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Abstract

Purpose: Compressed sensing (CS) has been widely applied to prospective cardiac cine MRI. The aim of this work is to study
the benefits obtained by including motion estimation in the CS framework for small-animal retrospective cardiac cine.

Methods: We propose a novel B-spline-based compressed sensing method (SPLICS) that includes motion estimation and
generalizes previous spatiotemporal total variation (ST-TV) methods by taking into account motion between frames. In
addition, we assess the effect of an optimum weighting between spatial and temporal sparsity to further improve results.
Both methods were implemented using the efficient Split Bregman methodology and were evaluated on rat data
comparing animals with myocardial infarction with controls for several acceleration factors.

Results: ST-TV with optimum selection of the weighting sparsity parameter led to results similar to those of SPLICS; ST-TV
with large relative temporal sparsity led to temporal blurring effects. However, SPLICS always properly corrected temporal
blurring, independently of the weighting parameter. At acceleration factors of 15, SPLICS did not distort temporal intensity
information but led to some artefacts and slight over-smoothing. At an acceleration factor of 7, images were reconstructed
without significant loss of quality.

Conclusion: We have validated SPLICS for retrospective cardiac cine in small animal, achieving high acceleration factors. In
addition, we have shown that motion modelling may not be essential for retrospective cine and that similar results can be
obtained by using ST-TV provided that an optimum selection of the spatiotemporal sparsity weighting parameter is
performed.
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Introduction

Cardiac cine magnetic resonance imaging (MRI) has proved

very useful for assessing heart motility and cardiac function. Cine

imaging involves an intrinsic tradeoff between the acquisition time,

spatiotemporal resolution, and signal-to-noise ratio (SNR) of the

reconstructed images. Therefore, this application greatly benefits

from acceleration techniques that reduce acquisition time.

Traditional acceleration techniques were based on parallel

imaging [1,2]. The next generation of accelerating techniques—

UNFOLD [3], k-t BLAST, and k-t SENSE [4]—exploited

temporal redundancy. In the last few years, compressed sensing

has achieved even higher acceleration factors [5–11].

Compressed sensing generates accurate image reconstructions

from highly undersampled data obtained using randomized

sampling and a nonlinear reconstruction algorithm that forces

the image to be sparse in a transformed domain. Among the

possible transform domains, one of the most widely used is the

image gradient domain that leads to the minimization of the so-

called total variation (TV). Reconstruction involves the solution of

a convex constrained optimization problem, which can be

accurately solved with classic optimization methods [12]. Howev-

er, these are generally computationally expensive, and a common

strategy is to approximate the problem by adopting an equivalent

unconstrained optimization formulation. A new approach based

on the Split Bregman method can accurately and efficiently

resolve constrained optimization problems including L1-norm and

TV penalty functions [13–15]. Split Bregman has been validated

with static MRI [14] and cardiac cine data, in which the

spatiotemporal TV (ST-TV) method is applied [16].
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Motion-based reconstruction methods have been proposed as a

generalization of temporal TV methods [17–19]. While temporal

TV imposes sparsity by ensuring that few pixels change over time,

a sparser transform can be achieved by incorporating knowledge

of the motion across frames into the reconstruction algorithm. The

above mentioned studies [17,18,19] focused on prospective

cardiac cine and proved to be superior to previously used

methods, such as kt-FOCUSS for human data [17] and to ST-

TV for small-animal data [19].

Prospective cardiac cine requires the use of ECG recording and

detection of R waves, which may be challenging in small animals

at high field strengths, especially in the presence of pathologies

such as myocardium infarction. This can be overcome by using

retrospective cine, which relies on navigators to classify the data

into different time frames [16,20].

Substantial differences might be found in the behaviour of

motion-based CS algorithms between its use in prospective human

data and retrospective data applied to small animal. As opposite to

humans, in the case of small animal, a higher heartbeat rate, lower

SNR, different number of frames, and higher presence of artefacts

motivate the repetition and averaging of several experiments. The

repetition and averaging of data can be used to increase the

acceleration achievable with CS, as the potential of CS depends on

the level of randomization of the undersampling, which can be

increased with randomization across repetitions in addition to the

more usual encoding direction and temporal dimension [16].

All the aforementioned differences between prospective human

data and retrospective animal data may influence the performance

of CS methodologies. The aim of this work is to study the benefit

of incorporating motion estimation within the compressed sensing

framework into retrospective cardiac cine MRI for small-animal

studies. To this purpose, we propose a novel B-spline-based

compressed sensing method (SPLICS) based on motion estima-

tion, which is evaluated by comparing with ST-TV using

retrospective cardiac cine data from both healthy and infarcted

rats. In addition, we assess the effect of an optimum weighting

between spatial and temporal sparsity to further improve results

with both SPLICS and ST-TV.

Methods

Compressed sensing
Compressed sensing enables accurate image reconstructions

from randomly undersampled data [21,22] by using convex

optimization and imposing sparsity of the image in a transform

domain, subject to a data fidelity constraint. Sparsity can be

enforced by minimizing the L1-norm of the solution in the

transform domain. With f as the measured k-space, F the

undersampled Fourier operator, and u the image assumed to be

sparse under the transformY, compressed sensing formulates the

following constrained optimization problem

min
u

Yuk k1 such that Fu{fk k2
2ƒr ð1Þ

where r depends on the variance in signal noise as r = Ns2,

being N is the number of data points, for independent and

identically distributed noise.

For static image reconstruction, the transformed domain chosen

is usually the spatial gradient, Y~+x,y, such that

Yuk k1~ +x,yu
�� ��

1
is the spatial TV.

Compressed sensing for cardiac cine MRI
Dynamic cardiac applications are generally sparser in the

temporal domain than in the spatial domain. In this work, we

examine the effect of a spatiotemporal weighting parameter, a,

that allows us to control the amount of sparsity enforced in one

domain with respect to the other (0ƒaƒ1). With this approach, a

general compressed sensing reconstruction method that combines

spatial and temporal sparsity can be written as

min
u

(1{a) +x,yu
�� ��

1
za Tuk k1 such that Fu{fk k2

2ƒr ð2Þ

where both the image and raw data are represented by column

vectors that comprise all frames, such that u = [u1
T,…, uI

T] T, f
= [f1

T,…, fI
T] T, I is the number of cardiac phases, F and +x,y are

operators that act frame by frame, and T is a sparsifying operator

along the temporal dimension. Hereafter, we use isotropic spatial

TV for the spatial sparsity transform

+x,yu
�� ��

1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+xuð Þ2z +yu

� �2
q

.

ST-TV reconstruction. Spatiotemporal-total variation im-

poses sparsity on both spatial and temporal gradient domains [16].

As temporal gradient ensures that few pixels change over time, it is

suitable for dynamic processes in which the background is static.

By letting T~+t in equation (2), ST-TV becomes

min
u

(1{a) +x,yu
�� ��

1
za +tuk k1 such that Fu{fk k2

2ƒr ð3Þ

where the temporal gradient +t relates a pixel in a frame to the

same pixel in the next frame, assuming a cyclic condition.

A compressed sensing approach using B-spline motion

estimation (SPLICS). Motion-based reconstruction methods

are based on simultaneous or alternating reconstruction of both

motion and images from the data. If T in equation (2) represents

an operator that encodes the motion between frames, thus relating

pixels across frames, the compressed sensing problem for joint

estimation of motion and images can be written as

min
u,T

(1{a) +x,yu
�� ��

1
za Tuk k1 such that Fu{fk k2

2ƒr ð4Þ

where both images u and the encoded motion T between frames

are unknown. Modelling the motion across frames can be

considered an extension of ST-TV that leads to a much sparser

representation in the temporal domain. This is shown in figure 1

where full data reconstruction is represented on spatial gradient

domain, D+x,yu1D, temporal-gradient domain, D+tu1D, and motion-

corrected domain, |Tu1|. Thus, in the case of a sparser temporal

representation, one could increase the weight a enforcing

temporal sparsity over spatial sparsity.

In our case, motion was estimated using a free-form deforma-

tion (FFD) model, which represents the motion in terms of cubic

B-spline bases in order to preserve smoothness [23,24]. B-splines

have interesting properties such as positivity, symmetry, compact

support and maximal order of approximation [25–27]. These

properties make B-splines to be computationally efficient during

interpolation and differentiation. FFD uses a sparse mesh of

control points to model motion, which is interpolated using spline

functions. A hierarchical approach enables the mesh of control

points to be increased using multiresolution.

A Compressed Sensing Approach Using B-Spline Motion Estimation
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FFD has been widely used in medical image-registration to

model deformation. The nonrigid registration problem searches

for the spatial transformation Ri:(x,y,z)R(x’,y’,z’), which maps any

point from the image ui at the ith-frame to a point on the image at

the following frame ui+1. Interpolation is then applied to relate

pixel intensity between frames, with the result that Ri(ui) comprises

both registration and interpolation. The registration problem can

be written as

min
Ri

Ri(ui){uiz1k k2
2zlCsmooth(Ri) ð5Þ

where Csmooth is a smoothness penalty function, generally in the

form of a thin plate of metal bending energy [24]. For the

implementation of the FFD-based registration method, we used

the software available in MATLAB Central (Dirk-Jan Kroon; B-

spline grid, image and point based registration; 2012, retrieved

from ,http://www.mathworks.com/matlabcentral/fileexchange/

20057-b-spline-grid-image-and-point-based-registration.), which

is based on the Quasi Newton L-BFGS optimization method. This

approach requires selection of a threshold for the stopping criterion,

the number of grid points, and the number of refinement grids

within the hierarchical approach.

Given the registered images, the temporal sparsity transforma-

tion is obtained as

Tu~

R1u1{u2

R2u2{u3

. . .

RI uI{u1

2
6664

3
7775 ð6Þ

With regard to implementation of the SPLICS method, instead

of solving equation (4), we propose an alternating two-step

approach that estimates the motion in a first step and reconstructs

the images using the estimated motion in a second step (pseudo-

code is shown in Table 1). For the first estimate, uestimate, we used

the solution given by ST-TV, which is only used to estimate the

motion. It is important to remember that both registration and

reconstruction steps are iterative processes. For the registration

step, we used the nonrigid registration method from equation (5);

for the reconstruction step, we used the Split Bregman method, as

shown in the next section.

Implementation of ST-TV and SPLICS based on the Split

Bregman formulation. We implemented ST-TV (equation (3))

and SPLICS (Table 1) using the Split Bregman method, which is

computationally efficient for solving constrained optimization

problems with L1-norm functionals [14]. The Split Bregman

formulation separates L2- and L1-norm functionals in such a way

that they can be solved analytically in two alternating steps.

Constraints are imposed using the Bregman iteration as explained

below. As motion-based reconstruction can be written as a

generalization of the ST-TV, we develop the formulation for the

general case and then provide details for an efficient computation

in both ST-TV and SPLICS.

For solving equation (2) for a general operator T we generalize

the Split Bregman formulation presented in [14,16]. To allow for

splitting, we include new variables, dx, dy, and w, and formulate a

new problem equivalent to equation (2), as follows:

min
u,dx,dy,w

(1{a) (dx,dy)
�� ��

1
za wk k1 such that Fu{fk k

2

2ƒr,

dx~+xu,dy~+yu,w~Tu

ð7Þ

Using the Bregman iteration, this problem can now be easily

handled by applying the equivalent unconstrained optimization

problem and imposing constraints by adding a Bregman iteration

bi for each constraint. Thus,

min
u,dx,dy,w

(1�a) (dx,dy)
�� ��

1
za wk k1z

m

2
Fu{f k
�� ��2

2

z
l

2
dx{+xu{bk

x

�� ��2

2
z

l

2
dy{+yu{bk

y

��� ���2

2
z

l

2
w{Tu{bk

w

�� ��2

2

ð8Þ

where k is the iteration number and the Bregman iterations are

given by

bx
kz1~bx

kz+xukz1{dx
kz1

by
kz1~by

kz+yukz1{dy
kz1

bw
kz1~bw

kzTukz1{wkz1

f kz1~f kzf {Fukz1

ð9Þ

The Bregman iterations impose the constraints iteratively by

adding the error back into the unconstrained formulation given in

equation (8), thus making its solution converge to the solution of

the constrained problem in equation (2). The last line in equation

(9) enforces the data constraint, producing a sequence of solutions

such that the solution error norm and the data fidelity term

Figure 1. Full data reconstruction for end-diastole represented on the different transform domains. Sparsity of full data reconstruction
on (a) spatial-gradient domain, |=xyu1|, (b) temporal-gradient domain, |=tu1|, and (c) motion-corrected domain, |Tu1|. Images are shown with the same
window/level.
doi:10.1371/journal.pone.0110594.g001
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decrease monotonically. This framework is more robust than

equivalent approximated unconstrained problems or continuation

methods that impose constraints iteratively by slowly increasing

the regularization parameters (for more details see [14]).

Note that u and the auxiliary variables are independent of each

other; therefore, (8) can be split into several equations, one for

each variable, and solved sequentially

ukz1~ min
u

m

2
Fu{f k
�� ��2

2
z

l

2
dk

x {+xu{bk
x

�� ��2

2

z
l

2
dk

y {+yu{bk
y

��� ���2

2
z

l

2
wk{Tu{bk

w

�� ��2

2

dkz1
x ,dkz1

y ~ min
dx,dy

(1�a) (dx,dy)
�� ��

1
z

l

2
dx{+xukz1{bk

x

�� ��2

2

z
l

2
dy{+yukz1{bk

y

��� ���2

2

wkz1~ min
w

a wk k1z
l

2
w{Tukz1{bk

w

�� ��2

2

ð10Þ

Since the solution of u only involves L2-norm functionals, it can

be found exactly by differentiating the cost function and equating

it to zero. The resulting linear system, which corresponds to a

Gauss-Newton step, is given by

Kukz1~r

K~mFT Fzl+x
T+xzl+y

T+yzlTT T

r~mFT f kzl+x
T dx{bk

x

� �
zl+y

T dy{bk
y

� �
zlTT w{bk

w

� �ð11Þ

Note that the solution u is obtained analytically from a

quadratic penalty function; therefore, an estimation of the step-

size is not required. The linear system constitutes a very large scale

problem, where K = N26N2 (N = 192), yet it can be efficiently

solved using a Krylov solver, which involves only matrix-vector

multiplications, as follows:

mFT (Fu)zl+x
T (+xu)zl+y

T (+yu)zlTT (Tu)~r ð12Þ

Here, we used the biconjugate gradient stabilized as the Krylov

solver. This methodology has been applied in SPLICS, where F,

+i, and T can be treated as general operators.

For ST-TV, all operators,T~+t, F, +x, +y, and +t, and the

variables, u, d, and w, can be expressed in the Fourier domain,

with dimension N6N. In this case, solving equation (12) in the

Fourier domain is much faster than the equivalent Krylov solver in

the image domain. In the case of SPLICS T cannot be represented

in the Fourier domain and thus the problem has to be solved in the

image domain [14,16].

For both ST-TV and SPLICS, dx, dy, and w are solved

analytically using shrinkage formulas, which are thresholding

operations [14,28]

dkz1
j ~ max sk�(1�a)=l,0

� � +ju
kz1zbk

j

��� ���
sk

,

sk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+xukz1zbk

x

�� ��2z +yukz1zbk
y

��� ���2
r

wkz1~shrink(Tukz1zbk
w,a=l)

~max Tukz1zbk
w

�� ���a=l,0
� �

sign Tukz1zbk
w

� �
,j~x,y:

ð13Þ

Test data set and undersampling
Test data set. Self-gated rat cardiac cine sequences,

IntraGateFLASH, were acquired with a 7T Bruker Biospec 70/

20 scanner using a linear coil resonator for transmission and a

dedicated four-element cardiac phased array coil for reception.

Acquisition parameters were: TE = 2.43 ms, TR = 8 ms, number

of total repetitions = 200, number of frames = 8, matrix

size = 1926192, FOV = 565 cm, slice thickness = 1.2 mm, and

acquisition time = 5 min 7 s. Four Wistar male rats (weight 300 g

to 350 g) were used in this study divided in healthy animals (wild

type) and infarct animals (figure 2). Two out of four animals were

induced with isoflurane (4%), intubated and place on isoflurane

(2%) anaesthesia with mechanical ventilation for the duration of

the surgical procedure. We induced a myocardial infarction by

permanent left anterior descending artery occlusion as described

previously [29]. The animals were exposed to 12/12 light/dark

circle and allowed access to food and water ad libitum. Animals

were handled according to the European Communities Council

Directive (2010/63/UE) and national regulations (RD 53/2013)

and under the approval of the Animal Experimentation Ethics

Committee of Hospital General Universitario Gregorio Marañón.

Undersampling pattern. In order to reduce acquisition

time, it is necessary to skip phase encoding lines in the acquisition

scheme. One of the requirements of the compressed sensing

Table 1. Pseudo-code for the SPLICS method.

n~0,ûu0~uestimate

while un{un{1
�� ��

2
= un{1
�� ��

2
ve

un~ûun

Registration step : Rn
i ~ min

R
i

Ri(u
n
i ){un

iz1

�� ��2

2
zlCsmooth(Ri),i~1, . . . ,I

Reconstruction step : ûun~ min
u

(1{a) +x,yu
�� ��

1
za Tnu
�� ��

1
such that Fu{fk k2

2ƒr

n?nz1

end

doi:10.1371/journal.pone.0110594.t001
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technique is that the undersampling pattern should be random in

order to produce incoherent artifacts [22]. By adapting the

methodology proposed by Lustig et al. [22], in our work, we create

quasi-random undersampling patterns in which randomization is

performed in the phase encoding direction and through the

temporal dimension.

A polynomial probability density function (figure 3(a)) that

assigns sampling probabilities to different regions of k-space was

used to generate undersampling patterns that are random in the

phase encoding direction (figure 3(b)). Then, changing the under-

sampling pattern for each time point leads to an undersampling

acquisition scheme that is random in both phase encoding and

temporal directions (figure 3(c)).

Undersampling patterns were simulated using the fully sampled

dataset. After the undersampling process, each of the remaining

phase encoding lines is binned into a specific cardiac frame (8 final

frames), where coincident phase encoding lines are averaged. This

averaging step, in combination with randomization over time,

results in that the percentage of non-zero data in the final k-spaces

is higher than the percentage of data actually acquired [16]. To

avoid confusion, two different terms are defined: ‘acceleration

factor’ (indicated with an x), which represents the speed up rate

with respect to the fully sampled data, and ‘percentage of filled k-

space’ (FS), which corresponds to the percentage of nonzero lines

after the averaging step. For example, a given undersampling

pattern can preserve only 7% of the acquired data, providing an

acceleration factor of 615; however, after the classification and

averaging step, FS = 26%.

The reconstruction process was performed separately for each

element of the phased array antenna and combined with a sum of

squares operation.

Evaluation
For an acceleration factor 67 (FS = 60%) from the complete

data (percentage of filled k-space shown within parenthesis), the

effect of the spatiotemporal weighting parameter a was analyzed

in the range 0.99 to 0.01 (a = 0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01), for

the data set 1. SPLICS and ST-TV results were compared to

better understand the benefit of including motion estimation. The

number of iterations (k in equation (10)) had to be selected for both

ST-TV and SPLICS. To ensure the best result for each method,

we chose the iteration numbers that provided minimum solution

error, adopting the full data reconstruction (figure 2) as the gold

standard.

We analyzed the results obtained by both methods for

acceleration factors 67 (FS = 60%), 610 (FS = 40%), 615

(FS = 26%), 620 (FS = 22%) for all data sets.

Reconstructed images were evaluated in terms of the relative

solution error norm within a region-of-interest (ROI) that

comprised the whole heart. The presence of artifacts in

reconstructed images was analyzed by visual inspection, and

temporal blurring was evaluated by measuring temporal intensity

changes on a circular ROI located in the inner part of the

myocardium (diameter = 6 pixels).

Figure 2. End-systole (first row) and end-diastole (second row) from fully-sampled data reconstruction.
doi:10.1371/journal.pone.0110594.g002

Figure 3. Undersampling pattern strategy used in this study in which randomization is performed along both phase encoding and
temporal directions. Probability density function in (a) is used to generate undersampling patterns that are random in the phase encoding
direction (b). Time randomization is achieved by changing the undersampling pattern for each temporal instant (c).
doi:10.1371/journal.pone.0110594.g003
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Results

Effect of the spatiotemporal weighting parameter
We show reconstructed images for 3 different values of the

spatiotemporal weighting parameter a (a= 0.99, 0.9, and 0.5) for

ST-TV and SPLICS. The outcome of ST-TV proved to be similar

to that of SPLICS for a wide range of the weighting parameter

(a#0.5) (figure 4). From a= 0.99 to a= 0.9 (large temporal

weight), ST-TV led to significant temporal blurring effects and

motion artifacts. SPLICS was more robust against the selection of

a. SPLICS corrected for temporal blurring effects and motion

artifacts for a= 0.9 and a= 0.5 and reduced them for a= 0.99.

The best results were obtained with ST-TV for a= 0.5 and with

SPLICS for a= 0.9 and a= 0.5, with no noticeable differences

between these results. For values of a lower than 0.5, images

remain similar to those obtained with a= 0.5 (images not shown).

Visual findings are in agreement with the normalized solution

error norm shown in figure 5. For ST-TV, a#0.5 yielded the

lowest solution error, and increasing a from 0.7 to 0.99 increased

the solution error. On the other hand, SPLICS maintained low

solution error for all values of a.

Figure 6 shows temporal intensity changes for ST-TV and

SPLICS. For a= 0.5 both methods recovered the temporal data;

for a= 0.99, ST-TV presented higher temporal blurring than

SPLICS.

As for the reconstruction parameters, the initial image was

estimated using ST-TV with parameters l= 1 and m= 2. For the

registration step, we used three meshes of control points and a

Figure 4. Image zoom corresponding to an acceleration factor
67 (FS = 60%) reconstructed with ST-TV and SPLICS for three
different values of the spatiotemporal weighting parameter a
(0.99, 0.9, 0.5). The arrows indicate locations where temporal blurring
and artifacts are more noticeable. All images have the same window/
level.
doi:10.1371/journal.pone.0110594.g004

Figure 5. Relative solution error norm corresponding to an
acceleration factor67 (FS = 60%) reconstructed with ST-TV and
SPLICS (images in figure 4) for different values of the
spatiotemporal weighting parameter a.
doi:10.1371/journal.pone.0110594.g005

Figure 6. Temporal intensity changes, corresponding to a
circular ROI located within the myocardium, for the images
reconstructed with ST-TV and SPLICS (see also figure 4).
doi:10.1371/journal.pone.0110594.g006

Figure 7. Image zoom of the end-systole corresponding to
acceleration factors 67 (FS = 60%), 610 (FS = 40%) and 615
(FS = 26%) reconstructed with SPLICS for a spatiotemporal
weighting parameter a = 0.5. Images show different window/level
for each subject, in order to make them look similar.
doi:10.1371/journal.pone.0110594.g007
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hierarchical approach (868, 12612, and 20620), with a

convergence tolerance of 1024. For the reconstruction step, we

empirically chose l= 1 and m= 2. We applied only one iteration of

the alternating method (n = 1 in Table 1), as further iterations did

not significantly improve these data.

Analysis of acceleration factor achieved
Figure 7 shows the end-systole reconstructed with SPLICS for

acceleration factors 67 (FS = 60%), 610 (FS = 40%) and 615

(FS = 26%), for a= 0.5 (due to the similarities between SPLICS

and ST-TV, we only show results given by SPLICS). For

acceleration factors up to 67, image quality is close to that of

the fully-sampled data. Decreasing the percentage of data acquired

resulted in a slight increase in artefacts and in the smoothing effect

from 610 (FS = 40%) to 615 (FS = 26%). For 620 (FS = 22%),

reconstructed images were strongly over-smoothed (results not

shown).

Figure 8 shows the end-diastole (equivalent to figure 7) recon-

structed with SPLICS for acceleration factors67 (FS = 60%),610

(FS = 40%) and 615 (FS = 26%). Like in systole, decreasing the

percentage of acquired data results in an increase in artefacts

together with some smoothing effect. However, the diastole is

more prone to motion and flow artefacts than the systole. This

effect is more clear in control subjects.

Temporal intensity changes are shown in figure 9. For

acceleration factors 610 (FS = 40%) and 615 (FS = 26%),

temporal intensity changes are similar to those in the fully

sampled data; for 620 (FS = 22%), temporal smoothing becomes

more significant.

Regarding convergence, the iteration number that provided

best results varied in the range from 105 to 380 iterations for the

different subjects and undersampling factors, with larger variation

across subjects than across undersampling factors. As in a real

compressed sensing acquisition the target image is not available,

we tested the effect of reconstructing all data sets with a fixed

number of iterations, comparing results given by 100, 200 and 300

iterations, and found images to be similar (data not shown).

Computation time for ST-TV was 0.12 s per iteration (Intel

Core i7-3770 CPU 3.40 GHz, 8 GB RAM, 64-bit operating

system), and it took 1.5 minutes to reconstruct all the images with

200 iterations (eight frames, four array elements). In each iteration,

the heavier part of the computation was two 3D FFT and two 2D

FFT image frame-by-image frame, which were required for

inversion of the linear system in the Fourier domain. In the case of

SPLICS, the registration step took 1.5 minutes and the compu-

tation time for the reconstruction step depended on the tolerance

of the Krylov solver used for the inversion of the linear system in

the image domain: 2.4 s per iteration for a tolerance of 1024 and

1.2 s per iteration for a tolerance of 1022. As the linear system

does not need to be solved with high precision, a tolerance of 1022

was sufficient and gave the same solution as 1024. In this case,

SPLICS took 15.5 minutes to reconstruct all the images with 200

iterations. A straightforward parallelization over the four phase

arrays reduced computation times to 55.5 s for ST-TV and 6.6

minutes for SPLICS (35 seconds for the registration step and 6

minutes for the reconstruction step).

Discussion

We studied the influence of incorporating motion estimation in

the compressed sensing framework for retrospective cardiac MRI

in small animal. To this end, we proposed a new motion-based

reconstruction method (SPLICS) and compared it with ST-TV, as

SPLICS can be considered as a generalization of ST-TV that also

models motion. In addition, we investigated the effect of the

spatiotemporal weighting parameter intended to control the

relative degree of spatial and temporal sparsity.

Previous works have combined spatial and temporal sparsifying

operators [16,19,30]. In our work we compared the effect of the

spatiotemporal weighting parameter on both ST-TV and motion-

based reconstruction. We found that ST-TV with low relative

temporal weighting (a#0.5) led to similar results than SPLICS.

When temporal weighting was increased (a.0.5) ST-TV led to

images with temporal blurring effects and motion artifacts on the

moving parts of the image. On the other hand, SPLICS appeared

more robust for all a values, as it also takes into account the

motion information of the moving parts of the images. Hence,

from our results it seems that for retrospective cardiac cine in small

animal ST-TV with an optimum weighting parameter provides

good results and does not require motion modelling.

A motion-based reconstruction method has been shown to

improve k-t FOCUSS for prospective human cine [17] and ST-

TV for prospective small-animal cine [19]. In [19] it was found

that ST-TV led to temporal blurring while motion-based

reconstruction corrected these effects. In contrast, for retrospective

data we obtained that ST-TV with optimum selection of the

spatiotemporal weighting parameter did not lead to temporal

blurring artifacts, providing a solution similar to that of SPLICS.

Thus, motion-based reconstruction would provide an improve-

ment only in those cases where other methods lead to temporal

blurring effects.

While motion-based reconstruction has led to better results than

k-t FOCUSS and ST-TV for prospective data, we found similar

results between SPLICS and ST-TV for retrospective data. These

discrepancies between our results and previous ones may be due to

differences in the acquisition process and in the way the

undersampling process was applied. In our case, for retrospective

small-animal cine, we have taken advantage of the repetition and

averaging step by also randomizing the undersampling pattern

Figure 8. Image zoom of end-diastole corresponding to
acceleration factors 67 (FS = 60%), 610 (FS = 40%) and 615
(FS = 26%) reconstructed with SPLICS for a spatiotemporal
weighting parameter a = 0.5. Images show different window/level
for each subject, in order to make them look similar.
doi:10.1371/journal.pone.0110594.g008
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across repetitions. With the prospective cine dataset the under-

sampling scheme led to a number of different undersampling

patterns (figure 3(b)) equal to the number of frames. However,

with the retrospective case the undersampling scheme used

produced a number of different undersampling patterns equal to

the number of repetitions (figure 3(c)), which is 17 times higher

than the number of frames. In this way, the retrospective

acquisition benefits from higher randomization. The same strategy

could be also applied to prospective sequences by changing the

undersampling pattern across different averages during the

acquisition, but, to the best of our knowledge, no previous works

have addressed this strategy for motion-based reconstruction.

However, although randomization across repetitions can be

applied to the prospective sequence, some differences still remain

between prospective and retrospective undersampling processes.

While the prospective acquisition scheme allows us to decide in

advance which undersampling pattern will be applied to each

frame, this is not possible for retrospective cine. In the

retrospective case once the acquisition has finished, acquired

phase-encoding lines are binned into cardiac frames based on the

recorded navigator data, making it impossible to determine in

advance the undersampling pattern on each frame [16].

The claimed acceleration factor depends on the quality criterion

and the tolerance to artefacts. Adopting the criterion of

preservation of image quality, for acceleration factors up to 67

(FS = 60%), image quality is close to that of the fully-sampled data.

Higher accelerations resulted in an increase of the smoothing

artifact. However, adopting the criterion of temporal intensity

changes in an ROI in the myocardium and the presence of

artefacts at end-systole/diastole, which are the frames used to

extract functional measurements such as ejection fraction and left-

ventricle mass [31], results showed that accelerations up to 610

(FS = 40%)2615 (FS = 26%) are feasible. For an acceleration

factor610 the important features in the image were preserved and

images presented high resolution. An acceleration factor 615 led

to a slight increase in artefacts and over-smoothing effect, without

distorting temporal intensity information. Higher accelerations led

to over-smoothed images that affected both resolution and

temporal intensity changes. However, we remark that image

quality in both the fully sampled and undersampled data sets is

variable across frames. End of systole and end of diastole showed

good quality in all cases but some intermediate frames presented

some motion artefacts that became more conspicuous as the

acceleration increased. Comparing to previous works, a wide

Figure 9. Temporal intensity changes for the images shown in figure 8 for all data sets, measured on a circular ROI (diameter = 6
pixels) located at the inner part of the myocardium.
doi:10.1371/journal.pone.0110594.g009
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range of acceleration factors can be found in the literature.

However, most works focused on prospective clinical applications

and only two included retrospective reconstruction [6,32]. Of the

few studies addressing preclinical small-animal applications

[16,33–36], only two used retrospective self-gated cine sequences,

obtaining acceleration factors of 3 [36] and 15 [16] with a ST-TV

method similar to the one used in this paper.

To our knowledge, our work is the first one that studies motion

estimation not only in normal cases [19] [17] but also in rats with

myocardial infarction. We found small differences between

infarcted and healthy animals. Temporal intensity changes were

slightly better recovered in infarcted animals because the

myocardium motion is compromised in this case. Motion artefacts

were more apparent for healthy animals.

Previous work that proposed motion-based reconstruction

methods modeled motion using optical flow methods [18],

block-matching algorithms and phase-based motion estimation

[37]. The latter was found to be more robust than block-matching

algorithms and optical flow methods [17]. Our motion estimation

step consisted of free-form deformation, which is a widely used

nonrigid registration method in medical imaging, based on

hierarchical B-splines [23,38]. However, further work would be

required to better understand the differences among motion

estimation methods for cardiac cine compressed sensing MRI.

Our study is subject to a series of limitations. Our conclusions

were drawn from an undersampled dataset made from fully

sampled data instead of being directly acquired. Further work will

focus on validation with real-time undersampled data and analysis

of the effect of randomization across repetitions for prospective

cine, which may further increase the potential of CS. In this work

we focused on the comparison between SPLICS and ST-TV,

assessing the quality of the reconstruction based on local image

quality criteria. To determine acceleration factors achievable in

real scenarios, a much larger dataset including both patients and

control datasets and the evaluation of global metrics, such as

ejection fraction, will be required. It is possible that a given

method, even being better in technical terms, does not increase

clinical usefulness, but this issue is out of the scope of our work.

Conclusion

We studied the benefit of motion-based reconstruction for

retrospective cardiac cine in small-animal studies, using SPLICS, a

new motion-based reconstruction method. We also compared

SPLICS to ST-TV and analyzed the effect of the spatiotemporal

sparsity parameter. We found that ST-TV with optimum a leads

to results similar to those of SPLICS. On the other hand, SPLICS

is more robust for the selection of the weighting parameter and

provided similar or superior results in all our cases. Hence, we

have validated SPLICS and found that for retrospective cardiac

cine ST-TV with optimum spatiotemporal weighting parameter is

a good methodology for accelerating retrospective cardiac cine

MRI in small animals.
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