes from the node point of
view, shown in Fig. 5B, has similar symmetric patterns for small sizes
and a biased transition towards smaller sizes due to the cut-off effect
for larger groups, as in Fig. 1C. It is important to note that other
group properties, albeit not taken into account for the exploration of
the model parameters, are also reproduced. Indeed, the group
duration distributions (Fig. 5C) display broad tails, with a similar
group size dependency as in the empirical observations of Fig. 2B.
More importantly, even complex dynamical characters such as the
group disaggregation and aggregation probability distributions,
displayed in Fig. 5D, resembles the empirical findings (Fig. 3B),
showing the excellent capacity of the proposedmodel to account for

and reproduce the complex phenomenology of the dynamics of
group interactions.

Discussion
We have here analysed human interactions under the lens of group
dynamics in two data sets, collected respectively among preschool
children and university freshmen students. Despite the inherently
different nature of their interactions due to age, contexts, and setting
constraints such as class schedules, and despite the differences in data
collection techniques, we have uncovered strikingly similar group
dynamics both at the individual and group level. In particular, we have
observed similar group size and duration distributions, and more
importantly, consistent dynamical patterns of individual group tran-
sitions and group formation and dissolution phenomena in the two
settings and at times corresponding to different activity types. Strik-
ingly, we show in the Supplementary Information that these signatures
can also be found in data collected in other contexts, such as social
interactions that took place during four different scientific con-
ferences organised by GESIS61 (see Supplementary Information, Note 1
and Figs. S14, S15, S16, S17, S18, S19). The individuals whose interac-
tions are reported in those data are more heterogeneous than in the
university and preschool scenarios analysed here: conference partici-
pants cover indeed a broad range of ages, with interactions involving
different levels of seniority. Even the context can be considered as a
mixture of the in-class and out-of-class settings, as conference sche-
dules usually provide more freedom than classes —with participants
often not attending all sessions. Despite all these differences, very
similar patterns of group statistics and group changes are observed. It
would of course be interesting to extend these results even further by
considering still other contexts of human interactions to confirm the
generality of such group dynamics and patterns of group size change
among humans.

Our analysis and results contribute to the obtention of a more
complete representation of social dynamics than the ones limited to
pairwise interactions. We have accordingly proposed a synthetic
model describing how nodes representing individuals form groups
and navigate between groups of different sizes. The model includes
mechanisms of short-termmemory ("long gets longer”) and long-term

Fig. 4 | Fitting the empirical group-change probability and measuring the
signal of social memory. The different panels refer to out-of-class interactions
from the CNS (A–C) and the DyLNet (D–F) data sets. A, D Probability for a node
belonging to a group of any size to leave it for a different one after exactly τ

timestamps. Points are binned empirical results, dashed lines represent a power-
law fit of the form bτβ—values reported in each panel. Fitted exponents β are then
used to estimate the group-size-dependent constants bk, as given in Eq. (1), with

another power-law fit. In B, E the resulting values for bk are plotted (points and 95%
CI error bars) together with a logistic fit (dashed lines).C, FDistribution of fraction
of nodes—composing a newly chosen group—that were previously known to the
focal node. The resulting distributions of values, averaged over the different time
steps, are plotted in comparison to two null scenarios where the group to join is
chosen at random, or at random given the target size.

Fig. 5 | The synthetic model reproduces the higher-order dynamical features
found in empirical data. Simulated distribution of group size (A), node transition
matrix (B), group duration for different group sizes k (C), and pyramidal heatmap
associated to the aggregation and disaggregation dynamics (D) generated by the
proposed temporal hypergraph model.
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socialmemory (higher probability to join a group including individuals
already encountered, see Supplementary Information, Fig. S20), and is
able to reproduce the non-trivial dynamics of group changes, both
from a node-centric point of view and from the point of view of group
formation and break-up. Note that, both when discussing the robust-
ness of the patterns obtained in different empirical contexts, andwhen
validating the model, we have remained at a phenomenological level,
for several reasons. First, there is no clearly recognized quantitative
measure of distance or similarity between two temporal networks or
temporal hypergraphs. Second, the data sets we study have different
sizes and maximal group sizes, so that the matrices we look at have
different sizes, and the distributions have different cut-offs. Third, we
prefer to avoid claims about specific shapes of functions (especially for
distributions with broad shapes) or of universality, as such claims are
notoriously difficult to establish or disprove. Finally, even if wewere to
define an ad hoc quantitative measure of difference combining the
various observables in an arbitrary manner, we would not have a
reference value to compare it to.

Thanks to its realistic group dynamics, our model could be used
to generate synthetic substrates for studying the impact of higher-
order temporal interactions on dynamical processes. Indeed, while
the impact of higher-order interactions on various dynamical pro-
cesses has been well assessed13,37, studies on structures undergoing a
realistic temporal evolution are scarce42,62. The interplay with the
dynamics of groups might prove relevant for a wide variety of pro-
cesses of interest in many contexts, such as the dynamics of
adoption63 and opinion formation64, but also in synchronisation65,66,
cooperation40,41,67 and other evolutionary dynamical processes68.
Overall, our results call for the development of more modelling
approaches that explicitly take both the temporal and the many-
body nature of social interactions into account, both to understand
the mechanisms from which the complex group dynamics emerges,
and to investigate the consequences of such group gatherings in
collective dynamics. For instance, the model could also be extended
to other forms of memory, as explored in pairwise interactions55.
In addition, themodel we implemented relies on a set of minimalistic
mechanisms that shape the behaviour of the nodes. Future
work may further enrich these rules —for the choice of group change
and selection— by integrating homophily-driven decisions and
mechanisms of opinion dynamics that would co-evolve together with
the social structure69. Notably, all these approaches should not be
limited to humans, as non-human animals have also shown to be
sensible to higher-order social effects18,70,71, and, at the pairwise
interaction level, complex features similar to the ones of human
interactions have been observed72. Further studies would however be
required in order to integrate behavioural response to non-pairwise
interactions with additional environmental73, cultural74, and ecolo-
gical factors —like splitting for resource competition, or grouping as
a defensive strategy against predators75. Indeed, there are cases in
which the drivers of animal grouping can have genetic roots76.
Alternatively, one might try to devise a microfounded principle that
could explain the observed temporal evolution of group sizes in term
of balancing costs and benefits —akin to evolutionary models used
for collective action problems77. Along this line, a game-theoretic
interpretation has been given for the different group sizes of static
hypergraphs constructed from scientific collaborations78.

Our results inevitably rely on the given definition of group inter-
action, as constructed frompairwise data, which represents a proxy for
real-world group encounters that also depend on the temporal reso-
lution of the data. Given the current lack of a longitudinal data col-
lection effort specifically designed to track group interactions, several
research directions could be explored. For example, it would be
interesting to check the robustness of the empirical results with
respect to other definitions of groups or hyperedges from data
obtained by measuring pairwise interactions, such as the Bayesian

inference approach to distinguish hyperedges from combinations of
lower-order interactions79, or extraction of statistically significant
hyperedges80. Even the hardcore definition of group that we used
could be challenged, using instead less stringent conditions81 together
with the possibility of having nodes that display multi-membership.

To conclude, our study contributes towards a better under-
standing of human behaviour in terms of the formation and dis-
aggregation of groups, and of the navigation between social groups.
We expect that the analysis presented can support researchers work-
ing at the intersection of social and behavioural sciences, while the
proposed model can directly be used to inform more realistic simu-
lations of social contagion, norm emergence, and spreading
phenomena34 in interacting populations.

Methods
Data description and pre-processing
Copenhagen network study. We use data collected via the Copen-
hagen Network Study (CNS)43 that represents a temporally resolved
proximity data collected through the Bluetooth signal of cellular
phones carried by 706 freshmen students at the Technical University of
Denmark. The publicly availabledata corresponds to the data recorded
during four weeks of a semester, and describes proximity of students
with a temporal resolution of 5 minutes. The raw data (already pre-
processed in Ref. 43) contains 5,474,289 records. Each entry contains a
timestamp, the ID of one user (ego), the ID of another user (alter), and
the associated Received Signal Strength Indication (RSSI) measured in
dBm. The data is already processed to neglect the directionality of
each interaction (which device is scanning). Empty scans (no other
device found) are reported with a 0 RSSI, which corresponds to
isolated nodes.

We split the data records into threemain periods according to the
hour of the day and the day of the week. Even though the released
data43 do not contain precise information on time and date, these can
be easily inferred by cross-checking activity patterns in the temporal
sequences with the official timetables for Bachelor studies at DTU82.
The resulting contexts are:

• Workweek (in-class): Monday to Friday, 8 a.m. to 5 p.m.
• Workweek (out-of-class): Monday to Friday, 12 a.m. (midnight) to 8
a.m. and 5 p.m. to 11.59 p.m.

• Weekend: Saturday and Sunday.

We further clean the data in the following way. First, we remove
external users by deleting all records in which the device of a partici-
pant scanned a device that did not take part in the experiment
(resulting in 4,646,415 records). We then retain only records with an
RSSI higher than -90dBm [see Supplementary Information, Fig. S21].
This is slightly less restrictive than the threshold of −80dBm used in83,
which was used to select interactions occurring within a radius of 2
meters (a typical distance for social interactions among close
acquaintances84). After doing this, we have 3,824,052 records divided
into 1,603,916 pairwise interactions and 2,220,136 empty scans. We
treat the latter as isolated nodes.

We then perform three pre-processing steps as in Ref. 32. First, in
order to smooth the pairwise interactions, we look for all the gaps
composed by pairwise interactions that are present at times t − 1 and
t + 1 but not at time t. We fill the resulting 163,349 gaps by using the
meanRSSI of the adjacent timestamps (eventually replacing, if present,
a record of an empty scan from one of the two interacting nodes).

Second, we filter out spurious interactions by removing all the
130,935 pairwise signals that are present solely at time t but not at
times t − 1 and t + 1, leaving uswith 3,855,139 records. This is also in line
with the procedure performed in Ref. 32, which is based on the con-
vention developed by the Rochester Interaction Record85, according to
which an encounter needs to last 10 minutes or longer to be classified
as meaningful.
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Third,weperform triadic closure. Namely, if at time t a user i scans
a user j and user j scans a user k, then we also add a record (if not
already present) of an active scan between user i and user k. We assign
to this interaction the minimum RSSI between the other two. One of
the potential pitfalls of performing triadic closure is the addition of
many links to events that have already a low RSSI. In particular, if we
filter the number of newly added links —due to the triadic closure— by
RSSI, we notice that this number scales as a power law with the RSSI
[see Supplementary Information, Fig. S22]. In order to avoid closing
triangles associated to “weak” events, we select an additional threshold
of − 75dBm for the RSSI of the newly added links. This is chosen as the
lowest threshold that preserves the group-size distribution across the
different contexts [see Supplementary Information, Fig. S23]. Fig-
ures Supplementary Information, Figs. S24 and S25 show the impact of
the triadic closure—with the chosen threshold—on the number of links
and groups in time, respectively. When observed through time, the
added links by themselves do not significantly affect the number of
tracked links, but help reducing the number of groups —merging
together components that would be disconnected otherwise.

As a final step, we check whether the links removed during
the procedure involved were the only interactions of an involved
node at that particular time (also considering the triadic closure). In
this case, we add back the node to the records and declare it as
isolated. We finally end up with a pre-processed data set of 3,991,329
records.

DyLNet study. The DyLNet data set was collected with the purpose of
observing longitudinally the co-evolution of social network and lan-
guage development of children in pre-school age. The data collection
was carried out in a French preschool by recording the proxy social
interactions and voice of 174 children between age 3 to 6 and their
teachers and assistants. In this study we rely on data openly shared
in44 and focus on the proximity social interaction data that was
recorded over 9 sessions (5 morning and 4 afternoon periods —there
are no classes in France on Wednesdays) per week, in 10 consecutive
months during a single academic year. The data collection was car-
ried out by using autonomous Radio Frequency Identification (RFID)
Wireless Proximity Sensors (employing IEEE 802.15.4 low-rate wire-
less standard to communicate) installed on participants. Ground-
truth data was collected in situ or via controlled experimental set-
tings. Badges broadcasted a ‘hello’ packet with 0 dBm transmission
power for 384 μs every 5 seconds, otherwise they were in listening
mode to record the badge ID and RSSI of other proxy badges if the
received signal reached the minimum sensitivity value of -94 dBm.
Mutually observed badges were paired to indicate proximity inter-
actions, and were further pre-processed to finally obtain an undir-
ected temporal network45. Interactions in this network indicate face-
to-face proximity of participants within 2 meters with temporal
resolution of 5 seconds.

Taking the reconstructed network44 as a starting point, we remove
teachers from the data, restricting our attention to children. The data
are also enriched with information. For example, the record of each
pairwise interaction comes with a 5 digits label that tracks the context
category of each of the two individuals at the beginning and end of the
interaction. Leveraging this information, as well as the identity and
class membership of each individual, as per the CNS, allows us to split
interactions into two categories:

• in-class: interactions among children belonging to the same class
that starts and finish during class time. Spurious interactions of
children belonging to different classes during class time or
interactions that start in class and end during the free time are
thus removed;

• out-of-class: interactions among children of any class that start
and finish during the free time. Spurious interactions that start in
class and end during free time or viceversa are thus removed.

Differently from the CNS data set, no data collection was per-
formed over the weekends. Although the resolution of the original
data is 5 seconds, since there was no central unit synchronising the
clocks of the badges attached to each participant (they were in-sync
only once per a day), we remove interactions that last for less than
10 seconds. Finally, differently from the CNS, the DyLNet data
records do not explicitly include isolated participants, i.e., a child
that a given timestamp does not participate to any interaction. We
thus “add back” isolated records for each child in all those time-
stamps in which that child does not interact with other nodes, but
such that the child had at least one interaction during the same
school session.

Computing node transition matrices
The node transition matrices measure the conditional probabilities of
moving across groups of different sizes. Each matrix is constructed —

from a node-centric point of view— by counting, for each node, the
number of observed transitions at consecutive times across two dif-
ferent groups of sizes k and k0. Let us denote by σt

i the group where
node i belongs at time t, and by nt

i = jσt
i j its size. Let us consider now a

random node x at a time τ in which it undergoes a group change. We
compute the probability that it changes from a group of size k to a
group of size k0, Pðnτ + 1

x = k0jnτ
x = kÞ, as

Tkk0 � Pðnτ + 1
x = k0jnτ

x = kÞ=
P

t,iδnt
i k
δnt + 1

i k0 ð1� δσt
i σ

t + 1
i
Þ

k0P
k 00 ,t,iδnt

i k
δnt + 1

i k00 ð1� δσt
i σ

t + 1
i
Þ , ð5Þ

where the sum at the numerator takes into account all the transitions
of all nodes i 2 V taking place at any time t, from a group of size k to a
group of size k0, and the sum at the denominator takes into account all
such transitions, but to a groupof any sizek″ (δx,y is theKronecker delta
function, i.e., δx,y = 1 if x = y and zero otherwise). The normalization by
the size of the target group in Eq. (5) ensures that changes to groups of
different sizes are comparable. Without this, a single node leaving a
group of, say, 5 nodes —assuming no further changes to the group—
would result in 4 contributions (the remaining nodes) to the transi-
tions from size 5 to size 4.

Computing group aggregation and disaggregation matrices
Studying group aggregation and disaggregation helps us to under-
stand how groups that form/dismantle behave just before/after the
event. Each group interaction σ, of size k ≡ ∣σ∣, is associated to a time
of birth tβ and a time of death tδ defining a temporal span τ = tδ − tβ in
which all themembers of the group stayed continuously together. To
study the aggregation and disaggregation phases, we look at how the
k members of σ were respectively distributed among groups at tβ − 1
and tδ + 1 (if these timestamps are present within the considered
context of interaction). In particular, the probability heatmaps
shown in Fig. 3 are constructed, for each group size k, from the
frequencies of the sizes of the maximal sub-groups of σ right before
its birth,

max
σ02Ktβ�1

:jσ0 j<jσj
jσ \ σ0j, ð6Þ

and right after its death,

max
σ02Ktδ + 1 :jσ0 j<jσj

jσ \ σ0j: ð7Þ

Notice how we intentionally restrict our attention to the sub-
groups of smaller sizes, thus splitting the dynamics into groups that
either grow or shrink. Within this dichotomy, for example, a group of
size 3 that detaches from a group of size 5 will not contribute to
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building the probability distribution associated to the aggregation
dynamics for k = 3, but only to the disaggregation one for k = 5.

Computing group-change probabilities
The group-change probability for each data set and context of inter-
action is computed by considering for all time steps t and all nodes i
the number of times each node, belonging to a group of size k, leaves
the group after τ timestamps, over all the possible times. This is
defined as:

P↷ðk,τÞ=
P

t,i 1� δσt + 1
i σt

i

� �Qτ + 1
Δ=0 δσt

i σ
t�Δ
i

1� δσt
i σ

t�τ
i

� �
δnt

i kP
t,i

Qτ + 1
Δ=0 δσt

i σ
t�Δ
i

1� δσt
i σ

t�τ
i

� �
δnt

i k

: ð8Þ

Figure 2 shows the results aggregated over all group sizes, while
the full results from Eq. (8) are given in Supplementary Information,
Figs. S8 and S9 for the CNS and the DyLNet data, respectively.

Null models for group change
When checking for the presence of social memory effects in the
empirical and in the synthetic data, we also define two null models for
comparison. Let us consider the case of a group change performed by
a node i that switches from groupωt

i at time t to a different groupωt + 1
i

at time t + 1. Notice that, despite the splitting of the datasets into
different temporal windows (as given by the different contexts of
interaction), we do not have problems at the borders aswe restrict our
attention to group transitions that were actually recorded in the data.
The first baseline scenario we consider is the case of a random selec-
tion, in which i chooses instead a random groupω 2 Kt + 1 uniformly at
random from the set of available groups at t + 1. Notice that there will
always be at least one group to choose from, that is the one found in
thedata. As a secondbaseline scenariowe add to this randomselection
a constraint on the size, such that the group is chosen uniformly at
random from the subset of the groups in Kt + 1 that have the same size
of the target group found in the empirical transition. This second type
of null model does not work for the case of an empirical transition
towards a group of unitary size (a node that becomes isolated). All
these transitions are thus discarded from the computation. Notice
however that this does not jeopardise the comparison as the compu-
tation of the density of known nodes in this transition always leads to a
0 —ultimately reducing the differences with the null models.

Model parametrization and fitting
The model is fitted by selecting the best-performing run among dif-
ferent combinations of parameters and with respect to two target
observables. In particular, we perform different realisations of the
model for different combinations of the parameters θ = {ϵ, α, n0} that
take values in the intervals ϵ ∈ [1, 30], α ∈ [0.05, 0.95], n0 ∈ [3, 14],
while keeping constant N = 700 (as the number of students at the
university), β = 0.8 (as measured, see Fig. 4), and for a number of time
steps equals to T = 2000 (notice that each time step involves the
activation of every node in a random order). The optimal set of para-
meters θ* is selected based on a joint minimisation of the Kullback-
Leibler (KL) divergence DKL(⋅ ∣∣ ⋅) with respect to the logarithm of the
empirical group-size distribution P̂ðkÞ and the node transition matrix
T̂kk0 :

θ* = argmin
θ

μDKL P̂ðkÞjjPðkjθÞ
� �

+ ½1� μ�DKL T̂kk0 jjTðkk0jθÞ
� �h i

, ð9Þ

with μ = 1/2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Copenhagen Network Study data are available from the original
source43 at https://doi.org/10.6084/m9.figshare.7267433. The DyLNet
data are available from the original source44 at https://doi.org/10.7303/
syn26560886. The GESIS data are available upon request from the
original source61 at https://doi.org/10.7802/2351.

Code availability
The entire analysis was conducted using Python. In particular, the
model was coded using the XGI Python library for compleX Group
Interactions86. All scripts and notebooks that support the findings of
this study can be found at the Github repository https://github.com/
iaciac/temporal-group-interactions87.
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