
REVIEW ARTICLE

Frontiers of Sodium MRI Revisited: From
Cartilage to Brain Imaging

Olgica Zaric, PhD,1 Vladimir Juras, PhD,2,3* Pavol Szomolanyi, PhD,2 Markus Schreiner, MD,4

Marcus Raudner, MD,2 Chiara Giraudo, PhD,5 and Siegfried Trattnig, MD1,2,6

Sodium magnetic resonance imaging (23Na-MRI) is a highly promising imaging modality that offers the possibility to noninva-
sively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its
great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium con-
centrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1H) imaging, 23Na-MRI is
extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in
the last 10–15 years and which has demonstrated different technical designs for a range of 23Na-MRI methods applicable for
disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with
the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest
in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage
tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological
and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in
intracellular sodium concentration, extracellular sodium concentration, and intra–/extracellular volume fractions is becoming
acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady techni-
cal development for 23Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered
as an alternative to 1H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue func-
tion associated with disease genesis and progression.
Level of Evidence: 1
Technical Efficacy Stage: 1
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IN VIVO SODIUM MAGNETIC RESONANCE IMAG-
ING (23Na-MRI) is an advanced imaging modality that

offers noninvasive metabolic imaging for early and accurate
diagnosis, characterization, and treatment efficacy evaluations
of several diseases.

The 23Na ion is one of the most important electrolytes
in the human body and it plays a crucial role in osmoregula-
tion and physiology of the cell.1 A large sodium concentration
gradient is required for appropriate function of the cells, and
intracellular sodium concentration (ISC) is one-tenth of that in
the extracellular space (ESC) (10–15 vs. 100–150 mmol/L). In

healthy tissue, the large concentration gradient between the
cells and the extracellular space is maintained primarily by the
energy-dependent sodium–potassium pump (Na+/K+-ATPase).
If the cell membrane or energy metabolism is destroyed, it can
drive an impairment of the sodium–potassium pump, which
will further increase intracellular sodium concentration and
induce cell malfunction and, eventually, cell death.2

An in vivo 23Na MRI can noninvasively provide valu-
able information on cell metabolism; however, the technique
is extremely challenging. 23Na has a spin of 3/2 and belongs
to the group of quadrupole nuclei. The sensitivity of nuclear
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magnetic resonance (NMR) experiments is given by signal-to-
noise-ratio (SNR) and, for 23Na, it is 9.2% that of proton
(1H) sensitivity. There are three major factors that limit the
SNR of sodium imaging: the concentration of the 23Na ion
in vivo is low and is in the range from 15 mM (muscle
15–30 mM) to 350 mM (articular cartilage 250–350 mM);
relaxation times of sodium are about two orders of magnitude
smaller than those of protons (T1: 15–55 msec, T2short: 0.5–
2.5 msec, and T2long: 10–65 msec), and the gyromagnetic
ratio of sodium (γNa = 11.26 MHz/T) is approximately four
times lower than that for hydrogen (γH = 42.57 MHz/T).3

Fortunately, most of these limitations were abolished by the
introduction of 3.0T (high-field) and ≥7.0T (ultrahigh-field)
scanners and an essential SNR increase was achieved
(SNR � B0

1.65).4 The modern MRI systems are currently
equipped with strong gradients and sophisticated electronics,
multiarray coils, and fast (non-Cartesian) sequences that allow
further SNR enhancement of 23Na-MRI.5

The purpose of this article is to provide readers with an
overview of the current literature, including methodological
improvements in the 23Na-MRI technique and its application
in preclinical and clinical investigations at 3.0T and 7.0T.
Lately, several review articles that cover some important
aspects of the technique have been published, including bio-
medical applications for sodium imaging, evaluations of carti-
lage repair techniques and osteoarthritis, sodium imaging of
the heart and the brain, 23Na-MRI radiofrequency
(RF) systems for brain and musculoskeletal or body imaging,
and quantitative sodium imaging, etc.3,6–12 Considering that
the majority of previously published review articles were
focused on a single organ or disease, we attempt here to sum-
marize a significant amount of new publications since the last
comprehensive sodium review article appeared. In this work,
we aim to provide a review of recent 23Na-MRI findings
when applied in nearly all parts of the body and revisit the
frontiers of sodium imaging in modern medicine.

Imaging Sequences
23Na in tissue has a biexponential relaxation behavior, which
means that most of the 23Na signal is lost within a few milli-
seconds. The rapid signal loss renders quantitative imaging
challenging. The short T1 relaxation time facilitates a short
repetition time (TR) and fast averaging, which can partially
compensate for the low intrinsic SNR. Imaging with pulse
sequences designed in a way that enables measurements with
a very short echo time (TE, �1 msec), such as an ultrashort
echo time (UTE) sequence, may overcome the challenge of
the very short T2 of sodium nuclei. On the other hand, a
short TE will substantially limit the duration of the signal
readout and cause image blurring and a decrease in SNR.
However, UTE acquisition methods are generally slow com-
pared to echo-sampled MRI and the sampling of k-space with

high efficacy is an important factor in achieving high SNR
and resolution in an acceptable scan time.

The development of non-Cartesian sequences for sodium
imaging that aim to maximize the efficiency of k-space sampling
started in early 1990 and continues today. Hilal et al in 1992
demonstrated the feasibility of a three-dimensional radial projec-
tion (3DRPI) acquisition method in which the center of k-space
is densely sampled, while the edges of k-space are under-
sampled.13 Almost a decade later, Nagel et al developed a pulse
sequence, called the density-adapted three-dimensional radial
projection reconstruction pulse sequence (DA-3DPR) that was
designed on the basis of a conventional 3DPR sequence. The
sequence was modified such that the sampling density in the
outer part is kept constant, while an inner sphere of k-space is
sampled with no density adaptation. This approach enabled sub-
stantially improved image quality and an increase in SNR.14

In parallel, Boada et al developed the twisted projection
imaging (TPI) sampling scheme.15 This method replaced radial
linear gradients with time-varying gradients with a short radial
component to move promptly away from the center of k-space,
followed by a time-inconstant gradient that dismissed a 3D spi-
ral trajectory.15,16 TPI uses spokes up to a threshold k-space
value, at which point the trajectory transits into a 3D spiral-
like trajectory.16 This sequence was shown to be the most
favorable for in vivo quantitative sodium measurements in
brain.17 Shortly after, Boada’s group developed a sequence
called the acquisition-weighted stack of spirals (AWSOS)
sequence, which attempts to decrease excitation and acquisition
delay by introducing a variable slice-encoding, and separating
slice thickness from in-plane resolution to lower the number of
slice-encoding steps, while at the same time, using a spiral
readout to increase the efficiency of in-plane acquisition.18 In
addition to the above-mentioned sequences, other k-space tra-
jectories, ie, employing distributed spiral trajectories, such as
SPRITE (Single-Point Ramped Imaging with T1-Enhance-
ment) and FLORET (Fermat Looped, Orthogonally Encoded
Trajectories), have been proposed and used for 23Na-MRI.19,20

The necessity to increase SNR and image resolution of
23Na-MRI was accompanied by the needs of researchers and
clinicians for selective measurements of intracellular sodium
changes. Their goal was to develop a method that could pro-
vide more specific information and an image biomarker of
compromised ionic homeostasis. Biexponential relaxation,
typical of sodium nuclei in slow motion in the intracellular
space, also observable in the extracellular space, can pass
through a state of multiple quantum coherences (MQC).21

MQ filtering techniques are essentially sensitive to changes in
intracellular sodium concentration, and therefore, these tech-
niques are ideally suited for the noninvasive, in vivo observa-
tions of ISC level changes. Tsang et al confirmed the
possibility of double quantum-magic angle (DQ-MA) signal
generation from the human brain.22 Initial experiments, per-
formed with the highest nominal isotropic resolution of
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(8.4 mm)3 and 48 minutes scanning time, demonstrated the
presence of sodium nuclei in ordered environments. Later on,
the DQ-MA method was used to visualize the sodium signal
that originates from anisotropic structures, such as muscle
fibers.23

However, the main drawback of the MQ techniques is
their low SNR. Using a train of three RF pulses (with the
corresponding phase cycling), Hancu et al demonstrated that
3D triple-quantum-filtered (TQF) sodium images of the
human brain can be acquired at moderate field strengths
(3.0T) with examination times acceptable for clinical applica-
tions.24 Tsang et al, however, demonstrated the utilization of
sufficiently long RF pulses and a reduced TR that might lead
to further SNR enhancement for TQF images.25

Essentially, low SNR was not the only issue with TQF
sequences; they entail a lower power deposition and they are
still prone to image artifacts caused by off-resonances. There-
fore, development continued and a method called
biexponentially weighted (BW) 23Na-MRI was developed.
The initial results published were very promising, and dem-
onstrated a three times higher image SNR obtained by BW
23Na compared to the six-step phase-cycling TQF MRI.26

For the excitation and detection of MQC, a three-pulse prep-
aration is applied during the pulse train, and two images are
generated: a spin-density-weighted image (SDW), and a
single-quantum-filtered image (SQF). The BW image is
derived by subtracting the SQF image from the SDW image
and shows the signal from sodium ions with biexponential
relaxation. Nagel et al proposed a relaxation-based
(RW) method as a possibility to differentiate the tissue
sodium signal based on differences in 23Na relaxation proper-
ties in different tissues.27 Two different approaches based on
the DA-3DPR sequence were provided: the first used an
inversion recovery (IR) preparation pulse to exploit T1-
differences of 23Na ions, and the second approach was based
on 23Na multiecho sequences to exploit differences in T2*-
relaxation times. However, the relaxation-weighted 23Na sig-
nal describes a compartment defined by 23Na relaxation prop-
erties and does not necessarily correspond to the intra- or
extracellular space.28

Although several different methods for sodium DQ
and TQ coherence discrimination have been proposed in
the literature, a clear confirmation that intra- and extracellu-
lar signals can be separated in vivo is still lacking..29 MQC
from both the intra- and extracellular spaces are similar
because of the labile macromolecular interactions that result
in comparable relaxation properties (T2 values) of sodium
nuclei in different environments. Therefore, the difference
between intra- and extracellular sodium signals cannot be
established based on relaxation time constant characteristics.
This is certainly one of the most important topics on which
the sodium MRI community should come to a consensus in
the future.

Image Reconstruction Methods
MR is fundamentally a low SNR imaging method, and the
use of nuclei other than protons for imaging purposes may
have a considerable impact on the resulting image SNR. The
acceleration of image acquisition allows significant improve-
ments in SNR per unit time.

Pioneering work in this field was done by Qian et al,30

who demonstrated the advantages of parallel imaging with a
TPI trajectory. In computer simulations, these authors tested
the TPI-SENSE (sensitivity encoding) method with an
applied acceleration factor of 5.53 and simulations were veri-
fied on the proton human head studies. The results showed
that parallel sodium imaging may reduce scan time substan-
tially compared to the conventional TPI acquisition
(3 minutes vs. 16 minutes) without a substantial loss in image
quality.30 Several years later, Benkhedah et al investigated fea-
sibility of the adaptive combination reconstruction (ADC)
method for multichannel coil array data combining and
found that mean SNR may be increased from 8–50% com-
pared to standard sum-of-squares (SOS) image reconstruc-
tion.31 Additionally, an alternative possibility for high-quality
image reconstruction from undersampled datasets is a com-
pressed sensing (CS) method. Gnahm et al recently showed
that an anatomically weighted second-order total variation
reconstruction of 23Na MRI using prior information from 1H
MRI (AnaWeTV) provides an increase in image quality due
to maintained tissue borders and reduced partial volume
effects (PVE).32 A method that uses a 3D, dictionary-learning
CS reconstruction algorithm (3D-DLCS) for the reconstruc-
tion of undersampled 3D radial 23Na data was presented by
Behl et al.33 Using the dictionary, it is possible to learn the
sparsifying transform with a K-singular-value-decomposition
(K-SVD) algorithm. The same method was shown to be feasi-
ble for tissue sodium concentration (TSC) quantification of
skeletal muscle.34

Quantitative Sodium MRI
A comprehensive review article about the evolving role of
quantitative sodium imaging in medicine was recently publi-
shed by Thulborn.12 Different applications of 23Na-MRI for
quantitative analysis, particularly of the musculoskeletal sys-
tem, were reviewed by Bangerter et al.35

In a study published in 2010, Lu et al presented a flow
chart for an image reconstruction and tissue sodium quantifi-
cation (TSC) process that included B0, B1 mapping, and eddy
current corrections, assuming that 1H and 23Na coils have
the same eddy current characteristics.16 These authors investi-
gated the effect of B0 corrections on TSC measurements and
found that a substantial improvement in image quality and
quantification accuracy can be achieved by introducing B0

corrections in an image postprocessing scheme. The effect of
B1 inhomogeneity on absolute 23Na concentration
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quantification was further studied by Lommen et al, who pro-
posed a method for simultaneous B1 mapping (implemented
into the 3D radial projection sequence) and 23Na imaging to
increase accuracy and to reduce measurement time.36

Niesporek et al developed an algorithm for partial volume
effect (PVE) corrections and demonstrated a high perfor-
mance of the method to reduce the discrepancy between the
measured and expected sodium concentration value by 11%
to a mean PVE-caused inconsistency of 5.7% after
correction.37

RF Systems for Sodium MRI
RF coils are one of the most important elements for high-
quality, high-SNR sodium MRI. There are a number of chal-
lenges connected to RF coil design, first among them the
operating frequencies, which have to be low; consequently,
this can lead to problems maintaining good coil loading, and
thus, directly limits coil sensitivity. The performances of dif-
ferent RF coil designs for sodium imaging of brain and mus-
culoskeletal applications have been extensively discussed in a
review article published by Wiggins et al.10 The overview of
the advantages and disadvantages of various RF coil topolo-
gies for sodium body imaging has been reported by Bangerter
et al.11

Because of the very short T2 of sodium, short RF pulses
are required to minimize echo time, which drives a highly
efficient transmit coil to limit the maximum voltages needed.
The benefit of a linear increase in SNR with field strength is
diminished by higher specific absorption rates (SARs), which
require a lengthening of the RF pulse durations or repetition
times.

One of the major demands of clinicians is that the
same coil provides proton and sodium imaging within one
imaging session. Moreover, to maximize sodium MRI per-
formance, it is important to maximize the uniformity of the
main B0 static magnetic field. The most efficient and robust
way is to calculate the correct shim currents using proton-
based methods to map the B0 field and then transfer shim
parameters to sodium imaging. This involves the use of
double-tuned, multichannel phased array coils. However,
the major issue with dual frequency designs is that they
degrade the performance at one or both frequencies (1H coil
structures have to cope with screening effects as a result of
currents induced on the 23Na coil part).10 Recently, Gast
et al developed a 23Na-MRI-based method for localized B0

shimming at 7.0T and showed that an external field inho-
mogeneity can be reduced up to 77% using this approach.38

Many different coil designs, optimized for improved sodium
sensitivity, have been developed and reported in the litera-
ture recently, suitable for almost all body parts, such as the
knee, the breast, and the brain.10,11,39–45

Sodium Imaging of Cartilage
Cartilage Repair
Within the last two decades, a large number of cartilage repair
surgical techniques were developed, such as bone marrow
stimulation techniques (Pridie drilling, microfracturing,
MFX), first-, second-, and third-generation cell-based autolo-
gous chondrocyte implantation (ACI), autologous
osteochondral transplantation (AOT), and cell-free implant
techniques. A recent review article by Zbyn et al provided an
extensive overview of different repair techniques evaluations
using 23Na-MRI.8

Proton MRI allows the morphological assessment of the
cartilage and cartilage repair tissue and, more recently, bio-
chemical assessment using the glycosaminoglycan (GAG)
chemical exchange saturation transfer (CEST) technique.
Information about the fine structure or biochemical composi-
tion and the quality of the repair tissue is, however, of partic-
ular interest, as it has been demonstrated that the
composition of the repair tissue may affect the long-term out-
come. In addition to gagCEST, 23Na-MRI is able to assess
changes in ion content connected to GAG molecules. The
GAGs are negatively charged molecules and belong to the
group of the most important constituents of cartilage. GAG
is the central point of molecular investigations of the cartilage
tissue because it has a significant influence on its function
and homeostasis. Furthermore, the GAG content significantly
correlates with the biomechanical properties of cartilage, in
particular, compressive stiffness.46 In articular cartilage, the
negatively charged GAGs are counterbalanced by positively
charged sodium ions; thus, the sodium concentration can be
used as an indirect indicator of the amount of GAG, which,
in turn, can be noninvasively assessed using sodium imag-
ing47,48 (Fig. 1). For quantitative measurements, phantoms
with known sodium concentrations may be placed close to
the organ under investigation and may provide absolute tissue
sodium concentrations.

The first study that included patients after cartilage repair
treatment was published by Trattnig et al in 2010.49 Twelve
patients were involved in the study and scanned using a 3D-
GRE (gradient echo) sequence with a sodium-only, birdcage
knee coil. Each patient was examined �56 months after
matrix-associated chondrocyte transplantation (MACT). The
normalized values of the sodium normalized signal intensity
(NMSI) were significantly lower in transplanted tissue
(174 ± 53) than in reference cartilage (267 ± 42) (P < 0.001).
When the results were compared with dGEMRIC (delayed
Gadolinium Enhanced MRI of cartilage), another GAG-spe-
cific method, the authors concluded that sodium MRI allows
the differentiation between MACT repair tissue and native car-
tilage of patients without the need for contrast agent applica-
tion. For validation of gagCEST imaging as a new method
sensitive to changes in GAG content, Schmitt et al compared
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gagCEST results at 7.0T with sodium MRI in patients with
femoral cartilage repair.50 Results based on five MFX and seven
MACT patients showed a strong correlation between sodium
and gagCEST values and demonstrated the feasibility of this
method for the cartilage GAG content assessment.

Zbyn et al further investigated the quality of newly
developed repair tissue on femoral condyle cartilage after two
different repair procedures: bone marrow stimulation (BMS)
and MACT.51 The NMSI of repaired tissue was significantly
lower in patients after BMS than in those who underwent a
MACT procedure ((164 ± 31) vs. (210 ± 36)) (P = 0.028).
However, the properties of the repair tissue, evaluated by the
MOCART scoring system based on morphological MR
evaluations,52 were not significantly different between two
groups of patients after BMS and after MACT treatments
(P = 0.915). The sodium results suggest that a higher GAG
content is common for the sophisticated cell-based MACT
technique compared to the more simple BMS technique.
This basically means that MACT produces high-quality repair
tissue with a more hyaline-like composition compared to
BMS, which mainly produces fibrous repair tissue with a very
low GAG content. Sodium MRI can differentiate between
repair tissues with different amounts of GAG, and thus, serve
for the noninvasive evaluation of the performance of new car-
tilage repair techniques.

An article by Chang et al compared sodium MRI results
obtained from in 11 patients with and without fluid suppres-
sion, after several different procedures of cartilage repair
(MFX, MACT, osteochondral grafting, juvenile cartilage
implantation). Examinations were done at 7.0T employing a
radial UTE sequence, a sodium-only, birdcage knee coil, and
IR sequence with an adiabatic inversion pulse.53 The results
of the study demonstrated that fluid-suppressed sodium MRI
is more robust compared to standard sequences. In addition,
sodium concentration in neighboring cartilage to transplanted
tissue was significantly lower than in healthy cartilage tissue.
This is in agreement with the findings of in vitro studies,
which demonstrated that the amount of viable chondrocytes
is lower close to the site of injury.54

Cartilage defects can occur also in the ankle joint,
mostly after injury or in patients with osteochondritis dis-
secans. Cartilage repair procedures used in the knee joint are
also performed in the ankle joint. MRI of the ankle joint is
particularly challenging for a number of reasons. The cartilage
lining is curved, highly congruent, and significantly thinner
than in the knee joint, with an average thickness of
1.1 ± 0.18 mm for talar cartilage and 1.16 ± 0.14 mm for the
cartilage of the distal tibia.55 This leads to increasing prob-
lems regarding partial volume effects and SNR. The first
results of sodium imaging in cartilage repair technique evalua-
tions were promising; therefore, Zbyn et al applied a similar
approach to cartilage repair technique evaluations after MFX
and MACT in the ankle joint.48 After biochemical validation
of the sodium imaging protocol using ex vivo measurements
of ankle joint cadavers, which demonstrated a strong linear
correlation between the NMSI and the histochemically
assessed GAG content (r = 0.800; P < 0.001; R2 = 0.639),
reference values were obtained for healthy volunteers. Subse-
quently, patients after MFX and MACT of the talar dome
were examined. The repair tissue of both treatment groups
exhibited significantly lower corrected signal intensities (cSI)
compared to healthy cartilage (MFX, P = 0.007; MACT,
P = 0.008), indicating a lower GAG content than in healthy
reference cartilage of the same patients or the healthy con-
trols, but no significant difference was found between both
treatment groups, indicating that cartilage composition and
the effect on repair seems to be different in the ankle joint
compared to the knee joint (P = 0.185). No significant differ-
ence in cSI was found between healthy cartilage of subjects
and patients (P = 0.355) as well.

Quantitative TSC imaging of articular cartilage is chal-
lenging and its accuracy is limited by several factors, such as
the partial volume effect caused by the relatively low spatial
resolution, signal loss from T2short decay due to the insuffi-
ciently short TE, and T2 blurring due to rapid signal decay
during the readout. In the future, protocols for TSC quantifi-
cation that are feasible for clinical applications should be fur-
ther developed.

FIGURE 1: A 39-year-old male patient who had a small cartilage defect less than 15% of the cartilage thickness (ICRS grade 2 lesion)
in the proximal trochlear region of the lateral femoral condyle. (a) A fat-suppressed proton density (FS-PD) image in a sagittal
orientation shows a lesion with intra-chondral signal alterations. Sodium 23Na-MRI images generated (b) 3 days and (c) 4 weeks after
the defect.
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23Na-MRI in Osteoarthritis (OA)
Proton (1H) MRI methods provide different information
about the morphology of the knee joint, but the more valu-
able diagnostic information is that regarding compositional
changes in the joint, which often occur before morphological
changes appear (Fig. 2). This gives rise to the need for bio-
chemical and quantitative MRI to reveal the early changes in
the complex molecular composition of articular cartilage.

After validation in in vitro studies and in studies on ani-
mal models,56 sodium MRI was employed for the evaluation
of OA patients. Wheaton et al performed a study using a sur-
face coil at 4.0T and acquired sodium images with a UTE
radial sequence.57 These authors measured the knees of nine
healthy volunteers without and three patients with symptoms
of early OA. The mean sodium content measured in the
patellae of the volunteers corresponded to a mean fixed charge
density (FCD) measurement of –182 ± 9 mmol/L. These
authors generated sodium maps for each OA patient, which
illustrated cartilage regions with significantly lower FCD
(from –108 to –144 mmol/L) when compared to the FCD of
healthy volunteers.

Zbyn et al very recently demonstrated that in vivo 23Na-
MRI is a feasible method for the differentiation between low-
grade lesions and normal-appearing articular cartilage.58 Mor-
phological MRI at 3.0T and biochemical 23Na-MRI at 7.0T
investigations were performed at four timepoints (baseline,
1 week, 3 months, and 6 months). After every MR session,
patients underwent the Knee Injury and Osteoarthritis Out-
come Score (KOOS) questionnaire for clinical evaluation. The
authors found significantly lower 23Na-cSI values in all lesions
than in healthy cartilage tissue at all timepoints (all P ≤ 0.002).
KOOS scores improved in all subscales at the 3- and 6-month
visits, with a significant increase observed only in the quality of
life subscale (P = 0.004).

The results of all the above-mentioned publications
confirmed that sodium is a feasible and reliable method for
the assessment of early OA changes. Findings of the clinical
studies support the concept that compositional cartilage
changes can develop earlier than progressive morphological
changes are detectable. This information may be crucial for
early OA discovery and the efficacy of new treatment
options in OA.

23Na-MRI of the Spine
The intervertebral disk shows a characteristic architecture tai-
lored to its biomechanical purpose. The nucleus pulposus
(NP) shows a high concentration of proteoglycans (PG) in
the extracellular matrix that consists of large complexes of
bound GAGs. Those, in turn, have the essential ability to
passively store water due to their negatively charged side
chains that attract free-floating, positively charged 23Na ions.
Therefore, unlike most other tissues in the human body, car-
tilage, in general, and the intervertebral disc (IVD), specifi-
cally, have the vast majority of 23Na ions present in the
extracellular volume.6

The idea to detect early biochemical changes in the
intervertebral disc due to disk degeneration using 23Na-MRI
was conceptualized and measured in vivo using a DQF, a
DQF-MA, as well as a TQF sequence by Ooms et al.59,60

The group identified age-related changes in 23Na-MRI of the
thoracic and lumbar intervertebral discs. First, the content
and the residual quadrupole interaction in the nucleus
pulposus and the annulus fibrous differed at different ages.
Also, the quadrupole coupling (ωQ) and the relaxation rate of
satellite transitions (1/T2f) increased with age.

An ex vivo study published by Wang et al used bovine
intervertebral discs and measured the PG content using
1,9-dimethylmethylene blue (DMMB) assays of 28 nucleus

FIGURE 2: A 50-year-old male patient with a lesion in the patellar cartilage in the area crista patellae. (a) A proton density sequence
with fat suppression (FS-PD) demonstrates an early stage degeneration of articular cartilage with a minor chondral signal alteration
and a minor reduction of cartilage thickness, and a surface that appears intact (ICRS grade 1 lesion). (b) Yellow arrow shows the
corresponding area on the sodium image.
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pulposus punch samples.61 As already shown by Urban et al,
a nucleus pulposus without measurable PG content still has a
remaining 23Na concentration of about 111.54 mmol/L.62

Wang et al combined their measurements and the prior work
published by Urban et al62 and showed a correlation coeffi-
cient of 0.71 between the PG content measured by DMMB
and the 23Na measured by sodium MRI. Simulating the rela-
tionship only for a 23Na concentration from 150 mmol/L to
350 mmol/L, a linear correlation coefficient of 0.998 was
reached for sodium MRI, making it a very potent imaging
biomarker for the indirect quantification of GAGs in the
intervertebral disk.61

Noebauer-Huhmann et al published an in vivo study
confirming that the concept of sodium imaging was a feasible,
noninvasive imaging biomarker, and compared it to T2 map-
ping and morphological grading.63 As degeneration is also
associated with the diminishing synthesis of proteoglycans,
sodium imaging might be able to longitudinally depict tem-
poral changes in different disc pathologies.63 However, those
authors did not find a significant correlation of T2 values and
23Na imaging. This was expected, since T2 mapping is mainly
related to water content, collagen fiber content, and organiza-
tion, while sodium imaging correlates with GAG content. In
addition, it is known that natural degradation of the disc
lowers the measured T2 relaxation times due to the accumula-
tion of lipids and adducts from carbohydrates, which does
not affect the 23Na imaging measurements. This allows for
the assumption that 23Na-MRI can distinguish between non-
degenerative, age-related pathological changes in the extracel-
lular matrix of the nucleus pulposus, potentially making it
more sensitive to pathophysiological changes than other
quantitative MRI methods.

Sodium in Tendons
Sodium MRI is a useful imaging modality for Achilles tendon
biochemical investigations. The Achilles tendon connects the
calcaneus and the calf muscle and must withstand a remark-
able load during movement. To facilitate that, the highly
organized collagen matrix provides the base for static biome-
chanical properties with the aid of proteoglycans (�3.5% of
dry weight) responsible for dynamic biomechanical properties.
In tendinopathy, due to stimulated proteosynthesis, which
helps to overcome disaggregation of the microfibrillar bun-
dles, increased proteoglycan concentration has been observed
using biochemical assays.64 As negatively charged sulfate and
carboxyl groups of proteoglycans attract positively charged
sodium ions, there is a direct proportion of sodium and pro-
teoglycan concentration in the Achilles tendon. To acquire a
23Na signal from the tendon, typically no dedicated coils are
used, but sodium knee coils are used instead—they provide
enough space for lower leg placement and satisfactory coil
loading. Juras et al showed that the sodium signal can serve

as a marker for Achilles tendinopathy, as it provides informa-
tion about elevated sodium concentration in the tendon.65

They investigated eight patients with clinical findings of
chronic Achilles tendinopathy and scanned them with a 3D-
gradient echo sequence using an in-plane resolution of
0.89 mm and a total measurement time of about 32 minutes.
Mean bulk sodium SNR observed in this study was 4.9 ± 2.1
(a.i.) in healthy control subjects and 9.3 ± 2.3 (a.i.) in
patients with Achilles tendinopathy, and these means were
statistically significant. Interestingly, these increases were not
only local, suggesting that the tendon is completely affected
in Achilles tendinopathy. Also, the validation of the sodium
signal and sodium content in tendons was investigated in the
same study.65 Using 15 cadaver samples of Achilles tendons,
which were analyzed with regard to the proteoglycan content,
the Pearson correlation coefficient between the sodium SI
and the proteoglycan content in dry weight was 0.71.

In another study, the increased sodium content in the
Achilles tendon, after fluoroquinolone antibiotic therapy, was
investigated with 23Na-MRI.66 It has been previously
observed that, after fluoroquinolone treatment, patients can
develop Achilles tendinopathy, including all the typical symp-
toms, such as acute onset of tendon pain, tenderness, and
swelling that affects the function of the tendon and, in the
worst case, may lead to tendon tear. Seven healthy male sub-
jects underwent voluntary ciprofloxacin treatment (1000 mg/
day in two doses: 500 mg in the morning and 500 mg in the
evening for 10 days) and were scanned with 23Na MRI at
three timepoints: baseline; at 10 days; and at 5 months after
the treatment. Here, the variable echo-time (vTE) sequence
adapted to x-nuclei capabilities was used with an echo of
2.45 msec and a total acquisition time of 15 minutes. Despite
the fact that there were no morphologically detectable
changes in these volunteers after the treatment, the NMSI
decreased by almost 25% (from 130 ± 8 to 98 ± 5 a.u.) and
then reached 116 ± 10 a.u. after 5 months. The results pro-
vide evidence that sodium MRI is a technique robust and
sensitive enough to detect the changes in the sodium content
in the Achilles tendon, which could be associated with altered
proteoglycan content and may pose the tendon to risk for
tendinopathy and tear.

Muscle
Recent studies demonstrated that 23Na-MRI of a lower leg
muscle can be a useful imaging modality for the detection of
sodium content changes during exercise or disease.67,68 The
sodium concentration increase or decrease in the body mani-
fests as a condition known as hypernatremia or hyponatremia,
which may be induced by a hormonal imbalance or related
diseases, such as diabetes mellitus, hypertension, and acute
heart failure. 23Na concentrations alterations in calf muscle,
however, may be closely related to developed pathologies of
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the muscle tissue, such as channelopathy and muscular dys-
trophy. Several studies confirmed the reproducibility and
repeatability of quantitative sodium imaging in the lower leg
muscle, which is considered a basic condition for an accurate
evaluation of several different muscle pathologies in
patients.69,70

Sodium Evaluations in Diabetic Patients
Na+/K+-ATPase activity is decreased in patients suffering
from diabetes. A sufficiently high concentration of hormone
insulin in the blood will directly enhance sodium/potassium
pump activity in muscle, kidney, liver, etc.71 Chang et al
evaluated the signal intensity (SI) of sodium pre- and post-
exercise. The sodium signal was assessed in patients with dia-
betes and in healthy subjects, in all three compartments of
the calf muscle: tibialis anterior (TA), soleus (S), and the gas-
trocnemius (G) muscles. It was found that the sodium signal
intensity in the S and G immediately increased significantly
after exercise for both diabetic patients and healthy subjects.
However, the signal intensity decrease to baseline was slower
in diabetics. An explanation for this can be supported by the
fact that, in patients with diabetes mellitus, muscle function
is reduced and accompanied by impaired functioning of the
Na+ /K+ pump.

Muscular Channelopathy and Muscular Dystrophy
Muscular channelopathies are a group of nondystrophic
myopathies, which are caused by gene mutations that result
in a malfunction of the ionic channels of the muscle. Nagel
et al, as a clinical model, chose patients with hypokalemic
periodic paralysis (hypoPP) and paramyotonia congenita
(PC).72 The purpose of the study was to investigate which of
three different sequences: 23Na-TSC; T1-weighted sodium
imaging (23Na-T1); or

23Na-IR would provide the strongest
weighting toward intracellular sodium. All three sequences
demonstrated significantly higher signal intensities in hypoPP
compared to those in PC patients and healthy subjects. How-
ever, after inducing a provocation in PC patients, a significant
(P = 0.007) increase (>20%) in the muscular 23Na-IR signal
and a corresponding decrease of muscle strength was detected.
These results provide strong evidence that 23Na-IR substan-
tially advances weighting toward intracellular sodium and
enables an improved evaluation of pathophysiological changes
of muscles in patients suffering from rare diseases.

In contrast to skeletal muscle channelopathies, which
are rare, inherited childhood-onset disorders, myotonic dys-
trophy (DM) is the most common form of muscular dystro-
phy that begins in adulthood. A special severe type of DM,
investigated with 23Na-MRI, is Duchenne’s muscular dystro-
phy (DMD) that is usually diagnosed in childhood. DMD is
caused by a mutation in the dystrophin gene, which leads to
progressive muscle weakness and destruction and is associated
with ion homeostasis dysregulation and chronic

inflammation.73 Gerhalter et al studied 13 patients with
DMD and found that TSC (26.0 ± 1.3 mM, P < 0.05) and
ICS (0.69 ± 0.05 a.u., P < 0.05) were elevated in DMD com-
pared to healthy controls (16.5 ± 1.3 mM and 0.47 ± 0.04 a.
u.). The ICS was frequently abnormal in DMD compared to
heathy controls, and was present even in the absence of fatty
degenerative changes and water T2 increases73 (Fig. 3). One
explanation for the observed increased ICS and TSC values
despite normal water T2 values might be that sodium MRI is
more sensitive in the detection of dystrophic changes. Since
there were no significant changes in the ICS/TSC ratio
between the healthy and dystrophic muscle, this observation
could be compatible with two concurrent phenomena: an
increase in the intracellular sodium and an increase of the
extracellular volume fraction.

Hypertension
Quantitative 23Na-MRI in muscle may be used to assess an
increase in body sodium content due to high blood pressure
(HBP). Kopp et al found a 29% increase in 23Na content in
patients with aldosteronism associated with hypertension
compared to healthy subjects.74,75 Although the authors
stated that the achieved resolution (3 × 3 × 30) mm3 was
adequate, they considered it as unsatisfactory for the skin
sodium concentration evaluations. However, the authors’ aim
was to test the basic hypothesis about Na+ storage in muscle,
and particularly, in skin, without apparent accompanying
fluid retention. Linz et al developed a dedicated, two-channel
transceiver RF coil array for skin measurements and per-
formed sodium imaging in humans with a gradient echo
sequence and 0.9 × 0.9 × 30 mm3 resolution at 7.0T.76 Skin
sodium concentration results showed a discrepancy between
the Na+ content obtained in vivo at 3.0T vs. 7.0T. The
inconsistency could be the result of the higher spatial resolu-
tion at 7.0T, which may compensate for the PVE that
occurred at the lower field strength. Submillimeter image res-
olution, achievable on ultrahigh MR systems, should provide
a better understanding of the physiological processes related
to HBP in the future.

Cardiac 23Na MRI
Technical Considerations
Sodium is an essential ion for myocyte function and integrity.
It plays an important role in balancing osmotic pressure
through the sodium–potassium pump. The concentration of
extracellular sodium is �10 times higher than that of the
intracellular concentration to provide proper muscle excita-
tion, conduction, and contraction. The pathological change
in TSC and the impairment of sodium flux often occurs in
hypertrophic myopathies, ischemic cardiac diseases, and
infarction. Hence, 23Na-MRI provides a valuable and power-
ful imaging tool for the detection of sodium concentration in
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heart muscle in vivo. However, similar to other sodium MR
applications, cardiac sodium MR faces many issues related to
physical and technical obstacles. An article published by Bot-
tomley provided a critical review of the properties, methods,
and potential clinical applications of 23Na-MRI in the human
heart.7

Cardiac 23Na-MRI studies may be performed on MRI
scanners from 1.5–7.0T with a spatial resolution in the range
of 100–1000 mm3, typically 160 mm3 at 3.0T in a
10-minute measurement time.7,77 The relatively short T1

relaxation in heart muscle allows for further scan time short-
ening by increasing the number of signal averages. The 23Na

signal in heart tissue usually exhibits a bicomponent decay,
with an �40% fast component (T2f, ranging from 0.5–-
4 msec) and a 60% slow component (T2s, ranging from
12–32 msec).78–80 With conventional MR techniques using
an echo time (TE) longer than 3 msec, the majority of T2f is
lost; however, using short- and ultrashort MR sequences, the
TSC can be measured quite precisely and the values match
the assay.78

For clinical applications, it would be desirable to sepa-
rate intracellular sodium, typically 10–15 mM and extracellu-
lar sodium, typically 135–150 mM. The theory that
attributes intra- and extracellular sodium to T2f and T2s is

FIGURE 3: Illustration of (a) fat fraction maps, (b) water T2 maps, (c) DW 23Na images, and (d) IR 23Na images in the leg of 7-year-old,
9-year-old, and 11-year-old DMD patients, as well as a 10-year-old control. For 23Na MRI, four reference tubes were used (1, 40 mM
NaCl; 2, 40 mM NaCl, and 5% agarose gel; 3, 20 mM NaCl; 4, 20 mM NaCl, and 5% agarose gel). The leg muscles of DMD patients
showed generally elevated FF, water T2, and sodium signals compared with age-matched controls. While the 7-year-old DMD
patient exhibited slightly elevated FF (mean FF 0.08 ± 0.04), the FF was much higher in the muscles of the 11-year-old DMD patient
(mean FF 0.19 ± 0.1), who was not able to walk more than 10 m without human assistance. Increased total sodium and intracellular-
weighted sodium signals are also visible in the dystrophic muscle tissue with normal T2 and FF values (figure reproduced from Ref.
73 with permission from Wiley).
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controversially discussed in the literature, as there is a lack of
solid evidence to prove this theory. There is even some evi-
dence against this theory, suggesting that, from an NMR
point of view, the 23Na ion is similar inside the cell and out-
side the cell.81 The sodium signal is a relative value deter-
mined by a combination of many factors, such as T1, T2, B1,,
and B0 field homogeneity, and is linearly correlated with
sodium concentration in heart muscle tissue. It is also possi-
ble to measure absolute TSC in the heart using reference
tubes with a known sodium concentration. These reference
tubes are scanned either separately with the same protocol or
in the field of view of an actual 23 Na-MRI measurement of
the heart, taking into account the coil sensitivity. There have
also been attempts to use an internal reference that does not
change between subjects, eg, myocardial and ventricular
blood ratio; however, a direct relation to TSC has not, as yet,
been validated.82 To acquire the best possible 23Na signal,
dedicated transmit/receive resonators should be used. Some of
these are commercially available,83,84 but many research
groups rely on custom-made, dedicated cardiac coils.7,64,85

Boehmert et al built a dedicated 4/4 channel 1H/23Na coil
with high B1

+ homogeneity and penetration depth to investi-
gate the cardiorenal syndrome.86 The complexity of the dedi-
cated resonators grows with the field strength. Typically, a
surface coil design is preferred, with the diameter approxi-
mately equal to the depth of interest, which is 10–15 cm.
Another option for increasing 23Na SNR is phased array sur-
face coils; however, multichannel 23Na-MRI is required,
which is available on only a small number of MR scanners
installed worldwide.85, 87

To acquire the maximum sodium signal from the heart
and allow for TSC quantification, MR sequences with short
TEs are necessary.64,77,79 Typically, 3D projection recon-
struction techniques are used, with a hard excitation pulse
followed by a constant gradient. To acquire an optimal SNR,
the projection increment is 111�, referred to as the “golden
ratio.”79,88 Other possible trajectories are twisted projection
imaging16 and spiral imaging.89 As hard pulses are very sensi-
tive to B1 inhomogeneity, adiabatic pulses are alternatively
used to provide a B1-independent excitation. Cardiac motion
is also a pitfall for 23Na-MRI sequences, and electrocardiogra-
phy (ECG) gating, as often used in 1H cardiac imaging, is
not helpful because the advantage of the short T1 of 23Na
would be lost. Therefore, either only motion-quiet frames are
acquired84,90 or retrospective ECG gating is used.90,91

Preclinical and Clinical Studies
Animal models provide an important step toward understand-
ing the physiology and pathology of sodium in the heart,
although the small structures present considerable technical
challenges.78,92–94 However, it is possible to compensate for
the lower SNR by using small-bore, ultrahigh-field MR scan-
ners. Neuberger et al used a 17.6T animal scanner to acquire

high-resolution sodium images of the mouse heart.93 The
sodium SNR in the left ventricle, the right ventricle, the left
ventricular free wall, and the septum was found to be
9.2 ± 2.3, 8.3 ± 2.06, 3.8 ± 1.0, and 5.6 ± 1.4, respectively. In
another study, sodium imaging and spectroscopy was investi-
gated for use as a potential marker with which to assess viabil-
ity after low-flow ischemia, using a rat heart model.92

Intracellular sodium image intensity increased significantly dur-
ing ischemia of the left side, whereas that of the right side
remained unchanged; however, total sodium image intensity
remained unchanged in both sides of the heart.

23Na-MRI offers a tool with which to study myocardial
ion homeostasis in vivo and can be used for different areas of
cardiovascular disease. Most of the clinical studies are related
to the investigation of sodium levels in myocardial infarction
(MI). In a feasibility study by Standstede et al, the elevated
sodium signal was observed in the myocardium affected by
acute infarction (60.6 ± 21.6) compared to healthy controls
(37.2 ± 12.8); however, no statistically significant increase
was measured in infarcted myocardium in the subacute and
the chronic groups.95 To acquire the sodium signal from the
heart, an ECG-triggered, 3D, spoiled gradient-echo (fast low-
angle shot) sequence with a TE of 3.1 msec was used. In a
follow-up study, the same authors monitored 12 patients on
days 4, 14, and 90 after infarction and found an increase in
the sodium signal of 39 ± 18, 31 ± 17, and 28 ± 13 [%],
respectively, suggesting that 23Na-MRI may be an applicable
method for imaging nonviable myocardium in vivo.84 Abso-
lute TSC was measured in 20 patients with a history of prior
MI using a 150 mmol/L Na+ concentration reference and a
coregistration to 1H images acquired with a contrast agent.90

Although the TSC was elevated by �30% in patients com-
pared to healthy controls, TSC does not appear to be linked
to infarct age or size or to global ventricular function. Quanti-
tative sodium MRI is heavily influenced by cardiac and respi-
ratory motion, PVEs, and inhomogeneity of the static
magnetic field, as well as of the transmit and receive field.
Lott et al showed that a thorough correction for these influ-
ences provides more accurate TSC results from the heart,
albeit somewhat lower compared to uncorrected values
(Fig. 4).96 Christa et al measured increased myocardial
sodium SI in Conn’s syndrome, which is manifested by
hyperaldosteronemia that results in an alteration of sodium
and potassium levels.97 They used a 3D gradient echo
sequence with a TR of 100 msec; a TE of 2.01 msec; flip
angle 90�; field of view (FOV) 500 × 500 × 200 mm3;
which provided an acquisition matrix of 128 × 128 × 10,
with a resolution of 3.9 × 3.9 × 20 mm3; and eight signal
averages; resulting in a total acquisition time of 17 minutes.
Patients with Conn’s syndrome exhibited significantly higher
relative sodium signal intensities in the myocardium com-
pared to healthy controls (0.31, ranging from 0.26–0.34)
vs. 0.24 (ranging from 0.20–0.27). The results suggest that
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the myocardium is, along with skeletal muscle and skin,
another possible sodium storage site, and 23Na MRI can be
used to monitor patients who are undergoing treatment for
an aldosterone excess.

23Na -MRI in Kidney Function Evaluation
The most important role of the kidney is to maintain the
overall fluid balance in the body. Renal function is deter-
mined by a proper regulation of extracellular sodium in the
kidney, established by a sodium concentration gradient from
the cortex to the medulla. The malfunction of the sodium
concentration gradient may be caused by several different
renal diseases, such as nephropathy, acute kidney failure, or
irregular kidney function after transplantation.

A study by Haneder et al demonstrated the feasibility
of in vivo 23Na imaging of human kidneys on a whole-
body, ultrahigh-field MR system at 7.0T. Heathy subjects
were examined using a 3D Cartesian spoiled gradient echo
sequence with a variable echo time scheme with a nominal
in-plane resolution of 4 × 4 mm2 and a slice thickness of
5 mm.98 These authors confirmed the validity of the con-
cept of increasing the 23Na SNR or 23Na concentration

from the renal cortex in the direction of the medullary pyr-
amid. This concentration change is called the cor-
ticomedullary 23Na gradient and it is highly important for
proper kidney function evaluation and for the detection of
abnormalities.

Breast Tumors
Ultrasound (US) and mammography are the most-used imag-
ing modalities for breast lesion detection and characterization.
However, the diagnostic accuracy of breast sonography exami-
nations is low, and thus, US is usually recommended as a
complementary technique to mammography or other imaging
techniques. Mammography, however, is primarily advised for
patients over 50 with less dense breast tissue. Low sensitivity
and specificity, as well as accompanying ionizing radiation,
are strong limitations of this imaging method. The develop-
ment of noninvasive biochemical MRI techniques is, there-
fore, necessary, especially those that can define predictive
biomarkers for breast cancer diagnosis and characterization
with high sensitivity and specificity. One of those techniques
that could provide supplementary information to conven-
tional MRI, such as contrast-based imaging techniques, is

FIGURE 4: An example of proton and sodium images with segmentation masks used for quantification and postprocessing. (a) 1H
MRI image (with navigator stripes) before registration. (b) 23Na MRI with corresponding masks (red = blood mask,
green = myocardial mask) based on the 1H image. (c) Simulated 23Na MRI of the heart based on 1H masks. (d) 1H MRI image after
registration. (e) Registered 1H image with cardiac 23Na MRI as an overlay. (f) Cardiac 23Na MRI (figure adapted from Ref. 96 and
reproduced with permission from Wiley).
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23Na-MRI, which is sensitive to sodium concentration
changes in tissue as a reliable biomarker for cell viability and
function. Thus, 23Na-MRI may increase overall diagnostic
accuracy and contribute to other established imaging methods
for the monitoring of treatment efficacy. The technique has
been shown to be feasible for the differentiation between
malignant and healthy breast tissue and may prevent false-
positive and false-negative findings in patients at high risk for
malignancy (Fig. 5). Zaric et al recently showed that the
increased field strength provides the increased sensitivity nec-
essary to achieve an acceptable spatial resolution for the meta-
bolic interpretation of the tissue under investigation.99 These
authors showed that the low 23Na content in healthy glandu-
lar breast tissue can be assessed using improved imaging tech-
niques and hardware at 7.0T. The quantitative sodium MRI
was performed using an AWSOS sequence. The measurement
protocol was optimized, and sodium images with a 1.5 mm
in-plane resolution were acquired in �16 minutes. It was
shown that TSC in carcinomas is 28% and 49% higher com-
pared to benign tumors and healthy glandular tissue, respec-
tively. Lachner et al proposed an advanced CS reconstruction
algorithm for radial 23Na multicoil data, applied to simulated
and measured breast datasets.100 For data acquisition, a DA-
3DPR pulse sequence, which enables more efficient k-space
sampling, can be used, as well as multicoil arrays that can fur-
ther enhance the SNR. For the first time, CS was used for
undersampled breast sodium data reconstruction. It was dem-
onstrated that CS can be successfully implemented to reduce
acquisition time and enhance image quality. Although CS

reconstruction could utilize a conventional total variation
(TV) denoising technique, it was shown that not only arti-
facts and noise are diminished, but also small-tissue struc-
tures. As a possible solution, the authors proposed a method
that adapts the TV using anatomical weighting factors, which
represent known tissue boundaries (AnaWeTV). After inclu-
sion of prior information from proton (1H) MRI into the CS
reconstruction, image quality was further increased due to
preserved tissue boundaries and PV effects. Since proton and
sodium images are highly correlated, these weighting factors
could be obtained from a high-resolution 1H MR image and
then transferred to 23Na images. Applied like this, CS recon-
struction simultaneously maintained known tissue boundaries
and reduced image artifacts. The method still has to be
applied and validated in patients with breast lesions.

Brain
The first clinical NMR images of cerebral sodium distribution
in normal volunteers and in patients with a variety of patho-
logical lesions were shown by Hilal et al in 1985.101 Subse-
quently, many different studies explored the potential of
using sodium MRI as a noninvasive imaging modality for
biochemical investigations of brain tumors, stroke, and neuro-
logical disorders. The potential of a combination of sodium
imaging with other imaging modalities, such as positron
emission tomography (PET) in metabolic change studies con-
nected with human brain pathologies, have been discussed in
a review article by Shah et al.9 High reproducibility and
repeatability of cerebral 23Na-MRI was recently reported by
Meyer et al.102

Brain Tumors
Two main histological properties of malignant tumors are
increased angiogenesis and cell proliferation. Unregulated
Na+/H+ exchange kinetics and altered Na+/K+-ATPase activ-
ity may increase the number of cells, which then will lead to
tumor genesis and growth. The amount of sodium inside the
cell will rise and may be considered a biomarker of tumor
malignancy.103 One of the first 23Na-MRI studies included
20 patients with brain gliomas, which reported elevated TSC
levels for both tumors and surrounding tissues.104,105 How-
ever, the changes in TSC in a tissue of interest may provide
low specificity information on the origin of sodium signal
changes and their connection to tumor malignancy.106 Intra-
cellular sodium signal that originates from Na+ ions with
restricted mobility may be distinguished from extracellular
sodium signal utilizing TQF sequences. There is currently a
controversial discussion within the sodium MRI community
regarding the last statement. According to Burstein et al, the
intracellular sodium signal cannot be separated from extracel-
lular sodium in human tissue.29 The authors explain that,
based on chemical kinetics principles, sodium ions in

FIGURE 5: A 60-year-old female patient with invasive ductal
carcinoma (IDC) and a grade 3 proliferation (G3) in the lateral
part of the left breast. (a) DIXON water image shows a
heterogeneous lesion with irregular margins typical of malignant
tumors, and (b) a corresponding color-coded bilateral 23Na
image corrected for coil sensitivity and obtained with a 3D radial
projection sequence (DA-3DPR).
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biological systems are not in a “bound” or a “mobile” state
due to the fast relaxation rate constants they have.

To date, there is a limited number of publications that
have dealt with an application of TQF 23Na imaging in
patients with brain tumors. Initial reports have suggested a
promising role for TQF 23Na-MRI in discriminating vital
parts of tumor, with high cell proliferation from areas of
tumor necrosis.24,107 One method allows simultaneous acqui-
sition of TSC-weighted, as well as TQF images (SISTINA),
utilizing a sequence that interleaves an ultrashort TE, radial
projection readout into the three-pulse, triple-quantum prepa-
ration, and was developed by Fiege et al.107 A drawback of
the SISTINA method was limited SNR and resolution; tumor
images could not be analyzed without a proton reference
image. Significant improvements of this technical issue can be
achieved with improved readouts, such as DA-3DPR or TPI
sequences. Based on the DA-3DPR sequence, Nagel et al ear-
lier proposed a relaxation-weighted (RW) 23Na-MRI and
applied it in patients with brain carcinomas. The results
showed that RW 23Na imaging allows excellent differentia-
tion between grade I–III and grade IV gliomas.28 Neto et al
recently performed a study with eight brain carcinoma
patients before surgical, chemo, or radiation therapy treat-
ment. Patients were scanned at 3.0T using a custom-made
double-tuned (23Na/1H) head coil and a FLORET sequence,
with and without fluid suppression by inversion recovery
(IR). The authors generated maps of pseudo-intracellular
sodium concentration (C1), pseudo-extracellular volume frac-
tion (α2), apparent intracellular sodium concentration (aISC),
and apparent total sodium concentration (aTSC). These
parameters were significantly elevated in the normal-
appearing putamen compared to NAWM. Analysis of all solid
tumors demonstrated a significant increase of aTSC and α2,
and a significant decrease of aISC when compared with
NAWM.108 In a study published by Biller et al, 34 patients
with brain tumors were examined with 23Na-MRI, performed
using a 7.0T MR system and a double-tuned (1H/23Na) quad-
rature birdcage head coil, and the DA-3DPR technique.109

The results demonstrated that the initial sodium signal, mea-
sured in a brain tumor patient without any previous treatment,
is a valuable predictor of isocitrate dehydrogenase (IDH) muta-
tion status and tumor progression. The study confirmed a great
potential for 23Na-MRI for an improved and individualized
approach in neuro-oncology.

Ischemic Stroke
Changes in intracellular 23Na concentration are known to
occur shortly after an ischemic insult due to impaired func-
tioning of Na+/K+-ATPase, which is responsible for human
homeostasis. The role of 23Na-MRI in identifying patients
suitable for therapeutic intervention immediately after stroke
may be crucial (Fig. 6).16,110–112

Sodium MRI in Neurological Disorders
Multiple sclerosis (MS) is an inflammatory demyelinating dis-
ease that causes the development of focal and diffuse lesions
in white matter (WM) and gray matter (GM). Chronically
demyelinated MS lesions are accompanied by a substantially
reduced axonal Na+/K+-ATPase expression.113 In vivo MRI
studies using 23Na imaging showed increased brain TSC in
patients with MS. Inglese et al performed a sodium MRI
study at 3.0T, including patients with advanced relapsing–
remitting MS, and applying a 3D radial gradient-echo UTE
sequence.114 These authors quantified absolute TSC in a
patient’s lesions and several brain regions with normal-
appearing white and gray matter (NAWM and NAGM). The
same measurement was performed in corresponding areas in
controls. In MS patients, TSCs were higher in MS lesions
compared to areas of NAWM. Also, TSC measured in
NAWM were also significantly higher than those in
corresponding WM regions in healthy controls. Further stud-
ies confirmed these findings.115–118 In order to obtain more
specific information, Petracca et al used a method that com-
bined SQ and TQF MRI, to quantify TSC and the intracel-
lular sodium molar fraction (ISMF) and then derived ISC
and ISVF, an indirect measure of ESC. The results generated
from 19 relapsing–remitting MS patients and 17 heathy con-
trols showed that global TSC and ISC evaluated in GM were
higher, while GM and WM ISVF (indirect measure of extra-
cellular sodium concentration) were lower in patients com-
pared with healthy controls.119 In 11 patients with acute MS
lesions, 1H and 23Na-MRI examinations were performed at
3.0T.120 Initial examinations showed that contrast-enhancing
lesions had high TSC, while, 4 weeks later, MRI TSC in
these lesions was reduced. The authors of the study con-
cluded that tissue structure is relatively preserved in the early
stage of lesion progression. Stobbe et al investigated potential
errors in TSC quantification in patients with primary progres-
sive MS disease, often characterized by small lesions.121 The
authors found that signal from volumes-of-interest (VOIs) in
large spheres (�10 cm3) was 20% higher than expected. In
smaller VOIs (�0.35 cm3), the 23Na signal was even more
underestimated (40–60%). This may be one of the most criti-
cal limitations of low-resolution quantitative methods applied
in evaluation of small lesions. A case–control study that
included patients who suffered migraines was recently publi-
shed by Meyer et al.122 The results showed a significantly
higher sodium concentration in cerebrospinal fluid (CSF) in
migraine and tension-type headache (TTH) patients compared
with healthy controls (P = 0.007, P < 0.001, respectively).
Alzheimer’s disease (AD) is a chronic neurodegenerative disease
accompanied by alterations of the sodium levels in brain due
to cell death or loss of functional characteristics. The patho-
physiological changes in a brain affected by AD can be mea-
sured with sodium MRI and may provide valuable additional
information for early discovery of the disease. A small study of
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AD patients (n = 5) reported a 7.5% brain TSC increase with
an inverse correlation to the volume of the hippocampus.123

Another possible application for 23Na-MRI is in Huntington’s
disease diagnosis. In patients with this neurological condition,
the highest TSC was found in the caudate nucleus, which cor-
related with GM atrophy.124 In a group of healthy subjects,
neuroglial-vascular mechanisms were studied by dynamic
sodium imaging using a triple-echo, 3D-center-out radial
sequence at 7.0T. These authors demonstrated an activation in
the left central regions, the supplementary motor areas, and the
left cerebellum, manifested as an increase of the sodium signal
at an ultrashort TE and a decrease of the signal at a long
TE.125 The presumption of the existence of “restricted” and
“mobile” sodium ions and differences in the T2 relaxation
times of sodium nuclei in the intra- and extracellular space is,
however, still controversial.29

Conclusion
The great potential of 23Na-MRI has been extensively dem-
onstrated. Several hundred publications have presented meth-
odological and feasibility studies showing that 23Na-MRI can
serve as a reliable imaging tool for the diagnosis and treat-
ment monitoring of many diseases. The future task of the sci-
entific community is to continue to work on technical
improvements of the technique to enable 23Na-MRI to
become an approved imaging modality for biochemical clini-
cal investigations and to provide a better understanding of
different pathophysiological conditions.
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